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Notations

N, the set of natural numbers.

Z, the set of integers.

Q, the set of rational numbers.

p, a prime number.

Qp, the p-adic completion of Q.

Zy, the p-adic integers in Q.

K, a p-adic field in the sense of Definition A.1.

K, a fixed algebraic closure of K.

Ck = %, p-adic completion of K.

K™ maximal unramified extension of K inside K.
k, residue field of K.

Ko = W(k)[1/p], completed maximal unramified extension of Q, contained in K.

o: Gal(K"/K) — Gal(K"/K), the absolute Frobenius x — zP.

Gk = Gal(K/K), the absolute Galois group of K.
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Preface

The aim of this work is to understand the basic theory of p-adic Galois representations'and give a
complete description of such representations arising from elliptic curves defined over Q,. Below is a
brief discussion on the content of each chapter.

1.

Fontaine’s period rings. In this chapter we recall the basics of Fontaine’s theory of period rings.
This includes an introduction and explicit construction of period rings Bgr, Beris and Bgt. We also
discuss certain properties of these rings and construct some explicit elements which recurrently
appear in all the theory that follows.

. Filtered (¢, N)-modules. This chapter is dedicated to the study of the category of filtered (¢, N)-

modules . The motivation for such objects would come later in Chapter 3. In this chapter we also
introduce certain invariants attached to these modules, namely the Newton number and Hodge
number. Based on this, we mention an admissibility criteria for these modules, which helps in
classifying admissible modules in dimension 1 and 2 over Q,.

. p-adic Galois representations. In the third chapter we recall some formalism and use it to explain

the construction of various types of p-adic representations. Here we also give an important
example of semistable representation using Tate’s elliptic curves which would prove to be crucial
in the classification done in chapter 4. In Section 3.5, after recalling some basic facts, we construct
a p-adic pairing and verify the p-adic de Rham comparison theorem for two examples explicitly.
The example of 1-dimensional non-split torus over a p-adic field is the content of Subsection 3.5.2
which is new in the sense that it is not part of any previous literature.

. An equivalence of categories. The content of fourth chapter is on the equivalence of the category of

semistable p-adic Galois representations and admissible filtered (¢, V)-modules. First we recollect
the construction of a quasi inverse functor and then show its full faithfullness. Establishing the
equivalence requires more work, so only a small part of the proof is shown in this chapter. In the
end, using the classification done in Chapter 2 for admissible filtered (¢, N)-modules over Q, in
dimension 1 and 2, we give the associated representations.

. p-adic Galois representations from elliptic curves over Qp. In this last chapter we classify all p-

adic representations coming from elliptic curves over Q,. With the help of the article [Vol00], we
describe a list of objects from the category of filtered (¢, N)-modules. After this, we consider all
possible representations coming from elliptic curves and relate these to the corresponding objects
on the list. For the converse, examples of elliptic curves in short Weierstrass form are given for
some of the objects on the list.

. Hodge-Tate representations. This is an appendix on Hodge-Tate representations which could be

seen as a motivation for Fontaine’s theory. In this chapter we collect certain definitions and
results that will be used throughout in the text. It is meant to serve as a quick introduction and
therefore all the proofs have been omitted.

LA p-adic representation of Gk is a representation p : G — Autg, (V) of Gk on a finite dimensional Q,-vector space
V such that p is linear and continuous. The category of such representations is denoted Repr (Gk).
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B. Kadhler differentials. In this appendix chapter we recall some basic facts about Kéhler differentials
and the definition of algebraic de Rham cohomology needed in our computations in Section 3.5.

A good reference for first three chapters is the book (under preparation) by Fontaine and Ouyang
[FOO08]. A quick introduction to the theory could also be found in the notes of Berger [Ber04]. For
the fourth chapter as well as the appendix on Hodge-Tate representations, one could take a look at the
online available notes of Brinon and Conrad [BC09]. Apart from these sources, wherever necessary, we
mention appropriate references for the results used.

Please note that the none of these results are new and have been written based on my understanding
of the literature. However, if you find any mistakes please contact me directly. Thank you for reading
this article.
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Chapter 1

Fontaine’s period rings

1.1 The functor R: perfection of a ring

1.1.1 The ring R(A)

Let A be a (commutative) ring with unity. Let p be a prime number such that char A = p. The absolute
Frobenius map on A is the homomorphism,

p:A— A
a+— al.

If ¢ is an isomorphism then A is called perfect. Also A is reduced if and only if ¢ is injective where A
is reduced if it has no nontrivial nilpotents.

Definition 1.1. Let A be a commutative ring with unity with char A = p, define

R(A) :=lim A,,
pam—
neN

where A, = A and the transition map ¢ : A, — A, is given by ¢(#,41) = «5_ ;. In other words, the
inverse system is given as

z—xP z—xP
-—>An+2H—>An+1H—>An—>---

An element = € R(A) is a sequence & = (&, )nen such that z,, € A, b | = x,.
Proposition 1.2. R(A) is a perfect ring.

Proof. Let ¢ : R(A) — R(A) be a homomorphism which sends x — aP. We need to show that ¢ is
bijective. For injection, we take x = (2 )nen € R(A) such that 2P = 0. This means 2P = 0 for each
n € N. But then $Z+1 = x, = 0 for each n > 1, therefore z = 0, proving that ¢ is injective. For
x = (n)neny € R(A), we simply put y = (y+1)nen. Obviously, y? = z which implies the surjection of
. |

This construction is sometimes called perfection of a ring of characteristic p.
For any n € N, let us consider the projection map
On: R(A) — A
('rn)nGN = Tn.
If A is perfect then 6,, is an isomorphism for each n. If A is reduced then each 6, is injective and
Om(R(A)) = Np>me™(A). This is easy to check. Indeed, let z € R(A) i.e., * = (xp)nen such that

x, € A for each n € N and 0,,(z) = z,,. We know that foH = z, for each n. So, x,, € ¢"(A)
for each n > m. This gives 0,,(R(A)) C Np>me™(A). To prove Np>me™(A) C 0, (R(A)), we take

1



2 Chapter 1. Fontaine’s period rings

Y € Np>me™(A). Then for each n > m there exists an x,, € A such that 22" = y and xfl_H = z,.
. . . . m m—1

Consider the Tfollowmg p-power compatible sequence in A, zg = yP ,z1 =y ..., zZm_1 =yP,zm =

Yy Zmel = Ty 1, Zm2 = oy 1o,.... Then clearly, z = (zn)nen € R(A) such that 6,,(z) = y. Hence

Om(R(A)) = Np>me™(A). Taking A to be reduced makes sure that 6, is injective for each n € N.
Remark 1.3. If A is a topological ring, then R(A) can be given the topology of the inverse limit.

Proposition 1.4. Let A be a ring, separated and complete for the p-adic topology, i.e., A = llnn A/p"A.

Consider R(A/pA). There exists a bijection between R(A/pA) and the set S == {(z(),en | 2™ €
A, (z(HyP = ()],

Proof. Let & = (2n)nen € R(A/pA) with x,, € A/pA and z¥_ | = x,,. Let @, be a lifting of z, to A.
Then 7, 4+1 = T, mod pA. We make an important observation that if &« = 8 mod p™A then of = P

_pm+1 m m

mod p"™ ' A. So for each m,n € Nwe havezl |, =20 = mod p™A. And therefore, Zl | converges

in A as m — +oo. Let 2™ = 1ir£ # . Then clearly, (z("tD)P = 2" and (™ is a lifting of z,
m—-+00

ie., 2™ mod pA = x,. This limit (™ is independent of the choice of the liftings Z,. So, we have a
map R(A/pA) — S where (2,)nen — (2),en from the construction above. While on the other hand
A — A/pA reduction mod p gives a natural map S — R(A/pA) where (), cn — (2™ mod p)pen.
By the construction, it is immediate that these two maps are inverse to each other. |

Remark 1.5. Any element x € R(A/pA) can be written in two different ways,
(i) * = (xn)nen such that x, € A/pA.
(ii) z = (2(™),en such that z(™ € A.

Now, we want to see how addition and multiplication of elements should be defined in S in order
to be compatible with the operations in R(A/pA). Let z = ()en, v = (4™ )nen € R(A/pA), then
(zy)™ = (z(My™)) and (z 4 y)™) = lir4r_1 (z(mtm) gy (tm) ™ - Also, if p is odd then (—1)? = —1 in
A, so (—x(”))neN is a p-power compatible sequence for any x. Hence, by definition of addition in S we

see that (—z)™ = —z(™ for all n > 0 and all  when p # 2. If p = 2, this argument would not work
but we observe that (—z)™ = (™ for all n > 0 since —z = z in such cases.

1.1.2 Properties of the ring R

In the last section we discussed perfection of A/pA for A a commutative ring with unity. In this section
we let A = O, where L is a subfield of K containing Kj.

Lemma 1.6. Or/pOr, = O;/pO; where L is the p-adic completion of the field L.

Proof. Let z € O but x ¢ pO; and let (z,)nen be a Cauchy sequence in L such that converging to
x. We know that for any € € Ry there exists N, € N such that vy (z, — ) > € for every n > N. Let
e = vr(p) then vr(x, — ) > vr(p) for every n > N for some N large enough. But also, we must have
vp(z) < vp(p) and v (zy,) < vr(p) for all n € N. Hence x,, = x mod p. |

Using this lemma we can write (O /pOr) = R(O;/pO;) = {z = (™) ey | 2™ € Oz and ()P =
(M},

Definition 1.7. R := R(O35/pO3) = R(Oc, /pOcy)-

Remark 1.8. (i) An element x € R is a unit if and only if z9 € O /pOs is a unit, so R is a local
ring.

(ii) We have valuation v = v, on Cg normalized by v(p) = 1. This enables us to give a valuation of
R by v(z) := vr(z) == v(z®) on R.
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(iii) R is not noetherian.

Proposition 1.9. The ring R is a complete valuation ring with the valuation given by v. It is perfect
of characteristic p. Its mazimal ideal is mp = {x € R | v(z) > 0} and the residue field is isomorphic
to k. The fraction field Fr R of R is a complete nonarchimedean perfect field of characteristic p.

Proof. First of all we need to check that the valuation defined above is ultrametric. For this we
notice that since R — Oc¢,.,z — z(°) is a surjective map and v(z) = vr(z) = v(z(?), we have
v(R) = Qx>0 U {4+00}. Now, v(x) = +o0c if and only if v(z(?)) = 400 if and only if (9 =0 i.e., 2 = 0.
To check the ultrametric inequatilty v(z+y) > min{v(z), v(y)} for every z,y € R. Since v(z) = v(z®)
and (z(t)P = 2" for every n > 0, we have that v(z) = v(z(?) = p™v (™) for every n > 0. So, for
any ,y € R there exists n € N such that v(z(™) < 1 and v(y™) < 1. Since (z+y)™ = ml_i)rfrloo(x("er)—l—

Yy we know that (z + 1) = 2 4+ 9y mod p ie., v((z + y)™) = v(@™ + ¢y + p)) for
some A € Cg. From this we get v((z 4 %)) > min{v(z™), v(y™),1} > min{v(z™),v(y™)}. This
immediately gives us that v is an ultrametric valuation on R.

To prove that R is a complete ring, we observe that ker (6, : R — Oc, /pOc, ) = {x € R | v(z) >
p™}. This is indeed the case since v(z) > p” if and only if v(z(®) > p" i.e., v(z(™) > 1. Since (™ = z,,
mod p and 2 € Oc,.,v(z™) > 1 if and only if , = 0. So, O,(x) = 0 i.e, z € ker (6,). In the
equality that we just proved, considering for all n € N the terms on left form a basis for the inverse limit
topology on R and the terms on the right forms a basis for the p-adic topology on R. Since both are
equal, we conclude that they induce the same topology on R. Since inverse limit topology is complete,
we have that R is a complete valuation ring with the valuation given by v.

In Proposition 1.2, we have already established that R is a perfect ring of characteristic p. Since
R is a domain we have Fr R = {z = (™), | 2" € Ck and (2"*D)P = (™} and the valuation
map extends to Fr R by v(z) = v(:(:(o)). Since R is complete, perfect and of characteristic p, therefore
so is Fr R. The ring of integers of Fr R is R = {Fr R | v(z) > 0} with the maximal ideal given by
mpr = {z € Fr R | v(z) > 0}. To compute the residue field of Fr R, we see that R — k by reducing for
any & = (Tp)nen € R to 9 mod mg where z, € Ox/pO%. Now y € ker (O/pOz — k) if and only
if v(x(®) > 0 where 2(9) ¢ O is the lift of 29 as defined in Proposition 1.4. But since vg(z) = v(z(0),
we conclude that ker (R — k) = {z € R | vg(z) > 0} = mg. Hence R/mpg ~ k. |

Proposition 1.10. There exists a unique section s : k — R of the map R — k which is also a
homomorphism of rings. The section s is given by

s:k— R
a— ([&" nen

—n

where [a?” "] = (a?"",0,0,...) € Ogyn is the Teichmiiller representative of ab™".

Proof. By Witt vector construction it is obvious that ([a?”"""])P = ([a?""]) for every n € N. Let
a = ([a” ")nen € R and 6y(a) = [a] with the mod p reduction being equal to a. s as defined above
is a homomorphism of rings since s(0) = ([0])nen, (1) = ([1])nen and since char k = p, s(a + b) =
(a5 Dner = (@ " + 8 Dnen = (@7 "]+ [ Dnens = 5(a) + s(b). Similarly, s(ab) = s(a)s(®).

For uniqueness of s, let s’ : & — R be another section. Let 2 € &k such that s(z) # §/(x). Since
s(x) = §'(x) mod mpg, we have that v(s(x) —s'(z)) > 0. If s(x) # us'(z) for some u € R*, then we get
v(s(z) — §'(xz)) = min{v(s(x)),v(s'(x))} > 0. But s(x),s'(x) € mg since z # 0. So we conclude that
s(z) = us'(x). Also, s(1) = s'(1) = 1 which gives u = 1 and we are done. [

Fr R is an algebraically closed field, but before proving this we need the following lemma.

Lemma 1.11. For anyn € N and P(X) € R[X], there exists x € R such that v(P(x)) > p".
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Proof. For a fixed n, consider 6, : R — O%/pOz. We know that ker 6, = {y € R | v(y) > p"}, so we
just need to find an = € R such that 6,(P(z)) = 0. Let Q(X) = X%+ -+ 4+ a1 X + ap € O[X] where
«; is a lifting of 6,,(a;). Since K is algebraically closed, let u € O be a root of Q(X) and let @ be its
image in Oz /pOz, then any x € R such that 6,,(x) = u satisfies 6,(P(x)) = 0. Since 6, is surjective,
we are done. |

Proposition 1.12. Fr R is algebraically closed.

Proof. Since Fr R is perfect, we only need to show that it is separably closed i.e., if a monic polynomial
P(X)=X%+as 1 X% +...+a; X +ag € R[X] is separable, then P(X) has a root in R. Since P(X)
is separable, there exist Uy, Vo € (Fr R)[X] such that UyP + VoP' = 1 with P/ = dP(X)/dX. Let
m € R such that v(m) = 1, then we can find m > 0 such that U = 7™Uy € R[X], V = 7™V, € R[X]
and UP + UP' = «™. Let ng = 2m + 1, we want to construct a sequence (zp)n>n, in R such that
U(Tps1 — ) > n—m and P(z,) € 7" R. The limit nkrfw Ty, exists since R is complete and it will be
a root of P(X).

We construct (x,) inductively. Note that n > ng. From Lemma 1.11 we find z,,. Suppose z,, has

already been constructed. Let
p[ﬂ — Z (7’> CLiXi_j,

i>j \J

then P(X +Y) = P(X) + YP'(X) + Y50 YIPU(X). Write 211 = @, + ¥, then P(zn41) = P(zn) +
yP' (zn) + 352 y/ PUl(x,). If v(y) > n —m then, v(y/ PVl(z,)) > 2(n —m) > n+1 for j > 2.
So, we are reduced to finding a y such that v(y) > n — m and v(P(z,) + yP' (zpn41)) > n+ 1. By
construction, v(U(zy)P(xy)) > n > m, so v(V(z,)P'(z,)) = v(n™ — U(zy)P(x,)) = m which implies
that v(P'(x,)) < m. Set y = —P(x,)/P'(xy), then v(y) > n —m and we get x,,11 as desired. |

1.2 The multiplicative group (Fr R)*

In this section we introduce the multiplicative group (Fr R)* and prove certain isomorphisms results.
These results will be helpful while defining a logarithm for the elements of (Fr R)* which as we shall
see is a crucial step in the definition of one of the Fontaine’s period ring Bg. We begin with a simple
lemma.

Lemma 1.13. There is a canonical isomorphism of Z-modules (Fr R)* ~ Hom(Z[1/p],C).

Proof. Let

a: Hom(Z[l/p],(C?) — (FrR)*
fr—=(f(0™")nen-

For f : Z[1/p] — C} a homomorphism, we clearly have f(p™) = f(p-p D) = f(p~(+D)p.
To see that « is injective, let f € Hom(Z[1/p],C)) such that f(p~™) = 1 for every n € N. Then
f) = f(p-1/p) = f(1/p)? = 1. This gives f(Z[1/p]) = {1} i.e., ¥ is injective. For surjection,
let (2(),eny € (Fr R)*. Let us define f : Z[1/p] — Cy by setting f(0) = 1,f(1) = (z(M)? and
flp™) = 2™ for every n > 0. This gives « as surjective and since it is a homomorphism of Z-modules,
we have that it is indeed an isomorphism.

[ |

Let Ur C (Fr R)* be the group of units of R. For z € R,z is in Uy if and only if 2(0) ¢ O¢,.
and therefore by previous lemma Ugr ~ Hom(Z[1/p],O¢ ). For W(k), the ring of Witt vectors of k,
we have that W (k) C Oc,. and therefore k™ < Of,.- Let U =1+ mgy, then Of, = £ x Ug,
and therefore Ur ~ Hom(Z[1/p],O¢ ) = Hom(Z[1/p], k™) x Hom(Z[l/p],UC;). Since x — 2P is an
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automorphism for % i.e., every element has exactly one p-th root, therefore Hom(Z[1/p], k™) ~ k™.

AlsoUp ={z e R |2 ¢ U((J{K = Hom(Z[1/p], UEK)}, therefore Ug ~ k™ x Ug.
Let Uy = {z € R|v(z —1) > 1}, so we get (Ux)?" = {x € Us | v(x —1) > p"} and U} ~
ligln Ul}2 /(U é)pn is an isomorphism and homeomorphism of topological groups. So we can consider U 11?(

as a torsion free Z,-module. Now for x € U} such that v(z — 1) > 0, there exists n € N large enough
such that p"(v(z — 1)) > 1. Conversely, any = € U}, has a unique p"-th root in Uj;. Therefore, we have
the following isomorphism

Qp ®z, Up — Uj;
P Qur— uP .
In summary, we can write the following proposition,

Proposition 1.14. The sequence 0 — Ur — (Fr R)* —» Q — 0 is exact and we have following
natural identifications

(i) (Fr B)* ~ Hom(Z[1/p], C}5).
.o X
(ii) Ur ~ Hom(Z[1/p],O¢, ) ~ k" x Ui
(i) Uz ~Hom(Z[1/p],Ug, ) ~ Q) ®z, Up.
(v) Uh={z € R | v(w—1) > 1} = lm_Uk/(ULP"
Proof. Immediate from the discussion above. |
Now we give an explicit element of R which is also a unit. Let (¢™),>¢ such that (¢(0) = 1,
e £ 1, and (et = £ je. (™ is a primitive p"-th root of unity for every n > 1.

Lemma 1.15. The element ¢ = (/™) ,en is a unit of R.
Proof. Let &, = ™ mod pOcy for every n € N. Let m = ¢ —1, then 70 = hI_i?(_l (e(m) 4 (=1)m) ™,
m—-00
Since (™ is a primitive p-th root of unity in K and (—1) = —1 if p # 2 whereas (—1) = 1 if
p = 2. We shall treat the cases of p = 2 and odd p separately.
If p = 2 then

vie—1)= lim 2™0(E™ +1)= lim 2Mv((™ —1)+2).

m—-+00 m—-+00

Since v(e™ —1) = 2,,},1 < v(2) for m > 1, we have v((e™ —1)42) = v(e™ —1) for n > 1. Therefore
v(Ee—-1)=2.
If p is odd then
1 P

e = m pteE =D = i ST o1

So for any p we conclude that, v(7(?)) = p/p —1 > 1. Hence, ¢ = 1 + 7 = (¢™), ¢y is a unit in
R. [

1.3 The homomorphism 6

Let W(R) be the ring of Witt vectors with coefficients in R, which is a complete discrete valuation ring
with the maximal ideal generated by p and residue field W(R)/(p) = R. We know that Oc,. /pOc, is
not a perfect ring. Indeed this is true because the Frobenius endomorphism is not an automorphism
(in particular, it is not injective). So there is no evident way of lifting the G g-equivariant map R —
Oc /pOcy to a ring map 6 : W(R) — Oc,.. Therefore, we seek to construct in a different manner,
such a canonical Gi-equivariant map 6.

Let a = (ag,a1,...,am,...) € W(R), where a,, € R for every m € N. a,, can be written in two
different ways
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(a%'i'l))p _ ()

(a) (a%))reN such that o) € Oc, for every r € N and = am’, or
(b) (@m,r)ren such that ap,, € O /pOf for every r € N and (amr41)P = amyr-
So we have a natural map
W(R) — Wi (Og/pOg)

a (CLO,ny Almy--- 7an—1,n)

which gives us a commutative diagram

W1 (0% /pO%)

P

W(R) —— Wy(O%/pO%)

with fr,((x0, 21, ...,2n)) = (2h, 2%, ..., 2P _|). From this it is immediate that W (R) ~ lim W, (O%/pOg%).

n—1
It is a homeomorphism of topological groups if the object on the right hand side of the isomorphism

is equipped with the inverse limit topology of discrete topology on each component. For the surjective
map

VYnt1 : Wni1(Ocy) — Wi (Ox/pO%)
(ag,...,an) (ao,...,an_l),

let I be its kernel, then I = {(pbo,...,pbn—1,an) | bi,an € Oc,}. Let wypy1 @ Wpi1(Ocy) — Ocp

such that w,11((ag,...,a,)) = agn + pa’l'n_1 + -+ + p"a,. We compose this map with the quotient
map m, : Ocx, — Oc,/p"Oc,. This gives a natural map Wy,41(Ocy) — Oc,/p"Oc). Now,
since wy11(pbo, - - -, Pbn—1,an) = (pbo)?" -+ p" N (pbu—1)? + ptan € p"Ocy, therefore the map

Win+1(Ocy ) — Oc, /p"Oc, factors through Wi (O /pO%) i.e., there exists a unique homomorphism
O : Wi(O%/pOs) — Oc, /p"Oc) such that the diagram

Wn+1
Wint1(Ocy) — Ocy

s b

Wi(O/pOg) —2 O, /" Ot

commutes. By construction of 6, it is evident that we have another commutative diagram

W1 (O /pO%) 5 Oc,e 9™+ Oc,

[ !

o, g
Wi (Ox/pO%) —— Oc, /p"Ocy -

Passing to the limit induces a homomorphism of rings, § : W(R) — Oc,.

Lemma 1.16. If z = (x0,21,...,Zn,...) € W(R) for x, € R and x, = (x%m))meN with :L",(’Lm) € Ocy,

then 0(z) =", p”x%n).

Proof. From the map W(R) — W,,(O%/pOy) defined above where (29, 21, 22, ...) — (Zom: T1,0s - - - Tn—1n)
(n)

we take x; ’ to be a lifting in Oc,, of x;,, then
n-1 n—1 =0
en(ﬂjo,ny---’xn—l,n) = ZP n pr n{n=i) = Zplxil .
i=0 i=0

By passing to the limit we get, 6(z) =, p"x%n). u
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For x € W(R) let z,, € R such that x = ), . p"[2n] where [z,] € W(R) is the Teichmiiller represen-
tative of . Since 6 is a homomorphism, we get 6(z) = 6(X,, p"[zn]) = X, p"0([xn]) =X, ).

Proposition 1.17. The homomorphism 6 defined above is surjective.

Proof. For any a € Oc,, there exists an = € R such that 20 = a, since Ck is algebraically closed. Let
[z] = (2,0,0,...) be the Teichmiiller lift in W (R) of z. Then, 0([z]) = z(¥) = a. |

Proposition 1.18. The continuous surjective G i -equivariant map 6 : W (R) — Oc,. constructed above
is open. Also, using the canonical k-algebra map s : k — R to make W(R) into a W (k)-algebra via

W(s), 0 is W(k)-algebra map via the natural W (k)-algebra structure on Oc, .

Proof. On W (R) we have the product topology of the valuation topology on R and on Oc, we have
the p-adic topology. So to prove openness we just have to show that if J is an open ideal in R then the
image under 6 of the additive subgroup of vectors (r;) with ro,ry,--- ,7r, € J (for a fixed n) is open in
Oc, - Let J™) ;> 0 be the image of J under the map of sets R — Oc,, defined by r — (™) the the
image of (1) is J© + pJ® ... 4 pn=1 =D Since Oc, has the p-adic topology, it suffices to show
that J(™) is open in Oc,, for each m > 0. But Jm) — (me)(o)’ so we only need to prove that JO g
open in Oc¢,. is J is open in R. Now, it is enough to work with J’s from a base of open ideals, so we
take J = {r € R | vg(z) > ¢} with ¢ € Q. Since vg(r) = v(r(?) and the map r — (9 is a surjection
from R onto Og,., for such J we have that J©) = {z € O¢, | v(x) > ¢}, which is certainly open in
Oc, - Hence 6 is an open map.

Next, we prove that 6 is a map of W(k)-algebras. Oc, is a W(k)-algebra because we have a
continuous W (k)-algebra map h : W(k) — Oc,. lifting the identity map on residue field k. Using p-
adic continuity, it is enough to look at Teichmiiller representatives. So now we only need to show that for
each € k the image h([c]) is equal to 0([s(c)]). cis viewed in Oc,, as h([c]), so s(c) = (h([c]), h([cP)),..".).
Now 8([s(c)]) = s(c)® = h([¢]), hence we conclude. |

Let @ € R such that @w® = —p. Let £ = [w] +p € W(R). Then ¢ = (w,1,0,0,...). By Lemma
1.16, 0(¢) =X, 5,@ =w® +p=0ie., & € ker 6. We make few observations about ker 6.

Proposition 1.19. (i) ker 0 is the principal ideal generated by &.
(ii) Ny (ker 6)™ = 0.
(iii) An element r = (ro,71,...) € ker 0 is a generator of ker 0 if and only if 1 € R*.

Proof. (i) Let x € ker 6. If we write z = &yo + pz1 with yo,z1 € W(R) then we notice that 6(z) =
pf(x1) = 0. Since O, has no p-torsion elements and W (R) is p-adically separated and complete,
we conclude that z; € ker 6. From this, if we are able to show that ker 6§ C (§,p) then we

can conclude ker § = (§) because then we can write a sequence x,—1 = &yp—1 + x, which
would give z = £(3°,, p"yn). Assume x = (29, Z1,...,Tp,...) € ker 6, then 0 = 0(z) = 33(()0) +

P2 neN, 12 Since v(0) = 400, then we conclude that v(:céo)) > 1 = vp(p). This also

implies that v(xg) > 1 = v(—p) = v(w). Therefore there exists by € R such that x = byww. Let b =
[bp] be the Teichmiiller lift of by to W (R). Then z—b§ = (xo, z1,...)—(bo,0,0,...)-(w,1,0,0,...) =
(1:05 T, - - ) - (bowv 68705 Oa .- ) = (330 - b0w7?/1,y27 .- ) = (05 Y1, Y2, .- ) = p(yllvyé’ . ) € pW(R)
with (y;)P = y;. Hence ker 6 = (&).

(ii) Let x € (ker 6)™ for every n € N. Then vg(%) > vgr(€") > n for every n € N where Z = 2 mod p.
From this we get T = 0 i.e., there exists y € W(R) such that x = py. Now, p(6(y)) = 0(x) = 0,
so 0(y) = 0 ie., y € ker . Replacing = by z/£"™ we have 0(x/&") = pO(y/£™) and therefore
y/&" € ker 0 for every n € N. Hence y € Ny (ker 6)". So we can write x = py = p(pz) = ---.
Since W(R) is p-adically separated, we get that x = 0.
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(iii) A general element r = (79,71, ...) € ker 6 has the form w = &-(sg, s1,...) = (w,1,...)(s0, S1,...) =
(wso, @Ps1 + sb,...), so 11 = wPs; + sf). Hence r1 € R* if and only if sp € R*, and this final
unit condition is equivalent to the multiplier (s, s1,...) being a unit in W (R), which amounts to

r being a principal generator of ker 6.
[ |

Ezample 1.20. Using the criteria in Proposition 1.19 (iii) and from the proof of Lemma 1.15 we see
that the element € — 1 € ker 6 is a generator when p = 2 whereas for p > 2 this is not true since
v(e) =p/p—1> 0 for all p.

We recall that Ko = Frac W(k) = W(k)[1/p]. Let W(R)[1/p] = Ko @wx) W(R) and therefore
W(R) — W(R)[1/p] by sending x — 1 ® x. Since

R)[1/p] = U W(R ITH}W(R)p "
the homomorphism 6 : W(R) — Oc,, extends to the homomorphism 6g : W(R)[1/p] — Cg which is
again surjective, continuous and G g-equivariant. Continuity of this extended map is obvious since for
any « € Cg it is enough to check the continuity at any p™x for some n € N but there does exist some
n € N such that p"z € Oc, . The rest follows from the continuity of the map 6 : W(R) — Oc,.. The
kernel of g : W(R)[1/p] — Ck is a principal ideal generated by &.

Corollary 1.21. For alln > 1, W(R) N (ker 6g)" = (ker 6)". Also, Np(ker )" = Nyp(ker Og)" = 0.

Proof. Tt is enough to prove the equality for n = 1, the rest follows by induction. But this holds
since W(R)/(ker 0) = Oc, has no nonzero p-torsion. Since any element of W(R)[1/p] admits a p-
power multiple in W(R), we conclude that N, (ker 6g)" = (Ny(ker 6)™)[1/p]. The rest follows from
Proposition 1.19. |

1.4 The rings Blg and Bgr

In this section we introduce Fontaine’s de Rham period ring.

Definition 1.22. The de Rham ring B:{R is defined as

Big = lUm W(R)[1/p]/(ker 0)" = lim W (R)[1/p]/(€)"

n
where the transition maps are Gx-equivariant. BJjy is &-adic completion of W (R)[1/p).

Since Bjy is é-adically separated i.e., by Corollary 1.21 N,&"W (R)[1/p] = 0, there is an injection
W(R) — W(R)[l/p] — Bjy as subrings. Bj; admits a Gk-action that is compatible with the
action on its subring W (R)[1/p]. The inverse limit BJ; maps G g-equivariantly onto each quotient
W(R)[1/p]/(ker )" via the evident natural map, and in particular for n = 1 the map g induces a
natural Gi-equivarint surjective map HCTR : B;R — Cg. Also we have ker QCTR NW(R) = ker 0, and
ker 013 N W (R)[1/p] = ker Og since 0 restricts to fg on the subring W (R)[1/p).

Proposition 1.23. The ring B;fR is a complete discrete valuation ring with the residue field Cg, and
any generator of ker g in W(R)[1/p] is a uniformizer of BIR. Moreover, the natural map B:{R —
W(R)[1/p]/(ker Og)™ is identified with the projection to the quotient modulo the n-th power of the
mazimal ideal for all n > 1.

Proof. ker g is a nonzero principal maximal ideal (with residue field Cr) in the domain W (R)[1/p].
For j > 1, the only ideals of W (R)[1/p]/(ker 0g)? are (ker 0g)/(ker g)’ where 0 < i < j, therefore it
is an artin local ring. In particular, an element of BdR is a unit if and only if it has nonzero image under
BCTR is a unit if and only if it has nonzero image under O(YR. In other words, the maximal ideal ker OIR
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consists of precisely the non-units, so B(J{R is a local ring. Consider a non-unit b € BérR, so its image
in each W(R)[1/p]/(ker 6g)? has the form b;¢ with b; uniquely determined modulo (ker 6g)’~!. In
particular, the residue classes b; mod (ker GQ)j ~1 are a compatible sequence and so define an element
YV € B with b = &b, By construction, ¥ is unique. Hence, the maximal ideal of BJ, has the principal
generator &, and £ is not a zero divisor in BdR. It now follows that for each j>1 the multlples & in BdR
are the elements sent to zero in the projection W(R)[1/p]/(ker 6g)?. In particular, BdR is -adically
separated, so it is a discrete valuation ring with uniformizer £. By construction of BdR, we know that
it is the inverse limit of its artinian quotients, hence it is a complete discrete valuation ring. |

Remark 1.24. There are at least two different topologies on B('IR,

(i) The topology of the discrete valuation ring, i.e., {-adic topology. This induces a discrete topology
on the residue field Cg.

(ii) There is a topological ring structure on W(R)[1/p| that induces the natural vg-adic topology
on the subring W(R). We can give the inverse limit topology to B;{R coming from the topology
induced on each quotient by the topology on W(R)[1/p]. This induces the natural topology on
its residue field Cg. In further discussions this topology would be named natural.

Below we mention some of the consequences of the topological ring structure on W (R)[1/p] from
Remark 1.24(ii). Details for this can be found in [BC09, Exer. 4.5.3].

(1) W(R) endowed with its product topology using the vg-adic topology on R is a closed topological
subring of W(R)[1/p]. Moreover, Ko = W (k)[1/p] C W(R)[1/p] is a closed subfield with its usual
p-adic topology.

(2) 0g : W(R)[1/p] — Ck is a continuous open map.

(3) The multiplication map & : W (R)[1/p] — W (R)[1/p] is a closed embedding so all ideals (ker 0g)’ =
EIW (R)[1/p] are closed.

(4) Give the quotient topology on each W (R)[1/p]/(ker 0g)’, the inverse limit topology on B makes
it a Hausdorff topological ring relative to which
The powers of the maximal ideal are closed;

b

)
)
(¢) The G-action on By is continous;
)
)

(a
(

W (R) is a closed subring (with its natural topology as subspace topology);

(d) The multiplication map by £ on B R is a closed embedding;
(e) The residue field Cg inherits its valuatlon topology as quotient topology.

5) This topology on B, is complete.
dR

Definition 1.25. The field of p-adic periods (or the de Rham period ring) is Bgr := Frac B;er =
Bar[1/€] equipped with its natural G x-action and G i-stable filtration via the Z-powers of the maximal
ideal of B(;FR.

The Frobenius automorphism ¢ of W(R)[1/p] does not naturally extend to Bj; since it does not
preserve ker Og; for example, ¢(§) = [@P] + p ¢ ker 6g. There is no natural Frobenius structure on
Bd+R Nonetheless, we do have a filtration via powers of the maximal ideal, and this is a Gi-stable
filtration. For any ¢ € Z, let Fll’BdR = deR for ¢« > 0 and for i < 0, FiliB;fR is the free BJ'R module

generated by &, i.e
Bl ifi=0
B¢ ifi#0.

Next, we record an important property of Bd+R.

Fil'Byg = {
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Proposition 1.26. The Ky-algebra Bd+R contains a unique copy of K as a subfield over Ko, and this
lifting from the residue field is compatible with the action of Gg,. Moreover, any extension K'/K
inside K with finite ramification index gets its valuation topology as the subspace topology from B(J{R.
In particular, K' is closed in B('fR if it is complete.

Proof. BSFR is a complete discrete valuation ring over Ky, and K is a subfield of the residue field Cx that
is separable and algebraic over Kj, it follows from Hensel’s Lemma [Mil08, Thm. 7.33] that K uniquely
lifts to a subfield over Ky in B;fR. The uniqueness ofthe lifting ensures that this is a Gx-equivariant
lifting.

Next, we take an algebraic extension K'/K(y with finite ramification index. We need to check that
K’ gets its valuation topology as the subspace topology. We recall that Bd+R only depends on Cg, so we

can construct it from the view of completion Ky = W (k)[1/p]. In particular, Bjy contains KoK’ over
K’ and from the natural topology on B(TR, the induced topology on I/(\o is the usual one. Therefore,
to check that the topology on K is as expected it suffices to replace K’ with0 KoK’ which we may
take as K (upon replacing k with k). In other words, we only need to show that K gets its valuation
topology as subspace topology.

B:{R is a topological Ky-algebra and the valuation topology on K is its product topology for a
Kp-basis. So, if we give K its valuation topology then the natural map K — B(J{R is continuous. To
see that this is an embedding it suffices to compare convergent sequences. The map HIR : B&LR — Cg
is continuous for Cx with its valuation topology. Since K — Cg continuously, we get that K — B(;FR
is an embedding. |

We state the following proposition without proof and some remarks about its consequences.

Proposition 1.27. For the homomorphism HIR : BCTR — Cg from a complete discrete valuation ring
to the residue field of characteristic 0, there exists a section s : Cx — B(;FR which is a homomorphism
of rings such that 0(s(c)) = ¢ for every c € Ck.

Remark 1.28. (i) The section s is not unique. The proof for this is non-trivial and uses axiom of
choice. There is no such s which is either continuous for the natural topology or G i-equivariant.

(ii) For K C Ck an algebraic closure of K inside Ck, there exists a unique continuous homomorphism
s : K — Bj; commuting with the action of G such that 6(s(a)) = a for every a € K. This
alongwith Proposition 1.26 helps us in viewing 0 : B;er — Cg as a homomorphism of K-algebras.

(iii) A theorem by Colmez [Fon94, §A2] says that K is dense in Bjp with the subspace topology
induced by the natural topology on BSFR. Notice that this subspace topology on K is not its
valuation topology.

1.5 The element t

In this section we construct an explicit element of Bgr which we call ¢. From Lemma 1.15 we know
that € € R is a unit given by €@ = 1,eM #£ 1 and (™) = ¢ [¢] — 1 € W(R) where [¢] is the
Teichmiiller representative of . Since 6([e] — 1) = £(® — 1 = 0, therefore [¢] — 1 € ker § = Fil' Byg.
This gives us that (—1)"*([e] — 1)"/n € W(R)[1/p]¢" and therefore

t:=logle] = Jio(—l)”ﬂw

n=1

_l’_
€ B

Proposition 1.29. The element t € Fil' By but t € Fil?Bar. Equivalently, t generates the mazimal
ideal of B&LR.
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Proof. Since ([e] —1)"/n € Fil! Bqg for every n > 1, we have that ¢t € Fil' Byr. Also, ([¢] — 1)"/n €
Fil2Bggr for every n > 2. So it is enough to show that [¢] — 1 ¢ Fil2Bgg. From the discussion above,
[e] — 1 € ker 6 i.c., there exists A € W(R) such that [¢] — 1 = A¢. Now [¢] — 1 € Fil?Bgg if and only
if O(\) # 0 ie., X € W(R)¢. So, if [e] — 1 ¢ W(R)&2, we will be done. To show this, we proceed
by contradiction. Assume that [¢] — 1 = A2 with A € W(R). We can write A = (Ao, A1,...) and
we have ¢ = (,1,0,0,...) so &2 = (w?,...). Therefore, \é2 = (A\pw?,...). On the other hand,
[e] =1 = (¢ —1,...). So we must have, ¢ — 1 = A\gw?. Now, v(Aw@?) = v(\) + 2v(w) > 2 ie.,
v(e —1) > 2. But from Lemma 1.15 we have v(e — 1) = p/p — 1 < 2 for p # 2. This is a contradiction.
Hence ¢ ¢ Fil? Byg for p # 2.

