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Introduction

As the development of actual quantum computers is on the rise day by

day, so are concerns about the safety of cryptosystems now being used. In-

deed, by exploiting quantum mechanics and its superposition principle, quan-

tum computers store information in qubits rather than classical bits. Being

a two-state quantum-mechanical system, a qubit does not only have 0 and

1 as possible states since they entail also a superposition of both. Namely,

the state of a qubit can be represented as a vector |ψ〉 in a two dimensional

vector space with orthonormal basis {|0〉, |1〉}:

|ψ〉 = α|0〉+ β|1〉 with α, β ∈ C and α2 + β2 = 1

The capacity of encoding information in a smaller number of qubits allows

quantum computers to outperform classical algorithms in handling many

different problems, especially those which require the enumeration of mani-

fold cases. Despite the many doubts cast on the chance of making quantum

computers practical, several technical improvements have been recently car-

ried out towards this direction[IBM15, DWA15] and countermeasures are

being taken accordingly. For example, NSA openly revealed the plan to shift

from current encryption schemes to new ones, yet to be developed, which

could resist quantum attacks[NSA15]. As a matter of fact, Shor’s factor-

ing algorithm[Sho97] unveiled the vulnerability of many public-key crytogra-

phy protocols such as RSA, Diffie-Hellman Cryptosystem and ECDH(Elliptic

Curve Diffie-Hellman), which have turned out to be breakable by quantum

algorithms. On the other hand, besides being very hard to solve by using

classical algorithms, problems based on lattices are believed to remain diffi-
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2 Introduction

Figure 1: Representation of the state of a qubit

cult to tackle also in the quantum setting. This is why, since the development

of Ajtai-Dwork cryptosystem and NTRU cryptosystem in the late Ninties,

research along this path has been steadily done. However, the conjectured

security against quantum attacks is not the only reason why great effort

is being put in the study of lattice-based cryptosystem.

To name but a few, lattice-based protocols are quite simple to imple-

ment and highly parallelizable: they usually involve only linear operations

such as sum or multiplication matrix-vector. Furthermore, these operations

are modulo a relatively small integer, usually in the hundreds, so we have a

bound for the integers considered .

Secondly, lattice-based cryptosystems usually enjoy strong security guar-

antees from worst-case hardness, which means that breaking their se-

curity is proved at least as hard as solving some lattice problems in any of

its instances, also the worst ones. This is qualitatively different from the

average-case hardness typical of generic cryptographic constructions, which

require that random instances, drawn according to a specific probability dis-



Introduction 3

tribution, are difficult to solve. The very first example of worst-case to

average-case reduction was done by Ajtai in his pioneering paper [Ajt96a]:

he showed that a particular lattice problem is hard on average as long as a

related one is hard in the worst case; then he developed an encryption scheme

based on the former problem, thus linking the security of his scheme to the

possiblity of finding a hard instance of the latter.

Finally, lattices can be used to develop efficient and adaptable cryp-

tographic tools. Among them, the most outstanding and longed for is the

concept of fully homomorphic encryption, which allows an untrusted worker

to manipulate encrypted data in arbitrarily complex ways, without getting

any knowledge out of them. After being conceived around thirty years ago

by Rivest et al.[RAD78], in 2009 this idea was implemented by Gentry, who

proposed a solid candidate based on lattices[Gen09a, Gen09b], thus paving

the way to further studies [CMNT11, BV12, GSW13].

Outline and Aim

The scope of this thesis is to give a general overview on lattice-based

cryptography, discussing its development in the last 20 years and focusing

on encryption schemes and hash functions. This presentation is divided into

5 different chapters that we briefly describe.

In Chapter 1 we introduce the relevant concepts related to lattices that we

are going to use and we define many lattice problems together with their

complexity. Furthermore, we present some notions of probability that will

be needed in the definition of certain lattice problem, namely the Learning

with Errors problem.

In Chapter 2 we describe the first two examples of protocols based on

lattices, namely the Ajtai-Dwork Encryption Scheme and the NTRU. In
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addition, we discuss their complexity and their practical implementations,

underlining their main differences.

In Chapter 3 we define the Short Integer Solutions(SIS) and the Learning

with Errors(LWE) problems, which are the most important average-case lat-

tice problems as far as cryptographic applications are concerned. We outline

their main feature and we introduce some basic protocols relying on them,

namely various hash functions and an encryption scheme.

In Chapter 4 we introduce the Ring-Learning with Errors Problem, which

is the analogue of LWE in algebraic structured lattices. Here we discuss its

main advantages and we focus on its hardness, proving part of the worst-case

to average-case reduction which links it to a particular lattice problem.

Finally, in Chapter 5 we present some of the open problems of lattice-based

cryptography stemming from our work.



Notations

We now explain the notations adopted in this present composition.

We will use bold lower-case letters to indicate vectors (i.e. v), while bold

upper-case letters for matrices (i.e. A). Furthermore, the transposed of a

matrix A will be denoted by AT and given m ∈ N we define [m] = {1, . . .m}
and Zm = Z/mZ.

For a vector x = (x1 . . . , xn) ∈ Rn or Cn and p ∈ [1,∞], we define the lp

norm as ‖x‖p = (
∑

i∈[n] |xi|p)1/p when p <∞ and ‖x‖∞ = maxi∈[n] |xi|
when p =∞. When omitted, we will imply p = 2. Finally, for a polynomial

f = a0 + a1x + · · · + anx
n ∈ R[x], we define ‖f‖p = (

∑
i∈[n] |ai|p)1/p and

‖f‖∞ = maxi∈[n] |ai|.

As for computational complexity, we use the traditional ”big O nota-

tion”. Namely, given two function f, g : N 7→ R we will use the following

symbols:

• f(n) = O(g(n)) if ∃ k > 0 and n0 > 0 such that ∀n ≥ n0, |f(n)| ≤
k · |g(n)|;

• f(n) = Θ(g(n)) if ∃ k1, k2 > 0 and n0 > 0 such that ∀n ≥ n0,

k1 · g(n) ≤ f(n) ≤ k2 · g(n);

• f(n) = ω(g(n)) if ∃k > 0 and n0 > 0 such that ∀n ≥ n0, |f(n)| ≥
k · |g(n)|;

5



6 Notations

• f(n) = Ω(g(n)) if ∃ k > 0 and n0 > 0 such that ∀n ≥ n0, f(n) ≥
k · g(n).

In addition, we will also use the ”Soft-Oh” notation to hide logarithmic fac-

tor, i.e. with ˜O(f) we mean O(f)× (log f)O(1).

When discussing the security of a cryptographic protocol, we will use the

notion of bits of security, i.e. a cryptosystem has n bits of security when

in average 2n operations are required to break it.

Finally, given a set of events B we indicate with U(B) the uniform distri-

bution over B.



Chapter 1

Preliminaries

In this first chapter we introduce the basic notions we are going to use

in our paper. First of all, we define lattices, some of their properties and a

few of the related concepts. Secondly, we describe lattices problems used in

cryptography and discuss the running time of algorithms designed to solve

them. Finally, we illustrate some tools of Probability Theory crucial for the

definition of the Learning with Errors problem.

1.1 Lattices

1.1.1 Basic Definitions

Definition 1.1 (Full rank lattice). An n-dimensional full rank lattice is

the set of all integer combinations

{
n∑
i=1

xibi : xi ∈ Z for 1 ≤ i ≤ n} (1.1)

of n linearly independent vectors b1, · · · ,bn in Rn.

Remark 1. The set {b1, · · · ,bn} is called a basis for the lattice and it can

be represented by the matrix B = [b1, · · · ,bn] ∈ Rn×n whose columns are

the basis vectors. We will denote the lattice generated by B as L(B) and

we notice that L(B) = {Bx : x in Z} where Bx is the usual matrix-vector

7



8 1. Preliminaries

product. Since we are going to deal only with full rank lattices, from now on

we will simply address to them with the term lattices.

Definition 1.2 (Minimum Distance and i-th Successive Minimum).

The minimum distance λ1 of a lattice L is the miminum distance between

any two distinct lattice points :

λ1 = min{dist(x,y) : x 6= y ∈ Λ} (1.2)

= min{‖x‖ : x ∈ Λ} (1.3)

where the second equality comes from the closure of lattices under addition.

This definition can be generalized to define the i-th successive minimum λi

as the smallest r ∈ R such that L has i linearly indepedent vectors of norm

at most r.

Definition 1.3 (Dual Lattice). The dual lattice of a lattice L ∈ Rn is

defined as

L∗ := {w ∈ Rn : 〈w,L〉} ⊆ Z (1.4)

i.e., the set of points whose inner products with all the vectors in L are all

integers.

Remark 2. A simple computation shows that L∗ is a lattice. For example,

(Zn)∗ = Zn and (cL)∗ = c−1L∗ for every c ∈ R and different from zero. It is

also easy to prove that if L = L(B), then B−T := (B−1)T is a basis of L.

An important role in lattice-based cryptograhy is played by q-ary lattices,

which make up a particular family of lattices in one-to-one correspondance

with linear codes in Znq .

Definition 1.4 (q-ary Lattice). A lattice L ⊂ Zn is said to be q-ary for a

certain integer q (possibly prime) if qZn ⊂ L ⊂ Zn.

Since any lattice is closed by addition, we notice that the membership of

a vector x in L is determined by x mod q. We are going to deal with the
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following two examples of q-ary lattices: given a matrix A ∈ Zn×mq for some

integers q,m, n, we can define

Lq(A) = {y ∈ Zm : y = AT s mod q for some s ∈ Zn} (1.5)

L⊥q (A) = {y ∈ Zm : Ay = 0 mod q}. (1.6)

The first lattice is generated by the rows of A and therefore corresponds

to the code they generate. On the other hand, the second one contains all

vectors that are orthogonal mod q to the rows of A and hence it corresponds

to the code whose parity check matrix is exactly A.

1.1.2 Computational Problems

As already stated in the introduction, many cryptosystems can be proved

secure assuming the hardness of certain lattice problems in the worst case. In

the following, we present the most useful among them and we briefly outline

their computational complexity.

Definition 1.5 (Shortest Vector Problem(SVP)). Given an arbitrary

basis B of a lattice L = L(B), find a shortest non zero lattice vector, i.e. a

v ∈ L such that ‖v‖ = λ1(L).

It is worth highlighting that in practice approximation lattice problems are

those needed to get average-case to worst case reductions. These instances

are parametrized by an approximation factor γ ≥ 1 which usually depends

on the dimension n of the lattice, i.e., γ = γ(n). More precisely, in practical

protocols this factor needs to be polynomial in n, i.e., γ = poly(n).

