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Introduction

Let p be an odd prime number, Qp the field of p-adic numbers and E a finite
extension of Qp with ring of integers O, uniformiser $ and residue field F.

Let ρ̄ : Gp := Gal(Qp/Qp)→ GL2(F) be a continuous representation such
that EndF[Gp](ρ̄) = F. A deformation of ρ̄ to a local artinian O-algebra R
with residue field F is a continuous representation ρ : Gp → GL2(R) which is
(an equivalence class of) liftings of ρ̄. The study of deformation theory of
Galois representations was initiated by Mazur ([Maz89]) and Ramakrishna
([Ram93]) who showed that there exists a unique local noetherian complete
O-algebra Runiv with residue field F, called (framed) universal deformation
ring, together with a universal deformation ρuniv, which parametrizes all
the deformations of ρ̄ to any local artinian O-algebra with residue field F.
After the work of Wiles ([Wil95]) and the conjectures of Fontaine–Mazur
([FM95]), it became clear that for arithmetic applications it was important
to understand certain quotients of Runiv corresponding to deformations
satisfying certain conditions.

The starting point of this thesis is the study of one of these quotients. Fix
an integer k > 1 and a representation τ : Gal(Qp/Qunr

p )→ GL2(E) with open
kernel which can be extended on the whole Galois group. The ”deformation
problem” we will study is to find the shape of the quotient R(k, τ, ρ̄) of Runiv

which parametrizes all the deformations ρ of ρ̄ to a finite extension of O

satisfying the following conditions:

(a) ρ⊗Qp is potentially semistable with Hodge–Tate weights (0, k − 1);

(b) the restriction to the inertia subgroup of the Weil–Deligne representa-
tion associated to ρ⊗Qp is isomorphic to τ ;

(c) det ρ is the (k − 1)th power of the p-adic cyclotomic character times a
finite character coprime to p.

For the exact definition of R(k, τ, ρ̄), we refer the reader to section 5.1.
This problem was studied by Breuil and Mézard in [BM02], where the

authors generalized a conjecture given in [BCDT01]. The two authors proved
the cited conjecture when τ = triv is the trivial representation and k even,
1 < k < p. In order to do this, Breuil and Mézard also described a way to
find the above ring R(k, τ, ρ̄) in that cases.

Later, Kisin pointed out (see footnote of [Kis08, p. 514]) that in the
particular case when the residual representation ρ̄ is a peu ramifiée extension
(following the notation of [Ser87]) the universal deformation ring has a
different property from the previous one. Moreover, developing other tools,
Kisin was able to prove the conjecture in a more general setting, and in
the last decade there were other proofs from other authors, such as Hu-Tan
([HT13]) and Paškūnas ([Paš15]). In particular, a joint work of Hu and
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Paškūnas ([HP17]) shows the real form of the universal deformation ring in
the peu ramifiée case; however, the two authors use a theory developed in
the last 15 years. Thus, the aim of this work is to give another proof of this
fact by using the original machinery developed by Breuil and Mézard.

The approach the two authors used in their paper requires the p-adic
Hodge theory. This consists in describing some categories of p-adic semistable
representations with prescribed Hodge–Tate weights as semilinear algebra
objects, the so-called weakly admissible (φ,N)-modules. However, the de-
formation theory studies O-lattices stable under the action of Gp inside
representations over the base field E, so we need an integral version of the
p-adic Hodge theory. This was developed at the end of the century by Breuil
and it defines an equivalence between Gp-stable O-lattices and the so-called
strongly divisible module over O only if k is small, i.e., when 1 < k < p.

The rough idea of the proof is to start with the classification of 2-
dimensional p-adic semistable representation over E with fixed Hodge–Tate
and describe all the semilinear algebra objects linked with them. Then, after
parametrized these representations and their invariant lattices, we look at
their reduction modulo $ and deduce what kind of residual representations
they get. Finally, writing down a ’special’ strongly divisible module, we are
able to prove that the candidate ring is actually the universal deformation
ring for our deformation problem.

The content of this dissertation is the following.
In section 1, we will recall, in order to fix also the notation, some Galois

theory of finite extension K of Qp, the characters of Gal(K/K) and the
definition of peu and très ramifiées extensions.

In section 2, we will study the main theorem of deformation theory of
Galosi representations: the prorepresentability of the deformation functors,
both the classical and the framed one.

In section 3, we will develop the p-adic Hodge theory, the construction
of the Fontaine’s period rings and the categories of representations and of
semilinear algebra objects.

In section 4, we will give an outline of the integral p-adic Hodge theory
given by Breuil in [Bre97], [Bre98] and [Bre99], taking a look at Fontaine–
Laffaile modules and at strongly divisible modules with coefficients.

In section 5, we will treat the deformation problem described in [BM02],
we will construct a ’universal’ strongly divisible module over our candidate
ring and then conclude the proof.

Notation

Fix a prime number p 6= 0: in most of cases, it can be equal to 2, we are
interested on odd primes.

Once for all, fix an algebraic closure Qp of Qp with ring of integers Zp
and residue field Fp, which is an algebraic closure of the finite field with p
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elements Fp, thus every extension of Qp (resp. of Fp) will be a subfield of Qp
(resp. Fp).

Let k (resp. F) denote a finite extension of Fp, W (k) (resp. W (F)) the
ring of Witt vectors of k (resp. F), K0 = W (k)[1/p] (resp. E0 = W (F)[1/p])
and K/K0 (resp. E/E0) a finite totally ramified extension with ring of
integers OK (resp. OE) and uniformiser π.

We will denote by valp the valuation on Qp satisfying valp(p) = 1 and
with the same symbol, by abuse of notations, the (unique) valuation valp
on K (resp. E) normalized by valp(p) = 1 (every time there will not be
confusion).

We will use the aboslute Galois group Gp := Gal(Qp/Qp) of Qp and
its inertia subgroup Ip := Gal(Qp/Qunr

p ). We will denote by χ : Gp → Z×p
the p-adic cyclotomic character, by ω its reduction modulo mZp and by

ω2 : Ip → F×
p2

the fundamental character of level 2.
All the rings are meant to be commutative with the identity 1 6= 0.
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1 Basics of Galois theory

In this section, we will recall some basic properties of Galois theory in order
to fix the notations. First, we recall the definition of a Galois group for
an infinite extension, then we will describe some properties of the absolute
Galois group of the p-adic field Qp (or of a finite extension K) and of its
subgroups.

1.1 Infinite Galois theory

In this section, we will recall some notions on infinite Galois theory and we
will deal with some basic but important examples.

A field extension F/K, not necessarily finite, is called Galois extension if
it is algebraic, normal and separable.

Assume F/K is a Galois extension and denote the group of automorphisms
of F fixing K by

Gal(F/K) := {τ ∈ AutF | τ(a) = a ∀a ∈ K}.

Let F = {L field | K ⊆ L ⊆ F, L/K is finite and Galois} be the set
of all finite Galois extensions of K inside F . We have a natural map
αL : Gal(F/K) → Gal(L/K), τ 7→ τ |L. Its kernel kerαL = Gal(F/L) is
normal in Gal(F/K) and has finite index:

|Gal(F/K) : Gal(F/L)| = |Gal(L/K)| = [L : K] <∞.

Therefore, the family {Gal(F/L) | L ∈ F} is a basis of open neighbourhoods
of the identity for Gal(F/K). With this topology, called Krull topology,
Gal(F/K) becomes a topological group, and in particular:

Proposition 1.1.1. With the notation as above, Gal(F/K) ' lim←−L∈F Gal(L/K)
is a profinite group.

Example 1.1.2. Consider K = Fp and F = Fp a fixed algebraic closure.
Thus:

GFp := Gal(Fp/Fp) ' lim←−
n

Gal(Fpn/Fp) ' lim←−
n

GalZ/nZ =: Ẑ

In particular, since Ẑ is (topologically) generated by one element, the cor-
responding element in the absolute Galois group GFp is the Frobenius map
Frobp : x 7→ xp. More in general, if k is a finite field with q = pr ele-

ments, its absolute Galois group Gk ' Ẑ is generated by the Frobenius map
Frobk : x 7→ xq.
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Consider K = Q and F = Q(ζn|n ∈ N) its maximal abelian extension.
Hence:

Gal(F/Q) ' lim←−
n

Gal(Q(ζn)/Q) ' lim←−
n

(Z/nZ)× '

' Ẑ× ' Z/2Z×
∏
p odd

Z/(p− 1)Z× Ẑ.

Now, we state the infinite Galois correspondence. This theorem shows
why it is so important to deal with topological groups; notice that if the
extension is finite, the topology on its Galois group is discrete, so the theorem
is precisely a generalisation of the finite case.

Theorem 1.1.3 (Krull). Let F/K be a Galois extension. Then the contrava-
riant functor Gal(F/·) is an equivalence of categories between sub-extensions
(not necessarily Galois) L/K inside K and closed subgroups of Gal(F/K),
with quasi-inverse the functor sending a closed subgroup H to the subfield
FH := {x ∈ F |σ(x) = x ∀σ ∈ H} of H-invariants.

In particular, finite extensions correspond to open subgroups.

1.2 Ramification of local fields

Let p be a prime number, let K be a finite extension of Qp and let OK ,
m, k and π denote its ring of integers, maximal ideal, residue field and a
uniformiser, respectively. Let Kunr denote the maximal unramified extension
of K and let Ktame denote the maximal tamely ramified extension of K.

We have a short exact sequence

0→ IK → GK → Gal(Kunr/K)→ 0

where Gal(Kunr/K) = Gal(Fp/k) = Ẑ canonically and IK = Gal(Qp/Kunr)
is the inertia subgroup. Likewise, we have

Ktame =
⋃

(d,p)=1

Kunr(π1/d)

so that Gal(Ktame/Kunr) = lim←−(d,p)=1
µd, where the map is given by

g 7→ {g(π1/d)/π1/d}d≥1.

In particular, if α ∈ Gal(Ktame/Kunr) and the image of σ ∈ Gal(Ktame/K)
in Gal(Fp/k) is Frobk, then σασ−1 = αq with q := #k. Finally, Iwild

K =
Gal(K/Ktame) is the p-Sylow subgroup of IK , called the wild inertia subgroup;
therefore, we can consider the quotient group It := IK/I

wild
K , called moderate

inertia subgroup, which can be identified with Gal(Ktame/Kunr).
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1.3 The p-adic cyclotomic character and its twists

Let’s choose a compatible sequence of primitive pnth roots of unity ε(n) ∈
µpn ⊂ K such that ε(0) = 1, ε(1) 6= 1 and (ε(n+1))p = ε(n). Let K∞ :=⋃
n≥1K(ε(n)). The p-adic cyclotomic character χ : GK → Z×p is defined by

the formula g(ζ) = ζχ(g) for all g ∈ GK and ζ ∈ lim←−n µpn . This defines an

action of GK on the so-called p-adic Tate module Zp(1) := lim←−n µpn(K) ' Z×p ,
where the isomorphism is given by a choice of basis of Zp(1), for instance
ε := (ε(n))n≥0.

For any r ≥ 0 define Zp(r) = Zp(1)⊗r and Zp(−r) = Zp(r)∨ (linear
dual: M∨ = HomZp(M,Zp) for any finite free Zp-module M) with the
naturally associated GK-actions (from functoriality of tensor powers and
duality), so upon fixing a basis of Zp(1) we identify Zp(r) with the Zp-module
Zp endowed with the GK-action χr for all r ∈ Z. If M is an arbitrary
Zp[GK ]-module, we let M(r) = Zp(r)⊗Zp M with its natural GK-action, so
upon fixing a basis of Zp(1) this is simply M with the modified GK-action
g.m = χ(g)rg(m) for g ∈ GK and m ∈M . Elementary isomorphisms such as
(M(R))(r′) ' M(r + r′) (with evident transitivity behaviour) for r, r′ ∈ Z
and (M(r))∨ ' M∨(−r) for r ∈ Z and M finite free over Zp will be used
without comment.

1.4 Mod p characters of Gal(K/K)

Keep the notations as in §102. If λ : Gal(K/K) → Fp
×

is an unramified
character, i.e., λ(IK) = 1, it is uniquely determined by the image of the

Frobenius map Frobk. For this reason, whenever α ∈ Fp
×

, we will denote by
λ(α) the unique unramified character sending Frobk to α.

Above, we stated the isomorphism It ' lim←−(d,p)=1
µd, where the projective

system is given by µdd′ → µd, a 7→ ad
′
. In particular, if π is a uniformiser of

K (and so Kunr), the field Kd := Kunr(π1/d) is totally ramified, moderate
and of degree d, so it induces an isomorphism θd : Gal(Kd/K

unr) ' µd.
Let q = pn, then F×q = µq−1. Moreover, the numbers of the form q − 1

are cofinite in the set of all integers coprime to p: indeed, if d is such an
integer, there exists n ≥ 1 such that pn ≡ 1 mod (d), for example n = ϕ(d).
Hence, the projective system (µd) is equivalent to the projective system given
by the F×q with the norm maps N : F×qm → F×q , N(α) = α1+q+···+qm−1

, as
transition maps. Therefore, the isomorphisms θq−1 define an isomorphism
θ : It → lim←−q F

×
q .

In virtue of this isomorphism, a mod p character of It is called of level
n and denoted by ωn if it factors through Fpn but does not through Fpm
for every m strict divisor of n. Hence, for any n there exist exactly n
characters of It called fundamental characters of level n, and fixed one of
those, say ψ : It → Fpn , the others are given by the composition of ψ with
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the n-embeddings of Fpn inside Fp:

ψi : It
ψ−→ Fpn ↪→ Fp.

Since the embeddings are the p-power of the Frobenius, given a fundamental
character ψ, the others are ψ,ψp, . . . , ψp

n−1
.

Example 1.4.1. For n = 1 there exists a unique fundamental character
ω1 : It → Fp. It corresponds to the p-adic cyclotomic character modulo mZp .
We will denote this character simply by ω.

1.5 Peu and très ramfiée extensions

For p ≥ 3, the extension of a mod p character ψ by the trivial representation
is an Fp vector space of dimension 1 if ψ 6= ω, otherwise it is 2-dimensional.
This fact can be seen as follows.

Starting with a short exact sequence

1→ µp(Qp)→ Qp
× ·p−→ Qp

× → 1

of GQp-modules and taking its invariants, we get

1→ Q×p
·p−→ Q×p → H1(GQp ,Fp(1))→ H1(GQp ,Qp

×
).

By Hilbert 90 theorem ([Gru67, §2.7]), the latter group is trivial, then
H1(GQp , ω) ' Q×p /(Q×p )p, which is a 2-dimensional Fp-vector space (gene-
rated, for instance, by p and 1 − p). The isomorphism is given explicitly
by u 7→ [g 7→ g( p

√
u)/ p
√
u]. Following the notation given by Serre in [Ser87],

we say that an extension is peu ramifié if it corresponds to the image of
Z×p /(Z×p )p; otherwise, it is called très ramifié.

1.6 Weil group and Weil-Deligne representations

In this section we conclude the description of all basic objects we will need.
Although we will not need it, in the following definition we want to treat

also a case when the residue field k is infinite

Definition 1.6.1. The Weil group relative to K/K is the subgroup of GK
given by all the elements which image inside Gal(k/k) is an integer power of
the absolute Frobenius Frobk over k.

In order to define a topology on the Weil group, we do not consider the
subspace topology on GK , rather we set on WK the coarsest topology for
which IK is open. With this topology, the Weil group becomes a locally
profinite group (i.e., a locally compact Hausdorff topological group) and the
inclusion WK ⊂ GK is dense.
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Thus, we have a commutative diagram with exact rows:

1 // IK // GK
vK // Ẑ // 1

1 // IK //W 0
K

?�

OO

// Z0
?�

OO

// 1

The map vK is called valuation of GK .

Remark 1.6.2. If k is not finite, then we have GK = WK = IK and
vK(w) = 0 for any w ∈W .

Let q := #k. If we consider WK as a group scheme over Q, we can put
the following definition:

Definition 1.6.3. The Weil–Deligne group WDK relative to K/K is the
group scheme over Q which is the semi-direct product of the Weil group WK

and the additive group Ga, on which WK acts by wxw−1 = qvK(w)x for any
w ∈WK , x ∈ Ga.

Remark 1.6.4. If k is not finite, the Weil–Deligne group is the direct product
of IK by Ga.

Definition 1.6.5. Let E be a field of characteristic 0. A representation of
WDK is a E-linear representation of WDK ⊗ E of finite dimension.

In other words, we can consider such object to be a triple (∆, ρ0, N) where
∆ is a finite-dimensional E-vector space, ρ0 : WK → AutE(∆) a morphism
with kernel an open subgroup of IK and N : ∆ → ∆ a linear application
satisfying:

ρ0(w)Nρ0(w)−1 = qvK(w)N

for any w ∈WK .
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2 Deformation theory of Galois representation

In this section, we will define the notion of a deformation of a representation
of the absolute Galois group of a finite extension K of Qp.

More generally, for a finite field F, we will start with a profinite group G
and a F[G]-module VF on which G acts continuously and with d := dimF VF
a finite number.

In the sequel, we will denote by W = W (F) the ring of Witt vectors of F.

2.1 Deformation functors

Let ÂrW denote the category of complete noetherian local W -algebras with
residue field F, and ArW denote the full subcategory of finite local artinian
W -algebras. The maximal ideal of A ∈ ÂrW is denoted by mA. Note that,
via the W -structure, the residue field A/mA of any A ∈ ÂrW is canonically
identified with F.

Definition 2.1.1. Let A be in ArW . A deformation of VF to A is a pair
(VA, ιA) such that:

• VA is a A[G]-module which is finite free over A and on which G acts
continuously on VA;

• ιA is a G-equivariant isomorphism ιA : VA ⊗A F→ VF.

Fixing an F-basis βF of VF, a framed deformation of (VF, βF) to A is a
triple (VA, ιA, βA), where (VA, ιA) is a deformation of VF to A and βA is a
basis of VA which reduces to βF under ιA.

One defines functors DVF , D
�
VF

: ArW → Set by setting, for all A ∈ ArW ,

DVF(A) = {isomorphism classes of deformations of VF to A},
D�
VF(A) = {isomorphism classes of framed deformations of VF to A},

and with the obvious extension to morphisms.

Remark 2.1.2. (a) The fixed basis βF identifies the vector space under-
lying VF with Fd and thus allows us to view VF as a representation
ρ̄ : G→ GLd(F). Then D�

VF
(A) is the set of continuous representations:

ρ : G→ GLd(A)

lifting ρ̄. In terms of representations, DVF(A) is the set of such represen-
tations modulo the action by conjugation of ker(GLd(A)→ GLd(VF)).

(b) It is often useful to consider deformation functors on ArO, where O is
the ring of integers of a finite totally ramified extension of W (F)[1/p],
so that F is still the residue field of O, and where ArO is the category
of local artinian O-algebras with residue field F.
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2.2 A finiteness condition

Definition 2.2.1. A profinite group G satisfies the finiteness condition Φp

if, for all open subgroups G′ ≤ G, the Fp-vector space Homcont(G
′,Fp) of

continuous group homomorphisms is finite dimensional.

By the Burnside’s basis theorem, the groupG′ satisfies dim Homcont(G
′,Fp)

<∞ if and only if the maximal pro-p quotient of G′ is topologically finitely
generated.

Example 2.2.2. The group Homcont(G
′,Fp) is isomorphic to Homcont(G

′ab,Fp).
Thus class field theory shows that the following groups satisfy Condition

Φp:

(a) the absolute Galois group of a finite extension of Qp;

(b) the Galois group GK,S = Gal (KS/K), where K is a number field, S is
a finite set of places of K, and KS ⊂ K denotes the maximal extension
of K unramified outside S.

2.3 Representability

Proposition 2.3.1. Assume that G satisfies Condition Φp. Then:

(a) D�
VF

is pro-representable by some R�
VF
∈ ÂrW ;

(b) if EndF[G](VF) = F, then DVF is pro-representable by some RVF ∈ ÂrW .

One calls R�
VF

the universal framed deformation ring and RVF the universal
deformation ring of VF.

Remark 2.3.2. (a) Recall that pro-representability (e.g., for D�
VF

) means
that there exists an isomorphism

D�
VF(A) ' HomW (R�

VF , A)

which is functorial in A ∈ ArW . This universal property implies that
R�
VF

is unique up to unique isomorphism. Moreover, the identity map

in Hom(R�
VF
, R�

VF
) gives rise to a universal framed deformation over

R�
VF

.

(b) Originally, Mazur considered the functor DVF . It describes representa-
tions lifting VF up to isomorphism. The additional choice of basis is
not a very interesting datum. However, the functor DVF is not always
representable. A good way to remedy this problem is to rigidify the
situation by adding a choice of basis to a given representation and thus
to consider the functor D�

VF
instead. This is important for residual

representations VF of the absolute Galois group of a number field K,
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in the sense that VF may have trivial centralizer as a representation
of GK and yet the restriction of VF to a decomposition group may no
longer share this property.

(c) Without condition Φp, the universal ring R�
VF

still exists (as an inverse
limit of artinian rings), but it may no longer be noetherian.

(d) Due to the canonical homomorphism F ↪→ EndF[G](VF), it is justified
to write ”=” in EndF[G](VF) = F.

