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Introduction

Let p be an odd prime number, @, the field of p-adic numbers and E a finite
extension of (9, with ring of integers O, uniformiser w and residue field F.

Let p: G, := Gal(Q,/Q,) — GL2(F) be a continuous representation such
that Endpig,)(p) = F. A deformation of p to a local artinian O-algebra R
with residue field F is a continuous representation p: G, — GLg(R) which is
(an equivalence class of) liftings of p. The study of deformation theory of
Galois representations was initiated by Mazur ([Maz89]) and Ramakrishna
([Ram93]) who showed that there exists a unique local noetherian complete
O-algebra R"™V with residue field F, called (framed) universal deformation
ring, together with a universal deformation p™V, which parametrizes all
the deformations of p to any local artinian O-algebra with residue field F.
After the work of Wiles ([Wil95]) and the conjectures of Fontaine-Mazur
([FM95)), it became clear that for arithmetic applications it was important
to understand certain quotients of R"™V corresponding to deformations
satisfying certain conditions.

The starting point of this thesis is the study of one of these quotients. Fix
an integer k > 1 and a representation 7: Gal(Q,/Qu") — GLy(E) with open
kernel which can be extended on the whole Galois group. The “deformation
problem” we will study is to find the shape of the quotient R(k, 7, p) of RV
which parametrizes all the deformations p of p to a finite extension of O
satisfying the following conditions:

(a) p® Q, is potentially semistable with Hodge-Tate weights (0,k — 1);

(b) the restriction to the inertia subgroup of the Weil-Deligne representa-
tion associated to p ® QQ, is isomorphic to 7;

(c) det p is the (k — 1)th power of the p-adic cyclotomic character times a
finite character coprime to p.

For the exact definition of R(k, T, p), we refer the reader to section 5.1.

This problem was studied by Breuil and Mézard in [BM02], where the
authors generalized a conjecture given in [BCDTO1]. The two authors proved
the cited conjecture when 7 = triv is the trivial representation and k even,
1 < k < p. In order to do this, Breuil and Mézard also described a way to
find the above ring R(k, 7, p) in that cases.

Later, Kisin pointed out (see footnote of [Kis08, p. 514]) that in the
particular case when the residual representation p is a peu ramifiée extension
(following the notation of [Ser87]) the universal deformation ring has a
different property from the previous one. Moreover, developing other tools,
Kisin was able to prove the conjecture in a more general setting, and in
the last decade there were other proofs from other authors, such as Hu-Tan
([HT13]) and Paskunas ([Pasl5]). In particular, a joint work of Hu and



Paskunas ([HP17]) shows the real form of the universal deformation ring in
the peu ramifiée case; however, the two authors use a theory developed in
the last 15 years. Thus, the aim of this work is to give another proof of this
fact by using the original machinery developed by Breuil and Mézard.

The approach the two authors used in their paper requires the p-adic
Hodge theory. This consists in describing some categories of p-adic semistable
representations with prescribed Hodge—Tate weights as semilinear algebra
objects, the so-called weakly admissible (¢, N)-modules. However, the de-
formation theory studies O-lattices stable under the action of G, inside
representations over the base field F, so we need an integral version of the
p-adic Hodge theory. This was developed at the end of the century by Breuil
and it defines an equivalence between G,-stable O-lattices and the so-called
strongly divisible module over O only if k is small, i.e., when 1 < k < p.

The rough idea of the proof is to start with the classification of 2-
dimensional p-adic semistable representation over E with fixed Hodge—Tate
and describe all the semilinear algebra objects linked with them. Then, after
parametrized these representations and their invariant lattices, we look at
their reduction modulo @w and deduce what kind of residual representations
they get. Finally, writing down a ’special’ strongly divisible module, we are
able to prove that the candidate ring is actually the universal deformation
ring for our deformation problem.

The content of this dissertation is the following.

In section 1, we will recall, in order to fix also the notation, some Galois
theory of finite extension K of Q,, the characters of Gal(K/K) and the
definition of peu and trés ramifiées extensions.

In section 2, we will study the main theorem of deformation theory of
Galosi representations: the prorepresentability of the deformation functors,
both the classical and the framed one.

In section 3, we will develop the p-adic Hodge theory, the construction
of the Fontaine’s period rings and the categories of representations and of
semilinear algebra objects.

In section 4, we will give an outline of the integral p-adic Hodge theory
given by Breuil in [Bre97], [Bre98] and [Bre99], taking a look at Fontaine—
Laffaile modules and at strongly divisible modules with coefficients.

In section 5, we will treat the deformation problem described in [BM02],
we will construct a 'universal’ strongly divisible module over our candidate
ring and then conclude the proof.

Notation

Fix a prime number p # 0: in most of cases, it can be equal to 2, we are
interested on odd primes.

Once for all, fix an algebraic closure @p of Q, with ring of integers ZT,
and residue field F,,, which is an algebraic closure of the finite field with p



elements F, thus every extension of Q, (resp. of F,) will be a subfield of Q,
(resp. Fp).

Let k (resp. F) denote a finite extension of Fp, W (k) (resp. W (F)) the
ring of Witt vectors of k (resp. F), Ko = W(k)[1/p] (resp. Ey = W (F)[1/p])
and K/Ky (resp. E/Ep) a finite totally ramified extension with ring of
integers O (resp. Op) and uniformiser .

We will denote by val, the valuation on Q) satisfying val,(p) = 1 and
with the same symbol, by abuse of notations, the (unique) valuation val,
on K (resp. F) normalized by val,(p) = 1 (every time there will not be
confusion).

We will use the aboslute Galois group G, := Gal(Q,/Q,) of Q, and
its inertia subgroup I, := Gal(Q,/Qp™). We will denote by x: G, — Z}
the p-adic cyclotomic character, by w its reduction modulo my— and by
wy: I — F”, the fundamental character of level 2.

All the rings are meant to be commutative with the identity 1 # 0.
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1 Basics of Galois theory

In this section, we will recall some basic properties of Galois theory in order
to fix the notations. First, we recall the definition of a Galois group for
an infinite extension, then we will describe some properties of the absolute
Galois group of the p-adic field Q, (or of a finite extension K') and of its
subgroups.

1.1 Infinite Galois theory

In this section, we will recall some notions on infinite Galois theory and we
will deal with some basic but important examples.

A field extension F//K, not necessarily finite, is called Galois extension if
it is algebraic, normal and separable.

Assume F/K is a Galois extension and denote the group of automorphisms
of I fixing K by

Gal(F/K) :={r € AuwtF |7(a) =a Vae€ K}.

Let ¥ = {Lfield| K € L C F, L/K is finite and Galois} be the set
of all finite Galois extensions of K inside F. We have a natural map
arp: Gal(F/K) — Gal(L/K), 7 — 7|p. Its kernel ker oy, = Gal(F/L) is
normal in Gal(F/K) and has finite index:

|Gal(F/K) : Gal(F/L)| = | Gal(L/K)| = [L : K] < .

Therefore, the family {Gal(F/L) | L € F} is a basis of open neighbourhoods
of the identity for Gal(F/K). With this topology, called Krull topology,
Gal(F/K) becomes a topological group, and in particular:

Proposition 1.1.1. With the notation as above, Gal(F'/K) ~ Hm, Gal(L/K)
18 a profinite group.

Example 1.1.2. Consider K = F, and F = F, a fixed algebraic closure.
Thus:

G, = Gal(F,/F,) ~ lim Gal(Fyn /F,) ~ lim Gal Z/nZ =: Z

In particular, since Z is (topologically) generated by one element, the cor-
responding element in the absolute Galois group Gp, is the Frobenius map
Frob,: x +— xP. More in general, if k is a finite field with ¢ = p" ele-
ments, its absolute Galois group G ~ 7 is generated by the Frobenius map
Froby: z +— z9.



Consider K = Q and F = Q(¢,|n € N) its maximal abelian extension.
Hence:

Gal(F/Q) ~ lim Gal(Q(¢,)/Q) ~ lm(Z/nZ)* ~

~ 7 ~72)2Lx [[ Z/(p—1)Z x Z.
p odd

Now, we state the infinite Galois correspondence. This theorem shows
why it is so important to deal with topological groups; notice that if the
extension is finite, the topology on its Galois group is discrete, so the theorem
is precisely a generalisation of the finite case.

Theorem 1.1.3 (Krull). Let F/K be a Galois extension. Then the contrava-
riant functor Gal(F'/-) is an equivalence of categories between sub-extensions
(not necessarily Galois) L/K inside K and closed subgroups of Gal(F/K),
with quasi-inverse the functor sending a closed subgroup H to the subfield
FH .= {z € Flo(z) =z Vo € H} of H-invariants.

In particular, finite extensions correspond to open subgroups.

1.2 Ramification of local fields

Let p be a prime number, let K be a finite extension of Q, and let O,

m, k and 7 denote its ring of integers, maximal ideal, residue field and a

uniformiser, respectively. Let K""" denote the maximal unramified extension

of K and let K*™¢ denote the maximal tamely ramified extension of K.
We have a short exact sequence

0— Ix — Gg — Gal(K"™/K) — 0

where Gal(K"/K) = Gal(F,/k) = Z canonically and I = Gal(Q,/K")

is the inertia subgroup. Likewise, we have

J(tame U Kunr(ﬂl/d)
(dp)=1

t _ . . .
so that Gal(Ftame /gunr) — lgl(d,p)ZI 1q, where the map is given by

g = {g(@/9) /m /Y g>1.

In particular, if a € Gal(K'*™¢/K"T) and the image of o € Gal(K'*™m¢/K)
in Gal(F,/k) is Froby, then caoc™! = a4 with ¢ := #k. Finally, ¥4 =
Gal(K /K'me) is the p-Sylow subgroup of Iy, called the wild inertia subgroup;
therefore, we can consider the quotient group I; := I/ I["}ﬂd, called moderate
inertia subgroup, which can be identified with Gal(K'me /[unr),



1.3 The p-adic cyclotomic character and its twists

Let’s choose a compatible sequence of primitive p™th roots of unity £ e
ppn C K such that € = 1, e® £ 1 and (™) = M. Let Ky :=
Up>1 K (™). The p-adic cyclotomic character x: Gy — Z, is defined by
the formula g(¢) = ¢X9) for all g € G and ¢ € Wm juyn. This defines an

action of G on the so-called p-adic Tate module Z,(1) := fm  ppn (K) =7y,
where the isomorphism is given by a choice of basis of Z,(1), for instance
g = (8(n)>n20.

For any r > 0 define Z,(r) = Z,(1)®" and Z,(—r) = Z,(r)" (linear
dual: MY = Homg,(M,Z,) for any finite free Z,-module M) with the
naturally associated Gi-actions (from functoriality of tensor powers and
duality), so upon fixing a basis of Z,(1) we identify Z,(r) with the Z,-module
Z,, endowed with the G g-action x" for all » € Z. If M is an arbitrary
Zyp|Gk]-module, we let M(r) = Zy(r) ®z, M with its natural G x-action, so
upon fixing a basis of Zy(1) this is simply M with the modified G'x-action
gm = x(g)"g(m) for g € Gg and m € M. Elementary isomorphisms such as
(M(R))(r") ~ M(r 4+ r") (with evident transitivity behaviour) for r,r’ € Z
and (M (r))Y ~ MY (—r) for r € Z and M finite free over Z, will be used
without comment.

1.4 Mod p characters of Gal(K/K)

Keep the notations as in §102. If \: Gal(K/K) — FT)X is an unramified
character, i.e., A(Ig) = 1, it is uniquely determined by the image of the
Frobenius map Froby. For this reason, whenever a € IETPX, we will denote by
A(a) the unique unramified character sending Froby to a.

Above, we stated the isomorphism I; ~ l&n (dp)=1 H> where the projective

system is given by pgq — g, a — a?. In particular, if 7 is a uniformiser of
K (and so K"), the field Ky := K" (7'/9) is totally ramified, moderate
and of degree d, so it induces an isomorphism 60: Gal(Ky/K"™™) ~ pug4.

Let ¢ = p", then IF; = pg—1. Moreover, the numbers of the form ¢ — 1
are cofinite in the set of all integers coprime to p: indeed, if d is such an
integer, there exists n > 1 such that p” =1 mod (d), for example n = ¢(d).
Hence, the projective system (pgq) is equivalent to the projective system given
by the F,¢ with the norm maps N: Fy — FX, N(a) = altat—+a"! ag
transition maps. Therefore, the isomorphisms 6,_; define an isomorphism
0: It — @q F; .

In virtue of this isomorphism, a mod p character of I; is called of level
n and denoted by w,, if it factors through F,» but does not through [F,=
for every m strict divisor of n. Hence, for any n there exist exactly n
characters of I; called fundamental characters of level n, and fixed one of
those, say ¢ : Iy — F,n, the others are given by the composition of 1 with



the n-embeddings of F» inside Fp:
. P =
Vit Iy = Fpn = ).

Since the embeddings are the p-power of the Frobenius, given a fundamental
character v, the others are ¥, P, ..., wpn_l.

Example 1.4.1. For n = 1 there exists a unique fundamental character
wy: Iy = [Fp. Tt corresponds to the p-adic cyclotomic character modulo mz,.
We will denote this character simply by w.

1.5 Peu and treés ramfiée extensions

For p > 3, the extension of a mod p character v by the trivial representation
is an I, vector space of dimension 1 if ¢ # w, otherwise it is 2-dimensional.
This fact can be seen as follows.

Starting with a short exact sequence

1—>up(@,)—>((jpX L@X—H

of Gg,-modules and taking its invariants, we get

1 Q5 Q) — H'Y(Gg,, Fp(1)) — H'(Gg,, Q).

By Hilbert 90 theorem ([Gru67, §2.7]), the latter group is trivial, then
HY(Gq,,w) ~ Q) /(Q)?, which is a 2-dimensional F)-vector space (gene-
rated, for instance, by p and 1 — p). The isomorphism is given explicitly
by u > [g — g(¥/u)/¥/u]. Following the notation given by Serre in [Ser87],
we say that an extension is peu ramifié if it corresponds to the image of
Zy [(Z;)P; otherwise, it is called trés ramifié.

1.6 Weil group and Weil-Deligne representations

In this section we conclude the description of all basic objects we will need.
Although we will not need it, in the following definition we want to treat
also a case when the residue field & is infinite

Definition 1.6.1. The Weil group relative to FKK is the subgroup of G
given by all the elements which image inside Gal(k/k) is an integer power of
the absolute Frobenius Froby over k.

In order to define a topology on the Weil group, we do not consider the
subspace topology on G, rather we set on Wy the coarsest topology for
which Iy is open. With this topology, the Weil group becomes a locally
profinite group (i.e., a locally compact Hausdorff topological group) and the
inclusion Wx C Gk is dense.



Thus, we have a commutative diagram with exact rows:

1 Ik G K .7 1
1 Ik W 7 1

The map v is called valuation of G .

Remark 1.6.2. If k£ is not finite, then we have Gg = Wx = Ix and
vg(w) =0 for any w € W.

Let q := #k. If we consider Wi as a group scheme over Q, we can put
the following definition:

Definition 1.6.3. The Weil-Deligne group WDy relative to K /K is the
group scheme over Q which is the semi-direct product of the Weil group W
and the additive group G,, on which Wx acts by wzw ™! = ¢"5(@)g for any
w € Wk, x € G,.

Remark 1.6.4. If k is not finite, the Weil-Deligne group is the direct product
of I'x by G,.

Definition 1.6.5. Let F be a field of characteristic 0. A representation of
WDk is a E-linear representation of WDk ® E of finite dimension.

In other words, we can consider such object to be a triple (A, pg, N) where
A is a finite-dimensional E-vector space, po: Wk — Autg(A) a morphism
with kernel an open subgroup of Ix and N: A — A a linear application
satisfying:
po(w) N po(w) ™ = g @ N

for any w € Wg.
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2 Deformation theory of Galois representation

In this section, we will define the notion of a deformation of a representation
of the absolute Galois group of a finite extension K of Q.

More generally, for a finite field F, we will start with a profinite group G
and a F[G]-module VF on which G acts continuously and with d := dimp Vg
a finite number.

In the sequel, we will denote by W = W (F) the ring of Witt vectors of F.

2.1 Deformation functors

Let 52/[\tW denote the category of complete noetherian local W-algebras with
residue field F, and 2ty denote the full subcategory of finite local artinian
W-algebras. The maximal ideal of A € /vy is denoted by m4. Note that,
via the W-structure, the residue field A/my of any A € vy, is canonically
identified with F.

Definition 2.1.1. Let A be in 2Avyy. A deformation of Vg to A is a pair
(Va,ta) such that:

e V), is a A[G]-module which is finite free over A and on which G acts
continuously on Vg;

e 14 is a G-equivariant isomorphism ¢4: Vi @4 F — Vi.

Fixing an F-basis fp of Vi, a framed deformation of (Vi, Br) to A is a
triple (Va,ta,B4), where (V4,t4) is a deformation of Vg to A and (4 is a
basis of V4 which reduces to Sr under ¢ 4.

One defines functors Dy, D‘D/F: vy — Set by setting, for all A € Ay,

Dy, (A) = {isomorphism classes of deformations of Vg to A},

D‘D/F(A) = {isomorphism classes of framed deformations of V§ to A},
and with the obvious extension to morphisms.

Remark 2.1.2. (a) The fixed basis S identifies the vector space under-
lying V& with F? and thus allows us to view Vp as a representation
p: G — GL4(F). Then DEF (A) is the set of continuous representations:

p: G — GL4(A)

lifting p. In terms of representations, Dy, (A) is the set of such represen-
tations modulo the action by conjugation of ker(GLg(A) — GL4(VF)).

(b) It is often useful to consider deformation functors on vy, where O is
the ring of integers of a finite totally ramified extension of W (F)[1/p],
so that [F is still the residue field of O, and where 2vq is the category
of local artinian O-algebras with residue field F.

11



2.2 A finiteness condition

Definition 2.2.1. A profinite group G satisfies the finiteness condition ®,
if, for all open subgroups G’ < G, the Fp-vector space Homeont(G', Fp) of
continuous group homomorphisms is finite dimensional.

By the Burnside’s basis theorem, the group G’ satisfies dim Homcont (G, Fp)
< oo if and only if the maximal pro-p quotient of G’ is topologically finitely
generated.

Example 2.2.2. The group Homeons(G’, Fp) is isomorphic to Homeont (G’ ab, Fp).
Thus class field theory shows that the following groups satisfy Condition
D,

(a) the absolute Galois group of a finite extension of Qp;

(b) the Galois group Gk g = Gal (Kg/K), where K is a number field, S is
a finite set of places of K, and K¢ C K denotes the maximal extension
of K unramified outside S.

2.3 Representability
Proposition 2.3.1. Assume that G satisfies Condition ®,. Then:

(a) D‘D/[F is pro-representable by some R‘D/]F € Q/l\tw;
(b) if Endgiq)(VF) = F, then Dy, is pro-representable by some Ry; € Q/I\tw.

One calls R‘D/F the universal framed deformation ring and Ry, the universal
deformation ring of V.

Remark 2.3.2. (a) Recall that pro-representability (e.g., for DE—F) means
that there exists an isomorphism

Dy (A) ~ Homyy Ry, A)

which is functorial in A € Rdtyy. This universal property implies that
R“:‘/IF is unique up to unique isomorphism. Moreover, the identity map
in Hom(R‘DfF, R‘D/F) gives rise to a universal framed deformation over

0
R

(b) Originally, Mazur considered the functor Dy;,. It describes representa-
tions lifting VF up to isomorphism. The additional choice of basis is
not a very interesting datum. However, the functor Dy, is not always
representable. A good way to remedy this problem is to rigidify the
situation by adding a choice of basis to a given representation and thus
to consider the functor D‘D/m instead. This is important for residual
representations Vg of the absolute Galois group of a number field K,

12



in the sense that Vg may have trivial centralizer as a representation
of Gx and yet the restriction of V& to a decomposition group may no
longer share this property.

(c) Without condition ®,, the universal ring R\D/m still exists (as an inverse
limit of artinian rings), but it may no longer be noetherian.