Definition 1.6 (Approximate Shortest Vector Problem(SVPγ)). Given

an arbitrary basis B of an n-dimensional lattice L = L(B) , output a non

zero lattice vector v such that ‖v‖ ≤ γ(n) · λ1(L).

Definition 1.7 (Approximate Shortest Independent Vector Prob-

lem(SIVPγ)). Given a basis B of an n-dimensional lattice L = L(B) ,

find a set S = {si}ni=1 ⊂ L of n linearly independent lattice vectors with

‖s‖i ≤ γ(n) · λn(L) for all i.
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While we previously dealt with search problems, the following is a decision

one and turns out to be fundamental for LWE crytposystem security:

Definition 1.8 (Decisional Approximate SVP(GapSVPγ)). Given an

arbitrary basis B of an n-dimensional lattice L = L(B) , where either

λ1(L) ≤ 1 or λ1(L) < γ(n), determine which is the case .

A final important problem linked to the Learnin with Errors problem is

the bounded distance decoding problem (BDDγ). Its aim is to find the unique

lattice vector that is the closest to a given point t ∈ Rn (target), which is

promised to be ”sufficiently” close to the lattice.

Definition 1.9 (Bounded Distance Decoding Problem(BDDγ)). Given

basis B of an n-dimensional lattice L = L(B) , and a target point t ∈ Rn

with the guarantee that dist(t,L) < d = λ1(L)/(2γ(n)), find the unique

lattice vector v ∈ L such that ‖t− v‖ < d.

1.1.2.1 Algorithms

Classical Algorithms. All the problems mentioned above have been

intensively studied and turn out to be intractable for approximation fac-

tor of the type γ = poly(n). There is clearly a trade-off between the run-

ning time of algorithms and the magnitude of approximation factors: known

polynomial-time algorithms (LLL [LLL82], and its descendant [Sch87] with

[AKS01] as subroutine) require slightly subexponential approximation factors

γ = 2Θ(n log logn/ logn), while those obtaining γ = poly(n) ([AKS01], [Kan83]

and [MV10]) require at least super-exponential 2Θ(n logn) time or exponential

time 2Θ(n) and space.

Quantum Algorithms. We notice that running time above represents the

state of the art also for quantum algorithms.As a matter of fact, since Shor’s

discovery of the quantum factoring algorithm in 1997[Sho97], any attempts

to solve lattice problems by quantum algorithms have brought no significant

advantages. The main reason is that the period-finding subroutine, typical of
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Shor’s factoring algorithm [Sch87] and related quantum algorithms, does not

seem to be effective in tackling lattice problems. We can therefore formulate

the following conjecture, which is at the basis of the security of any lattice

based cryptographical scheme:

Conjecture 1.1.1. There is no polynomial-time classical or quantum algo-

rithm that solve approximated lattice problems (in the worst-case) when

γ = poly(n).

1.1.3 Ideal and Cyclic Lattices

As we will notice later, while providing a high standard of security, cryp-

tosystem based on general lattices are usually quite inefficient, mainly due

to the key size they require. For this reason, protocols used in practice rely

on ideal and cyclic lattices, which we now introduce.

Definition 1.10 (Cyclic Lattices). A set L ⊂ Zn is a cyclic lattice if it is

an ideal in Z[x]/(xn − 1).

In practice, we can consider the coefficient embedding

σ : Z[x]/(xn − 1) −→ Zn

a0 + a1x+ · · ·+ an−1xn−1 7→ (a0, . . . , an−1)

and hence we can identify L with σ(L). In this way, since L is closed under

multiplication by x mod (xn− 1), we can think of a cyclic lattice as a set of

n-uples in Zn such that:

• for v,u ∈ L, we have v + u ∈ L;

• given v ∈ L, −v ∈ L;

• for v = (v1, . . . , vn) ∈ L, any cyclic shift of its coordinates is also in L.

Definition 1.11 (Ideal Polynomial). A polynomial f ∈ Z[x] is an ideal

polynomial if it is monic, irreducible and if for any g, h ∈ Z[x] we have

‖gh mod f‖ ≤ poly(n) ‖g‖ ‖h‖, where n = deg(f)
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Definition 1.12 (f-Ideal Lattices). Let f be an ideal polynomial, then a

set L ⊂ Zn is a f-ideal lattice if it is an ideal in Z[x]/(f).

As before, we can see an ideal of Z[x]/(f) as a subset o Zn by the coefficient

embedding. In addition, notice that since xn− 1 is not irreducible, a cyclic

lattice is not a (xn − 1)-ideal lattice.

Remark 3. In the definition above, some authors require the polynomial f

to be only irreducible and monic. However, since in practical application

the condition on the norm is necessary, we prefer to add it in the original

definition of f -ideal lattice.

Remark 4. The advantages of using these particular lattices are manifold.

First of all, we can represent them by using a single n-dimensional vector,

whose elements are the coefficients of the polynomial. Secondly, they have

an algebraic structure that implies fast arithmetic by using FFT. Finally, as

we will see later, they enable us to have smaller keys size in several crypto-

graphical protocols.

On the other hand, there may be consistent drawbacks in terms of security.

Suppose we were able to find an adequate worst-case to average-case reduc-

tion also in this setting, the safety of our protocols would be strictly linked

to the chance of finding a hard instance of some lattice problem among the

family of cyclic or ideal lattices. However, these lattice problems can be han-

dled with different techniques exploiting the additional structure of ideals,

thus leading to a different computational complexity. For example, it can

be shown that GapSVPγ, for γ = poly(n), is actually easy on ideal lattices,

while SVPγ and SIVPγ are equivalent problems. Anyway, they seem to be

very hard in the worst case, both for classical and quantum algorithms, also

in the case of cyclic and ideal lattices. Taking the above into account, while

reckoning that hardness of problems on f-ideal lattices need to be further

investigated, we can formulate the following conjecture:

Conjecture 1.1.2. Let f ∈ Z[x] be an ideal polynomial, then solving SVPγ

with γ = poly(n) in f-ideal lattices requires 2Ω(n) bit operations.
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1.2 Gaussian Measure

Many modern cryptographical protocols make use of Gaussian-like prob-

ability distributions over lattices, known as discrete Gaussians. In this

section we present the relevant definitions and we state some related basic

results.

Definition 1.13 (Scaled Gaussian Function). For any positive integer n

and real r > 0, r = 1 when omitted, the Gaussian function ρr : Rn −→ R+

of parameter (or width) r is defined as

ρr = exp(−π ‖x‖2 /r2)

Since the total measure associated to ρr is
∫
x∈Rn ρr(x)dx = rn, by nor-

malising we get the following distribution:

Definition 1.14 (Scaled Continuous Gaussian Distribution). The (con-

tinuous) Gaussian distribution Dr of parameter(width) r over Rn is defined

to have probability density function

Dr(x) =
ρr(x)

rn

Remark 5. We notice that ρr is invariant under rotations of Rn and that

ρr(x) =
∏n

i=1 ρr(xi). Hence a sample from the Gaussian distribution Dr

can be obtained by taking n independent samples from the 1-dimensional

Gaussian distribution.

Definition 1.15 (Discrete Gaussian of Parameter r). For any countable

set A and any parameter(width) r > 0, the discrete Gaussian probability

distribution DA,r is defined as:

∀x ∈ A, DA,r(x) :=
ρr(x)

ρr(A)
,

with ρr(A) =
∑

x∈A ρr(x).

In this work, A will usually be taken as a lattice L. The following two

pictures, where the z-axis represents the probability, are examples of Discrete

Gaussian over a 2-dimensional lattice.
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Figure 1.1: DL,1 and DL,2

Definition 1.16 (Smoothing Parameter). For a lattice L and a positive

real ε > 0, the smoothing parameter ηε(L) is defined as the smallest λ > 0

such that ρ1/λ(L∗ \ 0) ≤ ε.

Definition 1.17 (Overwhelming Probability). Given a probability space

(Ω,B,P) and n ∈ N, an event E = E(n) ∈ B holds with overwhelming

probability if for every c > 0 it holds with probability 1−O(n−c).

Definition 1.18 (Non-negligible Function). A real-value function

µ : N → R is non-negligible if ∃ c ∈ N such that ∀n0, ∃n ≥ n0 such that

µ(n) ≥ n−c.

Definition 1.19 (Statistical Distance). Given two continuous random

variables X1 and X2 over S ⊂ Rn with distribution f1 and f2 respectively,

their statistical distance is defined as:

∆(X1, X2) =
1

2

∫
S

|f1(r)− f2(r)|dr



Chapter 2

Early Results

In this chapter we outline some of the groundbreaking works in lat-

tice cryptography as the Ajtai-Dwork cryptosystem [AD97] and the NTRU

[HPS98]. They are public-key encryption schemes with opposite characteris-

tics: the former admits strong provable security guarantees but is not suffi-

ciently efficient to be used in practice, while the latter is extensively and suc-

cessfully used but lacks a supporting proof of security. We will discuss them

from a theoretical point of view, focusing on the idea behind them rather

then on technical details. Finally, we stress that they both succeed Ajtai hash

function [Ajt96a], the very first example of worst-case to average-case reduction,

but this will be considered later together with the SIS problem.

2.1 Ajtai-Dwork Encryption Scheme

In their joint work from 1997 [AD97], Ajtai and Dwork described the first

example of lattice based encryption scheme. On a general level, their work

can be summed up as follows:

• they define an average-case ”hidden hyperplanes problem” in Rn (HHP)

and show that it is at least as hard as solving a variant of SVPγ on

arbitrary n-dimensional lattices;

15



16 2. Early Results

• they describe a public-key cryptosystem whose semantic security is

based on the harndess of HHP and therefore on the conjectured worst-

case hardness of the above lattice problem.

Before going into further details, we underline that it is the arbitrariness of

the lattices in the first point that allows us to spot worst-case reduction. We

now formally define the two linked problems.

Definition 2.1 (Hidden Hyperplanes Problems(HPP)). Let s ∈ Rn be

a secret, random short vector. The data of the problem is a set {yi}i, of

some points yi ∈ Rn ∀ i, such that 〈s,yi〉 is close to an integer, which means

〈s,yi〉 ≈ 0 mod 1. The goal of the problem is to find the secret s.

Remark 6. We may see this problem from a geometrical point of view: for

each yi there exist a ji ∈ Z such that yi is close to the (n − 1)-dimensional

hyperplanes Hji = {z ∈ Rn : 〈s, z〉 = ji} and the aim is to find the suitable

s. Furthermore, we notice that this is an average-case problem since s and

the points yi are chosen at random according to a fixed distribution.