For p = 2 we notice that ¢2 = (?,0,...) in W(R) and for any A = (Ao, A1,...) € W(R) we
have A2 = (\ow?, M1, ...). However, for p = 2 we also have —1 = (1,1,...) € Zy = W(F2) since
—1=142-1 mod4,soe] -1=(¢—1,e—1,...)in W(R). Thus if [¢] — 1 were a W (R)-multiple
of ¢2 then € — 1 = \jw? for some A\; € R. So we get v(e — 1) > v(w?) = 4 but from Lemma 1.15, for
p = 2 we have v(e — 1) = 2. Therefore, we reach a contradiction in case p = 2. |

Note that ¢ = log[e] depends on our choice of ¢ i.e., on the choice of primitive p™-th roots of unity.
So if we make another choice ¢’ then & = & for a unique a € Z, using the natural Z,-module structure
on units in R. Hence by the continuity of the Teichmiiller map R — W/(R) relative to the vg-adic
topology on R we have [¢/] = [¢?] in W(R). Thus t' = log[e/] = log[e?]. For the natural topology on
Bjg, it can be shown that log[e?] = a - log[e]. So we get, ¢’ = at. In other words, the line Z,t in the
maximal ideal of B:R is intrinsic i.e., independent of the choice of ¢ and making a choice of Z,-basis
of this line is the same as making a choice of . Also, choosing ¢ is exactly a choice of Z,-basis of

Zp(1) = lim pyn (K). From Zy(1) = Zpt, the action of g € Gk is then given as

g(t) = log(gle]) = log([g(e)]) = log([eX9)]) = log([e]¥\9)) = x(g)t,

where x is the p-adic cyclotomic character. We conclude that Z,t is a canonical copy of Zp(1) as a
Gk-stable line in Bjz. We can also write Fil'Bqr = Bart® = Bqr (i) and Bqr = Bjy[1/t]. Then,

grBdR = @ grinR = @ FﬂinR/FﬂiJrleR

1€Z i€z
= D Bk (1)/tBix (i) = P Cr ().
€z i€Z

Proposition 1.30. grBqr = Bur = Cx(t,1/t) C Bur = Cx((1)).
Remark 1.31. We could choose a section s : Cx — BGJ{R to identify Cx with a subring of B:{R and then
Bar ~ Cg((t)). However, as pointed out earlier s would not be Gx-equivariant and continuous.

Now we discuss an important result for the G g-invariant elements of Bgg.
Proposition 1.32. Bfﬁf =K.

Proof. We clearly have K C BdGP{{ since K ¢ K C B:{R. Now to prove the equality, let 0 # b €
Bgf{(. Then there is an ¢ € Z such that b € Fil'Bqr but b ¢ Fil'T!Bgg. Let b be the image of b in
Fil' Bqr /Fil' ™! Bqr = Ck (7). From Tate-Sen Theorem A.13

K ifi=0
NGr
Creli)™ = {0 if i 0.

Since b € Cg (7)°% and b # 0, we have that ¢ = 0. Then be K C Bji. So we get that b — b = ok for
some k> 0, € BQ'R ie., b—b e Fil'Bgg for some i > 1. But b € B:R and b € K. So it is not possible
that b — b € Fil' Bgr unless b — b = 0. Hence we have ngf =K. [ |
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An inspection of the construction shows that B(J{R depends solely on Oc,. and not on the particular
p-adic field K C Oc¢, [1/p] = Ck whose algebraic closure is dense in Cx. More specifically, BCTR depends
functorially on Oc,., and the action of Aut(Oc, ) on B:{R via functoriality induces the action of G.
Hence, if K — K’ is a map of p-adic fields and we select a compatible embedding K — K’ of algebraic
closures then the induced map O¢,, — Oc,, induces a map B;ﬁL K= B;{R’ x that is equivariant relative
to the corresponding map of Galois groups G — Gg. In particular, if the induced map Cxg — Cg-
is an isomorphism then we have B;{R, K= B(J{R i (compatibly with the inclusion Gk — G) and the
same works for fraction fields i.e., Bqr,x = Bgr, k. We apply this in two different scenarios: K'/K a
finite extension and K’ = K'™. So B('IR and Bgr are naturally insensitive to replacing K with a finite
extension or with a completed maximal unramified extension. These changes are important in practice
while replacing G i with an open subgroup or Ik in the context of studying de Rham representations.

1.6 The ring Bes

One defect of BJy is that the Frobenius automorphism of W (R)[1/p] does not preserve ker fg, so there
is no natural Frobenius endomorphism of Bqr = Frac Bl = Bjz[1/t]. To remedy this defect, in this
section we will introduce another ring of periods, namely B.;s. From previous sections, we know that

W(R) —%— Oc,

l |

W(R)[1/p] —"— Ck.
with ker 8 = (€) where € = [@w] +p = (@, 1,0,0,...), € R such that w©® = —p.

Definition 1.33. (i) The module A%, is defined to be the divided power envelope of W (R) with

respect to ker 0 i.e., it is a Gg-stable W (R)-subalgebra in W(R)[1/p], A%, = W(R)[a™/m!],en
for every a € ker 0. We can also write A%, = W(R)[£"/n!],en-

cris

0

cris*

(ii) The ring Acris := lim | A% /p" AV is an abstract p-adic completion of A
The description of Agis is complicated and verifying even its basic properties requires a lot of
effort. So, we describe some of the properties of Agris and Agis without much explanation (some useful

techniques for studying Aeis are contained in [Fon82b] and [Fon94]).
Remark 1.34. (i) A%, is naturally a ring since for 7,,(£) = &™/m!,m € N we have v,,(€) - v (€) =

cris

(" (m + )l

(ii) AY, is a Z-flat domain.

(iii) The natural map A%, /p" A% . — Ais/p" Acris is an isomorphism for all n > 1.

cris cris

It can be shown that there exists a unique, continuous, injective and G g-equivariant map j : Acris —
BCTR such that the diagram

J
Acris I B(TR

T |

Alis —— W(R)[1/p]

cris

0

commutes. From the diagram above and injectivity of j, it is clear that A

Concretely, the image of Agys in BSFR is the subring of elements

— Agis as a subring.

{ Z an% | o, € W(R), vy, — 0 for the p-adic topology} (1.1)
n>0 )
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in which the infinite sums are taken with respect to the discretely valued topology on B(J{R. Agis 1S a
Zy-flat domain. The ring homomorphism 6 : W(R) — Oc,, can be extended to A%, and therefore to

cris?
Acris .

i\

Crls

CI‘lS ? O(C K*
L=
CI‘lS

Proposition 1.35. The Gg-action on Aeis is continuous for the p-adic topology. FEquivalently, for
any n > 1, the Gg-action on Aeis/(p") has open stabilizers.

Proof. [BC09, Prop. 9.1.2]. |
Proposition 1.36. The kernel of Ouis © Acris — Ocy s a divided power ideal, i.e., if a € Acyis such
that Ocris(a) = 0, then for all m € Nsg,a™/m! € Aqis and Oeis(a™/m!) = 0.

Proof. For a =Y anv,(€) € A%, we have

a™ é-n]n
ml Z H An n' ]n

sum over jp=n 7N )
n] 0
= Y e € A
sum over ]n—n n

Also, it is immediate that O.is(a”/m!) = 0. The case of As is obvious by continuity. |

By reducing mod p the image of Ois, we have a ring homomorphism s : Acris erts, Oc, —
O(CK/ pO(CK'

Proposition 1.37. The kernel ker Ouis = (ker Ocris,p) is a divided power ideal, i.e., for any a €
ker Ouis, we have that for all m € Nsg,a™/m! € Auis and Oeris(a™/m!) = 0.

Proof. For a € ker Ouis, we write a = x 4 Bp for some = € ker Ouis and S € Aeris. Then we have

— < ) m—k _ f: a* (5P)m_k.

m‘ m' = k! (m—k)!
Clearly, p¥/k! is divisible by p for any k > 1. Also, z¥/k! € Agis for every k > 1 and Oqis(2¥/k!) = 0
So, a™/m! € Agis and Ocpis(a™/m!) = Ouris(p™/m!) = 0. [ |

If @ € Aqis, @ can be written, though not in a unique way as, o = >, ap&"/nl,a, € W(R)
and a;, — 0 p-adically. From Section 1.5, we know that ¢t = >, (=1)"*!([e] — 1)"/n € BJ;. Since
[e] — 1 € ker 6, we have [¢] — 1 = b for some b € W(R). Then ([¢] — 1)"/n = (n — 1)!b",(£). Also
(n —1)! — 0 p-adically, therefore ¢t € Ayis.

Proposition 1.38. P~ € pAgis.

Proof. We only need to show that ([¢] — 1)P~! € pAais. [l =1 = (e —1,...) and (¢ — )" =

lir}rl (Cprtm — 1)P" where Cpr = £(") is a primitive p™-th root of unity. T =& — 1, so
m—-+0o0

1
(e = 1)) = p(xO) = p™ P _ .
(6= )" = () =y L s
Also, (e — 1)P71 = 7P7L. Since v(7P~!) = p = p - v(w), so we must have (¢ — 1)P~! = P, where u
is a unit in R. Now, ([g] — 1) ! = [@w?] a = (@)P-d = (£ —p)?-d = € -d mod pAuis. Since
= p(p — D!p(€) € pAais, we have that ([e] — 1)P~! € pAcs. So we conclude by looking at the
expression for ¢. |
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Definition 1.39. (i) Define the Gk-stable W (R)[1/p]-subalgebra B := Aeis[1/p] C Big.

cris

(ii) The crystalline period ring for K is the Gg-stable W(R)[1/p|-subalgebra, Bes := Bctis[l/t] _
Acris[1/1] inside By [1/t] = Bar.

Theorem 1.40. The natural Gg-equivariant map K ®p, Beis — Bar s injective, and if we give
K ®K, Beris the subspace filtration then the induced map between the associated graded algebras is an
isomorphism.

Proof. Proof of injectivity can be given by direct calculations based on [Fon&82b, Prop. 4.7]. We omit
the details here.

For the isomorphism property on associated graded objects, since t € Bers and Acis map onto
Oc, , we get the isomorphism result since grBqr = Bur has its graded components of dimension 1 over
grOBdR =C K- |

Frobenius endomorphism ¢ of Bys

0

First we examine how ¢ on W(R) acts on the subring A ;.

Lemma 1.41. The W(R)-subalgebra A%, C W(R)[1/p] is p-stable.

Proof. On W(R), the Frobenius map is given as ¢((a1,a1,...,an,...)) = (af,dl,...,ak,...). For
each b € W(R), ¢(b) = b” mod p, therefore (&) = &P + pn = p((p — 1)1p(€) + 1) with n € W(R)
and p(&™) = p"((p — 1)!p(€) +n)™. Since p™/m! € Z, for all m > 1, we have that ¢(y,(£)) =

(n+ (p — D (€))™ - p™/m! € A%, This shows that A%, is stable under the action of (. |

cris* cris

The endomorphism of A%, induced by ¢ on W(R)[1/p] extends uniquely to a continuous endomor-

phism of the p-adic completion Acis, and hence an endomorphism ¢ of Bctis = Auis[1/p] that extends
the Frobenius automorphism ¢ of the subring W (R)[1/p].

Lemma 1.42. ¢(t) = pt for t = log[e] as in Section 1.5.

Proof. We first recall that to prove t € Acs we showed that the summation 3,1 (—1)""1([e] — 1)"/n
initially defining ¢ in B;R actually made sense as a convergent sum in the p-adic topology of Acs. This
sum defines the element of A that “is” ¢ via the embedding Acs — B;fR. So we may use p-adic
continuity to compute

™= — 1) = 2P
o(t) = Z(_l)%l@([‘g]m _ Z(_l)n+1([]nl)
n=1 n=1

9

since ¢ on Agyis extends the usual Frobenius map on W(R). Thus ¢(t) = log[eP] = log[e]? = plog[e] =
pt. u

So we can extend ¢ uniquely to an endomorphism of Beis by setting ¢(1/t) = 1/pt. We mention a
theorem without proof. The original proof was omitted from [Fon94].

Theorem 1.43. The Frobenius endomorphism ¢ : Acris — Acris 15 njective. In particular, the induced
Frobenius endomorphism of Beis = Acris|[1/t] is injective.

Remark 1.44. The action of ¢ commutes with Gk i.e., for every g € G and b € Bis we have
©(g(b)) = g(p(b)).

Remark 1.45. We give Bs the subspace filtration via Bers — K ®k, Beis — Bgr i-e., for ¢ € Z,
define Fil'Buis = Beis N Fil'Bgr. One should be aware that the Frobenius operator on B does
not preserve the subspace filtration. The basic notion for this incompatibility is that ker 6 is not
stable by the Frobenius. More specifically, { = [w] + p is killed by 6 whereas ¢(§) = [@wP] + p is not

(0(p(€)) = (=p)P +p # 0), so & € Fil' By and ¢(&) ¢ Fil' Bys.
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1.7 The logarithm map

In this section we define a logarithm for the elements in (Fr R)* taking values in Bgg. The classical
G-equivariant homomorphism, the p-adic logarithm on log : Cx — Cg serves as our motivation.
Using the important fact log(zy) = logx + logy, we review the construction in classical case below.
Let z € Cg.

(a) For every z satisfying v(x — 1) > 1, set logz := >, (=1)""(z — 1)*/n.

(b) For every x € 1 + m¢,. = {z € Cx | v(z — 1) > 0}, there exists m € N such that v(zP" —1) > 1,
then we set log z := log(x?") /p™.

(c) Forz € Oc,,, then Z € k and T # 0. We have a decomposition = = [Z]a, where T € &, [z] € W (k)
and a € 1 +mc,. Then we set logz := loga.

(d) For any x € Cx with v(z) = %,7,5 € Z,s > 1, we have v(z®) = r = v(p") and 2°/p" =y € O .
We must also have, log(z®/p") = slogxz — rlogp = logy. So, to define logx for any x € Cg, it is
enough to define log, p. In particular, if take the convention of log, p = 0, then log, z := %log Y.

Employing similar ideas for (Fr R)* we would like to define a logarithm map taking values in BIR.
The important rule to note again is that log[zy| = log[z] + log[y]. From Proposition 1.14 we know that
Up=14+mp={ze€R|v@-1)>0}and U DU} ={r € R|v(x—1)>1}. We give the following
construction,

(a) First of all we define the logarithm for elements in Uj. Let x € Up, then the Teichmiiller
representative [z] = (2,0,0,...) € W(R). We define log[z] := 3, (—1)""!([z] — 1)"/n,x € U}.
The series above converges in Ais. This is indeed the case because, 6([z]—1) = 2O —landz € U &
or equivalently §([x] —1]) = 0. From Proposition 1.37, we have v, ([z] — 1) = ([z] — 1)"/n! € Acis.
So log[z] = 32, (=1)"* 1 (n — 1)1y, ([z] — 1) converges since (n — 1)! — 0 p-adically as n — oco.

(b) After defining logarithm on U}, we want to extend this uniquely to a map log. : Up — Bi.
Notice that for any = € UE, there exists m € N,m > 1 such that 2P € U}% ie, v(x—1) > 1.
From this we can easily define log[z] := (1/p™) log[?"] for some m large enough. This definition
is clearly independent of the choice of such an m.

(¢) Next we move on to R* = Ug. From Proposition 1.14 we have, Ur = % UE. For x € Ug, we
write © = xoa for 2o € k and z € U7, and define log[z] := log.;[a].

(d) At last we look at (Fr R)*. From discussions in Proposition 1.19 we know that @ € R given by
w® = —p and v(w) = 1. For z € (Fr R)* with v(z) = r/s, we must have z°/w” = y € Ug.
Also, the following relation must hold for log, log(z®/w") = slogx — rlogw. So, from this we
can define log[z| := (logly] 4+ rlog[w])/s and if we define log[w], we should be done. We have
[@] € W(R) € W(R)[1/p]. Note that 6([=]/(—p)) = —p/(=p) — 1 = 0 i.e., [@]|(—p) € ker 6.

Therefore,
0o = _ 1\» 400
@ — S _ "+1M — i +
log (_p) = n;l( 1) - ~ T 2 € Bir

is well defined. So we set log[w] := log([w]/(—p)) € Bjr. Hence we have the desired G-
equivariant logarithm map log : (Fr R)* — Bi.

Remark 1.46. For every g € G, we have gw = weX(9) | so g(log[w]) = log([gw]) = log[w] + x(9)t
where t = log[e].
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1.8 The ring B

In this section we introduce a yet another period ring called By. This ring would play an important
role while studying p-adic representations coming from elliptic curves over Q,. Also, we have more
structure on this ring compared to B.is as we shall see.

Definition 1.47. The ring Bs; is defined to be the sub Bgis-algebra of Bgr generated by log[w], i.e
Byt = Beyis|log[w]].

By is stable under the action of G and Gg,. Let Cuis and Cy denote the field of fractions of
Beis and By respectively. Both these fields are then stable under the action of Gx and Gg,. Also, the
Frobenius map ¢ on Beis extends to Ceis. Next, we show that infact Cg is not an algebraic extension

of Ccris-
Lemma 1.48. The element log[w]| is not contained in Ceyis.

Proof. Let B = ¢/p, then € and 8 are in Fil' Byr but not in Fil?Bar. Let S = W(R)[[8]] C Bjj be the
subring of power series Y, a, 8" with coefficients a,, € W(R). For each r € N, let Fil"S = SNFil"Byg,
then Fil"S is a principal ideal of S generated by 3°. We denote 6; : Fil'Bqr — Cx the map sending
Bl to B(a). Tt is obvious that 6;(Fil‘S) = Ocj - By description of Agis in (1.1), we see that Aeis C S
and hence Cepjs = Fr Aqis C Fr S. We will show that if o € S is not zero, then alog[w] ¢ S, which is
sufficient to claim the lemma.

Since S is separated by the p-adic topology, it suffices to show that if r € N and a € S — pS§,
then p"aloglw] ¢ S. If a € W(R) satisfying 0(a) € pOc,, then a € (p,§)W(R) and hence a € pS.
Therefore, one can find b; € W(R) such that §(b;) ¢ pOc, and a = A+ B with A = p(>g<p; bn")
and B = Y,,, b,f". Note that log[w] = — 3, f"/n. Suppose j > r is an integer such that p/ > i. If
pralog[w] € S, one has «a - SasoP 1B /n e S. Since - Yo 1A /1 € S, therefore

Ay 1B €FilP Bag, B- Y pi~ 1571 € Fil'"" +1Bp and ’B—anﬁ” € Fil'™’ 1 Byg.

n>p’ n>pJ n>i

Thus,
gi+v

bi € Fil't Byg N (S + Fil' P *1 Byr) = Fil't?’ § + Fil 7' +1 Byp.
Now, on one hand we have 6, (b3 /p) = 0(bi)/p ¢ Oc,; while on the other hand 0,4 pi (Fﬂi“‘ij +

Fili+?’ 1 B4r) = Oc,.. This gives us a contradiction, therefore p"a log[w] ¢ S which implies log[w] ¢
C’cris- u

Proposition 1.49. log[w] is transcendental over Ceyis.

Proof. Let log[w] be algebraic over Ceis and ¢+ c1. X +- - - +cq_1 X1 + X be its minimal polynomial.
For g € Gg,, we have g([w]/p) = ([@]/p)[e]X9 where x is the cyclotomic character. Therefore,
glog[w] = log[w] + x(g)t. Ceris is stable under the action of Gg,. So for g € Gg,, g(co + c1(log[w]) +
-+ cq_1(log[w])4t + (log[ww])¥) = 0. By uniqueness of the minimal polynomial for log[z] and
comparing the coefficients of (log[ww])?~! in the expression above and the minimal polynomial assumed
in the beginning, we get c4—1 = ¢g(cq—1) +d - x(g9)t. Let ¢ = g(cg—1) + d - log[w]. Then g(c) =
9(ca—1)+d-g(log[w]) = g(ca—1)+d(loglw]+x(9)t) = g(ca—1)+d-x(g9)t+d-log[w] = c4—1+d-log[w] =
Since prf ® = Ky, we have that ¢ € Ky C Beis. Therefore, log[ww]| = (¢ — ¢4—1)/d € Ceyis contradicting
Lemma 1.48. Hence log[w] is transcendental over Ceyis. |

As a consequence of this proposition we get,
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Theorem 1.50. The homomorphism of Beis-algebras

Bcris [.’L‘] B Bst

x — log [w]
is an isomorphism.
Theorem 1.51. (i) The Gk-equivariant map K @k, Bst — Bar sending A @ b +— A\b is injective.

(ii) (Cs)9% = Ko and therefore (B;IS) K = (Bgis) % = (Bg )% = K.

Proof. (i) Frac K ®g, Bais is a finite extension over Cqis. So log[w] is transcendental over Frac
K ®k, Bais. Therefore K ®, Bst = K @k, Bais[log[w]] = (K ®k, Beris)[log[w]]. Injection of
the map immediately follows from this since K ®g, Beris — Bar from Theorem 1.40 and also
log[w] € Bar but log[w] & Beris.

(ii) We know that W (R)%x = W(RGK) = W( ), W(R )[1/p])GK = Ko =W (k)[1/p] and W(R)[1/p] C

CI‘IS So, Koy C (B:;ls)GK - (BCHS) (B ) ( )GK - (BdR)GK = K. Since Ko C BgK7
from (i) the injection K ®g, Bq Or Bﬁ{( =K is poss1ble if and only if B§X = Ky. Now the
rest of the equalities are obv10us

The operators ¢ and N on Bg

Since ¢ is injective on Bgis by Theorem 1.43, we can canonically extend it to an endomorphism of
By by setting ¢(log[w]) = plog[w]|. From this it is immediate that ¢ commutes with the action of G.

Definition 1.52. The monodromy operator

N : Bst — Bsgt
Zb’f log[w *—>Zk‘bk log[ew])*~1
k=1

is the unique derivation such that N(log[w]) = 1.

Remark 1.53. Setting N (log[w|) = 1 is a matter of convention and adopted by Fontaine in [FOO0S];
some authors choose the convention to be N (log[w]) = —1.

From Theorem 1.50 we can now write,
Proposition 1.54. The sequence
0 — Beris — Ba —— By — 0
18 exact.
Proposition 1.55. The monodromy operator N satisfies
(i) gN = Ng for all g € Gk, .
(i) Ny =ppN.

Proof. Let b € Bg, b # 0 then we can write b = Y <<, bi(log[w])".
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(i) Let g € Gk,. On one hand we have
GV (B) = g( 3" kby(logl])) = 3 kby(logle] + x(g)t) ",
k=1 k=1

while on the other hand

N(g)) = N( 3 bulogl] + x(@))) = 3 kbi(logles] + x(g)0) .
k=0 k=1

Therefore gIN = Ng.

(ii) In this case
n

Ng®) = N(3_ o) (ploglal)t) = 3 kpbo(be) (logle]) ™,
k=0 k=1

whereas

o(VB)) = o3 kol ) = 3 k(b) (plogl])* .
k=1 k=1

Just by comparing the two expressions we get Ny = ppN.
[ |

Remark 1.56. In [BC09, §9.2] we find an abstract construction of By from Bes. To get the injection
of Bgis-algebras By — Bgr they make some choices. It has been made clear that while the injective
map may depend on some choices, the image of By inside Bqr and thereby the filtration structure on
By is not dependent on choices once we make the convention log,(p) = 0. So the construction yields

the same result as ours.



Chapter 2

Filtered (¢, N)-modules

In the next chapter we will study construction of functors Dgr, Deris and Dy, respectively from the
category of de Rham, crystalline and semistable p-adic Galois representations. These functors would
give us certain linear algebra objects which we discuss below.

2.1 Category of filtered vector spaces

Let K be any field.

Definition 2.1. Filg is defined as the category of finite dimensional K-vector spaces D equipped with
a decreasing filtration indexed by Z which is exhaustive and separated. This means

(i) Fil'D are sub K-vector spaces of D:;
(ii) Fil“™! ¢ Fil'D;
(iii) Fil'D = 0 for i > 0 and Fil'D = D for i < 0.

Morphism: For Dy, Dy € Filg, a morphism between them f : D; — Dy is a K-linear map such that
f(Fil'Dy) C Fil' Dy for every i € Z.

In the category Filg there are good functorial notions of kernel and cokernel of a map f: D; — Do
between objects, namely the usual K-linear kernel and cokernel endowed respectively with the subspace
filtration Fil*(ker f) := ker f NFil'D; C ker f and the quotient filtration Fil*(coker f) := (Fil’D; N
f(D1))/f(D1) C coker f. These have the expected universal properties but one should be careful that
Filg is an additive category but not an abelian category.

In Filx we have following three objects,

(a) If Dy and Dy are two objects in Filg, we define Dy ® Dy with

(1) D1 ® Dy = D1 ®k D3 as K-vector spaces;
(2) Fil'(D; ® Do) = Y. Fil"D; @k Fil2Ds.
i1+i2=1
(b) The unit object K[0] is K as a vector space with Fil'K[0] = K for 4 < 0 and Fil’K[0] = 0 for
i > 0. Canonically, D ® K[0] ~ K[0] ® D ~ D in Filg for all D.

(c) The dual object DV of D € Filg is defined as DV = Homp (D, K) as a K-vector space with
Fil'DY = (Fil~*H1 D)t ={f:D — K| f(z) =0 for every x € Fil="*1D}. The reason we use
Fil' "D rather than Fil™'D is to ensure that K[0]Y = K[0].

Ezample 2.2. The unit object K[0] is naturally self-dual in Filg, and there is a natural isomorphism
DY ® Dy ~ (D1 ® D3)Y in Filg induced by the usual K-linear isomorphism. Likewise we have the
usual double-duality isomorphism D ~ DYV in Filx and the evaluation isomorphism D @ DY — K|0]
is a map in Filg.

19
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For a map f : D1 — D5 in Filg there are two notions of “image” that are generally distinct in
Filg but have the same underlying space. We define the image of f to be f(D;1) C D2 with the
subspace filtration from Ds; define the coimage of f to be f(D;) with the quotient filtration from Ds.
Equivalently, coim f = Dy/ker f with the quotient filtration and im f = ker (Ds — coker f) with
the subspace filtration. There is a canonical map coim f — im f in Filg that is a linear bijection, and
it is generally not an isomorphism in Filg.

Definition 2.3. A morphism f: Dy — Dy in Filg is strict if the canonical map coim f — im f is an
isomorphism, which is to say that the quotient filtration and the subspace filtration on f(D;) coincide.

Definition 2.4. A short exact sequence in Filg is a sequence 0 — D' —%— D P, D" = 0 such that

(i) o and f are strict morphisms;
(ii) « is injective, f§ is surjective and «(D") = {z € D | f(x) = 0}.

Remark 2.5. There is a natural functor gr = gr® : Filx — Grg s to the category of finite-dimensional
graded K-vector spaces via gr(D) = @®;czFil'D/Fil'™'D. This functor is dimension preserving, and it
is exact in the sense that it carries short exact sequences in Filx to short exact sequences in Grg ;.
By choosing bases compatible with filtrations we can see that the functor gr is compatible with tensor
products in the sense that there is a natural isomorphism gr(D;) ® gr(D2) ~ gr(D ® D3) in Grg s for
any D1, Do € Filg, using the tensor product grading on the left side and the tensor product filtration
on D; ® Dy on the right side.

2.2 Category of (¢, N)-modules

Definition 2.6. A (¢, N)-module over Ky (or equivalently over k) is a Ky-vector space D equipped
with two maps
o, N:D—D

with following properties:
(i) ¢ is injective and semilinear with respect to the absolute Frobenius o on Kjy;
(ii) N is a Ky-linear map, called the monodromy map;
(iii) Ny = ppN.
Remark 2.7. The map ¢ : D — D is additive and ¢(Ad) = o(A)p(d) for every A\ € Ky and d € D.

In particular, a (¢, N)-module over Ky is a Ko-vector space. We consider the module D, =
Ky oDk, D where Ky is viewed as a Kp-module by the Frobenius ¢ : Ky — Ky. More explicitly, it
means that for any A\, u € Ko and z € D

AMp®x)=Au® 2z and,
A@ pr =o(p)A® x.
D, is a Ko-vector space, and if {e1,...,eq} is a basis of D over Ky, then {1®eq,...,1®eq} is a

basis of D, over Ky. Hence we have, dimg, D, = dimg,D. Also, giving a semilinear map ¢ : D — D
is equivalent to giving a linear map

®:D, — D
A®x — Ap(x).

This is indeed the case; looking at the composition of maps below makes it clear that equality holds
in each column of the last two rows,
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Ko®x, D 2 Ko @, D = D

A®@x — o\ @z —  a(AN)p(z)
pA®T o(poeN) @z —  a(p)o(Ne(z)
A@pur cN)@pz  +—  o(No(u)e(z).

Morphism: A morphism f : D1y — Dy between two (¢, N)-modules is a Kp-linear map commuting
with ¢ and N, i.e., if D1, Dy are two such modules with respective Frobenius and monodromy maps
given by o1, N1 and @9, No, then we must have fo1 = wof and fNy = Nof.

Remark 2.8. The category of (¢, N)-modules is the category of left modules over the non-commutative
ring generated by Ky, ¢ and N with relations given by

(i) For each A € Ko, pA = c(N)p and NA = AN;
(i) N¢ =peN.

Analogous to the category of left modules over a commutative ring with unity, we can define the
following objects in the category of (¢, N)-modules.

1. Tensor Product: There is a tensor product in this category given by D; ® Dy = Dy ®k, D2 as
Ky-vector spaces. The Frobenius semilinear structure is given by ¢(d; ® d2) = ¢1d1 ® pads and,
the monodromy structure is defined as N (d; ®ds) = N1dy ®da+dy @ Nads for all dy € Dy, dy € Ds.

2. Unit Object: Ky has a structure of (¢, N)-module with ¢ = ¢ and N = 0. Moreover for any such
(¢, N)-module D, Ko ® D =D ® Ky = D.

3. Dual Object: Assume that ¢ is bijective on D and dimg,D < +o0o. We may define the dual
object in this category as DV = Hom(D, Ky), the set of Ky-linear maps 1 : D — K{ such that

@V =0onoptand NV = —noN.

The definition of ¥ and NV above seems rather strange and we would like to give some motivation
for this. In the category of (y, N)-modules, it is natural to expect the usual Tensor-Hom adjunction.
A special case of that would be to expect the following bijection of sets where the Hom-sets are
homomorphisms are taken to be that of (¢, N)-modules and not just Ko-vector spaces,

Hom(D" ® D, Ky) —— Hom(D",Hom(D, K)) ~ Hom(DV,DV).

Since DY ® D is a (¢, N)-module and therefore for any f € Hom(DV ® D, Kj) such that f :
DY ® D — Ky with f(n® d) = n(d) we must have, fo @(n®d) = 0o f(n®d) where ¢ and o are
respective semilinear maps of DV ® D and K. Therefore ¢" onoy(d) = oon(d) and since ¢ is bijective
on D, ¢V on(d) =conop(d)ie., ¢(n) = o onop ! which matches with our definition above.

Similarly, for NV notice that N, = 0 for Ky, i.e., N o f(n®d) = Ng, on(d) = 0 for all n € DV
and d € D. Here N is the monodromy map of DV @ D. Also, No f(n®d) = foN(n®d) =
FINV(n)®@d+n® N(d)) = NV(n)(d) +no N(d) for all n € DV and d € D. From both these equalities
we recover, NV (n) = —no N. Please note that this is not a formal argument in any way. The definition
of ¢V and NV have been rigged so that we have bijection of sets as mentioned above.

Remark 2.9. In the argument above, we were working under the assumption that ¢ is bijective on
D and dimg,D < +4oo. It is obvious that these objects form a full-subcategory of the category of
(¢, N)-module over Kj. Also, this subcategory is an abelian category which is stable under tensor
product.
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2.3 Category of filtered (p, N)-modules

In previous sections we have studied two different categories with objects having respective structures
filtration and (¢, N), i.e., Frobenius and monodromy; here we combine both these structures on the
objects and define a new category of filtered (¢, N)-modules.

Definition 2.10. A filtered (¢, N)-module over K consists of a (¢, N)-module D over Ky and a filtration
on the K-vector space D = K ®g, D such that for any i € Z, Fil' Dk the sub K-vector spaces of Dy
satisfy

(i) Fil'"'Dg C Fil'Dg  (decreasing);
(ii) NiezFil'Dg =0 (separated);
(iii) UjezFil'Di = D¢ (exhaustive).

Morphism: A morphism f : D1 — Dy of filtered (¢, N)-modules is a morphism of (¢, N)-modules
such that the induced K-linear map fx : K ® D; — K ®k, D2 satisfies fx(Fil'Dy ) C Fil'Dyg for
every i € Z.

The filtered (¢, N)-modules over K form a category which we denote as MFg (¢, N). The full
subcategory of objects for which N = 0 is denoted by MF g (¢). MF g (¢, N) and MF g (p) are additive
categories but not abelian. This is illustrated with help of the following example.

Ezample 2.11. [Stal8, Example 0108] Let Dy, Dy € MF g (¢, N) with D; = Dy = Ky = K as K-vector
spaces and
- Dy, if i<0 i Do, if 1<0
i _ ) 7 _ ; =
Fil'D; = {0’ it >0 and Fil'Dy = {0’ i 0.

Consider the map idx : D1 — Do on the undeﬂying vector spaces. Set f := idx and observe that
f has trivial kernel, cokernel and f(Fil'D;) C Fil'Dy for all i € Z but f is not an ismorphism. Also
coim f = D while im f = Ds i.e., coim f % im f. As a consequence, MF (¢, N) is not an abelian
category.

Analogous to the category of (¢, N)-module over Ky, we can define following objects in MF g (¢, N).

1. Tensor Product: For (¢, N)-module Dy, Dy we have D1 ® Dy = D1 ®, D2 with ¢ and N as before
and the filtration on (D1 ®D2)K = K®K0 (D1®D2) = (K®K0 D1)®K (K®K0 DQ) = Dig®r Dok
given by

Fllz(DlK (=476 DQK) = Z FﬂilDlK XK Fili2D2K.

11+ia=1

2. Unit Object: Kpl0] can be viewed as a filtered (¢, N)-module with the underlying space Ky,
=0, N =0and (Ko[0])kx = K ®x, Ko = K with filtration

i [K,if i<o0
FﬂK‘{Q if i>0.
Then for any filtered (¢, N)-module D, we have Ky[0] ® D ~ D ® Ky[0] ~ D.

3. Dual Object: Assume that ¢ is bijective on D and dimg, D < +o0. We define the dual object DY
of D by (DV)g = K ® DV = (Dg)Y ~ Hom(Dg, K) and Fil'(DY) g = (Fil"" " D)t
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2.4 Newton and Hodge Numbers

Let D be a (¢, N)-module over Ky such that dimg,D < +oo and ¢ is bijective on D. We associate an
integer ty(D), the Newton number to D.

Definition 2.12. If D is a (¢, N)-module over Ky of dimension 1 such that ¢ is bijective, then set

where A\ € GL1(Ko) = K is the matrix of ¢ under some basis.

We should check that this number is well-defined and does not depend on the choice of . Indeed,
if dimg, = 1, then D = Kod for some 0 # d € D with ¢(d) = A\d for some X\ € Ky. ¢ is bijective and
therefore, A # 0. Let d’ = ad with a nonzero and a € Ko,d' € D such that o(d') = Nd' with X € K.
Observe that p(d') = ¢(ad) = o(a)p(d) = o(a)\d = (o(a)/a)Ad i.e., N = (o(a)/a)\. As o : Ky — Ky
is an automorphism, v(\) = v(\') € Z is independent of the choice of basis for D. Hence, ty(D) is
well-defined in case dimg,D = 1.

Definition 2.13. If D is a (¢, N)-module over Ky of dimension h such that ¢ is bijective, then let
{e1,...,en} be a basis of D over Ky, such that ¢(e;) = di<j<h Gijej. Set A= (aij)1<ij<n- Then

tn(D) = vp(det A).

Again, we need to check that ¢ty (D) is well-defined. Let {€],...,e),} be another basis for D. Write

90(6/) Zl<]<h ame with ep = 21<1<hpl<:z€ and 6 = 21<l<h q;i€. Set P = (pki)lgi,kgh,A/ =
(a zg)lémﬁh and Q = (¢j1)1<ji<n- Obviously, Q@ = P~ 1’ . Now,

h

h h h
oler) = 0( D prich) =D olpr)e(e;) =D > olpri)aj;e;
=1 =1 i=17=1
h
=2

=17

h
> o(pri)aijgjier =
1 k=1 =17

™M= L

h
Z P)A'Q)wier.

||M:

So A = o(P)A’P~! and therefore v,(det A) = v,(det o(P)A'P~1) = v,(det o(P)/ det P)+v,(det A") =
vp(o(det P)/det P) + vp(det A’) = vp(det A) since o(x)/z is a unit in W (k) = Ok, for all = # 0.

Now we give an alternative characterization of the Newton numbers for a (¢, N)-module via its top
exterior power. Let D is a (¢, N)-module with dimg, = h, then A"D is a one-dimensional Ko-vector
space. Moreover, if ¢ is bijective over D then it is bijective over APD. If {e1,...,en} a basis for D,
then e; A --- A e, is a basis for A"D. Writing ¢(e;) = > 1<j<p @ij for each i € {1,...,h} as before
and setting A = (a;;j)1<ij<n gives p(e1 A -+ Aey) = (det A)er A -+ A e,,. Therefore we have our next
definition.

Definition 2.14. If D is a (¢, N)-module over Ky of dimension h such that ¢ is bijective over D, then
set
ty(D) ==ty (A"D).

From the discussion above it is clear that both definitions for the Newton number coincide. Now we
study certain properties that Newton numbers satisfy.

Proposition 2.15. (i) Given a short exact sequence of (¢, N)-modules
0—D —D—D"—0,

we have ty (D) =tn(D') + ty(D").
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(ii) Let Dy, Dy be (¢, N)-modules , then
tn (D1 ® Do) = dimg, (D2) - ty(D1) 4+ dimg, (D7) - tn(D2).
In particular, ty(D") = 7 - dimg, (D) ~'tn (D) for each r > 1.
(iii) If D is a (¢, N)-module, then ty(DV) = —tn(D).

Proof. (i) Let {e1,...,ep} be abasis for D', and let A be the matrix for ¢ under this basis. Extend
this to a basis {e1,...,ep, €p11,...,e,} for D. Therefore, we will have {€p11,...,€,} as a basis
for D”. Let B be the matrix for ¢ p~ under this basis. Then the matrix for ¢p is given as

(5 5)

Clearly, det C' = det A-det B which gives, tn(D) = vy(det C) = vp(det A) +vy(det B) = tn(D') +
tn (D).