(d) Due to the canonical homomorphism F — Endgg)(VF), it is justified
to write "=" in Endgg(Vr) = F.

Proof. We prove part (a).
Suppose first that G is finite, say with a presentation G =< g1, ..., s |
r1(91, -+, 9s)s -+, 7e(g1,- - -, gs) >. Define

R=WI[X};|i,j=1,....dk=1,...,s]/a
where a is the ideal generated by the coefficients of the matrices
(XY X% —id, [ =1,...,1,

with X* the matrix (ij) Let g be the kernel of the homomorphism R — F
defined by mapping X* to p(gx) for k = 1,..., s, with p as in Remark 2.1.2(a).
Then R‘D/F is the J-adic completion of R and p"]/IF is the unique representation
G — GLd(R‘D,F) mapping g to the image of X* in GLd(R":/'vF).

We may write any profinite group G as a filtered inverse limit G =
l'gli(G /H;) over some index set I of open normal subgroups H; C Ker(p).

For each i the above construction yields a universal pair (R}, p). By the

universality of thee pairs, one can form their inverse limit over the index set

I. This yields
(R\D/]F’p\mf]y) = l&l(RZD, P?),

which clearly satisfies the required universal property. By definition, R‘D/F lies

in Q/l\tw. It remains to show that R = R‘D/F is Noetherian. Since R is complete,
it suffices to show that mp/ (m%z, p) is finite-dimensional as a vector space
over F. It is most natural to prove the latter using tangent spaces. We refer
to the proof of Lemma 2.4.3, where we shall see how Condition ®,, is used.

The proof of part (b) in [Maz89, Thm. 1.7.2] uses Schlessinger’s repre-
sentability criterion. ]

2.4 The tangent space

Let Fle] = F[X]/(X?) denote the ring of dual numbers. The set Dy (Fle]) is
naturally isomorphic to Extﬁ?[G](VF, Vr), as an element of Dy, (F[e]) gives rise
to an (continuous) extension

0—>VF—>VFM—>VF—>O

13



where we have identified € - Vg with Vg, and, conversely, any extension of one
copy of Vg by another Vi can be viewed as an F[e]-module, with multiplication
by € identifying the two copies of Vi. In particular, Dy (F[e]) is naturally an
F-vector space.

Definition 2.4.1. The F-vector space Dy, (F[e]) is called the Zariski tan-
gent space of Dy;.(The same terminology will be used for DEF and other
deformation functors.)

Remark 2.4.2. Recall that, for any A € Q/l\tw, its (mod p) Zariski tangent
space is the F-vector space t4 = Homyy (A, Fle]). Thus, if Dy, is prorepresen-
table, then the tangent spaces of Dy; and of the universal ring representing
Dy, agree.

Lemma 2.4.3. (a) Defining adVr as the G-representation Endg(Vr), there
18 a canonical isomorphism

Dv.(Fle]) = HY(G,adVk)

(b) If G satisfies Condition ®,, then Dy, (Fe]) is a finite dimensional
F-vector space.

(¢) One has dimp D‘E'/]F (Fle]) = dimy Dy, (Fle]) + d? — h(G, adVf).
Remark 2.4.4. The symbol h*(...) always denotes dimp H*(...).
Proof. It’s enough to show the isomorphism ExtllF[G](VF, Vi) ~ HY(G, adVy).
Consider an element F € ExtllF[G](V]F, V), so in other words we have a short

exact sequence
O—-W—FE—=>V—0

as F[G]-modules. Tensoring by V¥ we get another extension:
01 Vy - E —-F—=0

Since V@ ® Vi' = Endg (V) canonically, we get the desired isomorphism.

We now prove part (b), thereby completing the proof of Proposition 2.3.1(a).
Let G’ = Ker(p), which is an open subgroup of G. The inflation-restriction
sequence ([AW67, Prop. 4]) yields the left exact sequence

0 — HYG/G',adVk) — HY(G,adVk) — (Hom(G',F,) @, adVe) /<"

The term on the left is finite because G/G’ and adVy are finite. The term

on the right is finite because of Condition ®, for G. Hence (b) is proved.
To prove part (c), fix a deformation Vg of Vi to Fle]. The set of Fe]

bases of V| lifting a fixed basis of Vg is an F-vector space of dimension d?.
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Let 8" and 8” be two such bases. Then there is an isomorphism of framed
deformations

(VF[E}’ﬂ,) = (VF[e]a B”)
if and only if there is an automorphism 1 + ea of Vp(), where o € adVp,
which takes 8” to , so that a € adV;¥. Thus the fibers of

Dy (Vi) = Dvi (Virgg)
are a principal homogeneous space under adVy/(adVy)©. O

Definition 2.4.5. Let ¢: D’ — D be a natural transformation of functors
from Aryy to Set. The map ¢ will be called formally smooth if, for any
surjection A — A’ € vy, the map

D'(A) = D'(A") X p(ary D(A)
is surjective.
Essentially the same proof as that of Lemma 2.4.3(c) implies the following:

Corollary 2.4.6. The natural transformation D\% — Dy, (Va,B4) — Va
is formally smooth. Thus, if Ry, is representable, then R‘D/F 1S a power Series
ring over Ry, of relative dimension d* — h°(G,adVy).

2.5 Schlessinger’s criterion

In order to complete Proposition 2.3.1(b), we introduce the Schlessinger’s
theorem; for a proof, we refer to [Sch68|.

Let D: 2(vyy — Set be a functor such that D(IF) is a point.

We say that an epimorphism A” — A in vy, is small surjective if its
kernel is a principal ideal which is annihilated by m4».

For any A, A’, A” € vy with morphisms A’ — A and A” — A, we have
a natural map (in Set):

D(A" x4 A") = D(A") x p(ay D(A"). (2.1)
The axioms of Schlessinger are as follows:
(H1) If A” — A is small surjective, then (2.1) is surjective.
(H2) If A” — A is Fle] — F, then (2.1) is bijective.
(H3) dimy D(F[e]) is finite.
(H4) If A” — A is small surjective and A" = A”, then (2.1) is bijective.

Note that with condition (H2), D(F[e]) carries a natural structure of
F-vector space. The following is a main theorem in loc.cit.:

Theorem 2.5.1. If D satisfies (H1), (H2), (H3) and (H4), then D is
prorepresentable.
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3 p-adic Hodge theory

In this section, we will develop some important equivalence of categories
between particular representations and (semi-)linear algebra objects.

Let K and E be two finite field extensions of @, and fix an algebraic
closure K of K. In this section, we want to introduce the notions of crystalline
and semistable representations with values in E of the absolute Galois group
Gk = Gal(K/K) of K.

3.1 The cohomology of Cgx

Let K as above. Since the algebraic closure K is not complete, we define by

Cg the completion K of K endowed with its unique valuation extending the
given valuation val, on K.
Of course, Cg is complete and fortunately it is also algebraically closed:

Proposition 3.1.1. The field Cg is algebraically closed.

Proof. By scaling the variable suitably, it suffices to construct roots for monic
non-constant polynomials over Oc, . Write such a polynomial as

P=XN4+a; XN+ tay € O [X]

with N > 0. We can make a sequence of degree-IN monic polynomials
P, € O%[X] converging to P term-wise in coefficients. More specifically, for
each n > 0 choose

Py=XN+ a1, XY+ +an, € 05[X]

with P— P, € pN""Oc,.[X]. By monicity, each P, splits over O let a, € O
be a root of P,.

Since P41 — Py € pPV"Oc, [X], we have P, y1(a,) € pNnOg,, for all n.
Expanding P11 as Hi]i()(X — Pint1) With roots p; n41 € O, the product
of the N differences o, — p; 41 is divisible by pV™. so for some root Q41 of
P,,+1 we must have that a1 — «, is divisible by p™. In this way, proceeding
by induction on n we have constructed a Cauchy sequence {a,} in O such
that P,(ay,) = 0 for all n. Hence, if a € Oc,, is the limit of the «;,’s then
P(a) = 0 by continuity (since P, — P coefficient-wise). O

Since G = Gal (K/K) acts on K by isometries, this action uniquely
extends to an action on the field Cx by isometries, and so identifies Gx with
the isometric automorphism group of Cx over K. It is the natural to ask
if there is a kind of "completed” Galois theory: how does C% compare with
K" for a closed subgroup H C Gk? Since Gk acts by isometries, C% is a
closed subfield of Cg, so it contains the closure of K7 Isit any bigger? By
Galois theory we have C% N K = K, so another way to put the question is :
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are there transcendental invariants? The following proposition shows that
there are none.

Proposition 3.1.2. Let H be a closed subgroup of Gg. Then (C% s the
completion L of L = " for the valuation valy. In particular, if H is an open
subgroup of Gr, then C% is the finite extension K" of K, and LNK =L.

Proof. Choose z € (Cg, so we want to show that x is a limit of points in &
To do this, we approximation x by the algebraic elements and then try to
modify the approximating sequence by using that assumed H-invariance of
x. Pick a sequence {x,}n>0 in K with z,, — x; more specifically, arrange
that val,(x — xy,) > n for all n. For g € H, we have:

valy(g(xn) — xn) = valp(g(zn — ) — (zy, — ) >
> min(valy(g(zy, — ), valy(xy, — x)) = valy(x, —x) > n.

Since z,, € K is close to its entire H-orbit (as made precise above), it is
natural to guess that this may be explained by x being essentially as close to
an algebraic H-invariant element. This is indeed true: by [Ax70, Prop. 1],
for each n there exists y, € K" such that valy (T, —yn) > n—p/(p—1)2
But z,, — x, so we conclude that likewise 3, — x. That is, x is a limit of
points in K, as desired. O

To state the following theorem, we recall the notation Cr (r) := Z,(r) ®z,

Ck with the Gg-action on both sides of the tensor product, i.e., g(z ® ¢) =
g9(z) ®g(c) for all g € Gk.
Theorem 3.1.3 (Tate-Sen theorem). For any finite extension K of Q,, we
have K = (C?;K (i.e., there are no transcendental invariants) and Cy (1)K =
0 forr #0 (i.e., if v € Cx and g(x) = x(9) "z for all g € Gk and some
r # 0 then © = 0). Moreover:

1 ifr=0
0 ifr=#0.
For a proof of Theorem 3.1.3 we refer to [BC09, §14].

dimp Hly (G, Ce (1)) = {

3.2 Rings of periods: formalism

Before introducing the Fontaine’s rings of periods, we describe the idea
behind the construction of those rings. As above, we will consider the field
K and its Galois group Gg.

Definition 3.2.1. Let B denote an Q,-algebra domain equipped with a
G g-action and, possibly, some supplementary structures compatible with
the action of Gk (for example, a filtration, a Frobenius map, a monodromy
map, etc.). We say that B is (Q,, Gk )-regular if:
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(i) Frac(B)“x = BYx;
(ii) if b € B is such that its Qp-linear span Q, - b is Gk-stable, then b € B*.

Note that if B is a field then the conditions in the definition are obviously
satisfied. Moreover, if property (i) holds, then the invariant subalgebra
F := BY% is automatically a field.

Now we introduce one of the principal objects we will use in this disser-
tation:

Definition 3.2.2. A p-adic representation of a profinite group I' is a repre-
sentation p: I' = Autg, (V') of I' on a finite-dimensional Q,-vector space V'
such that p is continuous. The category of such representations is denoted
by Repg, (I').

A p-adic representation with coefficient in E of I', where F is a finite
extension of Q,, is a p-adic representation V' which is also an E-vector space
for which the I'-action is E-linear. In this case, the category is denoted by

Repg(T).

Coming back to the general axiomatic setting, for any p-adic representa-
tion V' of G we define

Dp(V) = (B &g, V)~
so Dp(V) is a F = B%-vector space equipped with a canonical map
ay: Bep Dp(V) - B®p (B@Qp V)= (B®F B) ®q, V = B®q, V.

This is a B-linear G g-equivariant map (where G acts trivially on Dg(V)
in the right tensor factor of the source).

For a p-adic representation V of G, it is true (see below) the dimp Dp(V) <
dimg, V; in case equality holds we call V' a B-admissible representation.

Theorem 3.2.3. Fiz V € Repp(Gk).

1. The map ay is always injective and dimp Dg(V) < dimg V', with
equality if and only if ay is an isomorphism.

2. Let RepB(Gx) C Repp(Gr) be the full subcategory of B-admissible
representations. The covariant functor Dp: Repg(GK) — Vecr to the
category of finite-dimensional F-vector spaces is exact and faithful, and
any subrepresentation or quotient of a B-admissible representation is
B-admissible.

3. If Vi, Vs € RepB(Gk) then there is a natural isomorphism

Dp(Vi) ®@F Dp(Va) ~ Dp(Vi ®f Va2),
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so Vi @p Vo € RepB(Gk). If V € RepB(Gk) then its dual representa-
tion V'V lies in Repg(GK) and the natural map

DB(V) QF DB(V\/) ~ DB(V RF Vv) — DB(E) =F

is a perfect duality between Dp(V') and Dg(V'V).

In particular, Repg(GK) is stable under the formation of duals and
tensor products in Repp(Gk), and Dp naturally commutes with the
formation of these constructions in Rep2(Gx) and in Vecp.

Proof. See [BC09, Thm. 5.2.1]. O

If B has some supplementary structures, then these descend to Dp(V')
and in this way we obtain some non-trivial invariants of B-admissible repre-
sentations, which can then be used to classify them.

3.3 Ring of periods: Byt and the Hodge-Tate weights

Let V be a p-adic representation of G and consider its extension by scalar
W := Ckg ® V on which Gk acts continuously on both sides of the tensor
product, i.e., by g(c®v) = g(c) ® g(v) for c € Cx and v € V.

Definition 3.3.1. A Cg-representation of Gk is a finite-dimensional Cg-
vector space W equipped with a continuous Gg-action map Gg x W — W
that is semilinear (i.e., g(cw) = g(c)g(w) for all ¢ € Cx and w € W).
The category of such object (using Cg-linear G g-equivariant morphism) is
denoted by Repc, (Gk).

For W € Repg, (G ) and g € Z, consider the K-vector space
W{g} = W(q)“* =~ {w e W | g(w) = x(9) “w for all g € G},

where the isomorphism rests on a choice of basis of Z,(1). In particular,
W{q} is not a Cx-subspace of W (q) when it is nonzero.
We have a natural G g-equivariant K-linear multiplication map

K(—q) @k W{q} — K(—q) @k W(q) =W,
so extending scalars defines maps
Cr(—q) @k W{q} - W

for all g € Z.
The following lemma is due to Serre-Tate:
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Lemma 3.3.2 (Serre-Tate). For a Cgx-representation W of Gk as above,
the natural Cg -linear G i -equivariant map

aw: EP(Cx(—q) @x W{g}) = W
q

is injective. In particular, W{q} = 0 for all but finitely many q and
dimg W{g} < oo, with };, W{q} < dimc, W; equality holds here if and

only if aw s an isomorphism.

With the formalism of the previous section, we can reduce the proof of
this lemma to construct a (Qp, G )-regular domain B: the perfect candidate
for this role is the so-called Hodge-Tate ring Bur := @,cz Cx(q)-

Proof. Non-canonically, Byt = Ck[T,1/T] with Gg acting through the
p-adic cyclotomic character x: Gk — Z, via g(3_ an,T™) = > gan)x(g)"T".
Obviously, in this case C' := Frac(Bur) = Cg(T") and Bgfr{ =K.

By the Tate—Sen theorem 3.1.3, Bg% = ®Cx(¢q)“% = K. To compute
that CK is also equal to K, consider the G g-equivariant inclusion of C' =
Ck(T') into the formal Laurent series field Cx ((T")) equipped with its evident
G r-action. Tt suffices to show that Cx((T)“% = K. The action of g € G
on a formal Laurent series > ¢, 7" is given by > ¢, T™ — > g(cn)x(9)"T",
so Gg-invariance amounts to the condition ¢, € Cx(q)%% for all ¢ € Z.
Hence, by the Tate—Sen theorem we get ¢, = 0 for n # 0 and ¢y € K, as
desired.

In order to verify the second property of being (Q,, Gk)-regular, we
proceed in a similar way: if b € Byt \ {0} spans a Gg-stable Qp-line
then G acts on the line Qb by some character ¢: Gx — Q. From the
continuity of the Gi-action on each direct summand Cg (q) of Byt we have
that ¢ must be continuous (so it takes values in Z,). Writing the Laurent
polynomial b as b = > ¢;77, we have 9(g)b = g(b) = > g(c;)x(g9)’T?, so
for each j we have (¥ "1x7)(g) - g(c;) for all g € Gi. But by the Tate-Sen
theorem, for a Z;-valued continuous character n of Gk, if Cx(n) has a
nonzero G g-invariant element then 7|7, has finite order. Hence, (¢p~1x7)|/,
has finite order whenever ¢; # 0. It follows that we cannot have c;,c;y # 0
for some j # j', for otherwise taking the ratio of the associated finite-order
characters would give that y’ _j'| I cuts out an infinitely ramified extension
of K. It follows that there is at most one j such that ¢; # 0, and there is
a nonzero c; since b # 0. Hence, b = cT7 for some j and some ¢ € C%, so
b € Bjir. O

Definition 3.3.3. A representation W in Repc, (Gk) is Hodge-Tate if oy
is an isomorphism, or equivalently if W is Bpr-admissible.

A representation V' in Repg, (G ) is Hodge-Tate if Ck®q,V € Repc, (Gk)
is Hodge—Tate.
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For any Hodge—Tate object W we define the Hodge—Tate weights of W to
be those ¢ € Z such that W{q} := (Ck(q) ®c, W)X is nonzero, and then
we call hy := dimp W{q} > 1 the multiplicity of q as a Hodge-Tate weight of
W. Attention: with this definition Cx(¢) has —q as its unique Hodge-Tate
weight. Obviously, if W is Hodge-Tate then so is WV, with negated Hodge—
Tate weights (compatibility with multiplicity), so it is harmless to change the
definition of "Hodge—Tate weight” by a sign. In terms of p-adic Hodge theory,
this confusion about sign comes down to later choosing to use covariant
or contravariant functors when passing between p-adic representations and
semilinear algebra objects.

3.4 Formalism of Hodge—Tate representations

For Serre-Tate’s lemma 3.3.2, any W in Repg, (Gk) is Hodge-Tate if and
only if it is a (finite) direct sum of finite-dimensional vector spaces, so direct
sum, tensor product and dual of two Hodge—Tate representations is again
Hodge—Tate.

Therefore, we may define Repng(G k) C Repr(G k) to be the full subca-
tegory of objects V' that are Hodge-Tate (i.e., Cx ®q, V' is Hodge-Tate in
Repc,. (Gk)). Our results in the Cx-representations show that Repgg(G K)
is stable under tensor product, duality, subrepresentations and quotients in
Repg, (Gk).

For any V object in Rep@p(G k), we look at the K-vector space

Dur(V) = (Bur ®g, V)X

but it carries over also a grading structure coming from the ring Byr: for
this reason, it is useful to introduce some terminology.

Definition 3.4.1. A graded vector space over a field F' is a F-vector space
D equipped with direct sum decomposition @©4cz D, for F-subspaces D, C D
(and we define the qth graded piece of D). Morphisms T: D' — D between
graded F-vector spaces are F-linear maps that respect the grading (i.e.,
T(Dy) € Dg). The category of these is denoted Grr; we let Grp s denote
the full subcategory of D for which dimg D is finite.

Thus, the above K-vector space Dyr(V) is actually an element of Grg.
In general, we may define a functor Dy : Repr (Gk) — Grg, which actually
takes values in Grg ; by Serre-Tate lemma. Now, we show some properties
of this functor.

Lemma 3.4.2. If0 - V' -V — V" — 0 is a short exact sequence in
Repg, (Gk) and V' is Hodge-Tate then so are V' and V", in which case the
sequence

0— DHT(V,) — DHT<V) — DHT(V”) —0
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in Grg, s is short exact (so the multiplicities for each Hodge—Tate weight are
additive in short exact sequences of Hodge—Tate representations).

