
Algant Master Thesis

Tower decomposition of Hilbert class fields

Candidate:

Jared Guissmo Asuncion

Advisor:

Dr. Andreas Enge

Universiteit Leiden Université de Bordeaux

July 2016

2

Contents

1 Introduction 5

2 Generating the Hilbert Class Field 7

2.1 The Hilbert Class Field . 7

2.2 The Hilbert Class Polynomial . 8

2.3 The Form Class Group . 9

2.4 Class Invariants . 9

3 Theory for the Algorithm 13

3.1 Galois Theory . 13

3.1.1 Galois Case . 13

3.1.2 Non-Galois Case . 15

3.2 Hecke Representation . 17

4 The Algorithm 21

4.1 Ordering the Roots . 23

4.1.1 Cyclic Case . 23

4.1.2 General Case . 24

4.2 Exploiting Complex Conjugation . 25

4.3 The Main Algorithm . 26

5 Complexity Analysis 29

5.1 Polynomial Operations . 29

5.2 Floating Point Operations . 31

5.3 Analyzing one iteration . 31

5.4 Total complexity . 32

6 Verifying the Results 35

6.1 Using resultants . 35

6.2 Constructing an elliptic curve of good cardinality . 36

7 Experiments 39

7.1 On the irreducibility of the Vk . 39

7.2 On the composition series . 40

3

4 CONTENTS

Chapter 1

Introduction

One of the more recently discovered primality proving algorithms was the Atkin-Morain elliptic curve primality

test [1]. One step of this algorithm requires the construction of an elliptic curve over a finite field Fp, where p

is the integer which we want to prove prime. We want such elliptic curve to have exactly N points, where N is

an integer with a large prime factor. The best known method to find such a curve is by computing an invariant,

called the j-invariant, which we can use to produce such an elliptic curve. We write the algorithm here [3] for

reference.

Algorithm 1.1. CMalgo

Input: an integer N > 6 and a prime p such that |N + 1− p|≤ 2
√
N

Output: an elliptic curve over E/Fp with |E(Fp)|= N .

Algorithm:

1. Compute the Hilbert class polynomial hK ∈ Z[X] for the field K = Q(
√
−D) where −D = (p+1−N)2−4p.

2. Compute a root j ∈ Fp of hK , viewed as a polynomial over Fp.

3. Let

E =


Y 2 = X3 + aX − a for j 6= 0, 1728

Y 2 = X3 + 1 for j = 0

Y 2 = X3 +X for j = 1728

where a = 27j
4(1728−j)) .

4. If |E(Fp)|= N , return E. Otherwise, return its quadratic twist.

The most important step in algorithm 1.1 is to find a root j ∈ Fp of the Hilbert class polynomial hK , a polynomial

of degree h which is defined in section 2.2. This polynomial generates the Hilbert class field, HK of K. It is

defined in section 2.1 to be the maximal unramified abelian extension of K. By taking the intermediate fields of

HK/K and obtaining their respective defining polynomials, we only need to find roots of polynomials of lesser

degree. This thesis aims to provide a more thorough description of the algorithm in [6] which gives a tower of

intermediate fields and their respective defining polynomials to aid in the computation of algorithm 1.1. We

state the more general problem below.

Problem 1.2. Given a finite abelian extension M/K generated by the polynomial h, find an intermediate field

L and the respective polynomials W and V , for M/L and L/K.

5

6

Note that we can let M = HK , and we can recursively apply the algorithm we obtain from solving problem 1.2

to make a finer decomposition. Since M/K is a Galois extension, we can find an intermediate field L by taking

a normal subgroup H of the Galois group Gal(M/K). However, in general, elements of G are difficult to work

with symbolically. And so, we will prefer to work with the more convenient form class group discussed in section

2.3. From here, it turns out that we need not compute the Hilbert class polynomial as we can compute the roots

from the form class group. Not only that, but in section 2.4, we see that we need not compute the roots of the

Hilbert class polynomial. There can exist other minimal polynomials which generate the Hilbert class field and

these are the ones we work with in a running example scattered around the different sections which cumulates

in the big example 4.20.

Moreover, we can avoid doing intermediate computations with complex numbers and compute minimal polyno-

mials in real subfields of M,L and K instead. This is because the minimal polynomials we get are polynomials

in Z. However, it turns out that these real subfields M ′, L′ and K ′ are not necessarily Galois, unlike their coun-

terparts. On one hand, computations are faster with the subfields but we also want to utilise the Galois group

offered by the original fields. It turns out we can get the best of both worlds as explained in section 3.1. In the

following section 3.2, we discuss algorithms to quickly compute certain polynomials given their roots.

Finally, we build algorithm 1.2 to solve problem 4.19. In theory, this solves the problem of finding a tower of

intermediate fields of maximal length. We treat the algorithm in [6] more thoroughly in this thesis and discuss

in more detail some tricks on how to efficiently transition from one iteration to the next. Some strategies are

discussed in sections 4.1 and 4.2 on how to save computations between iterations. We conclude that part by

stating the main algorithm, algorithm 4.19.

We also analyze in detail the time complexity of the algorithm in section 5. In section 6, we briefly deal with

the inverse problem to provide a way to check if our computations and/or implementations are correct. Some

statistics with regards to the actual running time can be found in chapter 7.

Chapter 2

Generating the Hilbert Class Field

2.1 The Hilbert Class Field

In this section, we define the Hilbert class field and its relation with the ideal class group defined as follows:

Definition 2.1. Let K be an imaginary quadratic number field. Let OK be its ring of integers. We define the

ideal class group of K to be

Cl(OK) =
I(OK)

P(OK)
=

fractional ideals of OK
principal fractional ideals of OK

.

Before proceeding to the definition of the Hilbert class field, we recall first what it means for a field extension to

be unramified and abelian. Similarly, if L is an extension of K, we can also speak of OL. A prime p ∈ OK is

said to be unramified if its prime decomposition in OL is squarefree, that is,

pOK = P1P2 · · ·Pg

where the Pi are distinct. From these definitions, we are now ready to define what it means for a field extension

to be unramified.

Definition 2.2. Let K = Q(
√
−D) be an imaginary quadratic number field. An extension L/K is unramified if

all prime ideals in OK are unramified.

In general, there is also a notion of unramified (infinite) places which corresponding to the embeddings K ↪→ C.

However, we need not worry about these embeddings in the particular case where K is an imaginary quadratic

number field. This is due to the fact that all embeddings of K are already complex, meaning that given any field

extension, L, the infinite places corresponding to the complex embeddings will always be unramified. Now, we

define what it means to be an abelian extension.

Definition 2.3. An extension L/K is abelian if it is Galois with abelian Galois group.

Let L/K be a finite unramified abelian extension. Let p be a prime ideal of OK and P be a prime ideal of OL
above p. We know that the extension l/k = OL/P

OK/p is cyclic and is generated by the Frobenius automorphism Frobp

such that Frobp(x) = xN(p). Since P is unramified, there exists a unique σp such that σp(x) ≡ xN(p) (mod P).

We call σp the Artin symbol for p. Hence, we can define the Artin map(
·

L/K

)
: I(OK)→ Gal(L/K)

pe11 · · · p
et
t 7→ σe1p1

· · ·σetpt

7

8 2.2 The Hilbert Class Polynomial

Class field theory tells us that there exists a maximal unramified abelian extension HK of K such that the Artin

map induces an isomorphism

Cl(OK) =
I(OK)

P(OK)
∼= Gal(HK/K).

This extension HK is unique and it is called the Hilbert class field of K. In the next part, we find that for

imaginary quadratic fields K such that τ2/τ1 6∈ R it is generated by the value of a modular function which

depends on the ideal class group.

2.2 The Hilbert Class Polynomial

Recall that a lattice of full rank Λ is an additive subgroup of C with a Z-basis τ1 and τ2. We write Λ = [τ1, τ2] =

Zτ1 + Zτ2. Without loss of generality, assume Im(τ1τ2) > 0 (otherwise, switch τ1 and τ2). The j-invariant of a

lattice Λ is defined to be

j(Λ) = 1728 · g2(Λ)3

g2(Λ)3 − 27g2
3(Λ)

where

g2(Λ) := 60
∑

τ∈Λ\{0}

1

τ4
and g3(Λ) := 140

∑
τ∈Λ\{0}

1

τ6
.

Note that we can also define j as a function from C→ C by taking τ := τ1
τ2

and defining

j(τ) := j(Λ).

Since j only depends on the lattice, then j is invariant under any unimodular transformation, i.e. transformations

of the form

τ 7→ aτ + b

cτ + d

where a, b, c, d ∈ Z and ad − bc = 1. From here, we can also define j as a function from the ideal class group

Cl(OK). Let k ∈ Cl(OK). Take I = [τ1, τ2] be the Z-basis of an ideal which is a representative of the class k. Let

τ = τ1
τ2

and let

j(k) = j(I) = j

(
α1

α2

)
.

Note that this is well-defined since any other representative I ′ will be of the form I ′ = (α)I = (ατ1, ατ2) and

will result in the same τ . Moreover, it can be shown that j(k) is an algebraic integer. Furthermore, we have the

theorem from [8]:

Theorem 2.4. Let K be an imaginary quadratic number field. For every ideal class k ∈ Cl(OK), we have

HK = K(j(k)).

Moreover, there exists an isomorphism via the following well-defined map

σ : Cl(OK)→ Gal(HK/K) (2.5)

k→ σk.

such that if p is a representative of k, then σk is the Frobenius automoprhism associated with p. Furthermore,

j(k)σh = j(kh−1)

Generating the Hilbert Class Field 9

and

j(h) = j(h−1)

for all h ∈ Cl(OK)

Finally, we define the Hilbert class polynomial to be the minimal polynomial of any of the j(k). We define

hK(X) =
∏

σ∈Gal(HK/K)

(X − xσ) =
∏

h∈Cl(OK)

(X − xσh)

where x := j(k) for some fixed k. From this, we can define a group structure on the roots of hK by defining

x0x1 = xσ0xσ1 := xσ0σ1 .