Definition 2.2 (Unique Approximate Shortest Vector Problem(uSV Pγ)).

Let L = L(B) be a lattice with a γ-unique shortest vector, i.e. λ2(L) ≥
γ · λ1(L), find a shortest non zero lattice vector.

Remark 7. The lattice problem above is a worst-case problem: we do not

have a probability distribution neither on the lattice nor on its basis and

therefore an algorithm is able to solve the uSVPγ if it can handle any lattice

as an input (providing the γ-unique shortest condition).

2.1.1 Ajtai-Dwork Cryptosystem

In this paragraph, we define the actual cryposystem and examine its se-

curity and finally discuss its practical implementation.
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Algorithm 1 Ajtai-Dwork cryptosystem

• Parameters: Integers n,m;

• Private Key: s ∈ Rn short and random;

• Public Key: a set of m random points {yi}
m
i=1, yi ∈ Rn ∀i, such that

〈s,yi〉 ≈ 0 mod 1 (i.e. s is a solution of HHP with data {yi}
m
i=1);

• Encryption: to encrypt 0 generate a random point y in Rn; to encrypt

1 consider y =
∑

l∈J yl with J ⊂ [m] arbitrary and finally send y;

• Decryption: the receiver computes r = 〈s,y〉. By linearity, if r ≈ 0

he decrypts the ciphertext as 1, otherwise as 0.

Security. Ajtai and Dwork proved the security of this cryptosystem through

two independent results:

• whoever can distinguish between the encryption of 0 and 1 can also

efficiently solve the HHP with the same data. This implies that break-

ing the semantic security of their cryptosystem is at least as hard as

solving HHP (search-to-decision reduction);

• starting from any algorithm that solves HHP, it is possible to build one

that efficiently solves uSVPγ, in the worst case, for some γ = poly(n).

Combining these results together, Ajtai and Dwork got a worst-case to

average-case reduction, which means that breaking the cryptosystem is at

least as hard as solving uSVPγ.

Complexity and Implementation. As already mentioned, despite being

a pioneering result from a theoretical point of view, this original version of

the cryptosystem is quite inefficient when practically implemented. In 1998,

Nguyen and Stern [NS98] developed an heuristic attack, which works effi-

ciently for ”small” parameters, to recover the private key given the classical
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one. In this way, they showed that the dimension n should be of several

hundreds to avoid cryptanalytic attacks, concluding that, without major im-

provements, Ajtai-Dwork cryptoystem is only of theoretical importance. In

his subsequent work [Ajt05], Ajtai presented a more efficient version of the

cryptosystem characterised by public keys and ciphertext sizes of Õ(n2) and

Õ(n) respectively. However, to date no average-case to worst-case reduction

is known and although being very similar to lattice based protocol, it is built

upon a problem by Dirichlet which seems not related to any known lattice

problems.

2.2 NTRU Ecryption Scheme

In their 1998 joint paper [HPS98], Hoffstein, Pipher and Silverman de-

scribed the public-key encryption scheme NTRU, presumably named after

the expression ”N-th degree truncated polynomial ring”. As a matter of fact,

this cryptosystem is the first protocol based on polynomial rings, in partic-

ular on f-ideal lattices. As far as performances are concerned, the NTRU is

practically efficient both in terms of runtimes and keys size. These features,

combined with the conjectured safety against quantum attacks, are the rea-

sons why NTRU is widely used as an alternative to RSA and ECC. On the

other hand, not much is known about the semantic security of the cryptosys-

tem. More precisely, up to now nobody has succeeded in showing a proper

average-case to worst-case reduction, thus leaving the hardness of NTRU an

unsolved issue. In the following, we describe the original cryptosystem as it

was presented and, later on, we briefly discuss subsequent works highlighting

an evident tradeoff between performance and security.
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Algorithm 2 NTRU cryptosystem

• Parameters: n power of 2, f(X) = Xn + 1 and q odd sufficiently large,

we define R = Z[X]/(f(X)) and Rq = R/qR;

• Private Key: s, g ∈ R short polynomial, (i.e. with small coefficients)

such that s is invertible mod q and mod 2;

• Public Key: h = 2g · s−1 ∈ Rq with g ∈ R short polynomial;

• Encryption: choose a short e ∈ R such that e mod 2 encodes the

desired bit, choose r ∈ Rq random and compute the ciphertex c =

h · r + e ∈ Rq;

• Decryption: multiply the ciphertext and the secret key to get c · s =

2g · r + e · s ∈ Rq, lift it in R as 2g · r + e · s (possible if g, r, e, s

are short enough compared to q) and reduce it mod 2 obtaining e · s
mod 2 and therefore the initial bit.

Variants and Implementation. Since the first version of the cryptosys-

tem, many different variants have been developed also enabling the digital

signature scheme NTRUSign [HPS01], as well as overall improvement in per-

formances. Nowadays, the NTRUEncypt is a standard public key cryptosys-

tem (IEEE Std. 1363.1) successfully commercialised or available under a free

open source license. In the version we just presented, we may notice that

both private and secret keys require O(n log q) bits to be encoded. NTRU’s

parameters and performances are briefly summed up in the following table:

n q key size estimated security

257 210 2570 bits 80 bits

449 28 3592 bits 80 bits

797 210 7970 bits 256 bits

14303 28 114424 bits 256 bits
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However, as already remarked, no version so far developed of NTRU is pro-

vided either with an average-case to worst-case reduction or with a more

general security proof. With this goal in mind, in 2011 Stehle and Steinfeld

proposed a variant of the NTRU cryptsystem which has been proved secure

assuming the hardness of a certain lattice problem([SS11]). Unfortunately, to

get a reasonable standard of safety, the pratical instantiation is significantly

less efficient than the original scheme and this depicts the general trend be-

tween security and performances, which unfortunately seems to linger on

lattice based cryptography.



Chapter 3

Modern Results

In modern lattice cryptography almost all protocols are based on two

average-case computational problems: the Short Integer Solution problem

(SIS) and the Learning with Errors problem (LWE). In this chapter, we

introduce them highlighting their main features and analogies. Furthermore,

we discuss their hardness and some basic cryptosystems relying on them.

3.1 SIS and Related Protocols

The Short Integer Solution was defined by Ajtai in [Ajt96a] and used to

develop a conjectured one-way and collision resistant hash function known

as Ajtai function. Being this work the first example of worst-case to average-

case reduction involving lattice problems, its importance goes well beyond the

hash function itself, which actually turns out to be quite inefficient. Many dif-

ferent cryptographical tools, like identification scheme[Lyu08, KTX08] and

digital signature schemes[CHK09, GPV08, Boy10, MP12], have been based

on the SIS. However, up to now no public-key encryption scheme has been

developed yet. In the following section, after formally defining the SIS prob-

lem and discussing some of its properties, we introduce the original Ajtai

function and some later and more performant versions.

21
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3.1.1 Short Integer Solution Problem(SIS)

At the highest level, given a set of uniformly random elements of an

additive group, the SIS problem consists in finding a sufficiently ”short”

nontrivial integer combination of them summing to zero. More specifically,

SIS is parametrized by positive integers n, q,m, with q > 2 prime, defining

Znq and the number of group elements, and a positive real β which accounts

for the shortness of the solution. We will further discuss these parameters

and their practical magnitude after the formal definition of SIS.

Definition 3.1 (Short Integer Solutions (SISn,q,β,m)). Given m uni-

formly random vectors ai ∈ Znq , grouped as the columns of a matrix A ∈
Zn×mq , find a nonzero integer vector z ∈ Zm, ‖z‖ ≤ β < q, such that

fA(z) := Az =
m∑
i=1

ai · zi = 0 ∈ Znq (3.1)

Remark 8. We now make some general notes and we briefly focus on the

choice of parameters:

• n is the main harder parameter, usually in the hundreds, while q and

β are both polynomials in n;

• the condition β < q is crucial to exclude trivial but otherwise consistent

solutions ci = (0, . . . , q, . . . ), with q in the i-th position and i ∈ [m];

• without an upper bound on ‖z‖, the problem can be solved in polyno-

mial time by applying Gaussian reduction;

• since any solution for a matrix A can be modified into a solution of

the problem with any matrix of the kind [A |A′], SIS can only become

easier as m increases.

.

We now try to find conditions on the parameters that guarantee the

existance of a solution for SIS. Given the last remark, we would like to keep

m as small as possible.
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Proposition 3.1.1. Let m = dn log qe, m ≥ m and β ≥
√
m, then the SIS

problem admits at least one solution z ∈ Zm.

Proof. First of all, we may assume m = m = dn log qe by the last remark.

We have therefore more than qn vectors x ∈ {0, 1}m as qn < 2m, thus there

must be two distinct x,y ∈ {0, 1}m such that Ax = Ay ∈ Znq . We can now

consider z = x − y ∈ {0,±1} which is a solution whose norm is at most β

and this ends the proof.

SIS as a lattice problem. As we already stated, SIS can be interpreted

as an average-case problem over a family of q-ary lattices. We recall from

Definition 1.6 that

L⊥q (A) = {y ∈ Zm : Ay = 0 mod q}

and we highlight that any nonzero short vector in this kind of lattices is

equivalent to an integer linear combination of columns of A that sums to 0;

i.e. the SIS problem asks to find sufficiently short nonzero vectors in L⊥q (A),

with A chosen at random. Taking this into account, the conjectured hard-

ness of SIS will derive from showing that solving this average-case lattice

problem would imply being able to solve some other lattice problem in its

worst case.

Remark 9. We can also define the inhomogeneus version of the SIS, which

asks to find short integer solutions to Ax = u with A and u uniformly

random and independent. If we ignore the norm bound, using the lattice for-

mulation above we get that the set of solutions of this problem is the lattice

coset L⊥u (A) := c + L⊥q (A) where c is an arbitrary solution.

Hardness. Following Ajtai’s worst-case to average-case reduction many

different improvements on estimating SIS hardness have been done. This

series of results is summed up in this theorem:
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Theorem 3.1.2. For any m = poly(n), any β > 0, and any sufficiently large

q ≥ β · poly(n), solving SISn,q,β,m is at least as hard as solving the decisional

approximate shortest vector problem GapSVPγ and the approximate shortest

independent vectors problem SIVPγ on arbitrary n-dimensional lattices, for

some γ = β · poly(n).