Proof. It’s enough to show the result in Rep¢, (G ) with W := Cx ®qg, V
and similar for W’ and W”.
By left-exactness of taking invariants, we have

0— DHT(W/) — DHT(W) — DHT(W”) (3.1)

with dimg Dgp(W’) < dimc, W’ and similar for W and W”. But equality
holds for W by the Hodge-Tate property, so

dim(CK W = dimpg DHT(W) < dimpg DHT(W,) + dimg DHT(W”)
< dim(CK W'+ dim(;K w”
= dimc, W,

forcing equality throughout. In particular, W’ and W” are Hodge—Tate
and so for K-dimension reasons the left-exact sequence (3.1) is right-exact
too. O

Therefore, our functor Dyt on Repng(G k) 1s exact and compatible with
tensor products and duality (by the general formalism in §3.2). Furthermore,
the comparison morphism ay : Byt ®x Dut(V) — Bur ®q, V for V €
RepQP(G k) is an isomorphism precisely when V' is Hodge—Tate, and hence
Dyr: Repgg(G k) — Grg ¢ is a faithful functor.

Remark 3.4.3. One can show that the functor Dyt: Repe, (Gk) — Gri s
is a fully faithful. However, our functor on the category Repgg(G k) of
Hodge-Tate representations of G over Q,, is not fully faithful.

To improve this, we need to introduce a nice category of p-adic represen-
tations of Gk into a category of semilinear algebra objects.

3.5 Reminder: Witt vectors

In this section, I will recall some basic properties of the Witt vectors, rather
than their construction. A classical reference is [Ser79], while a more detailed
treatment is given in [BC09, §4.2].

We start with basic definitions:

Definition 3.5.1. A p-ring is a ring B that is separated and complete for the
topology defined by a specified decreasing collection of ideals by D by O ...
such that b,,b,, C by, for all n,m > 1 and B/b; is a perfect Fp-algebra.

A strict p-ring is a p-ring B such that b; = p'B for all i > 1 (i.e., B
is p-adically separated and complete with B/pB a perfect [F,-algebra) and
p: B — B is injective.
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Remark 3.5.2. The topological ring B, with a topology induced by a
sequence of ideals as above, is said separated (or Hausdorff) and complete if,
respectively, ;5 b; = 0 and B ~ Hm, B/b;.

Starting with a perfect ring A of characteristic p (i.e., an [F,-algebra for
which a — a@P is an automorphism of A), the aim is to construct a strict
p-ring B with characteristic 0 and residue field A. In this case, the usual
construction given by Witt works well in the sense that the ring of Witt
vectors W (A) of A is "the” desired strict p-ring in the following sense:

Proposition 3.5.3. If A is a perfect Fp-algebra and B is a p-ring, then
the natural "reduction” map Hom(W (A), B) — Hom(A, B/b1) (which makes
sense since A =W (A)/(p) and p € by) is bijective. More generally, for any
strict p-ring B, the natural map

Hom(B, B) — Hom(B/(p), B/b)

1s bijective for every p-ring B.
In particular, strict p-rings B are precisely the rings of the form W (A)
for perfect IF,-algebras A.

An useful tool of this construction is the so-called Teichmdiller map:

Lemma 3.5.4. Let B be a p-ring. There is a unique set-theoretic section
[[]: B/b1 — B to the reduction map such that [xP] = [z]P for all x € B/by.
Moreover, [-] is multiplicative and [1] = 1.

An immediate consequence of this lemma is that in a strict p-ring B
endowed with the p-adic topology (relative to which it is separated and
complete), each element b € B has the unique form b =) - ,[by]p" with
b, € B/by = B/pB. B

Example 3.5.5. (i) W(F,) = Z,,.

(ii) If A=k is the finite field with p" elements, then W (k) is the ring of
integers of the unique unramified extension of Z, of degree n. If we
consider a finite extension K of Q, with residue field £k, we will denote
by Ko = W (k)[1/p] the maximal unramified extensions of Q,, inside K.

(iii) If k is the (fixed) algebraic closure of the residue field k of K, then
W(k) = Oamr is the valuation ring of the completion Kot of the
maximal unramified extension of K. In particular, Oc, /(p) = O%/(p)

is not only an algebra over W(k)/(p) = F in a canonical manner, but
also over W (k)/(p).
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3.6 The ring R

To the ring Oc, /(p) = O%/(p) we can associate a perfect F)-algebra

R:= lim Oc,/(p) = { (wo,71,...) € [] Oc,/(p)

x—>xP n>0

P :
T =T for all ¢

with the product ring structure and endowed with a natural Gg-action.
This is perfect because the additive pth power map on R is surjective by
construction and is injective since if (x;) € R satisfies (z;)? = 0 then
zi—1 =af =0 for all i >0, so (z;) = 0.

Every element of R can be uniquely lifted to a p-power compatible
sequence in Oc, (but possibly not in O%) in the following way. Fix an
element x = (xy,)n>0 € R and for every n choose a lift Z,, of z,, inside Oc,
(or inside O), then the sequence Ty, "m0, () € O « Wwhich does not
depend on the choice of the lifting Z,, ([BC09, Prop. 4.3.1]). Moreover, the
map R = lim  Ocy, ((™),, defines a bijection on these sets and
we will identify R in this way by setting the following ring structure on the
second set: for z = () and y = (y™) in R, define

zy = (zMyM),>0
4y = (2),50 with 20?) = limy, oo (x4 yFm))p™,

An element x € R is a unit if and only if the component zg € O%/(p) is a
unit, so R is a local ring. Also, since every element of Oz is a square, it
follows that the nonzero maximal ideal m of R satisfies m = m?. In particular,
R is not noetherian. If val, denotes the valuation of Oc, normalized by
valy(p) = 1, then we may define a G g-equivariant valuation vg on R by
setting vg(x) = valy(z(?) for all z = (2(™),>0. This valuation makes R into
a valuation ring for which it is vg-adically separated and complete, integrally
closed in Frac(R) with residue field k.
An important example of an element of R is

e = (g(n))nzo = (17Cp7<p27 e )

with €@ =1 but e #£1 (so e = (p is a primitive pth root of unity and
hence €™ is a primitive pth root of unity for all n > 0). Any two such
elements are Z, -power of each other and for any such choice of element we
have vgr(e — 1) =p/(p — 1).

If o € k, then ([@'/?"]),>0 € R, and this gives an injective map k — R.
If we define 7 = € — 1, we get k[7] C R independently of ¢ and:

Theorem 3.6.1. The field Frac(R) = R[1/7| of characteristic p is alge-
braically closed. In particular, it is the completion of the algebraic closure

k(7).
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3.7 Ring of periods: Bgr

Once one constructs the ring R, one can define the other three Fontaine’s
ring of periods; we start, as usual in the literature, with Bgg.

Since the ring R is perfect of characteristic p, we will take its ring of Witt
vectors, but in the same time we do not want to loose much informations
about its construction, in particular its G x-equivariant surjective reduction
map 0y: R — Oc,. /(p), (z;) — xo. In order to get a lifting of 6y, one is tented
to apply 3.5.3, but unfortunately the target ring is not perfect, although
Ocy is p-adically separated and complete. Nonetheless, we can construct
such lifting 0: W(R) — Oc, in a canonical and Gg-equivariant manner.

First, we note that every element of W(R) can be written in a unique
as Y [cn]p™ with ¢, = (cglm))mzo € R (since W(R) is a strict p-ring and
W(R)/(p) = R). Then, we define 6 in an explicit way as:

00) lealp™) =Y lp”

By definition, 6 is G g-equivariant and surjective; further, it is a ring homo-
morphism ([BC09, Lemma 4.4.1]).

Inverting p in both sides, we can extend 6 by a Gx-equivariant surjective
ring homomorphism

O0g: W(R)[1/p] — Ock[l/p] = Ck

but the source ring is not a complete discrete valuation ring. We shall replace
W (R)[1/p] with its ker fg-adic completion, and the reason this works is
that kerfg = (ker #)[1/p] turns out to be a principal ideal. In fact, if we
pick p € R such that p(®) = p, then ¢ = [p| — p € W(R) is a generator for
ker @ C W(R). Moreover, W(R) N (ker fg)’ = (ker§)7 and N;(ker )’ = 0.
We conclude that W (R)[1/p] injects into the inverse limit

B =l W(R)[1/p]/(ker )’ (3.2)

whose transition maps are G i-equivariant, so BJR has a natural Gg-action
that is compatible with the action on its subring W(R)[1/p]. (Beware
that in (3.2) we cannot move the p-localization outside of the inverse li-
mit). The inverse limit B(;FR map Gg-equivariantly onto each quotient

W(R)[1/p]/(ker fg)’ via the evident natural map, and in particular, for j = 1,
the map g induces a natural G k-equivariant surjective map H:{R: BJR — Cg.

Proposition 3.7.1. The ring B;{R s a complete discrete valuation ring with
residue field Cg, and any generator of ker g in W (R)[1/p] is a uniformiser
of BIR.

Proof. See [BC09, p. 4.4.6]. O
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The Frobenius automorphism ¢ of W (R)[1/p| does not naturally extend
to B;R since it does not preserve ker flg, so there is no natural Frobenius
structure on Bd+R. Nevertheless, we do have a filtration via powers of the
maximal ideal, and this is a G g-stable filtration. We get the same on the
fraction field:

Definition 3.7.2. The field of p-adic periods (or the de Rham period ring)
is Bgr = Frac(Bd+R) equipped with its natural G g-action and G g-stable
filtration via the Z-powers of the maximal ideal of B('IR.

Another way to see the filtration steps inside B:R and Bggr is to define
an element ¢ which is a generator for the maximal ideal ker fg and also a
uniformiser for B:R (by Proposition 3.7.1), so Bqr = B:R[l/t]; in particular,
this construction shows that the filtered field Bgg is actually an appropriate
refinement of Byr:

Fil'Bag := (kerfg)’ = t'Bjy.

Now we construct such element. Take the above element ¢ € R, so
0([e] —1) = e® —1 =0. Hence, [¢] — 1 € ker§ C ker 61, so [e] = 1+ ([e] — 1)
is a l-unit in the complete discrete valuation ring B:{R over K. We can
therefore make sense of the logarithm

t :=log([e]) =log(1 + ([e] = 1)) = Z(—l)"“[g]n_l € Bli.

This lies in the maximal ideal of B:{R. Note that if we make another choice
¢’ then &’ = €% for a unique a € Z, using the natural Z,-module structure
on l-units in R. Hence, we have t' := log([¢']) = alog([¢]) = at.

In other words, the line Z,t in the maximal ideal of BCTR is intrinsic (i.e.,
independent of the choice of €) and making a choice of Z,-basis of this ’line’
is the same as making a choice of €. Also, choosing ¢ is literally a choice of
Zy-basis of Zy(1) = Hm fin (K). For any g € G, we have g(¢) = X9 in R
since g(e™) = (¢()X(9) for the primitive p"th root of unity ™ Oy for
all n > 0. Thus, by the Gi-equivariance of the logarithm on 1-units of Bng

9(t) = log(g([¢])) = log([g(2)]) = log([£X\*)]) = log([]X”)) = x(g)t.

We conclude that Z,t is a canonically copy of Zy(1) as a Gg-stable line in
Bt..
dR

Remark 3.7.3. The ring BJ is isomorphic to Cx [t] only as abstract rings,
and there is no such isomorphism which is compatible with the action of Gk .

In order to conclude this section, we note some other properties of Bgg.
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If P(X) € K[X] is a polynomial with simple roots, then it splits comple-
tely in Cx and hence, by Hensel’s lemma, it also splits completely in BS'R,
since Bl /tBir = Ck. In this way we see that K C Bj;.

The last property we mention is the determination of its subfield of G-
invariants. The above G -equivariant embedding K — B;{R gives us an

inclusion K C Bfff .
Proposition 3.7.4. The inclusion K C Bﬁ{‘ s an equality.
Proof. Consider the short exact sequence

0 — t"™ Bl — "Bz — Cx(h) =0

and for h = 0 apply Tate-Sen Theorem 3.1.3 on the invariants. 0

3.8 de Rham representations

Since Bgr is (Qp, Gk )-regular with Bcﬁf = K, the general formalism of
admissible representations provides a good class of p-adic representations:
the Bgr-admissible ones. More precisely, we define the covariant functor
Dgr: Repr(G k) — Vecg valued in the category of finite-dimensional K-
vector spaces by
Dar(V) = (Bar ®g, V)%,

so dimg Dgr(V') < dimg, V. In case this inequality is an equality we say that
V is a de Rham representation (i.e., V is Bqr-admissible). Let Reple}j(G k) C
Repr(G k) denote the full subcategory of de Rham representations.

By the general formalism from §3.2, for V € Rep(‘éff(G k) we have a
Byr-linear Gg-compatible comparison isomorphism

ay: Bar @k Dar(V') — Bar ®Q, |4

and the subcategory Repg’}(G x) C Repg, (Gk) is stable under passage to
subquotients, tensor products, and duals, and moreover the functor

Dgr: Repfélj(GK) — Veck

is faithful and exact and commutes with the formation of duals and tensor
powers.

Since duality does not affect whether or not the de Rham property holds,
working with Dgr is equivalent to working with the contravariant functor

D:;R(V) = DdR(VV) ~ HOIHQ[GK](V, BdR)-

The output of the functor Dgg has extra K-linear structure (arising from
additional structure on the K-algebra Bgr), namely a K-linear filtration
arising from the canonical K-linear filtration on the fraction field Bqr of the
complete discrete valuation ring BCTR over K. Before we explain this, we
review some terminology from linear algebra.

27



Definition 3.8.1. A filtered module over a commutative ring R is an R-
module D endowed with a collection {Fil’D};cz of submodules that is de-
creasing in the sense that Fil'*'D C Fil'D for all i € Z. If U;Fil'D = D
then the filtration is ezhaustive, if M;Fil’D = 0 then the filtration is se-
parated. For any filtered R-module D, the associated graded module is
gr*(D) = @;(Fil'D/Fil'T' D)

Of course, if (D, FiliD) is a finite-dimensional filtered vector space then
the filtration is exhaustive if and only if Fil'D = D for i < 0 and it is
separated if and only if Fil* = 0 for i > 0. Let Filg denote the category of
finite-dimensional filtered vector spaces (D, Fil'D) over K equipped with an
exhaustive and separated filtration, where a morphism between such objects
is a linear map T': D' — D that is filtration-compatible in the sense that
T(Fil'D") C Fil? for all i.

In the category Filg there are good functorial notions of kernel and
cokernel of a map, tensor product (for D, D’ € Filg the tensor product
D ® D' has underlying K-vector space D ® g D" and filtration Fil"(D® D') =

Z Fil’D @k Fiqu’> and dual. A short exact sequence 0 — D' — D —
ptg=n

D" — 0 in Filg is a short exact sequence of K-vector spaces 0 — D' — D —
D" — 0 such that the sequence 0 — Fil'D’ — Fil'D — Fil'D” — 0 is exact
as K-vector spaces for all 7. Beware this, the category Filx is not abelian,
so in general coimage and image of a map cannot coincide; we refer to strict
morphism when the latter happens.

Finally, there is a natural functor gr = gr®: Filx — Grg,; to the category
of finite-dimensional graded K-vector spaces via gr(D) = @;Fil'D/Fil'*' D.
This functor is dimension-preserving and exact. By choosing bases compatible
with filtrations we see that the functor gr is compatible with tensor products
in the sense that there is a natural isomorphism gr(D) ® gr(D’) ~ gr(D ® D’)
in Grg s for any D, D" € Filg.

For V € Repg, (Gk), the K-vector space Dyr(V') = (Bar®@V)9% € Vecg
has a natural structure of object in Filg: since Bgr has an exhaustive and
separated Gp-stable K-linear filtration via Fil'Bgg = tiBgR, we get an
evident K-linear G -stable filtration {Fil'(Bqr) ®q, V' }i on Bgr ®q, V, so
this induces an exhaustive and separate filtration on the finite-dimensional
K-subspace Dgr (V) of Gi-invariant elements. Explicitly,

Fil' Dar (V) = (t'Bji ®q, V).

The finite-dimensionality of Dgr (V') is what ensures that this filtration fills
up all of Dgr (V') for sufficiently negative filtration degrees and vanishes for
sufficiently positive filtration degrees.

Proposition 3.8.2. IfV is de Rham then'V is Hodge—Tate and gr(Dar(V)) =
Dur(V) as graded K -vector spaces. In general, there is an injection gr(Dgr) <
Dyt (V) and it is an equality of Cx-vector spaces when V' is de Rham.
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Proof. By left exactness of the formation of G g-invariants, we get a natural
K-linear injection

gr(Dar(V)) = Dur(V)

for all V' € Repg, (G ) because gr(Bqr) = Bur as graded Cg-algebras with
G g-action.
Thus,

dimK DdR(V) = dimK gr(DdR(V)) < dimK DHT(V) < dime |4

for all V. In the de Rham case the outer terms are equal, so the inequalities
are all equalities. O

We say that the Hodge—Tate weights of a de Rham representation V are
those ¢ for which the filtration on Dgg (V) "jumps” from degree i to degree
i+1, which is to say gr'(Dar(V)) # 0. This is exactly that Cx ®q, V has i as
a Hodge—Tate weight. The multiplicity of such an 7 as a Hodge—Tate weight
is the K-dimension of the filtration jump, which is to say dimg gré(Dgr(V)).

Example 3.8.3. Dgr(Qpy(n)) is a line with nontrivial gr=", so Q,(n) has
Hodge-Tate weight —n (with multiplicity 1).

Sometimes it is more convenient to define Hodge—Tate weights using
the same filtration condition (gr’ # 0) applied to the contravariant functor
Dir(V) = Dqr(V") = Homgg,(V, Bar) so as to negate things (so that
Qp(n) acquires Hodge-Tate weight n instead).

The general formalism of §3.2 tells us that Dgg on the full subcategory
RepﬁiQf;(G k) is exact and respects tensor products and duals when viewed
with values in Vecg, but it is a stronger property to ask if the same is true as
a functor valued in Filg. Fortunately, such good behaviour of isomorphisms
relative to filtrations does hold:

Proposition 3.8.4. The faithful functor Dyg: RepleF:(GK) — Filg carries
short exact sequences to short exact sequences and is compatible with the
formation of tensor products and duals. In particular, if V' is a de Rham
representation and

0=V -V -V"50

is a short exact sequence in Rep%:(GK) (so V' and V" are de Rham)
then Dar(V") C Dgr (V') has the subspace filtration and the linear quotient
Dar(V") of Dar(V') has the quotient filtration.

Proof. See [BC09, Prop. 6.3.3]. O

Corollary 3.8.5. For V € Rep@p(GK) and n € 7, V is de Rham if and
only if V(n) is de Rham.

An important refinement of Proposition 3.8.4 is that the de Rham com-
parison isomorphism is also filtration-compatible:
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Proposition 3.8.6. For V € Replei{(GK), the G -equivariant Bag-linear
comparison isomorphism

('R BdR XK DdR(V) ~ BdR ®Qp 1%
respects the filtrations and its inverse does too.

Proof. By construction « is filtration-compatible, so the problem is to prove
that its inverse is as well. It is equivalent to show that the induced Byp-linear
map gr(a) on associated graded objects is an isomorphism. On the right
side the associated graded object is naturally identified with Bpr ®q, V.
For the left side, we first recall that (by a calculation with filtration-adapted
bases) the formation of the associated graded space of an arbitrary filtered
K-vector space (of possibly infinite dimension) is naturally compatible with
the formation of tensor products (in the graded and filtered sense), so
the associated graded object for the left side is naturally identified with
Bur ®@k gr(Dar(V)).