2.3 The Form Class Group

The form class group is yet another group in our growing list of objects that are isomorphic to each other.

Compared to all the previous groups we have defined, the form class group is very easy to represent. We start

by defining a binary quadratic form. A binary quadratic form of discriminant −D is a homogeneous polynomial

Q(x, y) = Ax2 +Bxy + Cy2 = [A,B,C]

such that its discriminant is −D =
√
B2 − 4AC. If gcd(A,B,C) = 1, then it is said to be primitive. If q(x, y) > 0

whenever (x, y) 6= (0, 0) then it is said to be positive definite. Moreover quadratic forms q1 and q2 are said to be

equivalent (written q1 ∼ q2) if there exists a, b, c, d ∈ Z where ad− bc = 1 such that

q1(x, y) = q2(ax+ by, cx+ dy).

A primitive positive definite binary quadratic form is said to be reduced if

|B|≤ A ≤ C and B ≥ 0 if either |B|= A or A = C.

Every primitive positive definite binary quadratic form is equivalent to a unique reduced form. Hence, we can

talk of the set Cl(−D) of classes of forms of discriminant −D. We can then define a bijection

Θ : Cl(−D)→ Cl(OK) (2.6)

[A,B,C] 7→
(
A,
−B +

√
−D

2

)
Moreover, this bijection also gives a group structure to Cl(−D) and so from now on, we refer to it as the form

class group. A detailed description of this group is on [4].

2.4 Class Invariants

From our previous discussion, we can now compute all the roots of the Hilbert class polynomial, hK , using only

the reduced forms of discriminant −D. This is because each reduced form [A,B,C] is associated to one of the

equivalence classes in Cl(−D). Using the isomorphism Θ from (2.6), we have h = Θ([A,B,C]) =
(
A, −B+

√
−D

2

)
is one of the elements in the ideal class group of K where K = Q(

√
−D). Applying the isomorphism σ from

10 2.4 Class Invariants

(2.5) to h, we obtain σh. Fixing k ∈ Cl(OK) to be the trivial class, we let x = j(k). And so, by theorem 2.4,

(j(h))h∈Cl(OK) is a complete set of conjugates of x. Thus,

hK(X) =
∏

h∈Cl(OK)

(X − j(h)) =
∏

[A,B,C]∈Cl(−D)

(
X − j

(
−B +

√
−D

2A

))

because of these chain of isomorphisms (2.7)

Cl(−D) Cl(OK) Gal(HK/K) roots of hK

[A,B,C] h =
[(
A, −B+

√
−D

2

)]
σh−1 xσ = j(kh−1) = j

(
−B−

√
−D

2A

)
.

∼ ∼ ∼

Θ σ x−

And so, we are now able to find the polynomial which generates the Hilbert class field. However, this polynomial

involves very large coefficients. For example, for K = Q(
√
−455), we have that

hK(X) = X20 + 126806719749729443341753846625X19 − 633604807156934791913715735160215514375X18

+ 16079944176869684574567066255548120634200469681524298343750X17 − . . .
− 321818849693382992374572733241808203312239458035475891239018393779776371040

Observe that the 142-digit constant term will not even fit the space. Luckily, there are a lot of other choices for

the function j.

Definition 2.8. For a modular function u, its value u(τ) is called a class invariant if u(τ) is in K(j(τ)) = HK .

For example, we take from [1] the following theorem

Theorem 2.9. Let D 6≡ 0 (mod 3). Suppose AX2 + 2BX + C = 0 with 4B2 − 4AC = −4D and satisfies either

of the following:

• A and C are odd, 3|B (2.10)

• A ≡ C ≡ 0 (mod 3) and B 6≡ 0 (mod 3). (2.11)

Then letting (2/A) be the Kronecker symbol (i.e. (2/A) = 1 if 2 is a square mod A and −1 otherwise), the

following are true:

• If D ≡ 1 (mod 8) and B ≡ 2((2/A)− 1) (mod 8), then f(τ)2/
√

2 is a class invariant.

• If D ≡ 5 (mod 8) and B ≡ 2((2/A)− 1) (mod 8), then f(τ)4 is a class invariant.

• If D ≡ ±2 (mod 8) and B ≡ 2((2/A)− 1) (mod 8), then f1(τ)/
√

2 is a class invariant.

• If D ≡ 3 (mod 8) and B ≡ 4((2/A)− 1) (mod 16), then f(τ) is a class invariant.

• If D ≡ 7 (mod 8) and B ≡ 4((2/A)− 1) (mod 16), then f(τ)/
√

2 is a class invariant.

where

f(z) = e−iπ/24 ·
η(z+1

2)

η(z)
, f1(z) =

η(z2)

η(τ)
, f2(z) =

η(2z)

η(z)

and

η(z) = q1/24 ·
∞∏
n=1

(1− qn) with q = e2πiω.

Generating the Hilbert Class Field 11

Definition 2.12. Let D 6≡ 0 (mod 3) and D ≡ 0 (mod 4).

HD[u](X) =
∏

Q∈Cl(−D)

(X − u(τQ))

where

• u is the corresponding class invariant as in theorem 2.9

• Q′ = [A,B,C] is a representative of the form class Q satisfying (2.10) and (2.11)

• τQ satisfies the polynomial Az2 + 2Bz + C = 0 with discriminant D.

We then state without proof the following theorem.

Theorem 2.13. Let −D be a fundamental discriminant such that D 6≡ 0 (mod 3).

• If D ≡ 0 (mod 4), then HD[u](X) generates the Hilbert class field HK of K = Q(
√
−D).

• If D ≡ 3 (mod 4), then H4D[u](X) generates the Hilbert class field HK of K = Q(
√
−D). In this case

Cl(−D) = Cl(−4D).

In general, the polynomials in 2.13 have smaller coefficients than the Hilbert class polynomials. This is illustrated

in the following example.

Example 2.14. Let K = Q(
√
−D) with D = 455 ≡ 3 (mod 4). Using an algorithm discussed in [1], for each

class in Cl(−4D), we produce a representative Q′ = [A,B,C] which satisfy either (2.10) or (2.11). Still following

theorem 2.9, we obtain u(τ) = f(τ)/
√

2. We make a table showing the calculations. We also devote a column for

the reduced form Q corresponding to each Q′. Moreover, take note that τQ = −B′+
√
−4D

2A′ where Q′ = [A′, B′, C ′].

Q Q′ u(τQ) Q Q′ u(τQ)

[1, 0, 455] [1, 0, 455] 11.54 [5, 0, 91] [5, 240, 2971] −1.236

[3, 2, 152] [3, 176, 2733] −1.374− 1.153i [15,−10, 32] [15, 320, 1737] 0.1554 + 0.8326i

[9,−4, 51] [9, 320, 2895] −0.6623 + 0.7015i [19, 2, 24] [19, 1104, 16061] −0.6251− 0.4916i

[17, 4, 27] [17, 480, 3415] −0.2266 + 0.8176i [8,−2, 57] [57, 2624, 30207] −0.4952 + 0.04877i

[16,−6, 29] [29, 528, 2419] 0.2375 + 0.6643i [21,−14, 24] [21, 112, 171] 0.7532 + 0.2435i

[13, 0, 35] [13, 624, 7523] −0.8816 [7, 0, 65] [7, 0, 65] 1.054

[16, 6, 29] [29, 2256, 43891] 0.2375− 0.6643i [21, 14, 24] [21, 1904, 43179] 0.7532− 0.2435i

[17,−4, 27] [17, 1152, 19543] −0.2266− 0.8176i [8, 2, 57] [57, 2848, 35583] −0.4952− 0.04877i

[9, 4, 51] [9, 544, 8271] −0.6623− 0.7015i [19,−2, 24] [19, 720, 6845] −0.6251 + 0.4916i

[3,−2, 152] [3, 112, 1197] −1.374 + 1.153i [15, 10, 32] [15, 1120, 20937] 0.1554− 0.8326i

Taking the polynomial which has all the u(τQ′) as the roots, we obtain the polynomial

(2.15)H−4D[f/
√

2](X) =X20− 6X19− 50X18− 142X17− 200X16− 129X15 + 38X14 + 191X13 + 246X12

+ 194X11 + 76X10 − 30X9 − 73X8 − 57X7 − 15X6 + 16X5 + 26X4 + 23X3 + 15X2 + 6X + 1

which generates the extension HK/K.

12 2.4 Class Invariants

Definition 2.16. Let Q = [A,B,C] be a quadratic form of discriminant −D and let the associated automorphism

(via the isomorphism in (2.7)) σQ ∈ Gal(HK/K) act on x = τ(Q̃) for some fixed Q̃ ∈ Cl(−D) as follows:

xσQ = u(τQ−1Q̃)

Moreover, we let complex conjugation act on x as follows:

u(τQ) = u(τ−1
Q). (2.17)

Remark 2.18. u(Q) is real if and only if Q has at most order 2.

Chapter 3

Theory for the Algorithm

In this chapter, we lay down all the basic theory we need for the main algorithm 4.19. We start 3.1 by producing

an intermediate field L in the case that M/K is a Galois extension. After tackling this case, we move forward and

discuss the non-Galois case discussed in [6]. In section 3.2, we define a way to symbolically express an element

of L from a floating point representation.

3.1 Galois Theory

3.1.1 Galois Case

Let M be a Galois extension of K with Galois group G = Gal(M/K). Fix x ∈ M to be one of the roots of the

defining polynomial f . Thus, we can write

f(X) =
∏
g∈G

(X − xg) (3.1)

where xg denotes the image of x under the automorphism g : M → M . Let H be a normal subgroup of G. By

the fundamental theorem of Galois theory, there exists a corresponding fixed field

L = MH = {y ∈M : yσ = y for all σ ∈ H}

such that the degree [M : L] of the extension M/L is equal to |H|. Now, define

W (X) =
∏
h∈H

(X − xh). (3.2)

First, we show the following theorem.