(ii) Let {e;}i<i<n, (resp. {fj}i<j<n,) be a basis for D; (resp. D3) and let A (resp. B) be the matrix
for ¢p, (resp. ¢p,) under this basis. Clearly, {e; ® f;}i<i<hi,1<j<h, is a basis for D; ® Do and
the matrix C for ¢p,gp, is given by C = A ® B. Since det C' = (det A)4™xoD2 . (det B)dimxo D1,
therefore ¢y (D1 ® D) = wvy(det C) = wvy((det A)4mxoD2) 4 oy ((det B)mxoD1) = dimp, Dy -
tn (D7) + dimg, Dy - tn(D2). The conclusion for ¢n(D®") follows immediately.

(iii) If the matrix for ¢p under the basis {e;}1<;<p, for D is given by A, then the matrix for ¢
under the basis {e}}1<;<p, for DV is given by o(A™!). Clearly, ty(DY) = vy(deto(A71)) =
vp(det A71) = —v,(det A) = —tn(D).

|

Next we discuss a classification theorem of Dieudonné-Manin [Man63] which would provide us with
a more concrete way of looking at Newton numbers.

Definition 2.16. Let k be a perfect field of characteristic p > 0, and let o : W (k) ~ W(k) be the
Frobenius automorphism lifting the p-power map on k. The Dieudonné ring of k is the associative
ring 9, = W(k)[.#, V] subject to the relations FY¥ = ¥.% = p, Fc = o(c).%, and ¢¥ = ¥ o(c) for
ce W(k).

This ring is a non-commutative ring when k # F, and is Zy[zy]/(zy — p) when k = F,. Also,
Pk[1/p] has a much simpler structure than Z: if we let Ko = W (k)[1/p] then Z[1/p] is the twisted
polynomial ring Ko[.#] in a variable .# satisfying the commutation relation .# ¢ = o(c¢).# for all ¢ € K.
Moreover, we observe that a left Zx-module is the same thing as a W (k)-module D equipped with a

o-semilinear endomorphism .% : D — D and a ¢~ '-semilinear endomorphism # : D — D such that
FYV =VF = [pp.

Definition 2.17. An isocrystal over Ky is a finite-dimensional Ky-vector space D equipped with a
bijective Frobenius-semilinear endomorphism ¢p : D — D.

The abelian category of isocrystals over K is denoted Modg,(¢), with evident notions of tensor
product and dual.

Ezample 2.18. Let Ko[p] = Z[1/p] (with ¢ = .% from Definition 2.16) be the twisted polynomial ring
satisfying pc = o(c)p for c € Ky. A class of isocrystals over Ky is given by the quotients

Dy s = Kolg]/(Kolpl(¢" — p?))

for any integers r > 0 and s (possibly < 0). The Frobenius structure on D, s is defined by left
multiplication by ¢. By a “divison algorithm” argument we see that D, s has finite dimension r over
Ky, and it is an isocrystal over K. Although it does not make sense to speak of eigenvalues for the
p-operator on D, ; when k # IF,, (since this operator is just semilinear rather than linear), it is good to
imagine that ¢ should have “eigenvalues” on D, , that are integral unit multiples of ps/7.
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Let k be an algebraic closure of k. For any isocrystal D over Ky we get an isocrystal over I?(‘)E =
W (k)[1/p] by scalar extension: D = K} @, D endowed with the bijective semilinear tensor-product
Frobenius structure ¢5(c ® d) = o(c) ® ¢p(d). The Dieudonné-Manin classification [Man63, II, §4.1]

describes the possibilities for D. A simpler proof could also be found in [DO12].

Theorem 2.19. For an algebraically closed field k of characteristic p > 0, the category Modg,(¢) of
isocrystals over Ko = W (k)[1/p] is semisimple (i.e., all objects are finite direct sums of simple objects
and all short exact sequences are split). Moreover, the simple objects are given upto isomorphism
(without repetition) by the isocrystals D, s in Example 2.18 with gcd(r,s) = 1.

This theorem says that if k& = k then the isomorphism classes of simple isocrystals over K are in
natural bijection with Q, where a rational number « expressed uniquely in reduced form s/r with r > 0
corresponds to D, ;. We use A, to denote D, ; this is called the simple object with pure slope o in
Modg, (¢) (when k = k).

For any perfect field k with characteristic p > 0 and any isocrystal D over Ky = W (k)[1/p], the
Dieudonné-Manin classification provide a unique decomposition of D= I?(‘)E ® K, D in the form

D =P D(a) (2.1)

aeQ

for subobjects D(a) ~ A having “pure slope a” (and D(a) = 0 for all but finitely many «). For

each o = s/r € Q in reduced form (with r > 0), the integer dim = D(a) = req is the number (with
0

multiplicity) of “eigenvalues” of ¢p with slope «.

~

Definition 2.20. The a € Q for which D(a) # 0 are the slopes of D, and dim = D(«a) is called the
0

multiplicity of this slope. We say that D is isoclinic (with slope ap) if D # 0 and D= B(ao) for some
ap € Q (i.e., D ~ Af, for some e > 1).

We discuss an example where we explicitly determine the slopes for some isocrystal over Kj.

Ezample 2.21. Let Ko = W (F,2)[1/p] with p =3 mod 4, and let i = /—1 € Ko. Let D = Kge1 @ Kpez
and define ¢p : D — D by the matrix
p—1 (p+1)i
(p+1)i —(p—1)i)"

That is we set ¢p(e1) = (p — 1)e1 + (p + 1)iez and pp(e2) = (p + 1)ie; — (p — 1)ea and extend ¢p
uniquely by Frobenius-semilinearity. The characteristic polynomial of the matrix for ¢p above, is
therefore X2 — 4p, so its roots are +2,/p. The p-adic valuation of these roots is 1/2. However if we
make a change of basis to €] = ej + ies and e, = ie; + ey then since the Frobenius of K takes i to —i
(as p =3 mod 4), we compute that pp(e]) = 2pe| and pp(eh) = 2€5. So in this new basis the matrix
for ¢p has eigenvalues 2 and 2p with respective p-adic valuations 0 and 1.

It is natural to guess that D has slopes {0, 1} or the single slope 1/2 with multiplicity 2. We will
check that the first of these two guesses is correct. By using the basis {€], €5} gives us an isomorphism
of D with a direct sum of two 1-dimensional object on which Frobenius acts (relative to a suitable
basis vector over Kj) via multiplicayion by 2p and and 2 respectively. Letting o denote the absolute
Frobenius automorphism of W (F,), the self-map of W (F,)* defined by u — o(u)/u is surjective by
Lemma 4.7. In particular, we can find ¢ € W (F,)* such that o(c)/c = 1/2, and over W (F,)[1/p] = @}‘;\H

we compute that ¢ fixes ce, and multiplies ce} by p. Thus, we get an isomorphism @@QI)D ~ A1BAg,
so the slopes are as claimed.

Although the Dieudonné-Manin classification does not extend to the case when k is not assumed
to be algebraically closed, the “slope decomposition” (2.1) into isoclinic parts does uniquely descend
[BCO09, 8.1.11, pg. 107]
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Proposition 2.22. Let D be an isocrystal over K.

(i) There exist a1 < ag < -+ < g with a; € Q for i € {1,2,...,s} called the slopes of ¢, and
p-stable Kg-vector subspaces D(«;) of D such that

D =P D(w).
i=1

—

Moreover, each K§* @k, D(a;) has a basis {e1,...,en} such that for each j € {1,2,...,m} there
exists \j € K with vy,(\j) = o and ¢(ej) = \je;.

(i) 32 o - dimg, D(ai) = tn(D).
=1

(iii) o -dimg,D(c;) € Z for each i € {1,2,...,s}.
Using the previous result, we can prove some properties for the monodromy operator N.
Proposition 2.23. If D is a (¢, N)-module such that dimg, < +oo and ¢ is bijective then
(i) N decreases slopes by 1, i.e., N(D(«)) C D(av — 1).
(ii) N is nilpotent.

Proof. (i) For D € MFg(p, N), consider the isoclinic decomposition D = @4ecqD () of the under-
lying isocrystal. By the definition of D(«), its scalar extension D(«) over Ky is spanned by
vectors v such that gp% (v) = p®v for s/r the reduced form of «, so

¢5(Nv) = p "Ny(v) = p* "Nu.
But (s—r)/r = a—1, s0 Nv € D(a—1). Hence, by descent from @1, we get N(D(«)) C D(a—1).

(ii) Let us suppose N is not nilpotent. Since N decreases slope by 1, from (i), let h be an integer such
that N*(D) = N™(D) for all m > h. Let D' = N"(D), so D’ is invariant by N. ¢ is bijective
on D and therefore p(D) = D. For m > h, we get D' = N"™(D) = N™(¢o(D)) = p"p(N™D) =
pm(D’) ie., D' is invariant under ¢. Therefore, ¢ and N are both surjective on the (¢, N)-
module D’. Let us choose a basis for D’ and let A and B be the respective matrices for ¢ and
N under this basis. We have the relation Ny = ppN which gives BA = pAo(B). Observe that
vp(det BA) = 1 + vp(det Ao(B)) which gives v,(det B) = 1 + vp(det B), a contradiction. Hence
N must be nilpotent.

[ |

Our next goal is to define Hodge number for filtered vector spaces. We denote by Filg, the category
of finite dimensional filtered K-vector spaces.

Definition 2.24. Suppose D € Filg is a finite dimensional K-vector space. If dimyg D = 1, define
ty(D) :=max{i € Z : Fil'D = D}.
Thus it is the integer i such that Fil’D = D and Fil'*! = 0.

Ezample 2.25. From Example 2.11, we can easily see that t5(D1x) = —1 while tg(Dox) = 0.

Similar to the Definition 2.14 for Newton number, we define Hodge number for higher dimensions.

Definition 2.26. Let D € Filg and dimg D = h, define
t(D) :=tgr(A"D)

where A"D is the top-exterior power of D equipped with the quotient filtration from D@D ®---® D (h
times).



2.4. Newton and Hodge Numbers 27

Now we want to give an alternative description of ¢t (D). For filtration Fil’'D (i € Z), we say that
there is a jump in the filtration at j-th position if FilVD # Fil/*'D. For a given filtration on D let
j1 < ja < -+ < js be the jumps. Also, in the filtration of the top exterior power there must only be
one jump. Since char K = 0 we have that A"D C ®"D, and the subspace filtration here coincides with
the quotient filtration on the top-exterior power. The filtration on the tensor product is given as

Fil'(@"D)= Y Fil"DegFil?D @k - @ Fil"D.
i14io+ +ip=1

Since there is only one jump in the filtration of the top exterior power, we are looking for largest
possible choices for i1, s, . . ., i such that Fil* D AFil2D A --- AFil*» D # 0. Also, since this product is
symmetric in all terms, we can arrange i,’s such that i; < iy < --. <4p. Since j; is the largest index for
a jump to occur in the filtration of D, this index could be “assigned” to as many i,’s as possible. We
can always choose a basis for Fil> D and extend it all the way down to Fil’* D. This makes sure that
we have exactly h basis vectors in the end. Now, we set iy, = tp_1 =+ = tp_q = js Where d = dimg D.
By doing this we are making sure that we have the maximum possible sum for 25}:1 i

Next, we extend the previous basis of Fil’s D to a basis for Fil’s=* D. So we can set ij,_g_1 = ip_q_2 =
oo = ip_gem = js—1 where m+dimgFilVs D = dimgFil¥s' D i.e., m = dimgFiVs—' D—dimgFil/s—1 D =
dim g (Fil’s=1 D/Fil’* D). Also note that Fil’s=1*1D = Fil’* D. So we have gr'D = Fil'D/Fil'*'D, i € Z
and gr'D # 0 precisely when i is a jump position. We can continue this process of extending the basis
all the way down to j; and “assigning” values to 4,’s. This would be an exhaustive process since there
are only finitely many jumps and hence we get the equality of following two finite sums.

h d
D ip =Y ji-dimggr’*D = i-dimggr'D
r=1 d=1 1€EZ

where the last sum is finite since gr'D = 0 if i € {j1, jo,..., s}

We know that, ¢ty (D) = max{i € Z : Fil' A D = A"D}. From the discussion above, such an i
would be an index such that Fil’(A"D) # 0 i.e., for largest possible i and i; < iy < --- < i, such that
S°h_ | =i,. From the above equality of sums, we conclude that

tu(D) =ty(N"kD) = i-dimggr’D. (2.2)
1€EZ

With this alternate description, we prove certain results for Hodge Numbers as in Proposition 2.15
Proposition 2.27. (i) Given a short exact sequence of filtered K -vector spaces
0—D —D—D"—0,
we have tg (D) =ty(D") + tg(D").
(ii) Let D1, Do € Filg, then
tg (D1 ® Do) = dimg (D2) - tg(D1) + dimg (D1) - tg(D2).
In particular, D®" = r - (dimg D)™ 'ty (D) for each r > 1.

(iii) If D is a filtered (¢, N)-module such that dimy,D < +oc and ¢ is bijective on D, then ty (DY) =
—tH(D).

Proof. (i) From the exact sequence we have an isomorphism of K-vector spaces D" ~ D/D’. The
filtration on D’ is the subspace filtration from D and the filtration on D" is the quotient filtration
from D. From this we get that, Fil'D"” = Fil'D/Fil’'D’ for all i € Z and therefore dimggr'D"” =
dimggr'D — dimggr'D’. Thus from (2.2), we get tg(D’) +ty(D") = ty(D).
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(i) We know that Fil’(D; ® Do) = D i tig=i F11“D1 ®x Fil2Dy. Let the jump positions for Dy (resp.
Dy) be j1 < jo < -+ < js (resp. mp < mg < -+ < my). So the jump positions for D1 ®x Do
would be j; +m1 < -+ < jo +mg < --- < js + my. Therefore, we have

s t
H(Dl XK D2 Z Z ]a + m[g dingrJa+m5 (Dl (4576 Dg)

Z dlngrﬁ' (D1 ®K D3).

Now we observe a simple fact, dingrj+m(D ®k D2) = (dimggr? D) - (dimggr™Ds) . Therefore,

(D1 ®k Da) = Z (j +m) - dimggr? Dy - dimggr™ Dy

Jjm,EZL
= Z] -dimggr’ Dy - Z dimggr™ Dy + Z m - dimggr™ Dy - Z dimggr’! Dy
JEZ meZ meZ JEZL

= dimg (Dy) - tg(Dy) + dimg (Dy) - tg(Dy).

(iii) From general theory about dual of vector spaces, we know that, /\hDIV< = ( AP DK)V. Therefore
by considering 1-dimensional case we have, ty(D),) = —ty(Dk).
|

2.5 Admissible filtered (¢, N)-modules

Let D be a filtered (¢, N)-module over Ko, we set t(D) =ty (D). A subobject D’ of D is a Ko-vector
subspace stable under ¢ and N and with filtration given by Fil'D’}, = D NFil'D.

Definition 2.28. A filtered (¢, N)-module D over K is called admissible if dimg,D < 400, ¢ is
bijective on D and

(i) ta(D) = tn(D);
(ii) For any subobject D' C D, ty(D') < ty(D’).
Remark 2.29. The additivity of ¢y and tg implies that condition (ii) in Definition 2.28 is equivalent

to tg(D") > tn(D"), for any quotient object D" of D. Indeed, since there is a 1-1 bijection between
subobjects and quotient objects of D € MF (¢, N) where the correspondence is easy to see

{subobjects of D} «— {quotient objects of D}
D'— D/D'

2
ker m «— D

where 7 : D — D”. Thus we have by additivity of ¢ty and ty that, tx(D) = tn(D') + ty(D/D’) and
tg(D) =ty (D) 4ty (D/D") with ty and ¢y being constant for D irrespective of the subobject D' C D
and the equivalence follows.

We denote by MF2d(p, N) the full subcategory of MF (o, N) consisting of admissible filtered
(¢, N)-modules. It turns out that MF3d(p, N) is an abelian category. Our next goal is to prove this
claim but first we note some results.

Proposition 2.30. Let D € MFg(p, N). Then D is admissible if and only if DV is admissible.

Proof. The claim easily follows from the remark made above and the fact that ¢ty (DY) = —ty (D) and
tny (DY) = —tn(D) and the additivity of Newton and Hodge numbers. |

Recall that Filg is the category of finite-dimensional filtered K-vector spaces.
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Lemma 2.31. If f : Dy — D3 is a bijective morphism in Filg, then ty(D1) < tg(D2) with equality if
and only if f is an isomorphism in Filk (i.e., it is a strict morphism).

Proof. We know that tz(D1) = tg(A"™ D) and tg(D2) = tg(A"2Dy). Tt is clear that if f is an
isomorphism in Filgx then the induced map f : AMD; — A" Dy is an isomorphism. Also, since f
is bijective, h1 = hy = h. Now the claim is that if the induced morphism f : A"Dy — APDy is an
isomorphism in Filg then f should be an isomorphism to begin with. Let us choose a basis {d;} for
Dy such that e; :== f(d;) for all 1 <4 < h is a basis for Dy. We can also assume that Fil’D; = D; and
Fil’Dy = Ds. Let i be the smallest positive integer such that Fil’D; o Fil'Ds. Since f(Fil’D;) C Fil’Dy
and f is injective, we get Fil’D; — Fil’D, is injective but not surjective. Let dimgFil’D; = d; and
dimgFil! Dy = dy with dy < dy. Now consider Fil“¢ A" D; = 0 but Fil*? A" D, # 0, since Fil’D; has less
than d vectors in its basis. Therefore, A"D; % A" Dy contratry to our assumption. Hence f : Dy — Dy
is an isomorphism. Now looking at f : A"D; — A"Dsy, we know that tz(A"Dy) < tg(A"Ds) and
equality holds if and only if f is an isomorphism in Filg if and only if f is an isomorphism in Filg. W

Using the lemma above, we prove the following proposition.

Proposition 2.32. If 0 - D' — D — D" — 0 is a short exact sequence in MF (o, N) and any two
of the three terms are admissible then so is the third.

Proof. If D is admissible then for any subobject D} of D', we may view D] as a subobject of D and
therefore ty (D)) < ty(D}). If in addition D” is admissible, then tg(D”) = tn(D") and therefore
tg(D") =tg(D) —ty(D") =tn(D) —tn(D") = tn(D’). Thus D’ is admissible if D and D" are.

Now let us assume that D’ and D are admissible. From the given exact sequence we get that 0 —
D"V — DV — D"V — 0 is exact. Now DV and D’V are admissible by Proposition 2.30. Now from the
conclusion above D"V is admissible and therefore D" is admissible.

Next suppose that D’ and D” are admissible. From the additivity of ¢y and tg it is clear that
tn(D) = tg(D). Now we have to show that ty(D;) < ty(D;) for any subobject Dy C D. Let

1 :=D'N Dy and give (D})k the subspace filtration from (D;)x which coincides with the one from
D). Let DY := D;/D} with the quotient filtration from (D{)x. Naturally, there is an injection
j: DY — D" =D/D"in MFg (e, N) but a priori it may not be strict (i.e., the quotient filtration from
(DY) may be finer than subspace filtration from D). We know that ¢tz (D]) < tn(D}) since D] is
a subobject of D'. Therefore, tg(D1) = tg(D)) + tg(D]) < tn(D]) + tg(D7). So we will be done if
tu (DY) <ty (DY).

Let j(DY) be the image of DY inside D”. DY — j(DY) is an isomorphism in the category Modg, (¢)
of isocrystals over Ky (but may not be as filtered spaces). Therefore ty (D7) = tn(j(DY)). So we
are reduced to proving that ¢y (DY) < tn(j(DY)). (DY) is also a subobject of D” and therefore
tu(7(DY)) < tn(j(DY)). From Lemma 2.31 for the bijective morphism j : D] — j(DY) C D" we have
that tg (DY) < ty(DY) with equality if and only if j is an isomorphism in MF g (¢, N). Thus we have
tg (DY) < tn(5(DY)) and therefore ty(D1) < tn(D1). Hence D is admissible and we are done. [ |

Now we are ready to prove that MF*}?((p, N) is an abelian category.

Theorem 2.33. Let f : D — D' be a map in MF3(¢, N). The map f is strict and ker f (resp.
coker f) is admissible with the subspace (resp. quotient) filtration. In particular, the object im f =~
coim f is admissible and MF3(p, N) is abelian.

Proof. Consider the maps in MF g (¢, N)
ker f < D — coim f — im f — D' — coker f

with coim f := D/ker f given quotient filtration. ker f has subspace filtration from D, im f has
subspace filtration from D’ and coker f has quotient filtration from D’. As modules coim f — im f
is a bijective morphism and by Lemma 2.31 we get t(coim f) < ty(im f) with equality if and only if
f is a strict morphism (i.e., coim f ~im f).
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Admissibility of D implies, ¢ty (coim f) < ty(coim f) and admissibility of D" implies, tg(im f) <
ty(im f). Putting it all together gives us tn(coim f) < tg(coim f) < tg(im f) < tnx(im f).
But coim f = im f is an isomorphism as (p, N)-modules i.e., ty(coim f) = ty(im f) and hence
tg(coim f) = tg(im f). So we get that f is a strict morphism or equivalently coim f = im f in
MF24(p, N). From the above argument it is also clear that tg(coim f) = ty(coim f) and since it is
a quotient object (of D) or a subobject(~ im f of D’), we conclude that coim f ~ im f is admissi-
ble. Now, from Proposition 2.32 we have the admissibility of ker f and coker f because of the exact

sequences,

0— ker f — D — coim f — 0,

0 — im f — D' — coker f — 0.

2.5.1 Tate’s Twist

We introduce a twisting operation on filtered (¢, N)-modules that, under the contravariant functors
Dp = Homg, (g, (-, B) (to be discussed in Chapter 3), corresponds to the operation V'~ V ®q, Qp(i)
on the Galois side for i € Z. Suppose B C Bgr is a Qp[G k]-subalgebra containing the canonical Z,(1)
(of which the two most important examples are Beis and Bg). For any basis ¢t of Z,(1), elements
of D' = Homg,(V (i), B) can be written as d’ = ¢'d for d € D := Homg,(V,B), so d € D' is
G -invariant if and only if d € D is Gg-invariant. Clearly d’ € Homg,(V, t’”B;{R) if and only if
d € Homg, (V, t’”HBIR). Since ¢t € Beis, where the Frobenius acts on ¢~% as multiplication by p~*, and
N(t) =0, so we give the following definition.

Definition 2.34. Let D € MFk (¢, N). For i € Z, let us define D(i) such that D(i) = D as a Ko-vector
space. Let Fil"(D(i))x = Fil"" D for every r € Z and where N’ and ¢’ on D(i) are given by N’ = N
and ¢’ = p~lp. D(i) is called the i-fold Tate twist of D. Clearly, D{(i) € MFk (¢, N).

Proposition 2.35. D is admissible if and only if D(i) is admissible.

Proof. By the decomposition in Proposition 2.22, let D = @©,coD() and D(i) = ©eqD(B) such
that D(«) (resp. D(f)) is nonzero for finitely many a’s (resp. ’s). We know that if there is d €
@1 ®k, D(a) and A € K such that ¢(d) = Ad then v,(A) = a. Now ¢(d) = A\d is equivalent to
plp(d) = p~iAd ie., ¢'(d) = Nd with X' = p~*A. Therefore, v,(8) = —i + v,(\). Hence tn(D(i() =
> 5=1 By - dimg,D(B5) = —ih + 325 a - dimg, D(a;) = tn(D) — ih.

For Hodge number we notice, tg(D(i)) = >, ez - dimggr"D(i). Also,

gr"D(i) = Fil"D{i) /FiI" "' D (i) = Fil' "D /Fil" "' D = gr" ™D
and dimggr" D(i) = dimger" ™ D. So,

ta (D) =Y (r+1i) - dimggr™D — > i - dimggr" D

r€Z r€Z
= Z s-dimggr®’D — 1 - Z dimggr®D =ty (D) — ih.
SEZL SEZL

These two computations hold for any D € MFg(p,N) and ¢ € Z. Hence we conclude that D is
admissible if and only if D(i) is admissible. |

2.6 Newton and Hodge Polygons

Let D be a filtered (¢, N)-module. We have defined the Newton number ¢y (D) and Hodge number
ty (D) in previous sections. There is a useful visualization tool for these invariants namely the Newton
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(h,tn (D))

slope a
v U1+ U2 Pe an

~

slope oy

Figure 2.1: A typical Newton polygon Py (D)

polygon Py (D) and Hodge polygon Py (D). By Dieudonné-Manin classification in Lemma 2.22; for
a nonzero isocrystal D over Ky has a unique decomposition D = @ycqD (), where D(a) is the part
of D of slope @« € Q. Suppose a1 < as < .-+ < ag are all a’s such that D(a) # 0. We write
v; = dimKOD(aj).

Definition 2.36. The Newton polygon Py(D) is the polygon with break points (0,0) and (vq + -+ +
vj,1v1 + - -+ aju;) for j € {1,2,...,s}. Thus the end point of Py (D) is just (h,tnx(D)). See Figure
2.1.

Remark 2.37. A nonzero isocrystal D over K is isoclinic of slope « if and only if Py (D) is a segment
with slope «, which is to say that D = K§" ®g, D is isoclinic of slope «.

Let i1 < iy < --- < i such that Fil¥ Dy /Fil“™ Dy # 0 and let h; = dimg (Fil¥ Dy /Fil“ T D)
for each j € {1,2,...,s}.

Definition 2.38. The Hodge Polygon Py(D) is the polygon with break points (0,0) and (h; +--- +
hj,ithi + - +i;h;) for j € {1,2,...,s}. Thus the end point of Py (D) is just (h,tg(D)). See Figure
2.2.

Remark 2.39. The formation of Py and Py is unchanged by the scalar extension Ko — I?OEH.

Observe that the admissibility condition of Definition 2.28 says that D is admissible if and only if
for all subobjects D’ C D, we have Py (D') < Py(D’) i.e., Py(D') lies above Py (D’). We now prove
an equivalent statement originally given by Fontaine.

Proposition 2.40. Let D € MFg () be a filtered (¢, N)-module such that dimg,D < 400 and ¢ is
bijective on D. The following two conditions are equivalent,

(i) For all subobjects D' C D, Py(D') < Pn(D') i.e., Py(D') lies above Py (D').

(ii) For all subobjects D' C D, the right most endpoint of Pn(D’) lies on or above the one for Py (D")
ie., ty(D') >ty (D).

Moreover, these properties hold for D € MFg () if and only if they hold for D = I?(‘)l\n ®K, D in
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(h,tr (D))

I hy + ho slope i,

~
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Figure 2.2: A typical Hodge polygon Py (D)

Proof. 1t is immediate that the first condition implies the second. For the converse, let us assume
that there is some subobject D' C D such that Py(D’) contains a point lying strictly below Pg(D’)
on the same vertical line. We seek to construct a subobject D” C D violating the second condition
Le., tn(D") < tg(D"). It must be that D’ # 0. Both polygons Py(D’) and Py (D') are convex with
common left endpoint (0,0), and by hypothesis the right endpoint of Py(D’) lies on or above that of
Py (D). So, there is some 0 < z¢ < dimD’ such that the line x = zp meets Py(D’) and Py (D’) at the
respective points (zo,yn) and (zo,yy) where yny < yg.

By small deformation of x¢ and continuity considerations, we can arrange that none of these two
points on x = xg are corner of their respective polygons and keep the condition of yy < yg. Therefore,
there is a well defined slope of the polygons at such points. Depending on which of the two slopes is
larger, by convexity we can move either forwards or backwards to get to the case when (xg,yy) is the
final point of the part of Py(D’) with some slope ag. We still have 0 < zp < dimg,D because the
left endpoint Py (D) and Py (D) is (0,0) and their respective right endpoints are (dimg, D, tn (D)) and
(dimg, D, tg (D)) where tn(D) >ty (D) by hypothesis on D.

Consider the isoclinic decomposition D= @aEQD( a)of D e MF (i) from Proposition 2.22. Let
D = @a<a0D( ) and endow D’& with the subspace filtration from Dy. So D' is a subobject of D in
MFg (o). By construction, Py(D') is the subset of Py (D) since it consists of all slopes upto ag. We
see that its right endpoint is therefore (zo, yN) which gives ¢ N(D ) = yn. Since D k has the subspace

filtration from Dy, the filtration jumps for D stay on or ahead of those of Dy for the first d1mﬁ D’

segments of the Hodge polygons. This means, PH(D ) lies on or above Py (D ) for0 <z < dlm@D’

Thus, ¢t (D) > yu > yn = tn(D'), contradicting our hypothesis about right endpoints of Newton and
Hodge polygons of all subobjects of D.

Finally, it remains to check that the scalar extension by Ky — I?él\“ does not affect whether or
not the equivalent properties (i) and (ii) hold. This is not immediately clear because D’ may have

subobjects that do not arise from subobject of D. When D satisfies these conditions in MF — Kun( ) then

so does D in MF g (¢) by Remark 2.39. Conversely, suppose D violates these conditions in MF un ()5
we would show the same for D in MFg (). The argument above gives us a slope g such that the
subobject A = Ba<aoD() of D has Newton polygon PN(A) that does not lie on or above the Hodge
polygon PH(A) But then A = @a<qoD() is a subobJect of D (with Ag given the subspace filtration
from D) such that A = Kém ®K, A as subobjects of D, so Py(A) = Py (A) does not lie on or above
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(2,1)

~

(0,0) 1 2

Figure 2.3: Hodge polygon of an elliptic curve

A

~

(0,0)

Figure 2.4: Newton polygon of an elliptic curve

Py(A) = Py(A). |

We now discuss an interesting case of elliptic curves with good reduction and draw the respective
Newton and Hodge polygons.

Example 2.41. Let E be an elliptic curve over K with good reduction, say with & the unique elliptic
scheme over Ok having generic fiber F and with & denoting its special fiber. Let D be the filtered (-
module over K associated to E, with its natural Frobenius structure and with Dy filtered. The object
Dy in Filg is the same for all F, a 2-dimensional K-vector space with gr’ and gr! each 1-dimensional,
so the Hodge polygon P (D) is the same for all E. See Figure 2.3

In contrast, the structure of D as an isocrystal depends on whether the reduction &y over k is
ordinary or supersingular. From [BBMS82, 2.5.6, 2.5.7, 3.3.7, 4.2.14] we see that Py(D) looks as
in Figure 2.4 where the solid diagram is for the ordinary case while the dashed diagram is for the
supersingular case. In particular, for all £ with good reduction we see that Py(D) lies on or above
Py (D) and their right endpoints coincide.

2.6.1 Trivial Filtration

Let D € MFg (¢, N) such that n = dimg,D > 1 and ¢ is bijective on D. We consider the special case
when the filtration structure is trivial, i.e., Fil'D = 0 (this can be achieved via Tate twist). Removing
the effect of the Tate twist at the start (i.e., assume Fil"D = D and Fil"™'D = 0 for some r), these
are the cases in which the Hodge polygon is a straight line. In this case by convexity and agreement
of both endpoints it follows that Py (D) = Py (D), so in terms of isoclinic decomposition there is only
one slope. Hence, without any hypotheses on dimyg D we must have N = 0 and ¢ : D ~ D with pure
slope 0.
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The subobjects are the p-stable subspaces, each of which has Hodge and Newton polygons that
coincide (as segments along z-axis). Hence, admissibility criterion is always satisfied. Also, there is
always a lattice A C D that is ¢-stable and on which ¢ acts as an automorphism.

To summarize, when K = Q, and the filtration structure is trivial, we are simply studying Q,-
isogeny classes of pairs (A, T) consisting of a lattice A over Z, and a linear automorphism 7" of A. In
other words, this is the study of GL,(Qj)-conjugacy classes of elements of GL,,(Zp).

2.7 Admissible filtered (¢, N)-modules of dimension 1

Let D € MFg(p, N) with dimg,D = 1 such that ¢ is bijective on D. We can write D = Kyd for some
d € D and ¢(d) = Ad for some A € K. N must be zero since N is nilpotent.
D = K ®k, D = Kd is 1-dimesional over K and there exists r € Z such that

i DK if i1<r
(2 _ Y —
FIIDK_{O, it Q>
Clearly, tn(D) = vp(A) and tg (D) = r. Therefore, D is admissible if and only if v,(A) = .
Conversely, given A\ € K, we can associate to it Dy € MF3d (o, N) of dimension 1 given by
Dy = Kp,p = Mo, N =0 and
1 DK if 4 S v ()\)
7 _ ’ p
ElDK{Q if i > u,(N).

Proposition 2.42. If \, X' € K[, then Dy ~ Dy if and only if there exists u € W (k)™ such that
N=X-ou)/u.

Proof. Let us assume f : Dy — Dy and for some d € Dy and d € Dy, we have o(d) = \d and
O'(d) = Nd for \,N € KJ. Now Dy = Dy if and only if d' = ud for some u € W(k)*. So,
Nd = ¢'(d) = o(ud) = o(u)p(d) = o(u)Ad = (o(u)/u)Ad’. Therefore Dy = Dy if and only
N = (o(u)/u)\. The important point to note here is that the underlying vector space for Dy and D)/
are the same which we can fix as Kj. |

In the special case of K = Qp, then Ko = Q, and ¢ = id. Therefore from Proposition 2.42 above,
D) ~ Dy if and only if A = .

2.8 Admissible filtered (¢, N)-modules of dimension 2

Let D € MFk (¢, N) such that dimg, D = 2 and ¢ is bijective. Then there exists a unique ¢ € Z such
that Fil' D = Dg and Fil'™' Dg # Dg. Replacing D with D(i) (Tate twist), we may assume that
i = 0. Now we consider 2 separate cases.

Case 1: Fil'Dy = 0.
This means the filtration is trivial. This case has already been discussed in Subsection 2.6.1.

Case 2: Fil'Dy # 0.
Then Fil' D = L is a 1-dimensional K-vector subspace of Dg. So, there exists a unique » > 1 such
that
Dk, if i<0
Fil'Dg ={L, if 1<i<r
0, if i>r

The Hodge polygon Pg (D) is shown in Figure 2.5.
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~

(0,0) 1 2

Figure 2.5: The Hodge polygon P (D)

A

(2, up(A1) +vp(A2))

(1, up(A1))

~

(0,0) 1 2

Figure 2.6: The Newton polygon Py (D)

For the rest of this section we assume that K = Q,. Then Ky = Q,,Dx = D,o = id and ¢ is
Qp-linear and bijective on D. Let P,(X) be the characteristic polynomial of ¢ on D. Then

P,(X)=X*+aX +b= (X —\)(X - \2)

for some a,b € Q, and Aj, Ay € Q,. We may assume that v,(\1) < v,(A2). Then the Newton polygon
Py (D) is shown in Figure 2.6 The admissibility condition implies that, v, (b) = vp(A1) +vp(A2) =7 >0
and vp(A1) > 0 which also gives that vy,(a) > 0.

Now we consider different cases for V.

N # 0 (The non-crystalline case) : We know that N is a nilpotent operator, so over the completed
maximal unramified extension W (F,)[1/p] the relation Ny = ppN and the Dieudonné-Manin classifi-
cation of Proposition 2.19 imply that there are two distinct slopes and they differ by 1. More precisely
this means, v,(A2) # vp(A1) and vy(A2) = vp(A1) + 1. Hence, P, cannot be irreducible over Q, which
means A1, A2 € Q).

Let us assume that v,(A;) = m. Then from above we have, m > 0 and r = 2m + 1. Now let ey
be an eigenvector for Mg, i.e., p(e2) = Agea. Let e; = N(eg), which is nonzero since N # 0. Using
Ny = ppN we see that \o/p is the eigenvalue of eigenvector e; of ¢. Therefore, Ay = pA;. We set
A1 = X and therefore Ay = pA. So we have D = Qpe1 ® Qpep with A € Z, (since v,(A) > 0) and
o(e1) = Aet, p(e2) = pAey with N(ey) =0, N(e2) = ey, i.e.,

[o] = <8 pO)\) and [N]= (8 (1)> )

Now we want to investigate what could L be. For this, we look at the admissibility condition
from definition 2.28. We have ty (D) = ty(D) and for any subobject D’ of D,ty(D’) < ty(D’). Let
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D" = Q,d for some d € D as we only need to check nontrivial subobjects of dimension 1. So let
d = ey + ey for some «, f € Q,. If D' is a subobject of D then it should be stable under ¢. For this
consider three different cases,

1. Assume o # 0,8 # 0. Then we should have p(D’) C D’ i.e., p(ae; + Bes) = y(aer + Pez) for
some v € Q,. Upon simplification and using the fact that {ei,es} form a basis of D, we get
v = A = pA which is not possible.

2. Assume o = 0,5 # 0. Then D’ = Qpes. But then D’ would not be stable under the action of N
since N(eg) =e; ¢ D'.

3. Assume =0, # 0. Then D’ = Qpe;. Clearly, p(aer) = ale; € D' and N(e1) =0 € D’. So,
D’ is a subobject of D.

So looking at D’ = Qpe; we have, ty(D') = v,(X) = m and,

n_ |7, ifL=D
b (D) = {0, otherwise.

Since r > m, the admissibility condition implies that ¢z (D") = 0 i.e., L can be any 1-dimenional
subspace of D except D' = Qpe;. So, there exists a unique o € @, such that L = Qp(ez + aey).

Now we look at the converse. Let A € Z, and o € Q,. We can associate a 2-dimensional filtered
(¢, N)-module D, ,, of Q, to the pair (A, ), where D) o ~ Qpe1 @ Qpez with p(e1) = Aey, p(e2) = pAes
and N(e1) = 0, N(e2) = ey and filtration given by,

' D q, if i <0
FillDA,a =1 (e2 + ael)Qp, ifl1<:< 2Up()\1) +1
0, otherwise

After choosing e; and ey we define ¢ and N such that we can easily write down FiliDA,a using the
discussion above. If we replace the initial choice of ey with a Q;—multiple then e; = N(eg) is scaled
in the same way and so « does not change. Thus, « is intrinsic to D) ,. Now we look an important
lemma towards classification of all modules of the type discussed above.

Lemma 2.43. Dy o ~ Dy o if and only if X\ = X and o = /.

Proof. By construction it is obvious that if given A and « there is a unique such D) ,. We need to show
the converse. Suppose Dy o = Qpe1 ® Qe and Dy o = Qpe) & Qpel, for some choice of e, ez, €], €5 and
o, N,¢', N' and the respective filtrations defined as before. Let,

f: D)\,a = Qpel S Qp€2 - Qpell @ Qpel2 = D)\’,a’
e1 — zel + yeh

eg — z€) + web,.

We know that ¢’ o f = fop and N' o f = fo N. This gives us, f(¢(e1)) = f(Ae1) = zAe] + yAeh and
O (f(e1)) = ¢'(xe] + yeh) = xNe| + ypNe,. Since both are equal, we have zA = z\ and Y\ = yp\.
Also, f(p(e2)) = f(Aea) = pzAe] + pwAel and @' (f(e2)) = ¢'(z€] + wehy) = zNe) + pwN'ely,. And again
since both are equal, we have pz\ = z)\ and pw\ = pw)' i.e., either 2 =0 and A = X or w = 0 and
pA = X. From the computations above, the only possibility that we get is y = 0,2 = 0 and A = V.
Now we also have, N'(f(e2)) = N'(weh) = we) and f(N(e2)) = f(e1) = xe}. And again we have equal
quatitites, which gives x = w. Since, Dy, o} =~ Dy q} as filtered (¢, N)-modules,restriction of f gives,

[i(er 4 ae)Q, —— (¢h + a'eh)Q,
e1 + aey — ze) + axel.