Proof. We prove part (a).
Suppose first that G is finite, say with a presentation G =< g1, . . . , gs |

r1(g1, . . . , gs), . . . , rt(g1, . . . , gs) >. Define

R = W [Xk
i,j | i, j = 1, . . . , d; k = 1, . . . , s]/a

where a is the ideal generated by the coefficients of the matrices

rl(X
1, . . . , Xs)− id, l = 1, . . . , t,

with Xk the matrix (Xk
i,j). Let J be the kernel of the homomorphism R→ F

defined by mapping Xk to ρ̄(gk) for k = 1, . . . , s, with ρ̄ as in Remark 2.1.2(a).
Then R�

VF
is the J-adic completion of R and ρ�VF is the unique representation

G→ GLd(R
�
VF

) mapping gk to the image of Xk in GLd(R
�
VF

).
We may write any profinite group G as a filtered inverse limit G =

lim←−i(G/Hi) over some index set I of open normal subgroups Hi ⊂ Ker(ρ̄).

For each i the above construction yields a universal pair (R�
i , ρ

�
i ). By the

universality of thee pairs, one can form their inverse limit over the index set
I. This yields

(R�
VF , ρ

�
VF) = lim←−

i

(R�
i , ρ

�
i ),

which clearly satisfies the required universal property. By definition, R�
VF

lies

in ÂrW . It remains to show that R = R�
VF

is Noetherian. Since R is complete,

it suffices to show that mR/(m
2
R, p) is finite-dimensional as a vector space

over F. It is most natural to prove the latter using tangent spaces. We refer
to the proof of Lemma 2.4.3, where we shall see how Condition Φp is used.

The proof of part (b) in [Maz89, Thm. 1.7.2] uses Schlessinger’s repre-
sentability criterion.

2.4 The tangent space

Let F[ε] = F[X]/(X2) denote the ring of dual numbers. The set DVF(F[ε]) is
naturally isomorphic to Ext1

F[G](VF, VF), as an element of DVF(F[ε]) gives rise
to an (continuous) extension

0→ VF → VF[ε] → VF → 0

13



where we have identified ε · VF with VF, and, conversely, any extension of one
copy of VF by another VF can be viewed as an F[ε]-module, with multiplication
by ε identifying the two copies of VF. In particular, DVF(F[ε]) is naturally an
F-vector space.

Definition 2.4.1. The F-vector space DVF(F[ε]) is called the Zariski tan-
gent space of DVF .(The same terminology will be used for D�

VF
and other

deformation functors.)

Remark 2.4.2. Recall that, for any A ∈ ÂrW , its (mod p) Zariski tangent
space is the F-vector space tA = HomW (A,F[ε]). Thus, if DVF is prorepresen-
table, then the tangent spaces of DVF and of the universal ring representing
DVF agree.

Lemma 2.4.3. (a) Defining adVF as the G-representation EndF(VF), there
is a canonical isomorphism

DVF(F[ε])
'−→ H1(G, adVF)

(b) If G satisfies Condition Φp, then DVF(F[ε]) is a finite dimensional
F-vector space.

(c) One has dimFD
�
VF

(F[ε]) = dimFDVF(F[ε]) + d2 − h0(G, adVF).

Remark 2.4.4. The symbol h∗(. . . ) always denotes dimFH
∗(. . . ).

Proof. It’s enough to show the isomorphism Ext1
F[G](VF, VF) ' H1(G, adVF).

Consider an element E ∈ Ext1
F[G](VF, VF), so in other words we have a short

exact sequence
0→ VF → E → VF → 0

as F[G]-modules. Tensoring by V ∨F we get another extension:

0→ VF ⊗ V ∨F → E′ → F→ 0

Since VF ⊗ V ∨F = EndF(VF) canonically, we get the desired isomorphism.
We now prove part (b), thereby completing the proof of Proposition 2.3.1(a).

Let G′ = Ker(ρ̄), which is an open subgroup of G. The inflation-restriction
sequence ([AW67, Prop. 4]) yields the left exact sequence

0→ H1(G/G′, adVF)→ H1(G, adVF)→ (Hom(G′,Fp)⊗Fp adVF)G/G
′
.

The term on the left is finite because G/G′ and adVF are finite. The term
on the right is finite because of Condition Φp for G. Hence (b) is proved.

To prove part (c), fix a deformation VF[ε] of VF to F[ε]. The set of F[ε]
bases of VF[ε] lifting a fixed basis of VF is an F-vector space of dimension d2.

14



Let β′ and β′′ be two such bases. Then there is an isomorphism of framed
deformations

(VF[ε], β
′) ' (VF[ε], β

′′)

if and only if there is an automorphism 1 + εα of VF[ε], where α ∈ adVF,

which takes β′′ to β′, so that α ∈ adV G
F . Thus the fibers of

D�
VF(VF[ε])→ DVF(VF[ε])

are a principal homogeneous space under adVF/(adVF)G.

Definition 2.4.5. Let ϕ : D′ → D be a natural transformation of functors
from ArW to Set. The map ϕ will be called formally smooth if, for any
surjection A→ A′ ∈ ArW , the map

D′(A)→ D′(A′)×D(A′) D(A)

is surjective.

Essentially the same proof as that of Lemma 2.4.3(c) implies the following:

Corollary 2.4.6. The natural transformation D�
VF
→ DVF, (VA, βA) 7→ VA

is formally smooth. Thus, if RVF is representable, then R�
VF

is a power series

ring over RVF of relative dimension d2 − h0(G, adVF).

2.5 Schlessinger’s criterion

In order to complete Proposition 2.3.1(b), we introduce the Schlessinger’s
theorem; for a proof, we refer to [Sch68].

Let D : ArW → Set be a functor such that D(F) is a point.
We say that an epimorphism A′′ → A in ArW is small surjective if its

kernel is a principal ideal which is annihilated by mA′′ .
For any A,A′, A′′ ∈ ArW with morphisms A′ → A and A′′ → A, we have

a natural map (in Set):

D(A′ ×A A′′)→ D(A′)×D(A) D(A′′). (2.1)

The axioms of Schlessinger are as follows:

(H1) If A′′ → A is small surjective, then (2.1) is surjective.

(H2) If A′′ → A is F[ε]→ F, then (2.1) is bijective.

(H3) dimFD(F[ε]) is finite.

(H4) If A′′ → A is small surjective and A′ = A′′, then (2.1) is bijective.

Note that with condition (H2), D(F[ε]) carries a natural structure of
F-vector space. The following is a main theorem in loc.cit.:

Theorem 2.5.1. If D satisfies (H1), (H2), (H3) and (H4), then D is
prorepresentable.
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3 p-adic Hodge theory

In this section, we will develop some important equivalence of categories
between particular representations and (semi-)linear algebra objects.

Let K and E be two finite field extensions of Qp and fix an algebraic
closure K of K. In this section, we want to introduce the notions of crystalline
and semistable representations with values in E of the absolute Galois group
GK := Gal(K/K) of K.

3.1 The cohomology of CK
Let K as above. Since the algebraic closure K is not complete, we define by

CK the completion K̂ of K endowed with its unique valuation extending the
given valuation valp on K.

Of course, CK is complete and fortunately it is also algebraically closed:

Proposition 3.1.1. The field CK is algebraically closed.

Proof. By scaling the variable suitably, it suffices to construct roots for monic
non-constant polynomials over OCK . Write such a polynomial as

P = XN + a1X
N−1 + · · ·+ aN ∈ OCK [X]

with N > 0. We can make a sequence of degree-N monic polynomials
Pn ∈ OK [X] converging to P term-wise in coefficients. More specifically, for
each n ≥ 0 choose

Pn = XN + a1,nX
N−1 + · · ·+ aN,n ∈ OK [X]

with P−Pn ∈ pNnOCK [X]. By monicity, each Pn splits over OK ; let αn ∈ OK
be a root of Pn.

Since Pn+1 − Pn ∈ pNnOCK [X], we have Pn+1(αn) ∈ pNnOCK for all n.
Expanding Pn+1 as

∏N
i=0(X − ρi,n+1) with roots ρi,n+1 ∈ OK , the product

of the N differences αn − ρi,n+1 is divisible by pNn, so for some root αn+1 of
Pn+1 we must have that αn+1−αn is divisible by pn. In this way, proceeding
by induction on n we have constructed a Cauchy sequence {αn} in OK such
that Pn(αn) = 0 for all n. Hence, if α ∈ OCK is the limit of the αn’s then
P (α) = 0 by continuity (since Pn → P coefficient-wise).

Since GK = Gal (K/K) acts on K by isometries, this action uniquely
extends to an action on the field CK by isometries, and so identifies GK with
the isometric automorphism group of CK over K. It is the natural to ask
if there is a kind of ”completed” Galois theory: how does CHK compare with

K
H

for a closed subgroup H ⊆ GK? Since GK acts by isometries, CHK is a

closed subfield of CK , so it contains the closure of K
H

. Is it any bigger? By
Galois theory we have CHK ∩K = K, so another way to put the question is :
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are there transcendental invariants? The following proposition shows that
there are none.

Proposition 3.1.2. Let H be a closed subgroup of GK . Then CHK is the

completion L̂ of L = K
H

for the valuation valp. In particular, if H is an open

subgroup of GK , then CHK is the finite extension K
H

of K, and L̂ ∩K = L.

Proof. Choose x ∈ CHK , so we want to show that x is a limit of points in K
H

.
To do this, we approximation x by the algebraic elements and then try to
modify the approximating sequence by using that assumed H-invariance of
x. Pick a sequence {xn}n≥0 in K with xn → x; more specifically, arrange
that valp(x− xn) ≥ n for all n. For g ∈ H, we have:

valp(g(xn)− xn) = valp(g(xn − x)− (xn − x)) ≥
≥ min(valp(g(xn − x)), valp(xn − x)) = valp(xn − x) ≥ n.

Since xn ∈ K is close to its entire H-orbit (as made precise above), it is
natural to guess that this may be explained by x being essentially as close to
an algebraic H-invariant element. This is indeed true: by [Ax70, Prop. 1],

for each n there exists yn ∈ K
H

such that valp(xn − yn) ≥ n − p/(p− 1)2.
But xn → x, so we conclude that likewise yn → x. That is, x is a limit of

points in K
H

, as desired.

To state the following theorem, we recall the notation CK(r) := Zp(r)⊗Zp
CK with the GK-action on both sides of the tensor product, i.e., g(z ⊗ c) =
g(z)⊗ g(c) for all g ∈ GK .

Theorem 3.1.3 (Tate–Sen theorem). For any finite extension K of Qp, we

have K = CGKK (i.e., there are no transcendental invariants) and CK(r)GK =
0 for r 6= 0 (i.e., if x ∈ CK and g(x) = χ(g)−rx for all g ∈ GK and some
r 6= 0 then x = 0). Moreover:

dimF H1
cont(GK ,CK(r)) =

{
1 if r = 0

0 if r 6= 0.

For a proof of Theorem 3.1.3 we refer to [BC09, §14].

3.2 Rings of periods: formalism

Before introducing the Fontaine’s rings of periods, we describe the idea
behind the construction of those rings. As above, we will consider the field
K and its Galois group GK .

Definition 3.2.1. Let B denote an Qp-algebra domain equipped with a
GK-action and, possibly, some supplementary structures compatible with
the action of GK (for example, a filtration, a Frobenius map, a monodromy
map, etc.). We say that B is (Qp, GK)-regular if:
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(i) Frac(B)GK = BGK ;

(ii) if b ∈ B is such that its Qp-linear span Qp · b is GK-stable, then b ∈ B×.

Note that if B is a field then the conditions in the definition are obviously
satisfied. Moreover, if property (i) holds, then the invariant subalgebra
F := BGK is automatically a field.

Now we introduce one of the principal objects we will use in this disser-
tation:

Definition 3.2.2. A p-adic representation of a profinite group Γ is a repre-
sentation ρ : Γ→ AutQp(V ) of Γ on a finite-dimensional Qp-vector space V
such that ρ is continuous. The category of such representations is denoted
by RepQp(Γ).

A p-adic representation with coefficient in E of Γ, where E is a finite
extension of Qp, is a p-adic representation V which is also an E-vector space
for which the Γ-action is E-linear. In this case, the category is denoted by
RepE(Γ).

Coming back to the general axiomatic setting, for any p-adic representa-
tion V of GK we define

DB(V ) = (B ⊗Qp V )GK

so DB(V ) is a F = BGK -vector space equipped with a canonical map

αV : B ⊗F DB(V )→ B ⊗F (B ⊗Qp V ) = (B ⊗F B)⊗Qp V → B ⊗Qp V.

This is a B-linear GK-equivariant map (where GK acts trivially on DB(V )
in the right tensor factor of the source).

For a p-adic representation V ofGK , it is true (see below) the dimF DB(V ) ≤
dimQp V ; in case equality holds we call V a B-admissible representation.

Theorem 3.2.3. Fix V ∈ RepE(GK).

1. The map αV is always injective and dimF DB(V ) ≤ dimE V , with
equality if and only if αV is an isomorphism.

2. Let RepBE(GK) ⊆ RepE(GK) be the full subcategory of B-admissible
representations. The covariant functor DB : RepBE(GK)→ VecF to the
category of finite-dimensional F -vector spaces is exact and faithful, and
any subrepresentation or quotient of a B-admissible representation is
B-admissible.

3. If V1, V2 ∈ RepBE(GK) then there is a natural isomorphism

DB(V1)⊗F DB(V2) ' DB(V1 ⊗E V2),
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so V1 ⊗E V2 ∈ RepBE(GK). If V ∈ RepBE(GK) then its dual representa-
tion V ∨ lies in RepBE(GK) and the natural map

DB(V )⊗F DB(V ∨) ' DB(V ⊗E V ∨)→ DB(E) = F

is a perfect duality between DB(V ) and DB(V ∨).

In particular, RepBE(GK) is stable under the formation of duals and
tensor products in RepE(GK), and DB naturally commutes with the
formation of these constructions in RepBE(GK) and in VecF .

Proof. See [BC09, Thm. 5.2.1].

If B has some supplementary structures, then these descend to DB(V )
and in this way we obtain some non-trivial invariants of B-admissible repre-
sentations, which can then be used to classify them.

3.3 Ring of periods: BHT and the Hodge-Tate weights

Let V be a p-adic representation of GK and consider its extension by scalar
W := CK ⊗ V on which GK acts continuously on both sides of the tensor
product, i.e., by g(c⊗ v) = g(c)⊗ g(v) for c ∈ CK and v ∈ V .

Definition 3.3.1. A CK-representation of GK is a finite-dimensional CK-
vector space W equipped with a continuous GK-action map GK ×W →W
that is semilinear (i.e., g(cw) = g(c)g(w) for all c ∈ CK and w ∈ W ).
The category of such object (using CK-linear GK-equivariant morphism) is
denoted by RepCK (GK).

For W ∈ RepCK (GK) and q ∈ Z, consider the K-vector space

W{q} := W (q)GK ' {w ∈W | g(w) = χ(g)−qw for all g ∈ GK},

where the isomorphism rests on a choice of basis of Zp(1). In particular,
W{q} is not a CK-subspace of W (q) when it is nonzero.

We have a natural GK-equivariant K-linear multiplication map

K(−q)⊗K W{q} ↪→ K(−q)⊗K W (q) 'W,

so extending scalars defines maps

CK(−q)⊗K W{q} →W

for all q ∈ Z.
The following lemma is due to Serre-Tate:
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Lemma 3.3.2 (Serre–Tate). For a CK-representation W of GK as above,
the natural CK-linear GK-equivariant map

αW :
⊕
q

(CK(−q)⊗K W{q})→W

is injective. In particular, W{q} = 0 for all but finitely many q and
dimKW{q} < ∞, with

∑
qW{q} ≤ dimCK W ; equality holds here if and

only if αW is an isomorphism.

With the formalism of the previous section, we can reduce the proof of
this lemma to construct a (Qp, GK)-regular domain B: the perfect candidate
for this role is the so-called Hodge–Tate ring BHT :=

⊕
q∈ZCK(q).

Proof. Non-canonically, BHT = CK [T, 1/T ] with GK acting through the
p-adic cyclotomic character χ : GK → Z×p via g(

∑
anT

n) =
∑
g(an)χ(g)nTn.

Obviously, in this case C := Frac(BHT) = CK(T ) and BGK
HT = K.

By the Tate–Sen theorem 3.1.3, BGK
HT = ⊕CK(q)GK = K. To compute

that CGK is also equal to K, consider the GK-equivariant inclusion of C =
CK(T ) into the formal Laurent series field CK((T )) equipped with its evident
GK-action. It suffices to show that CK((T ))GK = K. The action of g ∈ GK
on a formal Laurent series

∑
cnT

n is given by
∑
cnT

n 7→
∑
g(cn)χ(g)nTn,

so GK-invariance amounts to the condition cn ∈ CK(q)GK for all q ∈ Z.
Hence, by the Tate–Sen theorem we get cn = 0 for n 6= 0 and c0 ∈ K, as
desired.

In order to verify the second property of being (Qp, GK)-regular, we
proceed in a similar way: if b ∈ BHT \ {0} spans a GK-stable Qp-line
then GK acts on the line Qpb by some character ψ : GK → Q×p . From the
continuity of the GK-action on each direct summand CK(q) of BHT we have
that ψ must be continuous (so it takes values in Z×p ). Writing the Laurent
polynomial b as b =

∑
cjT

j , we have ψ(g)b = g(b) =
∑
g(cj)χ(g)jT j , so

for each j we have (ψ−1χj)(g) · g(cj) for all g ∈ GK . But by the Tate–Sen
theorem, for a Z×p -valued continuous character η of GK , if CK(η) has a
nonzero GK-invariant element then η|IK has finite order. Hence, (ψ−1χj)|IK
has finite order whenever cj 6= 0. It follows that we cannot have cj ,cj′ 6= 0
for some j 6= j′, for otherwise taking the ratio of the associated finite-order
characters would give that χj−j

′ |IK cuts out an infinitely ramified extension
of K. It follows that there is at most one j such that cj 6= 0, and there is
a nonzero cj since b 6= 0. Hence, b = cT j for some j and some c ∈ C×K , so
b ∈ B×HT.

Definition 3.3.3. A representation W in RepCK (GK) is Hodge–Tate if αW
is an isomorphism, or equivalently if W is BHT-admissible.

A representation V in RepQp(GK) is Hodge–Tate if CK⊗QpV ∈ RepCK (GK)
is Hodge–Tate.

20



For any Hodge–Tate object W we define the Hodge–Tate weights of W to
be those q ∈ Z such that W{q} := (CK(q)⊗CF W )GK is nonzero, and then
we call hq := dimF W{q} ≥ 1 the multiplicity of q as a Hodge–Tate weight of
W . Attention: with this definition CK(q) has −q as its unique Hodge–Tate
weight. Obviously, if W is Hodge–Tate then so is W∨, with negated Hodge–
Tate weights (compatibility with multiplicity), so it is harmless to change the
definition of ”Hodge–Tate weight” by a sign. In terms of p-adic Hodge theory,
this confusion about sign comes down to later choosing to use covariant
or contravariant functors when passing between p-adic representations and
semilinear algebra objects.

3.4 Formalism of Hodge–Tate representations

For Serre–Tate’s lemma 3.3.2, any W in RepCK (GK) is Hodge–Tate if and
only if it is a (finite) direct sum of finite-dimensional vector spaces, so direct
sum, tensor product and dual of two Hodge–Tate representations is again
Hodge–Tate.

Therefore, we may define RepHT
Qp (GK) ⊆ RepQp(GK) to be the full subca-

tegory of objects V that are Hodge–Tate (i.e., CK ⊗Qp V is Hodge–Tate in

RepCK (GK)). Our results in the CK-representations show that RepHT
Qp (GK)

is stable under tensor product, duality, subrepresentations and quotients in
RepQp(GK).

For any V object in RepQp(GK), we look at the K-vector space

DHT(V ) = (BHT ⊗Qp V )GK

but it carries over also a grading structure coming from the ring BHT: for
this reason, it is useful to introduce some terminology.

Definition 3.4.1. A graded vector space over a field F is a F -vector space
D equipped with direct sum decomposition ⊕q∈ZDq for F -subspaces Dq ⊆ D
(and we define the qth graded piece of D). Morphisms T : D′ → D between
graded F -vector spaces are F -linear maps that respect the grading (i.e.,
T (D′q) ⊆ Dq). The category of these is denoted GrF ; we let GrF,f denote
the full subcategory of D for which dimF D is finite.

Thus, the above K-vector space DHT(V ) is actually an element of GrK .
In general, we may define a functor DHT : RepQp(GK)→ GrK , which actually
takes values in GrK,f by Serre–Tate lemma. Now, we show some properties
of this functor.

Lemma 3.4.2. If 0 → V ′ → V → V ′′ → 0 is a short exact sequence in
RepQp(GK) and V is Hodge–Tate then so are V ′ and V ′′, in which case the
sequence

0→ DHT(V ′)→ DHT(V )→ DHT(V ′′)→ 0
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in GrK,f is short exact (so the multiplicities for each Hodge–Tate weight are
additive in short exact sequences of Hodge–Tate representations).

Proof. It’s enough to show the result in RepCK (GK) with W := CK ⊗Qp V
and similar for W ′ and W ′′.

By left-exactness of taking invariants, we have

0→ DHT(W ′)→ DHT(W )→ DHT(W ′′) (3.1)

with dimK DHT(W ′) ≤ dimCK W
′ and similar for W and W ′′. But equality

holds for W by the Hodge–Tate property, so

dimCK W = dimK DHT(W ) ≤ dimK DHT(W ′) + dimK DHT(W ′′)

≤ dimCK W
′ + dimCK W

′′

= dimCK W,

forcing equality throughout. In particular, W ′ and W ′′ are Hodge–Tate
and so for K-dimension reasons the left-exact sequence (3.1) is right-exact
too.