Theorem 3.3. W is a polynomial in L[X] and it is irreducible.

Proof. Let h′ ∈ H. Then

W (X)h
′

=
∏
h∈H

(X − (xh)h
′
) =

∏
h∈H

(X − xh
′h) =

∏
h̃∈h′H

(X − xh̃) = W (X)

where the last equality is because h′H = H. Thus, W is fixed by H and hence W ∈ L[X]. Moreover, x is a root

of U and the degree |H| of W is equal to the degree of the field extension M/L. Since M = L(x), we conclude

that W is an irreducible polynomial over L.

13

14 3.1 Galois Theory

Hence, W is a minimal polynomial of x over the field L and we have the following.

Corollary 3.4. W is a defining polynomial of the extension M/L

Now, for g ∈ G, define

Ug(X) =
∏
h∈H

(X − xhg).

Theorem 3.5. We have the following properties for Ug.

1. If g, g′ ∈ G then

Ug(X)g
′

= Ug′g(X) (3.6)

2. If h ∈ H, then

Ug(X)h = Ug(X) (3.7)

3. If g′ ∈ Hg, then

Ug′(X) = Ug(X) (3.8)

Proof. For (3.6), if g, g′ ∈ G, we have

Ug(X)g
′

=
∏
h∈H

(X− (xhg)g
′
) =

∏
h∈H

(X− (xg
′hg)) =

∏
h∈H

(X− (xg
′hg′−1g′g)) =

∏
h′∈g′Hg′−1

(X− (xh
′g′g)) = Ug′g(X).

where the last equality is due to the fact that H is a normal subgroup, and thus g′Hg′
−1

= H. For equation

(3.7), if h′ ∈ H, then

Ug(X)h =
∏
h∈H

(X − xhh
′
) =

∏
h̃∈Hh′

(X − xh̃) = Ug(X)

where the last equality is due to the fact that H is a group. For (3.8), suppose g′ ∈ Hg. Then g′ = h′g for some

h′ ∈ H. Thus, g′g−1 = h′. And so, Ug′ = Ug′g−1g = Uh′g = Uh
′

g = Ug.

Hence, we can define

UgH = Ug (3.9)

for every gH ∈ G/H. And this is well-defined by theorem 3.5. Finally, we note that

f(X) =
∏

gH∈G/H

UgH .

Moreover, we remark that W = U1G where 1G is the identity in G. Let m = |H|. Now, we write

W = U1G = Xm +

m−1∑
j=0

(−1)m−jϑjX
j . (3.10)

Moreover, note that for each g ∈ G/H

Ug = Xm +

m−1∑
j=0

(−1)m−jϑgjX
j .

Just as in the case of M/L, we wish to find a defining polynomial for L/K. We define for all j = 1, . . . ,m− 1:

Vj(Y) =
∏

g∈G/H

(Y − ϑgj). (3.11)

Moreover, note that we can also write all the other Ug in this form. Notice that for any k, deg Vk = n := |G/H|.

We proceed with a theorem similar to 3.3.

Theory for the Algorithm 15

Theorem 3.12. For each k, Vk(Y) is a polynomial in K[Y].

Proof. Let g′ ∈ G/H

Vj(Y)g
′

=
∏

g∈G/H

(Y − (ϑgj)
g′) =

∏
g∈G/H

(Y − ϑg
′g
j) =

∏
g̃∈g′G/H

(Y − ϑg̃j) = Vj(Y)

where the penultimate equality is because G/H = g′G/H.

Now, the Vk are not necessarily irreducible. Moreover, since H is normal, the extension L/K is Galois with

Galois group G/H. Hence, [L : K] = |G/H|=: n. We make the following observation:

Theorem 3.13. Fix k. Let H ′ ≥ H be the largest subgroup of G which fixes the ϑk. Then Vk decomposes into

[H ′ : H]th powers of linear factors as a polynomial in L and moreover, G/H ′ fixes Vk.

Proof. Let K be the intermediate field corresponding to H ′, that is H ′ = Gal(M/K). Any element g ∈ G/H can

be written as g = hg′ where h ∈ H ′/H and g′ ∈ G/H ′. And so, we rewrite

Vk(Y) =
∏

g∈G/H

(Y − ϑgk) =
∏

g′∈G/H′

∏
h∈H′/H

(Y − ϑhg
′

k) =
∏

g′∈G/H′
(Y − ϑg

′

k)[H′:H]

where the last inequality is due to the fact that H ′ fixes ϑk. Moreover, G/H ′ fixes Vk.

Corollary 3.14. If gcd(Vk, V
′
k) = 1, then Vk is a defining polynomial for L/K.

Proof. From theorem 3.13, if gcd(Vk, V
′
k) = 1, then [H ′ : H] = 1 and so H = H ′ is the largest subgroup of

G fixing ϑk. Notice that since from theorem 3.12 Vk(Y) ∈ K[Y]. Moreover, Vk(Y) is an n = |G/H| degree

polynomial fixed by G/H, and ϑk ∈ L since W ∈ L[X] by theorem 3.3. Thus, it is a defining polynomial for

L/K.

3.1.2 Non-Galois Case

In this section, we show that the techniques of the previous section works in some field extensions which might

not necessarily be Galois.

M

K

M ′

K ′

G
Ĝ

C

C |K

Ĝ

C

G

1

Let M ′/K ′, a finite separable field extension. Take M to be smallest field such that M/K ′ is Galois which

contains M ′. This is called the Galois closure of M ′ over K ′. Since M ′ satisfies K ′ ≤M ′ ≤M , by fundamental

theorem of Galois theory, we obtain a subgroup C of Ĝ which fixes M ′. That is,

C = Gal(M/M ′).

We make the following assumption.

16 3.1 Galois Theory

Assumption 3.15. Assume there exists a normal subgroup G of Ĝ such that

Ĝ = Go C.

In other words, G is a normal complement of C. As G is a subgroup of Ĝ, it corresponds to a field K such

that G = Gal(M/K). As G is normal, then the extension K/K ′ is also Galois with Galois group Ĝ/G, which is

isomorphic to C|K . Now, take H to be a normal subgroup of G. Then it corresponds to an intermediate field L.

M

L

K

M ′

L′

K ′

H

G/H

C

Ĥ

C |L

C |K

Ĝ

Ĥ

C

G

H

1

Then H = Gal(M/L) and L/K is Galois with group G/H because H is normal. We make the following second

assumption.

Assumption 3.16. Assume that chc−1 ∈ H for any h ∈ H and c ∈ C, that is C normalizes H.

With this assumption, any element ch ∈ 〈H,C〉 can be rewritten as

ch = cc−1h′c = h′c

where h′ ∈ H. And hence

〈H,C〉 = H o C.

Now, take L′ to be the fixed field of the subgroup Ĥ = 〈H,C〉 = H o C of Ĝ. Since C ≤ Ĥ ≤ Ĝ, then

K ′ ≤ L′ ≤M ′. Moreover, take note that since H is a normal subgroup of Ĥ, L/L′ is Galois of group Gal(L/L′).

Now, note that

[Ĝ : Ĥ] = [G : H] and [Ĥ : C] = [H : 1] . (3.17)

This means that

[L′ : K ′] = [L : K] and [M ′ : L′] = [M : L]. (3.18)

In particular,

[M ′ : K ′] = [M : K]. (3.19)

As we see with the two theorems, the field extensions M/L/K and M ′/L′/K ′ have the same defining polynomials

if x ∈M ′.

Theorem 3.20. Let f ∈ K ′[X] be an defining polynomial for M ′/K ′. That is, it has a root x ∈ M ′ such that

M ′ = K ′(x). Then f is also a defining polynomial for the extension M/K.

Proof. Note that

M = K ·M ′ = K ·K ′(x) = K(x).

And by equation (3.19), [M : K] = deg f . This means that f is still irreducible in K and thus is also a defining

polynomial for M/K.

Theory for the Algorithm 17

Theorem 3.21. Let f ∈ K[X] be an defining polynomial for M/K with a root x ∈ M ′. That is, M = K(x).

Then f is also a defining polynomial for the extension M/K.

Proof. If x is the root in M ′, we can write

f(X) =
∏
g∈G

(X − xg).

Moreover, for any c ∈ C,

f(X)c =
∏
g∈G

(X − (xg)c) =
∏
g∈G

(X − xcg) =
∏
g∈G

(X − xcgc
−1c) =

∏
g′∈cGc−1

(X − xg
′c) =

∏
g′∈cGc−1

(X − xg
′
) = f(X)

where the penultimate equality is due to the fact that x ∈ M ′ and hence is fixed by c, and the last equality is

due to the fact that C normalizes G. That is, G = cGc−1. Again, by equation (3.19), we find that f defines

M ′/K ′.

In fact, if we find an appropriate C and the appropriate M ′/K ′, we can do most of the computations we did in

subsection 3.1.1 within the smaller fields M ′/K ′. The goal of the remainder of this section is to show tht we can

indeed do this. Let UgH be defined as in (3.9). Then, the action of c ∈ C on UgH is defined as follows:

U cgH =
∏
h∈H

(X − (xhg)c) =
∏
h∈H

(X − xchg) =
∏
h∈H

(X − xch(c−1c)g(c−1c)) =
∏
h∈H

(X − xchc
−1cgc−1

).

Since C normalizes H, we have∏
h∈H

(X − xchc
−1cgc−1

) =
∏

h∈cHc−1

(X − xh
′cgc−1

) = UgH .

In particular W = U1G is stable in C. And hence W ∈ L′[X]. Similar to the Galois case, since W is a polynomial

in L′[X] of degree |H|= [M ′ : L′] with a root x ∈M ′ such that M ′ = L′(x). Hence, W is and generates M ′/L′.

Now, for Vk, notice that the action of C on the ϑgk is the same as the action of C on the UgH . So G and C

permute the ϑgk and thus Vk ∈ K ′[Y]. If Vk is irreducible, then it generates L′/K ′. Thus, we have done exactly

what we did in subsection 3.1.1 but for the non-Galois extension M ′/L′/K ′. And we have found W ∈ L′[X] and

V ∈ K ′[Y] which define the extensions M ′/L′ and L′/K ′, respectively.