So, we must have ze| = B(e] + ae)) for some § € Q. This gives f = x and o = ' since x # 0. Hence,
we have D) o >~ Dy o if and only if A = N and o = o/. [ |
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Remark 2.44. D), is irreducible if and only if v,(A) > 0. Indeed, D), is not irreducible if and
only if there exists a nontrivial subobject of it in the category of admissible filtered (¢, N)-modules.
From above we see that the only candidate is D' = Qpe;. Now, D’ is admissible if and only if
tg(D") =tn(D') = vp(A). But tg(D") = 0. Hence D’ is admissible i.e., D) , is reducible if and only if
vp(A) = 0.

Next, we consider the 2-dimensional admissible filtered (y, NV)-modules which are reducible. From
Remark 2.44, necessarily A\ € Z;. In this case we have Fil’Dx = Dy, Fil'lDg = L # Dy and
Fil' Dy = 0 for i > 2 for v,(\) = 0 i.e., objects with Hodge-Tate weight (0,1) from Definition 3.19. We
recall that we made this assumption by applying Tate’s twist. It is clear that for each i € Z, we could
apply the Tate twist and get D) ,(i). Conversely, for any 2-dimensional reducible D € MF3(¢, N)
there is a unique i € Z such that Fil'Dg = Dg and Fil'"' Dy # Dg. By applying Tate twist, we may
reduce to the case of Hodge-Tate weight (0,1) and in such a situation D(—i) ~ D, , for some unique
A€ Z) and a € Qp from the Lemma 2.43. Hence we have a 1-1 correspondence as stated below.

Proposition 2.45. The map

set of isomorphism classes of @ 2-
7 x Z; X Qp — {dimensional reducible admissible ﬁltered}
(¢, N)-modules over Q, with N # 0

(4, A, ) — Dy o (3)
1s bijective.
N = 0 (The crystalline case): For any subobject D’ of D, due to admissibility condition, we need

to check that ty(D') < ty(D').

Lemma 2.46. Let a,b € Z, with v = vy(b) > 0 such that P,(X) = X?+aX +b is irreducible over Q,.
Set Dgp = Qper ® Qpea with p(e1) = ez, p(e2) = —bey —aex and N =0, i.e.,

[ﬂ:(? ‘b> and [N] = 0.

—a

Let the filtration be given by,

) Da,ba lfl < 0
Fil'Dyp = ¢ Qper, if1<i<r
0, otherwise.

Then Dgyp is admissible and irreducible.

Proof. We do a step-by-step verfication of each condition for admissibility. By description of D, it is
clear that dimg,Dgp = 2 < +00.

¢ is bijective on D, ;: For injection, let o, 8 € Q) such that ¢(ae; + fea) = 0 with aeq + Sea € Dy p.
By the action of ¢ as defined above and using the fact that {e1, ez} is a basis for D, we get b3 = 0
and o = af3. Since b # 0 (X2 4+ aX + b is irreducible), therefore 3 = 0 and o = 0. For surjection, again
let ae; + Bex € Dy, as before. Now let = § — ac/b and y = —a/b. From this it is immediate that
p(xer + yea) = aey + Pea. Hence, ¢ is bijective on Dgy,.

For Newton and Hodge numbers we know that tx(Dgp) = vp(b) and tg(Dgsp) = r. Therefore,
tN(DaJ)) = tH(Da,b)'

Next, we consider nontrivial subobjects of D,;. Let D' = Q,(ae; + Bez) with o, € Q,. We
consider different cases in which D’ could be a subobject of D, . Clearly, D’ is stable under N. For D’
to be a subobject of D, , it should be stable under ¢, i.e., ¢(D’) C D'. We see that, p(ae; + fez) =
aey + B(—be; — aey) = —bfe; + (o — af)es. Now,

(i) If @« =0 and 5 # 0. Then, ¢(Bez) = —bfe; — aflea € D' = Qpea.
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(ii) If @« # 0 and 8 = 0. Then, p(ae) = aes & D' = Qpe;.

(iii) If o # 0 and 8 # 0. Then, there must exist z € Q, such that —bfe; + (v — af)es = x(ae; + fea)
which is possible if and only if # # 0 and z? + az +b = 0. But then, = A\; or Ay and z ¢ Qp,
since X2 + aX + b is irreducible over Qp-

Thus, none of these cases are possible and therefore there are no nontrivial subobjects of D, ;. Hence,
D,y is admissible and irreducible. |

Lemma 2.47. Let A1, Ay € Zy, nonzero \y # Ag and vp(A1) < vp(A2). Let = vy(A1) + vp(A2). Set
Dg\l,)\g = Qpe1 @ Qpez with p(e1) = Aer, p(e2) = Agez and N =0, i.e.,

[@:(AOI AOQ) and [N] = 0.

Let the filtration be given by,

' DS\MQ, ifi <0
Fil'Dy \, =S (e1+e2)Qp, if1<i<r
0, otherwise.

Then Dy, x, s admissible. Moreover, it is irreducible if and only if vy(A1) > 0.

Proof. In this proof, we would again do a step-by-step verification as in previous lemma. Clearly,
dimKODSq,)\g =2 < 4o0.

Next, ¢ should be bijective on D3\1,A2‘ For injection, let «, 5 € Q, such that ae; + fes € Di/\h&}
and p(ae; + fez) = 0. From the action of ¢ it is straightforward that a = § = 0. For surjection,
again let ae; + PBes € Df\hA2 as before. Let © = a/A; and y = $/A2. From this it is obvious that,
o(zer + yea) = aey + Pey. Hence, ¢ is bijective on D/Al,)\Q-

Moving on to admissibility conditions, we have tn (D), ,,) = vp(A1) +vp(A2) =7 =ty (D}, ,)-

For any subobject D" of D} , we need to check that ty(D") <tn(D"). Let D" = Qp(cer + fea)
with a, 8 € @, be a nontrivial subobject of D} , . D" is stable under N. D" should be stable
under ¢ as well. Observe that, p(ce; + fez) € D" if and only if there is an = € Q, such that
p(aey + Bea) = z(aer + PBes) which gives a(A —x) = 0 and B(A2 — ) = 0. Now we consider different
situations,

(i) If « =0 and 8 # 0. Then x = A2 and D" is stable under .
(ii) If « #2 0 and f = 0. Then z = A\; and D" is stable under ¢.

(iii) If @ # 0 and § # 0. Then x = A\; = Ay. But this violates our assumption.

So we get that the only possibilities for D" are D" = Qpe; or D" = Q,es. By filtration on D’)\h)\2
the following holds,
mo_ )0, if D" # (e1 + 62)(@])
tH(D ) = {7“, if D = (61 + ez)Qp-

Clearly in (i) above tg(D") = 0 and tn(D") = vp(A2) and we know that ti(D”) = 0 < vp(A2) =
tn(D"). Moreover, D" is admissible if and only if v,(A2) = 0. Also, 0 < v,(A1) < vp(A2). Therefore,
vp(A1) = 0 which gives » = 0. But r > 1. So, it turns out that D” = Qpes is not admissible. In (ii)
we have tg(D") = 0 and ty(D") = vp(A1) and vp(A1) > 0. Therefore, D), ,, is admisible since both
nontrivial subobjects meet the admissibility conditions.

Moreover, D" = Qpe; is admissible if and only if v,(A1) = 0. Hence D} ,, is irreducible if and only
if v,(A1) > 0. m

Conversely, we have the following proposition.
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Proposition 2.48. Assume D is an admissible filtered (¢, N)-module over Q, of dimension 2 with
N = 0 such that Fil’D = D and Fil'D # D,0. Assume D is not a direct sum of two admissible
(¢, N)-modules of dimension 1. Then either D ~ Dy, for uniquely determined (a,b) or D ~ D)
for uniquely determined (A1, A2).

Proof. We are given D € MF2d(p, N) with

' Dk, ifi<0
Fil'Dg =< L, if1<i<r
0, if i > 7.

We write down the characteristic polynomial for ¢ which is P,(X) =X 2+ aX + b for some a,b € Q,.
The condition v,(b) = r =ty (D) = ty(D) implies that b € p"Z;. Now we have two different cases,

(i) P,(X) is irreducible. Then the roots of P,(X) are A1, A2 € Q, with v,(A\1) = vp(A2) = 7/2 > 0.
Since L is 1-dimensional, so we choose a basis vector e; for L. Also vy(a) = vp(A1 + A2) > 1/2
ie., a e pl/2 Zy, so we conclude that there are no nontrivial subobjects of D since any such
subobject would have its Newton number smaller than r/2 while its Hodge number would be 7.
Since L is stable under N trivially, and ¢tz (L) < ty(L), we conclude that L is not stable under
the action of ¢ because otherwise it would be a subobject of D. We set ey := ¢(e1) € L and so
we can fix a basis {ej,ea} for D. Now it easily follows that we are in the setting of lemma 2.46
and therefore, D ~ D, ; where a and b are uniquely determined by the characteristic polynomial
of ¢.

(ii) P,(X) is reducible. Let P,(X) = (X — A1)(X — Ag) for A1, A2 € Q) and vp(A2) > vp(A1) with
Up(A1) + vp(A2) =7 > 150 vp(A2) > 1.

First assume that A\; # A2. Let e and es be the corresponding eigenvectors respectively. For any
subobject D’ of D,

0, if D'#L
tH(D')Z{T ifD’jL.

In particular, tg(Qpei) > 0 which means v,(A1) > 0. By conditions on valuation on A; and A,
vp(A1) < 7. Since tn(Qpe1) = vp(A1), we conclude L # Qper. If L = Qpea, then tn(Qpez) =
vp(e2) > tg(Qpez) = 7, since L is a subobject of D. This is only possible if v,(A1) = 0 and
vp(A2) = r. But in this case D = Qpe; & Qpep is a direct sum of two admissible filtered (¢, N)-
modules contrary to our assumption. Therefore, L # Qpea2. After scaling e;’s we may assume that
L = (e1+e2)Qp. Now we observe that we are in the setting of Lemma 2.47. Therefore D ~ D}, .
Since A1, A9 are roots of characteristic polynomial of ¢, they are uniquely determined.

Next we assume that A\; = Ay = A. This means r = v,()). Since r > 0, r is even and X € pZ,.
© cannot be a scalar. Suppose on the contrary that it is, then since L is a subobject of D, it is
stable under ¢. But t5(L) =r > § = v,(\) = ty(L) violating the weak admissibility of D. This
gives us that A-eigenspace is 1-dimensional. We choose an eigenvector {e;} corresponding to A
and from the reasoning as in (i), a basis {e;,ea} for D with scaling such that L = (e1 + e2)Qp.

So the matrix for ¢ is
Al

Therefore, as before we get that D ~ D’)\h ), With uniquely determined A1 = Ag. The only differ-
ence is that D in this case would always be irreducible, since there are no admissible subobjects

of D.
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Remark 2.49. (i) In the first case of the proof above, we have classified the cases with irreducible P,

(iii)

(iv)

up to isomorphism in terms of the parameters (a,b) € plr/2] Ly, X pTZ; (subject to the condition
that b2 — 4a is a nonsquare in Q,). The filtration jumps for D are in degrees 0 and r. Removing
the effect of the initial Tate twist on these examples amounts to allowing the smaller of the two
distinct Hodge-Tate weights to be an arbitrary integer.

In the second case of the proof above, we may assume that L = (ae; + e2)Q, with a € Q-
However, a simple computation shows that for any two o, &’ € Q*, the admissible filtered (¢, N)-
module D with L = (ae; + e2)Q, and D’ with L = (¢/e1 + e2)Q, are isomorphic in MF g (¢, N).

In case A1 # A2, these modules are parametrized by unordered pairs of distinct nonzero A1, Ay € Z),
such that v,(A1) +vp(A2) =7 > 1.

In case A\ = Ao = A, the explicit description shows that up to isomorphism such examples are
completely determined by \ € p'/ QZ;. Note that we can remove the effect of the initial Tate twist
by allowing any A € Q) (in which case v, () € Z is the average of the two distinct Hodge-Tate
weights).

Also, in the second case of the proof above, L = Qe can only occur if v,(A1) = 0 and vy(A2) =7,
in which case it corresponds to D that is a direct sum of the 1-dimensional objects Qpe; and
L = Qpea, with these subobjects having respective filtration jumps in degrees 0 and 7.
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p-adic (GGalois representations

3.1 B-representations and regular G-rings

In this section we introduce the formalism needed to define the functors which establishes the equiva-
lence of categories between certain classes of p-adic representations and semilinear algebra objects. We
will elaborate on these notions in following sections.

3.1.1 B-representations

Let G be a topological group and B be a topological commutative ring equipped with a continuous
action of G compatible with the structure of the ring, i.e., for every g € G, b1,by € B we should have

g(b1 + b2) = g(b1) + g(b2) and g(b1b2) = g(b1)g(b2).

Definition 3.1. A B-representation X of G is a finitely generated B-module equipped with a semi-
linear and continuous action of G where semi-linear means that for every g € G,A € Band z,z1,22 € X
we have g(z1 + z2) = g(z1) + g(22) and g(Az) = g(N)g(z).

If G acts trivially on B, we just have a linear representation. If B = Q, with the p-adic topology,
we say that it is a p-adic representation.

Definition 3.2. A free B-representation of G is a B-representation such that the underlying B-module
is free.

Ezample 3.3. Let F C B¢ be a closed subfield and V be an F-representation of G. Let X = B®p V
be equipped with G-action given by g(A ® x) = g(\) ® g(z) where g € G, A € B,z € X. Then X is a
free B-representation.

Definition 3.4. A free B-representation X of G is trivial if,
(i) There exists a basis of X consisting of elements of X, or
(i) X ~ B? with the natural action of G.

Next, we discuss a classification of free B-representation of G with {e1,es,...,e4} as a basis. For
every g € G, let g(ej) = > 1<;<qaij(g)ei, then we have a map

a: G — GLy(B)

g +— (aij(9))1<ij<d-

For any g1,92 € G, we see that a(g192) = a(g1)g1(a(ge)) i.e., a is a 1-cochain in ZL (G, GL4(B)).
Moreover, if {e},e5,..., ey} is another basis and if P is the base change matrix, we write g(e}) =
Zlgiéda;j(g)e; and o/(g) = (a;j(g))lgi,j,gd- So we get o/(g) = P~ la(g)g(P). Therefore, a and

/

o are cohomologous to each other. Hence, the class of « in H. (G, GLg(B)) is independent of
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the choice of basis of X and we denote this chomology class by [X]. Conversely, given a 1-cocycle
a € 7L, (G,GLy(B)), there is a unique semi-linear action of G on X = B? such that for every g € G,

cont
d

g(ej) = > a;j(g)e; and [X] is the class of a. Hence we have the following proposition,
i=1

Proposition 3.5. Let d € N. The correspondence X —— [X| defines a bijection between the set of
equivalence classes of free B-representations of G of rank d and Hl (G, GL4(B)). Moreover, X is
trivial if and only if [X] is the distinguished point in H, (G, GL4(B)).

cont

3.1.2 (F,G)-regular rings

Let B be a (topological) ring and G a (topological) group acting (continuously) on B. Set E = B¢
and assume that it is a field. Let F' be a closed subfield of E. If B is a domain then the action of G
extends to C' = Frac B by g(b1/b2) = g(b1)/g(b2) for every g € G and by, by € B.

Definition 3.6. B is said to be (F, G)-regular if the following conditions hold,
(i) B is a domain.
(ii) BY = C¢.

(iii) If b € B — {0} such that its F-linear span F'b is G-stable i.e., for every g € G, there exists A\ € F
depending on g with g(b) = A\b, then b is a unit in B.

Remark 3.7. If B is a field then it is always (F, G)-regular.

Ezample 3.8. Let K be a p-adic field with a fixed algebraic closure K and let Cx = K. Let G =
Gk = Gal(K/K). Let B = Byt = ®nezCx(n) endowed with its natural Gx-action. Non-canonically,
B = Ckl[T,1/T] with G acting through the p-adic cyclotomic character x : Gx — Z, via g(3-an,T") =
> g(an)x(g)"T™. In this case, obviously we have C' = Cg(T'). We will show that Byt is (Qp, Gk )-
regular (with E = B¢ = K).

By the Tate-Sen Theorem A.13, BSp = ©nezCr(n)¢ = K. To show that C¢ is also equal to
K, consider the G g-equivariant inclusion of C' = Cx(T) into the formal Laurent series field Cx ((T))
equipped with its evident G-action. Its enough to show that Cx((T))® = K. The action of g € G on
a formal Laurent series Y ¢, T is given by g(>° ¢, T™) =3 g(cn)x(9)"T", so G-invariance amounts to
the condition ¢, € Cg(n)“ for all n € Z. Hence, by the Tate-Sen Theorem A.13 we get ¢, = 0 for
n#0and cy & K.

For condition (iii), if b € B — {0} spans a G g-stable Q,-line then G acts on the line Qb by some
character ¢ : Gxg — Q. It is a crucial fact that ¢ must be continuous (so it takes value in Zj).
Writing the Laurent polynomial b as b = Y ¢;T", we have ¥ (g)b = g(b) = >_ g(¢;i)x(g)"T", so for each
i we have (v ~"1x%)(g) - g(c;) = ¢; for all g € Gi. That is, each ¢; is Gg-invariant in Cx (1p~1x?). But
by the Tate-Sen Theorem A.13, for a Z;-valued continuous character 1 of G, if Cx (1) has a nonzero
G -invariant element then 7|/, has finite order. Hence, (¢)"1x*)|/, has finite order whenever ¢; # 0. It
follows that we cannot have ¢;, ¢;; # 0 for some i # i/, for taking the ratio of the associated finite-order
characters would give that Xi_i/ |1, has finite order, so x|, has finite order, but this is a contradiction
since y cuts out an infinitely ramified extension of K. It follows that there is atmost one ¢ such that
¢; # 0, and there is a nonzero ¢; since b # 0. Hence, b = ¢TI for some i and some ¢ € Ck,sobe B*.

Ezxample 3.9. From Remark 3.7, B = Bqp is trivially (Qp, G)-regular with G = Gk. Consider B = B(‘i"R
equipped with its natural action by G = G. In this case, the (Q,, G)-regularity fails since t € B spans
a G-stable Qp-line but t ¢ B*.

Let Repy(G) denote the category of continuous F-representations of G. This is an abelian category
with additional structures,

(a) Tensor product: If V1,V are F-representations of G, we set V) @ Vo = V1 @ V3 as F-vector spaces
and the action of G is given by g(vi ® v2) = g(v1) ® g(v2).
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(b) Unit representation: F' with the trivial G-action.

(¢) Dual representation: If V is an F-representation of G, we set VV = Homp(V, F') = {linear maps V —
F}, with the G-action given by (¢f)(v) = f(g7)(v).

With these additional structures, Repp(G) is a Tannakian category over F.

Definition 3.10. A category C’ is a strictly full sub-category of a category C if it is a full sub-category
and if X € C is isomorphic to an object of C’, then X € C'.

Definition 3.11. A sub-Tannakian category of Repy(G) is a strictly full subcategory C, such that
(i) The unit representation F' is an object of C.
(ii) If V € C and V' is a sub-representation of V, then V' and V/V" are all in C.
(iii) If V is an object in C, so is V.
(iv) If V4,V5 € C, then so are Vi @ V3 and V; @ Va.

Definition 3.12. Let V be an F-representation of G. V is said to be B-admissible if B @ V is a
trivial B-representation of G.

We now discuss the general construction of the functor that we mentioned in the beginning and
prove an important theorem which would be key in all that follows.

Let V be any F-representation of GG, then B @ V, equipped with the G-action by g(A ® z) =
g(\) ® g(x), is free B-representation of G. Let Dp(V) = (B®r V). Dg(V) could be seen as a functor
from Repy(G) to the category of E-vector spaces. We also get a map,

aviB®EDB(V)—>B®FV
AR T — Ax

ay is B-linear and commutes with the action of G, where G acts on B&gDpg(V) via g(A®z) = g(\) @z.
Theorem 3.13. Assume B is (F,G)-regular. Then,

(i) For any F-representation V of G, the map avy is injective and dimgDp (V) < dimpV. Moreover,

the following are equivalent,

(a) dimgDp(V) = dimpV.
(b) ay is an isomorphism.
(¢) V is B-admissible.

(ii) Let Rep2(G) be the full subcategory of Repp(G) consisting of the representations V which are
B-admissible. The restriction of Dg to Rep2(Q) is an exact and faithful functor. In Rep2(G),
we have the following,

(a) Any subrepresentation or quotient of a B-admissible representation is B-admissible.

(b) For Vi and Vi € Rep?(Q), there is a natural isomorphism Dp(Vi) @ Dp(Va) ~ D (Vi @ V),
s0 Vi @p Va € RepR(G).
(¢) B-admissibility is preserved under the formation of exterior amd symmetric powers, and Dp

naturally commutes with both such constructions.

(d) For V € Rep?(G) the natural map, Dp(V) @ Dp(VY) ~ Dp(V ®p VV) — Dp(F) = E is
a perfect duality between Dp(V') and Dg(V'V).

(iii) Rep2(Q) is a sub-Tannakian category of Repp(G).
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Proof. First we prove the equivalence of (a) and (b) in (i). Let C' := Fr B. Since B is (F, G)-regular,
we have that C¢ = B¢ = E. For D¢(V) := (C ®r V)¢ we have the following commutative diagram,

B®pDp(V) —— BopV

|

B®gDc(V)

|

CRpDe(V) —— CRpV

where the vertical arrows are obviously injective. To prove injectitivity of the top arrow it suffices to
prove it for the bottom arrow. Hence, we can replace B with C i.e., we can reduce to the case when B
is a field. In this case, the injectivity amounts to the claim that ay carries an E-basis of Dp(V) to a
B-linearly independent set B ®p V', so it suffices to show that if z1,x2,...,2, € BQp V are E-linearly
independent and G-invariant then they are B-linearly independent. Assume on the contrary that there
is a nontrivial B-linear dependence relation among the x;’s and consider such a relation of minimal
length. We may assume it to have the form z, =, b;z; for some r > 2 since B is a field and all z;
are nonzero. Application of any g € G gives

zr = glzr) =Y g(bi)g(a:) = g(bi)zi.
i<r i<r
Thus, minimal length for the relation forces the equality of coefficients i.e., b; = g(b;) for all i < r. So
b; € B¢ = E for all i < r. Hence, we have a nontrivial E-linear dependence relation among 1, ..., ;.
This is a contradiction. Therefore we conclude that ay is indeed injective.

Extending scalars from B to C preserves injectivity, so C ® g Dp(V') is a C-subspace of C @p V.
Comparing C-dimensions then gives dimgDp(V) < dimpV. Now we will show that in case of equality
of dimensions, say with common dimension d, the map «y is an isomorphism. Let {e;} be an E-basis
of Dp(V) and let {v;} be an F-basis of V, so relative to these bases we can express ay using a d x d
matrix (b;;) over B. In other words, e; = Y b;; ® v;. The determinant det oy := det(b;;) € B is
nonzero due to the isomorphism property over C' = Fr B (as scalar extension of ay to a C-linear
injection between C-vector spaces with the same finite dimension d must be an isomorphism). We want
that det(ay) € B*, so then ay is an isomorphism over B. Since B is an (F, G)-regular ring, to show
that nonzero det(ay ) € B is a unit it suffices to show that it spans a G-stable F-line in B. The vectors
ej =2 bjj®v; € Dg(V) C B®pV are G-invariant, so passing to d-th exterior powers on ay gives that

Ad(av)(el VANRERIVAN ed) = det(bij)vl VANRAN V¥

is a G-invariant vector in B ®p A?V. But G acts on v A --- A vg by some character  : G — F*,
so G must act on det(b;;) € B — {0} through the F*-valued n~'. Hence, det(b;;) is invertible in B
and therefore ayy is an isomorphism. For the converse, if oy is an isomorphism, then dimgDp(V) =
dimpV = rankp(B @p V).

To prove the equivalence of (b) and (c) in (i), we observe that the condition V is B-admissible is
nothing but that there exists a B-basis {1, z2, ..., z,} of BQpV such that each x; is G-invariant. Since
ay(l ® x;) = x;, and oy is always injective, the condition is equivalent to ay being an isomorphism.

Next we move on to (ii). For any B-admissible V' we have a natural isomorphism B ® p Dg(V') ~
B®pV ,soDp is exact and faithful on the category Rep?(G). To show (a) i.e., the subrepresentations
and quotients of a B-admissible V' are B-admissible, consider a short exact sequence

0—V —V —V"—0

of F|G]-modules with B-admissible V. We need to show that V' and V" are B-admissible. From the
definition, Dp is left-exact, so we have a left-exact sequence of E-vector spaces,

0 — Dp(V') — Dp(V) — D(V")
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with dimgpDp(V) = d by B-admissibility of V, so d < dimgDg(V’) + dimgDg(V"). From (i), we also
know that the outer terms have respective E-dimension at most d’ = dimpV’ and d’ = dimpV"”. But
d = d' + d” from the given short exact sequence of F[G]-modules, so all these inequalities are in fact
equalities, and in particular V/ and V" are B-admissible.

For (b) let Vi and V3 in Repp(G) be B-admissible with d; = dimgV;, then there is an evident
natural map

DB(VI) RF DB(VQ) — (B ®pF V1) Qg (B Qp Vg) — BQ®p (V1 ® V3)
that is seen to be invariant under the G-action on the target, so we obtain a natural E-linear map
tvyv, - Dp(V1) ® Dp(V2) — Dp(Vi @ V),

with source having E-dimension d;ds (because of B-admissibility of V;’s) and target having E-dimension
at most dimp (V) ®p V) = did by using (i) for Vi @ p Va. Hence, if we can show that ty, v, is injective
then it would be forced to be an isomorphism and Vi ® p Vo would become B-admissible. To show that
tv, v, is injective it suffices to check injectivity after composing with the inclusion of Dp (Vi ®F Va) into
B ®r (Vi ®F V) and by construction this composite coincides with the composition of the injective
map

Dp(V1) @ Dp(V2) — B ®@g (Dp(V1) ® Dp(V2)) = (B®g Dp(V1)) @p (B ®p Dp(V2))

and the isomorphism ay; ®p ay, (using again that V; are B-admissible). Thus, we have that Dp
naturally commutes with the formation of tensor products.

Now we take a look at (c). As a special case of (b), we see that if V is B-admissible then so is V®"
for any 7 > 1 with Dg(V)®" ~ Dg(V®"). The quotient A"V of V& is therefore also B-admissible, and
there is an analogous map A"Dp (V) — Dp(A"V) that fits into the following commutative diagram

DB(V)®T = DB(V®T)

l !

AN'Dp(V) —— Dp(A"V)

in which the left arrow is canonically surjective and the right arrow is surjective because it is D applied
to a surjection between B-admissible representations. And therefore, we get that the bottom arrow
is also surjective. But the left and right terms on the bottom have the same dimension (since V' and
A"V are B-admissible with dimpV = dimgDpg(V)), so the bottom arrow is an isomorphism. The same
method works with symmetric powers in place of exterior powers.

The last point to prove is (d). For this, let V € Repk(G). We need to show that V'V is B-admissible
and the resulting natural pairing between Dg(V) and Dg(V"V) is perfect. For any fnite-dimensional
vector space W over a field with dimW = d > 1 there is a natural isomorphism

det(WY) @ AW ~ WY

defined by
(LA Ala) © (W2 A=+ Awg) = (w1 det(ls(wy))),

and this is equivariant for the naturally induced group actions in case W is a linear representation
space for a group. Hence, to show that V'V is a B-admissible F-linear representation space for G we
are reduced to proving B-admissibility for det(V"Y) = (det V)V. Since detV is B-admissible, we are
reduced to showing the 1-dimensional case.

Now assume that V is B-admissible with dimgV = 1, and let vy be an F-basis of V, so B-
admissibility gives that Dp(V') is 1-dimensional. Hence, Dp(V) = E(b® vg) for some nonzero b € B.
The isomorphism ay : B®g Dp(V) ~ BRrp V = B(1 ® vg) between free B-modules of rank 1 carries
the B-basis b®vg of the left side to b®wvg = b- (1®wvg) on the right side, so b € B*. The G-invariance of
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b®wg gives g(b) ®g(vg) = b®wvy and we have g(vg) = 1n(g)vo for some n(g) € F* (as V is a 1-dimensional
representation space of G over F, say with character 1), so n(g)g(b) = b. Thus, b/g(b) = n(g) € F*.
Letting vy be the dual basis of V'V, we can then see that D (V") contains the nonzero vector b=! @ vy,
so it is a nonzero space. The 1-dimensional V'V is therefore B-admissible, as required.

Now that we know that duality preserves B-admissibility in general, we fix a B-admissible V' and
aim to prove the perfectness of the pairing defined by

() :Dp(V)@pDp(VY) ~Dp(V@p V') — Dp(F) = E.

From dimpV = 1, this is immediate from the explicit description of Dg(V) and Dg(VV). In the
general case, since V and VV are both B-admissible, for any » > 1 we have natural isomorphisms
N'Dp(V) ~Dpg(A"V) and A"Dp(VV) ~Dp(A"VY) ~Dg((A"V)V) with respect to which the pairing

NgDp(V) @ NgDp(VY) — E

induced by (-,-)v on r-th exterior powers is identified with (-,-)sry. Since perfectness of a bilinear
pairing between finite-dimesnional vector spaces of the same dimension is equivalent to perfectness
of the induced bilinear pairing between their top exterior powers, by taking r = dimpV we see that
the perfectness of the pairing (-, -)y for the B-admissible V' is equivalent to prefectness of the pairing
associated to the B-admissible 1-dimensional det V. The 1-dimensional case was proved above, so this
settles our claim.

For (iii), we see that it is obvious from Definition 3.10 and (ii) above. |

3.2 de Rham representations

Now that we are comfortable with the formalism of (F,G)-regular rings and having understood the
category Filx, we move on to study the p-adic Galois representations. Here we set F' = Q, and
G = Gk and we look at de Rham representations. From Example 3.9 we have that Bggr is (Qp, Gk )-
regular. Let Dgr(V) := (Bar ®q, V)&K . From discussions leading to Theorem 3.13, we have an
injective map agr : Bqr ® Dgr(V) — Bar RqQ, V.

Definition 3.14. A p-adic representation V' of G is called de Rham if it is Bqr-admissible, equiva-
lently if agr is an isomorphism or if dimxDgr(V) = dimg, (V).

Example 3.15. For n € Z, Dqr(Qp(n)) is 1-dimensional with its unique filtration jump in degree —n
(i.e., gr~™ is nonzero).

For a p-adic representation V' of Gk, Dqr(V) is finite-dimensional filtered K-vector space, with
Fil'Dgr (V) = (Fil'Bar ®q, V)Cx for every i € Z. Let Repg:(GK) be the category of p-adic de Rham
representation of Gx. So we have a covariant functor,

DdR : Repgj(GK) — FIIK
V — (Bar ®g, V).

Next we prove the following imporant theorem,
Proposition 3.16. Dgr : Rep%i}(GK) — Filg is an exact, faithful and tensor functor.

Proof. First of all, we check for exactness. For an exact sequence 0 — V/ — V — V" — 0 of
de Rham representations, we always have exactness on left, 0 — Dgr (V') — Dgr(V) — Dgr(V")
while the exactness on the right is not clear a priori. But we know that dimgDgr (V') +dimgDgr (V") =
dimeV’ +dimg, V" = dimg,V = dimgDgr (V). Thus the sequence is in fact right exact. The functor
Dgr is obviously faithful since Dgg (V') # 0 whenever V' # 0.

Next, we need to check that if V;,V, are de Rham representations then Dgr (V1) ® x Dar(V2) =
Dgr (V1 @ Va) as filtered K-vector spaces. We have obvious injections V; — V; ® V5 and Vo — V; ® V3
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which naturally induce Dgr(V1) < Dgr (Vi ® V2) and Dgg(V2) < Dgr(Vi ® V2) respectively in Filg.
Therefore, we also have the injection Dgr (V1) @ k Dar(V2) < Dgr(Vi ® V2) in Filg. Now from Theorem
3.13 (i), it must be that dimK(DdR(‘/i) QK DdR(Vg)) = dime(Vl & ‘/2) > dimKDdR(‘/l (%9 VQ) Hence
Dgr (V1) @ Dgr(Va) —— Dgr(Vi @ Va) in Filg.

At last we need to check that the dual object is carried over by the functor i.e., for a de Rham
representation V, its dual V¥ = Homg, (V, Q) should be such that Dgr (V") ~ (Dqr(V))" as filtered
K-vector spaces. Now Dgr (V") = (Bgr ®q, Homg, (V, Qp))GK ~ (Homp,, (Bar ®q, V, Bgr))%x ~
Homp ((Bar ®q, V)9, K) = (Dar(V))". u

Corollary 3.17. For V € Repg, (Gr) andn € Z, V is de Rham if and only if V(n) is de Rham.

Proof. By Example 3.15, this follows from the tensor compatibility in Theorem 3.16 and the isomor-
phism V' ~ (V(n))(—n). [

Bgr has more structure than Byt and it turns out that de Rham representations are Hodge-Tate as
well.

Proposition 3.18. Let V be a p-adic de Rham representation, then V' is also a Hodge-Tate representa-
tion. Moreover, gr Dar(V) = Dur(V) (or dimg Dar(V) = Y ;cz dimggr! Dar (V) where gr' Dar (V) =
Fil' Dar (V) /Fil'™  Dgr (V). In general there is an injection gr Dar(V') < Dy (V) (or dimg Dar(V) <
Siez dimger' Dar(V) ) is an equality of Cr-vector spaces when V is de Rham.

Proof. For V a de Rham representation, the filtration on Dgg (V) is given as Fil'Dgg (V) = (FiliDdR(V)®@p
V)GK for every i € Z. We have a short exact sequence

0 — Fil'"' Bygg — Fil'Bqr — Cg (i) — 0.
On tensoring it with V', we get
0 — Fil""' Bgr — Fil'Bar — Ck (i) ®g, V — 0.
Taking the Gg-invariant gives,

0— Fﬂi—"_lDdR(V) — FﬂiDdR(V) — (CK(i)@)Qp)GK‘

Therefore,
gr'Dar(V) = Fil'Dar (V) /Fil' ™' Dar (V) — (Ck (i) ®g, V).
Hence,
@D er'Dar(V) = P(Cx (i) ®g, V)“* = (Bur @, V)X = Dar(V).
€L €L
Now,

> dimggr'Dar(V) = > dimgFil'Dar (V) — dimg Fil' ' Dgr (V).

icZ icZ
Since, Fil'Dgr (V) = Dar(V) for i < 0 and Fil'Dgg (V) = 0 for i >> 0, we have that 3, dim g Fil'Dagr (V) —
dimFil' ™ Dyr (V) = dimgDgr(V). Therefore we conclude Sicz dimggr'Dar(V) = dimgDar (V).
From the inclusion above, we also have that dimg,V > dimxDur(V) > >z dimggr'Dar(V) =
dimgDgr (V) = dimg, (V). So we get equality everywhere from which it follows that V' is indeed a

Hodge-Tate representation.
|

Definition 3.19. The Hodge-Tate weights of a de Rham representation V' are those ¢ for which the fil-
tration on Dgr (V) “jumps” from degree i to degree i+1, which is to say gr'Dgr (V) # 0. The multiplicity
of such an i as a Hodge-Tate weight is the K-dimension of the filtration jump, i.e, dimggr!(Dar(V).
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Since Dgr (Qp(n)) is a line with nontrivial gr=", we have that Q,(n) has Hodge-tate weight —n (with
multiplicity 1). Thus, sometimes it is more convenient to define Hodge-Tate weight using the same filtra-
tion condition (gr! # 0) applied to the contravariant functor Dz (V) = Dgr(V") = Homg, (¢ (V; Bar)
so as to negate things (so that Q,(n) acquires Hodge-Tate weight n instead).

An important refinement of Proposition 3.16 is that the de Rham comparison isomorphism is also
filtration-compatible.

Proposition 3.20. ForV € RepleE(GK), the G g -equivariant Bgr-linear comparison isomorphism
aqr : Bar ®k Dar(V) ~ Bar ® V
respects the filtrations and its inverse does too.

Proof. By construction agg is filtration-compatible, so we need to show that its inverse is filtration-
compatible as well. This statement is equivalent to showing that the induced Byr-linear map gr(agr)
on associated graded objects is an isomorphism. We know that gr(Bqr ® V') = Byt ® V. From Remark
2.5, we see that gr(Bgr @k Dqr(V)) = Bur QK gr Dgr(V). From Proposition 3.18, for the de Rham
representation V' of G, there is a natural isommorphism gr Dgr(V) ~ Dyr(V). In this manner,
gr(aggr) is naturally identified with the graded comparison morphism

ot : Bur QK DHT(V) — Bgr @V
that is a graded isomorphism since V' is Hodge-Tate. |

From the discussions at the end of the Section 1.5, we recall that the construction of BCTR as a
topological ring with G g-action only depends on Oc, endowed with its G g-action. Thus, replacing
K with a dicretely-valued complete subfield K’ C Cg has no effect on the construction (aside from
replacing G with the closed subgroup G+ within the isometric automorphism group of Cg). It
therefore makes sense to ask if the property of V € Rep@p(G k) being de Rham is insensitive to
replacing K with such a K'.

To avoid any confusion, we write Dar x (V) := (Bar ®g, V)%, so for a discretely-valued complete
extension K'/K inside of Cx we have Dyg r/(V) = (Bar ® V)x’. There is a natural map K’ ®
Dar,x (V) — Dar,x/(V) in Filg for all V' € Repg, (Gk) via the canonical embeddings of K and K’
into the same BJR.

Proposition 3.21. For any complete discretely-valued extension K'/K inside of Cx and any V €
Repg, (Gk), the natural map K'®Dar,kx (V) — Dar,x/(V) is an isomorphism in Fily. In particular,
V is de Rham as a G -representation if and only if V' is de Rham as a G -representation.

Proof. [BC09, Prop. 6.3.8]. [ |

Remark 3.22. In the 1-dimensional case, the Hodge-Tate and de Rham representations are equivalent.
Indeed, we know that de Rham representations are always Hodge-Tate (in any dimension), and for the
converse suppose that V is a 1-dimensional Hodge-Tate representation. Thus, it has some Hodge-Tate
weight 4, so if we replace V' with V(—i) (as we may without loss of generality since every Qp(n) is de
Rham) we may reduce to the case when the continuous character ¢ : Gg — Z, of V is Hodge-Tate
with Hodge-Tate weight 0. Hence, Cx(1))“% # 0, so by Tate-Sen Theorem A.13 v(If) is finite. By
choosing a sufficiently ramified finite extension K'/K we can thereby arrange that ¢(K’) = 1. Since
the de Rham property is insensitive to replacing K with W, we thereby reduce to the case of the
trivial character, which is de Rham.