By Proposition 3.8.2, the de Rham representation V' is Hodge-Tate
and there is a natural graded isomorphism gr(Dgr(V)) ~ Dyt (V). in this
manner, gr(a) is naturally identified with the graded comparison morphism

ant: But ®k Dut(V) — Bur ®q, V

that is a graded isomorphism because V is Hodge-Tate. O

3.9 Ring of periods: B

One defect of Bj; is that the Frobenius automorphism of W (R)[1/p] does
not preserve ker flg, so there is no natural Frobenius endomorphism of Bgg.
In fact, 6([p'/?] — p) # 0, so that [p/P] — p is invertible in BJ;, and so
1/([@1/1)] —p) € Bj;. But if ¢ was a natural extension of ¢p: W(R)[1/p] —
W (R)[1/p], then one should have ¢(1/([p'/?] — p)) = 1/([p] — p), and since
6([pl — ) =0, 1/([p] — p) & Bin-

To remedy this defect, we will introduce an auxiliary subring Agris C
W (R)[1/p] that is Frobenius-stable and gives rise to a large subring Bes C
Bgr on which there is a natural Frobenius endomorphism.
Let AY.  denote the divided power envelope of W (R)[1/p] with respect
to ker @, which in concrete terms means that it is the Gi-stable W(R)-
subalgebra

W(R) [am/m!]mzl,aekerH = W(R) [fm/m']mzl

in W(R)[1/p] generated by "divided powers” of all elements of ker 6, where
§ := [p] — p is a generator for this ideal. Since AV is a Z-flat domain, if we

cris
define

Acris = 1&1 Agris/pnAgris
n

30



to be the p-adic completion of A%. , then Ag;s is p-adically separated and

complete and the natural map A%. /p" A%, — Acuis/p" Acris is an isomor-
phism for all n > 1. In particular, it follows that Acis is Z,-flat. However, it
is not at all evident and difficult to show that A[C)ris — Acris 1s injective and
that there exists a unique continuous injective map j: Acris < Bd+R (so that
it is G g-equivariant and that Aes is a domain). We address these properties
to the literature (most of them are inside [Fon82]).

Concretely, the image of Ags in B:R is the subring of elements

n

Z ang—' an € W(R), a, — 0 for the p-adic topology
n!

n>0

in which the infinite sums are taken with respect to the discretely-valued
topology of B(TR; such sums converge since ¢ lies in the maximal ideal of B(TR.
Further, the G g-action on Acs is continuous for the p-adic topology.
Define the Gi-stable W (R)[1/p]-subalgebra
B+

cris

Acris[l/p] C B(—iFR
Lemma 3.9.1. We have t € Agyis.

Proof. Choose a generator £ of ker §. Since [¢] — 1 € ker § = EW(R), we have
[e] — 1 = w¢ for some w € W(R). Thus, in BJ; we have

n ( gl = 1)n n n {n
t=> (-1 +1”n =Y ()" (n -1l =
n>1 n>1
with (n—1)lw™ — 0 in W(R) relative to the p-adic topology. Hence, t € Acyis
inside of B('fR. O

In a similar way, one can show that t?~1 € pAgyis.

Definition 3.9.2. The crystalline period ring Bgs for K is the G i-stable
W (R)[1/p]-subalgebra B}, [1/t] = Acyis[1/t] inside of Bjz[1/t] = Bar. (Since
tP=1 € Auis, inverting ¢ makes p into a unit.)

Since W (k) € W(R) C Agis, we have Ko = W (k)[1/p] C Beis, SO

Ky C BEx - Bﬁ—f = K. We claim that BX = K. This is immediate from

= “cris cris
the following non-obvious crucial fact.

Theorem 3.9.3. The natural Gi-equivariant map K Qg, Beis — Bar 1S
injective, and if we give K ® g, Beris the subspace filtration then the induced
map between the associated graded algebras is an isomorphism.

Proof. The proof is entirely given via the construction of the map j: Acris —
Bir, so we refer as above to [Fon82].
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As for the isomorphism property on associated graded objects, since
t € Beis and Ay map to onto Oc,, we get the isomorphism result since
gr(Bqr) = Bur has its graded components of dimension 1 over gr’(Bgr) =
Ck. O

Since Byg is a field, it follows from Theorem 3.9.3 that K ® i, Frac(Beris) —
Bgr is injective. Hence, we likewise deduce that Frac(Bes)®% = Kp. This
proves part of:

Proposition 3.9.4. The domain Besis is (Qp, Gk )-regular.

Proof. It remains to show that if b € Bes is nonzero and Q,b is G'ix-stable
then b € BJ,.. Since t € B_x.., if the nonzero b has exact filtration degree 7 in
Bgr then by replacing b with ¢t~?b we can arrange that n € BZ{R and b is not
in the maximal ideal. Let n: Gk — Q be the abstract character on the line
Qpb. Thus, the residue class b in Cx spans a Q,-line in Cx with G x-action by
n. This forces 1) to be continuous and hence Z -valued, with C k(™ HEK £0.
By Theorem 3.1.3 we conclude that n(If) is finite. But Ip = Gz S0 again
by using Theorem 3.1.3 (for the absence of transcendental invariants, applied
over a finite extension of K Uit splitting 1), we deduce that the element
b € C is algebraic over Kor = W (k)[1/p] C By

Such an element b in the residue field C of the K -algebra B:{R uniquely

lifts to an element (5 € B:{R that is algebraic over K by Hensel’s lemma
for the complete discrete valuation ring BCTR with the residue characteristic 0,
so b— B € Fil'(Bjy). The Gg-action on B restricted to 8 is given by the
Q, -valued n due to the uniqueness of 3 as a lifting of b that is algebraic over
K, Hence, b — 3 spans a Gg-stable Qp-line in Fill(BiR) with character
n if b — 8 # 0. If there is such a Q,-line, then its nonzero elements live in
some exact filtration degree r > 1 and so passing to the quotient by the
next filtered piece would give a nonzero element in Cg (r) on which Gk acts
through 7. In other words, Cx (x" - ) has a nonzero Gi-invariant element.
But by Theorem 3.1.3 this forces x"n(Ir) to be finite, which is a contradiction
since n(Ir) is finite and r > 0. We conclude that b — 8 =0, so b = 3 is
algebraic over @ . -

Thus, L := KW (b) C Beyis is a finite extension of KU and its maximal
unramified subfield Ly must be Kunr, By applying Theorem 3.9.3 over the
ground field L (in the role of K in that theorem) we get that the map of
rings L ®r,, Beris — Bdr is injective. Hence, the subring L ®r,, L is a domain

(as Bgg is a domain), so L = Ly and therefore b € L = Funt C BX O

cris®

Now, we describe the construction of the injective G x-equivariant endo-
morphism of Beis that extends the Frobenius automorphism ¢ of W(R)[1/p].
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Fix p € R such that Q(O) = p, so for £ = [p] — p € kerf we have that
Beris = Acris[1/t] with Acyis defined to be the p-adic completion of A%, .. The
key point is:

Lemma 3.9.5. The W (R)-subalgebra A%, C W(R)[1/p] is ¢r-stable.

cris

Proof. We compute ¢g(§) = [pP] —p=[p]’ —p = ({+p)P —p =& + pw for
some w € W(R). Thus,

dr(€) =p- (w+ (p—1)! (£/ph),

so pr(§™) =p™(w+ (p— 1) (&P/p!))™ for all m > 1. But p™/m! € Z, for
all m > 1, so ¢pr(£™/m!) € AV, for all m > 1. O

cris

The endomorphism of A% induced by ¢r on W(R)[1/p] extends uni-
quely to a continuous endomorphism of the p-adic completion Acs, and
hence an endomorphism ¢ of B, = A.s[1/t] that extends the Frobenius
automorphism ¢g of the subring W(R)[1/p]. We claim that for ¢ € Agis
(inside of B:{R) we have ¢(t) = pt with p € (B;is)x, so ¢ extends uniquely to
an endomorphism of Beg = B:;is[l /t]. Recall that the element ¢, initially
defined in Bjy as 3,1 (—1)"!([e] — 1)"/n, makes sense in Aqis as a con-
vergent sum in the p-adic topology. Thus, we may use p-adic continuity to

compute
(¢(le)) —1)" ("1 -1)
o) = 3_(~1)"*! => -y

since ¢ on Agis extends the usual Frobenius map on W(R). Thus, ¢(t) =
log([eP]) = pt, where the last equality is computed in a previous section.

Corollary 3.9.6. The Frobenius endomorphism ¢: Acris — Acris 15 injective.
In particular, the induced Frobenius endomorphism of Beyis = Acris[1/t] is
njective.

Give Bgis the subspace filtration from F' ® g, Beis € B4g, i.e., define
Fil' Bayis = Beris N Fil' Bgg.

Beware that (since there is no Frobenius on Bgg) this is not ¢-stable. We
require a fundamental property of the filtration on Bgy.

Theorem 3.9.7. The space (Fil°Bes)?=" := {b € Fil’ Buys | ¢(b) = b} of
¢-invariant elements in the Oth filtered piece of Beris 15 equal to Q.

Proof. This is a difficult result, we refer to [Fon94a]. O

33



3.10 Weakly admissible filtered (¢, N)-modules

By general formalism §3.2 we will consider the functor D = Dqs: Repg, (Gr) —
Veck, defined by
Dcris(v) = (Bcris ®Qp V)GK'

This finite-dimensional BCGH’é = Ky-vector space has two kinds of structure:
(i) an injective Frobenius-semilinear endomorphism induced by the G-
equivariant injective Frobenius ¢eis on Beis (so this is bijective since the
Frobenius map on Kj is an automorphism);
(ii) an exhaustive and separated K-linear filtration on the scalar extension

Dcris(V)K = ((K ® Ko BCI“iS) ®Qp V)GK

via the G'ix-stable filtration on K ®x, Beris-
So, first of all we shall study a suitable subcategory of Filg.

Definition 3.10.1. A filtered ¢-module over K is a triple (D, ¢p,Fil®)
where D is a finite-dimensional Ky-vector space, ¢p: D — D is a bijective
Frobenius-semilinear endomorphism and (Dg := K ®g, D, Fil®) is an object
in Filg (i.e., {Fil'}; is a decreasing exhaustive and separated filtration on
D).

A morphism D' — D between two filtered ¢-modules is a Ky-linear
map D’ — D compatible with both ¢ and ¢p and has K-linear extension
D' — D that is a morphism in Filg. The category of triples (D, ¢, Fil®)
is denoted MF?(

Thus, it is clear that Dgis(V) has a structure of object in MF% Let
Reprf;s(G K) € Repg, (Gk) denote the full subcategory of the Bgis-admissible
representations. By §3.2, this full subcategory is stable under duality and
tensor products. Moreover, the above argument shows that the functor
Dyis : Rep&s(G k) — Vecg, has values in MF?} and it is faithful since so is
the forgetful functor MF% — Vecg,. Somewhat deeper is the fact that it is
actually fully faithful, so we want to specialize our target category on finding
its essential image.

To do this, we need to introduce two important invariants of a filtered
¢-module.

Definition 3.10.2. Let D € MFY..
The Hodge number of D is:

0 if D = 0;
t(D) =i if dimg, D = 1,Fil’'D = D and Fil'"'D = 0;
tg(A" D) if n:=dimg, D > 2.
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Denoting by wval, the valuation on K normalized by val,(p) = 1, the
Newton number of D is:

0 if D=0
tn(D) == ¢ valy(a) if D = Kyd and ¢(d) = a - d;
tN(/\n D) if n:= dimKO D > 2.

Remark 3.10.3. Note that the Newton number is well-defined: if D =
Kod = Kod', one has d' = ¢-d with ¢ € Ko; if ¢(d) = ad and ¢(d') = a’d’, one
has a' = ¢~ 1.7(c)a, where 7 is the Frobenius on Ky, and val,(a’) = valy(a).

It is immediate from the definition that ¢ty and ¢y are additive in the
sense that if we have a short exact sequence 0 — D' — D — D" — 0 in
MF%., then t(D) = tg(D') + ty(D") and tx (D) = tn(D') + ty(D").

Now we are ready to define our candidate category of semilinear objects
in MF,:

Definition 3.10.4. A filtered ¢-module D over K is weakly admissible
if tg(D) = ty(D) and if, for any subobject D’ C D in MF}'&(, we have
ty (D) <tn(D").

The full subcategory of MF?( consisting of weakly admissible objects is
denoted MFf{’W'a'.

An easy property of weakly admissible modules is the following:

Lemma 3.10.5. If D € MF}b{, then D is weakly admissible if and only if its
dual DV is weakly admissible.

Proof. Since ty and ty are negated under duality, it suffices to show that
in the definition of weak admissibility it is equivalent to work with the
alternative condition that for all quotients D — D" we have ty (D) =ty (D)
and ty(D") > ty(D"). For any D in MF?} there is a natural bijective
correspondence between subobjects D’ C D and quotient objects w: D — D"
(up to isomorphism), namely D' — D" := D/D’ and D" + kerm. Since
tH(D/) + tH(D/D/) = tH(D) and tN(D’) + tN(D/D/) = tN(D) with the
values tg (D) and ¢y (D) fixed and independent of D', we are done. O

It is a remarkable fact that MF%’W'& is an abelian category (using kernels
and cokernels as in the additive category MF }b( that is not abelian), and more
specifically that any morphism between weakly admissible filtered ¢-modules
is strict with respect to filtrations over K. To avoid later duplication of effort,
rather than prove these properties for MFf(’W'a‘ now, we prefer to establish

)
such a result for a larger category of structures beyond MF..

Definition 3.10.6. A filtered (¢, N)-module over K is a quadruple (D, ¢p,
Np, Fil*) where (D, ¢p, Fil®) is a filtered ¢-module over K equipped with
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a Ko-linear endomorphism Np: D — D (called the monodromy operator)
such that Np¢p = p¢pNp. The notion of morphism between such objects
is the evident one, and the category of these is denoted MF%’N.

In this definition we do not assume Np is nilpotent; it can be deduced
later thanks to the finite-dimensionality of the space ([BC09, Lemma 8.2.8]).

In particular, if D € MF%’N is an 1-dimensional object, then Np = 0.

Example 3.10.7. We write K[0] to denote the 1-dimensional unit object
of MFf( (i.e., D = Ko with gr’(Dr) # 0 and ¢ equal to the Frobenius
automorphism); this is a "unit object” for the tensor product. Upon endowing
it with the monodromy operator N = 0 it likewise becomes the unit object
of MF%..

Note that in general MF?( is exactly the full subcategory of MF?(’N
consisting of objects whose monodromy operator vanishes.

The category MF?(’N has evident notions of short exact sequence, kernel,
cokernel, image and coimage. We also define duals and tensor products in
the evident manner, with monodromy operators

ND®D/:ND®idD/+idD®ND/ and NDVZ—NB.
Definition 3.10.4 now extends to incorporate a monodromy operator:

Definition 3.10.8. An object D € MF?(’N is weakly admissible if ty (D) =
tn(D) and for all subobjects D' C D in MF?( (so D' is required to be N-
stable in D too) we have tg(D’) < ty(D’). Equivalently, if tz(D) = tn(D)
and for all quotient objects D — D" in MF%’N we have ty(D") > tn(D").

These objects constitute a full subcategory MF%’N’W&' of MF?(’N. (clearly
MF%2"* consists of objects in MF"™"#" for which N = 0.)

Weak admissibility is a very subtle link between three structures: the
Frobenius, the filtration and the monodromy operator (whose only role here is
to constrain the possible subobjects in MF%’N via the N-stability condition).
Since Npv = —N)), we see as in the case N =0 that D in MFf{’N is weakly
admissible if and only if DV is weakly admissible.

The next two results in MF%’N could have been proved much earlier in
MF%, but we waited so that we could handle MF?(’N in general.

Proposition 3.10.9. If0 - D' — D — D" — 0 is a short exact sequence

mn MF }b(’N and any two of the three terms are weakly admissible then so is
the third.

Proof. If D is weakly admissible then for any subobject D] of D’ we may
view D] as a subobject of D and hence tg(D}) < tn(D}). If in addition D"
is weakly admissible then ¢y (D") = tn(D"), so tg(D') =ty (D) —ty(D") =
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tn(D) — ty(D") = tn(D'). Thus, D’ is weakly admissible when D and
D" are so. Applying these considerations after dualizing the original exact
sequence and using the general identity that ¢y and ¢y negate under duality,
we conclude that if D and D’ are weakly admissible then so is D”.

Now suppose that D’ and D" are weakly admissible. By additivity in
short exact sequences we see that ty (D) = tn(D) due to the analogous
such equalities for D’ and D”. It remains to prove ¢t (D) < ty(D;) for all
subobjects D1 C D. We let D] := D' N Dy and give (D) the subspace
filtration from either (D) or D’ (these subspace filtrations coincide!), and
let DY := D;/D} with the quotient filtration on (DY)x. There is a natural
injective map j: D{ < D" = D/D’ in MF?(’N, but a priori it may not be
strict (i.e., the quotient filtration on (D7)k from (D;)x may be finer than
the subspace filtration from D7.). Since D] is a subobject of the weakly
admissible D', ti(D}) < ty(D}). Thus,

tyg(Dy) = tg (D)) +tg(DY) <ty(D})) + tg(DY)

and ty(D1) = tn (D)) +tn (DY), so it suffices to prove that tg (DY) < tn(DY).

Let j(DY) denote D} endowed with the subspace filtration from D",
so the natural map D} — j(DY) in MF?(’N is a linear isomorphism. We
have tn (DY) = ty(5(DY)) since j is an isomorphism in the category ¢-
modules over Ky (without filtrations). Hence, it is enough to prove tg (D7) <
tn(5(DY)). But j(DYy) is a subobject of the weakly admissible D”. so
tr(j(DY)) < tn(§(DY)) and hence our problem reduces to proving the
inequality tg (DY) < tg(j(DY)) between Hodge numbers for the bijective
morphism j: DY — j(DY) in MF?(’N.

In general, if h: A’ — A is a bijective morphism in Filx then we claim
that ¢t (A") <ty (A) with equality if and only if A is an isomorphism in Filx
(i.e., it is a strict morphism). To prove this, first note that t5(A) = ty(det A)
and tg(A") =ty (det A’), and a consideration of bases adapted to filtrations
shows that a bijective morphism in Filx is an isomorphism in Filgx if and
only if the induced map on top exterior powers is an isomorphism in Filg.
Thus, by passing to det h: det A’ — det A we reduce to the 1-dimensional
case, for which ¢y is the unique i such that gr’ # 0. This concludes the
argument. O

We now come to the remarkable fact that in the presence of the weak
admissibility condition the filtration structures behave as in an abelian
category:

Theorem 3.10.10. Let h: D — D’ be a map in MF%’N’W‘&. The map h

is strict (i.e., D/kerh — imh is an isomorphism in MF?{N), and ker h
and cokerh with their respective subspace and quotient filtration structures
are weakly admissible. In particular, the object imh ~ D/ker h is weakly
admissible and the category MF%’N 1s abelian.
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Proof. See [BC09, Thm. 8.2.11]. O

3.11 Crystalline representations

We have constructed our candidate (abelian) category MFf(’W'a' inside MF?{,
so now we will show that it is actually the valued category of the functor
Deyis: Reprf;S — MF?{ restricted to those p-adic representations that are
crystalline (i.e., Beis-admissible).

By the general formalism §3.2, recall that the functor D, is faithful,
exact and naturally commutes with the formation of tensor products and
duals.

Proposition 3.11.1. IfV ¢ Reprf;S(GK) then the natural map jv: K ®x,
Deyis(V) = Dgr (V) in Filg is an isomorphism. In particular, crystalline
representations are de Rham.

Moreover, the Beyis-linear Frobenius-compatible G g -equivariant crystal-
line comparison isomorphism

o Beis ®K0 Dcris(V) =~ Beris ®Qp v
satisfies the property that ax is a filtered isomorphism.

Proof. The natural map jy is a subobject inclusion in Filx by definition of
the filtration structure on Deis(V)k, so the problem is one of comparing
K-dimensions. The crystalline condition says dimg, Deis(V) = dimg, V/,
and since dimg Dgr (V) < dimg, V' we must have equality, so V' is de Rham.
To verify that the K-linear inverse al}l is filtration-compatible too, or in
other words that the filtration-compatible «f is a filtered isomorphism,
it is equivalent to show that gr(ag) is an isomorphism. Since jy is an
isomorphism and gr(K ®, Beis) = gr(Bgr) = But by Theorem 3.9.3, the
method of proof of Proposition 3.8.6 adapts to show that gr(ay) is identified
with the Hodge—Tate comparison isomorphism for V. ]

The Theorem 3.9.7 underlies the key to the full faithfulness properties
for D¢yis. The reason for the importance of this theorem is that it shows how
to extract @, out of Bes using only its "linear structures™ the G k-action,
the Frobenius operator, and the filtration. To see how useful it is, we finally
come to the key point of the story: we can recover V from Ds(V) when V
is crystalline.