3.2 Hecke Representation

If K ′ = Q and M ′ = Q(g(
√
−D)), then we can just compute V and end up with a polynomial in Q[X]. Moreover,

it can be shown that g(
√
−D) is an integral element. Hence, V is in fact a polynomial in Z[X] since all Galois

conjugates appearing in the coefficients of V are also integral. Using the appropriate precision, we should be able

to compute V such that the coefficients will be exactly or almost integers.

In contrast, however, U ∈ L′[X] is not as easy to represent. Unlike V , it does not lie in Q[X], but in R[X]. In

practice, all of our computations involve approximations in the form of floating point numbers. Most of the time,

however, we want to work in terms of the generating element α of the field extension. Hence, we want to express

the coefficients in terms of the element ϑ. Thankfully, we have a lemma that solves this problem.

Lemma 3.22. Let L/K be a separable field extension of degree n with primitive element α. Denote by (αi) the

conjugates of α, and write the defining polynomial of the extension L/K as

V (Y) =

n−1∏
i=0

(Y − αi).

18 3.2 Hecke Representation

Then, we can write any ϑ ∈ L as

ϑ =
gϑ(α)

V ′(α)

for some gϑ ∈ K[Y]. Moreover, if OK is an integrally closed subring of K and α and ϑ are integral over OK ,

then V, gϑ ∈ OK [Y].

Proof. If we write (ϑi)0≤i<n be the conjugates of ϑ, we can let

gϑ =

n−1∑
i=0

ϑi
V (Y)

Y − αi
. (3.23)

Note that applying any automorphism σ ∈ Gal(L/K) to gϑ will only permute the terms of the summation.

Hence, gϑ ∈ K[Y]. Moreover,

gϑ(α) = ϑ · V ′(α). (3.24)

If α ∈ OK , then so will the conjugates of α. In particular,

V (Y)

(Y − αi)
= f̃i(Y) =

V (Y)

Y − αi
=

∏
j=0,...,n−1

j 6=i

(Y − αi) ∈ OK [Y]

for any i = 0, 1, . . . , n−1. Assuming further that ϑ ∈ OK , then so will the conjugates ϑi. From this, we conclude

that gϑ ∈ OK [Y].

However, we can use a divide and conquer approach to compute gϑ. We construct a tree of height k = dlog2 ne

whose leaves are Y − αi. If n is not a power of 2, we add the leaves of value 1 so that we have n′ = 2k leaves.

From here, we compute the value for the other nodes by taking the product of their children. Now, we discuss

how to compute V and all its subproducts. This is taken care of by the following algorithm, taken from [9].

Algorithm 3.25 (Subproduct tree). subproductTree

Input: An integer k and a list of polynomials f0, . . . , fn−1. Assume n is a power of 2. Otherwise, add 1’s to the

end of the list.

Output: A binary tree T , represented in an array of floating point numbers, whose leaves are the input and

each node T ′ of T is the product of all the leaves in the subtree with root T ′. In particular, the root T is the

product of all the leaves.

Algorithm

1. Initialize a 1-dimensional array T = [T1, . . . , T2n−1]. Set Tn+k = fk for k = 0, . . . , n− 1.

2. Set Ti with 1 ≤ i < n to be T2iT2i+1.

3. Return T .

Remark 3.26. The leaves of the subtree T ′ whose root is Ts are exactly Tjs+` where

• t = k − blog2 sc is the height of the tree T ′, and

• j = 2t is the number of leaves of T ′.

Example 3.27. If we let fi = Y − αi be the leaves of T , we obtain a tree such that its root is T1 = V (Y).

Theory for the Algorithm 19

Example 3.28. Below is a concrete example of a subproduct tree for f0, f1, f2, f3, f4, f5 where

f0 = x− 10.30

f1 = x− 0.1722

f2 = x2 + 2.437x+ 1.587

f3 = x2 + 2.575x+ 1.702

f4 = x2 + 1.443x+ 1.272

f5 = x2 − 1.982x+ 1.806

T1 = x10 − 6x9 − 38x8 − 62x7 − 29x6 − 12x5 − 104x4 − 202x3 − 153x2 − 31x+ 11

T2 =
x6 − 5.462x5 − 41.16x4 − 83.05x3

−66.57x2 − 13.68x+ 4.791

T4 = x2 − 10.47x+ 1.774

f0 f1

T5 =

x4 + 5.012x3

+9.564x2

+8.234x

+2.701

f2 f3

T3 =
x4 − 0.5381x3 + 0.2170x2

+ 0.08686x + 2.296

T6 =

x4 − 0.5381x3

+0.2170x2

+0.08686x

+2.296

f4 f5

T7 = 1

1 1

Now that we have precomputed the subproducts, we utilise the tree we made using another algorithm in [9].

Algorithm 3.29 (Linear combination for linear moduli). linearCombinationForLinearModuli

Input:

• A list c = [c0, . . . , cn−1].

• T , a tree.

• An integer s.

Output:
j−1∑
`=0

c(j(s−1)+`
Ts

fj(s−1)+`

where j is as in remark 3.26.

Algorithm

1. If s > 2k + (n− 1) (i.e. Ts = 1), return 0.

If s ≥ 2k, return cs−2k .

Otherwise, proceed with the algorithm.

2. Let f be the result of linearCombinationForLinearModuli with c, k, T, 2s.

20 3.2 Hecke Representation

3. If T2s+1 = 1, return f .

4. Let g be the result of linearCombinationForLinearModuli with c, k, T, 2s+ 1.

5. Return f · T2s+1 + g · T2s.

Example 3.30. Let ci = ϑi and T be as in example 3.27. Feeding these parameters and s = 1 to algorithm

3.29, we should obtain gϑ, as in (3.23). For reference, we write it as the following algorithm 3.31.

Algorithm 3.31 (Computing for gϑ). gv

Input:

• A list a = (α0, . . . , αn−1) of conjugates of the primitive element α := α0 of L.

• A list c = (ϑ0, . . . , ϑn−1) of conjugates of ϑ := ϑ0 in L.

Output: gϑ(Y), a polynomial such that ϑ = gϑ(α)/V ′(α).

Algorithm

1. Let T be the subproduct tree obtained by buildSubproductTree using Y − αi as the leaves.

2. Return the output of linearCombinationForLinearModuli with parameters a, c, k = dlog2 ne, T and

s = 0.

Now, we discuss an example of algorithm 3.29 which will be vital in computing gϑ in a quicker way.

Example 3.32. Let α ∈ C. We build the subproduct tree with leaves f0 = Y − α and f1 = Y − α. Thus, for

i = 0, 1, T2+i = fi. From this, we conclude that the root of the tree T is

T1 = (Y − α)(Y − α) = Y 2 − tr(α)Y +N(α) ∈ R[Y].

Moreover, if we use this tree, let (c0, c1) = (ϑ, ϑ) and s = 1, we obtain as output from algorithm 3.29:

2−1∑
`=0

c2(1−1)+`
T1

f2(1−1)+`
= ϑ · T1

Y − α
+ ϑ · T1

Y − α
= ϑ(Y − α) + ϑ(Y − α). (3.33)

Note that equation (3.33) is in R[Y] since we have

ϑ(Y − α) + ϑ(Y − α) = (ϑ+ ϑ)Y − (ϑα+ vα).

And indeed,

ϑ+ ϑ = 2 · Re(ϑ)

ϑα+ ϑα = 2 Re(ϑ) Re(α) + 2 Im(ϑ) Im(α)

are both real numbers.

In our motivating example, C is the group generated by conjugation. By virtue of example 3.32, we will be able

to limit all computations to only involve real numbers. This can be achieved by merging all leaves corresponding

to pairs of conjugate roots as

f̃ = Y 2 − tr(α)Y +N(α)

and their corresponding ci’s be merged into

c̃ = 2(Re(ϑ))Y − 2(Re(ϑ) Re(α) + Im(ϑ) Im(α)). (3.34)

Using this modification, all our computations will exclusively involve real numbers.

Chapter 4

The Algorithm

Recalling what we have from the previous section, M ′/K ′ is a finite separable field extension generated by the

polynomial f . K ′ and M ′ have corresponding fields K and M = M ′K where the extension M/K is Galois with

Galois group G = Gal(M/K). Taking a normal subgroup H of G enables us to compute the polynomials UgH as

in (3.9). In particular, we let U := U1. In our motivating example where K ′ = Q, K = Q(
√
−D), M = HK , we

expect to represent the coefficients of U as floating point numbers. Next, we can compute V ∈ OK [X] = Z[X]

as in (3.11), rounding to integers in order to lessen the effect of rounding errors. Finally, we wish to express

the coefficients of U in terms of a primitive element of L′. We achieve this representation by applying 3.31 to

each of the coefficients of U . Let W be the polynomial represented in this way. At this point, we would have

obtained polynomials V ∈ K ′[Y] and W ∈ L′[X]. These are minimal polynomials for the extensions L/K and

M/L, respectively. And from our previous discussion, they are also the polynomials for the extensions L′/K ′

and M ′/L′. Moreover, G/H ∼= Gal(L/K). Hence, if we have a normal subgroup H̃/H of G/H, then we can

again find another intermediate field L̃′ whose corresponding L̃ has Galois group G/H

H̃/H
∼= G/H̃. We can repeat

this until we eventually run out of normal subgroups (G is a finite group, after all). This algorithm is written

more formally as 4.19, which includes all the improvements we introduce in this chapter. Let us first decide the

normal subgroups to be used in each iteration. We define a normal series.

Definition 4.1. A normal series of a group G is a sequence of normal subgroups of G such that

H0 := 1 CH1 CH2 C · · ·CHt := G. (4.2)

Moreover, each Hi/Hi−1 is called a factor group.

