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Introduction
Let X be a smooth variety defined over a number filed k. A leading problem in arithmetic geometry

is to determine whether or not X has any k-points. Due to the difficulty of this task, we are mainly
concerned in two problems:

i) finding necessary conditions for X(k) to be non-empty;

ii) understanding the “size” of X(k).

Our approach relies on a “local-to-global” strategy, indeed we would like to study the diagonal embedding
X(k) ↪→

∏
v∈Ωk

X(kv), where kv is the completion of k at the prime v. In particular a first refinement
of the problems is the following:

i) if
∏
v∈Ωk

X(kv) is non-empty, can we deduce that X(k) is non-empty? (known as Hasse principle);

ii) is the diagonal embedding dominant? (known as Weak approximation, or Strong approximation,
depending on the topology of

∏
v∈Ωk

X(kv)).

Positive examples are known:

i) the Hasse principle is true for smooth projective quadrics, Brauer-Severi varieties, smooth projective
cubics in PnQ with n ≥ 9 and torsors under semisimple simply connected algebraic groups;

ii) k-rational varieties, smooth projective intersection of two quadrics with a k-point in Pnk with n ≥ 6,
satisfy the weak approximation property.

But is not often the case. Manin, in the 1970, considered the Brauer group of X, Br(X), and for any
B ⊂ Br(X) introduced the subset X(k)B of

∏
v∈Ωk

X(kv) such that

X(k) ⊂ X(k)Br(X) ⊂ X(k)B ⊂
∏
v∈Ωk

X(kv),

where the inclusions hold thanks to the Global Class Field Theory. Of course if X(k)B = ∅ implies that
X(k) = ∅, conversely we say that the Brauer-Manin obstruction to the Hasse Principle is the only one
if we have

X(k)B 6= ∅ ⇒ X(k) 6= ∅

for every variety X in a certain class. Analogously is not hard to define the Brauer-Manin obstruction
to weak and strong approximation (see Section 3.1).

Manin’s construction accounts for almost all known examples where the Hasse Principle fails, and
seems having a nice behaviour whenever X admits an extra structure, for example when an algebraic
group G acts on X (when the action is simply transitive, resp. transitive, we say that X is a torsor,
resp. a homogeneous space, under G). Of course some conditions on G have to be imposed, in particular
G has to be simply connected, in virtue of the following result (the proof can be found in [Rap12], page
9).

Theorem 0.0.1 (Minchev). Let X be an irreducible normal variety over a number field k such that
X(k) 6= ∅. If there exists a non trivial connected unramified covering f : Y → X defined over an
algebraic closure k, then X does not have strong approximation off any finite set S of places of k.

Moreover, since the case of torsors under abelian varieties is already discussed (see for example [Sko01],
Theorem 6.2.3) we may assume G to be linear, in particular we are mainly concerned with semisimple
simply connected groups. The first chapter summarises, for the most part, the results from the theory of
linear algebraic groups over fields of characteristic zero we will need to succeed in this study.

The general strategy is to deduce the arithmetic properties on a variety with an action of G from the
properties of G, of course in the following order:

G semisimple simply connected k-group ⇒ k-torsors under G ⇒ k-homogeneous spaces under G.

The first step was, as mentioned above, the proof of the Hasse principle for torsors under a semisimple
simply connected group G (due to Kneser, Harder and Chernousov), which can be written as

H1(k,G) −→
∏
v∈ΩR

H1(k,G) is bijective.
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But how far is a homogeneous space from being a torsor (at least from a “Hasse principle point of view”)?
This question can not be answered just in terms of the first group of Galois cohomology. Following
[Bor93], the second chapter of the thesis introduces the formalism of the nonabelian H2, which provides
the right setting for a first answer (see Section 2.2).

Theorem 0.0.2. Let X/k a homogeneous space of a semisimple simply connected algebraic group G/k
with connected stabilizer H. There exists a k-lien L, whose underling algebraic group is H, and an
element ηX ∈ H2(k, L) such that if ηX is neutral, then the Hasse principle (with respect to the real
places) holds.