Indeed, consider the crystalline comparison isomorphism

o Beis QR K, Dcris(V) =~ Beris ®Qp V (33)

for V ¢ Rep?Qf;S(G k). We have seen that not only « is Bgis-linear, G-
equivariant, and Frobenius-compatible, but ag is a filtered isomorphism too.
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Hence, by intersecting with the Oth filtered parts after scalar extension to K
we get a GG g-equivariant Kg-linear isomorphism

FilO(Bcris ®K0 Dcris(v)) ~ Fﬂo(Bcris) ®Qp Vv

that is compatible with the Frobenius actions on both sides (within the
ambient B is-modules as in (3.11)). Passing to ¢-fixed parts therefore gives
a Qp|G k]-linear isomorphism

Fil°(Besis @ kg Deris(V))?™ ~ V. (3.4)
In other words, if we define the covariant functor
Vieris MF?} — Qp[Gk]-mod

by D +— Fil’(Bguis ® Ko D)?=! then V ~ Viis(Deris(V)) for crystalline re-
presentations V' of Gx. Hence, modulo the issue that Veis(D) may not be
finite-dimensional over Q,, with continuous Gi-action for arbitrary D in

MF%, the functor Vg,is provides an inverse to Deyis (or rather, Deis restricted
cris

to Rep(y,’(Gk)). Most importantly, we have almost shown:
Proposition 3.11.2. The exact tensor-functor Deyis: Reprf;S(GK) — MF?(
is fully faithful, with inverse on its essential image given by Viis. The same

holds for the contravariant D} ;. using the contravariant functor Vi, (D) =
Hompyy ¢ (D, Bexis) -

Proof. The fully faithfulness needs further discussion. Suppose that V' and
V' are crystalline p-adic representations of Gk and let D = D;5(V) and
D' = Deis(V) in MF%.. If T: D' — D is a map in MF% then via the
crystalline comparison isomorphism as in (3.11) for V and V', the Bs-linear
extension 1 ® T': Beis @y D' — Beyis @k, D of T is identified with a Beyis-
linear, Gk~ and Frobenius-compatible, and filtration-compatible isomorphism
T Beris XQ, V' > Beris ®Q, V.

Explicitly, T = Qeris(V) 0 T o aeris(V')~L. The map T respects the
formation of the ¢-fixed part in filtration degree 0, which is to say (by
(3.4)) that this Bes-linear isomorphism must carry V/ into V' by a Gg-
equivariant map. Hence, T is the By is-scalar extension of some map V/ — V
in Repr(G K ), so by functoriality of the crystalline comparison isomorphism
we see that this map V/ — V between Galois representations induces the
given map T': Deyis(V') = D' — D = De,is(V). This gives full faithfulness as
desired. O

Since we usually work with twisted object, we introduce the notation in
the category MF?{’N:
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Definition 3.11.3. For D € MF%N, the i-fold Tate twist of D is the object
D (i) whose underlying Kj-vector space is D, monodromy operator Np
is Np, Frobenius operator ¢p;) is p~* and filtration structure over K is
Fil"(D{(i)r) = Fil'"™ (D).

Beware that this definition is adapted to the use of contravariant Fontaine
functors D7 (-) = Homgjg,(+, Beris) (and similarly for the future D). In
this way, for V € Repg, (Gk) and i € Z we have D7 (V (i) = D% (V)(i).
We conclude with a basic calculation.

Example 3.11.4. Let’s calculate D7 (Q(r)) = Homgg,(Qp(7), Beris)-
Given any Qp[Gk]-linear map Qp(r) — Beris, if we multiply it by ¢~" then
we get a Qp[G]-linear map Q, — Beyis. In other words, D = D} .(Q,(r)) =
Bg{;-ﬂ = Kot". This has Frobenius action ¢(ct") = o(c)(¢t)" = p"o(c)t", and
the unique filtration jump for Dr happens in degree r (i.e., gr"(Dp) # 0).
In other words, D}, (Qy(r)) is the Tate twist (K[0])(r) (notation as in
Example 3.10.7).

Let’s push this further and compute V. (D¥..(Qp(R))) = V. ((Ko[0])(r)).
This consists of Ko-linear maps T': Ky — Fil" B, that satisfy ¢(T'(c)) =
T(p"o(c)) for all ¢ € Ky, or in other words o(c) - ¢(T(1)) = p"o(c)T(1) for all
¢ € Ky. This says ¢(T'(1)) = p"T'(1) with T(1) € Fil" Beyis, and if we write
T(1) = bt" with b € Fil’Beyis (as we may since ¢ € B, ) then the condition
on b is exactly b € (Fil°Beys)?~! = Qp. Hence, V%, (D7 (Q,(r))) = Qpt" is
the canonical copy of Q,(r) inside of Beis. This illustrates in a special (but
important!) case of the general fact that Vi,  is "inverse” to D}, restricted
to crystalline representations.

This is not an isolate case but corresponds to a more general statement
on l-dimensional crystalline representations (see [BC09, Prop. 8.3.4]):

Proposition 3.11.5. The functor D} is an equivalence of categories be-
tween 1-dimensional crystalline representations of G and 1-dimensional
weakly admissible filtered (¢, N)-modules over K. The characters arising in
this way are precisely the Tate twist of the Z; -valued unramified characters

OfGK.

The next step in the development of D5 is to show that it takes values
in the full subcategory of weakly admissible filtered ¢-modules over K, as
suggest by the 1-dimensional case. Rather than prove this result now, we shall
first digress to develop the theory of of another (Q,, G )-regular period ring
Bgt containing B.,is whose associated theory of admissible representations
(to be called semistable) generalizes the theory of crystalline representations.
The desired weak admissibility property for D5 with crystalline V' will be a
special case of a more general weak admissibility property that we will prove
for Dgy(V) = (B ®q, V)% € MF% for semistable V.
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3.12 Ring of periods: By

The period ring By will be a canonical extension ring of B..s endowed
with compatible Galois and Frobenius structures, as well as a filtration on
K ®k, Bst, but there will not be a canonical injective map By, — Bgr as
Beris-algebras with Gi-action. Instead, such a map will depend on a certain
non-canonical choices, but the image of the map will be independent of the
choices.

Fix a choice of ¢ in the maximal ideal of O and pick ¢ € mp \ {0} such
that ¢(¥ = ¢. Define

o @ ooy D"

n
n>1

Definition 3.12.1. Define the subring BZ; to be the subring of BJR generated
by B, and log([q]/q). The semistable period ring By is the ring By :=

B [1/1].

The element log([q]/q) € B:R is transcendental over Bg.s, SO non-
canonically we have B}t ~ BT, [X] and By ~ Beis[X]. In this identification,
Gk acts as usual on B and on X by the formula g(X) = X + log([e4(9)]),
where €,(9) = g(¢)/q € (R)* is a compatible sequence of (possibly non-
primitive) p"th roots of unity (so log([e,4(g)]) lies in the canonical Z,(1) in
Aeris). Moreover, we extend the injectivza Frobenius ¢ on B to a (visibly

Cris
injective) Frobenius ¢ on B;t and By via the requirement ¢(X) = pX.

The ring By admits an additional structure, a monodromy operator N
defined to be N = d/dX on B = B}, [X]. Note that this operator interacts
with ¢ by the formula N¢ = ppN.

Finally, to define a filtration on K ® g, Bst extending the one in K ® g, Beris,
we seek to construct a Gg-equivariant Bgs-algebra embedding By — Bgr
carrying B} into B(TR. The image of such a map will be canonical but the
actual map will depend on a choice: the standard convention is to take g = p
and to fix the value of its logarithm log(p) = ¢ € F, in general ¢ = 0. Under
this assumptions, we put Fil’ By := Bgt N FilinR (and the same for BSJE and
Bj:). In particular, the (non-canonical) embedding K ®g, Bst — Bar is
injective as K[Gk]-algebra, so the inclusion Ky C BgK is an equality.

Now we want to sum up all the non-canonical choices in order to use the
isomorphism By ~ Beyis[X] from now on.

Fix ¢ = p (inside Ok ) and take p € mp \ {0}. Moreover, fix the value
log(p) = 0, so that we get an isomorphism B} ~ B, [X] and a B, -algebra
map B — Bj; carries X to log([p]) := log([p]/p). As the choice of p
may vary by Zy(1)*-elements, we fix a Z,-basis ¢, so g(p) = p - £"(9) for
a unique 7,(g) € Z,. Letting t = log([¢]), the G k-action is given on X by

9(X) = X +np(g)t-
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Proposition 3.12.2. The ring By is (Qp, G )-regular.

Proof. It remains to prove that if b € By is nonzero and Qb is G k-stable

then b € BZ. It is harmless for this purpose to replace K with Kunt , which
is to say that k is algebraically closed. We shall use the concrete description
Bgt = Beis[X] with g(X) = X +n(g)t where t = log([¢]) is a fixed choice and
the continuous 7: G — Z, is defined by g(r) = 7e"9) for a fixed 7 € R
such that 7(© = p. Let Vv Gg — Q[f be the character on the line Q,b in
Byt = Beis[X]. We may write b = by + - - - + b, X" with b; € Beis and b, # 0.
Our goal is to show r = 0, as then b = by spans a G g-stable Q,-line in Beyis,
whence b € B = BZ due to the known (Q,, G )-regularity of Beyis.

cris

Consider the identity

Y(g)b = g(b) = g(bo) + g(b1)(X +n(g)t) + -+ g(b,)(X +n(g)t)"

in By for g € Gg. Comparing top-degree terms in X gives ¢(g)b, = g(b,),
so b, spans a G g-stable Q,-line in Beis. The character ¢ is continuous, by
the same trick with t%-scaling and projection into Cx as in the proof of
(Qp, Gk )-regularity of B;s in Proposition 3.9.4. Hence, 1 is a continuous
character that appears in By, S0 it is a crystalline character of Gg. As
such v is Hodge—Tate, so it has some Hodge—Tate weight n € Z. Thus,
x ™ is a crystalline character with Hodge—Tate weight 0. Therefore, by
Proposition 3.11.5, x "¢ is a Tate twist of an unramified character of G .
But Gx = I since now k is algebraically closed, and so the vanishing of the
Hodge—Tate weight means that there is no Tate twist at all: xy "y = 1.

We may now replace b with ¢7"b (as t € B_..) to reduce to the case
n =0, so ¢ = 1. In particular, g(b,) = ¥(g)b, = b, for all g € Gk, so b, €
(BX,)¢% = K§. Assuming r > 0, we seek a contradiction. Consideration of
terms in X-degree r — 1 in our formula for ¢(g)b gives

br—1 = Y(9)br—1 = g(br—1) + g(br)rn(g)t = g(br-1) + brrn(g)t.

Thus, g(by—1) — by—1 = —rbn(g)t with ¢ := —rb, € K; and any g € Gk.
Hence,
g(br—1/c) = br_1/c=n(g)t = g(X) - X,

so X —b,_1/ce€ BgK = Ko C Beais- But b1 € Beis and X € Beyis, SO we
have a contradiction. ]
3.13 Semistable representations

Now we are ready to treat the last (but not least) type of p-adic representa-
tions:

Definition 3.13.1. A semistable representation of G is a p-adic one that
is Bgi-admissible, and the full subcategory of these is denoted Rep%p(G K)-
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We may apply the formalism §3.2 to the functor Dy : Repg, (Gk) —
Vecg, defined by
Dy (V) = (Bst ®g, V)X,

so dimpg, Dg (V) < dimg, V' for all V and equality holds precisely when V is
semistable. By using the additional structures on By (including the subspace
filtration on K ®g, Bst from Bggr), we see that D is naturally valued in
MF%:Y

% -

Much like in our analysis of D..is, we also see that the faithful functor

Dy : Repf} (G) — MFRY

is an exact functor compatible with tensor products and duals (endowed with
their natural filtrations). Likewise, the Bg-linear G'i-equivariant Frobenius-
compatible and N-compatible semistable comparison isomorphism

(679 Bst ®KO Dst(V) ~ Bst ®Qp V

is seen to be an isomorphism with respect to the filtration structures after
scalar extension to K. (i.e., ax and a;(l are filtration-compatible).

Lemma 3.13.2. Crystalline representations are semistable, and Deyis(V') =
Dy (V) in MF%N for all V. If V is semistable and Dg has vanishing

monodromy operator then V' is crystalline.

Proof. Since BY=0 = B, we see that Dy (V)V=0 = Deis(V) in MF%’N for
every V € Repr(G k). In particular, if V' is crystalline then for dimension
reasons the Ky-linear inclusion Deyis(V) € Dy (V) is an isomorphism in

MF%N. Thus, crystalline representations are semistable.
If V' is semistable but Dg (V') has vanishing monodromy operator then
Deris(V) = Dg (V) and this has Ko-dimension dimg, V', so V' is crystalline.
O

It follows from this lemma that by working in the generality of semistable
representations we can keep track of crystalline objects simply by observing
whether or not N vanishes.

Lemma 3.13.3. Semistable representations are de Rham, and if V is se-
mistable then the natural injective map K ®p, Dst(V) — Dgr(V) is an
isomorphism in Filg .

Proof. If V' is semistable then the natural injective map K ®g, Ds (V) —
Dgr(V') has source with K-dimension dimg, V' that is an upper bound on
the K-dimension of the target, so it is a K-linear isomorphism. In particular,
V' is de Rham. By the definition of the filtration structure on K ®g, Bst,
this natural injective map is always a subobject inclusion in Filg, so when it
is an isomorphism as K-vector space it must be an isomorphism in Filg. [
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To summarize:
crystalline = semistable = de Rham =— Hodge—Tate.

As with crystalline representations in Proposition 3.11.2; there is a full
faithfulness result for Dy on semistable representations and we can write down
an inverse functor on the essential image of Dg on semistable representations,
as follows. The equality (Fil°Bg)V=0¢=1 = (Fil’Be;s)?~! = Q, implies that
the functor

Vit MF}’S(’N — Qp[Gk]-mod

defined by

V(D) = Fil'(By, ®k, D)V=0¢0=1
:=ker(0(D): (Byg @K, D)N="9=! = (Bgr ®x Di)/Fil®(Bar ®x Dk))

provides an inverse to the functor Dg; on semistable representations: there
is a natural Q,[G k]-linear isomorphism V =~ Vi (Dg(V)) for all V € Repap.
(If we use the contravariant functor D% (V') = Homgjg,)(V; Bst), then the
inverse is given by the contravariant functor V(D) = Hompy ¢ v (D, Bst).)
In particular, as in the crystalline case in Proposition 3.11.2, we deduce via
the comparison isomorphism:

Proposition 3.13.4. The functor Dg: Rep%p — MF?{N s fully faithful,
with quasi-inverse on its essential image given by V.

Note also that if D € MF"Y with Np = 0 (i.e., D € MF%) then
Vit (D) = Veris (D) because BY=0 = Beys.

The most important property concerns an intrinsic characterization of
the essential images of these fully faithful functors. Unfortunately, the result

can only be proven with finer properties, so we refer the proof of the following
to [BC09, Thm. 9.3.4].

Theorem 3.13.5. IfV € Rep(séjp then Dy € MF%N 1s weakly admissible. In
particular, if V is crystalline then Deys € MF?{ s weakly admissible.

In the section on de Rham representations, we saw that the functor Dyg is
not fully faithful, due to the de Rham property being insensitive to replacing
Gk with G for a finite extension K’/K. This is best explained by a funda-
mental result independently due to Berger and André-Kedlaya-Mebkhout
that relates p-adic differential equations with de Rham representations to
prove Fontaine’s potential semistability conjecture:

Theorem 3.13.6. A p-adic representation V of Gk is de Rham if and
only if it is potentially semistable in the sense that V' is a semistable G-
representation for some finite extension K'/K.
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This theorem implies that although we cannot invert the functor Dyg,
the gap between de Rham representations and semistable representations
amounts to an insensitivity to finite extensions of K. However, keep in
mind that Dggr (V) contains too little informations even to recover V as a
G gr-representation for some unknown finite extension of K.

Finally, a fundamental result of Colmez and Fontaine [CF00, Thm. A]
is that the fully faithful and exact tensor functor Dg: Repgp — MF%N’W'&
is an equivalence of categories. That is, every weakly admissible filtered
(¢, N)-module D over K is isomorphic as such to Dy (V) for a semistable
p-adic representation V of G.

3.14 Weakly admissible filtered (¢, N)-modules with coeffi-
cients

We will conclude the section introducing the coefficients in our filtered
(¢, N)-modules.

Let K and E be two finite extensions of Q, (inside Q,) and fix a unifor-
miser 7 of K (so we fix an embedding K ® g Bst < Bgr). Let K\ denote the
maximal unramified extension of Q, inside K, by o: Ko — Ky its Frobenius
automorphism and by wval,, its valuation normalized by val,(p) = 1.

Most of p-adic representations we worked with were Q,-linear with a
continuous G g-action. Now, we will extend these when the coefficients are
in E, i.e., they are E-vector space.

Definition 3.14.1. A filtered (¢, N, K, E)-module D is a finite free Ko®q, F-
module of endowed with:

(a) a Kp-semilinear and F-linear automorphism ¢;
(b) a (nilpotent) Ko ®q, E-linear endomorphism N such that N¢ = ppN;

(¢) extending by scalars Dy = K ®k, D to K, a decreasing exhaustive
and separated filtration {Fil'Dg }; of K ®q, EF-modules.

Any filtered (¢, N, K, E)-module is also a filtered (¢, N, K, Q,)-module
(in the previous notation: filtered (¢, N)-module over K) forgetting its F-
vector space structure. The category of filtered (¢, N, K, E)-modules has
evident notions of short exact sequence, kernel, cokernel, tensor product and
dual.

Let D be a filtered (¢, N, K, E)-module. If we denote by d := dimg, D
its Ko-dimension, then /\;2O D is of dimension 1 over Ky. As in the classical
case, we define the Hodge number of D to be

d
tg(D) := max {Z €z ' Fil'(K ®p, /\KOD # O)}
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and the Newton number of D to be
tn(D) = wval, (qb(a:))
T

where x € /\Cll(0 D,z # 0 and ¢(z)/z € K.

Definition 3.14.2. A filtered (¢, N, K, E)-module D is weakly admissible if
so is the underlying filtered (¢, N, K, Qp)-module.

For every filtered (¢, N, K, E)-module D, we associate
Vit = (Bst @k, D)?="N=(Fil’(Bar ®k D)

where ¢ on Byt ®g, D is defined as ¢ ® ¢, N as N @ id 4+ id ® N and Fil° is
the "tensor product filtration” on K.

Thanks to [CF00], we know that Vi (D) is a E-linear representation of
G via its action on By, and that the functor D — V(D) is an equivalence
of categories between weakly admissible filtered (¢, N, K, F)-modules and
the semistable p-adic representations of G with coefficients in E.

Let £ > 1 be an integer, D a filtered (¢, N, K, E)-module and put:

o k— — ke—
V(D) = (B ®x, D)7 N0 Fil* ! (Bar @k D).

This is again an E-linear representation of G .

Lemma 3.14.3. For any filtered (¢, N, K, E)-module D, we have an iso-
morphism of E[G k]-modules

Vitk = Vae(D)(k — 1)

Remark 3.14.4. The above notation Vi (D)(k — 1) denotes the k — 1 twist
of ‘/;t(D)

Proof. an element of Vi (D) (resp. Vi ) is sent to an element of Vi 1 (D)
(resp. Vit (D)) by multiplication (resp. division) by t*=!, where t is a generator
of Z,(1) in By. O

Thanks to the above lemma and that the Hodge-Tate weights of Vit (D)
are the opposite of the integers ¢ such that Fil’ Dy # Fil'T' Dy, we get:

Corollary 3.14.5. The functor D — Vi (D) is an equivalence of categories
between weakly admissible filtered (¢, N, K, E)-modules D such that Fil’Dy =
Dy and FilkDK = Dg and p-adic semistable representation of G with
coefficients E and Hodge—Tate weights inside {0,1,... k — 1}.