The longer the normal series we take, the more iterations we have. This will then lead to intermediate fields

which have small indices, which is advantageous. And so, we define a maximal normal series as follows:

Definition 4.3. A composition series of a group G is a normal series (as in (4.2)) of finite length such that its

factor groups are all simple (i.e. their only proper normal subgroup is the trivial group).

Remark 4.4. A normal series is a composition series if and only if it is of maximal length.

Example 4.5. If G is a finite abelian group, then the factor groups of any composition series of G are cyclic

groups of prime order.

Example 4.6 (Illustration). Let

H0 := 1 CH1 CH2 C · · ·CHt := G. (4.7)

21

22

be a composition series for the finite abelian group G = Gal(M/K). For the ιth iteration, our input will involve

the groups

G(ι) =
G

Hι−1
and H(ι) =

Hι

Hι−1
.

Since (4.7) is a composition series, all the Hi’s are normal subgroups of G and hence H(ι) CG(ι).

We illustrate the progression of the diagram after each iteration of our algorithm. Here G(ι) and H(ι) are

the Galois group and the normal subgroup, L(ι) is a list of the elements of G(ι), expressed symbolically, and

R(ι) = RP is a list of roots of P .

Original Situation Iteration #1

Input:

• G(1) = G

• H(1) = H1

• L(1)

• R(1) = RV

Output:

• G(2) = G/H1

• L(2)

• R(2) = RV (2)

• W1

Iteration #2

Input:

• G(2) = G/H1

• H(2) = H2

• L(2)

• R(2) = RV

Output:

• G(3) = G/H2

• L(3)

• R(3) = RV

• W2

M

K

M ′

K ′

G

V (1)

M

L1

K

M ′

L′1

K ′

H1

G/H1

W1

V (2)

M

L1

L2

K

M ′

L′1

L′2

K ′

H1

H2

G/H2

W1

W2

V (3)

The Algorithm 23

4.1 Ordering the Roots

In practice, we do not even need to compute the input polynomial V . We only use an array of roots ofV . We

want a way to organize the list so that we know which values to use in computing the UgH ’s defined in (3.9). In

particular, we want a way to order the list of roots such that

L = (x0, x1, . . . , xmn−1).

so that we can rewrite the set of equations (3.9) as

Ui =

m−1∏
j=0

(X − xim+j) =

|H|−1∑
j=0

(−1)m−jϑi,jX
j for all i = 0, 1, . . . , n− 1. (4.8)

Moreover, we want to distinguish W ∈ L′[X] and so we impose that (x0, . . . , xm−1) be exactly the roots of U

(i.e. the xh’s for h ∈ H) so that we can rewrite (3.2) as

W = U0 =

m−1∏
j=0

(X − xj).

Consequently, the equation (3.11) for V can now be written as

V = Vk =

n−1∏
i=0

(Y − ϑi,k)

where k is chosen in the algorithm. It turns out that not only is it possible to obtain an ordering that works for

the first iteration, but we can actually find a way to reorder these roots in such a way that the first m components

are always those associated to the subgroup H of that iteration.

4.1.1 Cyclic Case

Suppose first that G is a cyclic group. We can write it as

G = 〈g〉.

Taking a composition series of G, we obtain

H0 := 1 CH1 CH2 C · · ·CHt := G = 〈g〉. (4.9)

This means that for each ι = 1, . . . , t, we have

|Hι/Hι−1|= pι

for some prime pι. Moreover, we can write

Hι = 〈g|G|/p1···pι〉

For the ιth iteration. We must be able to partition the vector into blocks of length |Hι| such that each block

contains elements of a coset in G/H. We obtain this vector as follows.

Algorithm 4.10 (Ordered List). orderedList

Input: A cyclic group G = 〈g〉 and a composition series for G as in (4.2).

Output: An ordered list L of elements of G.

Algorithm:

24 4.1 Ordering the Roots

1. Initialize L = (e).

2. For each ι = 1, . . . , t:

(a). Let {a0, . . . , apι−1} be a list of coset representatives of Hι/Hι−1 with a0 = e, the representative of the

trivial element.

(b). Let L̃ be the concatenation of a0L = L, a1L . . . , apι−1L. Replace L by L̃.

3. Output L.

At the start of iteration ι, it is ensured that the elements of the list L are precisely the elements of Hι−1. And

since the old L is the prefix of the new L, it is ensured that the first |Hι−1| elements of L are still the elements

of Hι−1. Moreover, partitioning L into subvectors of length |Hι|, each block should correspond to the cosets in

G/Hι.

Example 4.11. Suppose G = 〈b〉 of order 10. A composition series for G is

H0 := 〈e〉 C H1 := 〈b5〉 C H2 := 〈b〉

We start with L = (e) = (b0). Note that {b0, b5} is a set of representatives for H1/H0. And so we have the

following after the first iteration

L = (b0 · b0, b0 · b5) = (b0, b5).

Finally, {b0, b1, b2, b3, b4} is a set of representatives for H2/H1. And so we have

L =
(
b0L, b1L, b2L, b3L, b4L

)
= (b0, b5, b1, b6, b2, b7, b3, b8, b4, b9).

Note that

(b0︸︷︷︸
∈H0

, b5

︸ ︷︷ ︸
∈H1

, b1, b6, b2, b7, b3, b8, b4, b9)

and partitioning into blocks of length |H1|= 2, we obtain elements of each coset in G/H1.

4.1.2 General Case

Now, for the general case of a finite abelian group G, writing

G = C1 × . . .× Cr,

we can just “concatenate” the composition series for each cyclic group to obtain a composition series for G. For

example, if r = 2, we can have

H1,0 C H1,1 C · · · C H1,t1 = C1 C C1 ×H2,1 C · · · C C1 ×H2,t2 = C1 × C2 = G. (4.12)

Hence, we can modify 4.10 by taking instead a group G with a composition series such as (4.12).

Example 4.13. Let G = C1 ×C2 = 〈a〉 × 〈b〉 where a and b are of order 2 and 10, respectively. And so we have

a composition series

H0 = 〈e〉 C H1 = 〈a〉 C H2 = 〈a〉 × 〈b5〉 C H3 = 〈a〉 × 〈b〉. (4.14)

The Algorithm 25

We start again with L = (e). And then take {a0, a1} to be the coset representatives of H1/H0. And so we obtain

L = (a0, a1).

That takes care of C1. In a manner similar to what happened in example 4.11, we obtain

L = (1︸︷︷︸
∈H0

, a

︸ ︷︷ ︸
∈H1

, b5, b5a

︸ ︷︷ ︸
H2

, b, ab, b6, ab6, b2, ab2, b7, ab7, b3, ab3, b8, ab8, b4, ab4, b9, ab9). (4.15)

And so, at this point, we would be able to find an appropriate order of the roots to be used for the main algorithm.

Example 4.16. The ideal class group of K = Q(
√
−D) when D = 455 is isomorphic to

Cl(−4D) = C2 × C10 = 〈a〉 × 〈b〉. (4.17)

where a = [5, 0, 91] and b = [3, 2, 152]. This is because in the special case of D ≡ 7 (mod 8), the ideal class group

Cl(−D) is isomorphic to Cl(−4D), as stated in 2.13. Using our computations in 2.14, we are then able to obtain

the following order for the roots of u(
√
−D).

i Q xi i Q xi

0 [1, 0, 455] 1 11.54 10 [1, 0, 455] b7 −0.2266− 0.8176i

1 [5, 0, 91] a −1.236 11 [5, 0, 91] ab7 −0.4952− 0.04877i

2 [13, 0, 35] b5 −0.8816 12 [13, 0, 35] b3 −0.2266 + 0.8176i

3 [7, 0, 65] ab5 1.054 13 [7, 0, 65] ab3 −0.4952 + 0.04877i

4 [3, 2, 152] b −1.374− 1.153i 14 [3, 2, 152] b8 −0.6623− 0.7015i

5 [15,−10, 32] ab 0.1554 + 0.8326i 15 [15,−10, 32] ab8 −0.6251 + 0.4916i

6 [16, 6, 29] b6 0.2375− 0.6643i 16 [16, 6, 29] b4 0.2375 + 0.6643i

7 [21, 14, 24] ab6 0.7532− 0.2435i 17 [21, 14, 24] ab4 0.7532 + 0.2435i

8 [9,−4, 51] b2 −0.6623 + 0.7015i 18 [9,−4, 51] b9 −1.374 + 1.153i

9 [19, 2, 24] ab2 −0.6251− 0.4916i 19 [19, 2, 24] ab9 0.1554− 0.8326i

4.2 Exploiting Complex Conjugation

By inspecting example 4.16, one can observe that the conjugate roots come in pairs. As we can see from the

previous example, we could have gotten away with computing less because some of the xi’s are conjugates of

each other. This is due to the fact that the action of conjugation (2.17). To be able to keep track of which

xi’s are conjugates of each other, we need to look at the corresponding group element which corresponds to xi.

This is a symbolic representation of the group structure embedded in the xi’s. For every pair of elements which

are inverses of each other, we need only to compute the corresponding xi for one of them! This is even more

important whilst computing the Ui’s. Recall that the Ui’s each correspond to an element of G/H. Just like in

the case of the xi’s, we can only compute one Ui in each pair which correspond to inverse elements. We recover

the rest by taking conjugates.

Example 4.18. Continuing from the example 4.16, we see that we need not compute the other Ui’s. Here is a

table with H = H1. It lists down the coset of G/H alongside the corresponding UgH , which in the algorithm we

will refer to as Ui.

26 4.3 The Main Algorithm

i elements of coset Ui

0 {e,a} (X − x0)(X − x1) X2 − 10.302X − 14.260

1 {b5,ab5} (X − x2)(X − x3) X2 − 0.17219X − 0.92899

2 {b,ab} (X − x4)(X − x5) X2 + (1.2185 + 0.32027i)X + (0.74629− 1.3230i)

3 {b6,ab6} (X − x6)(X − x7) U8

4 {b2,ab2} (X − x8)(X − x9) X2 + (1.2875− 0.20988i)X + (0.75890− 0.11293i)

5 {b7,ab7} (X − x10)(X − x11) U6

6 {b3,ab3} (X − x12)(X − x13) X2 + (0.72171− 0.86640i)X + (0.072306− 0.41591i)

7 {b8,ab8} (X − x14)(X − x15) U4

8 {b4,ab4} (X − x16)(X − x17) X2 + (−0.99075− 0.90779i)X + (0.017132 + 0.55818i)

9 {b9,ab9} (X − x18)(X − x19) U2

Moreover, we can use the trick inspired by example 3.32 to also speed up the computation of the gϑ’s.