Therefore, our functor DHT on RepHT
Qp (GK) is exact and compatible with

tensor products and duality (by the general formalism in §3.2). Furthermore,
the comparison morphism αV : BHT ⊗K DHT(V ) → BHT ⊗Qp V for V ∈
RepQp(GK) is an isomorphism precisely when V is Hodge–Tate, and hence

DHT : RepHT
Qp (GK)→ GrK,f is a faithful functor.

Remark 3.4.3. One can show that the functor DHT : RepCK (GK)→ GrK,f
is a fully faithful. However, our functor on the category RepHT

Qp (GK) of
Hodge–Tate representations of GK over Qp is not fully faithful.

To improve this, we need to introduce a nice category of p-adic represen-
tations of GK into a category of semilinear algebra objects.

3.5 Reminder: Witt vectors

In this section, I will recall some basic properties of the Witt vectors, rather
than their construction. A classical reference is [Ser79], while a more detailed
treatment is given in [BC09, §4.2].

We start with basic definitions:

Definition 3.5.1. A p-ring is a ring B that is separated and complete for the
topology defined by a specified decreasing collection of ideals b1 ⊇ b2 ⊇ . . .
such that bnbm ⊆ bn+m for all n,m ≥ 1 and B/b1 is a perfect Fp-algebra.

A strict p-ring is a p-ring B such that bi = piB for all i ≥ 1 (i.e., B
is p-adically separated and complete with B/pB a perfect Fp-algebra) and
p : B → B is injective.
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Remark 3.5.2. The topological ring B, with a topology induced by a
sequence of ideals as above, is said separated (or Hausdorff) and complete if,
respectively,

⋂
i≥1 bi = 0 and B ' lim←−iB/bi.

Starting with a perfect ring A of characteristic p (i.e., an Fp-algebra for
which a 7→ ap is an automorphism of A), the aim is to construct a strict
p-ring B with characteristic 0 and residue field A. In this case, the usual
construction given by Witt works well in the sense that the ring of Witt
vectors W (A) of A is ”the” desired strict p-ring in the following sense:

Proposition 3.5.3. If A is a perfect Fp-algebra and B is a p-ring, then
the natural ”reduction” map Hom(W (A), B)→ Hom(A,B/b1) (which makes
sense since A = W (A)/(p) and p ∈ b1) is bijective. More generally, for any
strict p-ring B, the natural map

Hom(B, B)→ Hom(B/(p), B/b1)

is bijective for every p-ring B.
In particular, strict p-rings B are precisely the rings of the form W (A)

for perfect Fp-algebras A.

An useful tool of this construction is the so-called Teichmüller map:

Lemma 3.5.4. Let B be a p-ring. There is a unique set-theoretic section
[·] : B/b1 → B to the reduction map such that [xp] = [x]p for all x ∈ B/b1.
Moreover, [·] is multiplicative and [1] = 1.

An immediate consequence of this lemma is that in a strict p-ring B
endowed with the p-adic topology (relative to which it is separated and
complete), each element b ∈ B has the unique form b =

∑
n≥0[bn]pn with

bn ∈ B/b1 = B/pB.

Example 3.5.5. (i) W (Fp) = Zp.

(ii) If A = k is the finite field with pn elements, then W (k) is the ring of
integers of the unique unramified extension of Zp of degree n. If we
consider a finite extension K of Qp with residue field k, we will denote
by K0 = W (k)[1/p] the maximal unramified extensions of Qp inside K.

(iii) If k is the (fixed) algebraic closure of the residue field k of K, then

W (k) = O
K̂unr is the valuation ring of the completion K̂unr of the

maximal unramified extension of K. In particular, OCK/(p) = OK/(p)
is not only an algebra over W (k)/(p) = F in a canonical manner, but
also over W (k)/(p).
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3.6 The ring R

To the ring OCK/(p) = OK/(p) we can associate a perfect Fp-algebra

R := lim←−
x 7→xp

OCK/(p) =

(x0, x1, . . . ) ∈
∏
n≥0

OCK/(p)

∣∣∣∣ xpi+1 = xi for all i


with the product ring structure and endowed with a natural GK-action.
This is perfect because the additive pth power map on R is surjective by
construction and is injective since if (xi) ∈ R satisfies (xi)

p = 0 then
xi−1 = xpi = 0 for all i ≥ 0, so (xi) = 0.

Every element of R can be uniquely lifted to a p-power compatible
sequence in OCK (but possibly not in OK) in the following way. Fix an
element x = (xn)n≥0 ∈ R and for every n choose a lift x̂n of xn inside OCK
(or inside OK), then the sequence x̂n+m

pm m→∞−−−−→ x(n) ∈ OCK which does not
depend on the choice of the lifting x̂n ([BC09, Prop. 4.3.1]). Moreover, the
map R → lim←−x 7→xp OCK , x 7→ (x(n))n defines a bijection on these sets and
we will identify R in this way by setting the following ring structure on the
second set: for x = (x(n)) and y = (y(n)) in R, define{

xy = (x(n)y(n))n≥0

x+ y = (z(n))n≥0 with z(n) = limm→∞(x(n+m) + y(n+m))p
m
.

An element x ∈ R is a unit if and only if the component x0 ∈ OK/(p) is a
unit, so R is a local ring. Also, since every element of OK is a square, it
follows that the nonzero maximal ideal m of R satisfies m = m2. In particular,
R is not noetherian. If valp denotes the valuation of OCK normalized by
valp(p) = 1, then we may define a GK-equivariant valuation vR on R by
setting vR(x) = valp(x

(0)) for all x = (x(n))n≥0. This valuation makes R into
a valuation ring for which it is vR-adically separated and complete, integrally
closed in Frac(R) with residue field k.

An important example of an element of R is

ε = (ε(n))n≥0 = (1, ζp, ζp2 , . . . )

with ε(0) = 1 but ε(1) 6= 1 (so ε(1) = ζp is a primitive pth root of unity and
hence ε(n) is a primitive pth root of unity for all n ≥ 0). Any two such
elements are Z×p -power of each other and for any such choice of element we
have vR(ε− 1) = p/(p− 1).

If α ∈ k, then ([α1/pn ])n≥0 ∈ R, and this gives an injective map k → R.
If we define π̄ = ε− 1, we get k[[π̄]] ⊂ R independently of ε and:

Theorem 3.6.1. The field Frac(R) = R[1/π̄] of characteristic p is alge-
braically closed. In particular, it is the completion of the algebraic closure
k((π̄)).
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3.7 Ring of periods: BdR

Once one constructs the ring R, one can define the other three Fontaine’s
ring of periods; we start, as usual in the literature, with BdR.

Since the ring R is perfect of characteristic p, we will take its ring of Witt
vectors, but in the same time we do not want to loose much informations
about its construction, in particular its GK-equivariant surjective reduction
map θ0 : R→ OCK/(p), (xi) 7→ x0. In order to get a lifting of θ0, one is tented
to apply 3.5.3, but unfortunately the target ring is not perfect, although
OCK is p-adically separated and complete. Nonetheless, we can construct
such lifting θ : W (R)→ OCK in a canonical and GK-equivariant manner.

First, we note that every element of W (R) can be written in a unique

as
∑

[cn]pn with cn = (c
(m)
n )m≥0 ∈ R (since W (R) is a strict p-ring and

W (R)/(p) = R). Then, we define θ in an explicit way as:

θ(
∑

[cn]pn) =
∑

c(0)
n pn

By definition, θ is GK-equivariant and surjective; further, it is a ring homo-
morphism ([BC09, Lemma 4.4.1]).

Inverting p in both sides, we can extend θ by a GK-equivariant surjective
ring homomorphism

θQ : W (R)[1/p] � OCK [1/p] = CK

but the source ring is not a complete discrete valuation ring. We shall replace
W (R)[1/p] with its ker θQ-adic completion, and the reason this works is
that ker θQ = (ker θ)[1/p] turns out to be a principal ideal. In fact, if we
pick p ∈ R such that p(0) = p, then ξ = [p] − p ∈ W (R) is a generator for
ker θ ⊆ W (R). Moreover, W (R) ∩ (ker θQ)j = (ker θ)j and ∩j(ker θQ)j = 0.
We conclude that W (R)[1/p] injects into the inverse limit

B+
dR := lim←−

j

W (R)[1/p]/(ker θQ)j (3.2)

whose transition maps are GK-equivariant, so B+
dR has a natural GK-action

that is compatible with the action on its subring W (R)[1/p]. (Beware
that in (3.2) we cannot move the p-localization outside of the inverse li-
mit). The inverse limit B+

dR map GK-equivariantly onto each quotient
W (R)[1/p]/(ker θQ)j via the evident natural map, and in particular, for j = 1,
the map θQ induces a natural GK-equivariant surjective map θ+

dR : B+
dR � CK .

Proposition 3.7.1. The ring B+
dR is a complete discrete valuation ring with

residue field CK , and any generator of ker θQ in W (R)[1/p] is a uniformiser
of B+

dR.

Proof. See [BC09, p. 4.4.6].
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The Frobenius automorphism φR of W (R)[1/p] does not naturally extend
to B+

dR since it does not preserve ker θQ, so there is no natural Frobenius
structure on B+

dR. Nevertheless, we do have a filtration via powers of the
maximal ideal, and this is a GK-stable filtration. We get the same on the
fraction field:

Definition 3.7.2. The field of p-adic periods (or the de Rham period ring)
is BdR := Frac(B+

dR) equipped with its natural GK-action and GK-stable
filtration via the Z-powers of the maximal ideal of B+

dR.

Another way to see the filtration steps inside B+
dR and BdR is to define

an element t which is a generator for the maximal ideal ker θQ and also a
uniformiser for B+

dR (by Proposition 3.7.1), so BdR = B+
dR[1/t]; in particular,

this construction shows that the filtered field BdR is actually an appropriate
refinement of BHT:

FiliBdR := (ker θQ)i = tiB+
dR.

Now we construct such element. Take the above element ε ∈ R, so
θ([ε]− 1) = ε(0)− 1 = 0. Hence, [ε]− 1 ∈ ker θ ⊆ ker θ+

dR, so [ε] = 1 + ([ε]− 1)
is a 1-unit in the complete discrete valuation ring B+

dR over K. We can
therefore make sense of the logarithm

t := log([ε]) = log(1 + ([ε]− 1)) =
∑
n≥1

(−1)n+1 [ε]− 1

n
∈ B+

dR.

This lies in the maximal ideal of B+
dR. Note that if we make another choice

ε′ then ε′ = εa for a unique a ∈ Z×p using the natural Zp-module structure
on 1-units in R. Hence, we have t′ := log([ε′]) = a log([ε]) = at.

In other words, the line Zpt in the maximal ideal of B+
dR is intrinsic (i.e.,

independent of the choice of ε) and making a choice of Zp-basis of this ’line’
is the same as making a choice of ε. Also, choosing ε is literally a choice of
Zp-basis of Zp(1) = lim←−µpn(K). For any g ∈ GK , we have g(ε) = εχ(g) in R

since g(ε(n)) = (ε(n))χ(g) for the primitive pnth root of unity ε(n) ∈ OK for
all n ≥ 0. Thus, by the GK-equivariance of the logarithm on 1-units of B+

dR,

g(t) = log(g([ε])) = log([g(ε)]) = log([εχ(g)]) = log([ε]χ(g)) = χ(g)t.

We conclude that Zpt is a canonically copy of Zp(1) as a GK-stable line in
B+

dR.

Remark 3.7.3. The ring B+
dR is isomorphic to CK [[t]] only as abstract rings,

and there is no such isomorphism which is compatible with the action of GK .

In order to conclude this section, we note some other properties of BdR.
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If P (X) ∈ K[X] is a polynomial with simple roots, then it splits comple-
tely in CK and hence, by Hensel’s lemma, it also splits completely in B+

dR,
since B+

dR/tB
+
dR = CK . In this way we see that K ⊂ B+

dR.
The last property we mention is the determination of its subfield of GK-

invariants. The above GK-equivariant embedding K ↪→ B+
dR gives us an

inclusion K ⊆ BGK
dR .

Proposition 3.7.4. The inclusion K ⊆ BGK
dR is an equality.

Proof. Consider the short exact sequence

0→ th+1B+
dR → thB+

dR → CK(h)→ 0

and for h = 0 apply Tate–Sen Theorem 3.1.3 on the invariants.

3.8 de Rham representations

Since BdR is (Qp, GK)-regular with BGK
dR = K, the general formalism of

admissible representations provides a good class of p-adic representations:
the BdR-admissible ones. More precisely, we define the covariant functor
DdR : RepQp(GK) → VecK valued in the category of finite-dimensional K-
vector spaces by

DdR(V ) := (BdR ⊗Qp V )GK ,

so dimK DdR(V ) ≤ dimQp V . In case this inequality is an equality we say that

V is a de Rham representation (i.e., V is BdR-admissible). Let RepdR
Qp (GK) ⊆

RepQp(GK) denote the full subcategory of de Rham representations.

By the general formalism from §3.2, for V ∈ RepdR
Qp (GK) we have a

BdR-linear GK-compatible comparison isomorphism

αV : BdR ⊗K DdR(V )→ BdR ⊗Qp V

and the subcategory RepdR
Qp (GK) ⊆ RepQp(GK) is stable under passage to

subquotients, tensor products, and duals, and moreover the functor

DdR : RepdR
Qp (GK)→ VecK

is faithful and exact and commutes with the formation of duals and tensor
powers.

Since duality does not affect whether or not the de Rham property holds,
working with DdR is equivalent to working with the contravariant functor

D∗dR(V ) := DdR(V ∨) ' HomQ[GK ](V,BdR).

The output of the functor DdR has extra K-linear structure (arising from
additional structure on the K-algebra BdR), namely a K-linear filtration
arising from the canonical K-linear filtration on the fraction field BdR of the
complete discrete valuation ring B+

dR over K. Before we explain this, we
review some terminology from linear algebra.
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Definition 3.8.1. A filtered module over a commutative ring R is an R-
module D endowed with a collection {FiliD}i∈Z of submodules that is de-
creasing in the sense that Fili+1D ⊆ FiliD for all i ∈ Z. If ∪iFiliD = D
then the filtration is exhaustive, if ∩iFiliD = 0 then the filtration is se-
parated. For any filtered R-module D, the associated graded module is
gr•(D) = ⊕i(FiliD/Fili+1D)

Of course, if (D,FiliD) is a finite-dimensional filtered vector space then
the filtration is exhaustive if and only if FiliD = D for i � 0 and it is
separated if and only if Fili = 0 for i� 0. Let FilK denote the category of
finite-dimensional filtered vector spaces (D,FiliD) over K equipped with an
exhaustive and separated filtration, where a morphism between such objects
is a linear map T : D′ → D that is filtration-compatible in the sense that
T (FiliD′) ⊆ FilD for all i.

In the category FilK there are good functorial notions of kernel and
cokernel of a map, tensor product (for D,D′ ∈ FilK the tensor product
D⊗D′ has underlying K-vector space D⊗KD′ and filtration Filn(D⊗D′) =∑
p+q=n

FilpD ⊗K FilqD′
)

and dual. A short exact sequence 0→ D′ → D →

D′′ → 0 in FilK is a short exact sequence of K-vector spaces 0→ D′ → D →
D′′ → 0 such that the sequence 0→ FiliD′ → FiliD → FiliD′′ → 0 is exact
as K-vector spaces for all i. Beware this, the category FilK is not abelian,
so in general coimage and image of a map cannot coincide; we refer to strict
morphism when the latter happens.

Finally, there is a natural functor gr = gr• : FilK → GrK,f to the category
of finite-dimensional graded K-vector spaces via gr(D) = ⊕iFiliD/Fili+1D.
This functor is dimension-preserving and exact. By choosing bases compatible
with filtrations we see that the functor gr is compatible with tensor products
in the sense that there is a natural isomorphism gr(D)⊗ gr(D′) ' gr(D⊗D′)
in GrK,f for any D,D′ ∈ FilK .

For V ∈ RepQp(GK), the K-vector space DdR(V ) = (BdR⊗V )GK ∈ VecK
has a natural structure of object in FilK : since BdR has an exhaustive and
separated GK-stable K-linear filtration via FiliBdR = tiB+

dR, we get an
evident K-linear GK-stable filtration {Fili(BdR)⊗Qp V }i on BdR ⊗Qp V , so
this induces an exhaustive and separate filtration on the finite-dimensional
K-subspace DdR(V ) of GK-invariant elements. Explicitly,

FiliDdR(V ) = (tiB+
dR ⊗Qp V )GK .

The finite-dimensionality of DdR(V ) is what ensures that this filtration fills
up all of DdR(V ) for sufficiently negative filtration degrees and vanishes for
sufficiently positive filtration degrees.

Proposition 3.8.2. If V is de Rham then V is Hodge–Tate and gr(DdR(V )) =
DHT(V ) as graded K-vector spaces. In general, there is an injection gr(DdR) ↪→
DHT(V ) and it is an equality of CK-vector spaces when V is de Rham.
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Proof. By left exactness of the formation of GK-invariants, we get a natural
K-linear injection

gr(DdR(V )) ↪→ DHT(V )

for all V ∈ RepQp(GK) because gr(BdR) = BHT as graded CK-algebras with
GK-action.
Thus,

dimK DdR(V ) = dimK gr(DdR(V )) ≤ dimK DHT(V ) ≤ dimQp V

for all V . In the de Rham case the outer terms are equal, so the inequalities
are all equalities.

We say that the Hodge–Tate weights of a de Rham representation V are
those i for which the filtration on DdR(V ) ”jumps” from degree i to degree
i+1, which is to say gri(DdR(V )) 6= 0. This is exactly that CK⊗Qp V has i as
a Hodge–Tate weight. The multiplicity of such an i as a Hodge–Tate weight
is the K-dimension of the filtration jump, which is to say dimK gri(DdR(V )).

Example 3.8.3. DdR(Qp(n)) is a line with nontrivial gr−n, so Qp(n) has
Hodge–Tate weight −n (with multiplicity 1).

Sometimes it is more convenient to define Hodge–Tate weights using
the same filtration condition (gri 6= 0) applied to the contravariant functor
D∗dR(V ) = DdR(V ∨) = HomQ[GK ](V,BdR) so as to negate things (so that
Qp(n) acquires Hodge–Tate weight n instead).

The general formalism of §3.2 tells us that DdR on the full subcategory
RepdR

Qp (GK) is exact and respects tensor products and duals when viewed
with values in VecK , but it is a stronger property to ask if the same is true as
a functor valued in FilK . Fortunately, such good behaviour of isomorphisms
relative to filtrations does hold:

Proposition 3.8.4. The faithful functor DdR : RepdR
Qp (GK)→ FilK carries

short exact sequences to short exact sequences and is compatible with the
formation of tensor products and duals. In particular, if V is a de Rham
representation and

0→ V ′ → V → V ′′ → 0

is a short exact sequence in RepdR
Qp (GK) (so V ′ and V ′′ are de Rham)

then DdR(V ′) ⊆ DdR(V ) has the subspace filtration and the linear quotient
DdR(V ′′) of DdR(V ) has the quotient filtration.

Proof. See [BC09, Prop. 6.3.3].

Corollary 3.8.5. For V ∈ RepQp(GK) and n ∈ Z, V is de Rham if and
only if V (n) is de Rham.

An important refinement of Proposition 3.8.4 is that the de Rham com-
parison isomorphism is also filtration-compatible:
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Proposition 3.8.6. For V ∈ RepdR
Qp (GK), the GK-equivariant BdR-linear

comparison isomorphism

α : BdR ⊗K DdR(V ) ' BdR ⊗Qp V

respects the filtrations and its inverse does too.

Proof. By construction α is filtration-compatible, so the problem is to prove
that its inverse is as well. It is equivalent to show that the induced BHT-linear
map gr(α) on associated graded objects is an isomorphism. On the right
side the associated graded object is naturally identified with BHT ⊗Qp V .
For the left side, we first recall that (by a calculation with filtration-adapted
bases) the formation of the associated graded space of an arbitrary filtered
K-vector space (of possibly infinite dimension) is naturally compatible with
the formation of tensor products (in the graded and filtered sense), so
the associated graded object for the left side is naturally identified with
BHT ⊗K gr(DdR(V )).

By Proposition 3.8.2, the de Rham representation V is Hodge–Tate
and there is a natural graded isomorphism gr(DdR(V )) ' DHT(V ). in this
manner, gr(α) is naturally identified with the graded comparison morphism

αHT : BHT ⊗K DHT(V )→ BHT ⊗Qp V

that is a graded isomorphism because V is Hodge–Tate.

3.9 Ring of periods: Bcris

One defect of B+
dR is that the Frobenius automorphism of W (R)[1/p] does

not preserve ker θQ, so there is no natural Frobenius endomorphism of BdR.
In fact, θ([p1/p] − p) 6= 0, so that [p1/p] − p is invertible in B+

dR, and so

1/([p1/p]− p) ∈ B+
dR. But if φ was a natural extension of φR : W (R)[1/p]→

W (R)[1/p], then one should have φ(1/([p1/p]− p)) = 1/([p]− p), and since

θ([p]− p) = 0, 1/([p]− p) 6∈ B+
dR.

To remedy this defect, we will introduce an auxiliary subring A0
cris ⊆

W (R)[1/p] that is Frobenius-stable and gives rise to a large subring Bcris ⊆
BdR on which there is a natural Frobenius endomorphism.