The argument above can be used to show that the exact faithful tensor functor Dyg : Repﬁin: — Filg
is not fully faithful. This is a serious deficiency, akin to losing information between good reduction and
potentially good reduction. To improve on this situation we have already introduced rings B.s and
By with “finer structure”. Moreover, we will see that the functor De,is := Dp,,,, takes values in a richer
linear algebra category than filtered vector spaces.
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3.3 Crystalline and Semistable p-adic representations

In this section we are going to introduce crystlline and semistable p-adic Galois representations studying
which which is our central objective. As one might guess, the construction would include the ring Bis
and Bgt, and follow the general steps that we discussed for de Rham representations.

Proposition 3.23. The rings Beis and By are (Qp, Gk )-regqular which means that,
(i) Beris and By are domains.

(i) BSK = BSx = ¢5* = K,.

cris

(iii) If b € Beris (resp. Bgt), b # 0 such that Qp - b is stable under G then b is invertible in By
(resp. Bsgt).

Proof. (i) This is obvious since Beis C Bst C Bar.
(ii) This follows from Theorem 1.51.

(iii) We know that k is the residue field of R so W (R) contains W (k). Let K’ := I?(L)‘\“ =W(k)[1/p] C

W (R)[1/p]. Then Beis contains K’. Let K’ be the algebraic closure of K’ in Cg, then Bgg is a
K'-algebra. There exists some i € Z such that up to multiplication by ¢t=¢, b € BJR = Fil°Byr
and b ¢ Fil' Bar. Suppose g(b) = ¥(g)b where ¢(g9) € Q, for g € G. Let b = 6(b) € Cg
where 6 : Bqr — Cg, then Q,b ~ Q,(¢)) is a one dimensional Q,-subspace of Cg stable
under Gg. By the Tate-Sen Theorem A.13 ¢(Ix) is finite and b € P C BJ. So we have that
Y =b—b e Fil'Bgg, V & Fil'*1 By for some i > 1. Qpb' is also stable by Gk whose action is again
defined by 1. Now, the Gx-action on Q,0(t~") is defined by x 1) where x is the cyclotomic
character. But now x %) (If) is not finite, so the only possibility we have is &’ = 0i.e., b =b € K.

We are interested in the case when b € Bg;. Then we have b € K'NBgy;. But K'N By, = K’ C Beyis.
This is indeed the case because if not then assume K’ € M = K'N Bg. Then K’ C L C Frac(M)
such that L is a non-trivial finite extension of K’. Let Ly be the maximal unramified extension of
Ky inside L. Then Ly = K' = @1 and by (b) B$* = K’. But Frac(M)®% = L which contradicts
(b). So K’ N By, = K’ and therefore b € K’ € By, i.e., b is invertible in Beys.

For a p-adic representation V, let Deis(V) == (Beris ®q, V)&% and Dgi (V) := (Bgt ®q, V)Gx. By
the general formalism of Section 3.1, we have functors D¢ and Dg from the category Repr(G K)
defined respectively by V' ~ (Beis ®q, V)9K and V ~» (B ®q, V)FK . On Deis(V) and Dg (V) we
have a lot of structure because of the structure on rings Be,is and Bg. The map ¢ on B ® V is given
as (b ®wv) = p(b) ® v for b € Bes, v € V and the two maps ¢ and N on By ®q, V are defined as
p(b®v) =¢(b) ®@vand N(b®v) = N(b) ®v for b € By, v € V. These maps obviously commute with
the Gi-action respectively on Beyis ®q, V and Bst ®q, V where in the latter case we have Ny = ppN.
There are natural descending, exhaustive and separated filtration on K ® g, Deris(V') and K ® i, Dgt (V)
via their injection into Dgr(V). From [BC09, Exercise 7.4.10] and Theorem 1.43, we conclude that
Depis is naturally valued in the category MF g (). Also, from Definition 1.52 we conclude that Dy is
naturally valued in the category MF g (¢, N).

Deis(V') and Dg (V') are Kp-vector spaces and the maps

Qeris © Beris XKy Dcris(V) — Bis ®Qp |4
Ot © Bgt ®K0 Dst(V) — Byt ®Qp V

are always injective by Theorem 3.13.
crystalline representationssemistable representations

(i) A p-adic representation V of G is called crystalline if it is Beyis-admissible i.e., aeis above is an
isomorphism. The full subcategory of crystalline representations is denoted as Rep&f}‘f(G K)-
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(ii) A p-adic representation V of G is called semistable if it is Bg-admissible i.e., ag above is an
isomorphism. The full subcategory of semistable representations is denoted as Rep%p(G K)-

By Section 3.1 and Proposition 3.23, these full subcategories are stable under duality and tensor
products. Moreover, similar arguments as used earlier for Dgr show that the following covariant functors
are faithful, exact and naturally commute with the formation of tensor products and duals

Deris : Repg™(Gx) — MFg () (3.1)
Dyt : Repap (GK) - MFK(@? N) (32)

We can also write the contravariant functors,

Diis : Rep§, (Gr) — MFr(p) (3.3)
D;; : Repg (Gx) — MFg(p, N). (3.4)

where D¢, (V) = Homg, (] (V; Beis) forany V' € Rep?Qf;S(G ) and similarly D5 (V') = Homg, (g, (V; Bst)
for semistable representation V of G.

For V' a p-adic representation Dgis(V) is a Kp-vector subspace of Dy (V) and dimpgyDeis(V) <
dimg,Ds (V') < dimg, (V). From the (B, G)-regular ring formalism 3.13, we have

Proposition 3.24. (i) A p-adic representation V is crystalline if and only if dimp,Deis(V) =
dimg, V.

(ii) A p-adic representation V is semi-stable if and only if dimy, Ds (V') = dimg, (V).

Now we prove an important result relating different subcategories of representations we have studied
so far.

Proposition 3.25. (i) If V € Reprf;S(GK) then the natural map K @k, Deris(V) — Dar(V) s
an isomorphism in Filg. In particular, crystalline representations are de Rham. Moreover, the
Beiis-linear, Frobenius-compatible and G -equivariant crystalline comparison isomorphism

Qeris © Beris R K, Dcris(V) ~ Beris ®Qp |4
satisfies the property that acris i 15 a filtered isomorphism.

(i) If V € Rep%p(GK) then the natural map K ®pk, Dst(V) — Dar(V) is an isomorphism in
Filg. In particular, semistable representations are de Rham. Moreover, the By -linear, Frobenius-
compatible, N-compatible and G -equivariant semistable comparison isomorphism

ast : Bst ® K, DSt(V) ~ Byt ®Q, 4
satisfies the property that ag i s a filtered isomorphism.

(iii) Crystalline representations are semistable, and Deis(V) = Dgt(V') in MF g (o, N) for all V. If V
is semistable and Dg (V') has vanishing monodromy operator then V is crystalline.

Proof. (i) Let V be a crystalline p-adic representation of Gx. Since K ®g, Beris < Bar and [K :
Ko] < 400, by Theorem 1.40, we have a natural map K ®k, Deis(V) = K ®k, (Beis ®q,
V)GK - (K @K, (Bcris ®Qp V))GK - ((K QKo Bcris) ®Qp V)GK — (BdR ®Qp V>GK = DdR(V)' So
K ®K,Dais(V) is a subobject of Dgr (V') in Filg. Since V' is crystalline, dim gy Deis (V) = dimg, V/,
therefore dimyx K ®p¢) Deris(V) = dimg, V' > dimgDgr(V). Hence dimgDgr (V) = dimg,V, i.e.,
V' is de Rham. To show that the K-linear inverse ac_rils i 1s filtration-compatible too, or in other
words that the filtration-compatible ais i is a filtered ’isomorphism, it is equivalent to show that
gr(Qeris, i) 1s an isomorphism. Since K ® g, Deris(V) =~ Dar (V') and gr(K ®k, Beris) = gr Bar =
By, the method of the proof of Proposition 3.20 adapts to show that gr(ag) is identified with
the Hodge-Tate isomorphism for V.
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(ii) By replacing the crystalline representation in (i) by a semistable representation and Beis by B,
the same argument works. Therefore, we conclude that a semistable representation is de Rham
and oy g s a filtered isomorphism.

(iii) Since BY=% = Beis, we see that D (V)= = Deis(V) in MF g (¢p) for every V € Rep@p(GK).
In particular, if V' is crystalline then for dimension reasons the Ky-linear inclusion Deis(V) C
D (V') is an isomorphism in MF g (¢, N). Thus crystalline representations are semistable. If V' is
semistable but Dg; (V') has vanishing monodromy operator then Deis(V) = Dg (V') and this has

Ky-dimension dimg, V', so V' is crystalline.
|

To summarize:

crystalline = semistable = de Rham =— Hodge-Tate.

3.4 An example: Tate’s elliptic curve

In this section we explicitly construct a p-adic Galois representation using Tate’s curve. As we would see
later, this curve would play an imporatnt role in the classification of Galois representations of certain
type coming from elliptic curves over QQ,. For the remiander of this section we let K = Ky i.e., K is an
unramified extension of Q.

The analytic theory of elliptic curves over complex numbers says that any complex elliptic curve
has a parametrization C/A for some lattice A C C. One may suppose to do the same with K. However,
such an attempt fails because K has no non-trivial discrete subgroups. Tate used a different approach of
parametrization of elliptic curves in the complex case. For the lattice A, we may choose A = Z+77Z with
272 induces an isomorphism C/A — C*/¢*
where ¢” is the free multiplicative group generated by e(7). Now the analogous situation over K is much

T € CX. Setting ¢q := e?™7, the exponential map e : z — e

more promising, since K™ has lots of discrete subgroups. Since, the formulas defining the coefficients
in the complex-analytic case are given by power series in ¢, the same could be done for K. Indeed, it
turns out that we get a p-adic analytic isomorphism of K~ /q% with a certain curve E,. The results
could be made more precise in the following theorem which we state without proof. A detailed account
could be found in the book of Silverman [Sil94, V.3].

Theorem 3.26. Let K be a p-adic field with absolute value | -| and let ¢ € K* satisfying |q| < 1. Also
let
553(q) + Tss(q)

nkqn
sk(q) = —, a4(q) = —s3(q) and ag(q) = —————".
%:1 1—gq 12

(i) The series as(q) and ag(q) converge in K. Define the Tate curve E, by the equation Ey : y*+xy =
2® + as(q)x + ag(q)-
(ii) The Tate curve is an elliptic curve defined over K with discriminant A = q [] (1 — ¢™)?* and
n>1
j-invariant j(E,) = % + 744 + 196884 + - - - .

(iii) The series

X(u,q) = _dw dyY _N @)
u,q) = EE:Z g2 s1(q) and Y (u,q) = EE:Z 0 —gap s1(q)

converge for allu € K,u ¢ ¢*. They define a surjective homomorphism
a: K" — FEyK)

. {<X<u,q>7y<u,q>> if u q”
0 if ueq”

The kernel of « is ¢%.
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(iv) The map « in (iii) is compatible with the action of the Galois group G?/K in the sense that

a(g(g)u) = gla(u)) for every u € K" and g € G?/K. In particular for any algebraic extension

L/K, « induces an isomorphism
a: L /¢" — E,(L).

With the help of this theorem, we want to construct a p-adic representation. Let T}, F; be the usual
Tate module attached to the Tate curve E,. Let e =1, M £ 1, (et = () with ¢ € K be a
p-power compatible sequence of primitive p™-th roots of unity (as chosen in Section 1.5). Let 0 =g,
(q(”“))p = ¢ be another sequence with ¢ as chosen in the definition of E,. The isomorphism «
induces the following isomorphisms,

K" /¢" — E,(EK)
{z e K" /q"a" € ¢"} — E(K)p"].

An exact sequence: If z € E,[p"] and Z is any lift of 2 to K *, then there exists an integer N, ()
such that 2P" = qu@ and

Ey[p") — Z/p"Z
x — Ny(Z) mod p"Z

defines a surjective morphism. Indeed this map is well defined, for if 7 and Z3 are two different lifts
of x € E,[p"], then 77 = Tz¢™ for some m € Z. Now, since 71" = zoF ¢'?", therefore N, (77) =
Ny(z2) 4+ tp™, so they are equal modulo p"Z. We see that surjectivity is immediate from the definition.

The kernel of this map is pyn (K) i.e., p"-th roots of unity. So we have an exact sequence
0 — ppn(K) — Eqlp"] — Z/p"Z — 0
Passing to the limit and identifying lim p,n = Zp(1), we have an exact sequence
0—7Z,(1) — T,E;, — Z, — 0. (3.5)

Action of Ggk: Coming back to the morphism «, it is clear that {z € K" /¢% 2" € ¢} =
{(e™)i(g™),0 < i,j < p" — 1}, so a(e™),a(q™) form a basis of E,(K)[p™]. Therefore a basis
of T, F, is given by e := a(liinn M) and f = a(@n ¢™). Since the G -action is compatible with
isomorphisms above, we get

g(e) = g(alime™)) = a(g(lim ™)) = a(lim g(=™)) = a(lim(e)?)) = a(lim ™)) = x(g)e

pi—
n n n n n

9(f) = gla(lim ¢™)) = a(g(lim ¢™)) = a(lim g(¢"e™) = a(lim ¢ + ¢(g) lime™) = f + c(g)e

n n n n n

for some p-adic integer ¢(g). Hence the matrix for g acting on (e, f) is given by

(x(g) C(g)>
o 1)

p-adic periods of E;: To determine p-adic periods of V = Q, ®z, T, we look at the elements of
Dar(V) = (Bqr ® V)9%. We know that t = log([¢]) € Bqr, and g(t) = x(g)t. So an obvious choice for
basis element would be x := t"1®e € Dgqr (V) since g(t *®e) = g(t 1) @g(e) = x(9) 1 x(9)(t®e) = t®e
for every g € Gg. We know that e and f form a basis for T,F,, so we take y ;== a®e+1® f to be
another term which would linearly independent from x and hence form a basis of Dgr (V') together with
x. Also, y should be stable under the action of Gk i.e., for any g € Gg we must have g(y) = y. Since
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9(y) = g(a®e+10 f) = g(a)®g(e)+109(f) = g(a)@x(g9)e+1@(f+c(g)e) = (9(a)x(9)+c(g))®e+1 f,
therefore we must have that g(a)x(g) + c(g) = a.

Let § € R(Oc,. /pOc,.) such that § = (¢(9,¢M ...). So g(§) = (g(¢), 9(¢),...) = ¢c“¥). From
section 1.7 we know how to define u := log[q]. For the Gi-action we observe that for any g € G,
g(u) = g(log[q]) = log[g(q)] = log[Ge®9)] = log[q] + c(g)log[e] = u + c(g)t. And for a = —ut™', we see
that g(a)x(g) +c(g) = g(—ut1)x(g) + c(g) = —ut~! = a. Hence, a basis of Dgr(V') could be given by
{r=t"1®e,y=—ut"'®e+1® f}. Thus, we conclude that V is a de Rham representation.

Filtration on Dyg (V): For the filtration on Dgg (V'), we recall that Fil'Dgg (V) = (Fil' Bqr®V)“¥ with
Fil’Byr = BCTR and Fil'Bgr = B;Rti for ¢ # 0. From Proposition 1.29, we also know that ¢ generates
the maximal ideal of Bfy. Since O4r(u — log,(q)) = 0 we therefore conclude that u — log,(q) = bt
for some b € Blz. Now Fil’Dgg(V) is given by (Bjz ® V)% which we would like to determine
explicitly. Since t~! ¢ B;{R, we conclude that (B;“R ® V)9 could not be Kz or Ky. It is also clear
that (BérR ® V)& £ 0. From the remark in previous paragraph we see that y = — (bt + logp(q))t_1 ®
e+1®f=-bRe+1xf— logp(q)f1 ®e. Therefore y+log,(¢q)r has no term involving ¢ and therefore
(Bir ® V)¢ = (y +log,(q)x) K. Hence,

4 DdR(V) if i<0
Fil'Dgr(V) = { (y +log,(¢)z) K if i =0
0 if 4> 1.

Next, we show that V is semi-stable. For this it is enough to show that w and t are in B .
Clearly, t € BL,. ¢ Bf. Also, since ¢(© /p»(9) is a unit in Ok, we get that log[G/p"»?] converges

cris
in B, by the construction of logarithm map in Section 1.7. Now, since By = B [log[w]] writing

u = v,(q) log[w] + log[G/p*»(?] shows that u € Byf. Hence V is a semistable representation.

Action of ¢ and N on (Bg ® V)9K: For the Frobenius action on the basis is given as, p(z) =
p(tt@e)=p it @e=plrand p(y) = p(-ut ) @e+ (1)@ f = —pu(pt) ' @e+ 10 f =y.
Therefore the matrix of ¢ is given by
-1
_(p 0

For N, since t € Beis we get N(z) = 0. Also N(u) = vp(q) from above, therefore N(y) = v,(¢)x. The
matrix for N is then given as

If ¢ = —p then u = log[w] and N(u) = 1.
Kummer Theory: Let V € Repg, (GK) be an extension of @, by Q,(1), i.e., there is an exact sequence
0— Qp(l) —V—Q, —0.

All these extensions are classified by the cohomology group H* (K, Q,(1)), which is described by Kummer
Theory. Indeed, for every n > 1, there is an isomorphism 6, : K* /(K*)?" — HY(K, fpn). By passing
to the limit we get a map 0 : KX — H'(K,Z,(1)) because lim  ppm =~ Zy(1) after a choice of p-power
compatible sequence (™. By tensoring with Qyp, we get an isomorphism ¢ : Qp®zpf/(\X — HY(K, Qp(1))
which is defined as follows: if ¢ = ¢(® € Qp ®z, I/(;, choose a sequence ¢(™ such that (q("+1))p = ¢
and define ¢ = 6(q) by (¢™)9) = g(¢(™)/(¢™). Of course, this depends on the choice of ¢(™, but two
different choices give cohomologous cocycles.

Proposition 3.27. Every extension of Q, by Qp(1) is semistable.
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Proof. From the notations as described above, we get tc(g) = g(log[q]) — log[g] where § = (¢™). If

Jr

s and therefore the extension V' is

crystalline. In general, if ¢ € Q, ®z, K%, then log[g] will be in B, + v,(q) log[w] B, C BZ. Hence,

cris cris
the extension V is always semistable. |

q € Qp ®z, O, then the series defining u = log[q] converges in B

In Proposition 3.27, for such an extension V the K-vector space Dg; (V) will have a basis z =t ' ®e
and y = —log[d]t ' ® e+ 1® f so that ¢(x) = p~lz and ¢(y) = y. Moreover, the filtration on Dyr (V)
given by Fil’Dgr (V) = (y + log,(¢)z) K by taking the convention log,(p) = 0.

3.5 p-adic de Rham comparison theorem: Two examples

The goal of this section is to understand in special cases the following complicated looking theorem
(stated in its full generality).

Theorem 3.28. (Beilinson, [Beil2]) Let X/K be a scheme of finite type and separated. There is a
natural isomorphism

PdR - Hgt (X?, @p) ®Qp BdR :; HQLR(X/K) QK BdR

compatible with respective G -action on Hg, and Bar as well as respective filtrations on Hir and Bgg.
Moreover, if X has a semistable (resp. crystalline) model over Ok, we can replace Bar with the smaller
ring Bsy (resp. Beris)-

Proving this theorem would require a lot of work and we would not attempt to do so here. However,
we would illustrate this theorem via two examples for the case n = 1. We would not attempt to invoke
the general understanding of étale cohomology, but rather give a direct description in the cases we
consider. Here we only consider commutative group schemes. Note that for G a commutative group
scheme Hom(T,G, Zy(1)) ~ H (G, Z) where TG is the p-adic Tate module of G. Our objective is to
construct a duality pairing, Hi (X7, Qp)" x Hig(Xx) — Bar in two specific cases. Some basic facts
on Kéhler differentials and algebraic de Rham cohomology is part of Appendix B.

3.5.1 1-dimensional torus G,, i

For the first example, we look at the case of 1-dimesional torus G, x or by abuse of notation, we write

G- As a group, G,,(K) = K™ and as a scheme Gm.x = Spec K[T,T~1]. Multiplicative structure on
Gm, Kk is induced by the following morphism of rings

m: KT, T — K[X, X 1Y, Y1
T+— XY.

Lemma 3.29 (The Tate module). G,,(K) is an abelian group. The Tate module of G, is given as
LG = i Grn (O,

Proof. For &, (resp. €,11) primitive p"-th (resp. p"T!-th) root of unity, we have that e 11 = En le,
P P -
G (K)[p™ ] 0N G (K)[p"] is a morphism of multiplicative abelian groups for all n € N. Hence, we

could write the Tate module of G, as T,Gp, = lim Gy, (K)[p"] = lim G, (Ox)[p"]. Here, we can take
O points instead of K points because all points in G, (K)[p"] are roots of unity and therefore they
are obviously inside O. |

Lemma 3.30 (de Rham cohomology). For G,, = Spec K[T,T7!],

T
HoR(Gp) = K and H}iR(Gm)zK-‘%
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Proof. Before, we compute the de Rham cohomology group for G, x we need to know the module of
Kihler differentials for K[T,T~!]. For this, using the Definition B.2 it is obvious that

-1k = KT, T AT = O[T, T dT @0, K = Qp i1.7-1)/0, @0 K.

Now, using the Definition B.9, we want to compute HéR(Gm,K). Since G,, = Spec K[T,T~!], we look
at the de Rham complex K[T,T~!] 4, K[T,T7YdT. Also,

keT(Q}{[T’T_q/K - Q%{[T,T_l]/K)

im(Q?([T,Tfl]/K - Q%([T,Tfl]/K) .

WO (K[T.T7Y/K) = K and Hy(K([T,T7Y/K) =

We have that Q%[T’T,l]/K = 0. So the numerator in the expression of Hig (K [T, T~ /K)is K[T,T~']dT.

For the denominator, we observe that given any P'(T) = a_,, T+ - -+a_sT *+ao+a T+ - -+a,T" €
K|[T,T~'] we have that

a—m

_A4-m _an
-m+1

P(T) = T+ 4 a7 g + %T2 4ot T+ e KT, T~

n—+1

such that d(P(T)) = P'(T). Moreover, for P'(T) € K[T,T~!] such that a_; # 0 there is no P(T) €
K[T,T7!] such that d(P(T)) = P'(T)dT. Therefore in the quotient K[T,T~]/d(K[T,T~]) - dT we
are left with K - dT/T), i.e., H\(G,,) = K - dT/T. |

For Gy, k', we have H}, (G,, % Q) = Hom(T,Gm, Zp(1)) ®z, Qp. So, we want to look at the pairing
T,Gyy, X HéR(Gm) — Beis. Here we replace Bgr with Beis, reasons for which will become clear later
on. For remainder of this section we fix a choice of p-power compatible primitive p"-th roots of unity
i.e., a choice of {&,, }nen Where &, is primitive p"-th root of unity and ? 1= En-

Before we define the pairing map, we mention without proof the following lemma from [Fon82a,
Thm. 1]

Lemma 3.31. There exists an isomorphism

f:Ck(1) — Q® Tpﬂé?/ol(

En

where 1 @ {en}neny € Cx (1) is carried by f to 1 ® {ds—"}neN €Qp® TPQ%OF/OK'
Proposition 3.32 (A duality pairing). There exists a duality pairing bilinear map,

Y : TGy, x Hig(Gy) — Beris

(tentner &) =t

where t € Beis as defined in Section 1.5.

Proof. To properly define this pairing, we make the following observation. Let u, be a collection of
K-algebra maps defined as
up : O[T, T — Ok,
T — e,
where Of, is the ring of integers of the field K(e,) and ¢, is a primitive p™-th root of unity (chosen

above). Also, e? 11 = €p. From the map above and the discussion preceding Proposition B.6, we get an
Ok, -linear map between the module of Kahler differentials

Uy, 2 Ok, @ Qo105 — Qs j0x C Q%’)f/(’)x "]
a®dl — ade,.
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where 9}9? 0K [p"] denotes its p"-torsion elements. Since dT/T € QEK (1,7-1)/0y 18 the element of our

interest as it generates Hig(G,,), we observe that the image of 1 ® dT/T under u} is a p"-torsion
element .
deny1  En41dEnt _ depyy  den

p p
Ent1 Ent1 En+1 En

Equivalently, this means

(10 ) =us(10 0).

Now, de, /e, is a generator of Q}QK Joy and ut (1 ® dT/T) = dey /e, so we look at the submodule

I, = (1®dT/T)Ok, of Ok, ® QEK[T 7-1]/0, generated by 1@ dT/T. Therefore, we can draw a
commutative diagram

Unt1 o1 +1
Fn+1 E— QOF/OK [pn }

|, b

Fn = >Q}9?/(9K[Pn]

where the left vertical arrow is the restriction of Ok, ,, ® Q%?K TT-1/0Kx Ok, ® Q%?K (T.7-1]/0x
induced by the natural map e, — €b_ ;. Now, by passing to the limit and setting I' = (1® dT/T)Ox
for the submodule of Oz ® QéK[T7T,1] O We get a map of Oz-modules

1

dr den,
1®? — {%}neN'

Using Lemma 3.31 we have an O-linear composition of maps

” -1
r % Q, @2, T,%._j0, —— Ck(1) = Ck @z, Z,(1)
dT dey,

1®?'—>1®{;}HGN '—>1®{5n}n6N'

From Proposition 1.36 we get a surjective map G;is : Bais = Cg of Og-algebras. By the filtration
on Bgr we also have an exact sequence

0— tzB(JfR — tB;rR — Ckg(1) — 0.

Restricting to B, we get a surjective map of Og-modules 97, : tBY,, — Ck(1) with 9%, (z) =
0F. (x/t) @ {en}nen. In particular, 9. () = 1® {e,}nen. So we can draw a commutative diagram

cris cris

tBT

cris

1
h -~ +
e 19cris

-

r 7% (D),

where the lift h is an Og-linear map and it exists (though may not uniquely) because M is a free
(therefore projective) Oz-module and hence a free Og-module!. One such h can be given as h(b®

dT/T) = log[blt for b € O= but not in O and b = (b,b1/?, b1/P* .. ). By the commutativity of the
K

IThis is true because O is projective over Ok since Of is local and perfect and O is flat over O [Liu06, Chap. 1,
Cor. 2.14].
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diagram, we see that h(1 ® dT/T) = t. Also, there is an obvious inclusion tBJ;, < BJ,.. Therefore,
we can write a duality pairing map,
¥ )Gy x Hig(Gm) — Bl — Beis C Bar
ar
({5n}n€Na ?) — .
[ |

Proposition 3.33 (The action of ¢ and Gk). The pairing in Proposition 3.32 is perfect and v is a
G -equivariant and Frobenius-compatible map. Moreover, we have the following G g -equivariant and
Frobenius-compatible isomorphism

Peris - Hét(Gm’F7 Qp) ®Qp Beris — HéR(Gm,K) ® K Beris-

Proof. Since t is nonzero and T,G,, and H}g(G,,) are finite-dimensional, we conclude that the pairing
is perfect. To check Gi-equivariance of ¢, let ¢ € Gx. Then, on one hand we have 1 (g(e,dT/T)) =
¥(g(e),dT/T) = (x(g) - €,dT/T) = x(g)t. On the other hand we have g(¢)(e,dT/T)) = g(t) = x(9)t.
Hence, ¢ is Gi-equivariant.

For Frobenius-compatibility, on one side we have ¢(¢(e,dT/T)) = (e, (dT/T)) = (e, p-dT/T) =
pt, since the Frobenius ¢ on Hig (G, k) is given by multiplication by p. Also, on the other side we
have ¢(¢(g,dT/T)) = p(t) = pt. Therefore 1) is a Frobenius-compatible map.

Since we know that H}, (G,, 7% Q) = Hom(T,Gm, Zp(1)) @z, Qp and the pairing defined is perfect,
we immediately get an isomorphism

Pcris -+ Hét(GW%fa Qp) ®Qp Bris — HtliR(Gm,K) ®K Beris

which is given as multiplication by 1/¢. |

3.5.2 1-dimensional non-split torus U,

Let a € Z such that a # 0, it is squarefree and (a,p) = 1. Also, assume that p > 3. In this example,
we look at the case of commutative group scheme U, x or by abuse of notation, written as U, which
is a 1-dimesional non-split torus and it splits over the quadratic extension K (y/a) of K. As a group,
Uo(K) = {(z,y) € (K*)? | y*> — az® = 1}. And, as a scheme U, ;¢ = Spec K[X,Y]/(Y? — aX? —1).
Multiplicative structure on U, g is induced by the morphism of rings

K[va] K[X17Y17X27Y2]
m . —
(Y2 —aX?-1) (Y2 —aX?-1,Y2—aX3-1)
X — Y1Xo +Y2Xy
Y +— HYVQ + aX]_XQ.

We give another description of U, (K) via the isomorphism

Ua(K) = { (Z 0;”) € GLy(K) | 4* - aa® = 1}
e F R

0 «
1 0
isomorphism and it is also immediate that U, (K) is an abelian group. From now on we identify U, (K)
via this isomorphism.

where [ is the 2 x 2 identity matrix and A = ( ) Notice that A% = I. This is a G g-equivariant
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Lemma 3.34 (The Tate module). Uy(K) is an abelian group. The Tate module of Uy, is given as
T = lim_Ua(Og)p"].

Proof. For each n € N, let &, be a primitive p"-th root of unity. Set y, = (g, +¢,')/2 and z,, = (g, —
e, 1)/2v/a where clearly y,I +x,A € Uy (K). Since e 1 = en we have (yn1 ] + Tnp1 AP =yl +2,A
and therefore U, (K)[p"*!] L*, U.(K)[p"] is a morphism of multiplicative abelian groups for each
n € N. Hence, we could write the Tate module of U, as T,U, = lim | Uy (K)[p"]. Now, our claim
iithat whenever (a,p) = 1 we have T,Uq ~ lim Ui((’)?) [p"] i.e., we can take O pointsninstead of
K points. This is because for any yI + xA € U, (K)[p"], from the equalities (yI + zA)?" = [ and
y? — az? = 1 and the assumption that p # 2 and (a,p) = 1, we get that y is a root of an integral

polynomial with coefficients in K and the same is true for z. |

Lemma 3.35 (de Rham cohomology). For U, = Spec K[X,Y]/(Y? —aX? —1),
HR(Uy) = K and Hiz(U,) = K -w
where w =YdX — XdY € Qp e with R = K[X,Y]/(Y? — aX? - 1).

Proof. First, we take a look at the module of Kihler differentials for R. Let f(X) := aX?+1 € K[X]
and f/(X):=df(X)/dX = 2aX + 1, the derivative of f(X). Then the de Rham complex is

K[X]
(Y2 = f(X))

We note that any element of R could be written as g(X)+ Y h(X) with ¢(X), h(X) € K[X]. Moreover,
f(X) is coprime to f/(X) and therefore by Bezout’s identity there exist A\ (X), A2(X) € K[X] such that
M (X)f(X) 4+ A2 f'(X) = 1. In our case, it is immediately clear that A;(X) =1 and Xo(X) = —X/2.
Let w := M(X)YdX + 2X2(X)dY = YdX — XdY. In Q}%/K we also have that YdY = aXdX,

therefore Yw = Y2dX — XYdY = (aX? + 1)dX — XYdY = X(aXdX — YdY) + dX = dX and
f(X)w/2 = aX(YdX — XdY) = aXYdX — aX?dY =Y (aXdX —YdY)+dY = dY. Hence, from
the expression for (1}, /i it is clear that any differential form could be written as (¢(X) +Yh(X))w i.e.,
Q}%/K —R-w=0p w®o, K= Q})R/OK ®o, K where Og := Ok[X,Y]/(Y? —aX? —1).

Now we want to compute the de Rham cohomology group HéR(Ua,K). Since U, x = Spec K[X,Y]/(Y?—
aX? — 1) we have that

RdX ® RdY

k= R(2YdY — f/(X)dX)

d
= O —— Qi =

ker(Q}z/K — Q%/K)

im(2 — Ol

HR(R/K) =K and Hiz(R/K) = L

0
R/K

Note that % /i = 0 since w Aw = 0. So the numerator in the expression of Hz(R/K) is Rw. For
the denominator, we observe that (¢(X) + h(X)Y)w € Q}%/K, is in the image of Q%/K if and only if
there exist a(X),b(X) € K[X] such that d(a(X) + Yb(X)) = (9(X) + Yh(X))w. Since d(a +Yb) =
d'dX +YVdX +bdY =Ydw+Y?Ww+bfw/2 = (aX?+1)+bf'/2+Ya')w from the equality before,
we get a set of equalities

h(X)=d'(X) and,

9(X) = B (X)F(X) + 5H(X)F'(X).

It is always possible to find an a(X) such that the first expression is satisfied. For the second
expression, let Bz" be the leading term of b(X) then the leading term of b f +bf’/2 is (r + 1)BaX"+1.
By equating this with the leading term of g(X) and proceeding recursively, we see that b(X) can
be determined, upto its constant term, such that the second equation above is satisfied. Hence
Hp (Un i) = Hig (R/K) = K - w. n
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For U, x, we have Hi (U, 7, Q) ~ Hom(T,Uq,Zy(1)) ®z, Qp. So we look at the pairing 7,Uq X
Hig(Us) — Beis. To properly define this pairing, we make the following observation. First of all,
we fix some p-power compatible primitive p”-th roots of unity i.e., {&,}nen Where &, is a primitive
p"-th root of unity and e? , ; = &,. Now, from before we have Or = Og[X,Y]/(Y? — aX? — 1) and for
n € Nyg let v, be a collection of maps defined as,

vp : Op — Ok,

en+5;1
2
En— &5 "

2/a

where Og,, is the ring of integers of the field K(g,) and &, is a primitive p"-th root of unity as chosen
before. Also, @ 41 = €n- So, from the map above we get an Ok, -linear map between the modules of
Kéhler differentials

Yy =

Xr—ux,=

. 1 1
vy Ok, ® Q5,0 — Qo j0x

(3.6)
a®wr— a(Tpdyy, — yndry).
To avoid cumbersome notation, for each n € N we write v} (1 ® w) = viw = Tpdyn — YndTp.
Lemma 3.36. Using the notation as above, pv;, , jw = vyw.
Proof. We know that (yn41I + zp+14)P = ypI + z, A and therefore,
A((Yni1] + 2ns1A)) = pyni1] + 2ni1 AP (dynia ] + zni1 A)
Equating this to d(y,I + x,A) we get a set of equivalent expressions
d(yn-[ + an) = p(yn-i-ll + $n+1A)p_1(dyn+1I + xn—i—lA)y
(yn-‘rl[ + xn—i—lA)(dan + dan) = p(yn—i-lI + l'n—&-lA)p(dyn-‘rlI + d$n+1A) and,
(Ynt11 + zpy1A)(dynl + dzpA) = p(ynd + 2, A)(dyn+11 + dxn 1 A).
From this we obtaine the equalities
P(Yndynt1 + axndr, 1) = Ynt1dyn + axpi1dr, and,
P(TndYni1 + YndTni1) = Yn1dTn + Tny1dYn.
Upon multiplying the first expression by x, and the second by y, and subtracting, we get
pdrpi1 = ($nyn+1 - ynxn—l—l)dyn + (axnxn—l—l - ynyn—i-l)dxn and therefore,
PAYn+1 = (YnYnt+1 — OTnTnt1)dYpn — (ATpTni1 + YnTn+1)dTy.
Now upon multiplication and subtraction, we are reduced to
P(Tn+1dYnt1 — Yn+1dTn11) = Tndyn — Yndy
or equivalently
PUp 1w = Vpw
|

Proposition 3.37 (A duality pairing). There is a duality pairing bilinear map,

T: Tp[Ua X HcllR(UOé) — Beris
t
({ynl+ an}nENaw) = ﬁ

where t € Beis as defined in Section 1.5.
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Proof. Following the construction in Proposition 3.32 we look at the submodule ¥, = (1 ® w)Ok,, of
Ok, ® Q}DR /O generated by 1 ® w. Using (3.6) and Lemma 3.36, we can draw a commutative diagram

,U*
1
z:n+1 L’ Ql

| J»

where the left vertical arrow is the restriction of Ok, , ® Q}QR JOKk Ok, ® Q%QR Ok induced by the
natural map €,41 — €& +1- Now, by passing to the limit and setting I' = (1 ® w)O for the submodule

of O ® Q%DR o> We get a map of Oz-modules
. 1
1®@w+— {viw}lnen.
Now we make an important observation that

Ok[X,Y]
(Y2 —aX?2-1)

T+—Y +VaX
Tl—Y - VaXx

f:OklT, Tﬁl] —

is an morphism of O-algebras which is in fact an isomorphism over Oz. Therefore, on the differential
forms, we have an induced map of Og-modules

* 1 1
e QOK[T,T*H/(’)K — Q0,/0k
dar
T — (Y — \/&X)(dY + \/&dX)
Tensoring with Oz gives a morphism of Oz-modules and restricting to respective submodules of Oz ®
Q}QK (T,7-1]/0x and O ® Q%,)R 10K generated by 1 ® dt/T and 1 ® w, we get a morphism between these
Ox-submodules. Thus, we can immediately draw a commutative diagram

r % 70!

p O?/OK
Jm@f}} H
v 1
¥ — TPQO?/OK.

Also,

U:L(Y - \/&X)(dY + \/adX) = (Yn — \/axn)(dyn + \/adxn)
= yndyn — axpdry, + \/a(yndxn - mndyn)
=d(y2 — az?) + Vaviw = aviw.

Therefore, from the commutative diagram above {u}(1®dT/T)}neny = {v;(Id® fj(1@dT/T)) }nen =
Va{viwtnen. But {udT/T}uen = {den/en}nen, so

. 1 (dep
fnwhnen = —={T"}
Now, using Lemma 3.31 we have an Oz-linear composition of maps
f71
S —— Q ®z, TQ%_jo, — Ck(1) = Cxk ®z, Zp(1)

1 (de, 1
tow—1e Z{T 0 7 va @ fenhen



3.5. p-adic de Rham comparison theorem: Two examples 61

From Proposition 3.32 we have a surjective map of Og-modules 97, : tBf, — Cg(1) with
I (7) = 0% (2/t) ® {en}nen. In particular, 97, (t) = 1 @ {e,}nen. So we can draw a commuta-
tive diagram

tBg,;

Cris

» 1% cx(1),

where the lift h is an Og-linear map and it exists (though may not uniquely) because ¥ is a free
(therefore projective) Oz-module and hence a free Og-module. One such h can be given as h(b®@w) =
log[b]t/+/a for b € Oz but not in O and b= (b,b}/?,p1/P* ). By the commutativity of the diagram,
we see that h(1 ® ) t//a. Also, there is an obvious 1nclu81on tBt., «— Bl.. Therefore, we can
write a duality pairing map,

7: T,Uy x Hig (U,) — tBJ < Beis C Bar

Cris

({an + :vnA}neN,w) — \/t&'

Proposition 3.38 (The action of ¢ and Gg). The pairing in Proposition 3.37 is perfect and T is a
Gk -equivariant and Frobenius-compatible map. Moreover, we have a G -equivariant and Frobenius-
compatible isomorphism

Pcris - Hel’gt(Ua’F7 Qp) ®Qp Bcris — HéR([Ua,K) QK Bcris‘

Proof. Tt is immediately clear that the pairing is perfect. To check G g-equivariance of 7, let g € G
and v = (yn! + zpA)nen. To avoid cumbersome notation, below we write (y,I + z,A) instead of
(ynd + zpA)pen. First we look at

9(7) = g(yn)I + g(‘rn)A
_9En) +9lent) o glen) —g(ert)
2 29(Va)
x(9) - (en+e,") . x(9) - (en —€5")
N N
=x(9) - Ynl +1(g)znA)

where x(g) is the usual p-adic cyclotomic character and n(g) = g(v/a)//a € {£1}. Note that n(g) -
(Yl +20A) = (yuI +2,4)"9 = (yo+1(g)xnA). Hence g(v) = (n(9)x(9))- (ynI +x04) = (1(9)x(9))-7-

Now, on one hand we have ~(g(,w)) = 7(9(1),w) = 7(n(9)x(9) - 1 4T/T) = n(g)x(g)t/ /. On
the other hand, we have g(7(v,w)) = g(t/v/a) = x(9)t/n(g9)vVa = n(g)x(g9)t//«. Hence, T is Gk

equivariant.