Remark 10. First of all we may notice that the main hardness parameter

is n, as m plays no major role in the statement. In addition, it is worth

highlighting that the reduction is entirely classical and this is a substantial

difference from LWE where, as we will see, it involves quantum computing.

Remark 11. Many of the different proofs of this reduction [CN97, Mic04, MR07]

consist in finding iteratively set of linearly independent vectors of shorter and

shorter length using an oracle for SIS. On the other hand, Micciancio and

Peikert[MP13] introduce the Gaussian lattice sampling (i.e. sampling lattice

vectors according to a Gaussian distribution of progressively small width) as

an intermediate problem and succeded in sharpening the bound on q to β ·nε

for any ε > 0.

3.1.2 Lattice-based hash function

We briefly recall that an hash function is a function h : D −→ C where

|D| � |C|. Furthermore, h is said to be one-way when it is hard to invert

and collision resistant when finding distinct x, y ∈ D such that h(x) = h(y)

is hard from a computational point of view. Nowadays, in order to be suf-

ficiently performant, hash functions rely on ad-hoc design principles similar

to those typical of block ciphers. However, the recent development of several

attacks (MD5, SHA-1, Nostradamus and Herdin) has stimulated research of

theoretical constructions whose security can be linked to some underlying

mathematical problem. As for encryption schemes, lattice problems stand

out among all the possibilities for their conjectured hardness with respect to

quantum attacks. In the following, we formally define Ajtai’s function and

discuss its main features, then we focus on subsequent improved versions
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which have led to the SWIFFT [LMP12], the very first highly efficient lattice

based hash function.

3.1.2.1 Ajtai’s function

We recall that the SISn,q,β,m problem consists in finding short integer

nonzero solutions z ∈ Zm of (3.1):

fA(z) = Az =
m∑
i=1

ai · zi = 0 ∈ Znq

where short means ‖z‖ ≤ β < q and A ∈ Zn×mq is a random matrix . Let us

now consider the following family of functions:

Algorithm 3 Ajtai Hash function

• Parameters: Integers q, n,m with q > 2 and prime;

• Key: A uniformly random in Zn×mq ;

• Hash Function:

f ∗A : {0, 1}m → Znq
x 7→ Ax mod q

(3.2)

We can observe that, assuming the hardness of the corresponding SIS prob-

lem, 3.2 is collision resistant: having a collision x,y ∈ {0, 1}m for f ∗A would

mean having a short solution z = x − y for (3.1). To sum up, using the

worst-case to average-case reduction of Theorem 3.1.2, we get that finding

collisions for the family of functions FA = {f ∗A → {0, 1}m → Znq ,A ∈ Zn×mq }
is at least as hard as solving GapSVPγ and SIVPγ. Furthermore, Ajtai

proved[Ajt96a] that these functions are difficult to invert on average, thus

obtaining a family of one-way and collision resistant hash functions.
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Remark 12. We note that from Proposition 3.1.1 we have that m > n log q

so the function defined by Ajtai indeed compresses the input. The para-

menter m should be therefore chosen bearing in mind the tradeoff between

the level of compression and the assumption of collision-freedom (as m grows,

SIS become easier).

Efficiency. Despite being very simple to implement, as it requires only a

matrix-vector product and a reduction modulo q = poly(n), Ajtai function

turns out to be not useful for practical applications. The main reason of

its inefficiency is the key size Õ(mn), at least quadratic in n, which implies

a great cost in terms of space and time to guarantee a high standard of

security. In their work [MR09], Micciancio and Regev showed that in order

to get 100 bits of security, the key size and the arithmetic operations need to

be at least of 500,000 bits and 50,000 respectively, way too much for a simple

cryptographic primitive like hash functions.

3.1.2.2 Hash functions on cyclic lattices

The efficiency of lattice-based hash functions above can be dramatically

improved by using in Algorithm 3 matrices with particular structure in

place of general ones. We can for example consider, for n|m, the block-

matrix A = [A(1)| . . . |A(m/n)], where each block A(i) ∈ Zn×nq is a circulant

matrix:

A(i) =



a
(i)
1 a

(i)
n . . . a

(i)
3 a

(i)
2

a
(i)
2 a

(i)
1 . . . a

(i)
4 a

(i)
3

...
...

...
. . .

...

a
(i)
n−1 a

(i)
n−2 . . . a

(i)
1 a

(i)
n

a
(i)
n a

(i)
n−1 . . . a

(i)
2 a

(i)
1


(3.3)

which means that all the columns are cyclic rotations of the first one a(i) =

(a
(i)
1 , . . . , a

(i)
n ). In the following, to highlight its particular structure, we de-

note A with Acirc, even if A is not a cirulant matrix itself. To sum up,

we are considering the family of hash function FAcirc
given in the following
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algorithm.

Algorithm 4 Hash function based on cyclic lattices

• Parameters: Integers q, n,m, with n|m, q > 2 and prime;

• Key: m/n vectors a(1), . . . , a(m/n) ∈ Znq independent and uniformly

random where each a(i) determines the circulant matrix A(i);

• Hash Function:

f circA : {0, 1}m → Znq
x 7→ [A(1)| . . . |A(m/n)]x mod q

(3.4)

Efficiency. Imposing such a structure on the matrices increases the effi-

ciency for the following two reasons:

• the public key consists now in only m elements in Zq rather than nm

since each A(i) is determined by its first column;

• the matrix-vector product Acircx mod q can be performed asymptot-

ically in Õ(m) arithmetic operations over Zq rather then O(mn) since

Fast Fourier Transform computes multiplication by a circulant matrix

in Õ(m) time.

One wayness and collision resistance. Since our choice of matrix is

no longer random over Zn×mq , we are not actually considering an instance of

the SIS, being it an average-case problem over the family of q-ary lattices

{L⊥q (A),A ∈ Zn×mq random}. As a matter of fact, we are taking into account

a strictly smaller set of lattices and hence, we can no longer rely on Theorem

3.1.2 to prove that functions in FAcirc
are one-way and collision resistant.

In his paper [Mic07], Micciancio was able to show that this efficient version

of Ajtai function is hard to invert on the average as long as solving SVPγ
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is hard in the worst case over cyclic lattices (i.e. ideals of Z[X]/(Xn − 1),

see Definition 1.10). Up to now, no (quantum) algorithms exploiting this

cyclic structure and capable of solving SVPγ is known and it is conjectured

that no significant speed up can ever be obtained, giving confidence in the

one-wayness of Micciancio’s model. Furthermore, we notice that we lost

the equivalence with the GapSVPγ, but this is not a surprise as we already

mentioned in the first chapter that this specific problem is easily solvable in

structured lattices.

On the other hand, Lyubachevsky and Micciancio [LM06] and Peikert and

Rosen [PR06] proved, using zero divisors of Z[X]/(Xn − 1), that in general

f ∈ FAcirc
do not enjoy the property of collision resistance, i.e. finding short

vectors in Lq(Acirc) is not difficult in the worst case. Although one-way

functions are not strong enough to be used in practical applications, these

results have encouraged further research aimed at finding a proper family of

lattices capable of ensuring both security and efficiency.

3.1.3 Hash functions on ideal lattices

As well as being able to prove that (3.4) is not collision-resistant, Lyubachevsky

and Micciancio [LM06] succeded in finding a related function with this prop-

erty. They adapted Algorithm 3, using this time block matrices A =

[A(1)| · · · |A(m/n)] where each block is defined as

A(i) = F∗a(i) := [a(i),Fa(i), . . . ,Fn−1a(i)]

with

F :=


0T f1

. . . f2

I
...

. . . fn

 and f := (f1, . . . , fn) ∈ Zn

Furthermore, in order to be in the setting of f-ideal lattices, they impose the

following conditions on f :
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• f̂(x) = xn + fnx
n−1 + · · ·+ f1 ∈ Z[x] is irreducible;

• for any g, h ∈ Z[x] we have ‖gh mod f‖ ≤ poly(n) ‖g‖ ‖h‖.

Eventually, they get the following hash function:

Algorithm 5 Hash function based on f-ideal lattices

• Parameters: Integers q, n,m, with n|m,with q > 2 and prime, f ∈ Zn

with the conditions above;

• Key: m/n vectors a(1), . . . , a(m/n) ∈ Znq independent and uniformly

random;

• Hash Function:

f idA : {0, 1}m → Znq
x 7→ [F∗a(1)| . . . |F∗a(n)]x mod q

(3.5)

Remark 13. It can be shown that taking f = (−1, 0, . . . , 0) results in having

the same circulant blocks of Algorithm 4. However, this choice is not per-

mitted in the setting above as the correspondent f̂ = xn−1 is not irreducible.

Finally, we highlight that the previous remarks on efficiency, regarding keys

size and number of arithmetic operations needed to evaluate the product

matrix-vector, still holds in this case.

One-wayness and collision resistance. Micciancio and Lyubashevsky

were able to prove that besides being one-way, functions (3.5) are collision-

resistant, equivalently finding short vectors in L⊥q ([F∗a(1)| . . . |F∗a(n)]) is dif-

ficult, as long as solving SVPγ on f̂ -ideal lattices (ideals of Z[x]/(f̂(x)) see

Definition 1.11) is hard in the worst case. As already asserted in Conjecture

1.1.2, despite lacking a formal proof, we may assume that the above holds,

even for quantum algorithms, making f idA a collision resistant and one-way
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hash function.

SWIFFT hash function. We now briefly sketch the main features of

the SWIFFT, which is the most efficient concrete instantiation of collision

resistant function based on SIS. Introduced in [LMP12], basically it is a highly

optimized variant of Algorithm 5, which additionally exploits a wise choice

of modulus q and a pre/post processing operation applied to the key and the

output of the hash function. More precisely, f is chosen to be f = (1, . . . , 0),

and we notice that the corresponding polynomial f̂ = Xn + 1 verifies the

conditions required in the previous model. As a result, F is a cyclic rotation

of the coordinates with the sign of those wrapped around changed and each

block A(i) is a circulant matrix, with the element above the diagonal with

opposite sign. Lyubashevsky et al. proposed the following parameters which

guarantees a high level of both security and efficiency:

n m q key size input size output size security

64 1024 257 8192 bits 1024 bits 513 bits 100 bits

3.2 LWE and Related Protocols

In his seminal work from 2005 [Reg05] , Regev introduced the average-case

problem known as Learning with Errors Problem. Since then, not only it has

appeared as the most apt lattice problem to support an encryption scheme

but it has also shown its versatility enabling chosen ciphertext-secure cryp-

tosystem [PW08], identity based encryption scheme [GPV08, Pei09b, CHK09]

and fully homomorphic encryption [BV12, BGV14, GSW13] . We now de-

scribe LWE in details and outline its main properties, then we discuss its

hardness and finally we introduce a simple cryptosystem based on it. We

remark that in this section we are going to deal with LWE for general lat-

tices, while the ring version (i.e. over f-ideal lattices) will be the topic of next

chapter.
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3.2.1 Learning With Errors Problem(LWE)

LWE is parametrized by three positive integers n, q and m, defining Znq
and the number of samples available, and by an error distribution χ over Z. In

practice, n,q and m play the same role they do in SIS, while χ can be thought

as a discrete Gaussian of width αq for some α < 1, i.e. χ = DZ,αq. We now

define the LWE distribution and the two versions (search and decision) of

the LWE problem.