Let A0
cris denote the divided power envelope of W (R)[1/p] with respect

to ker θ, which in concrete terms means that it is the GK-stable W (R)-
subalgebra

W (R)[αm/m!]m≥1,α∈ker θ = W (R)[ξm/m!]m≥1

in W (R)[1/p] generated by ”divided powers” of all elements of ker θ, where
ξ := [p]− p is a generator for this ideal. Since A0

cris is a Z-flat domain, if we
define

Acris = lim←−
n

A0
cris/p

nA0
cris
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to be the p-adic completion of A0
cris, then Acris is p-adically separated and

complete and the natural map A0
cris/p

nA0
cris → Acris/p

nAcris is an isomor-
phism for all n ≥ 1. In particular, it follows that Acris is Zp-flat. However, it
is not at all evident and difficult to show that A0

cris → Acris is injective and
that there exists a unique continuous injective map j : Acris ↪→ B+

dR (so that
it is GK-equivariant and that Acris is a domain). We address these properties
to the literature (most of them are inside [Fon82]).

Concretely, the image of Acris in B+
dR is the subring of elements∑

n≥0

an
ξn

n!

∣∣∣∣ an ∈W (R), an → 0 for the p-adic topology


in which the infinite sums are taken with respect to the discretely-valued
topology of B+

dR; such sums converge since ξ lies in the maximal ideal of B+
dR.

Further, the GK-action on Acris is continuous for the p-adic topology.
Define the GK-stable W (R)[1/p]-subalgebra

B+
cris := Acris[1/p] ⊆ B+

dR.

Lemma 3.9.1. We have t ∈ Acris.

Proof. Choose a generator ξ of ker θ. Since [ε]− 1 ∈ ker θ = ξW (R), we have
[ε]− 1 = wξ for some w ∈W (R). Thus, in B+

dR we have

t =
∑
n≥1

(−1)n+1 ([ε]− 1)n

n
=
∑
n≥1

(−1)n+1(n− 1)!wn · ξ
n

n!

with (n−1)!wn → 0 in W (R) relative to the p-adic topology. Hence, t ∈ Acris

inside of B+
dR.

In a similar way, one can show that tp−1 ∈ pAcris.

Definition 3.9.2. The crystalline period ring Bcris for K is the GK-stable
W (R)[1/p]-subalgebra B+

cris[1/t] = Acris[1/t] inside of B+
dR[1/t] = BdR. (Since

tp−1 ∈ Acris, inverting t makes p into a unit.)

Since W (k) ⊆ W (R) ⊆ Acris, we have K0 = W (k)[1/p] ⊆ Bcris, so
K0 ⊆ BGKcris ⊆ BGKdR = K. We claim that BGKcris = K0. This is immediate from
the following non-obvious crucial fact.

Theorem 3.9.3. The natural GK-equivariant map K ⊗K0 Bcris → BdR is
injective, and if we give K ⊗K0 Bcris the subspace filtration then the induced
map between the associated graded algebras is an isomorphism.

Proof. The proof is entirely given via the construction of the map j : Acris →
B+

dR, so we refer as above to [Fon82].
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As for the isomorphism property on associated graded objects, since
t ∈ Bcris and Acris map to onto OCK , we get the isomorphism result since
gr(BdR) = BHT has its graded components of dimension 1 over gr0(BdR) =
CK .

SinceBdR is a field, it follows from Theorem 3.9.3 thatK⊗K0Frac(Bcris)→
BdR is injective. Hence, we likewise deduce that Frac(Bcris)

GK = K0. This
proves part of:

Proposition 3.9.4. The domain Bcris is (Qp, GK)-regular.

Proof. It remains to show that if b ∈ Bcris is nonzero and Qpb is GK-stable
then b ∈ B×cris. Since t ∈ B×cris, if the nonzero b has exact filtration degree i in
BdR then by replacing b with t−ib we can arrange that n ∈ B+

dR and b is not
in the maximal ideal. Let η : GK → Q×p be the abstract character on the line
Qpb. Thus, the residue class b̄ in CK spans a Qp-line in CK with GK-action by
η. This forces η to be continuous and hence Z×p -valued, with CK(η−1)GK 6= 0.
By Theorem 3.1.3 we conclude that η(IF ) is finite. But IF = G

K̂unr , so again
by using Theorem 3.1.3 (for the absence of transcendental invariants, applied

over a finite extension of K̂unr splitting η), we deduce that the element

b̄ ∈ CK is algebraic over K̂unr = W (k)[1/p] ⊆ B+
dR.

Such an element b̄ in the residue field CK of the K̂unr-algebra B+
dR uniquely

lifts to an element β ∈ B+
dR that is algebraic over K̂unr by Hensel’s lemma

for the complete discrete valuation ring B+
dR with the residue characteristic 0,

so b− β ∈ Fil1(B+
dR). The GK-action on B+

dR restricted to β is given by the
Q×p -valued η due to the uniqueness of β as a lifting of b̄ that is algebraic over

K̂unr. Hence, b− β spans a GK-stable Qp-line in Fil1(B+
dR) with character

η if b− β 6= 0. If there is such a Qp-line, then its nonzero elements live in
some exact filtration degree r ≥ 1 and so passing to the quotient by the
next filtered piece would give a nonzero element in CK(r) on which GK acts
through η. In other words, CK(χr · η) has a nonzero GK-invariant element.
But by Theorem 3.1.3 this forces χrη(IF ) to be finite, which is a contradiction
since η(IF ) is finite and r > 0. We conclude that b − β = 0, so b = β is

algebraic over K̂unr.
Thus, L := K̂unr(b) ⊆ Bcris is a finite extension of K̂unr, and its maximal

unramified subfield L0 must be K̂unr. By applying Theorem 3.9.3 over the
ground field L (in the role of K in that theorem) we get that the map of
rings L⊗L0 Bcris → BdR is injective. Hence, the subring L⊗L0 L is a domain

(as BdR is a domain), so L = L0 and therefore b ∈ L×0 = K̂unr
×
⊆ B×cris.

Now, we describe the construction of the injective GK-equivariant endo-
morphism of Bcris that extends the Frobenius automorphism φR of W (R)[1/p].
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Fix p ∈ R such that p(0) = p, so for ξ = [p] − p ∈ ker θ we have that
Bcris = Acris[1/t] with Acris defined to be the p-adic completion of A0

cris. The
key point is:

Lemma 3.9.5. The W (R)-subalgebra A0
cris ⊆W (R)[1/p] is φR-stable.

Proof. We compute φR(ξ) = [pp]− p = [p]p − p = (ξ + p)p − p = ξp + pw for
some w ∈W (R). Thus,

φR(ξ) = p · (w + (p− 1)! · (ξp/p!)),

so φR(ξm) = pm(w + (p− 1)! · (ξp/p!))m for all m ≥ 1. But pm/m! ∈ Zp for
all m ≥ 1, so φR(ξm/m!) ∈ A0

cris for all m ≥ 1.

The endomorphism of A0
cris induced by φR on W (R)[1/p] extends uni-

quely to a continuous endomorphism of the p-adic completion Acris, and
hence an endomorphism φ of B+

cris = Acris[1/t] that extends the Frobenius
automorphism φR of the subring W (R)[1/p]. We claim that for t ∈ Acris

(inside of B+
dR) we have φ(t) = pt with p ∈ (B+

cris)
×, so φ extends uniquely to

an endomorphism of Bcris = B+
cris[1/t]. Recall that the element t, initially

defined in B+
dR as

∑
n≥1(−1)n+1([ε]− 1)n/n, makes sense in Acris as a con-

vergent sum in the p-adic topology. Thus, we may use p-adic continuity to
compute

φ(t) =
∑
n≥1

(−1)n+1 (φ([ε])− 1)n

n
=
∑
n≥1

(−1)n+1 ([εp]− 1)

n

since φ on Acris extends the usual Frobenius map on W (R). Thus, φ(t) =
log([εp]) = pt, where the last equality is computed in a previous section.

Corollary 3.9.6. The Frobenius endomorphism φ : Acris → Acris is injective.
In particular, the induced Frobenius endomorphism of Bcris = Acris[1/t] is
injective.

Give Bcris the subspace filtration from F ⊗K0 Bcris ⊆ BdR, i.e., define

FiliBcris = Bcris ∩ FiliBdR.

Beware that (since there is no Frobenius on BdR) this is not φ-stable. We
require a fundamental property of the filtration on Bcris.

Theorem 3.9.7. The space (Fil0Bcris)
φ=1 := {b ∈ Fil0Bcris | φ(b) = b} of

φ-invariant elements in the 0th filtered piece of Bcris is equal to Qp.

Proof. This is a difficult result, we refer to [Fon94a].
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3.10 Weakly admissible filtered (φ,N)-modules

By general formalism §3.2 we will consider the functorD = Dcris : RepQp(GK)→
VecK0 defined by

Dcris(V ) := (Bcris ⊗Qp V )GK .

This finite-dimensional BGKcris = K0-vector space has two kinds of structure:
(i) an injective Frobenius-semilinear endomorphism induced by the GK-
equivariant injective Frobenius φcris on Bcris (so this is bijective since the
Frobenius map on K0 is an automorphism);
(ii) an exhaustive and separated K-linear filtration on the scalar extension

Dcris(V )K = ((K ⊗K0 Bcris)⊗Qp V )GK

via the GK-stable filtration on K ⊗K0 Bcris.
So, first of all we shall study a suitable subcategory of FilK .

Definition 3.10.1. A filtered φ-module over K is a triple (D,φD,Fil•)
where D is a finite-dimensional K0-vector space, φD : D → D is a bijective
Frobenius-semilinear endomorphism and (DK := K ⊗K0 D,Fil•) is an object
in FilK (i.e., {Fili}i is a decreasing exhaustive and separated filtration on
DK).

A morphism D′ → D between two filtered φ-modules is a K0-linear
map D′ → D compatible with both φD′ and φD and has K-linear extension
D′K → DK that is a morphism in FilK . The category of triples (D,φ,Fil•)

is denoted MFφK .

Thus, it is clear that Dcris(V ) has a structure of object in MFφK . Let
Repcris

Qp (GK) ∈ RepQp(GK) denote the full subcategory of the Bcris-admissible
representations. By §3.2, this full subcategory is stable under duality and
tensor products. Moreover, the above argument shows that the functor
Dcris : Repcris

Qp (GK)→ VecK0 has values in MFφK and it is faithful since so is

the forgetful functor MFφK → VecK0 . Somewhat deeper is the fact that it is
actually fully faithful, so we want to specialize our target category on finding
its essential image.

To do this, we need to introduce two important invariants of a filtered
φ-module.

Definition 3.10.2. Let D ∈ MFφK .
The Hodge number of D is:

tH(D) :=


0 if D = 0;

i if dimK0 D = 1,FiliD = D and Fili+1D = 0;

tH(
∧nD) if n := dimK0 D ≥ 2.
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Denoting by valp the valuation on K normalized by valp(p) = 1, the
Newton number of D is:

tN (D) :=


0 if D = 0;

valp(a) if D = K0d and φ(d) = a · d;

tN (
∧nD) if n := dimK0 D ≥ 2.

Remark 3.10.3. Note that the Newton number is well-defined: if D =
K0d = K0d

′, one has d′ = c ·d with c ∈ K0; if φ(d) = ad and φ(d′) = a′d′, one
has a′ = c−1.τ(c)a, where τ is the Frobenius on K0, and valp(a

′) = valp(a).

It is immediate from the definition that tH and tN are additive in the
sense that if we have a short exact sequence 0 → D′ → D → D′′ → 0 in
MFφK , then tH(D) = tH(D′) + tH(D′′) and tN (D) = tN (D′) + tN (D′′).

Now we are ready to define our candidate category of semilinear objects
in MFφK :

Definition 3.10.4. A filtered φ-module D over K is weakly admissible
if tH(D) = tN (D) and if, for any subobject D′ ⊆ D in MFφK , we have
tH(D′) ≤ tN (D′).

The full subcategory of MFφK consisting of weakly admissible objects is

denoted MFφ,w.a.K .

An easy property of weakly admissible modules is the following:

Lemma 3.10.5. If D ∈ MFφK , then D is weakly admissible if and only if its
dual D∨ is weakly admissible.

Proof. Since tH and tN are negated under duality, it suffices to show that
in the definition of weak admissibility it is equivalent to work with the
alternative condition that for all quotients D � D′′ we have tH(D) = tN (D)

and tH(D′′) ≥ tN (D′′). For any D in MFφK there is a natural bijective
correspondence between subobjects D′ ⊆ D and quotient objects π : D � D′′

(up to isomorphism), namely D′ 7→ D′′ := D/D′ and D′′ 7→ kerπ. Since
tH(D′) + tH(D/D′) = tH(D) and tN (D′) + tN (D/D′) = tN (D) with the
values tH(D) and tN (D) fixed and independent of D′, we are done.

It is a remarkable fact that MFφ,w.a.K is an abelian category (using kernels

and cokernels as in the additive category MFφK that is not abelian), and more
specifically that any morphism between weakly admissible filtered φ-modules
is strict with respect to filtrations over K. To avoid later duplication of effort,
rather than prove these properties for MFφ,w.a.K now, we prefer to establish

such a result for a larger category of structures beyond MFφK .

Definition 3.10.6. A filtered (φ,N)-module over K is a quadruple (D, φD,
ND, Fil•) where (D,φD,Fil•) is a filtered φ-module over K equipped with
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a K0-linear endomorphism ND : D → D (called the monodromy operator)
such that NDφD = pφDND. The notion of morphism between such objects
is the evident one, and the category of these is denoted MFφ,NK .

In this definition we do not assume ND is nilpotent; it can be deduced
later thanks to the finite-dimensionality of the space ([BC09, Lemma 8.2.8]).

In particular, if D ∈ MFφ,NK is an 1-dimensional object, then ND = 0.

Example 3.10.7. We write K0[0] to denote the 1-dimensional unit object

of MFφK (i.e., D = K0 with gr0(DF ) 6= 0 and φ equal to the Frobenius
automorphism); this is a ”unit object” for the tensor product. Upon endowing
it with the monodromy operator N = 0 it likewise becomes the unit object
of MFφK .

Note that in general MFφK is exactly the full subcategory of MFφ,NK
consisting of objects whose monodromy operator vanishes.

The category MFφ,NK has evident notions of short exact sequence, kernel,
cokernel, image and coimage. We also define duals and tensor products in
the evident manner, with monodromy operators

ND⊗D′ = ND ⊗ idD′ + idD ⊗ND′ and ND∨ = −N∨D.

Definition 3.10.4 now extends to incorporate a monodromy operator:

Definition 3.10.8. An object D ∈ MFφ,NK is weakly admissible if tH(D) =

tN (D) and for all subobjects D′ ⊆ D in MFφK (so D′ is required to be N -
stable in D too) we have tH(D′) ≤ tN (D′). Equivalently, if tH(D) = tN (D)

and for all quotient objects D � D′′ in MFφ,NK we have tH(D′′) ≥ tN (D′′).

These objects constitute a full subcategory MFφ,N,w.a.K of MFφ,NK . (clearly

MFφ,w.a.K consists of objects in MFφ,N,w.a.K for which N = 0.)

Weak admissibility is a very subtle link between three structures: the
Frobenius, the filtration and the monodromy operator (whose only role here is

to constrain the possible subobjects in MFφ,NK via the N -stability condition).

Since ND∨ = −N∨D, we see as in the case N = 0 that D in MFφ,NK is weakly
admissible if and only if D∨ is weakly admissible.

The next two results in MFφ,NK could have been proved much earlier in

MFφK , but we waited so that we could handle MFφ,NK in general.

Proposition 3.10.9. If 0→ D′ → D → D′′ → 0 is a short exact sequence
in MFφ,NK and any two of the three terms are weakly admissible then so is
the third.

Proof. If D is weakly admissible then for any subobject D′1 of D′ we may
view D′1 as a subobject of D and hence tH(D′1) ≤ tN (D′1). If in addition D′′

is weakly admissible then tH(D′′) = tN (D′′), so tH(D′) = tH(D)− tH(D′′) =

36



tN (D) − tN (D′′) = tN (D′). Thus, D′ is weakly admissible when D and
D′′ are so. Applying these considerations after dualizing the original exact
sequence and using the general identity that tH and tN negate under duality,
we conclude that if D and D′ are weakly admissible then so is D′′.

Now suppose that D′ and D′′ are weakly admissible. By additivity in
short exact sequences we see that tH(D) = tN (D) due to the analogous
such equalities for D′ and D′′. It remains to prove tH(D1) ≤ tN (D1) for all
subobjects D1 ⊆ D. We let D′1 := D′ ∩D1 and give (D′1)K the subspace
filtration from either (D1)K or D′K (these subspace filtrations coincide!), and
let D′′1 := D1/D

′
1 with the quotient filtration on (D′′1)K . There is a natural

injective map j : D′′1 ↪→ D′′ = D/D′ in MFφ,NK , but a priori it may not be
strict (i.e., the quotient filtration on (D′′1)K from (D1)K may be finer than
the subspace filtration from D′′K). Since D′1 is a subobject of the weakly
admissible D′, tH(D′1) ≤ tN (D′1). Thus,

tH(D1) = tH(D′1) + tH(D′′1) ≤ tN (D′1) + tH(D′′1)

and tN (D1) = tN (D′1)+tN (D′′1), so it suffices to prove that tH(D′′1) ≤ tN (D′′1).
Let j(D′′1) denote D′′1 endowed with the subspace filtration from D′′,

so the natural map D′′1 → j(D′′1) in MFφ,NK is a linear isomorphism. We
have tN (D′′1) = tN (j(D′′1)) since j is an isomorphism in the category φ-
modules over K0 (without filtrations). Hence, it is enough to prove tH(D′′1) ≤
tN (j(D′′1)). But j(D′′1) is a subobject of the weakly admissible D′′. so
tH(j(D′′1)) ≤ tN (j(D′′1)) and hence our problem reduces to proving the
inequality tH(D′′1) ≤ tH(j(D′′1)) between Hodge numbers for the bijective

morphism j : D′′1 → j(D′′1) in MFφ,NK .
In general, if h : ∆′ → ∆ is a bijective morphism in FilK then we claim

that tH(∆′) ≤ tH(∆) with equality if and only if h is an isomorphism in FilK
(i.e., it is a strict morphism). To prove this, first note that tH(∆) = tH(det ∆)
and tH(∆′) = tH(det ∆′), and a consideration of bases adapted to filtrations
shows that a bijective morphism in FilK is an isomorphism in FilK if and
only if the induced map on top exterior powers is an isomorphism in FilK .
Thus, by passing to deth : det ∆′ → det ∆ we reduce to the 1-dimensional
case, for which tH is the unique i such that gri 6= 0. This concludes the
argument.

We now come to the remarkable fact that in the presence of the weak
admissibility condition the filtration structures behave as in an abelian
category:

Theorem 3.10.10. Let h : D → D′ be a map in MFφ,N,w.a.K . The map h

is strict (i.e., D/ kerh → imh is an isomorphism in MFφ,NK ), and kerh
and cokerh with their respective subspace and quotient filtration structures
are weakly admissible. In particular, the object imh ' D/ kerh is weakly

admissible and the category MFφ,NK is abelian.
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Proof. See [BC09, Thm. 8.2.11].

3.11 Crystalline representations

We have constructed our candidate (abelian) category MFφ,w.a.K inside MFφK ,
so now we will show that it is actually the valued category of the functor
Dcris : Repcris

Qp → MFφK restricted to those p-adic representations that are
crystalline (i.e., Bcris-admissible).

By the general formalism §3.2, recall that the functor Dcris is faithful,
exact and naturally commutes with the formation of tensor products and
duals.

Proposition 3.11.1. If V ∈ Repcris
Qp (GK) then the natural map jV : K ⊗K0

Dcris(V ) → DdR(V ) in FilK is an isomorphism. In particular, crystalline
representations are de Rham.

Moreover, the Bcris-linear Frobenius-compatible GK-equivariant crystal-
line comparison isomorphism

α : Bcris ⊗K0 Dcris(V ) ' Bcris ⊗Qp V

satisfies the property that αK is a filtered isomorphism.

Proof. The natural map jV is a subobject inclusion in FilK by definition of
the filtration structure on Dcris(V )K , so the problem is one of comparing
K-dimensions. The crystalline condition says dimK0 Dcris(V ) = dimQp V ,
and since dimK DdR(V ) ≤ dimQp V we must have equality, so V is de Rham.

To verify that the K-linear inverse α−1
K is filtration-compatible too, or in

other words that the filtration-compatible αK is a filtered isomorphism,
it is equivalent to show that gr(αK) is an isomorphism. Since jV is an
isomorphism and gr(K ⊗K0 Bcris) = gr(BdR) = BHT by Theorem 3.9.3, the
method of proof of Proposition 3.8.6 adapts to show that gr(αK) is identified
with the Hodge–Tate comparison isomorphism for V .

The Theorem 3.9.7 underlies the key to the full faithfulness properties
for Dcris. The reason for the importance of this theorem is that it shows how
to extract Qp out of Bcris using only its ”linear structures”: the GK-action,
the Frobenius operator, and the filtration. To see how useful it is, we finally
come to the key point of the story: we can recover V from Dcris(V ) when V
is crystalline.

Indeed, consider the crystalline comparison isomorphism

α : Bcris ⊗K0 Dcris(V ) ' Bcris ⊗Qp V (3.3)

for V ∈ Repcris
Qp (GK). We have seen that not only α is Bcris-linear, GK-

equivariant, and Frobenius-compatible, but αK is a filtered isomorphism too.
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Hence, by intersecting with the 0th filtered parts after scalar extension to K
we get a GK-equivariant K0-linear isomorphism

Fil0(Bcris ⊗K0 Dcris(V )) ' Fil0(Bcris)⊗Qp V

that is compatible with the Frobenius actions on both sides (within the
ambient Bcris-modules as in (3.11)). Passing to φ-fixed parts therefore gives
a Qp[GK ]-linear isomorphism

Fil0(Bcris ⊗K0 Dcris(V ))φ=1 ' V. (3.4)

In other words, if we define the covariant functor

Vcris : MFφK → Qp[GK ]-mod

by D 7→ Fil0(Bcris ⊗K0 D)φ=1 then V ' Vcris(Dcris(V )) for crystalline re-
presentations V of GK . Hence, modulo the issue that Vcris(D) may not be
finite-dimensional over Qp, with continuous GK-action for arbitrary D in

MFφK , the functor Vcris provides an inverse to Dcris (or rather, Dcris restricted
to Repcris

Qp (GK)). Most importantly, we have almost shown:

Proposition 3.11.2. The exact tensor-functor Dcris : Repcris
Qp (GK)→ MFφK

is fully faithful, with inverse on its essential image given by Vcris. The same
holds for the contravariant D∗cris using the contravariant functor V ∗cris(D) =
HomFil,φ(D,Bcris).