4.3 The Main Algorithm

After all the discussion, we are now ready to state the main algorithm.

Algorithm 4.19. mainAlgorithm

Input:

• An extension of fields M ′/K ′ generated by the polynomial V with d := deg V .

• An ordered list L of the elements of the group G = Gal(M/K), ordered using algorithm 4.10 using the

composition series

〈e〉 = H0 CH1 C · · ·CHt−1 CHt = G.

of G. Note that |G|= d.

• An ordered list RV = (x0, . . . , xd−1) of the roots of V obtained from taking the corresponding roots of L.

Output:

• A list of intermediate fields L′i−1/L
′
i for i = 1, . . . , t (where M0 = L′0 and K0 = L′t) and their respective

irreducible polynomials Wi ∈ Li[X].

Algorithm

Let G(0) = G, H(0) = H0, L(0) = L. For each ι = 1, 2, . . . , t− 1, do the following:

1. Set

G(ι) =
G(ι−1)

H(ι−1)
∼=

G

Hι−1
and H(ι) =

Hι

Hι−1

and let

m = |H(ι)| and n = |G(ι)|/m.

2. Determine I ⊆ {0, . . . , n− 1}, the set of indices for which we must compute Ui.

(a). Set L(ι) be a list of coset representatives of G(ι)/H(ι).

This can be obtained by taking every mth element of L(ι−1), starting from the first.

The Algorithm 27

(b). For each pair of inverse elements in G(ι)/H(ι)., choose one and put its index in I.

Moreover, remember which indices are paired with each other. 1

3. Compute the Ui’s for this iteration.

(a). For each i ∈ I, compute Ui’s as in (4.8) using RV .

(b). For each i 6∈ I, compute Ui by taking the conjugate of the appropriate polynomial.

This polynomial would have been computed in the previous step.

4. Find V (ι+1).

For each j = m− 1, . . . , 0:

(a). Construct the subproduct tree whose |I| leaves are the ϑi,j ’s following the notation in (4.8) using the

real floating point arithmetic as described in example 3.32.

(b). Check if V (ι+1) = T1 is irreducible. If it is, set k := j and of course, set V (ι+1) = T1.

5. Compute

Wι = Xm +
m−1∑
i=0

(−1)m−i
gi(Y)

(V (ι+1))′(Y)
Xi

by using algorithm 3.31 to express the coefficients of U0 as field elements.

6. If ι = t− 1, let Wt = V (t). Otherwise, let RV be the roots of V ι+1

Example 4.20. Let K = Q(
√
−D) where D = −455. Let M = HK , the Hilbert class field of K. Moreover, we

write

G(1) = G and H(1) = H1

From our discussion in section 3.1, we have the corresponding M ′ = Q(j(k)) = Q(u(Q)) and K ′ = Q where

u = f/
√

2. Note that we choose k to be the trivial ideal class (i.e. Q to be the trivial form class) to make sure

that j(k), u(Q) ∈ R. We have previously determined that the ideal class group Cl(−4D), we copy what we have

(4.17) and write it here again

Cl(−4D) = C2 × C10 = 〈a〉 × 〈b〉

where a = [5, 0, 91] and b = [3, 2, 152]. Moreover, in example 4.13, we find the order of the roots. Taking

H0 = 〈e〉 C H1 = 〈a〉 C H2 = 〈a〉 × 〈b5〉 C H3 = 〈a〉 × 〈b〉.

as in (4.20) to be our composition series, we set L to be as in (4.15) and we have shown in that example that it is

indeed an appropriate order to the elements of Cl(−4D) ∼= G. Applying u to the respective Q’s in L, we obtain

the corresponding xi’s whose values are computed in example 4.16. Now, we begin the first iteration. We let

m = |H(1)|= 2 and n = |G(1)|/m = 20/2 = 10.

Example 4.18 already shows us which Ui’s we need to compute. For completeness sake, we remark that

L0 = (e,b5,b,b6,b2,b7,b3,b8,b4,b9)

1One can go about this by remembering the indices of the group elements of the form using a hash map to keep track of the

respective inverse.

28 4.3 The Main Algorithm

Taking j = 1, we compute the subproduct tree such that the root is a polynomial whose zeros are (ϑi,j)0≤i<n.

For conjugate roots, we multiply them together to obtain quadratic polynomials with real coefficients. In doing

this, we obtain the subproduct tree T in example 3.28. After checking, we see T1 is irreducible. Finally, using

the corresponding C (as discussed in (3.34)), we are able to compute W by computing g`(Y) = gϑ`,k for ` = 0, 1,

we obtain

g1(Z) = 6Z9 + 76Z8 + 186Z7 + 116Z6 + 60Z5 + 624Z4 + 1414Z3 + 1224Z2 + 279Z − 110

g0(Z) = −12Z9 − 80Z8 − 142Z7 − 20Z6 + 160Z5 + 47Z4 − 250Z3 − 228Z2 + 55Z + 95.

And so, we finally output

W1 = X2 − g1(Y)

V ′(Y)
X +

g0(Y)

V ′(Y)
.

In preparation for the next iteration, we let

RV = (ϑi,k)0≤i≤n−1 = (x2i + x2i+1)0≤i≤n−1

and L = L1. We now start the second iteration. This time around, we have

G(2) = G/H1 and H(2) = H2/H1

and

m = |H(2)|= 2 and n = |G(2)|/m = 10/2 = 5.

We obtain

L2 = (e,b,b2,b3,b4)

by taking every mth element of L1. These are coset representatives for G(2)/H(2). Since b,b4 and b2,b3 are

inverses, we only need to compute three Ui’s:

i elements of coset Ui

0 {b0,b5} (X − x0)(X − x1) X2 − 10.47X + 1.774

1 {b1,b6} (X − x2)(X − x3) X2 + (0.2277 + 1.228i)X + (−1.498 + 0.7888i)

2 {b2,b7} (X − x4)(X − x5) X2 + (2.009 + 0.6565i)X + (1.111 + 0.9640i)

3 {b3,b8} (X − x6)(X − x7) U2

4 {b4,b9} (X − x8)(X − x9) U1

Take note that in this iteration, xi are the roots ϑi,k from the previous iteration. Taking j = 1 again and

constructing the subproduct tree with Z − 10.47, Z2 + 4.018Z + 4.468 and Z2 + 0.4555Z + 1.560 as the leaves,

we get

V (3)(Z) = Z5 − 6Z4 − 39Z3 − 74Z2 − 80Z − 73.

And as before, we compute

W2(Y) = Y 2 − g1(Z)

V ′(Z)
Y +

g0(Z)

V ′(Z)

where

g1(Y) = 6Y 4 + 78Y 3 + 222Y 2 + 320Y + 365

g0(Y) = Y 4 + 12Y 3 + 54Y 2 + 53Y − 140.

Since this is the final iteration, we let W3(Z) := V (3). And so, we have that W1(X), W2(Y), W3(Z) are the

polynomials which generate M/L1, L1/L2 and L2/K. That is, L2 = K[Z]/(W3(Z)), L1 = L2[Y]/(W2(Y)) and

M = L1[X]/(W1(Z)). We have solved problem 1.2.

Chapter 5

Complexity Analysis

An algorithm will not have much use if it could only handle small input in a reasonable amount of time. Hence,

in this section, we analyze the time complexity of the algorithms we used. We wish to find an estimate on how

long our algorithms are expected to run with respect to the size of the inputs. We start from the basic operations

and work our way up to analyzing our more involved algorithms.

5.1 Polynomial Operations

We start by analyzing how many operations it takes to do addition and multiplication of univariate polynomials.

Consider the polynomials f, g ∈ K[X]

f(X) = a0 + a1X + a2X
2 + . . .+ adX

d

g(X) = b0 + b1X + b2X
2 + . . .+ bdX

d.

And assume their degree is at most d. Getting the sum f, g is very simple as you only need to add coefficients

of the same power of X. This requires at most d operations in K. Hence, addition of polynomials takes O(d)

operations in K. As for multiplication, we know that

(f · g)(X) =

2d∑
k=0

k∑
i=0

akbk−iX
k.

Multiplying the polynomials in this way requires at most d2 additions and (d+ 1)2 multiplications on K. From

here, we see that multiplying two polynomials of degree at most d using this naive method takes at most O(d2)

operations. We can do better than this! For simplicity of notation, assume d = 2k and observe that we can

rewrite the polynomials as follows

f(X) · g(X) =
(
f1(X) ·Xd/2 + f0(X)

)(
g1(X) ·Xd/2 + g0(X)

)
= f1(X)g1(X)︸ ︷︷ ︸

p2(X)

·Xd + (f1(X)g0(X) + f0(X)g1(X))︸ ︷︷ ︸
p1(X)

·Xd/2 + f0(X)g0(X)︸ ︷︷ ︸
p0(X)

where deg f1,deg f0,deg g1,deg g0 ≤ d/2. At first glance, it seems that we need to multiply four pairs of polyno-

mials. We note Karatsuba’s observation that

p1(X) = (f1(X) + f0(X)) (g1(X) + g0(X))− p2(X)− p0(X).

29

30 5.1 Polynomial Operations

And so, after making two multiplications to obtain p2(X) and p0(X), we are only required to make one additional

multiplication to obtain p1(X). We denote by MX(d) to be the number of multiplications in K to multiply two

polynomials in K[X] of degree at most d. Since all multiplications required to obtain the pi’s involve polynomials

of degree d/2, we see that we need at most time 3MX(d/2) to multiply two polynomials of degree at most d.