The rest of the chapter is devoted to application of this result, in particular we prove an Hasse
principle for the nonabelian H2 and we describe many conditions on the connected stabilizer to have the
Hasse principle, see Theorem 2.6.2.

These first results show that the case of homogeneous space is significantly harder than the case
of torsors, and various conditions on the stabilizer have to be considered. After the unconditioned
discussed above, Chapter 3 deals with the Brauer-Manin obstruction. Following [Bor96], we prove that
for a homogeneous space of a connected linear group with connected stabilizer and for a homogeneous
space of a simply connected group with abelian stabilizers, the Brauer-Manin obstructions explain the
failure of the Hasse principle and of weak approximation (see Section 3.2).

The study of strong approximation and integral Hasse principle, which are closely related to each
other (cf. Theorem 4.1.6), took fifteen years from the article [Bor96]. Indeed the analogues results in case
the stabilizers are connected/abelian have been proven by Colliot-Théléne-Xu in [CTX09] and Borovoi-
Demarche in [BD13]. For an arbitrary stabilizer this study remains a difficult task and only during the
present year some results have been achieved. The last chapter presents Demarche’s counterexample
(presented in [Dem15]) to strong approximation with Brauer-Manin obstruction when the stabilizer is
nilpotent. Namely we have the following (cf. Theorem 4.2.1).

Theorem 0.0.3. Let G be a semisimple simply connected algebraic k-group, p be a prime number, H be
a non commutative finite group of order pn and set X = G/H. For any finite set S0 ⊂ Ωk, if k contains
the pn+1th roots of unity, then the obstruction of Brauer Manin to strong approximation for X is not
the only one.

Moreover, a general result of [LX15] ensures the existence of anOk,S0
-model ofX, for which the failure

of the integral Hasse principle is not explained by Brauer-Manin; it remains an interesting question to
give an explicit construction of such a model, maybe with the structure of homogeneous space, extending
the one of X.

To complete the story we cite the main result of [LA15] about weak approximation: if that the
Brauer-Manin obstruction is the only obstruction to weak approximation for homogeneous spaces of the
form SLn /H with H finite, then this is also the case for every homogeneous space G/H with connected
G and arbitrary H. Apart from this, not much else is known.
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Notation
In general k will be a field of characteristic zero, k a fixed algebraic closure and Γk the absolute Galois

group of k.
Let G/k be a linear algebraic group. In the following we will often consider the following k-groups,

which deserve a name:

• G◦ for the connected component of 1G ∈ G;

• G′ for the derived subgroup of G;

• π0(G) for the group of connected component of G, i.e. the quotient G/G◦ (it is a finite group);

• Gu for the unipotent radical of G (it is a unipotent characteristic subgroup);

• Gred for the quotient G◦/Gu (it is a reductive group);

• Gss for the derived subgroup of Gred (it is a semisimple group);

• Gtor for the quotient Gred/Gss (it is the biggest toric quotient of G);

• Gssu for the kernel of the canonical projection G◦ → Gtor (it is an extension of Gss by Gu);

• Gsc for the universal covering of Gss (it is a semisimple simply connected group);

• when G is reductive we define Gad as the quotient of G by its center (it is a semisimple group with
trivial center).

The properties in brackets will be explained and proven in the first chapter and used systematically in
the subsequent chapters.

Let k be a field of characteristic zero, and X a k-variety, i.e. a geometrically irreducible algebraic
variety X over a field k; in our discussion X will always be smooth. The following is standard notation:

• Br(X) := H2(Xet,Gm), the (cohomological) Brauer group of X;

• Br0(X) := Im(Br(k)→ Br(X));

• Br1(X) := Ker(Br(X)→ Br(Xk));

• Bra(X) := Br1(X)/Br0(X), the arithmetic Brauer group of X;

• Brnr(X) := Brnr(k(X)/k) ⊂ Br(X), the unramified Brauer group (it can be identified with the
Brauer group of any smooth proper k-variety birational to X);

• If k is a number field and S ⊂ Ωk a finite set, we define

BS(X) := Ker

(
Bra(X)→

∏
v/∈S

Bra(Xkv )

)
.