Proof. The fully faithfulness needs further discussion. Suppose that V and
V ′ are crystalline p-adic representations of GK and let D = Dcris(V ) and

D′ = Dcris(V ) in MFφK . If T : D′ → D is a map in MFφK then via the
crystalline comparison isomorphism as in (3.11) for V and V ′, the Bcris-linear
extension 1⊗ T : Bcris ⊗K0 D

′ → Bcris ⊗K0 D of T is identified with a Bcris-
linear, GK- and Frobenius-compatible, and filtration-compatible isomorphism
T̃ : Bcris ⊗Qp V ′ ' Bcris ⊗Qp V .

Explicitly, T̃ = αcris(V ) ◦ T ◦ αcris(V
′)−1. The map T̃ respects the

formation of the φ-fixed part in filtration degree 0, which is to say (by
(3.4)) that this Bcris-linear isomorphism must carry V ′ into V by a GK-
equivariant map. Hence, T̃ is the Bcris-scalar extension of some map V ′ → V
in RepQp(GK), so by functoriality of the crystalline comparison isomorphism
we see that this map V ′ → V between Galois representations induces the
given map T : Dcris(V

′) = D′ → D = Dcris(V ). This gives full faithfulness as
desired.

Since we usually work with twisted object, we introduce the notation in
the category MFφ,NK :
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Definition 3.11.3. For D ∈ MFφ,NK , the i-fold Tate twist of D is the object
D〈i〉 whose underlying K0-vector space is D, monodromy operator ND〈i〉
is ND, Frobenius operator φD〈i〉 is p−i and filtration structure over K is

Filr(D〈i〉K) = Fili+r(DK).

Beware that this definition is adapted to the use of contravariant Fontaine
functors D∗cris(·) = HomQ[GK ](·, Bcris) (and similarly for the future D∗st). In
this way, for V ∈ RepQp(GK) and i ∈ Z we have D∗cris(V (i)) ' D∗cris(V )〈i〉.

We conclude with a basic calculation.

Example 3.11.4. Let’s calculate D∗cris(Qp(r)) = HomQ[GK ](Qp(r), Bcris).
Given any Qp[GK ]-linear map Qp(r)→ Bcris, if we multiply it by t−r then
we get a Qp[GK ]-linear map Qp → Bcris. In other words, D = D∗cris(Qp(r)) =

BGKcris ·tr = K0t
r. This has Frobenius action φ(ctr) = σ(c)(φt)r = prσ(c)tr, and

the unique filtration jump for DF happens in degree r (i.e., grr(DF ) 6= 0).
In other words, D∗cris(Qp(r)) is the Tate twist (K0[0])〈r〉 (notation as in
Example 3.10.7).

Let’s push this further and compute V ∗cris(D
∗
cris(Qp(R))) = V ∗cris((K0[0])〈r〉).

This consists of K0-linear maps T : K0 → FilrBcris that satisfy φ(T (c)) =
T (prσ(c)) for all c ∈ K0, or in other words σ(c) ·φ(T (1)) = prσ(c)T (1) for all
c ∈ K0. This says φ(T (1)) = prT (1) with T (1) ∈ FilrBcris, and if we write
T (1) = btr with b ∈ Fil0Bcris (as we may since t ∈ B×cris) then the condition
on b is exactly b ∈ (Fil0Bcris)

φ=1 = Qp. Hence, V ∗cris(D
∗
cris(Qp(r))) = Qptr is

the canonical copy of Qp(r) inside of Bcris. This illustrates in a special (but
important!) case of the general fact that V ∗cris is ”inverse” to D∗cris restricted
to crystalline representations.

This is not an isolate case but corresponds to a more general statement
on 1-dimensional crystalline representations (see [BC09, Prop. 8.3.4]):

Proposition 3.11.5. The functor D∗cris is an equivalence of categories be-
tween 1-dimensional crystalline representations of GK and 1-dimensional
weakly admissible filtered (φ,N)-modules over K. The characters arising in
this way are precisely the Tate twist of the Z×p -valued unramified characters
of GK .

The next step in the development of Dcris is to show that it takes values
in the full subcategory of weakly admissible filtered φ-modules over K, as
suggest by the 1-dimensional case. Rather than prove this result now, we shall
first digress to develop the theory of of another (Qp, GK)-regular period ring
Bst containing Bcris whose associated theory of admissible representations
(to be called semistable) generalizes the theory of crystalline representations.
The desired weak admissibility property for Dcris with crystalline V will be a
special case of a more general weak admissibility property that we will prove
for Dst(V ) = (Bst ⊗Qp V )GK ∈ MFφ,NK for semistable V .
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3.12 Ring of periods: Bst

The period ring Bst will be a canonical extension ring of Bcris endowed
with compatible Galois and Frobenius structures, as well as a filtration on
K ⊗K0 Bst, but there will not be a canonical injective map Bst → BdR as
Bcris-algebras with GK-action. Instead, such a map will depend on a certain
non-canonical choices, but the image of the map will be independent of the
choices.

Fix a choice of q in the maximal ideal of OK and pick q ∈ mR \ {0} such

that q(0) = q. Define

log
[q]

q
:=
∑
n≥1

(−1)n+1
([q]/q − 1)n

n
∈ B+

dR

Definition 3.12.1. Define the subring B+
st to be the subring ofB+

dR generated
by B+

cris and log([q]/q). The semistable period ring Bst is the ring Bst :=

B+
st [1/t].

The element log([q]/q) ∈ B+
dR is transcendental over Bcris, so non-

canonically we have B+
st ' B+

cris[X] and Bst ' Bcris[X]. In this identification,
GK acts as usual on Bcris and on X by the formula g(X) = X + log([εq(g)]),

where εq(g) = g(q)/q ∈ (R)× is a compatible sequence of (possibly non-
primitive) pnth roots of unity (so log([εq(g)]) lies in the canonical Zp(1) in

Acris). Moreover, we extend the injective Frobenius φ on B+
cris to a (visibly

injective) Frobenius φ on B+
st and Bst via the requirement φ(X) = pX.

The ring Bst admits an additional structure, a monodromy operator N
defined to be N = d/dX on B+

st = B+
cris[X]. Note that this operator interacts

with φ by the formula Nφ = pφN .
Finally, to define a filtration on K⊗K0Bst extending the one in K⊗K0Bcris,

we seek to construct a GK-equivariant Bcris-algebra embedding Bst → BdR

carrying B+
st into B+

dR. The image of such a map will be canonical but the
actual map will depend on a choice: the standard convention is to take q = p
and to fix the value of its logarithm log(p) = c ∈ F , in general c = 0. Under
this assumptions, we put FiliBst := Bst ∩ FiliBdR (and the same for B+

st and
B+

dR). In particular, the (non-canonical) embedding K ⊗K0 Bst → BdR is

injective as K[GK ]-algebra, so the inclusion K0 ⊆ BGK
st is an equality.

Now we want to sum up all the non-canonical choices in order to use the
isomorphism Bst ' Bcris[X] from now on.

Fix q = p (inside OK) and take p ∈ mR \ {0}. Moreover, fix the value

log(p) = 0, so that we get an isomorphism B+
st ' B+

cris[X] and a B+
cris-algebra

map B+
st → B+

dR carries X to log([p]) := log([p]/p). As the choice of p

may vary by Zp(1)×-elements, we fix a Zp-basis ε, so g(p) = p · εηp(g) for
a unique ηp(g) ∈ Zp. Letting t = log([ε]), the GK-action is given on X by
g(X) = X + ηp(g)t.
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Proposition 3.12.2. The ring Bst is (Qp, GK)-regular.

Proof. It remains to prove that if b ∈ Bst is nonzero and Qpb is GK-stable

then b ∈ B×st . It is harmless for this purpose to replace K with K̂unr, which
is to say that k is algebraically closed. We shall use the concrete description
Bst = Bcris[X] with g(X) = X + η(g)t where t = log([ε]) is a fixed choice and
the continuous η : GK → Zp is defined by g(π) = πεη(g) for a fixed π ∈ R
such that π(0) = p. Let ψ : GK → Q×p be the character on the line Qpb in
Bst = Bcris[X]. We may write b = b0 + · · ·+ brX

r with bi ∈ Bcris and br 6= 0.
Our goal is to show r = 0, as then b = b0 spans a GK-stable Qp-line in Bcris,
whence b ∈ B×cris = B×st due to the known (Qp, GK)-regularity of Bcris.

Consider the identity

ψ(g)b = g(b) = g(b0) + g(b1)(X + η(g)t) + · · ·+ g(br)(X + η(g)t)r

in Bst for g ∈ GK . Comparing top-degree terms in X gives ψ(g)br = g(br),
so br spans a GK-stable Qp-line in Bcris. The character ψ is continuous, by
the same trick with tZ-scaling and projection into CK as in the proof of
(Qp, GK)-regularity of Bcris in Proposition 3.9.4. Hence, ψ is a continuous
character that appears in Bcris, so it is a crystalline character of GK . As
such ψ is Hodge–Tate, so it has some Hodge–Tate weight n ∈ Z. Thus,
χ−nψ is a crystalline character with Hodge–Tate weight 0. Therefore, by
Proposition 3.11.5, χ−nψ is a Tate twist of an unramified character of GK .
But GK = IF since now k is algebraically closed, and so the vanishing of the
Hodge–Tate weight means that there is no Tate twist at all: χ−nψ = 1.

We may now replace b with t−nb (as t ∈ B×cris) to reduce to the case
n = 0, so ψ = 1. In particular, g(br) = ψ(g)br = br for all g ∈ GK , so br ∈
(B×cris)

GK = K×0 . Assuming r > 0, we seek a contradiction. Consideration of
terms in X-degree r − 1 in our formula for ψ(g)b gives

br−1 = ψ(g)br−1 = g(br−1) + g(br)rη(g)t = g(br−1) + brrη(g)t.

Thus, g(br−1) − br−1 = −rbrη(g)t with c := −rbr ∈ K×0 and any g ∈ GK .
Hence,

g(br−1/c)− br−1/c = η(g)t = g(X)−X,

so X − br−1/c ∈ BGK
st = K0 ⊆ Bcris. But br−1 ∈ Bcris and X 6∈ Bcris, so we

have a contradiction.

3.13 Semistable representations

Now we are ready to treat the last (but not least) type of p-adic representa-
tions:

Definition 3.13.1. A semistable representation of GK is a p-adic one that
is Bst-admissible, and the full subcategory of these is denoted Repst

Qp(GK).
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We may apply the formalism §3.2 to the functor Dst : RepQp(GK) →
VecK0 defined by

Dst(V ) = (Bst ⊗Qp V )GK ,

so dimK0 Dst(V ) ≤ dimQp V for all V and equality holds precisely when V is
semistable. By using the additional structures on Bst (including the subspace
filtration on K ⊗K0 Bst from BdR), we see that Dst is naturally valued in

MFφ,NK .
Much like in our analysis of Dcris, we also see that the faithful functor

Dst : Repst
Qp(GK)→ MFφ,NK

is an exact functor compatible with tensor products and duals (endowed with
their natural filtrations). Likewise, the Bst-linear GK-equivariant Frobenius-
compatible and N -compatible semistable comparison isomorphism

α : Bst ⊗K0 Dst(V ) ' Bst ⊗Qp V

is seen to be an isomorphism with respect to the filtration structures after
scalar extension to K. (i.e., αK and α−1

K are filtration-compatible).

Lemma 3.13.2. Crystalline representations are semistable, and Dcris(V ) =

Dst(V ) in MFφ,NK for all V . If V is semistable and Dst has vanishing
monodromy operator then V is crystalline.

Proof. Since BN=0
st = Bcris, we see that Dst(V )N=0 = Dcris(V ) in MFφ,NK for

every V ∈ RepQp(GK). In particular, if V is crystalline then for dimension
reasons the K0-linear inclusion Dcris(V ) ⊆ Dst(V ) is an isomorphism in

MFφ,NK . Thus, crystalline representations are semistable.
If V is semistable but Dst(V ) has vanishing monodromy operator then

Dcris(V ) = Dst(V ) and this has K0-dimension dimQp V , so V is crystalline.

It follows from this lemma that by working in the generality of semistable
representations we can keep track of crystalline objects simply by observing
whether or not N vanishes.

Lemma 3.13.3. Semistable representations are de Rham, and if V is se-
mistable then the natural injective map K ⊗K0 Dst(V ) → DdR(V ) is an
isomorphism in FilK .

Proof. If V is semistable then the natural injective map K ⊗K0 Dst(V )→
DdR(V ) has source with K-dimension dimQp V that is an upper bound on
the K-dimension of the target, so it is a K-linear isomorphism. In particular,
V is de Rham. By the definition of the filtration structure on K ⊗K0 Bst,
this natural injective map is always a subobject inclusion in FilK , so when it
is an isomorphism as K-vector space it must be an isomorphism in FilK .
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To summarize:

crystalline =⇒ semistable =⇒ de Rham =⇒ Hodge–Tate.

As with crystalline representations in Proposition 3.11.2, there is a full
faithfulness result forDst on semistable representations and we can write down
an inverse functor on the essential image of Dst on semistable representations,
as follows. The equality (Fil0Bst)

N=0,φ=1 = (Fil0Bcris)
φ=1 = Qp implies that

the functor
Vst : MFφ,NK → Qp[GK ]-mod

defined by

Vst(D) = Fil0(Bst ⊗K0 D)N=0,φ=1

:= ker(δ(D) : (Bst ⊗K0 D)N=0,φ=1 → (BdR ⊗K DK)/Fil0(BdR ⊗K DK))

provides an inverse to the functor Dst on semistable representations: there
is a natural Qp[GK ]-linear isomorphism V ' Vst(Dst(V )) for all V ∈ Repst

Qp .
(If we use the contravariant functor D∗st(V ) = HomQ[GK ](V,Bst), then the
inverse is given by the contravariant functor V ∗st(D) = HomFil,φ,N (D,Bst).)
In particular, as in the crystalline case in Proposition 3.11.2, we deduce via
the comparison isomorphism:

Proposition 3.13.4. The functor Dst : Repst
Qp → MFφ,NK is fully faithful,

with quasi-inverse on its essential image given by Vst.

Note also that if D ∈ MFφ,NK with ND = 0 (i.e., D ∈ MFφK) then
Vst(D) = Vcris(D) because BN=0

st = Bcris.
The most important property concerns an intrinsic characterization of

the essential images of these fully faithful functors. Unfortunately, the result
can only be proven with finer properties, so we refer the proof of the following
to [BC09, Thm. 9.3.4].

Theorem 3.13.5. If V ∈ Repst
Qp then Dst ∈ MFφ,NK is weakly admissible. In

particular, if V is crystalline then Dcris ∈ MFφK is weakly admissible.

In the section on de Rham representations, we saw that the functor DdR is
not fully faithful, due to the de Rham property being insensitive to replacing
GK with GK′ for a finite extension K ′/K. This is best explained by a funda-
mental result independently due to Berger and André-Kedlaya-Mebkhout
that relates p-adic differential equations with de Rham representations to
prove Fontaine’s potential semistability conjecture:

Theorem 3.13.6. A p-adic representation V of GK is de Rham if and
only if it is potentially semistable in the sense that V is a semistable GK′-
representation for some finite extension K ′/K.
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This theorem implies that although we cannot invert the functor DdR,
the gap between de Rham representations and semistable representations
amounts to an insensitivity to finite extensions of K. However, keep in
mind that DdR(V ) contains too little informations even to recover V as a
GK′-representation for some unknown finite extension of K ′.

Finally, a fundamental result of Colmez and Fontaine [CF00, Thm. A]

is that the fully faithful and exact tensor functor Dst : RepstQp → MFφ,N,w.a.K

is an equivalence of categories. That is, every weakly admissible filtered
(φ,N)-module D over K is isomorphic as such to Dst(V ) for a semistable
p-adic representation V of GK .

3.14 Weakly admissible filtered (φ,N)-modules with coeffi-
cients

We will conclude the section introducing the coefficients in our filtered
(φ,N)-modules.

Let K and E be two finite extensions of Qp (inside Qp) and fix a unifor-
miser π of K (so we fix an embedding K ⊗K Bst ↪→ BdR). Let K0 denote the
maximal unramified extension of Qp inside K, by σ : K0 → K0 its Frobenius
automorphism and by valp its valuation normalized by valp(p) = 1.

Most of p-adic representations we worked with were Qp-linear with a
continuous GK-action. Now, we will extend these when the coefficients are
in E, i.e., they are E-vector space.

Definition 3.14.1. A filtered (φ,N,K,E)-module D is a finite free K0⊗QpE-
module of endowed with:

(a) a K0-semilinear and E-linear automorphism φ;

(b) a (nilpotent) K0 ⊗Qp E-linear endomorphism N such that Nφ = pφN ;

(c) extending by scalars DK := K ⊗K0 D to K, a decreasing exhaustive
and separated filtration {FiliDK}i of K ⊗Qp E-modules.

Any filtered (φ,N,K,E)-module is also a filtered (φ,N,K,Qp)-module
(in the previous notation: filtered (φ,N)-module over K) forgetting its E-
vector space structure. The category of filtered (φ,N,K,E)-modules has
evident notions of short exact sequence, kernel, cokernel, tensor product and
dual.

Let D be a filtered (φ,N,K,E)-module. If we denote by d := dimK0 D
its K0-dimension, then

∧d
K0
D is of dimension 1 over K0. As in the classical

case, we define the Hodge number of D to be

tH(D) := max

{
i ∈ Z

∣∣∣∣ Fili(K ⊗K0

d∧
K0D 6= 0)

}
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and the Newton number of D to be

tN (D) := valp

(
φ(x)

x

)
where x ∈

∧d
K0
D, x 6= 0 and φ(x)/x ∈ K×0 .

Definition 3.14.2. A filtered (φ,N,K,E)-module D is weakly admissible if
so is the underlying filtered (φ,N,K,Qp)-module.

For every filtered (φ,N,K,E)-module D, we associate

Vst = (Bst ⊗K0 D)φ=1,N=0
⋂

Fil0(BdR ⊗K DK)

where φ on Bst ⊗K0 D is defined as φ⊗ φ, N as N ⊗ id+ id⊗N and Fil0 is
the ”tensor product filtration” on K.

Thanks to [CF00], we know that Vst(D) is a E-linear representation of
GK via its action on Bst and that the functor D 7→ Vst(D) is an equivalence
of categories between weakly admissible filtered (φ,N,K,E)-modules and
the semistable p-adic representations of GK with coefficients in E.

Let k ≥ 1 be an integer, D a filtered (φ,N,K,E)-module and put:

Vst,k(D) := (Bst ⊗K0 D)φ=pk−1,N=0
⋂

Filk−1(BdR ⊗K DK).

This is again an E-linear representation of GK .

Lemma 3.14.3. For any filtered (φ,N,K,E)-module D, we have an iso-
morphism of E[GK ]-modules

Vst,k ' Vst(D)(k − 1)

Remark 3.14.4. The above notation Vst(D)(k − 1) denotes the k − 1 twist
of Vst(D).

Proof. an element of Vst(D) (resp. Vst,k) is sent to an element of Vst,k(D)
(resp. Vst(D)) by multiplication (resp. division) by tk−1, where t is a generator
of Zp(1) in Bst.

Thanks to the above lemma and that the Hodge–Tate weights of Vst(D)
are the opposite of the integers i such that FiliDK 6= Fili+1DK , we get:

Corollary 3.14.5. The functor D 7→ Vst,k(D) is an equivalence of categories
between weakly admissible filtered (φ,N,K,E)-modules D such that Fil0DK =
DK and FilkDK = DK and p-adic semistable representation of GK with
coefficients E and Hodge–Tate weights inside {0, 1, . . . , k − 1}.

Remark 3.14.6. Let D be a weakly admissible filtered (φ,N,K,E)-module.
It is not true that in general Fili(DK := K⊗K0 D) is a free K⊗K0 E-module.
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When we are working with filtered (φ,N,K,E)-modules, to check the
weak admissibility we need (by definition) to forget the E-vector space
structure. However, for these modules there is an equivalent and more
efficient criterion:

Proposition 3.14.7. Let D be a filtered (φ,N,K,E)-module. Then D is
weakly admissible if and only if tH(D) = tN (D) and for any K0 ⊗Qp E-
submodule D′ of D stable under φ and N we have tH(D′) ≤ tN (D′), in which
K ⊗K0 E is equipped with the induced filtration.

Proof. We note that a such D′ is in particular a filtered (φ,N,K,E)-module,
thus the statement makes sense. The condition is certainly necessary, the
point is to show that it is sufficient to have tH(D′) ≤ tN (D′) for any K⊗K0E-
submodule of D stable under φ and N to deduce the same inequality for any
K0-subspace stable under φ and N .