Unraveling the recursion, see that it takes 3k = dlog2 3 ≈ d1.58 multiplications in K. This is an improvement

to our earlier naive approach. In fact, we can do even better if the field K has a dth root of unity ω. We can

multiply two polynomials F,G using the Discrete Fast Fourier transform (DFT). Fix ω is a dth root of unity, we

define the Fourier transform of a vector t = (t1, . . . , td) to be

Fω(a) = (T (ω0), T (ω1), . . . , T (ωd−1))

where

T (X) = t0 + t1X + t2X
2 + . . .+ td−1x

d−1. (5.1)

It can be computed by the following algorithm:

Algorithm 5.2. discreteFFT

Input: T with deg T < d = 2k and (ω0, . . . , ωd−1).

Output: Fω(T)

Algorithm:

1. If deg T < 1, output the vector T .

2. Compute (a0, . . . , an/2−1) = F(T0, ω
2) and (b0, . . . , bn/2−1) = F(T1, ω

2)

where T0(X2) = T (X)+T (−X)
2 and XT1(X2) = T (X)−T (−X)

2 .

3. Return (ai + ωibi)i=0,...,d−1.

Theorem 5.3. Algorithm 5.2 requires O(d log d) operations in K.

Proof. If we take f(t) to be the number of operations it takes for algorithm 5.2 to finish, we have that

f(t) ≤ f(t/2) + f(t/2) +O(t)

where the first and second term are for computing step 2 and O(t) is for computing step 3. Since the algorithm

is going to be called approximately log 2t times, we get that f(t) = O(t log t)

Moreover, by following the definition, we have the following property

Fω−1(Fω(T)) = dT.

If degF + degG < d, and writing

F (X) = a0 + a1X + a2X
2 + . . .+ ad−1X

d−1

G(X) = b0 + b1X + b2X
2 + . . .+ bd−1X

d−1.

It can be shown that the product of F and G is

(FG)(X) = c0 + c1X + c2X
2 + . . .+ cd−1X

d−1 (5.4)

Complexity Analysis 31

where

(c0, . . . , cN−1) =: c =
1

d
F−1(F(a)F(b)).

To obtain (5.4), we need to apply F three times to vectors of size d and then divide the everything by d.

Corollary 5.5. Multiplication using FFT requires O(d log d) operations in K where d is the maximum degree

of the polynomials.

5.2 Floating Point Operations

A floating point number consists of an η-bit integer a and an integer exponent e and this represents the rational

number a · 2e, which we use to approximate real numbers. Multiplying two floating point numbers is as easy as

multiplying two η-bit integers. Viewing η-bit integers as degree η polynomials whose coefficient is 2, we see by

Karatsuba’s method that it should take at most O(ηlog2 3) bit operations to multiply two integers. There is an

algorithm by Schönage-Strassen [9], which is based on the DFT and can bring down the required bit operations

to O(η log η log log η). Adding two floating point numbers of the same exponent is just the same as adding two

integers and hence it takes O(η) bit operations. If the exponents, however are not the same, we repeatedly divide

the a by 2 and then add 1 to e of the smaller number until the exponents are equal. If the difference of the

exponents are greater than η, then this number becomes 0 even before we catch up with the exponent of the

other number. Thus, adding floating point numbers takes O(η) bit operations.

5.3 Analyzing one iteration

Now, we are ready to analyze the time complexity of constructing the subproduct tree.

Theorem 5.6. Let s be the number of leaves in the input of 3.25. Assume that the leaves are linear polynomials.

Then algorithm 3.25 requires O(MX(s) log(s)) operations in C.

Proof. Let f(t) be the time it takes to compute the T ′1 of a subtree T ′ with t leaves. We have

f(t) = f(t/2) + f(t/2) +O(M(t))

since to compute the top (i.e. the root) of a subtree with t leaves, one must compute the values of its two children

(accounting for the f(t/2)’s) and multiply them. Since they are of degree t/2, then we expect the multiplication

to take time O(t log t). And so to computing the T1 of a tree with s leaves takes O(log s ·MX(s)) oeprations in

C.

Algorithm 3.29 has similar steps as 3.25 except for the last one, where instead of multiplying one pair of poly-

nomials in the end, we perform two multiplications. This does not change the asymptotic complexity and so we

have that.

Theorem 5.7. Algorithm 3.29 has requires O(MX(s) log s) operations in C where s is the number of leaves on

the tree T .

Corollary 5.8. If n is the degree of the extension L, then computing one gϑ using algorithm 3.31 requires

O(M(n) log n) operations in C.

32 5.4 Total complexity

Proof. Algorithm 3.31 simply calls algorithms 3.25 and 3.29.

Remark 5.9. We make a remark on the time complexity of the following steps of the main algorithm 4.19:

• Finding the n Ui’s involves building n subproduct trees with m leaves. This means that it would take

time O(n ·MX(m) logm) operations in C to compute all Ui’s. We can reduce the computatons by a factor

of at most 2 if we only compute for Ui’s which are in I. However, this does not change the asymptotic

complexity.

• Finding the appropriate V involves building at most m subproduct trees with n leaves. Thus, it requires

O(m ·MX(n) log n) operations in C. It might be useful to note that in practice, taking the trace of the

polynomial (i.e. the case where j = m− 1) results in an irreducible V .

• Moreover, checking the irreducibility be looking if gcd(V, V ′) 6= 1 using the fast Euclidean algorithm from

[9] takes O(M(n) log n) operations in C.

• Finding W takes O(m ·MX(n) log n) operations in C because you need m calls to algorithm 5.8.

Now, the only iterating step left unaccounted for is the second step. This step actually does not make a dent

in the asymptotic complexity as those computations do not involve complex numbers, but integers, and these

integers are relatively small compared to the precision required for the other bigger computations. Hence, we

conclude this section with the following theorem.

Theorem 5.10. One iteration of the main algorithm 4.19 requires

O(mMX(n) log n+ nMX(m) logm)

computations in C.

5.4 Total complexity

So far, we have postponed taking into account a couple of things for the main algorithm 4.19. First, we did

not look at the expected number of iterations. Denote t by the number of primes in the prime decomposition

(counting multiplicity) of the class number hK of K. The number of iterations is exactly t− 1. Second, we did

the complexity analysis by counting the operations in C. To solve for the number of bit operations, we need

to find the appropriate precision η. Recall that U0 and V must be polynomials in Z[X]. Since we compute V

in algorithm 4.19 as the product of linear polynomials, it will surely be reducible if we do not round it into a

polynomial in Z. This is a step which is sensitive to precision. One can find a lower bound for η. To be precise,

we refer to the theorem in [5]. To conclude, we have the following corollaries to 5.10.

Corollary 5.11. Assuming GRH and using the DFT methods for multiplication, one iteration in algorithm 4.19

requires

O
(√

D(logD)2 log logD
)
.

operations in C. That is, it requires

O
(
D(logD)3(log logD)2

)
bit operations.

Complexity Analysis 33

Proof. We note that h = mn, where h is the class number. From theorem 5.10, we get that we require

O(h log2 h)

operations on each of the t iterations. And since under GRH, [5] tells us that h = O(
√
D log logD), we need

O(h(logD)2) = O
(√

D(logD)2 log logD
)

computations in C for each iteration. We compute the bit operations. From [5],we have that

M(η) = O(
√
D logD log logD),

we get that we need

O
(
D(logD)3(log logD)2

)
bit operations for each iteration.

Corollary 5.12. Assuming GRH and using the DFT methods for multiplication, algorithm 4.19 requires

O
(√

D(logD)3 log logD
)
.

operations in C. That is, it requires

O
(
D(logD)4(log logD)2

)
bit operations.

Proof. Since t = O(log h) = O(logD), then from the previous corollary 5.11, we get the desired results.

34 5.4 Total complexity

Chapter 6

Verifying the Results

We have proved that everything should work in theory. However, translating theory into an implementation is

a different story. For the interested readers, in this section, we present some ways to determine if something is

wrong with the implementation.

6.1 Using resultants

Definition 6.1. Let R be an integral domain. Let f, g ∈ R[X]. Writing

f(X) =

m∏
i=1

a(X − αj) and g(X) =

n∏
j=1

b(X − βj)

with αi’s and βj ’s roots of f and g in an algebraic closure of the field of fractions of R. We define the resultant

of f and g to be

Res(f, g) = anbm
m∏
i=1

n∏
j=1

(αi − βj).

Definition 6.2. Let K be a field and let f, g ∈ K[X,Y]. Define the resultant ResX(f, g) of f and g with respect

to X to be the resultant of f and g considered as polynomials in X. Similarly, we can define ResY (f, g).

Example 6.3. Let V (Y) ∈ K[Y] and W (X) ∈ K(Y)[X]. By clearing denominators, we can replace W by a

polynomial in K[X,Y]. From now on, we assume W (X,Y) ∈ K[X,Y]. Consider ResY (V,W). It can be shown

that this is a polynomial in K[X]. Moreover, if β is a root of ResY (V,W), that is ResY (V,W)(β) = 0, then the

polynomials V (Y) and W (β, Y) have a common root α. Hence, we have that V (α) = W (β, α).

Theorem 6.4. Let M/K be a finite abelian extension. Let V (Y) ∈ K[Y] and W (X) ∈ L[X] be minimal

polynomials of the extensions L/K and M/L, respectively. Let α be a root of V . Using lemma 3.22, we can

write W as

W (X) =
1

V ′(α)

m∑
i=0

gi(α)Xi

where gi(Y) ∈ K[Y]. If

W̃ (X,Y) =

n∑
i=0

gi(Y)Xi,

then ResY (V, W̃) generates the field extension M/K.

35

36 6.2 Constructing an elliptic curve of good cardinality

Proof. Suppose α and β is a root of V (Y) and β is a root of W̃ (X,α). Then, V (α) = W (β, α) = W̃ (β, α) = 0.