Remark 3.14.6. Let D be a weakly admissible filtered (¢, V, K, E')-module.
It is not true that in general Fil'(Dx = K ®k, D) is a free K ®, E-module.
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When we are working with filtered (¢, N, K, E')-modules, to check the
weak admissibility we need (by definition) to forget the FE-vector space
structure. However, for these modules there is an equivalent and more
efficient criterion:

Proposition 3.14.7. Let D be a filtered (¢, N, K, E)-module. Then D is
weakly admissible if and only if ty(D) = tn(D) and for any Ko ®q, E-
submodule D" of D stable under ¢ and N we have tg(D') < tn(D'), in which
K ®k, E is equipped with the induced filtration.

Proof. We note that a such D’ is in particular a filtered (¢, N, K, E)-module,
thus the statement makes sense. The condition is certainly necessary, the
point is to show that it is sufficient to have ty(D’) < tn(D’) for any K ®, E-
submodule of D stable under ¢ and N to deduce the same inequality for any
Ky-subspace stable under ¢ and N.

Recall that the category of filtered (¢, N, K, F)-modules such that any
Ky-subspace stable under ¢ and N (with the induced filtration) verifies
the inequality tg < tn is closed by direct sum. Suppose the statement
and let D’ be counter-example with minimal dimension over Ky, i.e., a
Ky-subspace of D stable under ¢ and N such that ¢ty (D) > tx(D’) and
tg(D") < tn(D") for any D" & D’ stable under ¢ and N. Let d := [E : @],
x a primitive element of E over Q, and D), = Zf:_ol #'D' C D: it is a

sat

Ko ®q, E-submodule of D stable under ¢ and N with tr(Dg,) < tn(D}y,).
Let d1,...,4 € {0,...,d — 1} such that D, = >7"_, 2% D' with R minimal.
Denote D; to be the kernel of @;leif D' — D!, (with K ®k, D1 equipped
with the induced filtration) and Dy = (&j_,2% D')/Dy with K ®, D2
equipped with the quotient filtration. Remark that Dy ~ D’ , if we forget
the filtration but Fil'(K ®, Ds) «— Fil'(K ®p, D’,,), from which we get
t(D2) < tn(Dgg) < tn(Dggr) = tn(D2). Let D be the image of Dy
inside 2% D' (via the projection on 2% D) and endowed K ® D’ with the
filtration induced by K ®p, 2 D'. We have D} G 2% D' except r otherwise
it would not be minimal since we can omit 2% D’. Since multiplication by
2% : D' — % D’ is an isomorphism of filtered (¢, N, K, E)-modules, we get
that all the Ky-subspace of D} stable under ¢ and N (with the induced
filtration) verify the inequality tg < ty, so does @;leij D; which leads to
tg(D1) < ty(D1). The additive properties of ty and ¢y imply both

ti (@12 D)) = tg(D1) + ty(D2) < tn(D1) + tn(D2)
and
tH(@;:ll‘ijD;') = T‘tH(D/) > ’r‘tN(D/) = T‘tN(EBgzlxijD;) = tN(Dl)—l-tN(DQ)

which is a contradiction. O
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Now, we specialize in the case of semistable representations of Gg,, i.e.,
K = Ko = Qp, and we will denote this absolute Galois group by G/.

In this case, a filtered (¢, N, Qp, E)-module is simply a finite dimensional
FE-vector space D endowed with an E-linear automorphism ¢, a nilpotent
E-linear endomorphism N satisfying N¢ = p¢N and a decreasing exhaustive
and separated filtration of E-subspaces {Fil‘'D},;.

If D is a filtered (¢, N, Qp, E)-module, so is /\dE D for all nonzero integers
d and put t5(D) := max{i € Z | Fil’( C}EimED) # 0} and t£(D) :== fual(@),
where z € AS™EP D ¢ # 0 and ¢(z)/x € EX.

Corollary 3.14.8. (i) Let D be a filtered (¢, N,Qp, E)-module. Then
D is weakly admissible if and only if t§(D) = t5%(D) and for any
E-subspace D' C D stable under ¢ and N equipped with the induced
filtration we have t5(D") < t&(D").

(ii) The functor D+ Vi (D) = Fil* (B, ®q, D)9=P"TIN=0 4o o equi-
valence of categories between weakly admissible filtered (¢, N, Qyp, E)-
module D such that Fil°D = D and Fil*D = D and p-adic semistable

representations of Gq, with coefficients in E and Hodge—Tate weights
inside {0,...,k —1}.

Proof. Point (i) follows from Proposition 3.14.7 and formulas t5 = [E : Q,]tw,
tff =[F: Qp]t]\/.
Point (ii) is a particular case of Corollary 3.14.5. O

Example 3.14.9. We give an example of semistable representations of G),
of dimension 2 over Q,. Up to twist by a power of the cyclotomic character
X, we may assume that the Hodge—Tate weights are (0,k — 1) for some
integer k > 1. The weakly admissible filtered modules associated to these
representations corresponding via the functor Vi  are exactly of the form
D = Qpe1 @ Qpez with Fil'D = D for i < 0, Fil*"'D # 0 and Fil'D = 0 for
1> k.

If k=1 then N = 0 and, up to base change, ¢ is written in a unique way
either as ¢(e1) = pey, ¢(e2) = pes with p € ZT,X or as ¢(e1) = pieg + e,
d(e2) = poes with puy, s € Zyy

If k> 2 then Fil'D = ... = Fil* ' D is a line and, up to base change, we
have one and only one of the following (pairwise non-isomorphic) possibilities:

(1) N =0 and the representation is reducible split:

p(e1) =p" e
o(e2) = p2e2
Fil* 1D = Qpe;

M1, 2 € pr
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(2) N =0 and the representation is reducible non-split:

P(e1) = pFL(purer + e2)
o(e2) = l2€2
Fil*" 1D =Qpe;
X
M1, 2 € Zp

(3) N =0 and the representation is irreducible:

P(e1) =p" e
o(e2) = —ej + ey
Fil*'D =Qye;
p €z,

\V S mz

(4) N #0. Fix 7 € Z, such that 72 = p:

($(e1) = ¥ e
¢le2) =" pe
Fil* 1D = Qp(e1 + Lea)
N(ey) = ey
N(e2) =0
u €z,
g €Q,

This result can be extrapolated from Corollary 3.14.8, from [FM95, Thm.
A] and [Bre98, §6.11]. In the rest of the thesis, we will denote D = D(u1, p12)
for (u1,p2) € pr X pr if D comes from (1) or (2), D = D(u,v) for
(u,v) €Ly~ xmz—if D comes from (3) and D = D(u, £) for (1, £) € Z, xQ,
if D comes from (4).
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4 Integral p-adic Hodge theory

Since our aim is to deal with Galois deformation theory with artinian coeffi-
cients, it is useful to have a finer theory in which p-adic vector spaces are
replaced with lattices or torsion modules.

For the entire section, we fix a choice of uniformiser m of K and let
E € W(F)[u] be the minimal polynomial of 7 over Ky (it is an Eisenstein
polynomial of degree e := [K : Ky|). As we can do, we try to expose all the
definition in greater generality, but sometimes we will deal directly assuming
K = Ky, which is our final goal.

4.1 The ring ;l:t

In order to produce G g-stable lattices in p-adic semistable representations,
we need the ring Ag which involves the Fontaine’s rings Aeris and Bg.

In [Bre97, §2], Breuil defines the ring Ay as the p-adic completion of the
divided power envelope of Acs, in other words:

Agt i= Acris( {Z p— ‘ ap € Acis, an — 0 asn — —1—00}

—_— > —~
For n € Z, let Ast_n C Ag be the subring of elements such that ap =
-+ =anp—1 = 0. We endow the ring Ag with the following structures:

. . i —~ >i+1
o FlllAst = Z;‘:O Fﬂz_']Acris : % + Ast_l )

for g € Grc, g(an’y) = Y g(an) %, where g(X) := [eg<g>]x +
[e4(9)] — 1 with e4(g9) = g(¢)/¢ is as 3.12 and the choice q( ) =

(X anir) = Z¢(an) 21 where ¢(X) == (1+X)P - 1;
e N(Xa i) =Y a,Y (X):=1+X.

The relations between these structures are the following:
(i) Gk preserves the filtration and commutes with ¢ and N;
@) No=poNs
(iii) p(Fil'Ag;) C p' Ay if i <p — 1.
A result due to Kato in [Kat94, §3] links this ring with the semistable
period ring Bg:

Lemma 4.1.1. e We have BY, [log(1+ X)] ~ {z € f/l:t[l/p]]N”(x) =
0 for some n > 0}.

e The map A;t[l/p] — B:{R, X = % — 1 induces an isomorphism
B [log(1+ X)] = BE which is compatible with ¢, N and Gy (but

Cris

only induces inclusions Fil'(BL. [log(1 + X)]) & Fil'BY ).

Cris
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As a summary, B consists of all elements in ;1;[1 /p] for which N is
nilpotent, except that its filtration is finer than the induced filtration.

4.2 The Breuil’s ring S

As with the other period’s rings, one needs to compute the G -invariant
elements of Ag. Before of this, we introduce the Breuil’s ring S ([Bre97])
which will play a big role in the rest of the dissertation.

Let W (F)[u] [%} o be the subring of Ky[u] generated over W (IF)|u]

(u is a indeterminate) by the set {E?/i!};>1 (this is the divided power envelope
of W (F)[u] with respect to the ideal E(u) - W (F)[u]). Clearly this is ring is
W (F)-flat. Further, there is an evident surjective map

B(u)’
i

e | ] = ok (4.1)

defined via u — 7 with kernel generated by all E'/il. Let S be the p-adic
completion of W (F)[u] [M] - and let Fil'S C S be the ideal that is

(topologically) generated by all Ei /il. We view S as a topological ring via its
(separated and complete) p-adic topology. The ring S is local and W (IF)-flat
(but not noetherian) and the map (4.1) induces an isomorphism

S/Fil'S = Ok.

Denoting by ¢ the Frobenius automorphism on W (F), we endow S with
the following structures:

e a continuous o-linear Frobenius denoted ¢: S — S such that ¢(u) = u?;
e a continuous linear derivation N: S — S such that N(u) = —u;
e a decreasing filtration {F i1’S};>0, where Fil'S is the p-adic completion

of Y5, SEW.

7!

Note that N¢ = poN, N(Fil't1S) c Fil'S and ¢(Fil'S) C p'S for

i€{0,...,p—1}. As one can note the similarity with Ay, we mention the
following lemma (which is due to Breuil, see [Bre97, §4.2]):

Lemma 4.2.1. The continuous W (F)-linear map S — Ay defined by u —

[7](1+ X)~! induces a Gk-equivariant ¢ and N-stable filtration-invariant
~ —~G
isomorphism S — Ag ®
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4.3 Strongly divisible modules

Let D be an object in MF}Z’;N’W'& and assume Fil’Dp = Dp (this is harmless
since, up to twist, one can always assume Galois representations have positive
Hodge—Tate weights). In this case, we say that D is effective. Let

D :=S[1/p| ®Kk, D

be an S[1/p]-module endowed with endomorphisms ¢ := ¢g ® ¢p, N :=
N ®id +id ® N and a decreasing filtration given inductively by Fil°D := D
and

Fil'™D := {z € D|N(z) € Fil'D and f,(z) € Fil'"' Dp}

where fr: D — Dp is the surjective map defined by s(u) ® z — s(m)z.

Example 4.3.1. In the following examples, we consider ' = Ky = Q, and
we choose m = p (so that our Eisenstein polynomial is E(u) = u—p). Keeping
in mind the example 3.14.9, we compute the module D for each case.
Assume D is as in Example 3.14.9 (1), (2) or (3) (corresponding to the
crystalline case), then one finds:
Fil'D = Fil'S[1/p] ® D + S[1/p] - e1 ifi <k—1;
Fil'D = Fil'S[1/p] ® D + Fil' **18[1/p] - e ifi>k—1.
Similarly, if D is as in Example 3.14.9 (4) (corresponding to the semistable
non-crystalline case) and k = 2, we have:
Fil'D = Fil'S[1/p] ® D 4 S[1/p] - (e1 + Lea) if i <1;
Fil'D = Fil'S[1/p] ® D + Fil' **18[1/p] - (e1 + Lez) if i > 1.

More in general, for £k — 1 > 3, the filtrations in the semistable case are more
involved.

The filtered module D has the advantage over the filtered module D that
all of its data are defined at the same level (no need to extends scalars to K).
Now we are ready to define integral structures inside the D’s.

Definition 4.3.2. Let D € MF2V"™ such that Fil*Dp = 0 with k < p. A
strongly divisible module in D is a finite free S-submodule M of D endowed
with an S-submodule Fil* 1M := M N Fil*~'D such that:

(1) M[1/p] = D;
(2) M is stable under ¢ and N;
(3) @(Fil*'M) C pF—1M.

We will spend the next section giving non-trivial examples of such modules.
So, here is a trivial one.
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Example 4.3.3. Let D = K;[0] be the trivial filtered module (as in 3.10.7).
Then S is a strongly divisible module in D = S[1/p].

There is also an alternative definition of strongly divisible module, from
which we derive the definition of ’torsion analogue of a strongly divisible
module’.

First, in [Bre98, §2.1.2] Breuil gives the definition of the following category:

Definition 4.3.4. Let 1 < k < p—1. An object in the category '9t*~! is an S-
module M endowed with an S-submodule Fil*~!M ¢ M and endomorphisms
bp_1: Fil* ™1 — M, N: M — M such that:

e Fil*~'M contains (Fil*~18)M;
o ¢p_1(57) = 5(s)pp_1(x) for all s € S, & € Fil* M and ¢p_1(sz) =

¢s

r=1(s) k—1 k-1 )
ngk_l(E(u) CU) for all s € Fil S, S M,

N(z), (Fil'S)N(Fil*"'M) c Fil*'M and ¢}_; o

e N(sz) = N(s)x
= S (E()N o ¢p1.

(E(U)N|Filk*1)

sl

Morphisms in '9t*~1 are S-linear maps preserving all the structures.

For any M €’ 9*~1, define ¢: M — M by ¢(x) := W(bk,l(l?(u)kflx).

If M has no p-torsion, the knowledge of ¢j_1: Fil* "M — M is equivalent
to that of ¢ (via ¢p_1 = I%h;ilk—l).

Example 4.3.5. Ay, Ay/p"Ag, A @2, Qp/Z, and Ag Qyy ey Ko/ W (F)
are objects of /0%~ for any k — 1 < p.

Now, we are ready to (re-)define what a strongly divisible module is
([Bre98, Def. 4.1.1.1))

Definition 4.3.6. A strongly divisible module is an object M in ’/9F—1
satisfying in addition:

e the S-module M is free of finite rank;
o Fil* M N pM = pFil*'M;
o ¢p_1(Fil*"1M) spans M.

Of course, the first definition implies the second, but it is not immediate
to see the converse. In fact, given a strongly divisible module M as in
the second definition, one may consider D := Ky ®yy )y M endowed with
the same structure as above (see [Bre98, §4.1.1] for more detail). The
question is whether there exists a weakly admissible module D such that
D = S[1/p] ®k, D, but this is actually what Breuil ensures us in [Bre97,

93



Thm. 6.1.1], proving that the "category of D’s” is equivalent to the category
MF¢7N

% -

These objects are the integral counterpart of weakly admissible modules
for G k-stable lattices (at least for low weights and for K = Ky). We will
see this equivalence in the following, when we specialize to strongly divisible
modules with coefficients. Before of this, we introduce a torsion analogue of
these modules.

4.4 Torsion version of strongly divisible modules

As with Galois lattices, it is tempting to reduce strongly divisible modules
modulo p. As in [Bre98, §2.1.2], we define them as follows.

Definition 4.4.1. For 1 < k < p — 1, an object in the full subcategory
k=1 c '9M*—1 is an S-module N satisfying in addition:

e N is of the form @,>(S/p"S)™ for integers r,, almost all zero;

o ¢p_1(Fil*IN) spans N.

Remark 4.4.2. If K = K, one can prove that the category 9t*~! is abelian,
see [Bre98, Thm. 2.1.2.2].

If M is a strongly divisible module of weight < k — 1 then for any n € Z
the S-module M/p"M is naturally an object of 9M¥~! endowed with the
quotient filtration Fil*~1(M/p"M) = Fil*"!M/p"Fil*"'M and ¢ and N the
reduction modulo p™.

In [Bre98, §3.1.3] Breuil defines a contravariant exact and faithfully
flat functor Vi : 9MMF—1 — Repép (Gk) into the category of finite length
Zy-modules endowed with a linear and continuous action of G'i defined by

Vst(N) = Hompype-1 5, n(N, Zl:t ®z, Ko/W(F))

with action (g.f)(z) = g(f(x)) for g € Gk, f € Vit(N).

By construction, the obtained representations are annihilated by the
same powers of p which annihilate N. The following theorem is the goal of
[Bre98, Thm. 3.1.3.1]:

Theorem 4.4.3. Suppose K = Ko and k —1 < p — 2. Then the functor Vg
is exact and fully faithful. In particular, if N = @;>15/p™S then Vi (N) =
Diz1Ly/P" L.
If M is a strongly divisible module in 9t*~!, put
Vet (M) = HomFuk—l,qsk_l,N(M,Zs\t)-
As corollary of the previous theorem, we easily get:

Corollary 4.4.4. Suppose K = Ky and k —1 <p—2. If M is a strongly
divisible module of weight < k — 1, then

Vit (M) /p" Vit (M) =~ Ve (M/p" M)
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4.5 Fontaine-Laffaile modules

If we restrict to the case k = 2 and K = Ky, the objects of 9! killed by p
can be easier described as simple objects in another category, the category
of Fontaine-Laffaille modules.

Suppose K = Kj and let D be a weakly admissible filtered (¢, N, F, E)-
module which is effective (Fil’D = D). Instead of balancing the filtration
with the ring S, we can directly consider its lattices, but we shall keep the
original structures.

Definition 4.5.1. A strongly divisible O g-lattice of Fontaine-Laffaille in D
is a free Og ®z, Og-submodule A C D endowed with the induced filtration
such that:

(a) A[1/p] = D;
(b) @(Fil’A) C p’A (so, in particular, A is ¢-stable by taking i = 0);

(¢) Yisop '(Fi'A) = A.

These strongly divisible lattices are useful because Fontaine and Laffaile
proved in [FL82] the following

Theorem 4.5.2. There are exact quasi-inverse anti-equivalences between
the category of strongly divisible lattices A with Fil’A = 0 and the category of
Zp|G]-lattices T in crystalline G i -representations with Hodge—Tate weights
inside {0,...,p — 1}

We now wish to apply this theory to torsion representations. To do this,
we need a torsion replacement for strongly divisible lattices.

Definition 4.5.3. A Fontaine-Laffaile module over O is a finite length
Q) K—module M equipped with a finite and separated decreasing filtration
{Fil'M}; and a o-semilinear endomorphism ¢%,: Fil'’M — M such that

(a) gbéW‘Fili“M = p(bl]'\j[rl for all 4 > 0;
(b) 2, ¢ (Fil'M) = M;
(c) Fil°M = M and Fil*M = 0 for some k > 1.

A morphism between two objects is an Og-linear homomorphism compatible
with the filtrations and commuting with the ¢%,’s. We denote the category
by MF/*1,

tor

In [FL82, 1.8 and 3.2], they show that the category MF{(’)];_I is abelian.
Ff7k_]-

tor

The simple objects of M are those modules which are killed by p, in
= fk—1

other words they are IF,-vector spaces; we denote this category by MF; .
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Example 4.5.4. If A is a strongly divisible lattice, then for each n > 0
we obtain a Fontaine-Laffaille module M by setting M = A/p"A, taking
Fil'M to be the image of Fil’A under the natural quotient map, and letting

A =D Oalpiiag-

Let M be an object in MF{(’)I;_l, we may associate an object F¥~1(M) of
IMF—1 by setting:

k—1
(?k—l(M) =8 Qo,c M, FIF ' F1 (M) = > Fil" 1S @, FiV M,
§=0

k—1

Pr—1 = Z¢k—1—j ® ¢j, N =N ®id>
j=0

Thus, we have defined a functor F*~1: MF{C’,’E_I — P~ which satisfies

the following properties ([Bre98, Prop. 2.4.1.1]):

Proposition 4.5.5. The functor =1 is exact and fully faithful.