For Frobenius-compatibility, since the Frobenius ¢ on HéR (Uq, k) is given by multiplication by (%) P

where (%) is the usual Legendre symbol, therefore on one side we have 7(p(y,w)) = 7(7, p(w))

7(7,p($)w) = p(E)t//a. Also, on the other side we have ¢(7(v,w)) = ¢(t//a) = pt/p(V/a). There-
fore 7 is p-compatible if and only if p(y/a) = (%)\/a We consider two different cases,

(1) Suppose y/a € Zj then /o mod pZ, € F), which means that ($) = 1. Also, ¢ acts as identity
on Z, since the absolute Frobenius map on [F), is identity. So, in this case we indeed have that

p(Va) = (5)va.
(2) Next we assume /o & Z, then /a € Q,(y/a), a degree 2 extension of Q,.
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(a) If Qp(v/a) is an unramified extension of Q, then (%) = —1. Also, the residue field of
Qp(v/) is a degree 2 extension of F, and therefore the absolute Frobenius on /« i.e.,
(Va)y = ab = a%f = (%)\f = —y/a mod p. Since ¢ is the lift of absolute Frobenius
to Qu(Va), we get p(Va) = —Va = (§)Va.

(b) If Qp(v/a) is a ramified extension of Q, then (§) = 1. But then the residue field of Q,(v/@)
is IF,, and therefore the absolute Frobenius on /a is identity. Since ¢ is the lift of absolute

Frobenius to Q,(v/@), we get ¢(va) = Va = (§)Va.

Since we know that H}, (U, % Qp) ~ Hom(T,Uy, Zy(1)) ®z, Q, and the pairing defined is perfect,
we immediately get an isomorphism

Pcris - Hét(U(LF) Qp) ®Qp Beris - H(ljR(Ua,K) ® K Beris

which is given as multiplication by /a/t. |



Chapter 4

An equivalence of categories

In the last chapter we saw the following faithful, exact and tensor functors,

Dcris : Reprf;S(GK) — MFK(QO)
Dy : Repg (Gx) — MFg (e, N).
In the first section our aim is to establish the full faithfulness of these functors by describing
respective quasi inverse functors. Later on in the chapter, we will also give a description of their
respective essential images. As it turns out, the essential image of D5 is the abelian category MF‘}?(Q&)

whereas the essential image of Dy is the abelian category MF%(@, N). Though establishing these results
requires a lot more work, we will prove some partial results and give references for the rest.

4.1 Quasi inverse functors

To get started, we mention the following result where the second exact sequence is sometimes referred
to as the fundamental exact sequence,

Proposition 4.1. For r > 0, the following sequence is exact
0 — Qp — (Fil " Beyis)?~! — Fil ™" Bar/Biz — 0.
Passing to the direct limit as r — 400, we get that the following sequence is exact
0 — Q) — (Bexis)?~! — Bar/Bgr — 0.
Proof. [CF00, Prop. 1.3]. [ |

Remark 4.2. From the first exact sequence in Proposition 4.1, by setting r = 0, we get (FiloBcris)W:1 =
{b € Fil'Beis | ¢(b) = b} = Q,.

Our first goal is to establish the full faithfulness of Dy and De¢is. We start with semistable repre-
sentations of G.

Let V be any semistable p-adic representation of G of dimension h. Let D = Dg (V). We want to
construct a covariant functor

Vg : MFg (o, N) — Q,[G k]-modules

such that Vg (Dg(V)) >~ V. Recall that we have the natural semistable isomorphism from Proposition
3.25 (i)

ast : Byt @y D — Byt ®Q, V.
it i8S Beris-linear, G g-equivariant, Frobenius- and monodromy-compatible. Also, ag i is a filtered
isomorphism. Let us identify these isomorphic objects as X. Let {v1,ve,...,v,} and {wy,we, ..., wy,}

63
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be a basis of V over Q, and D over Ky respectively. Identify v; with 1 ® v; and w; with 1 ® w;, so then
{v1,v2,...,v,} and {wi,ws,...,w,} are both bases of X over Bg. Any element of X can be written
as a sum of b ® w where b € By, w € D and also as a sum ¢ ® v where ¢ € Bg; and v € V. The actions
of Gk, ¢ and N on X are as follows,

G g-action : g(b® w) = g(b) ® w, glc®v) = g(c) ® g(v);
p-action : (b ®@ w) = p(b) @ p(w), plc®@v) = p(c) @ v;
N-action : N(b®@ w) = N(b) ® N(w), N(c®v)=N(c)®w.

&
&

X also has a filtration. By the map x +— 1 ® x, we also have the inlusion
X C Xgr = Bar ®B,, X =~ Bqr @k Dk =~ Bgr ®q, V.
Then the filtration on X is induced by

Fil' Xqr = Fil'(Bar ®g, V) = > Fil'Bar ® Fil* D
r4s=i
We set
V(D) ={z € X | p(z) =z, N(z)=0, z € Fi’X}
={zeX|p) =1 N()=0, zcFil’Xg}.

Notice that V — X where v — 1 ® v satisfies these conditions.

Next we need to check that Vg (Dgt(V)) >~ V. Write 2 = > <,,<j, bn @ vy, € Vgi(D), where b € Bt
and D = Dg (V). First of all N(z) = 0, i.e., Y1<,cp N(by) @ v, = 0. Therefore, N(b,) = 0 which
means b, € Bqis for each 1 < n < h. Secondly, we have o) = x, iey Djepn<p @(bn) @ v, =
Y 1<n<h bn ® vy. Therefore, ¢(by,) = b, for each 1 < n < h. Lastly, the condition z € Fil° X4r implies
that b, € Fil’Bgr = BJR for each 1 < n < h. From the fundamental exact sequence in Proposition
4.1 we have that b, € Q,. Therefore x € V. By using the semistable isomorphism we conclude that
V ~ Vg (Dgt (V). We can also write the functor Vg in the following equivalent manner,

V(D) = Fil®(By @5, D)N=0¢=1
= ker (8(D) : (Bst ®k, D)"="¥=! — (Bar ®k Dk)/Fil’(Bar ® Dk))

For any D € MFg(¢,N), after applying the functor Vg, we do not know if Vg (D) is finite-
dimensional over Q, with continuous G g-action. This will be shown in the next section. But assuming
this, we show the full faithfullness of Dyg;.

Proposition 4.3. The exact tensor functor Dy : Rep%p(GK) — MFg (@, N) is fully faithful with
inverse on its essential image given by V. The same holds for the contravariant functor D using the
contravariant functor Vi (D) = Homgy,, n (D, Bst)-

Proof. From discussions in Section 3.3 we know that Dg; is a faithful, exact, tensor functor. Now we
show that it is fully faithul. Suppose Vi and V5 are semistable p-adic representations of Gx and let
Dy = Dg (V1) and Dy = Dgt(V2) in MFk (¢, N). For f : D; — D9 a map in MF g (¢, N) we need to show
that there exists map Vi — V5 such that Dg takes this map to f. Now via the semistable comparison
isomorphism in Proposition 3.25 (ii) for Vi and Vs, the Bg-linear extension 1 ® f : Bg ®k, D1 —
Byt @k, Do of f is identified with a Bgi-linear, G g-equivariant, Frobenius- and monodromy-compatible
morphim f : By ®q, V1 — Bst ®q, Va. Explicitly, f= ast(V2) o (1® f) o agt (V) ™. The map f respects
the formation of the ¢-fixed part in the filtration degree 0, i.e., this Bg-linear morphism must carry
V1 into V4 by a Gg-equivariant map. Hence, f is the Bg-scalar extension of some map g : V3 — V5
in Repr(G k). So by functoriality of the semistable comparison isomorphism we get that the map
g: Vi — Voin Repr(GK) induces the map f : Dg (V1) = D1 — Do = Dg(V2). Thus we have full
faithfulness as desired. |
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Using the fact that crystalline representations are semistable representations with vanishing mon-
odromy we can define the covariant functor

Vris MFK(SO) — Qp[GK]—modules

with Ves(D) = Fil®(Beris Rk, D)9~ For V € Rep&s(GK) we know that V & Rep (GK) and N
vanishes for Dg (V') = Deyis(V). Therefore, the argument for the covariant functor Vg can be adapted
to conclude that Veis(Deris(V)) ~ V for any V € Rep?Qf;S(GK). Moreover, assuming that for any
D € MFg(¢), Veais(D) is finite-dimensionl over Q, with continuous Gi-action, we see that Deys is
a fully faithful exact tensor functor. The same holds for the contravariant functor D7, using the
contravariant functor Vi, (D) = Hompy (D, Beris)-

We end this section with an explicit calculation via an example.

Ezample 4.4. We calculate Dg,;5(Qp(1)) = Homg,(q,)(Qp(7), Bexis).  Given any Q,[Gk]-linear map
Qp(r) — Bais, if we multiply it by ¢t™" then we get a Q,[Gk]-linear map Q) — Beyis. In other words,
D = D% (Qp(r)) = Bgl’; t" = Kot". This has Frobenius-action ¢(ct”") = p"o(c)t" and the unique
filtration jump for D occurs in degree r (i.e., gr"(Dg) # 0). In other words, D (Qp(r)) is the Tate
twist Ko[0](r) in the sense of Definition 2.34.

Next we want to compute VCI‘IS( crls((@p( ))) Vzrls(KO [0] <T>) This consists of Ko-linear maps
f + Ko — Fil"Bgis that satisfy ¢o(f(c)) = f(p"(o(c))) for every ¢ € Ky or in other words o(c) -
o(f(1)) =p"o(c)f(1) for all ¢ € Ky. This says ¢(f(1)) = p"f(1) with f(1) € Fil"Bgis. So, if we write
f(1) = bt" with b € Fil®Buis (as we may since t € BY,,) then the condition on b exactly says that
b € (Fil®Buis)?~! = Q, (by Remark 4.2). Hence, Vi (D Cm((@][,( ))) = Qpt" is the canonical copy of

Qp(r) inside Beyis. So we saw in this special case that V “inverse” to D} .

cris cris*

4.2 Towards the equivalence

The goal of this section is to understand the respective essential images of the functors D¢;js and Dg;.
But first, we record some properties of these covariant functors. Following is a result showing the
insensitivity to inertial restriction of the crystalline and semistable property.

Proposition 4.5. Let K’ = K". The natural map K\ ®ky Dst, ik (V) — Dgt i/ (V) in MF g/ (p, N) is
an isomorphism for allV € Repr(G k) and likewise for the functor Deyis v that is valued in MF g/ (o).
In particular, V is semistable as a G -representation if and only if it is semistable as a representation
of G = Ik, and likewise for the crystalline property.

Proof. [BC09, Prop. 9.3.1]. |

Corollary 4.6. If p: Gg — GL(V) is a p-adic representation with open kernel then p is semistable if
and only if it is crystalline if and only if it is unramified. Also, a continuous character n: Gx — Q)
is semistable if and only if it is crystalline if and only if it is a Tate twist of an unramified character.

Proof. By Proposition 4.5 we may replace K with K™ g0 that k is algebraically closed. For the first
part we need to show that if p is semistable with ker p open in Gk then it must be that p has trivial
action on V. Let L/K be the finite Galois extension corresponding to ker p, so V' is a representation
space for Gal(L/K) and it is semistable as a G-representation space. Our goal is to prove that
VGal(L/K) —V.

Since k is algebraically closed we have Ly = K. Therefore, BGal(L/ K) _

LO = Ko. NOW,
Dst,K(V) — (Dst,L(V))Gal(L/K) — (BSGt'L ®Qp V)Gal(L/K) — (KO ®Qp V)Gal(L/K) — KO ®@p VGal(L/K)‘

But dimg,Dst,x (V) = dimg, V', so dimKoVGal(L/ K) = dimg, V' by Kp-dimension reasons. Therefore,
V= VGal(L/K)'

For the second claim about semistable characters 7, since semistable representation are Hodge-
Tate there is a Hodge-Tate weight n € Z for n. We can twist by the crystalline (hence semistable)
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representation Q,(—n) and the twisted character is still semistable, so we may assume that 7 has
Hodge-Tate weight 0. Thus, by the Tate-Sen Theorem A.13 we see that n(Gk) is finite (as Gx = Ik)
which precisley means that ker 7 is open. By the first part, it follows that n = 1. |

Lemma 4.7. Let k be an algebraically closed field with characteristic p > 0. The map W(k)* —
W(k)* defined by w — o(w)/w is surjective, where o is the Frobenius automorphism of W (k).

Proof. [BC09, Lem. 9.3.3]. |

Now we come to a key theorem which explains our interest in admissible filtered (¢, N)-modules
(in the sense of Definition 2.28).

Theorem 4.8. If V € Repaﬁp(GK) then Dgt(V) € MFk (¢, N) is admissible. In particular, if V is
crystalline then Deis(V) € MF k(@) is admissible.

Proof. Since admissibility condition is insensitive to the scalar extension Ky — @1, by Proposition
4.5 we may assume that k is algebraically closed. Let D = Dg (V) and let D’ C D be a subobject.
We need to show that tg (D) < tny(D’) where equality holds if and only if D’ = D. We may assume
D" #0, sod = dimg,D" > 0. For this, we describe D’ in concrete terms by reducing to the case d’ =1
using determinants arguments.

Note that AYV is semistable, so A% D is naturally identified with Dg (A% V). Also, det D' = A% D' is
naturally a 1-dimensional subobject of A% D. Since ty (D) = ty(det D') and tx(D') = ty(det D), we
may therefore pass to A%V to reduce to the case of dimg, D" = 1. In case D' = D we have dimg,V = 1,
so V = Qp(n) by Corollary 4.6 for some n € Z (as k is algebraically closed). In this case we see with
the help of t™" € By, that ty(D) = tn(D) = —n (since we are using covariant functors Deyis and Dgy).
Thus, it remains to show that in general ¢y (D) < ty(D’). Let ¢’ € D’ be a Kp-basis so ¢(e) = e/
for some A\ € K and ty(D’) = vp(A). Also, N(e’) = 0 since N is a nilpotent operator and D’ is
1-dimenisonal. Let s = tH(D/), so e € Fﬂs(BdR ®Q, V) = Fil* Bgr ®Q, V but ¢ ¢ Fils+leR ®dQ, V.

Pick a basis {v1,v2,...,v,} of V, so the inclusion D’ C D = (B ®q, V)GK gives a unique expansion
e =3 b; ®v; for b; € Bg. The equality Ae/ = p(e') = > ¢(b;) ® v; gives p(b;) = \b; for any 1 < i <n
and the vanishing N(e') = 3> N(b;) ®v; gives N(b;) = 0 for 1 < i < n. In particular, b; € BY=% = Beys
for all 1 <4 < n. Since ¢’ € Fil*Bgr ®g, V but ¢’ ¢ Fil**' B4r ®q, V, we conclude that b; € Fil® Beyis
for all i but b;, ¢ Fil**! B s for some ig. Looking at bi, it suffices to show generally that if b € Beyis
lies in Fil* Buis but not in Fil** Bes (so b # 0) and o(b) = A\b for A € K then s < v,(N).

Assume on the contrary that s > v,(A) + 1. Let n = v,(A), so b € Fil®Beys C Fil"*! Bois. To get
a contradiction, it suffices to show that the only b € Fil"™! B, such that ¢(b) = \b with n = v,()\) is
b = 0. We may replace b with b/t" to reduce to the case n = 0. Hence, b € Fil' By and o(b) = ub
with u € W(k)*. But k is algebarically closed, so u = o(u’)/u’ for some v € W(k)* from Lemma 4.7.
Thus b/u’ € (Fil' Beis)#~!. But (Fil' Beis)¥~! = Q, by Remark 4.2 and this meets Fil' Byis in 0. W

A fundamental result of Colmez and Fontaine [CF00, Thm. A] is that the fully faithful, exact
tensor functor Dy : Repap(G k) — MF3(p, N) is an equivalence. That is, every admissible filtered
(¢, N)-module D over K is isomorphic as such to Dg (V) for a semistable p-adic representation of
G k. In principle we know that V' is should be such that V' ~ Vg (D). But it is not a priori obvious
that Dgt(Vst(D)) >~ D for admissible D. So in the remainder of this section, we take up the work to
prove that V(D) is always in Repﬁp(G k) for any D € MF3d(p, N). We will also prove the Colmez-
Fontaine lemma that says dimg, Vs (D) < dimg, D for any admissible D with equality if and only if
D ~ Dg (Vs (D)) in MF g (@, N). To prove that the inequality is always an equality requires much more
work. Assuming this key result, we will have the equivalence of categories stated at the beginning of
the paragraph.

The first issue that we encountered was whether the Q,[G g]-module Vg (D) for D € MFg (¢, N)
is finite-dimensional with continuous G g-action. We claim that any Gi-stable finite-dimensional Q-
subspace of Vg (D) has continuous Gg-action. In particular, if Vg (D) is finite-dimensional over @,
then the natural Gg-action on it is continuous. By definition, V(D) C Bs ®k, D with the Gx-action
doing nothing to D. So we prove,
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Proposition 4.9. For any n > 1, any Q,[Gk]|-submodule V of Bf with finite Qp-dimension has
continuous G -action relative to its natural p-adic topology.

Proof. Consider the non-canonical presentation By ~ Bis[X] (resting on a choice of § € mp — {0} with
g e Ok). The Beis -submodule Beyis[X]<4 of polynomials with degree below a given bound d > 1 is
G i-stable because g(X) = X + n(g)t for a suitable continuous 7 : Gx — Z, depending on the choice
of t = log[e]. The finite-dimensional Q,-subspace V' C B} is contained in the finite free Beis-submodule
Beris| X]%, for some d > 1. However, note that Beis[X]™, is not G g-equivariantly identified with BnY,
via the basis of vectors in standard monomials when d > 1. Since Beis = Aais[1/t] and dimg, V' < 400,
the ¢-denominators needed to describe V are bounded: for M > 0 we have V' C Qp-t =M Aqis[X]7 ;. The
action by G on t is through Z; -value continuous x, so we can replace V' with tMV for some M > 0
to arrange that V' is generated over Q, by the Gg-stable A := V' N Aui[X]2 ;. This Zp-submodule of
V' contains no infinitely p-divisible elements becasue A5 is p-adically separated, so it follows that A
must be finitely generated over Z, and hence is a Z,-lattice in V. Thus, it suffices to prove that the
Gr-action on A is continuous for the p-adic topology of A.

Let Ar = AN (p"Aeis[X]%y), so p"A C A, C A and A, is Gk-stable. Since Aejs is p-adically
separated we have N, A, = 0, so by [MR87, Exer. 8.7] it follows that A/ s give the same topology to A
as its p-adic topology. Therefore, we are now reduced to showing that for each r > 1 the Gx-action
on each finite quotient A/A, is discrete, i.e., the points have open stabilizers. Let us fix such an r. For
the finite quotient A/A,, there is a natural inclusion into (Acis/(p"))[X]% 4, so we need to show that
if an element of (Aes/(p"))[X]%, has a finite Gk-orbit then it has an open stailizer. We will show
that all orbits are finite with open stabilizers. By projection to factors of this direct sum of truncated
polynomial modules, we can assume n = 1.

We may replace K with the finite Galois extension corresponding to ker (n mod p"), which is to
say that we can assume that the additive character n mod p” vanishes. Hence, the G g-action on X
mod p” has now been eliminated, so we can project to monomial coefficients in each separated degree
less than d, which is to say that we are reduced to proving that every Gg-orbit in Agis/(p") has an
open stabilizer (and hence is finite) for each r > 1. This is true from Proposition 1.35 and so we are
done. |

Now we look at Vg (D) when D is admissible. First of all we analyze the case of dimg,D = 1.

Lemma 4.10. If D is an arbitrary filtered (o, N)-module over K with dimg,D = 1 then Vg (D) is
1-dimensional when D is admissible (i.e., tg(D) = ty(D)), it vanishes when tg (D) < ty(D), and it
is infinite-dimensional over Q, when ty (D) < ty(D).

Proof. We have D = Kyd with ¢(d) = Ad for some A\ € K. The monodromy operator vanishes on
D since it is nilpotent and dimg,D = 1. By definition tx(D) = v,(\) € Z and Fil'#(P) D = Dy,
Fil's ()1 D = 0. Since dimg,D = 1, D is admissible if and only if t5(D) = t5(D). We wish to
relate the Q,)-dimension of V(D) (possibly infinite) to the nature of the difference tg (D) — tn (D).

Let us compute Vg (D) in general, using the Ky-basis {d} of D. For z € V(D) we have, x €
By ®, D such that ¢(z) =z, N(z) =0and z € Fil®( B R, D) = Fil"tr (D) B, ®K, D. In particular,
T € Beis ®k, D so v = b® d for a unique b € Fil~t#(P) B i such that o(b) = b/A\. We can write
A =p"u for m = ty(D) and u € O, = W(k)*. Letting b’ = tt1(D)p € By, the conditions are that
V € Fil°(Byis) with o(b) = pt#(P)=In(D)(1 /i), By Lemma 4.7 we may choose w € W (k)* such that
o(w)/w = u. Replace t/ with b = wb', so V(D) as a Q,-vector space is identified as the set of elements
V' € Fil®Bgs such that ¢(b”) = pta(P)=tn(D)y’ Thus for the admissibility (i.e., ty (D) = tx (D)) the
condition on b” says exactly that b” € (Fil’Beis)?~! = Qp, so dimg, Vst(D) = 1 in such cases.

In general, if r := ty (D) — tn(D) then @(b”/t") = b"/t", so if r < 0 then V" /t" € Fil7"Beys C
Fil' B is a @-invariant vector and thus vanishes (as the only ¢-invariant elements of Fil’ B, are
elements of @, none of which lie in Fil' Boyis except for the element 0). Hence, " vanishes when r < 0.
The remaining case is when r > 0, in which case b”/t" € Fil ™" Be,s is p-invariant vector, and the space
of these is infinite-dimensional due to the exact sequence from Proposition 4.1

0 — Qp — (Fil ™" Beris) " — Fil " (Bar/Bjy) — 0
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that is valid for » > 0. |

The following preliminary result generalizing Lemma 4.10 is a small part of the proof of the general
result that admissible filtered (¢, N)-modules are the essential image of Dyg.

Proposition 4.11. Let D € MF3(p, N). The vector space V(D) is finite-dimensional over Q,
with dimension at most dimg,D, and it is semistable as a p-adic representation of Gi. Moreover,
D’ := Dy (Vg (D)) is naturally identified with a subobject of D, and D is in the essential image of Dy
if and only if dimg, Vst (D) = dimg, D or equivalently D' = D.

Proof. Let Cy denote the fraction field of the domain By and let V' = V(D) within the Cg-vector
space Cgt @, D of dimension s = dimg, D, the Q,-subspace V' generates a Cg-subspace V' = Cg ®q,V
of some dimension r < s. The case of r = 0 (i.e., V(D) = 0) is trivial, so we may and do assume
r > 0. The action by Gx on Cy ®k, D preserves the Cgy-subspace V'. View V' as a Cg-valued
point of the Grassmannian variety G, (D) over K, parametrizing r-dimensional subspaces of D. This
point is invariant by G and so it descends to a CgK -valued point. By the (Qp, G )-regularity of By,
CgK = BgK = Ky, so V' corresponds to a Ky-valued point of G, (D), which means that V' = C4®k, D’
for a Ky-subspace D' C D with dimension . Thus V C V' N (By ®k, D) = Bst @k, D'.

The Ky-subspace D’ in D is stable by ¢ and N since this holds after scalar extension from K| to
Cs. Using the subspace filtration on D% C Dy, we thereby make D’ into a filetered (¢, N)-module
over K that is a subobject of D. Since V = V(D) = Fil®(By ®x, D)¥="N=" and V C By ®k, D',
we have V' C Vg (D') C Vg (D) =V, s0 V = Vg (D).

By definition, V' is spanned over Cy by V', so we can find a Cy-basis {v1, va, . .., v, } for V/ consistng
of elements of V; the v;’s are a maximal Cy-linearly independent subset of V. Thus, the map A, V —
/\7(";St V' carries v1 A vg A --- A v, to a non-zero element and /\r V’ is a Cg-subspace of Cy ®, /\ KOD’
so v1 A vg A ---v, has non-zero iamge in Cg ®p, A} 0D’ In other words, if we choose a Ky-basis
{d1,ds,...,d,} of D" and write v; = 3, b;j;d; with b;; € By then b := det(b;;) € By lies in Cg; that is
b # 0 in Bg. Thus, the element

’U1/\’U2/\'--’UT:bdl/\dz/\"'/\dTGBst(X)KO/\TD/ (4.1)

lies in the 0-th filtered piece and the action of N vanishes and fixed by ¢ since each v; lies in V' = V(D).
Hence, we have a nonzero element of Vg (A"D’). But A"D’ is a 1-dimensional filtered (p, N)-module
over K. Since we have exhibited a non-zero element of Vi (A"D’) by Lemma 4.10 we cannot have
ta(AN"D") < tn(A"D’), or in other words the case tg(D') < ty(D') cannot occur. The admissibility
hypothesis on D implies tg(D’) < tn(D’) for the subobject D' C D, so ty(D') = tn(D’). Hence, D’ is
admissible (as D is) and Vg (A"D’) must be exactly 1-dimensional over Q.

Any r-fold wedge product of elements of V' = V(D) = Vg (D') is naturally an element of Vi (A"D’),
and so if unique Q,-mulitple of vi Ava A--- Av,. But we can view this wedge product as being formed
over By within By ®g, A"D’, so if an element v € V' C V' is arbitrary and we write (as we may)
v = Y ¢v; with unique ¢; € Cy then vy A+~ Avi_1 AvA V41 A= Avp = ¢i(v1 A -+ Avy). Hence,
¢; € Qp for any 1 < i < r. This shows that the v;’s span V' over Q,, so they are a basis for V' (since
they are linearly independent over Cy). In other words, V has finite Q,-dimension that is equal to
r = dimg, D’ < dimg,D and V then must have continuous Gi-action by Proposition 4.9.

The identity (4.1) now implies that Gk acts on b through a Q,'-valued character, so Q, C By is a
Gr-stable line. Hence, by (Qp, Gk )-regularity of By we must have that b € B . Tt therefore follows
from (4.1) that the Q,-basis {v1,vo,...,v,} for V. = Vi (D') is also a Bg-basis of By @, D', so the
Bgi-linear map By ®q, V — By ®k, D’ induceed by the identtification V' = Vg (D') is actually a
linear isomorphism. By G i-compatibility, we deduce that as Ky-vector spaces

Dy (V) ~ (By @k, D)% = BSK @, D' = D'\ (4.2)

This shows that D¢ (V) has Kp-dimension equal to dimg,D’ = r = dimg,V, so V is a semistable
p-adic representation of G with dimension r < dimg,D. The identification Dg (V) = D’ in (4.2)
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respects the Frobenius and monodromy operators, and carries Fil/Dg (V) into Fil D’ for all j. But D’
is admissible and so is Dg (V) by Theorem 4.8. Any morphism of admissible filtered (p, N)-modules
that is a liner isomorphism on Ky-vector spaces is automatically an isomorphism in MF g (¢, N) (i.e.,
it is compatible with filtrations in both directions) by Theorem 2.33, so D’ ~ D¢ (V) as filtered (¢, N)-
modules. We conclude that Dy (V') is naturally a subobject of D, with Ko-dimension dimg,V'. Hence,
dimg,V = dimg, D if and only if the subobject Dy (V) C D has full Ko-dimension, in which case D
is in the essential image of Dg;. Conversely, if D is in the essential image of Dy, say D ~ Dg (V1) for
Vi e Rep%p (Gg) then V = Vg (D) ~ Vg (Dg (V1)) >~ V1 (the final isomorphism due to the semistability
of V1). Hence, in such cases dimeV = dime Vi =dimg, D. [ |

Remark 4.12. Suppose D € MF‘}?(@, N) is a simple object. In particular, D # 0. If V := Vg (D) # 0
then the above proof realizes Dg (V') as a non-zero subobject of D, in which case it must equal D by
simplicity. Hence, an admissible D that is simple in MF g (¢, N) is in the essential image of Dy if and
only if Vg (D) # 0.

Remark 4.13. As noted earlier, to actually prove that for any D € MF2d(p, N), dimg, Vst (D) = dimg, D
requires a lot more work. Using this equality we immediately get that D is in the essential image of
Dgt. Proof of this claim can be found in [BC09, Pg. 183].

Assuming the claim from Remark 4.13, we summarize the following result. Similar statements are

true for crystalline representations by taking semistable representations with vanishing monodromy.

Theorem 4.14. (i) If V is a semistable p-adic representation of G, then Dg (V) is an admissible
filtered (¢, N)-module over K.

(ii) If D is an admissible filtered (v, N )-module over K, then Vg (D) is a semistable p-adic represen-
tation of Gg.

(iii) The ezact tensor functor Dg : Repﬁp (Gk) — MF¥(p, N) is an equivalence of categories and
Vg : MF3(p, N) — RepEP(GK) is a quasi-inverse.

4.3 Crystalline and semistable representations in small dimensions

In the last section we saw an equivalence of categories and in Chapter 2 we have already studied the
classification of admissible filetered (¢, NV)-modules over Q, in dimension 1 and 2. In case of dimension
1 we can study the representations in general for any p-adic field K but for dimension 2 case we take
K = Q, since in such cases ¢ is linear over Ky = K and this makes analyzing objects much easier
on the linear algebra side. So, in this section our goal is to understand the crystalline and semistable
representations that arise from our classification in Chapter 2.

4.3.1 Unramified Characters
For n > 1 let F : W,(k)* — Wy,(k)* be the relative Frobenius morphism of the smooth affine
[F,-group of units in the length-n Witt vectors. Also, let v : W,,(k)* — W), (k)* with y(z) := F(x)/z.

Lemma 4.15. There is a natural isomorphism

W (k)™ /yW (k)™ =~ Homeont (Gk, Z, ) = Homeoy (G, Q)

cont
onto the group of unramified p-adic characters of Gk .

Proof. [BC09, Pg. 118]. [

In other words, the lemma parametrizes such characters by integral units A\ € W (k)™ upto the
equivalence relation A ~ (o(c)/c)A. In Proposition 2.42 we have seen that such equivalence classes also
parametrize isomorphism classes of 1-dimensional admissible filtered (¢, N)-modules D over K with
ty (D) = 0. So to each continuous charcter n : Gx — Q) we can associate the isomorphism class of
D, of a 1-dimensional admissible filtered (¢, N)-module over K.
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Lemma 4.16. The bijective correspondence n — D, from continuous unramified character of Gk
to isomorphism classes of 1-dimensional admisible filtered (@, N')-modules over K with tg = 0, is the
contravariant functor D = Homg, (G, (¢, Beris). That is Dgys(Qp(n)) is in the isomorphism class D).

cris

Proof. Let n: Gk — Q be an unramified character. Them from Lemma 4.15 we get a A € W (k)*

such that for w € W(k)* satisfying v(w) = A, we have g(w) = n(g)w for all g € Gx. The choice
of w is unique up to a Z;-multiple, so the line D = Kow C W (k) only depends on \. Now
Dyis(Qp(n)) = Homg, (¢,1(Qp (), Beris) contains a nonzero element e corresponding to the map 1 +— w.
But dimg,Dg5(Qp(n)) < dimg,(Qp(n)) = 1, so D%i(Qp(n)) is 1-dimensional over Ko with basis e.
Clearly, the nontrivial gr’ is for i = 0 (as w € @’X) and p(e) = Ae because o(w) = Aw by the way we
choose w. |

In Example 4.4 we verified that D,;(Q,(1)) is identified with the Tate twist Ko[0](1) of the unit
object. Hence, in view of the tensor compatibility of the functor and the direct calculation of the filtered
(¢, N)-module Df;(Qp(1)), it follows from Lemma 4.16 via Tate-twisting that every 1-dimensional
admissible filtered (¢, N)-module over K is D}, applied to the Tate twist of an unramified character.
From Corollary 4.6 all continuous unramified characters are crystalline.

4.3.2 Trivial Filtration

Let K = Q, and Gal(K/K) = Gal(Q,/Q,) = Gg,. From Subsection 2.6.1 we recall that for K =
Qp, the study of modules in MF*}g(cp, N) with finite dimension, bijective Frobenius-action and trivial
filtration, is equivalent to studying, up to isomorphism, the GL,(Q,)-conjugacy classes of elements
of GL,(Z,). Now, from the equivalence of categories Dy : Reprf;S(G k) — MF3(p), we get that
V = Vgis(D) is a crystalline representation. In particular, V' is a Hodge-Tate representation and so
gr D = gr'D = Fil’D/Fil' D = D. Therefore, V must be a Cp-admissible representation of Gg,. From
[FOO08, Prop. 3.55] V' is Cp-admissible if and only if the action of Ig,, on V' is discrete. Now from
Corollary 4.6 it is obvious that V' is an unramified representation of G,. In summary we have the
following proposition.

Proposition 4.17. The n-dimensional admissible filtered (¢, N')-modules over Qp, with a single Hodge-
Tate weight have vanishing N, and in case of Hodge-Tate weight 0 are parametrized upto isomorphism by
GL,,(Qp)-conjugacy classes of elements of GLy(Zy). In general if the Hodge-Tate weight is r then such
objects natyrally correspond under D} to x"-twists of n-dimensional unramified p-adic representations
Of GQP .

4.3.3 2-dimensional cases

Let K = Q, and Gal(K/K) = Gal(Q,/Q,) = Gg,. Note that for K = Q,, the Frobenius-action
on D € MFg (¢, N) is linear. The following proposition and the subsequent remark classifies all 2-
dimensional crystalline representations of G, .

Proposition 4.18. The set of isomorphism classes of 2-dimensional crystalline representations V' of
Gq, that have distinct Hodge-Tate weights {0,7} with v > 0 and are not direct sum of two characters
is naturally parametrized by the set of quadratic polynomials Py(X) = X% + aX + b € Z,[X] with
vp(b) = r, where P, is the characteristic polynomial of ¢ on D = D} (V).

cris

(i) If P, is irreducible then D has description as in Lemma 2.46. The crystalline Galois representa-

tion Vi (D) contravariantly associated to D is irreducible.

(ii) If P, is reducible with distinct roots then D has description as in Lemma 2.47.

If P, is reducible with a repeated root X (so r = 2up(X) € 2Z7) then D has description as in
Proposition 2.48(ii) for the case A\ = Aa = A.
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In all these cases, ¢ does not act as a scalar on D. Also, the associated Galois representation V(D)
is reducible if and only if P, has a unit root py € Z, (so this never occurs when P, has repeated roots),
in which case the other root is p" g for some pz € Z, and Vi, (D) is an extension of the unramified

character 1, associated to p1 by the r-fold Tate twist x"1,, of the unramified character 1, associated
to pa.

Proof. (i) From Remark 2.49(i) we get the parametrization. These are exactly the 2-dimensional
crystalline representations of Gig, with Hodge-Tate weights 0 and r for which ¢ acts irreducibly
on D. As noted, removing the effect of the initial Tate twist on these examples amounts to
allowing the smaller of the two distinct Hodge-Tate weights to be an arbitrary integer.

(ii) For the case when P, is reducible with distinct roots, from Proposition 2.48(ii) and Lemma 2.47,
we obtain all crystalline representations of Gig, with distinct Hodge-Tate weights 0 and r > 1 (via
the contravariant functor V{ ;) such that the representation is not a direct sum of two characters

and the g-action has distinct eigenvalues. As noted in Remark 2.49(iii), these are parametrized

by unordered pairs of distinct non-zero Ai, A2 € Zj, such that v,(A1) + vp(A2) =r > 1.

In terms of this parameterization, the reducible Galois representations are exactly those for which
exactly one of A or Ag is in Z;. Moreover, in these reducible (non-decomposble) cases the unique
non-trivial admissible subobject of D is the ¢-eigenline for the unit eigenvalue, so in terms of the
contravariant functor, the Galois representation has the following non-semisimple form,

)
0

with 1 and 19 unramified characters of G, (valued in Z;'). These unramified characters corre-
spond respectively to the units A\; and Ag/p” and our analysis (here and in Lemma 2.46) shows
that the knowledge of these eigenvalues determines the Galois representation up to isomorphism.

From this we conclude two important facts. First of all, for any pair of unramified characters
V1,2 1 Gg, = Z, and any r > 1 there is exactly one non-semisimple crystalline representation
Py abo CONtaining 1o (r) and admitting ¢ as a quotient. And the other important conclusion is that
there is no non-split crystalline extension of ¥2(r) by ¥1 with 7 > 1. That is, if 51,72 : Gg, = Q
are crystalline characters (i.e., Tate twist of unramified characters) with respective Hodge-Tate
weights hq and he, then there is no non-split crystalline extension of ny by 7y if he > hy.

Next, we look into the case when P, is reducible with repeated roots. The statement about D
is clear from Proposition 2.48. The corresponding Galois representations via the contravariant
functor V7, are the irreducible crystalline representations with Hodge-Tate weights 0 and r € 2Z%
such that the ¢-action has a double root (with slope r/2) for its characteristic polynomial. The

parametrization is clear from Remark 2.49(iii).
[

Remark 4.19. From Remark 2.49(iii), we notice that if D is a direct sum of two 1-dimensional ob-
jects then in contravariant Galois-theoretic terms, by Lemma 4.16 the corresponding representations
are direct sums 11 @ 1o(r) with each 1; unramified (and the integral units A\; and A2/p” encode the
Frobenius-action for ;). Removing the Tate twist makes this into the reducible decomposable crys-
talline case with distinct Hodge-Tate weights.

Combining Proposition 4.17, Proposition 4.18 and Remark 4.19 we obtain all 2-dimensional crys-
talline representations of G, .
Next, we consider the case of non-crystalline semistable 2-dimensional representations V' of G, .