We set Bω(X) :=
⋃
S BS(X). If S = ∅ we write B(X) for BS(X).

As in [Ser73], for a discrete, not necessary commutative, group A with an action of Γk, we write
H1(k,A) for the pointed set of classes of continuous 1-cocycles, the so called first group of nonabelian
Galois cohomology.
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Chapter 1

Arithmetic of Linear Algebraic Groups

We present a short overview on the main results we are going to use in this work. Generically we
follow [Mil11], [BT65], [PR94], over an algebraically closed field [MT11], for the more arithmetic part
[Mil11], [Har06] and [San81].

Definition 1.0.4. An algebraic group over a field k is a group object in the category of schemes of finite
type over k.

The building blocks of the theory of algebraic groups, in the sense that all others can be constructed
by successive extensions, are the following:

- finite (constant and non constant);

- unipotent groups;

- semisimple algebraic groups;

- algebraic tori;

- abelian varieties, i.e. connected algebraic groups whose underlying scheme is projective.

From now on we will deal mainly with the affine case.

Definition 1.0.5. An algebraic k-group is a linear algebraic group if it satisfies one of the following
equivalent properties:

- its underlying scheme is affine,

- it admits a closed embedding in GLn for some n ≥ 0.

Example. A constant group scheme is affine if and only if is finite.

Theorem 1.0.6 (Cartier). Every linear algebraic group over a field of characteristic zero is smooth.

Proof. For the proof see [Mil11], Theorem 6.31.

From now on we specialize our selves to the case of characteristic 0 (the case we are interested in).
More generally many statements will remain true if k is perfect of positive characteristic and G is smooth.
With algebraic group we will mean an algebraic group defined over a field k; some times we could omit
to remark that the group is linear.

1.1 Homogeneous spaces over a field
Before starting our overview about the structure of algebraic groups we introduce the the notion of

homogeneous space and we present the “quotient construction”.

Definition 1.1.1. Let G/k be a linear algebraic group. Let X/k be a (non empty) variety equipped
with a right action of G. We say that X is homogeneous (resp. principal homogeneous) under G if G(k)
acts transitively (resp. simply transitively) on X(k).
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Example. Let q be a non degenerate quadratic form. The projective variety given by the zero locus of q
is a homogeneous space under the orthogonal group O(q).

Following [Bor69], Chapter II, Section 6 we briefly discuss the “quotient construction”. Before we
recall some general facts of classical algebraic geometry.

Definition 1.1.2. Let π : V →W be a k-morphism of k-varieties. We say that π is a quotient morphism
if it is surjective, open, and if U ⊂ V is an open, then π induces an isomorphism between k[π(U)] and
the set of elements of k[U ] which are constant on the fibers of π|U : U → π(U).

Quotient morphisms have the universal property the reader can expect: Let π : V →W be a quotient
morphism, and α : V → Z any morphism constant on the fibers of π, then there exists a unique map
β : W → Z such that α = β ◦ π.

Lemma 1.1.3. Let π : V → W be a surjective open morphism of irreducible varieties. If W is an
integral variety, then π is a quotient morphism.

Proof. For the proof see [Bor69], Chapter II, Lemma 6.2.

We can now consider the case of the quotient of V by G.

Definition 1.1.4. Let G be a k-group acting on A k-variety V . An orbit map is a surjective morphism
π : V →W of varieties such that the fibers of π are the orbits of G on V . A k-quotient of V by G is an
orbit map V →W which is also a quotient morphism in the sense of the previous definition.

As above we have the same universal property with regard to every map α : V → Z constant on the
orbits of G. In particular the quotient, if it exists, it is unique. We write V/G for such an object.

About the existence, in our setting, we have a classical result.