Hence, we may consider the category MF{(’)IE_I as a full subcategory of

9MF—1. Another useful consequence of this Proposition is that the simple
— fk—1
objects MF{M
2.4.2.2)).
Thanks to the full faithfulness of V4, we want to find an analogue of
H%p(Gp,w) = Ext]%p[Gp}(l,w) in the subcategory of simple objects in 9!, so

are equal to those simple objects in M*~! ([Bre98, Cor.

e — )1 .
equivalently in MF{()r. However, to do this, I need to enlarge the category
considering also a monodromy operator.

Definition 4.5.6. We denote by NMF! the category of objects in MF/:!

— tor
which are (finite-dimensional) F,-vector spaces equipped with, in addition, a

linear map N: M — M satisfying N¢%, = 0 and N¢}, = ¢%,N.

As above, we have that NMF! is equivalent to the subcategory of objects
in M killed by p. In this category we have two distinguish objects:

e the object F,(1) := (M = Fpeq, Fil' M = Fper, do(er) = 0, ¢1(e1) =
e1, N = 0) corresponds via the functor Vg to the Galois character
which factors through Gal(Q,[x]/Q,) with z # 0 and 2P = —pz, which
is exactly the mod p cyclotomic character w (see §1.5).

e the object F,(2) := (M = Fpeq, Fil' M = 0,¢p(e2) = €2,0, N = 0) is
sent to the trivial character.

Lemma 4.5.7. dimEExtll\IMFl(Fip(l),IFip@)) =9,
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Proof. Any extension 0 — F,(2) — M — F,(1) — 0 can be written M =
IF‘pel —I—Fpeg with Fil' M = IFpel, gbo(eg) = eg, ¢1 (61) = ey + Aea, N(el) = €2
and N (e2) = 0. Hence we see they are parametrized by (A, u) € I[TPQ. O

By full faithfulness of Vi we get

1 = ~ 1
ExtNMFl(IFp(l),IFp(Q)) it EXtE[Gp}(l’w)
Lemma 4.5.8. The extension with N = 0 correspond to the peu ramifiées
ones. The extensions with N # 0 correspond to the trés ramifiées ones.

Proof. By the full faithfulness, it is enough to prove the first statement. We
can assume that the extension is not trivial. Up to isomorphism, we then have
M = Eel +E€2, FlllM = Eel, d)o(eg) = €9, qbl(el) =e1+er and N =0. A
careful analysis of Vi (M) shows that the Galois action on it factors through
Gal(K/Q,) where K is the compositum of Qp[z1,z2] for all 21,22 € Q, such
that 2§ = (—p)(z1 + z2) and 2} = z9. If 29 = 0, we have Qp[z1] = Qp[{ﬁ].
If x5 # 0, the equations imply x5 € Z) and, replacing z1 by z1/7¢, we have
(r1 + 1)P = (1 — p)w where w € 1 + pr2Z,[r1] = (1 + 21Zp[r1])P. Hence
Qplx1] contains Q,[¢/T — p] if z9 # 0. Since these two extensions have degree
p, they are equal and K = Q,[{/1, /T — p|, as in the peu ramifié case. [

Therefore, when we will deal with strongly divisible modules and we are
interested on their torsion analogue, we will use their easier description as

—fk—1
objects in MFf

tor  without the complication given by the ring S”.

4.6 Some strongly divisible modules with coefficients

In this section, our goal is not to introduce a systematic theory of strongly
divisible modules with coefficients, but only to recall the strictly needed for
our results, as Breuil and Mézard did in §3.2 of [BM02, §3]. So, we will
only describe the theory without prove the statements, we invite to refer the
reader to loc. cit. for the proofs.

Put K = Ko = Qp, let O be the ring of integers of a finite extension E of
Qp and denote by F its residue field. Fix moreover an integer k € {1,...,p—1}
and an uniformiser p of Q, (with Eisenstein polynomial E(u) = u — p) in
order to use Bg and Zs\t

Fix R a local noetherian flat O-algebra complete for the topology of the
maximal ideal mp with residue field F. Let Sk be the mg-adic completion
of the divided power envelope of R[u] with respect to the ideal u - R[u], in
other words:

— o i
Sk = R(u) = er_—' rj € R,r; — 0 as j — +oo inside R
- J:
7=0
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We endow Sk with a positive decreasing filtration of Sgr-submodules Fil'Sg
(7 integer), with a Frobenius operator ¢ and an R-linear derivation N as
follows:

, X (w—p)
Fil'Sg = eru rj € Ryrj —0asj— +o0

|
= 7
| P
Srt) =3
j=0 =0
ri— | = — T
741 Z T = 1)
= S VA

Remark 4.6.1. The Breuil’s ring S corresponds to the ring Sz, with the
above notation.

Thus, we have Né = poN, N(Fil'Sg) C Fil'~! S for any i and ¢(Fil'Sg) C
p'Sg for any i < p—1 (note that ¢((u — p)’) € p'Sf for 0 <i <p—1. If
I is an ideal of R, note that ISp = {3 72, rjl;—ﬂrj €l,rj—+0asj— oo}
by Artin-Rees’ lemma. Now, we generalize the concept of strongly divisible
module over any local complete noetherian flat O-algebra R.

Definition 4.6.2. A strongly divisible module over R is a finite free Sp-
module M endowed with a Sz-submodule Fil*"'M and with endomorphisms
¢, N: M — M satisfying:

(i) Fil*~'M contains (Fil*~1Sp)M;
(i) Fil*~'M N IM = IFil*~1M for any ideal I C R;
(iii) ¢(sx) = ¢(s)¢p(x) for any s € Sp,x € M;
(v
(vi) N¢ = ppN;
(vii) (Fil'Sg)N(Fil**M) C Fil*~ M.

)
)
)
(iv) @(Fil*~1M) is contained in p*~'M and generates it over Sg;
) N(sx) = N(s)x + sN(z) for any s € Sg,z € M;

)

)

If M is a strongly divisible R-module then ¢: M — M is automatically
injective (regarded over M[1/p]).

Example 4.6.3. 1. Let M be a strongly divisible Zj,-lattice of Fontaine-
Laffaile (see Definition 4.5.1) equipped with an O-action (so that M
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is also a free O-module) and an O-linear endomorphism N such that
N(Fil'M) c Fil' "M and N¢ = ppN, then

k—1
(M = M ®¢ Sg, Fil* "M = Z Fil' M @ FilF~ 178,
=0

k—1
6= 1oi®e, N:N®z’d+id®N>
1=0

is a strongly divisible R-module.

2. Let h€ {0,...,k—1} and r € R* then
(M — Sper, FilF"1M = (Fil*"1Sg)er + Sp(u — p)er,

¢e1) = p"wer, N(er) = 0)

is a strongly divisible R-module of rank 1. In particular, if R is an
integral domain then all the strongly divisible R-modules of rank 1 are
of this form.

3. In [BM02] one can find non-trivial examples of strongly divisible modu-
les of rank 2 (see for instance proofs of Prop. 4.1.1 and 4.2.1 or §5.2).
In the next section, we will describe some of them and we will compute
a new important strongly module divisible module.

Let I be an ideal of R containing a power of m% (so that R/I is a Z,-
module of finite length). By definition, we say that an object N € 9tk—!
is endowed with an action of R/I if N has an algebra morphism R/I —
Endgpe—1(N). In particular, N is an Sgr/ISgr-module.

For every ideal I C R and every strongly divisible R-module M, we define
Fil*~Y(M/IM) = Fil* " IM/IFilF 1M — M/IM, ¢p_1: FilF~L(M/IM) —
M/IM to be the reduction modulo I of I%hmk_lM and ¢, N the re-
duction modulo I of ¢, N. If R/I is flat over O then M/IM (endowed
with Fil*~1(M/IM), ¢ and N) is a strongly divisible R/I-module. If R/T is
artinian then M/IM (endowed with Fil*~1(M/IM), ¢ and N) is an object
of MF~1 with an action of R/I.

Lemma 4.6.4. Let I be an ideal of R containing m}, for n > 0, R’ an
artinian local O-algebra with residue field a finite extension of F, R/I — R a
local O-algebra morphism and N an object of M*~1 endowed with an action of
R/I. Then N®pg,r R’ has a natural structure of object of MF~1 endowed with
an action of R’ such that the canonical map N — N®pr/1 R’ is a morphism
in ONF-L,
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Remark 4.6.5. Let R’ be a complete local noetherian flat O-algebra with
residue field a finite extension of F, R — R’ be a local O-algebra morphism
and M a strongly divisible R-module. By using previous lemma and a
suitable passage at limit, we can show that M ® g R’ endowed with ¢ ® id,
N ® id and with the image of Fil*"'M @5 R’ is always a strongly divisible
R’-module. We have seen that when R — R’ is surjective, which is the only
case we are interested.

Recall that in Theorem 4.4.3 we have a contravariant exact and fully
faithful functor V. For any object N of M1 we set Ty x(N) = Ve (N)*(k —
1) where the dual is given as Z,-morphisms to Q,/Z, and then one takes its
(k—1)-twist. For any ideal I of R containing m% for n > 0 and for any object
N of 9MMF~1 endowed with an action of R/I, we give to Ty j a structure of
R/I by setting: (\- F)(f) = F(\- f) for F € Ty x(N), f € Va(N), A € R/T
and (- f)(x) = f(Ax) if x € N. The action of G, is then well defined and
R/I-linear. The advantage of Ty ;, with respect to Vi is on its covariantness,
which makes easier the presence of coefficients.

Lemma 4.6.6. Let I be an ideal of R containing mY, for n > 0.
(i) Let N be an object of MF~1 endowed with an action of R/I and I' an
ideal of R containing I, then the map Ty 1 (N) — T x(N/I'N) is surjective.
(ii) Let N be an object of MF~1 endowed with an action of R/I which is a
free Sp/ISr-module of rank d, then the R/I-module T ,(N/IN) is free of
rank d.
(iii) Let N and N’ be two objects in MM*~1 endowed with an action of R/I
then

Hongmk_1 (N, N’) i> HOH]R[GP] (Tst,k(N)7 Tst,k (N’))

Lemma 4.6.7. Let I be an ideal of R containing m’, for n >0, R a local
artinian O-algebra with residue field a finite extension of F, R/I — R a

local O-algebra homomorphism and N be an object of MF~1 endowed with an
action of R/I which is finite free Sr/ISr-module. Then

Tst,k:(N) @R R/ i Tst,k(N XRR R/)
If M is a strongly divisible R-module, set

T e (M) 1= lim Ty o (M/mIN0),

Of course, this is an R[G,|module.

Corollary 4.6.8. 1. Let M be a strongly divisible R-module of rank d,
then the R-module Ty 1,(M) is free of rank d, the Gy,-action is continuous
for the mp-adic topology and for n € N we have

T k(M) /my = Ty 1 (M/mBEM)
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2. Let M and M’ be two strongly divisible R-modules, then

HomR,Filkfl,d),N (M, M/) i) HOHIR[GP} (Tsmk(M), TSt,k (M/))

3. Let M be a strongly divisible R-module, R’ a local complete noetherian
O-algebra of residue field a finite extension of F and R — R' a local
O-algebra homomorphism, then

T k(M) @r B = Ty p(M ®g R)
where Ty (M ®@p R') := lgln Tt o (M/mEM @ R /m,).

Now suppose R = O, i.e., R is the ring of integers of a finite extension E
of Q, in Q. Let M be a strongly divisible R-module. According with [Bre98,
§4.1.1], there exists a weakly admissible filtered (¢, N, Q,, E)-module D such

that Fil’D = D and that M ®9 E = Sp[1/p] @& D is an So[1/p]-linear
isomorphism compatible with every structure.

Lemma 4.6.9. With the previous notation, there is an isomorphism Ty 1,(M)[1/p] =
Vatk(D) as E[Gpl-modules.

Proof. Let 7 be a uniformiser of O, there exists an isomorphism of E[G)]-
modules:

Tk VO[1/p] = (i Fil* ! (M/7"M g Ayt )1 =1N=0)[1/p)

~ Fil* " (M @, Ag)? =2 =0[1/p]
~ Fil*"Y(D &g, Ax[1/p])¢="" V=0
~ Fil*"1(D ®q, BE)¢=F"""N=0,
By Corollary 4.6.8 point 1, Fil*"*(D ®q, B;g)¢:pk_1’N:0 is a E-vector
space of dimension dimg D. Since D is weakly admissible, Vi (D) =

Fil*~Y(D ®Q, Bst)¢:pk_1’N:0 is an E-vector space too which contains the
previous one, so the result. O

In particular, by Corollary 4.6.8 point 1, Ty (M) is a O-lattice G,-stable
in Vst,k(D)-

Proposition 4.6.10. Let D be a weakly admissible filtered (¢, N,Qp, E)-
module, then every O-lattice stable under Gy, inside Vi (D) is isomorphic to
Tst,1(M) for a strongly divisible O-module M inside So[1/p] ®g D.

Proof. See [BMO02, Prop. 3.2.3.2]. O
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5 The deformation problem

In this section we will compute the semistable deformation ring when the
Hodge-Tate weights are (0,1) and the residual representation is peu remifié,
following the method of Breuil and Mézard in [BM02].

The notation is similar to that used in previous sections. In particular, we
will deal with K = Ky = Q,, so with (continuous and linear) representations
of the absolute Galois group G, := Gal(Q,/Q,) of Q,; we denote by E a
finite extension of @, with ring of integers O, uniformiser @ and residue field
F. As usual, p will denote an odd prime number.

5.1 Deformations of type (k,7)

Definition 5.1.1. A Galois type of degree 2, or simply a Galois type, is an

equivalence class of a two-dimensional representation 7: I, := Gal(Q,/ Q™) —
GL3(Q,) of the inertia subgroup of G, with open kernel which can be exten-

ded to a representation of the Weil group W),

Fix a continuous representation p: Gal(Q,/Q,) — GL2(F) such that it
is Schur, i.e., EndF[Gp} (p) = F. We have seen in the section 2 that for any

finite extension F of Q, inside Q, with ring of integers O and residue field F
such that p(G,) C GLa(F), there exists a universal framed deformation ring
R"™ which is a local complete noetherian O-algebra with residue field F.

Fix an integer k > 1, a Galois type 7 of degree 2 and a finite extension £
of Q, inside Q, with ring of integers O and residue field F. Suppose that 7
is rational on E (i.e., 7: I, = GLy(E) — GL2(Q))) and that p is rational
on F (up to extending one of the two).

Definition 5.1.2. A deformation p of p to the ring of integers O’ of a finite
extension E’ of F inside Q, is of type (k,7) if:

(a) p®o Qp is potentially semistable with Hodge-Tate weights (0, k — 1);

(b) WD(p®¢ Qp)|1, ~ 7, where WD(p ®¢ Q) denotes the Weil-Deligne
representation associated to p ®o Q, (as in § 1.6);

. . —k+1 e
(c) (x~**1det p)(G,) is of finite order and p t #ﬁ;{kﬂ dit;’;gggg).

Remark 5.1.3. Note that:

(x"** ! det(p @0 Qp))l1, = WD(det(p @or Qp))l1,
= det(WD(p @0 Q)1
= det(WD(p @0 Qp)|1,) = det T

so the third condition is equivalent to
—k+1
(¢)bis (X F1det p)(G,) is of finite order and p { #(;i * det p)(Gy)

(det 7(Iy79))
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In particular, if det 7 is moderate then the last condition can be formula-
ted as
(¢)moa (X ¥l det p)(G,) is of finite order coprime to p.

Definition 5.1.4. A prime ideal p of R s of type (k,7) if there exists an
O-algebra homomorphism RV Zy, with kernel p such that the deformation

p: G, — GLa(Zp) given by composition with the universal deformation
Gp — GLo(R"™Y) is of type (k, 7).

Since 7 is defined over on F, if p is such a prime ideal then for every
O-algebra homomorphism R"™V — Z, with kernel p the correspondent
deformation G, — GL2(Z,) is of type (k, 7).

We define:

0 if there are no such prime p of type (k, 1)

Rk 7,p) = {R“ni"/ Mo (k) P otherwise

where the intersection is taken over all prime ideals p which are of type (k, 7).

It is a local complete noetherian reduced flat O-algebra of residue field F.
Thanks to Breuil-Mézard’s result which we will recall in the section 5.3,

after inverting p the condition of being of type (k,7) is Zariski closed, as

Kisin showed in the Corollary in [Kis09, p. 642].

5.2 Semistable representations of dimension 2

In this section we will see how to solve the above deformation problem with
7 = triv and kK = 2. Hence, in this case we have K = Ky = Q, and we stress
that p is odd, so that £k — 1 < p — 2 always.

The idea is to consider every type of semistable 2-dimensional representa-
tion of G, with coefficients in E and Hodge-Tate weights (0,1) (this can be
generalized for 1 < k < p, k even, but it easier to describe the classification
for k = 2). As shown in Example 3.14.9, there are four different types of such
representations corresponding to four different types of weakly admissible
filtered (¢, N)-modules, each of these parametrizes by a pair of values, and
for different pair of values we get pairwise non-isomorphic modules: therefore,
this pair characterizes exactly the weakly admissible module.

Thanks to p-adic Hodge theory and in particular Corollary 3.14.5, we
can also say that such semistable representations are parametrized by this
pair of values. Thus, we denote:

V = Vi 2(D(p1, p2)) = V (1, p2) if V' is crystalline reducible (split and
non-split, case (1) and (2)), with uy, uo € pr;

V = Vi 2(D(p,v)) = V(p,v) if V is crystalline irreducible (case (3)),
with p € pr and v € my;
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V =Vio2(D(p, L)) = V(p, L) if V is semistable non-crystalline (case
(4)), with p € Z,” and £ € Q.

With this characterization, we can classify all the isomorphism classes of
the residual representations they give:

Proposition 5.2.1. Let V' be a 2-dimensional semistable representation of
G\ with coefficients in E and Hodge—Tate weights (0,1), T C V' a G,-stable
O-lattice and T its reduction modulo w. We have:

1. if V s crystalline reducible, V- =V (1, p2) then

N * ) _ s
T ~ L with * peu ramifié
< 0 A(fy 1) s

2. if V is crystalline irreducible, V.=V (u,v) then

Tlp, ~ <u62 :}%) and det(T) ~ wA(a™!)

3. if V is semistable non-crystalline, V.=V (u, £) then:

(a) if val(L) < 1 then
T~ <(6) T) @ N Y) with x peu ramifié

(b) if val(£) > 1 then

0

T ~ (B) T) @A) with x trés ramifié or T ~ <C(L]) 1> R

Remark 5.2.2. For the definition of peu and tres ramifié extensions, see
§1.5.

The proof of this Proposition is given in [BM02, Prop. 4.1.1, 4.2.1]: it is
important because the authors give explicitly examples of strongly divisible
modules for each case and these computations will be useful in the description
of the universal deformation rings.

Let us explain two examples.

Consider V' = V(u1, u2) crystalline reducible: since it has a stable 1-
dimensional representation and its Hodge—Tate weights are (0,1), V is an
extension of A(u;!) by xA(u5 '), where A(y1; 1) : G — O is the unramified
character which sends the arithmetic Frobenius in p; ! Thus, clearly T is
an extension of A\(fi; ') by wA(ji; !). Further, the condition "peu ramifié” is
deduced by [FL82, §9] and [Edi92, Prop. 8.2].
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Now, consider V' = V'(y, £) semistable non-crystalline with val(£) < 1.