Proposition 4.20. The non-crystalline semistable 2-dimensional representations V' of Gq, with small-
est Hodge-Tate weight equal to 0 are parametrized as follows: there is a Hodge-Tate weight v > 0 of the
form r=2m+1 withm >0 and V is parametrized up to isomorphism by a pair (A, c) with A € p™Z,;
and ¢ € Q. For a given (X, c) the contravariantly associated filtered (¢, N)-module D = D% (V') is
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given explicitly by the non-crystalline case (N # 0) in Section 2.8. In these cases there is an admissible
nontrivial subobject of D if and only if m =0, i.e., A € Z .

Proof. Given a semistable 2-dimensional representation V' of Gg,, up to Tate-twist we may assume
that its smallest Hodge-Tate weight equals 0. By the equivalence of categories in Theorem 4.14 we get
that D (V) is admissible and has Q,-dimension 2. By our analysis of non-crystalline case (N # 0)
in Section 2.8, we have the statement of the proposition. The last statement follows from Remark
2.44. |

Remark 4.21. According to the parameterization in Proposition 4.20, if m > 0 (i.e., the necessarily dis-
tinct Hodge-Tate weights 0 and 2m + 1 are not consecutive integers) then the semistable representation
is irreducible, whereas if m = 0 then it is necessarily reducible and non-semisimple (as N # 0).

The case of reducible non-crystalline semistable representations from Proposition 4.20 and Remark
4.21 can be analyzed further. Using Lemma 4.16 and the contravariant functor D, these cases are
precisely of non-split extensions of 1) by (1) for the unramified character ¢ : Gg, — Q' classified by
A € Z,; . In particular, for these reducible casesthe larger Hodge-Tate weight appears on the subobject
exactly as in the crystalline reducible non-semisimple cases in Proposition 4.18 (but now the gap
between weights is necessarily 1). Hence, the unique unramified quotient character ¢ determines the
2-dimensional representation space (though not its non-split crystalline extension structure) up to
isomorphism.

Applying the unramified twist by ¢~! brings us to the case A = 1 because D is tensor-compatible.
Now, since D% (Q,) = D%i(Qp) =~ Ko[0], we see that up to unramified twisting, the 2-dimensional
reducible non-crystalline semistable representations of Gg, are parametrized by a single parameter
¢ € Qp. Note that to choose a basis of the line D,;,(Q,) amounts to making a choice of Q,-basis of the
canonical line Qp(1) = Qp - t C Beris C Bag.

Focusing on the case ¥ = 1, we have described all of the lines in the space

H;t(GQpa Qp(l)) = EXt;t(vaQp(l)) C EXté@p[GK}(Qp’Qp(l)) = HI(GvaQp(l))

of extension classes with underlying semistable representation. There is a distinguished line whose non-
zero elements are the non-split crystalline extenison classes of @, by Q,(1) (all of which are mutually
isomorphic as representation spaces, forgetting the extension structure). The set of other lines is
naturally parametrized by a parameter ¢ as above. By Kummer theory, H! (Gg,,Qp(1)) is 2-dimensional
when p > 2. Hence, the proved existence of a line of crystalline classes and a line whose non-zero
elements are semistable classes shows (via the preservation of semistability under subrepresentations,
quotients, and direct sums) that when p > 2 all elements in H'(Gg,,Qp(1)) correspond to semistable
representations, and that there is adistinguished line consisting of the crystalline classes. We have the
following generalization,

Proposition 4.22. For any p-adic field K, each element in H' (G, Q,(1)) corresponds to a semistable
Gk -representation and there is a Q,-line consisting of the crystalline classes.

Proof. This is a restatement of Proposition 3.27. |



Chapter 5

p-adic Galois representations from
elliptic curves over Q,

In this chapter we work with primes p > 5. Fix K = Q, and its algebraic closure as K = @p with
the absolute Galois group Gg, = Gal(Q,/Q,). Let E/Q, be an elliptic curve and let T,(E) be its
p-adic Tate module which is a free Z,-module of rank 2. We set V,,(E) = Q, ®z, T,(E), a Qp-vector
space of dimension 2. There is a natural action of the absolute Galois group Gg, on T,(E) and V,(E).
Therefore, we get representations

pp - Gg, — Autz, (T,(E)) and p,: Gg, — Autg, (Vu(E)).

For more details on elliptic curves please refer to [Sil13, Chap. III, V and VII|
The goal of next few sections is to study the p-adic Galois representations coming from elliptic curves
over Q, and give a classification of such representations based on reduction type of elliptic curves.

5.1 Introduction

In [Vol00], we find an explicit description of the p-adic Galois representations coming from elliptic
curves over (Q,. We mention the key result below.

Theorem 5.1. Let V), be a 2-dimensional p-adic representation of Gq,. Then the following assertions
are equivalent.

(i) There exists and elliptic curve E over Q, such that V,(E) is isomorphic to V.

(ii) The representation V), is potentially semistable (i.e., semistable over a p-adic field K) and the
associated filtered (¢, N, G q,)-module is isomorphic to an object of the list D* (cf. 5.2.1).

Using certain necessary conditions Volkov describes a list D* of isomorphism classes of objects in
MFk (¢, N) arising from elliptic curves over QQ,. This is the content of our Subsection 5.2.1, where
we explicitly describe these modules along with respective Frobenius- and monodromy-actions. Next,
given and elliptic curve E/Q,, based on its jg-invariant and reduction type we describe the object on
D* which is isomorphic to V,(E). In other words, after application of the functor Dy, which we shall
describe below, we get Dyt (V,(E)) and so we compare with the objects in the list D*. We do all the
computations and draw some parallels from the results proven in Chapter 3 as well. The theorem also
claims the converse problem of constructing examples of elliptic curves out of any given object in the
list D*. We do not prove the converse and instead give several (though not all) explicit examples of
elliptic curves E/Q,, via Weierstrass equations such that V,,(£) is on the list D*.

Before we start, we discuss some notations and formalism first.

73



74 Chapter 5. p-adic Galois representations from elliptic curves over Qp,

5.1.1 Notations

Let Q,2/Q, be an unramified extension of degree 2. Let w13 € Q, such that {3 4+ p = 0. Let mg = 735,
Ty = Ty, T3 = Ty, T2 = Ty, T = —p. Also, let (12 be a primitive 12-th root of unity and let (s = (%,
G = C%Z? (3 = Cil27 G = C?Q

For e € {1,2,3,4,6} consider Qp,(m¢): it is a totally ramified extension of Q, of degree e. Since
p > 5, the ramification index e is prime to p and therefore Q,(7.)/Q, is tamely ramified. Let K, be the
Galois closure of Q,(7) in Q, and G, /g, = Gal(K./Qj) the Galois group, let I, the inertia subgroup
of the extension Q,/K.. Since (Z/eZ)* has order 1 or 2, therefore p=1 mod e or p=—1 mod e.

Based on the discussion above we would encounter the following possibilities:

(1) K1 = Qp and GKl/Qp =1.
(2) K2 =Qyp(m2) and GK,/Q, = (12) where 79 is defined such that 7o(me) = —ma.

(3) Ife€ {3,4,6} and e | (p— 1), then K, = Q,(7¢) and G, /g, = (Te) Where 7, is defined such that
Te(ﬂ-e) = Ceﬂ-e'

(4) If e € {3,4,6} and e | (p+ 1) then K. = Qp2(me) = Qp(7e, Ce). Gr, /g, = (Te) ¥ (w) where 7 is
defined such that 7¢(me) = (e, Te(Ce) = (e and w is the list of the absolute Frobenius which fixes
7e and w((.) = (1. Tt is easy to observe that wr, = 7. lw.

If K] is another Galois extension of Q, of ramification index e then there exists a finite unramified
extension M of Q, such that MK, = MK].

Now we take a look at quadratic extensions of Q. The group Q. /(Q, )* has order 4 and there
are exactly 3 quadratic extensions of QQ,, one unramified and two totally ramified. We write these
extensions as My = Qy2, Ma = Qp(m2) and M3 (for example if 4 | (p + 1) then M3 = Q,(¢472)).

Let N, = {a € Z such that |a] < 2,/p} and N its set of non-zero elements. Of course, N} =
2(2,/p]. Let ®, € Q[X] be the e-th cyclotomic polynomial. Set v. = (. + ;' = Tr(®.) and we have

-1 ife=3
Tr(®.) =<0 ife=4
1 if e = 6.

For e € {3,4,6} and e | (p — 1), let N, € N* be the set if all a € Z such that (v2 — 4)(a® — 4p) is
a square in Q.

Lemma 5.2. Leip > 5. Ifd|p—1 then the set Ny = {a € Z | a? —4p = —1 mod (Q*)?} is in
bijection with 114(Q) and if 3 | p— 1 then the sets N3 = Ns = {a € Z | a®> — 4p = =3 mod (Q*)?}
are in bijection with u(Q). Moreover, if 12 | p — 1 then these sets (N3 and N}y are disjoint.

Proof. I p=1 mod 4 then Ny ={a € Z | — (a* —4p) € (Q*)*} ={a € Z | 4p =0a® +b*,b € L} is
in bijection with {a € Z | p = a® + b?, b € Z}. Let a4 be the conjugation in Q(¢4) = Q(v/—1) (i.e., the
generator of Gal(Q(¢4)/Q) and Ng(¢,)/q(®) = zo4(x) for x € Q((s) is the norm). The ring of integers
of Q(C4) is Z[G] = {a + (b, a,b € Z}. Let Npa = {z € Z[C4] | Ngy)/0(x) = p}, it is a non-empty
set since Z[(4] is a principal domain and p =1 mod 4 (which is to say that -1 is a quadratic residue
modulo p). Any element of N, 4 provides an element in the set {a € Z | p = a® +b?, b € Z}. Hence,
the map from N, 4 to NpXA is clearly surjective and any two elements x1, xo have the same image if and
only if zo = g4(z1). So we have a bijection N, 4/(c4) — /\/’;4. Now if zy € N4, the set N 4 consists of
x0,04(zg) as well as their product with elements of norm 1 i.e., the units (Z[(4])* = ({4), so we deduce
a bijection N 4/(04) = ((4) and hence we have the first claim.

If p=1 mod 3, let (3 = (2, a primitive third root of unity. Note as o3 the conjugation and
No(¢;)/@ as the norm for the quadratic extension Q(¢3) = Q(v/=3) over Q; the ring of integers in
Z[¢3] = {(a++v/=3b) | a,b € Z, a =b mod 2Z} which is a principal domain and its units are elements
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of norm 1. The set N3 = {x € Z[(3] | Ng(c,),0(z) = p} is non-empty because Z[(3] is principal and
p =1 mod 3 (which is to say that -3 is a quadratic residue modulo p). Now the proof is quite similar
to the previous case: the set N5 = {a € Z | 12p = 3a? 4+ b%,b € Z} is in bijection with N, 3/(03),
which is in bijection with (Z[(3])* = (s)- [ |

Now we mention some facts about elliptic curves that will be used later. Let E be an elliptic curve
over Q,. Let us assume that v,(jg) < 0, i.e. E has potentially multiplicative reduction at prime p.
Then upto twisting E by a quadratic character, we may assume that E = E, [MP06, pg. 300], where
E, is the Tate curve with ¢ € Q;, vp(q) > 1 and ¢ is only determined by the modular invariant jg
(refer Theorem 3.26). In Section 3.4 we discussed the p-adic representation V,E,. Recall that by the
choice of p-power compatible roots of unity, from (3.5) we have an exact sequence of Z,[Gg,]-modules,

0 — Zy(l) — T, By — Z, — 0.
On tensoring with Q,, we obtain a short exact sequence of Q,[Gq,]-modules,
0 — Q1) — VB, — Q, — 0. (5.1)

Next, we assume that v,(jg) > 0. In this case £ has potentially good reduction, i.e., it acquires
good reduction over a finite extension of Q,. défaut de semistabilite (dst) is defined as the minimal
ramification index e, for which E has good reduction. This is given as dst(E) = 12/ gcd(12,v,(AE))
where Ap is the discriminant of E. For a minimal Weierstrass model of E, 0 < v,(Ag) < 12 and
vp(jE) > 0 implies v,(Ag) is coprime to 12. Therefore

1 ifv,(Ag)=0

2 ifv,(Ag)=6
dst(E) =e=1<3 ifv,(Ag) € {4,8}

4 if v,(Ag) € {3,9}

6 ifv,(Ag) €{2,10}

Notice that ¢(n) € {1,2} where ¢ is the Euler’s totient function.

e = dst(F) is coprime to p. E acquires good reduction over a totally ramified extension of Q,
of degree e; if L is such an extension, let E;, = (E xq, L) x Fp be the reduced curve over [, and
a,(E) = ap(EL), the trace of the characteristic polynomial of the Frobeniu acting on V;(Er) for [ # p.
ap(EyL) is a rational integer independent of I # p and a,(Er) = p + 1 — #EL(F,). E/F, is ordinary if
p 1 ay(Er) and supersingular if p | a,(EL). If E has good reduction over L and the reduced curve is
ordinary, then the connected part Ez(p)° of the p-divisble group Fr(p) has height 1 and we have the
following exact sequence

0 — Er(p)° — Er(p) — Er(p) — 0

which induces a short exact sequence [Mum74, Pg. 147]

0 — TH(EL(p)®) — Tp(E) — Tp(EL) — 0. (5.2)

Tensoring it with @, gives an exact sequence of Qp[GQp]—modules.

5.1.2 Some Formalism

We recall that Repr(G@p) is the category of p-adic representations of G i.e., Qp,-vector spaces of
finite dimension with a continuous and linear action of Gg,. Also Rep?Qf;S(GQp) and Repﬁp(G@p) are
respectively the full subcategories of p-adic crystalline and semistable representations of Gg,. Let K
be a finite Galois extension of Q, contained in Q,. We can similarly define the full subcategories
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Rep®(Gg,) and Rep%(GQp) respectively, of crystalline and semistable K-representations of Gg,.

pcris

Moreover, we define Repr (Gg,) and Rep&S:(G) respectively, as the full subcategories of potentially
crystalline and potentially semistable representations of G.
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Let Gg/g, = Gal(K/Qy), and Ko the maximal unramified extension of Q, contained in K. Let
o be the absolute Frobenius on Ko. We define the category of filtered (o, N, Gk q,)-modules below,
similar to the definition 2.10 of filtered (¢, N)-modules.

Definition 5.3. A filtered (p, N, GK/QP)-module is a Ky-vector space D equipped with
(a) A o semi-linear action of G /g, (the inertia subgroup acts linearly).
(b) A o semi-linear, G /g, -equivariant and injective Frobenius map ¢ : D — D.
(¢) A Kp-linear and G K/Q,-equivariant endomorphism N : D — D such that No = ppN.
)

d) A decreasing, separated and exhaustive filtration on D = K Q g, D given by K-vector subspaces
0
{Fil'Dg,1 € Z}. It must be stable under the action of G i/, which extends semi-linearly to Dk

Morphism: A morphism f : Dy — Ds between two filtered (¢, N, Gg /QP)—modules is a Ky-linear map
commuting with the action of G /q,, ¥ and N such that if we write fx for the K-linear map obtained
from f by scalar extension, then fg (FiliDl, K) C FiliD27 x for every i € Z.

We denote by MF /g, (¢, N) the full subcategory of filtered (y, N, Gk q,)-modules of finite dimen-
sion (i.e., the action of G /g, on D is discrete). Similarly, denote MF g g, () the full subcategory of
objects in MF /g, (», N) such that N = 0. For K = Q, we observe that the definition above coin-
cides with definition 2.10 and so we write unambiguously the categories MFgq, (¢, N) and MFgq, (¢).
The Hodge-Tate weight of an object D of dimension 2 in MFg g, (¢, V) is a pair (r,s) such that
Fil'Dg = D if i < r and Fil'Dg = 0 if i > s. For an object D € MFK/QP(%N) of dimension d we
have the definitions of Newton number and Hodge Number respectively, from definitions 2.14 and 2.24.
Therefore we can also impose the admissibility condition of definition 2.28 on D.

Now we give the functors connecting the categories of Galois representations and the semi-linear
algebra objects we discussed above. From (3.1) we have the following functors,

Dasis : Repd(Glg,) — MFg, ()
Dy : Rep, (Gg,) — MFq, (¢, N).
We write the contravariant functors as
:ris : Rep@CQf:,S(GQp) - MFQp (90)

D;; : Repy, (Gg,) — MFq, (¢, N).

*

where DY (V) = Home[GQp](Va Beis) and D% (V) = Home[G@p](V, Bgt). Moreover, in similar fashion
we can also define the functors

Dzris,K/Qp : Rep%iS(GQp) — MFK((P)
D k/q, : Repi (Gg,) — MFg(p, N).

with D3 r/q, (V) = Homg, (G (V, Bais) and D /g (V') = Homg, (g ) (V, Bst). Here G = Gal(Qp/K).
These are full, faithful and exact tensor functors which establish the anti-equivalence of the categories
Repf®(Gg,) and Repj(Gg,) with their respective essential image.

Now we set Dy . and Dy respectively, as the functors obtained by taking the direct limit of
Diis i/, and Dg /g, where K varies over all finite Galois extensions of @, contained in Qp. These
are contravariant functors from Repg:is((}) and Rep%spt(G) to the direct limit of MFg g, () and

MF g /q, (¢, N) respectively.

In the Chapter 2 we saw the classification of admissible filtered (¢, N)-modules in dimension 1 and 2
when the base field is Q. In this chapter we turn our attention towards p-adic representations V,,(£)
coming from elliptic curves defined over Q,. Upon application of the appropriate contravariant functor,
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we obtain certain semi-linear algebraic objects in MF K/@p(go,N ). Our first objective is to classify all
such “interesting” objects. These objects are mentioned explicitely in the list we call D*. Next, we
consider elliptic curves and show that for any elliptic curve E/Q, there exists an object D € D* such
that Dyt (Vp(E)) ~ D. In fact, the converse is also true, i.e., for any object on the list D* there exists
an elliptic curve £/Q), such that Dy (V,(E)) is isomorphic to the object we started with. We mention
some explicit examples for this case, however we do not discuss the proof of the converse statement. A
detailed account and proof of these statements can be found in the paper [Vol00].

5.2 Some objects in the category MF (o, N)

5.2.1 A list of objects from MFy (¢, N) of Hodge-Tate weight (0,1)

In this section we describe the objects of MFg, (¢, N) that are of interest to us i.e., Q)-vector spaces
with some extra structure. We describe it with a list which makes the parametrization of objects easier.
Objects in each separate case are related by certain “quadratic twists” which we describe later.

Case 1. (Dy,) : Two-dimensional objects D € MFg, (¢, V) of Hodge-Tate weight (0,1) such that there
exists V € Rep%p(GQp) with either D ~ D% (V) or D ~ D% (V') where V" € Rep%p(GQp) is a twist
of V by a quadratic character. Moreover, it must be that V, V' ¢ Rep%irls(GQp). These objects are
parametrized as D} (e, A\, &) where e € {1,2}, A € {£1} and o € Q.

(a) e =1. In this case, we have K = K1 = Q, and D = Que; & Qpez with the Frobenius-action given
as ¢(e1) = Xep, p(e2) = Apes and the monodromy-action as N(e;) =0, N(e2) = e; i.e.,

] = (3 fp) and [N] = (8 (1)).

The filtration on Dy is given as

' Dg, if: <0
Fil'Dg = < (ae1 +€2)Q,, ifi=1
0, if¢ > 1.

(b) e =2. In this case, we have K = Ky = Q,(m2) and D = Qpe; & Qpez with the Frobenius-action
given as p(e1) = Xeq, p(e2) = Apez and the monodromy-action as N(e;) =0, N(e2) = e; i.e.,

o] = (g fp) and [N] = (8 é)

The filtration on Dy is given as

| D, ifi<0
Fil'Dg = < (ae; + €2)Qp(me), ifi=1
0, if ¢ > 1.
Moreover, the action of G /g, = (19) is described as 1o(e1) = —e1 and mo(e2) = —es.

Case 2. (D7) : Two-dimensional objects D € MFq,(y, N) such that there exists V € Rep?Qf;s(GQp)
with either D ~ D! (V) or D ~ D};,(V') where V' € Rep?Qf;S(G@p) is a twist of V' by a quadratic

cris cris
character. These objects are parametrized in two different ways. The different cases arise owing to

whether or not the characteristic polynomial of the Frobenius-action, ¢ is irreducible over Q,.

First we mention the case when the charateristic polynomial of ¢ is reducible over Q,. The Q,-
vector spaces are parametrized as D (e, ap, ) where e € {1,2},a, € {0,1} and a € Q). Let u € Z) be
the unique element satisfying u 4+ u~!p = a,. Such a u exists because a, € Ly -
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(a) e =1. In this case, we have K = K; = Q, and D = Q,e; & Qpez with the Frobenius-action given
as p(e1) = uey, ¢(e2) = u~'pey and the monodromy-action as N(e;) = N(ez) =0 i.e.,

] = (g u91p> and [N] =0

The filtration on D is given as

, Dg, ifi <0
FﬂZDK = (0461 + GQ)QP, ife=1
0, if ¢ > 1.

(b) e =2. In this case, we have K = Ky = Q,(m2) and D = Qpe; & Qpe2 with the Frobenius-action
given as p(e1) = uey, p(ea) = u~lpes and the monodromy-action as N(e1) = N(ez) = 0 i.e.,

] = (3 uf’1p> and [N] =0

The filtration on Dy is given as

A Dk, ifi <0
Fil'Dg =< (ae; @ 1 + €2 @ 1)Qp(mg), ifi=1
0, if 7> 1.
Moreover, the action of G /g, = (72) is given as Ta(e1) = —e1 and Ta(e2) = —ea.

Next we deal with the case when the characteristic polynomial of ¢ is irreducible in Q,[X]. In this
case the Qp-vector spaces are parametrized as D (e, 0) with e € {0, 1}.

(a) e =1. In this case, we have K = K; = Q, and D = Qpe; & Qpez with the Frobenius-action given
as p(e1) = ez, p(e2) = —pey and the monodromy-action as N(ej) = N(e2) =0 i.e.,

] = (‘f }f’) and [N] =0

The filtration on Dy is given as

‘ Dy, ifi<0
Fil'Di = { Qpe, ifi=1
0, if i > 1.

(b) e = 2. In this case, we have K = Ky = Qp(m2) and D = Qpe; @ Qpez with the Frobenius-action
given as p(e1) = e2, p(e2) = —pe; and the monodromy-action as N(e;) = N(e2) =0 i.e.,

] = (? f) and [N] =0

The filtration on Dy is given as

| Dr, ifi <0
Fil'Dg = (61 & 1)Qp(7T2), ifi=1
0, if > 1.

Moreover, the action of G /g, = (12) is given as T2(e1) = —e1 and m2(e2) = —es.
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Case 3. (D) : Two-dimensional objects D € MFg, (¢, N) such that there exists V € Rept™™(Gg,)
pc Qp . Qp Qp
with D >~ D} (V). Moreover, it must be that D 2 Dg;,(V) for some V' € Repg " (Gg,) or V' a twist

pcris cris
by quadratic character of a crystalline representation. As in the previous case, these objects are again
parametrized in two different ways. The different cases arise owing to whether or not the characteristic

polynomial of the Frobenius-action, ¢ is irreducible over Q.

First we mention the case when the characteristic polynomial of ¢ is reducible over Q,. The Q,-
vector spaces are parametrized as D} (e, ap, e, ) where e € {3,4,6} and e | p— 1, a, € N, e € {£1}
and o € {0,1}. Let u € Z, be the unique element satisfying u + u!p = a,. Again, such a u exists
because a, € Z,; .

We have K = K, = Qy(n.) and D = Qpe; © Qpez with the Frobenius-action given as y(e1) = uer,
¢(e2) = u~1pes and the monodromy-action as N(e;) = N(ez) =0 i.e.,

] = (g u°1p> and [N] =0

The filtration on Dy is given as

| Dy, ifi<0
Fil'Di = { (aey @ 17 + e2 @ g )Qp(me), ifi=1
0, if¢ > 1.

Moreover, the action of G /g, = (Te) is given as T.(e1) = (Se; and Te(e2) = (_ “ea.
Next we deal with the case when the characteristic polynomial of ¢ is irreducible. The Q,-vector
spaces are parametrized as Dy (e, 0,a) where e € {3,4,6} and e | p+ 1 and a € PL(Qy).

We have K = K. = Q2(7c) and D = Q21 ® Q,2e2 with the Frobenius-action given as ¢p(e1) = e,
p(e2) = —pey and the monodromy-action as N(ej) = N(ez) =0 i.e.,

] = (2 ‘Op) and [N] =0

The filtration on Dy is given as

, Dk, ifi <0
Fil' D = { (ae1 @ .1 + ea ® 7e)Qp2(me), ifi=1
0, if i > 1.

Moreover, the action of Gk /g, = (7e) X (w) is given as w(e1) = e1, w(e2) = ez and Te(e1) = (e,
Te(e2) = ¢ tea.

5.2.2 Description of quadratic twists

Let Dy be an object from the list D* above. Let Vj € Rep&spt(G) such that Do ~ D7 (Vp). We say that
D in the list D* is a quadratic twist of Dy if there exists V; € Repaspt (G) such that Dy ~ Dy (Vo) and
V} is a twist by a quadratic character of V corresponding to the quadratic extension My, My or M3 of
Qp-

In what follows we specify four objects from each case in the list, Dy, D1, D2, D3 where (Dg, D1)
and (Dg, D3) are related via twist by an unramified quadratic character, whereas (Dg, D), (Do, D3),
(D1, D2) and (D1, D3) are related via twist by a ramified character. We have the following relations,
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[ Do | Ds | Ds | Ds |
Df (1,b, ) DI (1,-b, ) Df (2,b,«) DI (2,-b, )
Dz(l’a;wa) D:(lv_apva) Dz(2?apva) Dz(27_ap’a)
Dc(1,0) Dc(1,0) Dc(2,0) Dc(2,0)

Dy (4, ap, €, @) D* (4, —ap, e, ) D* (4, ap, —¢, ) D* (4, ap,—s, a)
DJc(3, ap, e, ) | Dp(3, ap,s a) | D5.(6,ap, —¢,a) | Dy (6, —ay, —¢, )
Do) | Dh0 ) [Drdo e Dot T
D5(3.0.0) | Die(3.0.—a) | Dpe(6.0.p%"1) | Die(6.0,—p%a")

Remark 5.4. (i) In the third case Dy = Dy and Dy = Ds i.e., the unramified twists give isomorphic
representations.

(ii) In the sixth and seventh case, for a € P}(Q,), @ = —a if and only if a € {0, +00} in which case
the ramified twists give isomorphic representations.

(iii) If an object D of the list D* comes from an elliptic curve over Q, i.e., there exists £/Q), such
that D ~ D7 (V,(E)) then the objects D; with i € {1,2,3} come from elliptic curve E; obtained
by twisting E by a quadratic character corresponding to the quadratic extension M; as in [Sill3,

Examp. X.2.4].

5.3 Classification of Q,[G]-modules V,F

In this section we look at Qp-vector spaces V,F = Q, ®z, T, where T,F is the usual p-adic Tate
module for some elliptic curve E/Q,. This examination is divided into 3 cases just as in our list D*.
For the first case, we look at the elliptic curves having potentially multiplicative reduction over Q.
In the second case, we deal with the elliptic curves acquiring good reduction over @, or a quadratic
extension of Q,. Finally, we examine the case where an elliptic curve E/Q, has potentially good
reduction where it turns out that £ acquires good reduction over an extension of QQ, of degree either
3, 4 or 6.

5.3.1 Case 1: Potentially multiplicative reduction

From (5.1) we have the exact sequence,
0—Qp(l) — VEg — Q, — 0.

We know that any extension V' of Q, by Q,(1) is semistable from Proposition 3.27. Recall that we
write V,E; = Qpe @ Q,f for a choice of basis elements (e, f). Note that we are working with the
contravariant functor D, = Homg, [G@p}(" Bst). So we define Qp-linear Gg,-equivariant morphisms w

and z from V,E, into B by setting
w(e) =0, w(f) =1
1
= t = —1 q
) =1, =(f) = - loglq

where m € N> such that ¢ = ugp™ for u, € Z; and ¢ as defined in section 3.4. z is injective
and its image does not depend on the choice of the element §. Since we have D := D} (V,E,;) =
Homg, (g (VpEq, Bst) is a Qp-vector space of dimenison 2. Also, w and z are clearly linearly independent
over ), therefore D = Q,uw & Qpz. In addition, from the Frobenius map ¢ on By we have (t) = pt
and ¢(log[g]) = plog[q] since ¢ € R(Oc,/pOc,); N(t) = 0 and N(log[g]) = m. From this it is easily
deduced that p(w) = w, p(2) = pz and N(w) =0, N(z) = w i.e.,

[@]Z(é 2) and [N]:<8 é)
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This gives D a structure of (¢, N)-module over Q,,. It could be seen that Q,w is a subobject of D while
Qpz is not, owing to the fact that N(z) = w. Therefore the exact sequence 3.5 does not split.

Notice that we are in the situation NV # 0 of Section 2.8 with A; = 1. Therefore, we can immediately
conclude from Lemma 2.43 that D ~ Dy ) for some unique oy € Qp. The filtration on D is given as,

| D, ifi<0
FiI'D = < (aqw + 2)Qp, ifi=1
0, if ¢ > 1.

To determine v, we observe that by definition we have Fil' D = Homg, (¢ (Vp Ey, tBin) ie., 0(aqw(a)+
2(a)) = 0 for any a € V,E; = Que ® Q,f. Since w(e) = 0 and z(e) =t € ker 0, we see that the
condition above could be re-written as 0(a,w(f)+z(f)) = 0(ay+1log[g]/m) = 0. Since log|q] = log,(ug)
mod ker 0, we get that 6(may +log,(ug)) = 0. But ma, +log,(u,) € Qp, therefore may, +log,(u,) = 0.
So we have oy = —log,(ug)/vp(q) where ¢ = ugp¥?@ and vy,(q) > 1.

Remark 5.5. (i) The map pZ, \ {0} — Q, where ¢ — « is surjective. However, it is not injec-

tive. For q1,q2 € pZ, we have that ag = a4, if and only if 1ogp(u:;f(q2)) = 1ogp(u7(;§(q1)) ie.,

uﬁqu(qz)(p—l) u;fg(‘h)(p_l) which is equivalent to qqup(qz)(p—l) _ q;fp(‘h)(p_l)‘

(ii) From Lemma 2.43 we conclude that if Dy, D9 are two (¢, N)-modules, as above, corresponding
to q1,q2 € pZy \ {0} such that Dy ~ Dy then ag = ayg,.

(iii) In the category MFq, (¢, N) it can immediately be observed that D (V,E,) is isomorphic to
D;.(1,1,a) with o = g € Q).

(iv) From Proposition 2.45, we also see that o, € Q) parametrizes all non-isomorphic objects Dy 4,3
of Hodge Tate weight (0,1) and they all come from Tate’s curve over Q, because the map ¢ — ay
is surjective. In addition, we see that for two Tate curves E;, and E,, we have that V,E,, ~ V,E,,

p(a2)(p—1) _ qu(m)(p—l)

if and only if ¢ i.e., F;, must be isogenous to Ey, over Q.

(v) By twisting Tate’s curve E,/Q, with three possible quadratic characters corresponding to the
quadratic extensions Mj, Ms and Msj, we obtain all the objects D} (e, b, «) where e € {1,2},
be {£1} and a € Q, of the list D*.

5.3.2 Case 2: Good reduction, e € {1,2}

Let E be an elliptic curve over Q, with v,(jg) > 0 and e = dst(E) € {1,2}. Up to a twist of E
by a ramified quadratic character correpsonding to the extension Qp(m2)/Qp, we may assume that £
has good reduction over Q, (i.e., e = 1). We write E, also for the scheme over Z, from which we get
the elliptic curve over Q,; E(p) for the associated p-divisible group; E =FEx z, Fp the special fiber;
ap = ap(E). We have V,E = V,(E(p)) and the determinant is Q,(1).

We know that every object V' € Repr(GQp) coming from a p-divisible group (or Barsotti-Tate
group) is crystalline [Fon82b, §6], and the Hodge-Tate weight of D = D7;(V) = Home[GQp](V, Beris)
is (0,1). Therefore the object D = D ;(V,E) of MF& (¢) is a 2 dimensional Q,-vector space, equipped
with a Q,-linear Frobenius map ¢ : D — D verifying ¢% —a,o +p = 0. Its Hodge-Tate weight is (0,1)
and so Fil'D is a Qp-line. Moreover, these two data on D must satisfy the admissibility conditions of
Definition 2.28.

We deal with the cases of E being supersingular or ordinary separately.

1. First of all we suppose a, = 0 i.e., E is supersingular (the connected part E(p)° of E(p) is of
height 2 and V,(E) = V,(E(p)°)). So the characteristic polynomial of ¢, P,(X) = X? + p is
irreducible in Q,[X] and therefore, no Q,-line of D is stable under ¢. Let e; € D non-zero and
es = p(e1) then (eq, ez) form a basis of D in which the matrix of ¢ is given as

ol = (ﬁ’ }f“) .
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The admissibility condition of Definition 2.28 is also satisfied, since ¢ (D) = 1 = det[p] = tn(D)
and there are no proper sub-objects of D in MF@‘i((p) Now we observe that we are in the setting
of Proposition 2.48 and therefore D ~ Dyq ;. The filtration on D is given as,

' D, ifi <0
FiI'D = S Qpeq, ifi=1
0, if7 > 1.

Remark 5.6. (i) In the category MFq, (o, N) it can immediately be concluded that D¢ (V,F)
is isomorphic to D} (1,0) from the list D*.

(ii) Twisting by a quadratic character corresponding to extension Q,(m2)/Q,, we get the object
D3(2,0) in MFg, (r,) () of the list D*.

2. Next we suppose that a, # 0 i.e., a, € NS and E is ordinary. In the exact sequence of Q[Go,l-
modules _
0 — V,(E(p)°) — VE— V,E—0 (5.3)

the action of inertia subgroup Ig, of Gg, on the Q,[Gg,]-module of rank one, VZDE is trivial. By

*

application of the contravariant functor D,

we obtain another short exact sequence in MF&(}D (p)
0— Dy —D-—Dy—0 (5-4)

where D = D} (V,E), D1 = Dl (Vo E) and Dy = Dy (Vi (E(p)°)). Tt is obvious that the exact
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sequence 5.3 splits in Rep@p(GQp) if and only if the exact sequence 5.4 splits in MFg, (¢).

Since a, # 0 mod pZjp, by Hensel’s lemma [Mil08, Th. 7.33] the polynomial P,(X) = X?—a,X +p
has two distinct linear factors in Q,[X] i.e., two distinct roots in Q,. Let u = u(a,) be the unique
element of Z; such that u + u™'p = a,. So we have P,(X) = (X — u)(X —u~!p) and ¢ is
diagonalizable over D. Let (eq, e2) be Q,-basis of diagonalization of ¢ in D such that ¢(e1) = ue;
and ¢(e2) = u~'pes. The admissibility criterion is satisfied for D since ty(D) = 1 = det[yp] =
ty(D). Now if we assume that D is not a direct sum of two admissible (¢, N)-modules of
dimension 1 then we are in the setting of Proposition 2.48. In this case the filtration on D by
Remark 2.49 (i) is given as

| D, ifi<0
Fil'D = (61 + GQ)QP, ifi=1
0, if 7 > 1.

Otherwise, we may assume that D is indeed a direct sum of two admissible (¢, N)-modules of
dimension 1 which is equivalent to saying that the exact sequence 5.3 splits. In this case we are
in the setting of Remark 2.49 (iii) and therefore the filtration on D is given as,

| D, ifi<0
Fil'D = { Qpeq, ifi=1
0, if i > 1.

Remark 5.7. (i) In the category MFgq,(y, V) it can immediately be concluded that D (V,E)

cris
is isomorphic to D (1, ap,«) from the list D* with a, € pr and a € 0,1. Moreover, the
exact sequence 5.3 splits if and only if a = 0.

(ii) Twisting by a quadratic character corresponding to extension Q,(m2)/Q,, we get the object
D¢ (2, ap, ) in MFq_ (r,)(¢) of the list D*.
5.3.3 Case 3: Potentially good reduction, e € {3,4,6}

Let E be an elliptic curve over Q,, such that v,(jg) > 0 and its défaut de stabilite, dst(E) = e € {3,4,6}.
Then E acquires good reduction over a totally ramified extension L = L. = Q,(m.)/Q, of degree e and
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it does not have good reduction over any smaller extension i.e., an extension of Q, with ramification
index striclty smaller than e. We take K as the Galois closure of L inside Q,. We denote by K the
maximal unramified extension of @, inside K. So we have Ko = Q) if p=1 mod eZ and Ko = Q,2 if
p = —1 mod eZ. We denote by Ef, and Ef respectively the Op = Zy[r.] and O = Z,2[m.] schemes
which give us the elliptic curves E'xq, L and E xq, K; EL(p) and Ex(p) = Er(p) X0, Ok respectively,
the associated p-divisible groups; Ep, = £, Xo, ), and Ex = Ex X0y Fj2 = Ep Xy, F2 their special
fibers and a,, = a,(E). We have V,Er, = V,(E(p)) as Q,[G]-modules and A2V, E = Q,(1).

We know that for any object V' of Repg, (Gq,) which is potentially Barsotti-Tate is potentially
crystalline and the Hodge-Tate weight of D = D (V) is (0,1). The object D = D (V,E) =
Deris,k/q, (VpE) is in MF}‘?/QP(cp): it is a Ky-vector space of dimension 2, equipped with a o-linear
Frobenius map ¢ : D — D, a semi-linear action of G /g, = Gal(K/Qp) on D which commutes with
¢. There is also a decreasing filtration on Dxg = K ®, D which is stable by the action of Gk/q,
when extended semi-linearly to Dg. The filtration is given such that Fil’Dg = Dk, Fil'! D = K-line
and Fil?> = 0. D must also satisfy the admissibility criteria of Definition 2.28. Recall that an object of
MFy/q, () is admissible if and only if the object in MFk (¢) obtained by forgetting the action of G /q,
is admissible. Moreover, we have A2D = Q,{1}, i.e., A2D = Q, on which ¢ acts with multiplication
by p, Gk /g, acts trivially and Fil'A2D = Q,, Fil’A?D = 0.

The inertia subgroup of G q,, I(K/Qp) = (7¢) acts Ko-linearly over D and we get a morphism
v : (1) — Autg, (D) such that v is injective. Indeed, if H = ker v C I(K/Q)) is non-trivial, then
D = D}, (V,E) is be an object of MF jcr (). This means V, E is crystalline over K and so E acquires
good reduction over the field K whose remification index is lower that e = dst(FE). But this is not
possible, and hence v is injective. We identify 7. with its image under v, and it is therefore an element
of order e € {3,4,6} in Autg,(D). Its determinant is 1 since A2D = Q,{1}. Finally, we deduce that
the characteristic polynomial of 7, is P,(X) = (X — ()(X — (1) € Z[X] since (Z/eZ)* = {£1}. In
particular, the Ky = Qp({)-linear automorphism is diagonalisable with distinct eigenvalues in D.