Definition 3.2 (LWE Distribution). For a vector s ∈ Znq , called secret,

the LWE distribution As,χ over Znq × Zq is sampled by choosing a ∈ Znq
uniformly at random, choosing e ← χ, and outputting (a, b = 〈s, a〉 + e

mod q) ∈ Znq × Zq.

Definition 3.3 (Search-LWEn,q,χ,m). Given m independent samples

{(ai, bi)}mi=1 ∈ Znq ×Zq drawn from As,χ, with s chosen uniformly at random,

find s.

Basically, we are trying to find s ∈ Znq solution of the system of linear

”equations with errors”:

〈s, a1〉 = b1 − e1 mod q

〈s, a2〉 = b2 − e2 mod q
...

〈s, am〉 = bm − em mod q

with each ai uniformly random and each ei output of χ. We remark that

the error vector e = (e1, . . . , en) is not known but the discrete probability

distribution is a datum of the problem.

Definition 3.4 (Decision-LWEn,q,χ,m). Given an error distribution χ over

Z and m independent samples {(ai, bi)}mi=1 ∈ Znq ×Zq, where every sample is

distribuited according to either: (1) As,χ for a fixed and uniformly random

s ∈ Znq , or (2) the uniform distribution, distinguish which is the case.
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Remark 14. As for SIS, we now make some general notes:

• without the errors coming from the distribution χ both the search and

decision version of the problem can be efficiently solved by applying

Gaussian elimination;

• we can represent the LWE problem in a more compact way by using

matrices: the random set {(ai)}i=mi=1 can be viewed as columns of a

matrix A ∈ Zn×mq while the respective (bi = 〈s, ai〉 + ei mod q) can

make up the vector b ∈ Zmq . In addition, having e← χm we get:

bT = sTA + eT mod q. (3.6)

LWE as a lattice problem. As well as SIS, also Search-LWE can be

equivalently presented as an average case bounded-distance decoding problem

(BDDγ) over the family of q-ary lattices (1.5)

Lq(A) = {y ∈ Zm : y = AT s mod q for some s ∈ Zn}.

Using the matrix notation of (3.6), the vector b is relatively close to a unique

vector in Lq(A) and we can notice that LWE problem consists in finding this

”target”.

LWE and learning from parity with error. LWE can be seen as a

more complex version of the well-known and studied problem ”learning from

parity with error” which we now define.

Definition 3.5 ( Learning from Parity with Error). Given ε > 0 and a

set of equations:

〈s, a1〉 ≈ε b1 mod 2

〈s, a2〉 ≈ε b2 mod 2
...

with ai uniform and independent over Zn2 and each bi chosen to be equal to

〈s, ai〉 with probability 1-ε, find the secret s ∈ Zn2 .
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As a matter of fact, LWE is a genaralization of the problem above on

higher moduli as the learning from parity with error is a specific case of

LWE with q = 2, χ(0) = 1− ε and χ(1) = ε.

Hardness. Since its introduction, LWE has seemed computationally hard

for its relations with BDDγ and the learning from parity with error problem,

which are both thought to be not solvable in polynomial time. In addition to

this feeling, Regev proved the following worst-case to average-case reduction

involving the decision version of LWE :

Theorem 3.2.1 ([Reg05]). For any m = poly(n), any q ≤ 2poly(n), and

any discrete Gaussian error distribution χ of parameter αq ≥ 2
√
n, with

0 < α < 1, solving the Decision-LWEn,q,χ,m is at least as hard as quantumly

solving GapSVPγ and SIVPγ on arbitrary n−dimensional lattices, for some

γ = Õ(n/α).

First of all, we may notice that the reduction involves quantum comput-

ing. Despite this seems to bring no significant advantages in dealing with

GapSVPγ and SIVPγ (see Paragraph 1.1.2.1), it would be important to have

a totally classical reduction to enhance confidence in LWE hardness. Fur-

thermore, the proof is made up by two independent parts:

• a quantum reduction from LWE-search to GapSVPγ and SIVPγ, i.e.

an oracle for the search version of LWE can be efficiently transformed

into a quantum algorithm able to solve the above lattice problems;

• a classical search to decision reduction, i.e. Decision-LWE is at least

as hard as Search-LWE.

By merging these results we get the worst-case to average-case reduction for

Decision-LWE.

Remark 15. In his work from 2009 [Reg05], Peikert was able to make the

above reduction entirely classical, provided these two caveats:
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• the classical reduction only involves GapSVPγ, while the quantum

works also for SIVPγ;

• the modulus q is required to be exponentially large, more precisely q ≥
2n/2, while in Regev’s theorem it suffices q ≥ 2

√
n/α with 0 < α < 1;

The increased magnitude of q implies more bits to encode the samples and

the secret of LWE, which translates in larger key sizes an less efficincy for

all cryptographic protocols based on this problem. On the other other hand,

the method used by Peikert to get his reduction has turned out to be very

useful for a different goal: exploiting the underlying idea, Lyubashevski

and Micciancio[LM09] successfully proved that, for γ = poly(n), GapSVPγ,

uSVPγ and BDDγ are all equivalent problems.

3.2.2 LWE Encryption Scheme

We now present the first public key cryptosystem whose semantic security

is based on LWE, presented by Regev in [Reg05]. In the following, we discuss

its main advantages with respect to previously introduced lattice based cryp-

tosystems and finally we outline the choice of paramters that can guarantee

both security and correctness to the scheme.

Algorithm 6 LWE public key cryptosystem

• Parameters: n, q,m positive integers, α ∈ R such that 0 < α < 1 and

χ = Dz,αq discrete distribution over Z;

• Private Key: s ∈ Znq uniformly at random;

• Public Key: select m vectors a1, . . . , am ∈ Znq indipentently according

to the uniform distribution. In addition, draw e1, . . . , em ∈ Z from χ

and get the public key {(ai, bi)}mi=1, with bi = 〈ai, s〉+ ei mod q;

• Encryption: let µ ∈ {0, 1} be the bit to encode, choose a random set

S ⊂ [m], then to encrypt µ one sends (a, b) = (
∑

i∈S ai,
∑

i∈S bi+µḃ q
2
c)
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• Decryption: if b − 〈a, s〉 is close to 0 than to b q
2
c mod q output 0,

otherwise decripts as 1.

Remark 16. By analizing encryption and decryption of Algorithm 5, we

may notice that the choice of parameters is responsible for the correctness of

the crytpographic protocols. For example, if µ = 0 we need χ and q to be

such that

b− 〈a, s〉 =
∑
i∈S

ei < q/4, (3.7)

otherwise the bit would be decrypted as 1. We notice that, for instance, we

can get (3.7) by requiring q significantly larger than the error distribution

χ and m. In order to make this cryptosystem secure (i.e. a passive eaves-

dropper who can distinguish between 0 and 1 can solve Decision-LWEn,q,χ,m)

and correct at the same time, Regev proposed and showed[Reg05] that the

following the setting of parameters can guarantee both: q prime between n2

and 2n2 with n in the order of hundreds, m = (1 + ε)(n + 1) log q for an

arbitrary ε > 0 and finally χ = DZ,α(n) for α(n) = 1/(
√
n log2 n).

Remark 17. We notice that, following the choice of parameters above, the

secret and public keys sizes are respectively Õ(n) and Õ(mn log q) = Õ(n2).

Furthermore, it is possible to reduce the public key size to Õ(m log q) =

Õ(n) by exploiting this idea by Ajtai[Ajt96b]: the set of vectors {a1, . . . , am}
can be shared by all users and distributed as part of the encryption and

decryption software thus leading to the public key b1, . . . , bm. It can be

proved that this change does not affect the security of the cryptosytem,

which is actually thought to be greater than Ajtai-Dwork cryptosystem’s,

as uSVPγ (the mathematical problem underlying) is more structured than

SIVPγ and GapSVPγ.
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Chapter 4

Ring-Learning With Errors

Problem

The improved efficiency obtained by considering algebraic structured lat-

tices in cryptosystems[HPS98] and hash functions[LMP12] suggested fur-

ther research on problems regarding these lattices that could be used as

security-guarantee for cryptographic protocols. With this goal in mind,

Lyubashevsky, Peikert and Regev introduced the ring-learning with errors

problem[LPR12], an analogue problem of the LWE in the ring setting, whose

hardness can be linked to some worst-case problem over ideal lattices. In this

chapter, we are going to introduce this problem, focusing on the worst-case

to average-case reduction developed in [LPR12, LPR13] .

4.1 Background

We now introduce some concepts we will need to define and discuss the

R-LWE. In the following, we fix K as a number field of degree n and we let

R = OK to be its ring of algebraic integers.

37
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4.1.1 Space H, Distributions and Lattices

Space H. Since we are working with number fields and ideal lattices it is

convenient to introduce the space H ⊂ Rs1 × C2s2 , with s1 + 2s2 = n, for

some positive integers s1, s2 and n whose roles will be specifed in the next

section. We define:

H = {(x1, . . . , xn) ∈ Rs1 × C2s2 : xs1+s2+j = xs1+j ∀j ∈ [s2]} ⊂ Cn.

It can be proved that H, with the inner product induced by Cn, is isomorphic

to Rn as an inner product space, by defining the following orthonormal basis

{hi}i∈[n]:

Definition 4.1. For j ∈ [n] let ej be the vector with 1 in its j-th coordinate

and 0 elsewhere. Then we define hj = ej for j ∈ [s1], while for s1 < j ≤ s1+s2

we define hj = 1√
2
(ej + ej+s2) and hj+s2 =

√
−1√
2

(ej − ej+s2).