In this case, we can see better what role the category 9! and 1\715{01 play
in the construction. First, up to twisting by an unramified character, we
may assume V ~ V (1, £). As above, V is an extension of 1 by x, so T is an
extension of 1 by w. Let D(1, £) = So[l1/p|®@eD(1, L) ~ Se[1/ple1®So[l/plea
with (Fil', ¢, N)-structures described as in §4.3. For val(£) < 1, one can
check that the So-submodule M of D(1, £) generated by (pei, Lez) (provided
with the induced structure) is a strongly divisible module, and the object
M®TF lies in M corresponding to the following element in MF/L:

tor*

(M =Ffi +Ffo, Fil'M =Ff1, ¢o(f2) = fo, $1(f1) = f1 + f2) -

Therefore, Tg 2(M) ®o F ~ (Bj T) with * nonzero peu ramifié.

5.3 Deformations of type (2,7) in the peu ramifiée case

In this section, we will state a special case of a theorem of Breuil-Mézard in
[BMO02] and we will discuss what Kisin pointed out in [Kis08] in a footnote
at page 514. As before, we recall that we are studying deformations of type
T = triv with Hodge-Tate weights (0,1), so with k = 2.

If p: Gal(Q,/Q,) — GLy(F) is a continuous representation such that
Endp(g,) (p) = F, then, up to replacing F by a finite extension independent
of p, we can distinguish the following three cases, which correspond to a
different isomorphism class of the ring R(2, triv, p):

ome{: )G )

_ W ox . . e, (w2 O _ A wA(a)  x
(2) pl1, € {(0 1> with % trés ramifié, <0 w§> } or p o < 0 AB)
with o, 8 € F*, a # 5;

W ok

(3) p~ (0 1) ® A(a) with @ € F* and * peu ramifié.

Now, we explain why we classify the residual representations in this way
and we try to give an idea of the shape of the respective deformation ring.

All the residual representation in (1) must arise as a reduction modulo
w of a lattice in a 2-dimensional semistable representation with Hodge—Tate
weights (0, 1), so by Proposition 5.2.1, since our starting representation p is
not inside that set, there is no deformation of type (2, ¢riv): in other words,
R(2,triv,p) = 0.

For the residual representations p as in point (2), Breuil-Mézard describe
explicitly some strongly divisible modules M over the ring O[X] ([BMO02,
§5.2.1 and Prop.5.2.4.1]), whose corresponding O[X]-lattices Ty 2(M) are
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deformations of p to O[X]. So we have a continuous local O-algebra ho-
momorphism f: R™Y — O[X] which is actually surjective (see point (ii)
in the proof [BM02, Thm. 5.3.1]). Moreover, any semistable deforma-
tion p with Hodge Tate weights (0,1) of p to Z, is isomorphic (up to
scalar extension) to the corresponding lattice of exactly one specialisation
M, = M ®g[x] Zp along a unique morphism z: O[X] — Z, ([BM02,
Cor. 5.2.4.2]), hence the morphism f factors through a surjective map
g: R(2,triv, p) — O[X] and induces a bijection between maximal spectra
m-Spec O[X][1/p] ~ m-Spec R(2, triv, p)[1/p]. Finally, by commutative al-
gebra considerations, we conclude that in this case R(2,triv,p) ~ O[X]
([BM02, Thm. 5.3.1, point (ii), second case]).

In the case (2), every residual representation comes from the reduction mo-
dulo w of a lattice inside exactly one type in the classification of 2-dimensional
semistable representation with Hodge—Tate (0, 1) (see Prop. 5.2.1). However,
in point (3), we have that this equivalence class of p arises from two different
cases: a crystalline non-split representation and a semistable non-crystalline
one. In particular, in the last section we saw two examples which gives two
equal residual representations when we put o = (8 in the crystalline case.
Therefore, in the description of strongly divisible modules given by the aut-
hors in [BM02, §5.2.1], Breuil-Mézard write down two different modules over
the same ring, say a crystalline module Mcyis over O[X] and a semistable one
Myt over O[Y] in order to distinguish the two cases. As in the case (2), the
authors get two surjection maps fi: R™Y — O[X] and fo: R™Y — O[Y]
which factors through the ring R(2,¢riv, p). Thanks to [BM02, Cor. 5.2.4.2],
every x: R™Y — Z,, which corresponds to a semistable representation with
Hodge-Tate weights (0,1) factors through f; if it lies a crystalline non-split
representation or through fo if it lies inside a semistable non-crystalline one.
Therefore, we claim that the following equality holds:

m-Spec R™V[1/p] N (V (ker f1) U V (ker f»)) = m-Spec R(2, triv, p)[1/p]

In fact, pick an element x in the LHS, then consider the specialization over
x of Meyis if 2 lies in V' (ker f1) or of Mg if « lies in V' (ker f2): it corresponds
to a deformation of p to ZT; with the desired properties, so z lies inside
m-Spec R(2, triv, p). Moreover, the LHS is closed inside the RHS and it is
dense by definition of R(2,triv, p), hence the equality.

The authors of [BM02] have asserted in Theorem 5.3.1 that the map
(f1, f2): R(2,triv, p) — O[X] x O[Y] induces an isomorphism after inverting
p. Kisin has pointed out (see footnote in [Kis08, p. 514]) that this is not true
as the two irreducible components intersect in the generic fibre.

Our results show that R(2,triv,p) ~ O[X,Y]/(XY), so indeed the two
irreducible components intersect in the generic fibre.
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5.4 The strongly divisible module over O[X,Y]/(XY)

At the end of previous section, we said that we can still use the strongly
divisible modules M5 and Mg of Breuil and Mézard in a concrete fashion.
In particular, we are able to construct such a strongly divisible module over
O[X,Y]/(XY) and describe the ring R(2,triv, p) for p as in the case (3) in
the section 5.3.

We will show that the following module M endowed with the structures
defined below is a strongly divisible module over O[X,Y]/(XY).

M := S@[Xy]]/(xy) -E1 @ SO[[X,Y]]/(XY) )
e » p([e] ! + X)
Fil'M = (Fil' Sorx,y1/(xv))M + Sopx,y1/(xv) (El T [a] =2 = p([a]~1 + X)2E2
b Ey—p(la] ' + X)E;
]2
Ea [a] 1 +XE2
1
N. E]_ — WYEQ
E2 — 0.

We claim that if we consider the reduction maps 7;: M — M/YM and
ma: M — M/ XM we get back, after a suitable change of basis, their starting
modules Meyis and Mg, as in [BM02, §5.2.1, point (ii)]. In the following, we
define by R to be the ring O[X,Y]/(XY) and by p = [a],g(f[z](;]fﬁX)Q to
be the coefficient of E5 in the filtration submodule.

First, the image of m; is the following module:

My = Sopxy - £1 @ Sorxy - E2

‘ ' at+ X
FlllMl = (Flllso[[x]])Ml -+ Soﬂx]] <E1 + p([ ] ) )QEQ)

(]2 = p(la] ' + X

b Ey e p([o] ™ + X)E,
[a] 2
Fors ——1 R
2 e T X
N: Ei—0
E2 — 0.

After changing basis with the transformation e; := Fy + uFs, es := Fo
we obtain exactly the module Mcys.
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Secondly, the image of s is the following:
My = SO[[Y}] -E1 @ SO[[Y]] - Eo

Fil'!M, := (FﬂlSo[[y]])M2 + SO[[Y}} <E1 + mEz)

¢:  Erwpla] B
EQ — [a]_lEg
1
N: Fi— ————YEFy
[a]~1(1 —p)
E2 — 0.

Then, rescaling just one of the two basis vector, for example e := F;
and ey := 1/([a] (1 — p))Es, we get the original semistable module Mg;.

The check that M actually defines a strongly divisible module is an easy
computation for most of properties 4.6.2 (recall that £ = 2). In fact, except
for the second property, it is a straightforward calculation:

(i) Fil'M D (Fil'Sg)M: by construction.
(iii) ¢(sx) = ¢(s)¢(x) for any s € S, x € M by construction.
(iv) Since ¢(Fil’'Sg) C p'Sp for 0 <i <p—1, ¢(E1) = p([a] ' + X)E; and
W is a divisible by p, we get:
P(FiI'M) = ¢((Fil' SR)M + Sr(E1 + pubs)) =
= G(Fil' Sp)¢(M) + 6(Sr)S(E1 + nBs)
C pSrO(M) + pSr(--+) € pM.
Further, ¢(M) = Sgp([a]™! + X)E; + Sgla]72/([a]~! + X)E,. Since
[@]7! + X and [a]72/(Ja] ! + X) are invertible in R (and thus in Sg),

we obtain that Fj can be written as an element inside Sgp(F1 + pE2),
while Ey inside Sgep(M), thus ¢(Fil'M) generates pM over Sg.

(v) N(sz) = N(s)x + sN(x) for any s € Sg, x € M by construction.

(vi) We check the equality N¢ = p¢p N on the basis; recall that in R we
have XY = 0:

N¢ (E1)=N(p([] +X)E1) p(la] ™ + X)N(Br) =

[a] 7t

meEQ = (XY =0) =

] T1-p) 7 (1-p)

Y E,
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and

_ 1 _ 1 [a] 2 _
o) = (=7 B:) = Pt R R P

(since XY = 0, then [a] 'Y = [o] 'YV + XY = ([a] ! + X)Y)

B [a] 1+ X 1

B[R B (e

For F», the equality automatically holds because it is an eigenvector
for ¢ and vanishes on V.

(vii) Since N(Fil“"1Sg) C Fil'Sg for 0 < i < p — 1, we have:

(Fil'Sg)N (Fil'M) = (Fil' Sg) (N (Fil' Sg)M + (Fil' Sg) N (M) +
+ N(Sr)(E1 + pE2) + SgN(E1 + pEy))
= (Fil'Sr) (N (Fil' Sg)M + (Fil' Sg) ((Y/([a] ' (1 — p)) E2)+
+ Sr(Er + pBE2) + Sr(Y/([a] (1 — p)) E2))
C (Fil'Sp)M + (Fil' Sg)(E1 + pE>) C Fil'M.

As we said before, in order to prove the second property Fil!M N IM =
TFil' M for any ideal I C R, we need some preliminary results. Of course,
the inclusion Fil!M N IM D IFil' M is trivial, so it is enough to show the
other inclusion. In the following, we will use that this property holds for the
modules Mc,is and Mg, as proved in [BM02, Thm. 5.2.4.1].

We start with an easy result.

Lemma 5.4.1. The module M identifies as the fiber product of Mcys =
M/YM and Mg, = M/YM over N :=M/(X,Y)M.

Proof. We begin showing that the natural map R = O[X,Y]/(XY) —
O[X] xo O[Y] defined by f(X,Y) — (f(X,0), f(0,Y)) is a isomorphism. In
fact, the kernel of this map is exactly (XY') (which annihilates in R) and
given a pair (h1(X), h2(Y)) in the target satisfying ¢ := h;(0) = ha(0), we
can consider the element hy + hy — ¢ € R which has as image exactly that
pair. In other words, since XY = 0, every element in R can be written as a
sum of one formal power series in X and one in Y having the same constant
term.

This isomorphism induces a map Sg — So[x] X, So[y] defined by the
projection on the coefficients. As above, it is clear surjective, while for the
injectivity we see that the kernel is the intersection XSpNY Sk = (by the
Artin—Rees’ lemma) = Sxr N Syr = 0.

Further, we can push over this isomorphism in the free module M consi-
dering the maps 7 and mo given by, resp., reducing modulo Y and modulo
X. But, as shown at the beginning, that reduced modules corresponds, resp.,
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to Meris and Mg, so, denoting by N := M/(X,Y )M, we have the following

cartesian diagram:
M m
\\

Mcris XN Mst > Mcris

"N i

Mt N

Finally, the map & is an isomorphism because M is a free module over
Sk of rank 2 as the fibred module Mg X Mt O

In particular, the module M inherits all the good property of the two
modules M5 and My;.

Now, we go back to our problem: Fil!M N IM C IFil!M for any ideal
I C R. By using the above identification and that M and Mgt satisfy this
property ([BM02, Prop.5.2.4.1]), we need the following result.

Lemma 5.4.2. With the above notation, wfl(IFillMcris) ﬂwgl(IFillMst) =
TFil' M.

Remark 5.4.3. Of course, with the notation IF il'M,yis we mean that the
image of I inside O[X] multiply My and similarly with TFil' M.

Proof. Since the image under m and s of Fil!M is surjective onto, re-
spectively, Fil'!M;s and Fil'Mg;, we have that 71 (IFil!M) = IFil'!M;s and
mo(IFII'M) = IFil'!Mg,. Moreover, 7] ' (IFil' Me;s) = ITFil'M + YM and
similarly for the other one. Hence, we get:

7 LTI Meis) Ny P (TFiIl M) = (TFil'M 4+ Y M) N (TFil'M + XM) =: A.

Pick an element a € A, so in particular a € TFil'!M + YM, hence we may
write @ = mq + Yms where my € IFil'M and ms € M. Thus, Ymsy =
a —mq € A because IFil'M C A. Now, we look at its image under mo:
Yy (mg) € IFil*M;. Therefore:

Yma(mg) € TFil* Mg N Y Mgy = Fil' Mg N IMg N Y My =
= Fil'Mg N (IN (V) Mg = (IN(Y))Fil' My

where the last equality is given by the result in [BM02, Prop. 5.2.4.1]. So,
Ymg € (IN(Y))Fil'!M+ XM, but since the ideals (X) and (V') intersect only
trivially in Sg, we conclude that Ymo € (IN(Y))Fil'M, i.e. a € IFi'M. O

Therefore, we conclude with the following chain of inclusions:
Fil' M N IM C 7 H(Fil Megis N TMeis) Ny H(Fil Mg N IM) =
= 1] VIFil"Meis) Ny H(IFi My,) =
= IFil'M.
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5.5 End of the proof

Now we know that M defines a strongly divisible module over R = O[X,Y]/(XY).
In the following, we will finally prove that the ring R is isomorphic to the uni-
versal deformation ring R(2,triv, p), with p ~ (B) T) ® AMa) with « € ]FT,X
and *x peu ramifié, as in point (3).

Since M is a strongly divisible module, then the lattice Ty 2(M) is a defor-
mation of p to R, so Corollary 4.6.8 gives us a continuous map f: R™V — R
of local complete O-algebras.

Lemma 5.5.1. The map f: R™Y — R is surjective.

Proof. We follows the same ideas given by Breuil and Mézard.

In order to prove the surjection, it sufficies to check it on tangent spa-
ces, i.e., that so is the map R™V — R/(m,m%) = F[X,Y]/(X? XY,Y?).
But this is equivalent to say that Ty 2(M) ®g FIX,Y]/(X?, XY,Y?) ~
T oM er F[X,Y]/(X% XY,Y?)) cannot define over a strict F-algebra of
F[X,Y]/(X?, XY,Y?). Since Ty o is fully faithful (Corollary 4.6.8), this can
be reformulated as saying that M ®g F[X,Y]/(X?, XY, Y?) does not come
from an extension by scalars of a subobject inside 9! equipped with an
action of a such F-subalgebra. But the variable Y is inside only in the
value of N(E7), so Y must lie inside such a subalgebra. Moreover, if we
consider M ®g F[X,Y]/(Y, (X2, XY,Y?)) = F[X]/(X)?, i.e. we see all the
other coefficients different by Y, we get the starting Breuil-Mézard’s module
Meris, in which the image of ¢ depends on X without coming from a tensor
with elements in F[X]/(X)2. O

Proposition 5.5.2. The map f: R™Y — R induces a bijection
m-Spec R[1/p] = m-Spec R(2, triv, p)[1/p].

Proof. First of all, we notice that both R"™" and R are quotient of O[ X1, ..., Xu]
for some n where O is a complete DVR, thus by [GD66, §10.5.7] the rings
R"™[1/p] and R[1/p] are Jacobson rings and the residue field at any maximal
ideal of these rings are finite extensions of E' = O[1/p]. So, we can extend the
local ©-algebra homomorphism f: R™Y — R to a 0-algebra homomorphism
f: R"™¥[1/p] — R[1/p] of Jacobson rings.

Since the map f is surjective by Lemma 5.5.1, the pre-image of a maximal
ideal in R[1/p] is again a maximal ideal in R™V[1/p], so the map f induces
a well-defined injective map

f*: m-Spec R[1/p] < m-Spec R™V[1/p]

sending n to f~'(n). Moreover, to a maximal ideal n, of R[1/p] corresponds
a specialization map Z: R[1/p] — E’ for some finite extension of E'/FE,
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i.e., amap z: R — O, while the maximal ideal f#(n) corresponds to the

pre-composition RV ENYTIEN Zyp of z by f. Now, we will show that ftisa
bijection on the subset m-Spec R(2, triv)[1/p].

Now, we will show that f* surjects onto the subset m-Spec R(2, triv, p)[1/p]
and thus, in particular, that the map f factors through a map g: R(2, triv, p) —
R. Let m, € m-Spec R(2,triv, p)[1/p], i.e., y: R"™W — 7, induces a defor-
mation p,: Gp — GLa(R™Y) — GL2(Z,) of p to Z, of type (2,triv). It is
enough to find a ring homomorphism x: R — Z, with the property that the
deformation pyo, to ZT) is equivalent to py.

By Proposition 4.6.10, we know that there is a strongly divisible mo-
dule My such that Ty 2(M,) = py, and by the fully faithfulness of Ty o
(Corollary 4.6.8) it is enough to find a strongly divisible module M, over O
isomorphic (up to scalar extension) to M,,.

Thanks to the classification of 2-dimensional p-adic semistable representa-
tions as in § 5.2, the deformation p, is inside either a crystalline non-split re-
presentation V' (u1, p2) or a semistable non-crystalline representation V(u, £)
for a unique pair of values, resp., (u1, p2) € ZT,X X ZTJX or (u, L) € ZTJX x Qp;
moreover, these representations are pairwise non-isomorphic. Then, one of
these pairs characterized completely the deformation p,,.

Furthermore, the determinant of any deformation is fixed by the residual
representation p and, in our case, it is equal modulo my to a~2. Hence, the
deformation p, is uniquely described by one of the two values, and by equi-
valence between the two integral categories, so is the corresponding strongly
divisible module M,. For this reason, Breuil and Mézard considered univer-
sal deformation rings with one variable because the O-algebra morphisms
o[X] — ZTD are uniquely determined by the image of the variable X. In
other words, by the proof of Proposition 5.2.1, the strongly divisible module
M, is characterized by either the module Meris ®o[x] ZTD along an O-algebra
homomorphism O[X] — Z, if the deformation lies inside the crystalline
locus or the module Mg ®p[y] 7, along a fixed O-algebra homomorphism
O[X] — Z,, if the deformation lies inside the semistable non-crystalline locus.
Finally, with our ’universal’ strongly divisible module M, we can collect
both information in a unique O-algebra homomorphism z: R — Zja and the
module M, := M Qg ZT) is isomorphic to M. ]

Finally, we are ready to conclude our work.

Theorem 5.5.3. The morphism f: R™Y — R := O[X,Y]/(XY) induces
an isomorphism g: R(2,triv, p) — R of O-algebras.

Proof. As shown in the proof of Proposition 5.5.2, the map f induces a
map g through R(2,triv,p). By Lemma 5.5.1, we can say further that g is
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surjective. Summarizing, we have the following commutative diagram:

R(2,triv, p)[1/p] —— R[1/p]
]

Hence, in order to show the injectivity of g it is enough to show the isomor-
phism R(2,triv, p)[1/p] ~ R[1/p]. Since the rings are p-torsion free, the map
g is surjective too, so it remains the injective part.

So, pick an element r € R(2,triv,p)[1/p| satisfying g(r) = 0. Since
trivially we have 0 € [|n where the intersection is taken among the n €
m-Spec R[1/p], the bijection m-Spec R(2, triv, p)[1/p| ~ m-Spec R[1/p] pro-
ved in Proposition 5.5.2 implies that r € (|m, where this intersection is
among m € m-Spec R(2,triv, p)[1/p]. Note that, in a Jacobson ring, the
Jacobson radical is equal to the nilradical: since, by definition, R(2, triv, p)
is reduced, we conclude that » = 0.

Therefore, the morphism g: R(2,triv, p) — R is an isomorphism of local
O-algebras, as desired. O

R(2,triv, p)
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