Recall that the category of filtered (φ,N,K,E)-modules such that any
K0-subspace stable under φ and N (with the induced filtration) verifies
the inequality tH ≤ tN is closed by direct sum. Suppose the statement
and let D′ be counter-example with minimal dimension over K0, i.e., a
K0-subspace of D stable under φ and N such that tH(D′) > tN (D′) and
tH(D′′) ≤ tN (D′′) for any D′′  D′ stable under φ and N . Let d := [E : Qp],
x a primitive element of E over Qp and D′sat =

∑d−1
i=0 x

iD′ ⊂ D: it is a
K0 ⊗Qp E-submodule of D stable under φ and N with tH(D′sat) ≤ tN (D′sat).
Let i1, . . . , ir ∈ {0, . . . , d− 1} such that D′sat =

∑r
j=1 x

ijD′ with R minimal.

Denote D1 to be the kernel of ⊕rj=1x
ijD′ → D′sat (with K ⊗K0 D1 equipped

with the induced filtration) and D2 = (⊕rj=1x
ijD′)/D1 with K ⊗K0 D2

equipped with the quotient filtration. Remark that D2 ' D′sat if we forget
the filtration but Fili(K ⊗K0 D2) ↪→ Fili(K ⊗K0 D

′
sat), from which we get

tH(D2) ≤ tH(D′sat) ≤ tN (D′sat) = tN (D2). Let D′j be the image of D1

inside xijD′ (via the projection on xijD′) and endowed K ⊗D′j with the

filtration induced by K ⊗K0 x
ijD′. We have D′j  xijD′ except r otherwise

it would not be minimal since we can omit xijD′. Since multiplication by
xij : D′ → xijD′ is an isomorphism of filtered (φ,N,K,E)-modules, we get
that all the K0-subspace of D′j stable under φ and N (with the induced

filtration) verify the inequality tH ≤ tN , so does ⊕rj=1x
ijD′j which leads to

tH(D1) ≤ tN (D1). The additive properties of tH and tN imply both

tH(⊕rj=1x
ijD′j) = tH(D1) + tH(D2) ≤ tN (D1) + tN (D2)

and

tH(⊕rj=1x
ijD′j) = rtH(D′) > rtN (D′) = rtN (⊕rj=1x

ijD′j) = tN (D1)+tN (D2)

which is a contradiction.
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Now, we specialize in the case of semistable representations of GQp , i.e.,
K = K0 = Qp, and we will denote this absolute Galois group by Gp.

In this case, a filtered (φ,N,Qp, E)-module is simply a finite dimensional
E-vector space D endowed with an E-linear automorphism φ, a nilpotent
E-linear endomorphism N satisfying Nφ = pφN and a decreasing exhaustive
and separated filtration of E-subspaces {FiliD}i.

If D is a filtered (φ,N,Qp, E)-module, so is
∧d
E D for all nonzero integers

d and put tEH(D) := max{i ∈ Z | Fili(
∧dimE D
E ) 6= 0} and tEN (D) := val(φ(x)

x ),

where x ∈
∧dimE D
E D, x 6= 0 and φ(x)/x ∈ E×.

Corollary 3.14.8. (i) Let D be a filtered (φ,N,Qp, E)-module. Then
D is weakly admissible if and only if tEH(D) = tEN (D) and for any
E-subspace D′ ⊆ D stable under φ and N equipped with the induced
filtration we have tEH(D′) ≤ tEN (D′).

(ii) The functor D 7→ Vst,k(D) = Filk−1(Bst ⊗Qp D)φ=pk−1,N=0 is an equi-
valence of categories between weakly admissible filtered (φ,N,Qp, E)-
module D such that Fil0D = D and FilkD = D and p-adic semistable
representations of GQp with coefficients in E and Hodge–Tate weights
inside {0, . . . , k − 1}.

Proof. Point (i) follows from Proposition 3.14.7 and formulas tEH = [E : Qp]tH ,
tEN = [E : Qp]tN .
Point (ii) is a particular case of Corollary 3.14.5.

Example 3.14.9. We give an example of semistable representations of Gp
of dimension 2 over Qp. Up to twist by a power of the cyclotomic character
χ, we may assume that the Hodge–Tate weights are (0, k − 1) for some
integer k ≥ 1. The weakly admissible filtered modules associated to these
representations corresponding via the functor Vst,k are exactly of the form
D = Qpe1 ⊕Qpe2 with FiliD = D for i ≤ 0, Filk−1D 6= 0 and FiliD = 0 for
i ≥ k.

If k = 1 then N = 0 and, up to base change, φ is written in a unique way
either as φ(e1) = µe1, φ(e2) = µe2 with µ ∈ Zp

×
or as φ(e1) = µ1e1 + e2,

φ(e2) = µ2e2 with µ1, µ2 ∈ Zp
×

.
If k ≥ 2 then Fil1D = · · · = Filk−1D is a line and, up to base change, we

have one and only one of the following (pairwise non-isomorphic) possibilities:

(1) N = 0 and the representation is reducible split:
φ(e1) = pk−1µ1e1

φ(e2) = µ2e2

Filk−1D = Qpe1

µ1, µ2 ∈ Zp
×
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(2) N = 0 and the representation is reducible non-split:
φ(e1) = pk−1(µ1e1 + e2)

φ(e2) = µ2e2

Filk−1D = Qpe1

µ1, µ2 ∈ Zp
×

(3) N = 0 and the representation is irreducible:

φ(e1) = pk−1µe1

φ(e2) = −e1 + νe2

Filk−1D = Qpe1

µ ∈ Zp
×

ν ∈ mZp

(4) N 6= 0. Fix π ∈ Zp such that π2 = p:

φ(e1) = πkµe1

φ(e2) = πk−2µe2

Filk−1D = Qp(e1 + Le2)

N(e1) = e2

N(e2) = 0

µ ∈ Zp
×

L ∈ Qp

This result can be extrapolated from Corollary 3.14.8, from [FM95, Thm.
A] and [Bre98, §6.11]. In the rest of the thesis, we will denote D = D(µ1, µ2)

for (µ1, µ2) ∈ Zp
× × Zp

×
if D comes from (1) or (2), D = D(µ, ν) for

(µ, ν) ∈ Zp
××mZp if D comes from (3) and D = D(µ,L) for (µ,L) ∈ Zp

××Qp
if D comes from (4).
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4 Integral p-adic Hodge theory

Since our aim is to deal with Galois deformation theory with artinian coeffi-
cients, it is useful to have a finer theory in which p-adic vector spaces are
replaced with lattices or torsion modules.

For the entire section, we fix a choice of uniformiser π of K and let
E ∈ W (F)[u] be the minimal polynomial of π over K0 (it is an Eisenstein
polynomial of degree e := [K : K0]). As we can do, we try to expose all the
definition in greater generality, but sometimes we will deal directly assuming
K = K0, which is our final goal.

4.1 The ring Âst

In order to produce GK-stable lattices in p-adic semistable representations,
we need the ring Âst which involves the Fontaine’s rings Acris and Bst.

In [Bre97, §2], Breuil defines the ring Âst as the p-adic completion of the
divided power envelope of Acris, in other words:

Âst := ̂Acris〈X〉 :=

{
+∞∑
n=0

an
Xn

n!

∣∣ an ∈ Acris, an → 0 as n→ +∞

}
.

For n ∈ Z, let Âst
≥n
⊂ Âst be the subring of elements such that a0 =

· · · = an−1 = 0. We endow the ring Âst with the following structures:

• FiliÂst :=
∑i

j=0 Fili−jAcris · u
i

i! + Âst
≥i+1

;

• for g ∈ GK , g(
∑
an

Xn

n! ) =
∑
g(an)g(X)

n! , where g(X) := [εq(g)]X +

[εq(g)]− 1 with εq(g) = g(q)/q is as 3.12 and the choice q(0) = π;

• φ(
∑
an

Xn

n! ) =
∑
φ(an)φ(X)n

n! , where φ(X) := (1 +X)p − 1;

• N(
∑
an

Xn

n! ) =
∑
an

N(X)n

n! , where N(X) := 1 +X.

The relations between these structures are the following:
(i) GK preserves the filtration and commutes with φ and N ;
(ii) Nφ = pφN ;

(iii) φ(FiliÂst) ⊂ piÂst if i ≤ p− 1.
A result due to Kato in [Kat94, §3] links this ring with the semistable

period ring Bst:

Lemma 4.1.1. • We have B+
cris[log(1 + X)] ' {x ∈ Âst[1/p]|Nn(x) =

0 for some n > 0}.

• The map Âst[1/p] → B+
dR, X 7→ [π]

π − 1 induces an isomorphism

B+
cris[log(1 +X)]

'−→ B+
st which is compatible with φ, N and GK (but

only induces inclusions Fili(B+
cris[log(1 +X)])  FiliB+

st).
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As a summary, B+
st consists of all elements in Âst[1/p] for which N is

nilpotent, except that its filtration is finer than the induced filtration.

4.2 The Breuil’s ring S

As with the other period’s rings, one needs to compute the GK-invariant
elements of Âst. Before of this, we introduce the Breuil’s ring S ([Bre97])
which will play a big role in the rest of the dissertation.

Let W (F)[u]
[
E(u)i

i!

]
i≥1

be the subring of K0[u] generated over W (F)[u]

(u is a indeterminate) by the set {Ei/i!}i≥1 (this is the divided power envelope
of W (F)[u] with respect to the ideal E(u) ·W (F)[u]). Clearly this is ring is
W (F)-flat. Further, there is an evident surjective map

W (F)[u]

[
E(u)i

i!

]
i≥1

� OK (4.1)

defined via u 7→ π with kernel generated by all Ei/i!. Let S be the p-adic

completion of W (F)[u]
[
E(u)i

i!

]
i≥1

and let Fil1S ⊆ S be the ideal that is

(topologically) generated by all Ei/i!. We view S as a topological ring via its
(separated and complete) p-adic topology. The ring S is local and W (F)-flat
(but not noetherian) and the map (4.1) induces an isomorphism

S/Fil1S
'−→ OK .

Denoting by σ the Frobenius automorphism on W (F), we endow S with
the following structures:

• a continuous σ-linear Frobenius denoted φ : S → S such that φ(u) = up;

• a continuous linear derivation N : S → S such that N(u) = −u;

• a decreasing filtration {FiliS}i≥0, where FiliS is the p-adic completion

of
∑

j≥i S
E(u)j

j! .

Note that Nφ = pφN , N(Fili+1S) ⊂ FiliS and φ(FiliS) ⊂ piS for

i ∈ {0, . . . , p− 1}. As one can note the similarity with Âst, we mention the
following lemma (which is due to Breuil, see [Bre97, §4.2]):

Lemma 4.2.1. The continuous W (F)-linear map S → Âst defined by u 7→
[π](1 +X)−1 induces a GK-equivariant φ and N-stable filtration-invariant

isomorphism S
'−→ Âst

GK
.
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4.3 Strongly divisible modules

Let D be an object in MFφ,N,w.a.K and assume Fil0DF = DF (this is harmless
since, up to twist, one can always assume Galois representations have positive
Hodge–Tate weights). In this case, we say that D is effective. Let

D := S[1/p]⊗K0 D

be an S[1/p]-module endowed with endomorphisms φ := φS ⊗ φD, N :=
N ⊗ id+ id⊗N and a decreasing filtration given inductively by Fil0D := D

and
Fili+1D := {x ∈ D|N(x) ∈ FiliD and fπ(x) ∈ Fili+1DF }

where fπ : D � DF is the surjective map defined by s(u)⊗ x 7→ s(π)x.

Example 4.3.1. In the following examples, we consider F = K0 = Qp and
we choose π = p (so that our Eisenstein polynomial is E(u) = u−p). Keeping
in mind the example 3.14.9, we compute the module D for each case.

Assume D is as in Example 3.14.9 (1), (2) or (3) (corresponding to the
crystalline case), then one finds:

FiliD = FiliS[1/p]⊗D + S[1/p] · e1 if i ≤ k − 1;

FiliD = FiliS[1/p]⊗D + Fili−k+1S[1/p] · e1 if i > k − 1.

Similarly, if D is as in Example 3.14.9 (4) (corresponding to the semistable
non-crystalline case) and k = 2, we have:

FiliD = FiliS[1/p]⊗D + S[1/p] · (e1 + Le2) if i ≤ 1;

FiliD = FiliS[1/p]⊗D + Fili−k+1S[1/p] · (e1 + Le2) if i > 1.

More in general, for k− 1 ≥ 3, the filtrations in the semistable case are more
involved.

The filtered module D has the advantage over the filtered module D that
all of its data are defined at the same level (no need to extends scalars to K).

Now we are ready to define integral structures inside the D’s.

Definition 4.3.2. Let D ∈ MFφ,N,w.a.K such that FilkDF = 0 with k ≤ p. A
strongly divisible module in D is a finite free S-submodule M of D endowed
with an S-submodule Filk−1M := M ∩ Filk−1D such that:

(1) M[1/p]
'−→ D;

(2) M is stable under φ and N ;

(3) φ(Filk−1M) ⊆ pk−1M.

We will spend the next section giving non-trivial examples of such modules.
So, here is a trivial one.
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Example 4.3.3. Let D = K0[0] be the trivial filtered module (as in 3.10.7).
Then S is a strongly divisible module in D = S[1/p].

There is also an alternative definition of strongly divisible module, from
which we derive the definition of ’torsion analogue of a strongly divisible
module’.

First, in [Bre98, §2.1.2] Breuil gives the definition of the following category:

Definition 4.3.4. Let 1 ≤ k ≤ p−1. An object in the category ′Mk−1 is an S-
module M endowed with an S-submodule Filk−1M ⊂M and endomorphisms
φk−1 : Filk−1 →M, N : M→M such that:

• Filk−1M contains (Filk−1S)M;

• φk−1(sx) = φS(s)φk−1(x) for all s ∈ S, x ∈ Filk−1M and φk−1(sx) =
φS
pk−1 (s)

φS
pk−1 (E(u)k−1)

φk−1(E(u)k−1x) for all s ∈ Filk−1S, x ∈M;

• N(sx) = N(s)x+ sN(x), (Fil1S)N(Filk−1M) ⊂ Filk−1M and φk−1 ◦
(E(u)N |Filk−1) = φS

p (E(u))N ◦ φk−1.

Morphisms in ′Mk−1 are S-linear maps preserving all the structures.

For any M ∈′ Mk−1, define φ : M→M by φ(x) := pk−1

φS(E(u)k−1)
φk−1(E(u)k−1x).

If M has no p-torsion, the knowledge of φk−1 : Filk−1M→ M is equivalent
to that of φ (via φk−1 = φ

pk−1 |Filk−1).

Example 4.3.5. Âst, Âst/p
nÂst, Âst ⊗Zp Qp/Zp and Âst ⊗W (F) K0/W (F)

are objects of ′Mk−1 for any k − 1 < p.

Now, we are ready to (re-)define what a strongly divisible module is
([Bre98, Def. 4.1.1.1])

Definition 4.3.6. A strongly divisible module is an object M in ′Mk−1

satisfying in addition:

• the S-module M is free of finite rank;

• Filk−1M ∩ pM = pFilk−1M;

• φk−1(Filk−1M) spans M.

Of course, the first definition implies the second, but it is not immediate
to see the converse. In fact, given a strongly divisible module M as in
the second definition, one may consider D := K0 ⊗W (F) M endowed with
the same structure as above (see [Bre98, §4.1.1] for more detail). The
question is whether there exists a weakly admissible module D such that
D = S[1/p] ⊗K0 D, but this is actually what Breuil ensures us in [Bre97,
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Thm. 6.1.1], proving that the ”category of D’s” is equivalent to the category

MFφ,NK .
These objects are the integral counterpart of weakly admissible modules

for GK-stable lattices (at least for low weights and for K = K0). We will
see this equivalence in the following, when we specialize to strongly divisible
modules with coefficients. Before of this, we introduce a torsion analogue of
these modules.

4.4 Torsion version of strongly divisible modules

As with Galois lattices, it is tempting to reduce strongly divisible modules
modulo p. As in [Bre98, §2.1.2], we define them as follows.

Definition 4.4.1. For 1 ≤ k ≤ p − 1, an object in the full subcategory
Mk−1 ⊂ ′Mk−1 is an S-module N satisfying in addition:

• N is of the form ⊕n≥1(S/pnS)rn for integers rn almost all zero;

• φk−1(Filk−1N) spans N.

Remark 4.4.2. If K = K0, one can prove that the category Mk−1 is abelian,
see [Bre98, Thm. 2.1.2.2].

If M is a strongly divisible module of weight ≤ k − 1 then for any n ∈ Z
the S-module M/pnM is naturally an object of Mk−1 endowed with the
quotient filtration Filk−1(M/pnM) = Filk−1M/pnFilk−1M and φ and N the
reduction modulo pn.

In [Bre98, §3.1.3] Breuil defines a contravariant exact and faithfully

flat functor Vst : Mk−1 → RepfZp(GK) into the category of finite length
Zp-modules endowed with a linear and continuous action of GK defined by

Vst(N) = HomFilk−1,φk−1,N
(N, Âst ⊗Zp K0/W (F))

with action (g.f)(x) = g(f(x)) for g ∈ GK , f ∈ Vst(N).
By construction, the obtained representations are annihilated by the

same powers of p which annihilate N. The following theorem is the goal of
[Bre98, Thm. 3.1.3.1]:

Theorem 4.4.3. Suppose K = K0 and k − 1 ≤ p− 2. Then the functor Vst

is exact and fully faithful. In particular, if N = ⊕i≥1S/p
niS then Vst(N) =

⊕i≥1Zp/pniZp.
If M is a strongly divisible module in Mk−1, put

Vst(M) = HomFilk−1,φk−1,N
(M, Âst).

As corollary of the previous theorem, we easily get:

Corollary 4.4.4. Suppose K = K0 and k − 1 ≤ p − 2. If M is a strongly
divisible module of weight ≤ k − 1, then

Vst(M)/pnVst(M) ' Vst(M/pnM)
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4.5 Fontaine-Laffaile modules

If we restrict to the case k = 2 and K = K0, the objects of M1 killed by p
can be easier described as simple objects in another category, the category
of Fontaine-Laffaille modules.

Suppose K = K0 and let D be a weakly admissible filtered (φ,N, F,E)-
module which is effective (Fil0D = D). Instead of balancing the filtration
with the ring S, we can directly consider its lattices, but we shall keep the
original structures.

Definition 4.5.1. A strongly divisible OE-lattice of Fontaine-Laffaille in D
is a free OK ⊗Zp OE-submodule Λ ⊂ D endowed with the induced filtration
such that:

(a) Λ[1/p] = D;

(b) φ(FiliΛ) ⊂ piΛ (so, in particular, Λ is φ-stable by taking i = 0);

(c)
∑

i≥0 p
−iφ(FiliΛ) = Λ.

These strongly divisible lattices are useful because Fontaine and Laffaile
proved in [FL82] the following

Theorem 4.5.2. There are exact quasi-inverse anti-equivalences between
the category of strongly divisible lattices Λ with FilpΛ = 0 and the category of
Zp[GK ]-lattices T in crystalline GK-representations with Hodge–Tate weights
inside {0, . . . , p− 1}

We now wish to apply this theory to torsion representations. To do this,
we need a torsion replacement for strongly divisible lattices.

Definition 4.5.3. A Fontaine-Laffaile module over OK is a finite length
OK-module M equipped with a finite and separated decreasing filtration
{FiliM}i and a σ-semilinear endomorphism φiM : FiliM →M such that

(a) φiM |Fili+1M = pφi+1
M for all i ≥ 0;

(b)
∑

i φ
i
M (FiliM) = M ;

(c) Fil0M = M and FilkM = 0 for some k > 1.

A morphism between two objects is an OE-linear homomorphism compatible
with the filtrations and commuting with the φiM ’s. We denote the category

by MFf,k−1
tor .

In [FL82, 1.8 and 3.2], they show that the category MFf,k−1
tor is abelian.

The simple objects of MFf,k−1
tor are those modules which are killed by p, in

other words they are Fp-vector spaces; we denote this category by M̃F
f,k−1

tor .
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Example 4.5.4. If Λ is a strongly divisible lattice, then for each n > 0
we obtain a Fontaine-Laffaille module M by setting M = Λ/pnΛ, taking
FiliM to be the image of FiliΛ under the natural quotient map, and letting
φiM := p−iφΛ|FiliM .

Let M be an object in MFf,k−1
tor , we may associate an object Fk−1(M) of

Mk−1 by setting:(
Fk−1(M) := S ⊗OK M, Filk−1Fk−1(M) :=

k−1∑
j=0

Filk−1−jS ⊗OK FiljM,

φk−1 =
k−1∑
j=0

φk−1−j ⊗ φj , N = N ⊗ id

)

Thus, we have defined a functor Fk−1 : MFf,k−1
tor →Mk−1 which satisfies

the following properties ([Bre98, Prop. 2.4.1.1]):

Proposition 4.5.5. The functor Fk−1 is exact and fully faithful.

Hence, we may consider the category MFf,k−1
tor as a full subcategory of

Mk−1. Another useful consequence of this Proposition is that the simple

objects M̃F
f,k−1

tor are equal to those simple objects in Mk−1 ([Bre98, Cor.
2.4.2.2]).

Thanks to the full faithfulness of Vst, we want to find an analogue of
H1
Fp(Gp, ω) = Ext1

Fp[Gp](1, ω) in the subcategory of simple objects in M1, so

equivalently in M̃F
f,1

tor. However, to do this, I need to enlarge the category
considering also a monodromy operator.

Definition 4.5.6. We denote by NMF1 the category of objects in MFf,1tor

which are (finite-dimensional) Fp-vector spaces equipped with, in addition, a
linear map N : M →M satisfying Nφ0

M = 0 and Nφ1
M = φ0

MN .