We can also equip H with the lp norm induced from Cn and defined in the

following way. For each element
∑n

i=1 aihi ∈ H, with ai ∈ R ∀i, its p-norm

for p ∈ [1,∞] is:∥∥∥∥∥
n∑
i=1

aihi

∥∥∥∥∥
p

=

(
s1∑
i=1

|ai|p + 2

s1+s2∑
i=s1+1

(
a2
i + a2

i+s2

2

)p/2)1/p

Lattices and Gaussian Measures. From now on, we will adress to lattices

as discrete additive subgroup of H, i.e.

L = L(B) = {
∑
i∈[n]

zibi such that z ∈ Zn}

with B = {b1, . . . ,bn} ∈ H set of n linear independent vectors.

As we previously did in the case of Rn, for r > 0 we can define the Scaled

Gaussian Function ρr : H → (0, 1] as ρr = exp(−π ‖x‖2 /r2). In addition,

we indicate with Dr the Continuous Gaussian Distribution of width r over H,

which is the probability distribution with density s−n · ρr(x). Furthermore,
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for a lattice L ⊂ H we define the Discrete Gaussian of Parameter r over L
as:

DL,r =
ρr(x)

ρr(L)
∀x ∈ L.

We are also going to use the following Gaussian distribution over H, which

is defined by n different parameters rather than one unique.

Definition 4.2 (Elliptical Gaussian Distribution). Given r = (r1, . . . , rn) ∈
(R+)n such that rj+s1+s2 = rj+s1 for each j ∈ [s2], a sample from Dr is

given by
∑

i∈[n] xihi where each xi is chosen independently from the one-

dimensional Gaussian distribution Dri over R.

4.1.2 Ideal Lattices and Canonical Embedding

As already stated, the R-LWE is an average-case problem with a worst-

case reduction to problems on structured lattices. However, the setting is

slightly different from those of f-Ideal Lattices, since the choice of the em-

bedding σ : K → Cn of the number field plays a significant role in the

definition. Before formally defining ideal lattices we recall that given K a

number field of degree n and R = OK its ring of integers, an integral ideal

I ∈ R is an additive subgroup closed under multiplication by elements of

R. Furthermore, such an ideal is finitely generated over R and is a free Z-

module of rank n, i.e. it is generated by Z-linear combinations of a basis

{u1, . . . , un} ⊂ R. Finally, we remark that the norm of an ideal I is its index

as an additive subgroup of OK , which means N (I) = |OK/I|, and that any

I ⊂ OK can be factorized in a unique way as a product of powers of prime

ideals.

Definition 4.3 (Ideal Lattices). Let K be a number field of degree n,

R = OK and let σ be any additive injective map σ : R → Cn. Then the

family of ideal lattices for the ring R and the embedding σ is the set of all

lattices σ(I) for integral ideals I ⊂ R.

Remark 18. Let us now fix K to be the cyclotomic number field of degree

n = φ(m), with m positive integer, which means that R = Z[x]/(Φm(x)). We
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notice that by taking σ as the coefficient embedding, we get the definition of

f-ideal lattices, with f = Φm.

Whereas the protocols on ideal lattices we previously introduced take σ

as the coefficient embedding, R-LWE uses the canonical embedding.

Embeddings. We know that given any number field K = Q(ζ) of degree

n we can consider n field homomorphisms σi : K → C that fix any element

of Q and map ζ to each of its conjugates. We indicate the number of real

embeddings with s1 and the number of pairs of complex embeddings with

s2, hence n = s1 + 2s2. Furthermore, we indicate with {σj}j∈[s1] the real

embeddings and we order the complex embeddings so that σs1+s2+j = σs1+j

for j ∈ [s2].

Definition 4.4 (Canonical Embedding). The canonical embedding is the

map σ : K → Rs1 × C2s2 defined as:

σ(x) = (σ1(x), . . . , σn(x)).

The canonical embedding is a field homomorphism from K to Rs1×C2s2 ,

where both addition and multiplication are component-wise. In addition, due

to the pairing of the complex embeddings, σ maps to H and furthermore,

given an integral ideal I with Z-basis {u1, . . . , un}, we get an ideal lattice

σ(I) ⊂ H with basis {σ(u1), . . . σ(un)}. Hence, the lattices involved in our

worst-case to average-case reduction are discrete subsets of H which are

images of ideals of R = OK under the canonical embedding. To sum up, by

solving the SIVP for ideal lattices we mean to find short independent vectors

for lattices of the kind σ(I) ⊂ H, with I ∈ R integral ideal, where ”short”

is with respect to the norm induced on H by Cn.

By identifying each element of x ∈ K with its embedded σ(x) ∈ H, we can

define the following norm on K using the one on H: for any x ∈ K and any
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p ∈ [1,∞], the lp norm of x is:

‖x‖p = ‖σ(x)‖p = (
∑
i∈[n]

|σi(x)|p)1/p for p <∞

‖x‖∞ = ‖σ(x)‖∞ = max
i∈[n]
|σi(x)| for p =∞

Furthermore, using the canonical embedding enables us to think the Elliptical

Gaussian Distribution as a distribution over KR := K ⊗Q R: we can identify

KR with H and we define the distribution Dr of x ⊗ s ∈ KR as the

distribution Dr′ of σ(x) · s in H where r
′
i = ri · |σi(x)|, i.e. we sample

x⊗ s ∈ KR from Dr when σ(x) · s ∈ H is sampled from Dr′ .

4.1.3 Cyclotomic Number Fields and their properties

The second part of the hardness reduction for Ring-LWE relies on some

properties of cyclotomic number fields. In this short section we briefly

recall the concepts related to cyclotomic extensions that we are going to

use in our search-to-decision equivalence. We now fix K = Q(ζ), with

ζ = ζm = exp(2π
√
−1/m), to be the mth cyclotomic field, Φm(x) the mini-

mal polynomial of degree n and R = OK = Z[ζ].

Prime Splitting. We now discuss the factorization of the ideal 〈q〉 for

an integer prime q ∈ Z. Let
∏

i(fi(x))ei be the factorization of Φm(x) over

Zq[x] into monic irreducible polynomials, then in R the factorization of 〈q〉
is 〈q〉 =

∏
i q

ei
i , with qi = 〈q, fi(ζ)〉 prime ideal with norm qdeg(fi). As we will

see later, we are going to work modulo a prime q such that q = 1 mod m,

thus we now focus on this specific case. Being cyclic of order q − 1, the field

Zq has a primitive mth root of unity ω and actually each of the n = φ(m) dis-

tinct roots of unity ωi, for i ∈ Z∗m, is in Zq. Thus, Φm(x) completely factors

over Zq[x] as
∏

i∈Z∗m
(x − ωi) and 〈q〉 splits completely into n distinct prime

ideals 〈q〉 =
∏

i∈Z∗m
qi, where qi = 〈q, ζ − ωi〉 has norm q. This particular

factorization in distinct prime ideal qi with bounded norm will be extremely

important in the search-to-decision reduction, as it will allow us to proceed
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by enumeration in polynomial time.

Automorphisms. The cyclotomic field K has n = φ(m) automorphisms

(τk)k∈Z∗m defined as:

τk : K → K

ζ 7→ ζk

which are indeed automorphisms from Q(ζ) to Q(ζk) = Q(ζ). The follow-

ing lemma follows directly from the fact that cyclotomic fields are Galois

extensions of Q(see [Ste04], Chapter 13 for a coincise proof).

Lemma 4.1.1. In the same setting above, for any i, j ∈ Z∗m we indicate with

i−1 the multiplicative inverse of i in Z∗m and thus with i/j the product ij−1

in Z∗m. Then for any i, j ∈ Z∗m, we have τj(qi) = qi/j.

4.1.4 Trace and Duality

The field trace Tr = TrK/Q : K → Q of an element x ∈ K is defined as

the trace of the linear transformation on K representing the multiplication

by x. In practice, the following properties can be shown:

• for any x ∈ K, Tr(x)=
∑

i∈[n] σi(x);

• Tr is additive;

• for any x, y ∈ K, Tr(x · y) =
∑

i∈[n] σi(x) · σi(y) = 〈σ(x), σ(y)〉.

Definition 4.5 (Dual Ideal). For any fractional ideal L ∈ K (i.e. for the

Z-span of any Q-basis of K), its dual is

L∨ = {x ∈ K : Tr(xL) ⊂ Z}.

It is important to notice that the dual can be computed efficiently: given

a fractional ideal I with Q-basis B = {b1, . . . , bn}, the dual basis B∨ =
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{b∨1 , . . . , b∨n}, characterized by Tr(bi · b∨j ) = 1 if i = j and 0 otherwise, gener-

ates I∨. In addition, for any Q-basis B we have (B∨)∨ = B, so any fractional

ideal is self dual. An important and useful fact is the following relation con-

cerning the inverse of any ideal I, namely we have that I∨ = I−1 · R∨. The

case which we are going to deal with is precisely that of R∨ = O∨K , which is

a fractional ideal often called codifferent, whose inverse (R∨)−1, the different,

is an integral ideal.

4.1.5 Chinese Remainder Theorem

In this section we recall the Chinese remainder theorem for modules over

R = OK , which we will use later in the search-to-decision reduction.

Theorem 4.1.2 (Chinese Remainder Theorem). Let I1, . . . , Ir be pairwise

coprime ideals in R, let A be an R-module and let I =
∏

i∈[r] Ii. The canon-

ical R-module homomorphism A →
⊕

i∈[r](A/IiA) induces an isomorphism

of R-modules A/I →
⊕

i∈[r](A/IiA).

4.2 The R-LWE problem and its variants

In this section we define the R-LWE Distribution and the two versions of

the R-LWE problem. Ring-LWE is parametrized by a number field K with

R = OK and a prime modulus q ≥ 2. We now define the problem in the most

general way, allowing K to be any field extension even though the worst-case

to average-case reduction for R-LWE has been proved only for cyclotomic

fields. For any fractional ideal J ∈ K, we set Jq = J /qJ and we define

T = KR/R
∨ with R∨ codifferent ideal.

Definition 4.6 (Ring-LWE Distribution). Let s ∈ R∨q be the secret and ψ

an error distribution over KR, then a sample from the ring-LWE distribution

As,ψ over Rq ×T is generated by choosing a← Rq uniformly random, e← ψ

and outputting (a, b = (a · s)/q + e mod R∨).
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Definition 4.7 (Ring-LWE Search(R-LWEq,Ψ)). Let Ψ be a family of

distributions over KR. The search version of ring-LWE is the following prob-

lem: given arbitrarily many independent samples from As,ψ, for some s ∈ R∨q
and ψ ∈ Ψ, find s.