This means that β is a root of ResY (V, W̃). Suppose n := deg V and m := degW . Note that V has m := deg V

distinct roots. Fixing an α and considering Wα, we obtain n := degX W̃ distinct roots. If β is one of these

roots, then the rest are (βσ)σ∈Gal(M/L). Hence, the roots of ResY (V, W̃) are exactly (ατ)σ where τ runs through

Gal(L/K) and σ runs through Gal(M/L). Hence, ResY (V, W̃) is an irreducible polynomial of degree mn. And

since [M : K] = mn, it is a minimal polynomial for the extension M/K.

6.2 Constructing an elliptic curve of good cardinality

The theory on resultants only checks if the field was successfully decomposed given a polynomial hK which

supposedly generates M/K. However, we have no way to check if hK indeed generates the Hilbert class field

– that is M = HK . Remember that we computed h by first getting the roots. If there was some problem in

the implementation of our code, we would not be able to detect errors in our computation. Another way to

check if our implementation is correct is to actually generate a curve with a prescribed number of points using

algorithm 1.1. Not only does this give us a way to determine if our implementation is wrong, it also gives us an

illustration of what our main algorithm, algorithm 4.19, can be applied to.

Let HK be the Hilbert class field and take γ to be a root of the Hilbert class polynomial hK as a polynomial

in Z. Then HK = K(γ). Finding a root j̃ of hK modulo p is equivalent to finding a linear factor fj̃ = (X − j̃)

of hK modulo p. By the theorem of Kummer-Dedekind, finding such a linear factor is equivalent to finding a

prime ideal P = (p, fj̃ (γ)) of degree 1 above (p). Now, since HK is an unramified extension of K, there will exist

exactly h = deg hK such prime ideals P, each corresponding to a root of hK modulo p. Now, suppose we have an

intermediate field L = K(α). Let V and W respectively be the minimal polynomials of L/K and HK/L. Then,

in a similar way, taking a root of V modulo p will give us a prime ideal p = (p, V (α)) of L. Now, W (X) ∈ OL[X]

and taking it modulo p, we get that it is in W (X) ∈ (OL/p) [X]. Since we are working in an unramified extension

and the degree of P in M/K is 1, OL/p ∼= Fp. And so finding a linear factor of W (X) as a polynomial in Fp will

give us a prime ideal in P′, which corresponds to a root of hK .

Since we have completely avoided dealing with the Hilbert class polynomials in the examples, and instead focused

on the Weber polynomials, we must find a method on how to transform a root of a Weber class polynomial into

a root of the Hilbert class polynomial. The following theorem from [7] takes care of this

Theorem 6.5. Let D be a fundamental discriminant such that D 6≡ 0 (mod 3). Let WK be the corresponding

Weber polynomial and hK be the corresponding Hilbert class polynomial for K, both of which generate HK . If

w is a root of the WK , then

j =
(A− 16)3

A

is a root of hK where

A =


212w−24 if D ≡ 3 (mod 8)

w−24 if D ≡ 7 (mod 8)

−26w12 if D/4 ≡ 2, 6 (mod 8).

Example 6.6. Suppose we want to find an elliptic curve E with exactly N = 380 points over the finite field Fp
with p = 491. We first observe that

−455 · 4 = −1820 = (p+ 1−N)2 − 4p = 144− 1964.

Verifying the Results 37

Recall that in example 4.20, we decomposed the Weber polynomial WK for K = Q(
√
−455). Solving W3(Z) as a

polynomial modulo p, we see that z = 406 is one of its roots modulo p. Substituting z into W2(Z, Y), we obtain

the polynomial

Y 2 + 85Y + 12 ∈ Fp[Y].

One of the roots of this polynomial is y = 477. Again, substituting into W1(Y,X), we obtain the polynomial

X2 + 14X + 447 ∈ Fp[X].

Finally, a root of this polynomial is w = 382. Hence w is a root of the Weber polynomial. Applying 6.5, we take

j =
(w−24 − 16)3

w−24
= 139.

Let

a =
27j

4(1728− j)
= 352

We take the elliptic curve

E : Y 2 = X3 + 352X − 352

over the finite field Fp. And this curve, indeed, has 480 points.

38 6.2 Constructing an elliptic curve of good cardinality

Chapter 7

Experiments

We implement the main algorithm 4.19 in Pari/GP [2]. We run the implementation through discriminants D

such that D ≡ 7 (mod 8), D 6≡ 0 (mod 3) and D < 1000000. Out of the 76002 fundamental discriminants which

satisfies the above conditions, 1 of them correspond to discriminants where K = Q(
√
−D) has class number 1.

Moreover, 5256 of them correspond to cases where K has prime class number. We do not apply the algorithm to

these cases since we will not be able to find intermediate fields. Hence, we treat a total of 70745 cases. To make

the computation faster, we let the precision η grow in terms of the discriminant D and the class number h. We

take η = 1
9hD log(D) althroughout. Though one could readjust to a lower precision after each iteration.

With this, the slowest case was when D = 947231, which took 5.382 seconds. In this case, the class number

hD = 1766 = 883× 2. This means that we had to obtain m = 883 quadratic polynomials to get and eventually

find 883 Hecke representations. In contrast, the slowest case without a big prime is D = 905399, which has a

class number hD = 1536 = 29 × 3. Take note that this has class number close to h947231. However, this takes

only 2.087 seconds to compute.

7.1 On the irreducibility of the Vk

We notice that the first Vk we usually take, that is Vm−1, whose roots are the traces of the Ui, almost always

results in an irreducible polynomial. Indeed, among the D we treated, here are the only five cases where the

trace does not work.

D Vm−1

55 x2 − 2x+ 1 = (x− 1)2

95 x4 − 2x3 − x2 + 2x+ 1 = (x2 − x− 1)2

119 x2 − 4x+ 4 = (x− 2)2

239 x2 − 4x+ 4 = (x− 2)2

287 x2 − 8x+ 16 = (x− 4)2

Note that in general these polynomials depend on how we chose the composition series. A different composition

series might result in a different set of “problematic” cases.

39

40 7.2 On the composition series

7.2 On the composition series

In this section, we see that choosing an appropriate order for the composition series is important. We illustrate

this by applying looking at the case when D = 928919. We compute

hD = 1534 = 2× 13× 59

and the class group Cl(OK), which turns out to be cyclic. Let its generator be a. We consider two composition

series

H0 = 〈e〉 C H1 = 〈a26〉 C H2 = 〈a2〉 C H3 = 〈a〉 (7.1)

and

H ′0 = 〈e〉 C H ′1 = 〈a767〉 C H ′2 = 〈a13〉 C H ′3 = 〈a〉. (7.2)

Using the composition series given by (7.1), we have m(1) = |H1|= 59. And so, for the second iteration has to

deal with a group of size |G(2)|= 26. On the other hand, in the compositin series given by (7.2), m(1) = |H ′1|= 2.

And the second iteration will involve a group of size |G(2)|= 767. Hence, looking at the asymptotic complexity

of the algorithm, we expect that using a composition series such as (7.1) will start to benefit us starting from

the second iteration. However, looking at the running time, we have

composition series used ι |G(i)| time (ms)

(7.1) 1 1534 492

(7.1) 2 26 4

(7.2) 1 1534 2191

(7.2) 2 767 208

Looking at the running time, not only do we benefit from the second iteration, but we also benefit from the

iteration. This is because computing W takes a lot of time in practice. So we prefer to have a lower degree for

W , which is done by taking a lower m.

And so, we should choose the composition series such that the sequence of m(ι) = |H(ι)| we choose decrease as

ι increases. Doing so makes the n(ι) of the next cases decrease faster. Note that this was not done in example

4.20 for illustrative purposes.

Bibliography

[1] Atkin, A. O. L., and Morain, F. Finding suitable curves for the elliptic curve method of factorization.

Mathematics of Computation 60, 201 (Jan 1993), 399–405.

[2] Belabas et al., K. Pari/GP, 2.8.0 ed. Bordeaux, 2015. http://pari.math.u-bordeaux.fr/.

[3] Bröker, R. M. Consturcting Elliptic Curves of Prescribed Order. PhD thesis, Universiteit Leiden, jun 2006.

[4] Cox, D. A. Primes of the Form x + ny: Fermat, Class Field Theory, and Complex Multiplication. John

Wiley Sons, Inc. All rights reserved., 1989.

[5] Enge, A. The complexity of class polynomial computation via floating point approximations. Mathematics

of Computation (2009), pp. 10891107.

[6] Enge, A., and Morain, F. Fast decomposition of polynomials with known galois group. In Applied Algebra,

Algebraic Algorithms and Error-Correcting Codes – AAECC-15 (2003), T. H. In Marc Fossorier and A. Poli,

Eds., vol. 2643 of Lecture Notes in Computer Science, Springer-Verlag, p. 254264.

[7] Konstantinou, E., Stamatiou, Y., and Zaroliagis, C. On the use of weber polynomials in elliptic

curve cryptography. In European PKI Workshop (2004), Lecture Notes in Computer Science, Springer Verlag,

pp. 335–349.

[8] Schertz, R. Complex multiplication. New Mathematical Monographs. CUP, 2010.

[9] von zur Gathen, J., and Gerhard, J. Modern computer algebra, 1 ed. Cambridge University Press,

1999.

41

http://pari.math.u-bordeaux.fr/

	Introduction
	Generating the Hilbert Class Field
	The Hilbert Class Field
	The Hilbert Class Polynomial
	The Form Class Group
	Class Invariants

	Theory for the Algorithm
	Galois Theory
	Galois Case
	Non-Galois Case

	Hecke Representation

	The Algorithm
	Ordering the Roots
	Cyclic Case
	General Case

	Exploiting Complex Conjugation
	The Main Algorithm

	Complexity Analysis
	Polynomial Operations
	Floating Point Operations
	Analyzing one iteration
	Total complexity

	Verifying the Results
	Using resultants
	Constructing an elliptic curve of good cardinality

	Experiments
	On the irreducibility of the V_k
	On the composition series