As above, we have that NMF1 is equivalent to the subcategory of objects
in M1 killed by p. In this category we have two distinguish objects:

• the object Fp(1) := (M = Fpe1,Fil1M = Fpe1, φ0(e1) = 0, φ1(e1) =
e1, N = 0) corresponds via the functor Vst to the Galois character
which factors through Gal(Qp[x]/Qp) with x 6= 0 and xp = −px, which
is exactly the mod p cyclotomic character ω (see §1.5).

• the object Fp(2) := (M = Fpe2,Fil1M = 0, φ0(e2) = e2, 0, N = 0) is
sent to the trivial character.

Lemma 4.5.7. dimFp Ext1
NMF1(Fp(1),Fp(2)) = 2.
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Proof. Any extension 0 → Fp(2) → M → Fp(1) → 0 can be written M =
Fpe1 +Fpe2 with Fil1M = Fpe1, φ0(e2) = e2, φ1(e1) = e1 + λe2, N(e1) = µe2

and N(e2) = 0. Hence we see they are parametrized by (λ, µ) ∈ Fp
2
.

By full faithfulness of Vst we get

Ext1
NMF1(Fp(1),Fp(2))

'−→ Ext1
Fp[Gp]

(1, ω)

Lemma 4.5.8. The extension with N = 0 correspond to the peu ramifiées
ones. The extensions with N 6= 0 correspond to the très ramifiées ones.

Proof. By the full faithfulness, it is enough to prove the first statement. We
can assume that the extension is not trivial. Up to isomorphism, we then have
M = Fpe1 +Fpe2, Fil1M = Fpe1, φ0(e2) = e2, φ1(e1) = e1 +e2 and N = 0. A
careful analysis of Vst(M) shows that the Galois action on it factors through
Gal(K/Qp) where K is the compositum of Qp[x1, x2] for all x1, x2 ∈ Qp such
that xp1 = (−p)(x1 + x2) and xp2 = x2. If x2 = 0, we have Qp[x1] = Qp[ p

√
1].

If x2 6= 0, the equations imply x2 ∈ Z×p and, replacing x1 by x1/x0, we have
(x1 + 1)p = (1 − p)w where w ∈ 1 + px2

1Zp[x1] = (1 + z1Zp[x1])p. Hence
Qp[x1] contains Qp[ p

√
1− p] if x2 6= 0. Since these two extensions have degree

p, they are equal and K = Qp[ p
√

1, p
√

1− p], as in the peu ramifié case.

Therefore, when we will deal with strongly divisible modules and we are
interested on their torsion analogue, we will use their easier description as

objects in M̃F
f,k−1

tor ”without the complication given by the ring S”.

4.6 Some strongly divisible modules with coefficients

In this section, our goal is not to introduce a systematic theory of strongly
divisible modules with coefficients, but only to recall the strictly needed for
our results, as Breuil and Mézard did in §3.2 of [BM02, §3]. So, we will
only describe the theory without prove the statements, we invite to refer the
reader to loc. cit. for the proofs.

Put K = K0 = Qp, let O be the ring of integers of a finite extension E of
Qp and denote by F its residue field. Fix moreover an integer k ∈ {1, . . . , p−1}
and an uniformiser p of Qp (with Eisenstein polynomial E(u) = u − p) in

order to use Bst and Âst.
Fix R a local noetherian flat O-algebra complete for the topology of the

maximal ideal mR with residue field F. Let SR be the mR-adic completion
of the divided power envelope of R[u] with respect to the ideal u ·R[u], in
other words:

SR := R̂〈u〉 =


+∞∑
j=0

rj
uj

j!

∣∣∣∣ rj ∈ R, rj → 0 as j → +∞ inside R

 .
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We endow SR with a positive decreasing filtration of SR-submodules FiliSR
(i integer), with a Frobenius operator φ and an R-linear derivation N as
follows:

FiliSR =


+∞∑
j=i

rj
(u− p)j

j!

∣∣∣∣ rj ∈ R, rj → 0 as j → +∞


φ

 ∞∑
j=0

rj
uj

j!

 =
∞∑
j=0

rj
ujp

j!

N

 ∞∑
j=0

rj
uj

j!

 = −
∞∑
j=0

rj
uj

(j − 1)!

Remark 4.6.1. The Breuil’s ring S corresponds to the ring SZp with the
above notation.

Thus, we haveNφ = pφN , N(FiliSR) ⊂ Fili−1SR for any i and φ(FiliSR) ⊂
piSR for any i ≤ p − 1 (note that φ((u − p)i) ∈ piS×R for 0 ≤ i ≤ p − 1. If

I is an ideal of R, note that ISR = {
∑∞

j=0 rj
uj

j! |rj ∈ I, rj → 0 as j → ∞}
by Artin-Rees’ lemma. Now, we generalize the concept of strongly divisible
module over any local complete noetherian flat O-algebra R.

Definition 4.6.2. A strongly divisible module over R is a finite free SR-
module M endowed with a SR-submodule Filk−1M and with endomorphisms
φ,N : M→M satisfying:

(i) Filk−1M contains (Filk−1SR)M;

(ii) Filk−1M ∩ IM = IFilk−1M for any ideal I ⊂ R;

(iii) φ(sx) = φ(s)φ(x) for any s ∈ SR, x ∈M;

(iv) φ(Filk−1M) is contained in pk−1M and generates it over SR;

(v) N(sx) = N(s)x+ sN(x) for any s ∈ SR, x ∈M;

(vi) Nφ = pφN ;

(vii) (Fil1SR)N(Filk−1M) ⊂ Filk−1M.

If M is a strongly divisible R-module then φ : M→M is automatically
injective (regarded over M[1/p]).

Example 4.6.3. 1. Let M be a strongly divisible Zp-lattice of Fontaine-
Laffaile (see Definition 4.5.1) equipped with an O-action (so that M
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is also a free O–module) and an O-linear endomorphism N such that
N(FiliM) ⊂ Fili−1M and Nφ = pφN , then(

M = M ⊗O SR, Filk−1M =
k−1∑
i=0

FiliM ⊗ Filk−1−iSR,

φ =

k−1∑
i=0

piφi ⊗ φ, N = N ⊗ id+ id⊗N

)

is a strongly divisible R-module.

2. Let h ∈ {0, . . . , k − 1} and r ∈ R× then(
M = SRe1, Filk−1M = (Filk−1SR)e1 + SR(u− p)he1,

φ(e1) = pk−1−hwe1, N(e1) = 0
)

is a strongly divisible R-module of rank 1. In particular, if R is an
integral domain then all the strongly divisible R-modules of rank 1 are
of this form.

3. In [BM02] one can find non-trivial examples of strongly divisible modu-
les of rank 2 (see for instance proofs of Prop. 4.1.1 and 4.2.1 or §5.2).
In the next section, we will describe some of them and we will compute
a new important strongly module divisible module.

Let I be an ideal of R containing a power of mn
R (so that R/I is a Zp-

module of finite length). By definition, we say that an object N ∈ Mk−1

is endowed with an action of R/I if N has an algebra morphism R/I →
EndMk−1(N). In particular, N is an SR/ISR-module.

For every ideal I ⊂ R and every strongly divisible R-module M, we define
Filk−1(M/IM) = Filk−1M/IFilk−1M ↪→ M/IM, φk−1 : Filk−1(M/IM) →
M/IM to be the reduction modulo I of φ

pk−1 |Filk−1M and φ,N the re-

duction modulo I of φ,N . If R/I is flat over O then M/IM (endowed
with Filk−1(M/IM), φ and N) is a strongly divisible R/I-module. If R/I is
artinian then M/IM (endowed with Filk−1(M/IM), φ and N) is an object
of Mk−1 with an action of R/I.

Lemma 4.6.4. Let I be an ideal of R containing mn
R for n � 0, R′ an

artinian local O-algebra with residue field a finite extension of F, R/I → R′ a
local O-algebra morphism and N an object of Mk−1 endowed with an action of
R/I. Then N⊗R/IR′ has a natural structure of object of Mk−1 endowed with
an action of R′ such that the canonical map N→ N ⊗R/I R′ is a morphism

in Mk−1.
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Remark 4.6.5. Let R′ be a complete local noetherian flat O-algebra with
residue field a finite extension of F, R→ R′ be a local O-algebra morphism
and M a strongly divisible R-module. By using previous lemma and a
suitable passage at limit, we can show that M⊗R R′ endowed with φ⊗ id,
N ⊗ id and with the image of Filk−1M⊗R R′ is always a strongly divisible
R′-module. We have seen that when R→ R′ is surjective, which is the only
case we are interested.

Recall that in Theorem 4.4.3 we have a contravariant exact and fully
faithful functor Vst. For any object N of Mk−1, we set Tst,k(N) = Vst(N)∗(k−
1) where the dual is given as Zp-morphisms to Qp/Zp and then one takes its
(k−1)-twist. For any ideal I of R containing mn

R for n� 0 and for any object
N of Mk−1 endowed with an action of R/I, we give to Tst,k a structure of
R/I by setting: (λ · F )(f) = F (λ · f) for F ∈ Tst,k(N), f ∈ Vst(N), λ ∈ R/I
and (λ · f)(x) = f(λx) if x ∈ N. The action of Gp is then well defined and
R/I-linear. The advantage of Tst,k with respect to Vst is on its covariantness,
which makes easier the presence of coefficients.

Lemma 4.6.6. Let I be an ideal of R containing mn
R for n� 0.

(i) Let N be an object of Mk−1 endowed with an action of R/I and I ′ an
ideal of R containing I, then the map Tst,k(N)→ Tst,k(N/I

′N) is surjective.
(ii) Let N be an object of Mk−1 endowed with an action of R/I which is a
free SR/ISR-module of rank d, then the R/I-module Tst,k(N/IN) is free of
rank d.
(iii) Let N and N′ be two objects in Mk−1 endowed with an action of R/I
then

HomR,Mk−1(N,N′)
'−→ HomR[Gp](Tst,k(N), Tst,k(N

′))

Lemma 4.6.7. Let I be an ideal of R containing mn
R for n� 0, R′ a local

artinian O-algebra with residue field a finite extension of F, R/I → R′ a
local O-algebra homomorphism and N be an object of Mk−1 endowed with an
action of R/I which is finite free SR/ISR-module. Then

Tst,k(N)⊗R R′
'−→ Tst,k(N ⊗R R′)

If M is a strongly divisible R-module, set

Tst,k(M) := lim←−
n

Tst,k(M/mn
rM).

Of course, this is an R[Gp]module.

Corollary 4.6.8. 1. Let M be a strongly divisible R-module of rank d,
then the R-module Tst,k(M) is free of rank d, the Gp-action is continuous
for the mR-adic topology and for n ∈ N we have

Tst,k(M)/mn
R
'−→ Tst,k(M/mn

RM)
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2. Let M and M′ be two strongly divisible R-modules, then

HomR,F ilk−1,φ,N (M,M′)
'−→ HomR[Gp](Tst,k(M), Tst,k(M

′)).

3. Let M be a strongly divisible R-module, R′ a local complete noetherian
O-algebra of residue field a finite extension of F and R → R′ a local
O-algebra homomorphism, then

Tst,k(M)⊗R R′
'−→ Tst,k(M⊗R R′)

where Tst,k(M⊗R R′) := lim←−n Tst,k(M/mn
RM⊗R′/mn

R′).

Now suppose R = O, i.e., R is the ring of integers of a finite extension E
of Qp in Qp. Let M be a strongly divisible R-module. According with [Bre98,
§4.1.1], there exists a weakly admissible filtered (φ,N,Qp, E)-module D such

that Fil0D = D and that M ⊗O E
'−→ SO[1/p] ⊗E D is an SO[1/p]-linear

isomorphism compatible with every structure.

Lemma 4.6.9. With the previous notation, there is an isomorphism Tst,k(M)[1/p]
'−→

Vst,k(D) as E[Gp]-modules.

Proof. Let π be a uniformiser of O, there exists an isomorphism of E[Gp]-
modules:

Tst,k(M)[1/p] ' (lim←−
n

Filk−1(M/πnM⊗S Âst)
φk−1=1,N=0)[1/p]

' Filk−1(M⊗SO
Âst)

φk−1=1,N=0[1/p]

' Filk−1(D ⊗Qp Âst[1/p])
φ=pk−1,N=0

' Filk−1(D ⊗Qp B+
st)

φ=pk−1,N=0.

By Corollary 4.6.8 point 1, Filk−1(D ⊗Qp B+
st)

φ=pk−1,N=0 is a E-vector
space of dimension dimED. Since D is weakly admissible, Vst,k(D) =

Filk−1(D ⊗Qp Bst)
φ=pk−1,N=0 is an E-vector space too which contains the

previous one, so the result.

In particular, by Corollary 4.6.8 point 1, Tst,k(M) is a O-lattice Gp-stable
in Vst,k(D).

Proposition 4.6.10. Let D be a weakly admissible filtered (φ,N,Qp, E)-
module, then every O-lattice stable under Gp inside Vst,k(D) is isomorphic to
Tst,k(M) for a strongly divisible O-module M inside SO[1/p]⊗E D.

Proof. See [BM02, Prop. 3.2.3.2].
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5 The deformation problem

In this section we will compute the semistable deformation ring when the
Hodge–Tate weights are (0, 1) and the residual representation is peu remifié,
following the method of Breuil and Mézard in [BM02].

The notation is similar to that used in previous sections. In particular, we
will deal with K = K0 = Qp, so with (continuous and linear) representations
of the absolute Galois group Gp := Gal(Qp/Qp) of Qp; we denote by E a
finite extension of Qp with ring of integers O, uniformiser $ and residue field
F. As usual, p will denote an odd prime number.

5.1 Deformations of type (k, τ)

Definition 5.1.1. A Galois type of degree 2, or simply a Galois type, is an
equivalence class of a two-dimensional representation τ : Ip := Gal(Qp/Qunr

p )→
GL2(Qp) of the inertia subgroup of Gp with open kernel which can be exten-
ded to a representation of the Weil group Wp.

Fix a continuous representation ρ̄ : Gal(Qp/Qp)→ GL2(F) such that it
is Schur, i.e., EndF[Gp](ρ̄) = F. We have seen in the section 2 that for any

finite extension E of Qp inside Qp with ring of integers O and residue field F
such that ρ̄(Gp) ⊂ GL2(F), there exists a universal framed deformation ring
Runiv which is a local complete noetherian O-algebra with residue field F.

Fix an integer k > 1, a Galois type τ of degree 2 and a finite extension E
of Qp inside Qp with ring of integers O and residue field F. Suppose that τ
is rational on E (i.e., τ : Ip → GL2(E) ↪→ GL2(Qp)) and that ρ̄ is rational
on F (up to extending one of the two).

Definition 5.1.2. A deformation ρ of ρ̄ to the ring of integers O′ of a finite
extension E′ of E inside Qp is of type (k, τ) if:

(a) ρ⊗O′ Qp is potentially semistable with Hodge–Tate weights (0, k − 1);

(b) WD(ρ⊗O′ Qp)|Ip ' τ , where WD(ρ⊗O′ Qp) denotes the Weil–Deligne
representation associated to ρ⊗O′ Qp (as in § 1.6);

(c) (χ−k+1 det ρ)(Gp) is of finite order and p - #(χ−k+1 det ρ)(Gp)
#(χ−k+1 det ρ)(Iwild

p )
.

Remark 5.1.3. Note that:

(χ−k+1 det(ρ⊗O′ Qp))|Ip = WD(det(ρ⊗O′ Qp))|Ip
= det(WD(ρ⊗O′ Qp))|Ip
= det(WD(ρ⊗O′ Qp)|Ip) = det τ

so the third condition is equivalent to

(c)bis (χ−k+1 det ρ)(Gp) is of finite order and p - #(χ−k+1 det ρ)(Gp)
#(det τ(Iwild

p ))
.
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In particular, if det τ is moderate then the last condition can be formula-
ted as
(c)mod (χ−k+1 det ρ)(Gp) is of finite order coprime to p.

Definition 5.1.4. A prime ideal p of Runiv is of type (k, τ) if there exists an
O-algebra homomorphism Runiv → Zp with kernel p such that the deformation
ρ : Gp → GL2(Zp) given by composition with the universal deformation
Gp → GL2(Runiv) is of type (k, τ).

Since τ is defined over on E, if p is such a prime ideal then for every
O-algebra homomorphism Runiv → Zp with kernel p the correspondent
deformation Gp → GL2(Zp) is of type (k, τ).

We define:

R(k, τ, ρ̄) :=

{
0 if there are no such prime p of type (k, τ)

Runiv/
⋂

p (k,τ) p otherwise

where the intersection is taken over all prime ideals p which are of type (k, τ).
It is a local complete noetherian reduced flat O-algebra of residue field F.

Thanks to Breuil-Mézard’s result which we will recall in the section 5.3,
after inverting p the condition of being of type (k, τ) is Zariski closed, as
Kisin showed in the Corollary in [Kis09, p. 642].

5.2 Semistable representations of dimension 2

In this section we will see how to solve the above deformation problem with
τ = triv and k = 2. Hence, in this case we have K = K0 = Qp and we stress
that p is odd, so that k − 1 ≤ p− 2 always.

The idea is to consider every type of semistable 2-dimensional representa-
tion of Gp with coefficients in E and Hodge–Tate weights (0, 1) (this can be
generalized for 1 ≤ k ≤ p, k even, but it easier to describe the classification
for k = 2). As shown in Example 3.14.9, there are four different types of such
representations corresponding to four different types of weakly admissible
filtered (φ,N)-modules, each of these parametrizes by a pair of values, and
for different pair of values we get pairwise non-isomorphic modules: therefore,
this pair characterizes exactly the weakly admissible module.

Thanks to p-adic Hodge theory and in particular Corollary 3.14.5, we
can also say that such semistable representations are parametrized by this
pair of values. Thus, we denote:

V = Vst,2(D(µ1, µ2)) = V (µ1, µ2) if V is crystalline reducible (split and

non-split, case (1) and (2)), with µ1, µ2 ∈ Zp
×

;

V = Vst,2(D(µ, ν)) = V (µ, ν) if V is crystalline irreducible (case (3)),

with µ ∈ Zp
×

and ν ∈ mZp ;
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V = Vst,2(D(µ,L)) = V (µ,L) if V is semistable non-crystalline (case

(4)), with µ ∈ Zp
×

and L ∈ Qp.

With this characterization, we can classify all the isomorphism classes of
the residual representations they give:

Proposition 5.2.1. Let V be a 2-dimensional semistable representation of
Gp with coefficients in E and Hodge–Tate weights (0, 1), T ⊂ V a Gp-stable
O-lattice and T its reduction modulo $. We have:

1. if V is crystalline reducible, V = V (µ1, µ2) then

T '
(
ωλ(µ̄−1

2 ) ∗
0 λ(µ̄−1

1 )

)
with ∗ peu ramifié

2. if V is crystalline irreducible, V = V (µ, ν) then

T |Ip '
(
ω2 0
0 ωp2

)
and det(T ) ' ωλ(µ̄−1)

3. if V is semistable non-crystalline, V = V (µ,L) then:

(a) if val(L) < 1 then

T '
(
ω ∗
0 1

)
⊗ λ(µ̄−1) with ∗ peu ramifié

(b) if val(L) ≥ 1 then

T '
(
ω ∗
0 1

)
⊗λ(µ̄−1) with ∗ très ramifié or T '

(
ω 0
0 1

)
⊗λ(µ̄−1)

Remark 5.2.2. For the definition of peu and très ramifié extensions, see
§1.5.

The proof of this Proposition is given in [BM02, Prop. 4.1.1, 4.2.1]: it is
important because the authors give explicitly examples of strongly divisible
modules for each case and these computations will be useful in the description
of the universal deformation rings.

Let us explain two examples.
Consider V = V (µ1, µ2) crystalline reducible: since it has a stable 1-

dimensional representation and its Hodge–Tate weights are (0, 1), V is an
extension of λ(µ−1

1 ) by χλ(µ−1
2 ), where λ(µ−1

i ) : Gp → O× is the unramified
character which sends the arithmetic Frobenius in µ−1

i . Thus, clearly T is
an extension of λ(µ̄−1

1 ) by ωλ(µ̄−1
2 ). Further, the condition ”peu ramifié” is

deduced by [FL82, §9] and [Edi92, Prop. 8.2].
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Now, consider V = V (µ,L) semistable non-crystalline with val(L) < 1.

In this case, we can see better what role the category M1 and M̃F
f,1

tor play
in the construction. First, up to twisting by an unramified character, we
may assume V ' V (1,L). As above, V is an extension of 1 by χ, so T is an
extension of 1 by ω. Let D(1,L) = SO[1/p]⊗ED(1,L) ' SO[1/p]e1⊕SO[1/p]e2

with (Fil1, φ,N)-structures described as in §4.3. For val(L) < 1, one can
check that the SO-submodule M of D(1,L) generated by (pe1,Le2) (provided
with the induced structure) is a strongly divisible module, and the object

M⊗ F lies in M1 corresponding to the following element in MFf,1tor:(
M = Ff1 + Ff2, Fil1M = Ff1, φ0(f2) = f2, φ1(f1) = f1 + f2

)
.

Therefore, Tst,2(M)⊗O F '
(
ω ∗
0 1

)
with ∗ nonzero peu ramifié.

5.3 Deformations of type (2, τ) in the peu ramifiée case

In this section, we will state a special case of a theorem of Breuil-Mézard in
[BM02] and we will discuss what Kisin pointed out in [Kis08] in a footnote
at page 514. As before, we recall that we are studying deformations of type
τ = triv with Hodge–Tate weights (0, 1), so with k = 2.