Definition 4.8 (Average-Case Decision Ring-LWE(R-DLWEq,Υ)). Let

Υ be a distribution over a family of error distribution over KR. The average-

case decision ring-LWE problem consists in dinstinguishing with non-negligible

advantage between arbitrarily many independent samples from As,ψ, with

(s, ψ) ← U(R∨q ) × Υ, and the same number of uniformly random and inde-

pendent samples from Rq × T.

Before moving to the next section, we explicitely state what we intend by

non-negligible advantage. If p is the probability that the adversary guesses

correctly which of the two distributions has been used to generate the sam-

ples, then the advantage is defined as |p − 1
2
|. In practice, ε > 0 is non-

negligible if we have ε > 2−30.

4.2.1 Error Distributions

We now the introduce the family of error distributions we are using in the

definitions above, i.e. the distributions for which the worst-case to average-

case reduction effectively works. More precisely, Definition 4.9 introduces

the distribution we will use in R-LWEq,Ψ, while Definition 4.10 and 4.11

refer to the R-DLWEq,Υ problem.

Definition 4.9 (Family Ψ≤α). Given α > 0 real number, the family of error

distributions Ψ≤α is the set of all elliptical Gaussian distributions Dr over

KR where for any parameter r = (r1, . . . , rn) we have ri ≤ α.

Definition 4.10 (Gamma distribution Γ(2, 1)). The gamma distribution

Γ(2, 1) with shape parameter 2 and scale parameter 1 is the distribution with

the following density:
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f(x) =

{
xe−x for x ≥ 0

0 for x < 0

Definition 4.11 (Distribution Υα). Let α be a positive real number, then

a distribution sampled from Υα is an elliptical Gaussian distribution Dr over

KR whose parameters ri > 0 are such that r2
i = r2

i+n/2 = α2(1 +
√
nxi), with

x1, . . . , xn chosen independently from Γ(2, 1).

4.3 Hardness

As in the case of the LWE problem, the reduction from the R-LWE to

some lattice problem in the worst-case involves quantum computing. After

stating the main theorem of [LPR12], we discuss the structure of its proof

and we finally focus on the Decision-to-Search reduction.

Theorem 4.3.1. Let K be the mth cyclotomic number field with dimension

n = φ(m) and let R = OK be its ring of integers. Let α = α(n) > 0

and let q = q(n) ≥ 2, q = 1 mod m be a poly(n)-bounded prime such that

αq ≥ ω(
√

log n). Then there is a polynomial-time quantum reduction from

Õ(
√
n/α)-approximate SIVP over ideal lattices to R-DLWEq,Υα.

The proof is made up by two different parts which are essentially inde-

pendent:

Worst-case hardness of the search problem. In this component it is

proved that, for a specific choice of of parameters, the R-LWEq,Ψ is at least

as hard as quantumly solving SIVPγ on ideal lattices of R. It is important

to notice that this reduction actually works in any number field, not only for

cyclotomic ones.

Decision-to-Search reduction In this part it is shown that solving the

decision version of the R-LWE is at least as hard as solving its search variant;

thus if SIVPγ is hard to solve in the quantum setting, then the Ring-LWE

Distribution is pseudorandom. It is important to remark that this reduction
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is entirely classical. Furthermore, this component relies on specific proper-

ties of cyclotomic number fields, such as being Galois, and on the particular

choice of modulus q, namely that 〈q〉 splits completely into n prime ideals qi

which are permuted transitively by the automorphisms of the Galois group

(see 4.1.3).

4.3.1 Hardness of Search-LWE

Theorem 4.3.2. Let K be an arbitrary number field of degree n and R = OK.

Let α = α(n) > 0 and let q = q(n) ≥ 2 be such that αq ≥ ω(
√

log n). Then

there is a probabilitic polynomial-time quantum reduction from Õ(
√
n/α)-

approximate SIVP to R-LWEq,Ψ≤α, where γ = ηε(I) · ω(
√

log n/α) for some

negligible ε = ε(n).

This reduction follows the idea of Regev’s proof[Reg05] for general lat-

tices, and works by applying repeatedly an iterative step whose goal is to

find shorter and shorter vectors. Up to now, quantum computing does not

seem to be replaceable by any classical tecniques and it is needed in order to

have polynomial-time iterative steps.

4.3.2 Hardness of Decision-LWE

In this section we are going to show that for the errors distributions

defined above and for a particular choice of parameters and ring, the Decision-

LWE is hard to solve, i.e. the ring-LWE distribution is pseudorandom. From

now on we restrict to the setting of Theorem 4.3.1, so we fix the following

notations: ζ = ζm is a primitive mth root of unity, K = Q(ζ) is the mth

cyclotomic number field with dimension n = φ(m), R = OK = Z[ζ] its

ring of integer, R∨ its codifferent and q = 1 mod m is a poly(n)-bounded

prime. We finally recall that we discussed the behaviour of 〈q〉 and of the

automorphisms of Q(ζ) in 4.1.3.

The following theorem gives us the reduction from the search version of R-

LWE (whose hardness derives from Theorem 4.3.2) to R-DLWEq,Υα
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Theorem 4.3.3. Let R and q be as above and let αq ≥ ηε(R
∨) for some

negligible ε = ε(n). Then there is a randomized polynomial-time reduction

from R-LWEq,Ψ≤α to R-DLWEq,Υα.

The proof of the theorem above consists of a concatenation of 4 different

and independent reductions, whose extremes are the search and the decision

version of R-LWE. The sequence is represented below and all the intermediate

problems will be defined later. Each right arrow represents a reduction, i.e.

knowing how to solve the problem which is pointed to allows us to solve the

previous one. In addition, the number above each arrow is the number of the

corresponding lemma .

R-LWEq,Ψ
4.3.5−−−→ qi-LWE

4.3.6−−−→WDLWEi
q,Ψ

4.3.7−−−→DLWEi
q,Υ

4.3.9−−−→DLWEq,Υ

4.3.2.1 Search to Worst-case Decision

In this part we consider the first two reductions, namely we reduce the

search version of R-LWEq,Ψ≤α to a particular decision problem relative to just

one arbitrarily prime ideal qi. Both this last problem and the intermediate

one are worst-case problems over the choice of s ∈ R∨q and ψ ∈ Ψ≤α, hence

the worst-case to average-case reduction will be dealt with in the next section.

The first intermediate problem can be viewed as a local variant of R-LWE,

and it is defined as follows.

Definition 4.12 (LWE over qi (qi-LWE)). Given access to As,ψ for some

arbitrary s ∈ R∨q and ψ ∈ Ψ≤α for some α > 0, find s mod qiR
∨.

Lemma 4.3.4. For any α > 0, the family Ψ≤α is closed under every auto-

morphism τ of K, i.e. ψ ∈ Ψ≤α ⇒ τ(ψ) ∈ Ψ≤α.

Proof. Let τj : K → K be any automorphism of K, then we know that

τj(ζ) = ζj for some j ∈ Z∗m. Consider now i ∈ Z∗m and any ζk of the

power basis of K, then σi(ζ
k) = (ζk)i = (ζkj)i/j = σi/j(τj(ζ

k)) which means

that for any x ∈ K the coordinates of σ(x) ∈ H and σ(τj(x)) ∈ H are a

rearrangement of each other.
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Lemma 4.3.5 (R-LWE to qi-LWE). For every i ∈ Z∗m there is a determin-

istic polynomial-time reduction from R-LWEq,Ψα to qi-LWEq,Ψα.

Proof. The idea of the proof is the following: we combine the oracle for qi-

LWE and the field automorphism τk to get s mod qjR
∨ ∀j ∈ Z∗m, then we

use the Chinese Remainder Theorem to reconstruct s ∈ R∨q . We transform

each sample (a, b) ← As,ψ into the sample (τk(a), τk(b)) ∈ Rq × T with k =

j/i ∈ Z∗m and thus τk(qj) = qi. Then we give our new samples to the oracle

of qi-LWEq,ψ and if its answer is t ∈ R∨/qiR∨ we return τ−1
k (t) ∈ R∨/qjR∨,

since τ−1
k = τk−1 . We now prove that τ−1

k (t) = s mod qjR
∨: for each original

sample (a, b)← As,ψ, since b = as/q + e mod R∨ and τk(q) = q, we have

τk(b) = τk(a) · τk(s)/q + τk(e) mod R∨.

In addition, since τk is an automorphism on R, τk(a) is uniformly random

in τk(Rq) and the samples (τk(a), τk(b)) are distributed according to Aτk(s),ψ′

with ψ
′
= τk(ψ) ∈ Ψ by Lemma 4.3.5. Our original oracle therefore output

t = τk(s) mod qiR
∨ so τ−1

k (t) = s mod τ−1
k (qiR

∨) = s mod qjR
∨.

Before going into the second reduction, we introduce the following nota-

tions: we identify the elements of Z∗m with their integer representatives in

{1, . . . ,m− 1} and for each i ∈ Z∗m we denote with i− the largest element in

Z∗m less than i, with the convention that 1− = 0.

Definition 4.13 (Hybrid LWE Distribution). For i ∈ Z∗m, s ∈ R∨q and

ψ error distribution over KR, the distribution Ais,ψ over Rq × T is defined in

the following way: choose (a, b)← As,ψ and output (a, b+ r/q) with r ∈ R∨q
such that:

• r is uniformly random and independent mod qjR
∨ for any j ≤ i;

• r is 0 mod qjR
∨ for all j > i.

In addition we define A0
s,ψ := As,ψ.
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Definition 4.14 (Worst-case decision qi-LWE(WDLWEi
q,Ψ)). For i ∈

Z∗m and a family of distributions Ψ, the WDLWEi
q,Ψ is defined as follows:

given access to Ajs,ψ for arbitrary s ∈ R∨q , ψ ∈ Ψ and j ∈ {i−, i}, find j.

Lemma 4.3.6 (Search to Decision). For any i ∈ Z∗m there is a probabilistic

polynomial-time reduction from qi-LWEq,Ψ to WDLWEi
q,Ψ.

Proof. The idea to get s mod qiR
∨ is to test each of its possible value: we

modify the samples we receive according to the value we are considering so

that on the correct one the modified samples are distributed according to

Ai−s,ψ, while on the remaining values these samples are distributed according

to Ais,ψ. Finally, by using the oracle for WDLWEi
q,Ψ we can discover which

distribution was generated. We underline that since we have only N(qi) =

q = poly(n) possible values for s mod qiR
∨, we can enumerate over them

efficiently.