The Frobenius map ¢ : D — D is o-semi-linear. Since D ;i(V,E) is an object of MF(¢) (for-
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getting the action of Gg/g, on D) and E acquires good reduction over L (with F, as its residue
field), therefore ¢ satisfies the polynomial X2 — a,X + p. More precisely, the filtered p-module over
L, Dgyis 1,(Vp ) = Homg (g, 1(Vp B, Beris) gives, upon tensoring with Ko, the filtered (p, Gk, r)-module
?;ris7 K/L(V}’E)

We deal with the two cases of e | (p — 1) and e | (p + 1) separately.

1. e| (p—1). In this case ¢ is Qp-linear and the relation 7, = 7. implies that ¢ is diagonalizable
in the basis of eigenvectors of 7. In particular, the characteristic polynomial of ¢, X% — apX +p
splits in Q,[X]. This is equivalent to a, # 0 mod p, i.e., a, # 0 and Ey, is ordinary. Let u = u(a,)
be the unique element of Z; such that u + u™! = a,. There exists a Qy-basis (e1,e2) of D in
which the respective matrices of ¢ and 7. are given as,

el = (3 u°1p> and [r.] = (% CO)

with e € (Z/eZ)* = {£1}. This gives the structure of (¢, G¢/q,)-module of D = D 1/ (VpE).
Moreover, a, € pre and the (¢, Gg/q,)-module defined for € = 1 is not isomorphic to the one
defined for e = —1 (see [Vol00, Pg. 111]).

Because of the same reasons as in Proposition 2.48, the admissibility condition of Definition 2.28
implies that Fil' D # (e1 ® 1)K. So Fil' D = (e1 ® B+ e2 ® 1)K with € K = Q,(m.). The
admissibility condition is then satisfied for Dg. Fil' D is stable under the action of G /Q, if and
only if Te(e1 @ B+e2®1) = (Ce1 @Te(B) +({fea®1 € (e1 ® B+ 2@ 1)Qp(me) i€, (7(8) = B.
This is equivalent to saying that 7.(728) = (*7%7.(8) = 728 i.e., 7128 € Q,. By writing
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B = ar; % with a € Qp we get that the filtration on Dy is given as

, Dk, ifi <0
Fil'Dg =< (a-e1 @7, ¢+ e @mE)Qp(me), ifi=1
0, if i > 1.

If @ = 0, we get that Fil' Di = (ea ® 75)Qp(me). Otherwise, for o # 0, similar to Remark 2.49
(i) we can take Fil' Di = (e1 @ 7.° + ea ®@ 75)Qp(7e).

Remark 5.8. (i) In the category MF g, (¢), it can immediately be concluded that D¢ x /g, (Vo E)
is isomorphic to D;C(e, ap, €, o) of the list D* given in Case 3 of section 5.2.1.

(ii) The quadruplet (e, ap, €, a) varies over the set {n = 3,4 or 6 such that n | (p — 1)} x N, x
{#£1} x {0,1} and parametrizes all of the objects DJ.(e,ay,e, ). These objects are not
isomorphic to each other in MFg g, ().

(iii) From the short exact sequence of Q,[G]-modules
0 — Vp(Ei(p)°) — Vo — Vp(Ex) — 0
upon application of the functor Dzris’ K/, We get a short exact sequence in MF‘}?/QP (p)
0—Dy—D—Dy—0

where D; = Qpe; for @ = 1,2. This exact sequence splits if and only if o = 0.

.e| (p+1). In this case ¢ is o semi-linear, det ¢ = p and o(¢.) = (. We write Dy := D) =

{r € D|wz = z}, and so we have Dy = Dy (V,E) and Q2 ®g, Do = D. The relation
we = w implies that ¢ Dy C Dy and the restriction of ¢ to Dy is Qp-linear. Let (e1,ez) be a
Qp-basis which diagonalizes 7.. Upto reordering the basis (e1, e2) to (e2,e1), one can assume that
Tee1 = (ee1 and ey = (leg (ie., ¢ = 1). The relation 7w = wr, ! gives Te(we1) = (u(wer)
and Te(weg) = (1 (wes), so we; € Qy2¢; for i = 1,2. Now the o semi-linearity of w implies that
DoNQp2e; # 0 for i = 1,2. We deduce that there exists a Qp-basis of Dy which we again write as
(e1,e2) such that T.e; = (c.e1 and Teea = Ce_leg in D = Q2 ®q, Do. Finally the relation 7. = @7
gives that 7.(pe1) = ¢ lpe; and 7.(pea) = (e(pes), whence peq € Qp2e2 and pez € Q2eq. But
since 9Dy C Dy, we have that pe; € Qpex and pea € Qper. Since det ¢ = p, we therefore have
e = aey, pes = —pa~'e; where a € Q, - Then upto changing (e1, e2) to (e, aeq), we conclude
that there exists a Q-basis (eq, e2) of D such that

M:(? ‘f) , m=<f; <O> and [w]=<(1) (1’).

In particular, we see that ¢? 4+ p = 0 and therefore ap = 0 ie., Ep is supersingular. This gives
the structure of (¢, G/q,)-module of D = D¢ /g (Vo E).

Let us determine the K-line Fil' Dy. Since there are no proper Ky-vector subspaces of D stable
under ¢ (see Lemma 2.46) the admissibility condition is trivially satisfied. Now Fil' Dy must
be stable under the action of Gx/Q, = (7¢) % (w) which extends semi-linearly to Dg. This is
true for the case when Fil' D = (e; ® 1)K. Otherwise, let Fil' Dy = (e1 ® f + e2 ® 1)K with
B €K =Qpr). Thenw(e1®@B+ea®1) = e1@w(B)+e2®1 € Fil' Dg if and only if w(p) = B i.e.,
B € Qp(me) = L (this is fine since Dy is an object of MF () and Q2 ®q, Do : the filtration over
Dy comes from the filtration over (Dp)r). Now, Te(e1 @ B+ea®@ 1) = (ee1 @ 7e(B) + (T lea® 1 €
Fil'! Dy if and only if (27.(8) = B which is equivalent to saying that w23 € Q2. Therefore
2B € Qp2 N Qp(7e) = Qp and we have that § = ar,? with a € Q,. Finally, we deduce that the
filtration on Dy is given as

D, ifi <0

Fil'Dy = (e ® 71'6_1 + e ®@me)Qp(me), ifi=1
0, ifi>1
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where o € P1(Q,). It is clear that Fil' Dx = (e; ® 1)K if a = +o00.

Let D' € MFg q, () be another object such that D" = Que} @ Qpeh; p(e]) = €, p(ey) = —peb;
w(e)) =€), w(eh) = eb; Te(€)) = o€y, Te(eh) = (S leh and Fil' D = (o -}y @ ;1 + ey @ me) K with
o € PY(Q,). Let ¢ : D — D' be a non-trivial morphism in MFg g, (). Then yw = wip implies
that (Do) C Dy = Qpe| ® Qpey, and ¢7. = 121 implies that ¥ (e;) € Q2¢] for i = 1,2. Therefore
(e1) = aey and (ez) = beg with a,b € Q,. Now ¢ = ¢1) gives us that a = b. Finally, we see
that 1 (Fil' Dg) C Fill D) if and only if o = /.

Remark 5.9. (i) In the category MF g /q, (¢), it can immediately be concluded that D7 ; K/Q, (VLE)

is isomorphic to Dy (e, 0, ) of the list D* given in Case 3 of section 5.2.1.

(ii) The pair (e, «) varies over the set {n = 3,4 or 6 such that n | (p+1)}xP*(Q,) and parametrizes
all of the objects Dy (e, 0, ). These objects are not isomorphic to each other in MF g /g, ().

(iii) We see that for £//Q), such that v,(jr) > 0 and dst(E) = e > 3, we have

e| (p—1), = Ff is ordinary
| (p+1), = Ey is supersingular.

5.4 Examples: Potentially good reduction case

In the previous section we studied the objects Dy (V,E) for E and elliptic curve definedover Q. In
case I/ has potentially multiplicative reduction over ), we saw that E can be taken as Tate’s curve
or its quadratic twist. However, in case I has potentially good reduction over Q,, we did not provide
any examples. The goal of this section is to construct some examples in the missing cases. We do
this in two parts depending on fact if the reduced curve (over an extension of F,) is either ordinary or
supersingular.

5.4.1 Ordinary curves

Case 1. (4 | p—1): For each a, ), €
that for

o4y 1 <k <4 from lemma (?), let uy, € F¥ be an element such

Ek :y2 :a:3—|—uka:
the trace of the Frobenius of is ap. {ug,1 < k < 4} form a system of representative of F /(Fx)%.
These curves are ordinary since 4 | p—1 [Sil13, Thm. 4.1(a)] and the j-invariant of each of these curves
is 1728.
Now, {[u](—p)’,1 <k < 4,0 <i <3} is a system of representative of Q) /(Q))?*, where [uy] € Z
is the Teichmiiller representative of uj. Set

By y? =2 + [uk](—p)zx

for 1 <k <4 and 0 <i<3. By are elliptic curves over Q, with j-invariant equal to 1728.

For a fixed k, E;, are isomorphic over Q,(m4), each has potentially good reduction and the re-
duced curve of E;;, over Qp(my4) is Ej. The curve Eiis is a qudratic twist, by a ramified character
corresponding to extension My = Qp(m2)/Qp, of E;, for i € {0,1}.

So for each k € {1,2,3,4}, we have

Dperis(VoEo k) = De(1, ap, 0)
Dieris (Vo ELEk) ~ Dpe(4, apk, 1,0)
Dperis (Vo E2.k) = De(2, ap i, 0)

Dy eris(VpE3 k) = Dpe(4, ap i, —1,0).

Let ‘ ‘
ety =28+ [ug](—p)'x + (—p)"?
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for 1 <k <4,0<i<3andn(i)=1,2,4,5for i =0,1,2,3,4, respectively. These are elliptic curves
with j-invariant equal to 1728 mod pZ, but different from 1728. All these curves have potentially
good reduction with dst(E!,) € {1,2,4}. For any i, k the reduced curve of E, over Q,(m4) is Ex. The
curve E! i+ I8 & quadratic twist of EZ’ w © €{0,1}, by a ramified character corresponding to extension

My = Qp(7r2)/@p
So for each k € {1,2,3,4}, we have

pcrls(V EO k) ~ Dy (17a’p,k71)
pCI‘lS( ) (47 Ap ks 17 1)
pCrlS(V E2 lc) (27 QAp ks 1)

pCI‘lS(V E3 k:) D*c(4a ap,kv_ly 1)

Case 2. (3 | p—1): From lemma 5.2 for each a, ) € N3, 1 <k <6, let v € F)\ be an element such
that for i
E =23+

the trace of the Frobenius of is apk. {vg,1 < k < 6} form a system of representatives of ) /(Fx)°.
These curves are ordinary since 3 | p—1 [Sil13, Thm. 4.1(a)] and the j-invariant of each of these curves
is 0.

Now, {[vr](—p)’,1 <k < 6,0 <i <5} is a system of representative of Q) /(Qy)®, where [v;] € ZX
is the Teichmiiller representative of v,. Set

ik y? =2 + [u] (—p)’
for 1 <k <6and 0 <17 <5. & are elliptic curves over Q, with j-invariant equal to 0.

For a fixed k, & are isomorphic over Q,(7g), each has potentially good reduction and the reduced
curve of &, over Q () is E. The curve Eit+3 is a qudratic twist, by a ramified character corresponding
to extension My = Q,(m2)/Q,, of &y, for i € {0,1,2}.

So for each k € {1,2,3,4}, we have

Dieris(Vo€ok) =~ De(1, apk, 0)

Dy eris(Vp€1k) = Dy (6, apr, 1,0)
Dy eris (Vo) = D (3,ap%,1,0)
pmS(V &) ~Di(2,apk,0)
Dicris (Vo) 2= Dy (3, ap i, —1,0)
Dicris (Vs k) = Dy (6, ap i, —1,0).

Let
Epy® =2+ (=p)" Y + [vp) (—p)’
for 1 <k<4,0<i<3andm(i)=1,1,2,3,3,4 for i =0,1,2,3,4,5, respectively. These are elliptic
curves with j-invariant equal to 0 mod pZ, but not zero itself. All these curves have potentially good
reduction with dst(€,) € {1,2,3,6}. For any i,k the reduced curve of &, over Q,(mg) is . The
curve &/ 43k 18 @ quadratic twist of 5{7k, i € {0,1,2}, by a ramified character corresponding to extension

My = Qp(m2)/Qp.
So for each k € {1,2,3,4,5,6}, we have

Dieris (Vo€ox) = DE(1, appk, 1)
Dicris (Vo1 k) =~ Dye(6, app, 1,1)
D cris (Vp2k) = Dje(3, app, 1,1)
Dcris(Vp€3x) = DE(2, apyk, 1)
pcrls(v Szll,k) D (3,apk, —1,1)
D} eris (Vo€s 1) = Dy (6, apr, —1,1).
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5.4.2 Supersingular curves

Case 1. (4 | p+1): Let

Ei:y? =23+ (—p)iz
over Q, where i € {0,1,2,3}. The j-invariant of these elliptic curves is 1728 and all of them are
isomorphic over Q,(m4). All these curves have potentially good reduction and the reduced curve over
Fp, given by y? = 23 + 1 is of supersingular type. For i € {0,1}, E;, is a quadratic twist of E;, by a
ramified character corresponding to extension My = Q,(m2)/Qp. So we have

pcrls(V EO) ( )
pcrls(V El) (4 0, JrOO)
pCI‘lS(V EQ) ( )
pcrls(V E3) = (4 0, 0)

Case 2. (3 | p+1): Let

iyt =23+ (-p)x
over Q, where ¢ € {0,1,2,3,4,5}. The j-invariant of these elliptic curves is 0 and all of them are
isomorphic over Q,(mg). All these curves have potentially good reduction and the reduced curve over
Fp, given by y? = 23 + 1 is of supersingular type. For i € {0,1,2}, &3 is a quadratic twist of &, by a
ramified character corresponding to extension My = Q,(72)/Qp. So we have

Djeris(Vp€o) = DE(1,0)
pCHS(V &1)~D (6 0, +00)
pms(V &) ~D (3 0, +00)
D eris (Vp€3) =~ ( 0)
Dieris (Vp€a) ~ Dpe(3,0,0)
Dieris(Vp€s) ~ Dp.(6,0,0).

This concludes our list of examples.



Appendix A

Hodge-Tate representations

Definition A.1. A p-adic field is a field K of characteristic 0 that is complete with respect to a fixed
discrete valuation that has a perfect residue field k of characteristic p > 0.

Let K be a p-adic field with a fixed algebraic closure K /K. The Galois group Gal(K /K) is written

as G and Cg := K, the completion of K endowed with its unique absolute value extending the given
absolute value on K.

The first class of “good” p-adic representations of G were those of Hodge-Tate type; this class
was discovered by Serre and Tate in there study of p-adic representations arising from abelian varieties
with good reduction over p-adic fields, and in this section we will examine this class of representations.
This chapter is intended to be a quick recollection of facts on Hodge-Tate representations. We mention
important results but without attempting to prove any of the statements. All the statements have been
taken from [BC09, Chap.2].

The most basic ingredient in this study is the p-adic cyclotomic character which we define below
and note some remarks about it.

Definition A.2. Let K be a field with fixed separable closure K*/K and let p be a prime distinct
from char K. Let ppn = pn (K*) denote the group of p"-th roots of unity in (K*)*, and let y,~ denote
the rising union of these subgroups. The action of Gx on gy~ is given by g(¢) = ¢X9) for a unique
x(g) € Z;: for ¢ € ppn the exponent x(g) only matters modulo p", and x(g) mod p" € (Z/p"Z)*
describes the action of g on the finite cyclic group py» of order p™. Thus, x mod p" has open kernel
(corresponding to the finite etension K (u,»)/K) and x is continuous. x is called the p-adic cyclotomic
character of K.

Remark A.3. The p-adic Tate module @n ppn (K) of the group GLy over K is a free Z,-module of rank
1 and we denote its as Zy(1). This does not have a canonical basis, and a choice of basis amounts to a
choice of compatible system ((yn),>1 of primitive p-power roots of unity (satisfying an 41 = Gpn for all
n > 1). The natural action of G’k on Zy(1) is given by the Z, -valued p-adic cyclotomic character x and
sometimes it is convenient to fix a choice of basis of Z,(1) and to thereby view Z,(1) as Z;, endowed
with a Gg-action by ¥.

For any r > 0, define Z,(r) = Z,(1)®" and Z,(—r) = Z,(r)¥ (linear dual: M = Homgy(M,Z,) for
any finite free Z,-module M) with the naturally associated Gg-actions (from functoriality of tensor
products and duality), so upon fixing a basis of Z, (1) we identify Z,(r) with the Z,-module Z, endowed
with the G g-action " for all » € Z. If M is an arbitrary Z,[Gx]-module, we let M(r) = Z,(r) ®z, M
with its natural G g-action, so upon fixing a basis of Z,(1) this is simply M with the modified G-
action g-m = x(g)"g(m) for g € G and m € M. We also have isomorphisms (M (r))(r") ~ M (r +1’)
for r,r' € Z and (M (r))Y ~ MY(—r) for r € Z and M finite free over Z, or over a p-adic field.

Following is a fundamental fact about Cg.

Proposition A.4. The field Ck is algebraically closed.

88
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A.1 Theorems of Tate-Sen and Faltings

Definition A.5. A Cg-representation of G is a finite-dimensional Cg-vector space W equipped with
a continuous Gi-action map Gxg x W — W that is semilinear (i.e., g(cw) = g(c)g(w) for any ¢ € Cy,
and w € W). The category of such objects (using Cg-linear G g-equivariant morphisms) is denoted
Repc, (Gk)-

Ezample A.6. If V' € Repg, (Gk) then W := Cg ®q, V is an object in Repc, (G ).

Remark A.7. The category Repc, (G k) is an abelian category with evident notions of tensor product,
direct sum and exact sequence. We can also define the dual object: for any W € Repg, (Gk), the
dual WV = Hom(W, Ck) on which Gk acts as (g-1)(w) = g(I(g~ (w))). Also, we have isomorphisms
W ~ (WY)V and WY @ Wy ~ (W; ® Wa)" as well as evaluation morphism W @ WY — Cg in
Repc, (Gk)-

Following is a deep result by Faltings.

Theorem A.8. Let K be a p-adic field. For smooth proper K-schemes X, there is a canonical iso-
morphism
Cx @ He (X7, Qp) ~ @p(Cr(—q) @k H" (X, Q% 1)

in Repe, (Gk), where the Gk -action on the rights side is defined through the action on each Cx(—q) =
Ck ®q, Qp(—q). In particular, non-canonically

(CK ®Qp Hgt(Xf') Qp) =~ EBQCK(_q)hniqu

in Repe, (Gx) with h»? = dimgHP (X, Q%{/K)'
Remark A.9. (i) This isomorphism enables us to recover the K-vector spaces H"79(X, Q% / ) from
Ck ®q, H¢ (X%, Qp) by means of operations that make sense on all objects in Repc, (Gk).

(ii) We cannot recover the p-adic representation space Hg (X7, Qp) from the Hodge cohomologies
H" (X, Q%{/K)' In general, the operation V ~~ Cx ®q, V loses a lot of information about V.

Example A.10. Let E be an elliptic curve over K with split multiplicative reduction, and consider
the representation space V,E/ = Q, ®z, TpE € Repr(G k). The theory of Tate curves in Section 3.4
provides and exact sequence

0 — Qp(1) — VpE —Q, — 0 (A.1)

that is non-split in Repg (G ) for all finite extensions K'/K inside of K.
If we apply K ®g, (-) to (A.1) then we get an exact sequence

0— K(1) — K®g, V)E— K —0

in the category Repzz(Gk) of semilinear representations of G’k on K-vector spaces. This sequence
cannot split in Rep=(G ). Indeed, assume on the contrary that it splits. Since K is a directed union
of finite subextensions K’'/K, there would then exist such a K’ over which the splitting occurs. That
is, applying K’ ®Q, (+), to (A.1) would give an exact sequence admitting a Gx-equivariant K'-linear
splitting. Viewing this as a split sequence of K'[G/]-modules, we could apply a Qp-linear projection
K’ — Q, that restricts to identity on Q, C K’ so as to recover (A.1) equipped with a Q,[Gk-]-linear
splitting. But it does not split in Repr(G k), so we have a contradiction. Hence, applying K ®q, (*)
to (A.1) gives a non-split exact sequence in Rep(Gr ), as claimed.

But if we instead apply Cx ®q, () to (A.1) then the resulting sequence in Repc, (Grk) does
(uniquely) split.

Definition A.11. Let G be a topological group and M a topological G-module. The continuous
cohomology group H._ (G, M) (or HY(G, M)) is defined using continuous 1-cochains.

cont
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Ezample A.12. Let n: Gk — Z, be a continuous character. We identify H! .. (Gx,Ck(n)) with the
set of isomorphism classes of extensions

0 —Ckg(n) — W —Cg—0 (A.2)

in Repg, (Gk) as follows: using the matrix description

th

of such a W, the homomorphism property for the Gi-action on W says that the upper right entry
function is a 1-cocycle on G with values in Cg(n), and changing the choice of basis for Cg-linear
splitting changes this function by a 1-coboundary. The continuity of the 1-cocycle says exactly that
the Gi-action on W is continuous. Changing the choice of Cg-basis of W that is compatible with the
filtration in (A.2) changes the 1-cocycle by a 1-coboundary. In this way we get a well-defined continuous
cohomology class, and the procedure can be reversed (up to isomorphism of extension structure).

Theorem A.13 (Tate-Sen). For any p-adic field K we have K = (C?(K and Cg(r)95 = 0 for r #
0 (ie, if = € Cxg and g(z) = x(g9)" "z for every g € Gi and some r # 0 then x = 0). Also,
Hl . (Gr,Cx(r)) =0 ifr #0 and H., (G, Cxg) is 1-dimensional over K.

More generally, if n : Gk — OF is a continuous character such that n(Gr) is a commutative
p-adic Lie group of dimension at most 1 (i.e., n(Gk) is finite or contains Z, as an open subgroup)
and if Cg(n) denotes Cr with the twisted G -action g - ¢ = n(g)g(c) then H._(Gx,Cx(n)) = 0 for
i = 0,1 when n(Ix) is infinite and these cohomologies are 1-dimesnional over K when n(Ix) is finite
(i.e., when the splitting field of n over K is finitely ramified).

Remark A.14. This result implies that all exact sequence (as in example above) are split when 7(Ix)
is infinite. Moreover, in such cases splitting is unique.

A.2 Hodge-Tate decomposition

The companion to the theorem of Tate-Sen is a lemma of Serre and Tate that we now state. For
W € Repg,. (Gk) and ¢ € Z, consider the K-vector space

W{g} :=W(q)°" ~ {w e W | g(w) = x(g) %w for all g € Gk},

where the isomorphism rests on a choice of basis of Z,(1). We have a natural G g-equivariant K-linear
multiplication map K(—q) ®x W{q} — K(—q) ®x W(q) ~ W. So by extending scalars K — Cg,
defines a map,

Ck(—q) ®x W{q} — W

in Repg, (Gk) for all g € Z.

Lemma A.15 (Serre-Tate). For W € Repc, (Gk), the natural Ck-linear G g -equivariant map

§w : @q(Cr(—q) @x W{q}) — W (A.3)

is injective. In particular, W{q} = 0 for all but finitely many q and dimxgW{q} < +oo for all q, with
2q dimgW{q} < dimc, W; equality holds here if and only if w is an isomorphism.

Remark A.16. In the special case W = Cx ®q, Hg (X%, Qp) for a smooth proper scheme X over K.
Falting’s theorem (from before) says that &y is an isomorphism and W{q} is canonically K-isomorphic

to H"9(X, Q%{/K) for all ¢ € Z.
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Ezample A.17. Let W = Cg(n) for a continuous character  : Gk — Z,. By the Tate-Sen Theorem
A13, W{q} = Cg(nx~ %)% is 1-dimensional over K if nx 9|, has finite order (equivalently, if n = x%)
for a finitely ramified character ¢ : Gx — Z,) and W{q} vanishes otherwise. In particular, there is at
most one ¢ for which W{q} can be nonzero, since if W{q}, W{g2} # 0 with ¢ # ¢ then n = x%
and 7 = X% with finitely ramified ¥1,v2 : Gk = Z,;, so X[, has finite image for r = ¢1 — g2 # 0,
which is not possible.

Definition A.18. A representation W in Repc, (G ) is Hodge-Tate if {y is an isomorphism. We say
that V' in Repg, (Gk) is Hodge-Tate if Cx ®q, V' € Repc, (G ) is Hodge-Tate.

Ezxample A.19. If W is Hodge-Tate then because &y is an isomorphism we have a non-canonical iso-
morphism W ~ Cg(—¢)" in Repc, (Gk) with hy = dimgW{q}. Conversely, consider an object
W € Repe, (Gk) admitting a finite direct sum decomposition W ~ @Cg(—¢)" in Repe, (Gk) with
hg > 0 for all ¢ and hq = 0 for all but finitely may g. The Tate-Sen Theorem A.13 gives that W{q}
has dimension h, for all ¢, so 3_, dimgW{q} = >-q g = dimc, W and hence W is Hodge-Tate. In
other words, the intrinsic property of being Hodge-Tate is equivalent to the concrete propert of being
isomorphic to a finite direct sum of various objects Cx (7).

Definition A.20. For any Hodge-Tate object W in Repg, (Gk) we define the Hodge-Tate weights
of W to be those ¢ € Z such that W{q} := (Cx(q) ®c, W)E¥ is non-zero and then we call h, :=
dimgW{q} > 1 the multiplicity of ¢ as a Hodge-Tate weight of W.

Remark A.21. If W is Hodge-Tate then so is WV, with negated Hodge-Tate weights (compatible with
multiplicities).

A.3 Formalism of Hodge-Tate representations

Definition A.22. A (Z—) graded vector space over a field K is a K-vector space D equipped with
direct sum decomposition @4ezDy for K-subspaces D, C D (and we define the g-th graded piece of D
to be gr?(D) := D,). Morphisms f : Dy — Dy between graded K-vector spaces are K-linear maps that
respect the grading (i.e., f(Dy) C D, for all ). The category of these objects is denoted as Grg; we
let Grg ; denote the full subcategory such that any for object D € Grg,; we have that dimg D < +4o0.

Remark A.23. (i) For any field K, Grg is an abelian category with the evident notions of kernel,
cokernel, and exact sequence.

(ii) Write K(r) for r € Z to denote the K-vector space K endowed with the grading for whih the
unique non-vanishing graded piece is in degree r.

(iii) For D, D’ € Grg, the tensor product D ® D’ is defined to have D ®x D’ as the underlying
K-vector space and the ¢-th graded piece is given by @1 j—¢(D; ®k D;)

(iv) If D € Grg s then the dual DY has underlying K-vector space given by the K-linear dual and its
¢-th graded piece is DY .

(v) Note, K(r1) ® K(ro) = K(ry +rs), K(r)¥ = K{—r), the natural valuation map D ® DV — K(0)
and the double duality isomorphism D ~ (DY)Y in Grg, s are morphisms in Grg.

(vi) A map in Gr is an isomorphism if and only if it is a linear isomorphism in each separate degree.

Definition A.24. The covariant functor D = D : Repc, (Gx) — Gry is defined as
D(W) = D W{a} = B(Cx(q) @c, W) (A1)
q q

D is obviously left-exact.
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Remark A.25. The Serre-Tate Lemma A.15 says that D takes values in Grg y and more specifically
that dimgD(W) < dimg, W with equality if and only if W is Hodge-Tate. As a simple example, the
Tate-Sen Theorem A.13 gives that D(Ck(r)) = K(—r) for every r € Z.

Proposition A.26. If
0—W — W —W'"—0

is a short exact sequence in Repc, (Gx) and W is Hodge-Tate then so are W' and W”, in which case

the sequence
0 — D(W') — D(W) — D(W") — 0

in Grg ¢ is short evact.

Remark A.27. The proposition says that any subrepresentation or quotient representation of a Hodge-
tate representation is again Hodge-Tate. The converse is false in the sense that if W' and W are
Hodge-Tate then W can fail to be Hodge-Tate.

Theorem A.28. For any W € Repc, (Gk) the natural map K' @x Dg(W) — Dg/(W) in Grg g
is_an isomorphism for all finite extensions K'/K contained in K C Cg. Likewise, the natural map
K™ @ Dg(W) — D (W) in Gr@f is an isomorphism. In particular, for any finite extension
K'/K inside of K, an object W in Repc, (Gk) is Hodge-Tate if and only if it is Hodge-Tate when
viewed in Repc, (Gkr), and similarly W is Hodge-Tate in Repc, (Gk) if and only if it is Hodge-Tate

when viewed in Repc, (Gizm) = Repe (Ik ).

Remark A.29. The Hodge-Tate property is insensitive to replacing K with a finite extension or restrict-
ing to the inertia group. The insensitivity to inertial restriction is a “good” feature but insensitivity to
finite (possibly ramified) extensions is a “bad” feature, indicating that the Hodge-Tate property is not
sufficiently find, for example, to distinguish between good and potentially good reduction for elliptic
curves.

Definition A.30. The Hodge-Tate ring of K is the Cx-algebra Byt = ®4czCx(¢) in which multipli-
cation is defined via the natural map Cx(q1) ®c, Cx(q2) ~ Cr(q1 + ¢2).

Byt is a graded Cg-algebra i.e., its graded pieces are Cg-subspaces with respect to which mul-
tiplication is additive in the degrees, and the natural G g-action respects the gradings and the ring
structure. Concretely, if we choose a basis ¢ of Z,(1) then we can identify Byt with the Laurent poly-
nomial ring Cx[t,t!] with the obvious grading (by monomial in ¢) and Gk-action (via g(t) = x(g)*t*
for i € Z and g € Gg).

By Tate-Sen Theorem A.13, we have BIC{;JF( = K. For any W € Repg, (Gk), we have,

D(W) = B(Ck(q) @c, W) = (Bur &c, W)X

in Grg, where the grading is induced from the one on Byr.
In the reverse direction, let D € Grg ¢, so Byt ®k D is a graded Cg-vector space with typically
infinite Cg-dimension:

gr"(Bur ®k D) = @ gr?Bur @k Dn—g = @ Ck(q) ®k Dnq-
q q

Moreover, the G g-action on Byt ®k D arising from that on Byt respects the grading since such
compatibility holds in By, so we get

V(D) := gr’(Bur ®k D) = P Cx(—q) ®k Dy € Repe, (Gk) (A.5)
K

since D, vanishes for all but finitely many ¢ and is finite-dimensional over K for all ¢ (as D € Grg ¢).
By inspection D is a Hodge-Tate representation and V : Grg ; — Repc, (Gk) is a covariant exact
functor.
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Ezample A.31. For each r € Z, recall that K (r) denotes the 1-dimensional K-vector space K endowed
with unique non-trivial graded piece in degree r. One can check that V(K (r)) = Cx(—r). In particular,
V(K(0)) = Ck-

For any W in Rep¢ K(G k), the multiplicative structure on Byt defines a natural Byp-linear com-
posite comparison morphism

yw : Bar @ D(W) «— Byt @k (Bat @cx W) — Bur ®c, W

that respects the G g-actions and the gradings.
The Serre-Tate Lemma A.15 has the following reformulation:

Lemma A.32. For W € RepCK(GK), the comparison morphism ~yw s injective. It is an isomorphism
if and only if W is Hodge-Tate, in which case there is a natural isomorphism

V(D(W)) = gr’(Bur @ D(W)) ~ gr’(But ®c, W) = gt’(Bur ®c, W) =W
in Repe,. (GK).

Theorem A.33. The covariant functors D and V between the categories of Hodge-Tate representations
in Repc, (Gk) and finite-dimensional objects in Gry are quasi-inverse equivalences.

For any W, W' € Repc, (Gk) the natural map D(W) @ D(W') — D(W ® W') in Grg induced by
the G i -equivariant map

(Bur ®@c, W) ®cy (But @cx W') — Bur ®cy (W ®c,e W)

defined by multiplication in Byt is an isomorphism when W and W' are Hodge- Tate.
Likewise, if W is Hodge-Tate then the natural map

D(W)®@g D(WY) — DWW @ W") — D(W @ W") — D(Cg) = K(0)

in Grg is a perfect duality (between W{q} and WV{—q} for all q), so the induced map D(WV) —
D(W)Y is an isomorphism in Grg,f. In other words, D is compatible with tensor products and duality
on Hodge-Tate objects. Similar compatibilities hold for V. with respect to tensor products and duality.

Definition A.34. Let Repyr(G i) C Repg, (Gk) be the full subcategory of objects V' that are Hodge-
Tate (ie., Cx ®q, V is Hodge-Tate in Repc, (Gk)), define the functor Dur : Repg,(Gk) — Gri ¢
by

Dur(V) = Dk (Ck ®q, V) = (Bur ®q, V)X

with grading induced by that on Byr.

Remark A.35. (i) Repyr(Gk) is stable under tensor products, duality, subrepresentations and quo-
tients (but not extensions) in Repg (G ). The formation of Dyt naturally commutes with finite

extension on K as well as with scalar extension to K.
(ii) The functor Dyt is exact and is compatible with tensor products and duality.

(iii) The comparison morphism +, : But ®x Dur(V) — Bur ®q, V for V € Repr(GK) is an
isomorphism precisely when V' is Hodge-Tate and hence Dyt : Repyr(Gr) — Grg, is a faithful
functor.

Whereas D on the category Repc,. (G ) is fully faithful into Grg y, Dur on the catgeory Repyr(Gi)
is not fully faithful. For example, if n : Gk — Z has finite order then Dur(Q,(n)) ~ K(0) = Dur(Qy)
by the Tate-Sen Theorem A.13, Q,(n) and Q, have no nonzero maps between them when 7 # 1.

To improve on Dy so as to get a fully faithful functor from a nice category of p-adic representations
of Gk into a category of semilinear algebra objects, following two things are done: refinement of By to
a ring with more structure (going beyond a mere grading with compatible G x-action) and introduction
of a target semilinear algebra category which is richer than Grg ;.



Appendix B

Kahler differentials

In this section we recall some of the definitions needed in our computations. For a general treatment
of the theory of Kahler differentials one could take a look at [Liu06, Ch. 6].

Definition B.1. Let A be a commutative ring with unity. Let B be an A-algebra and M a B-module.
An A-derivation of B into M is an A-linear map d : B — M such that the Leibniz rule

d(blbg) = b1dbs + badby, b; € B
is verified, and that da = 0 for every a € A.

We denote the set of these derivations as Der4 (B, M).

Definition B.2. Let B be an A-algebra. The module of relative differentials or module of Kdhler
differetials of B over A is a B-module (2,4 endowed with an A-derivation d : B — (g4 satisfying the
universal property: For any B-module M and for any A-derivation d' : B — M, there exists a unique
homomoprhism of B-modules ¢ : Q25,4 — M such that d =1od.

B—% M

Qp/a

Proposition B.3. The module of relative differential forms (2 /4,d) exists and is unique up to unique
isomorphism.

Proof. The uniqueness follows from the definition, as for any solution to a universal problem. Therefore,
we only need to show existence. Let F' be the free B-module generated by the symbols db, b € B. Let
E be the submodule of F' generated by the element of the form da, a € A; d(b; + ba) — dby — dby and
d(b1b2) — b1dby — badby with b; € B. Set Qg4 = F/E and d : B — Qg4 which sends b to the image of
dbin Qp, 4. Now it is clear that (g4, d) has the required properties. [ |

Proposition B.4. For any B-module M there is a canonical isomorphism

Homp(Qp/4, M) —— Ders(B, M)

P — 1 od.
Proof. Let 0 € Dera(B, M), then we define ¢(dz) := d(x) and surjectiveness follows. Moreover, if ) od
is the trivial derivation then ¢ (dz) = 0 for all x, hence ¥ = 0 and the map is injective. |

Ezample B.5. Let A be a ring and let B be the polynomial ring A[T},Ts,...,T,]. We will show that
(2p/4 is the free B-module generated by dT;. Let F' € B, and let d : B — M be an A-derivation into a
B-module M. Using the definition of derivation, we immediately obtain that d'F = Y,(0F/9T;)d'T;,
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where (OF/0T;) is the partial derivative in the usual sense. Therefore, d’ is entirely determined by the
images of the T;. Let  be the free B-module generated by the symbols d7;, 1 <i <n. Let d: B —
be the map defined by d(F') = >,(0F/0T;)dT;. Now it is easily seen that (£2,d) fulfills the conditions
of the universal property of the module Q2g,4. Hence Q5,4 ~ 2.

Let p: B — C be a homomorphism of A-algebras. Then it follows from the universal property that
there exist canonical homomorphisms of C-modules.

a:Qpa®aC—Qc/a, B:8Qc/a— QcyB-

By definition a(db ® ¢) = cdp(b).
Following are some of the properties of the modules of differentials.

Proposition B.6. Let b be an algebra over a ring A.

(i) (Base Change) For any A-algebra A’, let us set B' = A®a A’. There exists a canonical isomor-
phism of B'-modules Qg4 ~ Qg4 @p B'.

(ii) Let B — C be a homomorphism of A-algebras. Let o,  be as above, then
QB/A QRC — QC’/A — QC’/B — 0
is an exact sequence.

Proof. (i) The canonical derivation d : B — Qp/4 induces an A’-derivation d' = d ® Idy : B' —
Qp/a®a A = Qpa ®@p B'. Now it easily follows that (25,4 ®p B',d’) verifies the universal
property of Qpr /4.

(ii) It suffices to show that for any C-module N, the dual sequence
0 — Hom¢(Q¢/p, N) — Home(2p/4, N) — Home(2p/4 @5 C, N)

is exact. We have Homc (2,4 ®p C, N) = Homp(2p/4, N). By Proposition B.4 this sequence
is canonically isomorphic to the sequence

0 — Derp(C, N) — Der4(C, N) — Dera(B, N),

the last homomorphism being the composition with B — C. It follows from the definition of a
derivation that this sequence is exact.
|

Next, we recall basic definitions on de Rham cohomology on affine schemes. As we will see that
only this special case is needed in our case. One could take a look at the notes of [Maz17] for a general
discussion on algebraic de Rham cohomology.

Definition B.7. Let A be a commutative ring with unity and let B be an A-algebra of finite type. We
define the module of Kdhler differential p-forms as

Q%/A = /\pQB/A.

fw,e Q%/A and wy € Q4 we have wp Awg = (—1)P" 9wy Awy, so that @pQ%/A is a graded commutative
B-algebra. Note by definition Q%/A = B.
The following proposition is easy to see.

Proposition B.8. There exists a unique map d : GBPQ%/A — @pQ%/A of degree 1 such that

(i) dod =0;
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(ii) 4n degree zero it is the canonical mpa d : B — Qp ;

(ili) d(wp Awg) = (dwp) A wg + (—1)Pw, A dwg
Definition B.9. (de Rham cohomology). With the above notations let ng/A be the complex
(starting in degree 0)

BL)QlB/AL)QQB/A_)..._)QiB/A_)...
and we define the n-th de Rham cohomology group as
d

ker(Q%/A - Q%J/rix)

1 4 om
Zm(QB/}l = QB/A)

dar(B/A4) == H"( 1'3/,4) =

Since the de Rham complex is functorial (covariant) in B, so is de Rham cohomology.
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