If ρ̄ : Gal(Qp/Qp) → GL2(F) is a continuous representation such that
EndF[Gp](ρ̄) = F, then, up to replacing F by a finite extension independent
of ρ̄, we can distinguish the following three cases, which correspond to a
different isomorphism class of the ring R(2, triv, ρ̄):

(1) ρ̄|Ip 6∈
{(

ω ∗
0 1

)
,

(
ω2 0
0 ωp2

)}
;

(2) ρ̄|Ip ∈
{(

ω ∗
0 1

)
with ∗ très ramifié,

(
ω2 0
0 ωp2

)}
or ρ̄ '

(
ωλ(α) ∗

0 λ(β)

)
with α, β ∈ F×, α 6= β;

(3) ρ̄ '
(
ω ∗
0 1

)
⊗ λ(α) with α ∈ F× and ∗ peu ramifié.

Now, we explain why we classify the residual representations in this way
and we try to give an idea of the shape of the respective deformation ring.

All the residual representation in (1) must arise as a reduction modulo
$ of a lattice in a 2-dimensional semistable representation with Hodge–Tate
weights (0, 1), so by Proposition 5.2.1, since our starting representation ρ̄ is
not inside that set, there is no deformation of type (2, triv): in other words,
R(2, triv, ρ̄) = 0.

For the residual representations ρ̄ as in point (2), Breuil–Mézard describe
explicitly some strongly divisible modules M over the ring O[[X]] ([BM02,
§5.2.1 and Prop.5.2.4.1]), whose corresponding O[[X]]-lattices Tst,2(M) are
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deformations of ρ̄ to O[[X]]. So we have a continuous local O-algebra ho-
momorphism f : Runiv → O[[X]] which is actually surjective (see point (ii)
in the proof [BM02, Thm. 5.3.1]). Moreover, any semistable deforma-
tion ρ with Hodge–Tate weights (0, 1) of ρ̄ to Zp is isomorphic (up to
scalar extension) to the corresponding lattice of exactly one specialisation
Mx := M ⊗O[[X]] Zp along a unique morphism x : O[[X]] → Zp ([BM02,
Cor. 5.2.4.2.]), hence the morphism f factors through a surjective map
g : R(2, triv, ρ̄) � O[[X]] and induces a bijection between maximal spectra
m-SpecO[[X]][1/p] ' m-SpecR(2, triv, ρ̄)[1/p]. Finally, by commutative al-
gebra considerations, we conclude that in this case R(2, triv, ρ̄) ' O[[X]]
([BM02, Thm. 5.3.1, point (ii), second case]).

In the case (2), every residual representation comes from the reduction mo-
dulo $ of a lattice inside exactly one type in the classification of 2-dimensional
semistable representation with Hodge–Tate (0, 1) (see Prop. 5.2.1). However,
in point (3), we have that this equivalence class of ρ̄ arises from two different
cases: a crystalline non-split representation and a semistable non-crystalline
one. In particular, in the last section we saw two examples which gives two
equal residual representations when we put α = β in the crystalline case.
Therefore, in the description of strongly divisible modules given by the aut-
hors in [BM02, §5.2.1], Breuil–Mézard write down two different modules over
the same ring, say a crystalline module Mcris over O[[X]] and a semistable one
Mst over O[[Y ]] in order to distinguish the two cases. As in the case (2), the
authors get two surjection maps f1 : Runiv � O[[X]] and f2 : Runiv � O[[Y ]]
which factors through the ring R(2, triv, ρ̄). Thanks to [BM02, Cor. 5.2.4.2],
every x : Runiv → Zp which corresponds to a semistable representation with
Hodge–Tate weights (0, 1) factors through f1 if it lies a crystalline non-split
representation or through f2 if it lies inside a semistable non-crystalline one.
Therefore, we claim that the following equality holds:

m-SpecRuniv[1/p] ∩ (V (ker f1) ∪ V (ker f2)) = m-SpecR(2, triv, ρ̄)[1/p]

In fact, pick an element x in the LHS, then consider the specialization over
x of Mcris if x lies in V (ker f1) or of Mst if x lies in V (ker f2): it corresponds
to a deformation of ρ̄ to Zp with the desired properties, so x lies inside
m-SpecR(2, triv, ρ̄). Moreover, the LHS is closed inside the RHS and it is
dense by definition of R(2, triv, ρ̄), hence the equality.

The authors of [BM02] have asserted in Theorem 5.3.1 that the map
(f1, f2) : R(2, triv, ρ̄)→ O[[X]]×O[[Y ]] induces an isomorphism after inverting
p. Kisin has pointed out (see footnote in [Kis08, p. 514]) that this is not true
as the two irreducible components intersect in the generic fibre.

Our results show that R(2, triv, ρ̄) ' O[[X,Y ]]/(XY ), so indeed the two
irreducible components intersect in the generic fibre.
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5.4 The strongly divisible module over O[[X, Y ]]/(XY )

At the end of previous section, we said that we can still use the strongly
divisible modules Mcris and Mst of Breuil and Mézard in a concrete fashion.
In particular, we are able to construct such a strongly divisible module over
O[[X,Y ]]/(XY ) and describe the ring R(2, triv, ρ̄) for ρ̄ as in the case (3) in
the section 5.3.

We will show that the following module M endowed with the structures
defined below is a strongly divisible module over O[[X,Y ]]/(XY ).

M := SO[[X,Y ]]/(XY ) · E1 ⊕ SO[[X,Y ]]/(XY ) · E2

Fil1M := (Fil1SO[[X,Y ]]/(XY ))M + SO[[X,Y ]]/(XY )

(
E1 +

p([α]−1 +X)

[α]−2 − p([α]−1 +X)2
E2

)
φ : E1 7→ p([α]−1 +X)E1

E2 7→
[α]−2

[α]−1 +X
E2

N : E1 7→
1

[α]−1(1− p)
Y E2

E2 7→ 0.

We claim that if we consider the reduction maps π1 : M � M/YM and
π2 : M � M/XM we get back, after a suitable change of basis, their starting
modules Mcris and Mst as in [BM02, §5.2.1, point (ii)]. In the following, we

define by R to be the ring O[[X,Y ]]/(XY ) and by µ = p([α]−1+X)
[α]−2−p([α]−1+X)2

to

be the coefficient of E2 in the filtration submodule.
First, the image of π1 is the following module:

M1 := SO[[X]] · E1 ⊕ SO[[X]] · E2

Fil1M1 := (Fil1SO[[X]])M1 + SO[[X]]

(
E1 +

p([α]−1 +X)

[α]−2 − p([α]−1 +X)2
E2

)
φ : E1 7→ p([α]−1 +X)E1

E2 7→
[α]−2

[α]−1 +X
E2

N : E1 7→ 0

E2 7→ 0.

After changing basis with the transformation e1 := E1 + µE2, e2 := E2

we obtain exactly the module Mcris.
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Secondly, the image of π2 is the following:

M2 := SO[[Y ]] · E1 ⊕ SO[[Y ]] · E2

Fil1M2 := (Fil1SO[[Y ]])M2 + SO[[Y ]]

(
E1 +

p

[α]−1(1− p)
E2

)
φ : E1 7→ p[α]−1E1

E2 7→ [α]−1E2

N : E1 7→
1

[α]−1(1− p)
Y E2

E2 7→ 0.

Then, rescaling just one of the two basis vector, for example e1 := E1

and e2 := 1/([α]−1(1− p))E2, we get the original semistable module Mst.
The check that M actually defines a strongly divisible module is an easy

computation for most of properties 4.6.2 (recall that k = 2). In fact, except
for the second property, it is a straightforward calculation:

(i) Fil1M ⊇ (Fil1SR)M: by construction.

(iii) φ(sx) = φ(s)φ(x) for any s ∈ SR, x ∈M by construction.

(iv) Since φ(FiliSR) ⊂ piSR for 0 ≤ i ≤ p− 1, φ(E1) = p([α]−1 +X)E1 and
µ is a divisible by p, we get:

φ(Fil1M) = φ
(
(Fil1SR)M + SR(E1 + µE2)

)
=

= φ(Fil1SR)φ(M) + φ(SR)φ(E1 + µE2) ⊆
⊆ pSRφ(M) + pSR(· · · ) ⊆ pM.

Further, φ(M) = SRp([α]−1 +X)E1 + SR[α]−2/([α]−1 +X)E2. Since
[α]−1 +X and [α]−2/([α]−1 +X) are invertible in R (and thus in SR),
we obtain that E1 can be written as an element inside SRφ(E1 + µE2),
while E2 inside SRφ(M), thus φ(Fil1M) generates pM over SR.

(v) N(sx) = N(s)x+ sN(x) for any s ∈ SR, x ∈M by construction.

(vi) We check the equality Nφ = pφN on the basis; recall that in R we
have XY = 0:

Nφ(E1) = N(p([α]−1 +X)E1) = p([α]−1 +X)N(E1) =

= p
[α]−1 +X

[α]−1(1− p)
Y E2 = (XY = 0) =

= p
[α]−1

[α]−1(1− p)
Y E2 =

p

(1− p)
Y E2
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and

φN(E1) = φ

(
1

[α]−1(1− p)
Y E2

)
=

1

[α]−1(1− p)
· [α]−2

[α]−1 +X
Y E2 =

(since XY = 0, then [α]−1Y = [α]−1Y +XY = ([α]−1 +X)Y )

=
[α]−1 +X

(1− p)([α]−1 +X)
Y E2 =

1

(1− p)
Y E2.

For E2, the equality automatically holds because it is an eigenvector
for φ and vanishes on N .

(vii) Since N(Fili+1SR) ⊂ FiliSR for 0 ≤ i ≤ p− 1, we have:

(Fil1SR)N(Fil1M) = (Fil1SR)
(
N(Fil1SR)M + (Fil1SR)N(M)+

+N(SR)(E1 + µE2) + SRN(E1 + µE2)
)

= (Fil1SR)
(
N(Fil1SR)M + (Fil1SR)

(
(Y/([α]−1(1− p))E2

)
+

+ SR(E1 + µE2) + SR(Y/([α]−1(1− p))E2)
)

⊂ (Fil1SR)M + (Fil1SR)(E1 + µE2) ⊂ Fil1M.

As we said before, in order to prove the second property Fil1M ∩ IM =
IFil1M for any ideal I ⊂ R, we need some preliminary results. Of course,
the inclusion Fil1M ∩ IM ⊇ IFil1M is trivial, so it is enough to show the
other inclusion. In the following, we will use that this property holds for the
modules Mcris and Mst, as proved in [BM02, Thm. 5.2.4.1].

We start with an easy result.

Lemma 5.4.1. The module M identifies as the fiber product of Mcris =
M/YM and Mst = M/YM over N := M/(X,Y )M.

Proof. We begin showing that the natural map R = O[[X,Y ]]/(XY ) →
O[[X]]×O O[[Y ]] defined by f(X,Y ) 7→ (f(X, 0), f(0, Y )) is a isomorphism. In
fact, the kernel of this map is exactly (XY ) (which annihilates in R) and
given a pair (h1(X), h2(Y )) in the target satisfying c := h1(0) = h2(0), we
can consider the element h1 + h2 − c ∈ R which has as image exactly that
pair. In other words, since XY = 0, every element in R can be written as a
sum of one formal power series in X and one in Y having the same constant
term.

This isomorphism induces a map SR → SO[[X]] ×SO
SO[[Y ]] defined by the

projection on the coefficients. As above, it is clear surjective, while for the
injectivity we see that the kernel is the intersection XSR ∩ Y SR = (by the
Artin–Rees’ lemma) = SXR ∩ SY R = 0.

Further, we can push over this isomorphism in the free module M consi-
dering the maps π1 and π2 given by, resp., reducing modulo Y and modulo
X. But, as shown at the beginning, that reduced modules corresponds, resp.,
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to Mcris and Mst, so, denoting by N := M/(X,Y )M, we have the following
cartesian diagram:

M π1

%%

π2

))

ξ

&&
Mcris ×N Mst

//

��

Mcris

��
Mst

// N

Finally, the map ξ is an isomorphism because M is a free module over
SR of rank 2 as the fibred module Mcris ×N Mst.

In particular, the module M inherits all the good property of the two
modules Mcris and Mst.

Now, we go back to our problem: Fil1M ∩ IM ⊆ IFil1M for any ideal
I ⊂ R. By using the above identification and that Mcris and Mst satisfy this
property ([BM02, Prop.5.2.4.1]), we need the following result.

Lemma 5.4.2. With the above notation, π−1
1 (IFil1Mcris)∩π−1

2 (IFil1Mst) =
IFil1M.

Remark 5.4.3. Of course, with the notation IFil1Mcris we mean that the
image of I inside O[[X]] multiply Mcris and similarly with IFil1Mst.

Proof. Since the image under π1 and π2 of Fil1M is surjective onto, re-
spectively, Fil1Mcris and Fil1Mst, we have that π1(IFil1M) = IFil1Mcris and
π2(IFil1M) = IFil1Mst. Moreover, π−1

1 (IFil1Mcris) = IFil1M + YM and
similarly for the other one. Hence, we get:

π−1
1 (IFil1Mcris)∩ π−1

2 (IFil1Mst) = (IFil1M+ YM)∩ (IFil1M+XM) =: A.

Pick an element a ∈ A, so in particular a ∈ IFil1M + YM, hence we may
write a = m1 + Y m2 where m1 ∈ IFil1M and m2 ∈ M. Thus, Y m2 =
a − m1 ∈ A because IFil1M ⊆ A. Now, we look at its image under π2:
Y π2(m2) ∈ IFil1Mst. Therefore:

Y π2(m2) ∈ IFil1Mst ∩ YMst = Fil1Mst ∩ IMst ∩ YMst =

= Fil1Mst ∩ (I ∩ (Y ))Mst = (I ∩ (Y ))Fil1Mst

where the last equality is given by the result in [BM02, Prop. 5.2.4.1]. So,
Y m2 ∈ (I ∩ (Y ))Fil1M+XM, but since the ideals (X) and (Y ) intersect only
trivially in SR, we conclude that Y m2 ∈ (I ∩ (Y ))Fil1M, i.e. a ∈ IFil1M.

Therefore, we conclude with the following chain of inclusions:

Fil1M ∩ IM ⊆ π−1
1 (Fil1Mcris ∩ IMcris) ∩ π−1

2 (Fil1Mst ∩ IMst) =

= π−1
1 (IFil1Mcris) ∩ π−1

2 (IFil1Mst) =

= IFil1M.
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5.5 End of the proof

Now we know that M defines a strongly divisible module overR = O[[X,Y ]]/(XY ).
In the following, we will finally prove that the ring R is isomorphic to the uni-

versal deformation ring R(2, triv, ρ̄), with ρ̄ '
(
ω ∗
0 1

)
⊗ λ(α) with α ∈ Fp

×

and ∗ peu ramifié, as in point (3).
Since M is a strongly divisible module, then the lattice Tst,2(M) is a defor-

mation of ρ̄ to R, so Corollary 4.6.8 gives us a continuous map f : Runiv → R
of local complete O-algebras.

Lemma 5.5.1. The map f : Runiv → R is surjective.

Proof. We follows the same ideas given by Breuil and Mézard.
In order to prove the surjection, it sufficies to check it on tangent spa-

ces, i.e., that so is the map Runiv → R/(π,m2
R) = F[X,Y ]/(X2,XY, Y 2).

But this is equivalent to say that Tst,2(M) ⊗R F[X,Y ]/(X2,XY, Y 2) '
Tst,2(M⊗R F[X,Y ]/(X2,XY, Y 2)) cannot define over a strict F-algebra of
F[X,Y ]/(X2, XY, Y 2). Since Tst,2 is fully faithful (Corollary 4.6.8), this can
be reformulated as saying that M⊗R F[X,Y ]/(X2,XY, Y 2) does not come
from an extension by scalars of a subobject inside M1 equipped with an
action of a such F-subalgebra. But the variable Y is inside only in the
value of N(E1), so Y must lie inside such a subalgebra. Moreover, if we
consider M⊗R F[X,Y ]/(Y, (X2,XY, Y 2)) = F[X]/(X)2, i.e. we see all the
other coefficients different by Y , we get the starting Breuil–Mézard’s module
Mcris, in which the image of φ depends on X without coming from a tensor
with elements in F[X]/(X)2.

Proposition 5.5.2. The map f : Runiv → R induces a bijection

m-SpecR[1/p]
'−→ m-SpecR(2, triv, ρ̄)[1/p].

Proof. First of all, we notice that bothRuniv andR are quotient of O[[X1, . . . , Xn]]
for some n where O is a complete DVR, thus by [GD66, §10.5.7] the rings
Runiv[1/p] and R[1/p] are Jacobson rings and the residue field at any maximal
ideal of these rings are finite extensions of E = O[1/p]. So, we can extend the
local O-algebra homomorphism f : Runiv → R to a O-algebra homomorphism
f̃ : Runiv[1/p]→ R[1/p] of Jacobson rings.

Since the map f is surjective by Lemma 5.5.1, the pre-image of a maximal
ideal in R[1/p] is again a maximal ideal in Runiv[1/p], so the map f̃ induces
a well-defined injective map

f ] : m-SpecR[1/p] ↪→ m-SpecRuniv[1/p]

sending n to f̃−1(n). Moreover, to a maximal ideal nx of R[1/p] corresponds
a specialization map x̃ : R[1/p] � E′ for some finite extension of E′/E,
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i.e., a map x : R � OE′ , while the maximal ideal f ](n) corresponds to the

pre-composition Runiv f−→ R
x−→ Zp of x by f . Now, we will show that f ] is a

bijection on the subset m-SpecR(2, triv)[1/p].
Now, we will show that f ] surjects onto the subset m-SpecR(2, triv, ρ̄)[1/p]

and thus, in particular, that the map f factors through a map g : R(2, triv, ρ̄)→
R. Let my ∈ m-SpecR(2, triv, ρ̄)[1/p], i.e., y : Runiv → Zp induces a defor-
mation ρy : Gp → GL2(Runiv)→ GL2(Zp) of ρ̄ to Zp of type (2, triv). It is
enough to find a ring homomorphism x : R→ Zp with the property that the
deformation ρf◦x to Zp is equivalent to ρy.

By Proposition 4.6.10, we know that there is a strongly divisible mo-
dule My such that Tst,2(My) = ρy, and by the fully faithfulness of Tst,2

(Corollary 4.6.8) it is enough to find a strongly divisible module Mx over O

isomorphic (up to scalar extension) to My.
Thanks to the classification of 2-dimensional p-adic semistable representa-

tions as in § 5.2, the deformation ρy is inside either a crystalline non-split re-
presentation V (µ1, µ2) or a semistable non-crystalline representation V (µ,L)

for a unique pair of values, resp., (µ1, µ2) ∈ Zp
××Zp

×
or (µ,L) ∈ Zp

××Qp;
moreover, these representations are pairwise non-isomorphic. Then, one of
these pairs characterized completely the deformation ρy.

Furthermore, the determinant of any deformation is fixed by the residual
representation ρ̄ and, in our case, it is equal modulo mZp to α−2. Hence, the
deformation ρy is uniquely described by one of the two values, and by equi-
valence between the two integral categories, so is the corresponding strongly
divisible module My. For this reason, Breuil and Mézard considered univer-
sal deformation rings with one variable because the O-algebra morphisms
O[[X]] → Zp are uniquely determined by the image of the variable X. In
other words, by the proof of Proposition 5.2.1, the strongly divisible module
My is characterized by either the module Mcris ⊗O[[X]] Zp along an O-algebra

homomorphism O[[X]] → Zp if the deformation lies inside the crystalline
locus or the module Mst ⊗O[[Y ]] Zp along a fixed O-algebra homomorphism

O[[X]]→ Zp if the deformation lies inside the semistable non-crystalline locus.
Finally, with our ’universal’ strongly divisible module M, we can collect
both information in a unique O-algebra homomorphism x : R→ Zp and the
module Mx := M⊗R Zp is isomorphic to My.

Finally, we are ready to conclude our work.

Theorem 5.5.3. The morphism f : Runiv → R := O[[X,Y ]]/(XY ) induces
an isomorphism g : R(2, triv, ρ̄)→ R of O-algebras.

Proof. As shown in the proof of Proposition 5.5.2, the map f induces a
map g through R(2, triv, ρ̄). By Lemma 5.5.1, we can say further that g is
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surjective. Summarizing, we have the following commutative diagram:

R(2, triv, ρ̄)[1/p]
g̃ // R[1/p]

R(2, triv, ρ̄)
?�

OO

g // // R0
?�

OO

Hence, in order to show the injectivity of g it is enough to show the isomor-
phism R(2, triv, ρ̄)[1/p] ' R[1/p]. Since the rings are p-torsion free, the map
g̃ is surjective too, so it remains the injective part.

So, pick an element r ∈ R(2, triv, ρ̄)[1/p] satisfying g̃(r) = 0. Since
trivially we have 0 ∈

⋂
n where the intersection is taken among the n ∈

m-SpecR[1/p], the bijection m-SpecR(2, triv, ρ̄)[1/p] ' m-SpecR[1/p] pro-
ved in Proposition 5.5.2 implies that r ∈

⋂
m, where this intersection is

among m ∈ m-SpecR(2, triv, ρ̄)[1/p]. Note that, in a Jacobson ring, the
Jacobson radical is equal to the nilradical: since, by definition, R(2, triv, ρ̄)
is reduced, we conclude that r = 0.

Therefore, the morphism g : R(2, triv, ρ̄)→ R is an isomorphism of local
O-algebras, as desired.
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de schémas, Quatrième partie”. In: Publ. Math. IHES 28
(1966).

[Gru67] K. Gruenberg. “Profinite groups”. In: Algebraic Number The-
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