We define now the transformation that given g ∈ R∨q modifies the distribution

As,ψ in either Ais,ψ or Ai−s,ψ according to wether g = s mod qiR
∨ or not. Given

(a, b)← As,ψ, we consider the sample

(a′, b′) = (a+ v, b+ (r + vg)/q)) ∈ Rq × T, with:

• v ∈ Rq uniformly random mod qi and 0 mod qj for all j 6= i;

• r ∈ R∨q uniformly random and independent mod qjR
∨ for all j < i

and 0 mod qjR
∨ for j ≥ i.

We now notice that since a is uniformly random in Rq, so is a′. In addition,

we can write b′ as:

b′ = b+ (r + vg)/q = (as+ r + vg)/q + e

= (a′s+ r + v(g − s))/q + e,

with e← ψ.

Suppose we have g = s mod qiR
∨, then for all k ∈ Z∗m we have v(g−s) = 0

mod qkR
∨ and hence by the Chinese remainder theorem v(g− s) = 0 ∈ R∨q .
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Hence the distribution of (a′, b′) is Ai−s,ψ: a′ is uniformly random over Rq,

while b′ = (a′s)/q+r/q+e with r ∈ R∨q uniformly random and independent

mod qjR
∨ for all j < i and 0 mod all the remaining qjR

∨.

Now, assume that g 6= s mod qiR
∨. Then since qi is a maximal ideal (prime

in R), R∨/qiR
∨ is a field and hence v(g−s) is uniformly random mod qiR

∨.

In addditon, v(g − s) is 0 mod all other qjR
∨ by the definition of v and

hence the distribution of (a′, b′) is Ais,ψ: a′ is uniformly random over Rq,

while b′ = (a′s)/q + (v(g − s) + r)/q with v(g − s) + r uniformly random

and independent mod qjR
∨ for all j ≤ i, and 0 mod all the remaining

qjR
∨.

4.3.2.2 Worst-Case to Average-Case Decision

To conclude present the last two reductions which will bring us to the

DLWEq,Υα . Since we start from WDLWEi
q,Ψ, which is a local worst-case

problem, first we move to an average-case local problem, then we remove the

dependence on a specific qi. A proof of the first reduction can be found in

[LPR12].

Definition 4.15 (Average-case decision qi-LWE(DLWEi
q,Υ)). For any

i ∈ Z∗m and Υ distribution over error distributions, an algorithm solves the

DLWEi
q,Υ if over random choices (s, ψ)← U(R∨q )×Υ, it distinguishes with

non-negligible advantage inputs from Ais,ψ versus inputs from Ai−s,ψ

Lemma 4.3.7 (Worst-Case to Average-Case). For any α > 0 and any i ∈
Z∗m, there is a randomized polynomial-time reduction from WDLWEi

q,Ψ≤α
to

DLWEi
q,Υα

We now state a lemma we are going to use in our last reduction to DLWEq,Υ.

Lemma 4.3.8. Let α ≥ ηε(R
∨)/q for some ε > 0. Then for any ψ in

the support of Ψ≤α and s ∈ R∨q , the distribution Am−1
s,ψ is within statistical

distance ε/2 from the uniform distribution over (Rq,T).
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Lemma 4.3.9. Let Υ be a distribution over a family of error distributions

such that for any ψ in the support of Υ and any s ∈ R∨q the distribution

Am−1
s,ψ is within negligible statistical distance from the uniform. Then for any

oracle solving the DLWEq,Υ problem, there exist an i ∈ Z∗m and an efficient

algorithm that solves DLWEi
q,Υ using this oracle.

Proof. Let (s, ψ) be any pair for which the oracle distinguish between samples

from As,ψ and the uniform distribution with non-negligible advantage. Since

A0
s,ψ = As,ψ and Am−1

s,ψ is negligibly far from the uniform distribution, for

each such (s, ψ) there must be an i ∈ Z∗m for which the oracle distinguish

between Ais,ψ and Ai−s,ψ with non-negligible advantage. Hence, fixing this i we

can solve DLWEi
q,Υ and the lemma follows.
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Chapter 5

Open Questions

In this final chapter we formally describe some open problems of lattice-

based cryptography. We will notice that many of these questions stem

straighforwardly from previous remarks or already stated conjectures.

Problems on Ideal Lattices. For worst-case problems on ideal lattices,

in particular those of cyclotomic rings, are there classical or quantum algo-

rithms that outperform the known ones for general lattices? If so, can these

algorithms be used to solve the R-LWE?

Hardness of NTRU. Despite being very secure in practice, we know that

no theoretical proof of NTRU’s hardness has been developed yet. Is it possi-

ble to find a worst-case to average-case reduction for this specific problem?

Classical Hardness of LWE. Up to now, besides Regev’s quantum reduc-

tion, the only entirely classical worst-case to average case-reduction regarding

LWE presents the consistent drawback of the size of the modulus q (see Re-

mark 15). Is it possible to overcome this problem?

Classical Hardness of R-LWE. The reduction we presented, due to

Lyubashesky, Peikert and Regev, relies on quantum computing. Is it possi-

53



54 5. Open Questions

ble to get a classical worst-case hardness reduction for R-LWE? If not, can

we get at least a partial dequantization as for LWE?

R-LWE in arbitrary fields. We know that the worst-case reduction

for the search version of R-LWE works in arbitrary number fields, while the

decision to search reduction relies on properties of Galois extensions, namely

their automorphisms. Hence it is natural to wonder if there is an analogue

proof of the hardness of the decisional version of R-LWE which might work

for any number field.



Bibliography

[Ajt96a] M. Ajtai. Generating hard instances of lattice problems. STOC,

1996.

[Ajt96b] M. Ajtai. Representing hard lattices with O(n log n) bits. STOC,

pages 94-103, 1996.

[Ajt05] M. Ajtai Representing hard lattices with O(nlog n) bits. Proceedings

37th Annual ACM Symposyum of Computing (STOC), 2005.

[AD97] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-

case/average-case equivalence. STOC, pages 284-293, 1997.

[AD15] M. Ajtai and C. Dwork. The first and fourth public-key cryptosystem

with worst-case/average-case equivalence. STOC, pages 733-742, 2015.

[AKS01] M. Ajtai, R. Krumar and D. Sivakumar. A sieve algorithm for the

shortest lattice vector problem. STOC, pages 601-610, 2001.

[Boy10] X. Boyen. Lattice mixing and vanishing trapdors: A framework for

fully secure short signatures and more. Public Key Cryptography, pages

499-517, 2010.

[BGV14] Z. Brakerski, C. Gentry and V. Vaikuntanathan. Leveled fully ho-

momorphc encryption without bootstrapping. TOCT, 6(3):13, 2014.

[BV12] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic

encryption from ring-LWE and security for key dependent messages0.

CRYPTO, pages 868-886, 2012.

55



56 BIBLIOGRAPHY

[CHK09] D. Cash, D. Hofheinz and E. Kiltz. How to delegate a lattice basis.

Cryptology ePrint Archive, Report 2009/351, July 2009. Available at

http://eprint.iacr.org/.

[CMNT11] J.-S. Coron, A. Mandal, D. Naccache and M. Tibouchi. Fully

homomorphic encryption over the integers with shorter public keys..

CRYPTO, pages 487-504, 2011.

[Con09] K.Conrad. The different ideal. Available at

http://www.math.uconn.edu/ kconrad/blurbs/gradnumthy/different.pdf.

[CN97] J.-Y. Cay and A. Nerurkar. An improved worst-case to average-case

connection for lattice problems. FOCS, pages 468-477, 1997.

[DWA15] D-WAVE. D-Wave Systems Announces the General Availabil-

ity of the 1000+ Qubit D-Wave 2X Quantum Computer. Available

at http://www.dwavesys.com/press-releases/d-wave-systems-announces-

general-availability-1000-qubit-d-wave-2x-quantum-computer.

[Gen09a] C. Gentry. A fully homomorphic encryption scheme. Ph.d thesis,

Stanford, 2009.

[Gen09b] C. Gentry. Fully homomorphic encryption using ideal lattices.

STOC, pages 169-178, 2009.

[GPV08] C. Gentry, C. Peikert and V. Vaikuntanathan. Trapdoors for hard

lattices and new cryptographic constructions. STOC, pages 197-206,

2008.

[GSW13] C. Gentry, A. Sahai and B. Waters. Homomorphic encryption

from learning with errors: Conceptually-simpler, asymptotically-faster,

attribute-based. CRYPTO, pages 75-92, 2013.

[HPS98] J. Hoffstein, J. Piper and J.H. Silverman. NTRU: A ring-based pub-

lic key cryptosystem. ANTS, pages 267-288, 1998.



BIBLIOGRAPHY 57

[HPS01] J. Hoffstein, J. Piper and J.H. Silverman. NSS: an NTRU lattice-

based signature scheme. EUROCRYPT, pages 211-228, 2001.

[IBM15] IBM. IBM Scientists Achieve Critical Steps to Building

First Practical Quantum Computer. Available at http://www-

03.ibm.com/press/us/en/pressrelease/46725.wss

[KTX08] A. Kawachi, K. Tanaka and K. Xagawa. Concurrently secure iden-

tification schemes based on the worst-case hardness of lattice problems.

ASIACRYPT, pages 372-389, 2008.

[Kan83] Ravi Kannan. Improved Algorithms for integer programming and

related lattice problems. STOC pages 193-206, 1983.

[LLL82] A.K. Lenstra, H.W. Lenstra and L. LovÃ sz. Factoring polynomial
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[SS11] D. Stehlé and R. Steinfeld. Making NTRU as secure as worst-case

problem over ideal lattices. EUROCRYPT, pages 27-47, 2011.


	Acknowledgements
	List of algorithms
	List of figures
	Introduction
	Notations
	Preliminaries
	Lattices
	Basic Definitions
	Computational Problems
	Ideal and Cyclic Lattices

	Gaussian Measure

	Early Results
	Ajtai-Dwork Encryption Scheme
	Ajtai-Dwork Cryptosystem

	NTRU Ecryption Scheme

	Modern Results
	SIS and Related Protocols
	Short Integer Solution Problem(SIS)
	Lattice-based hash function
	Hash functions on ideal lattices

	LWE and Related Protocols
	Learning With Errors Problem(LWE)
	LWE Encryption Scheme


	Ring-Learning With Errors Problem
	Background
	Space H, Distributions and Lattices
	Ideal Lattices and Canonical Embedding
	Cyclotomic Number Fields and their properties
	Trace and Duality
	Chinese Remainder Theorem

	The R-LWE problem and its variants
	Error Distributions

	Hardness
	Hardness of Search-LWE
	Hardness of Decision-LWE


	Open Questions
	Bibliography