Theorem 1.1.5. Let G be an affine k-group and H be a closed k-subgroup of G. Then the quotient
πH : G→ G/H exists over k, and G/H is a smooth quasi-projective k-variety. If H is normal in G then
G/H is an affine k-group and πH is a group map.

Proof. For the proof see [Bor69], Chapter II, Theorem 6.8.

Remark. Being representable remains a delicate issue; we state here two interesting results about quo-
tients in higher dimensions.

• Let S be a locally noetherian scheme of dimension less or equal to 1, G→ S a group scheme locally
of finite type and H → S a flat subgroup of G. Then the fppf -sheaf G/H is represented by an
S-scheme of finite type. For the proof we refer the reader to [Ana73], Theorem 4.c.

• The previous result can not be generalized in dimension bigger than 1. Let S = A2
k, and G =

(Ga,S)2, in [Ray70], Lemma X.14 is constructed a subgroup N ⊂ G étale such that G/N is not
representable by a scheme.

We are now ready to prove the following lemma, which will play a crucial role in Chapter 3 to treat
a special reduction via the “fibration method”, cf. [Bor96] Lemma 3.1.

Lemma 1.1.6. Let G/k be a linear group, N a normal subgroup of G. Given a homogeneous space
X/k under G, there exists a quotient Y = X/N (i.e. a homogeneous space of G/N) and a smooth
G-equivariant map ϕ : X → Y such that it is a quotient morphism in the sense of Definition 1.1.4. In
particular it is surjective and its fibers are orbits of N .

Proof. Let H the stabilizer of a k-point of X, and consider the canonical quotient map πH : Gk →
Gk/H

∼= Xk. Since N is normal, H0 := H ·Nk is a subgroup of Gk. In virtue of the universal property of
the quotient maps, applied over k, it make sense to consider the following natural commutative diagram:

Gk/H
∼= Xk

Gk Gk/H0 =: Y

πH ϕ

πH0

.
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Since πH and πH0
are smooth and surjective, the same holds for ϕ; moreover the fibers of ϕ are the

orbits of Nk.
To conclude, applying Lemma 1.1.3 to show that is is a quotient map, it is enough to construct (Y, ϕ),

a k-form of (Y , ϕ). To do this, notice that Γk acts continuously on Y , via ϕ, since it acts on Xk. By
Galois Descent this is enough to define, taking the fixed points of the action, a k-form (Y, ϕ).

As in classical group theory we have the following characterization.

Lemma 1.1.7. Let X/k be a homogeneous space under G. Then the following are equivalent:

- X(k) 6= ∅,

- X is isomorphic to the quotient variety G/H for some subgroup H of G.

Remark. If G is a commutative group then every subgroup is normal. In particular every G-homogeneous
space is a G-torsor.

We end this section introducing two important subgroups of a given group G.

Definition 1.1.8. Let G/k be a linear group, and H/k a subgroup. The functors centralizer, denoted
with CG(H), and normalizer, denoted with NG(H), are representable by closed subgroups called the
centralizer of H in G and the normalizer of H in G ; in particular we define the center of G as CG(G).
For the proof we refer the reader to [ABD+66] VIII.6.7.

1.2 Kernels and quotients
Theorem 1.2.1. Let f : G → H a morphism of algebraic groups. Then it admits the following factor-
ization

G� G/Ker f ↪→ H

where the first map is the projection to the quotient and the second one a closed immersion.

Proof. For the proof see [Gro62], Corollary 7.4. It make sense to consider the quotient G/Ker f , thanks
to Theorem 1.1.5.

Another general result is the following.

Proposition 1.2.2. Let f : G→ H be a morphism of linear algebraic groups. Then Im(f) = f(G) is a
Zariski closed subgroup of H.

Proof. The Zariski-closure Im(f) is a closed subgroup of H (exactly as for topological groups). To
conclude it is enough to show that Im(f) = Im(f). By Chevalley’s Theorem Im(f) is constructible, so it
contains an open subset U of Im(f). Since the set {f(g) ·U}g∈G is an open covering of Im(f), it follows
that Im(f) is open and dense in Im(f). By density, for any h ∈ Im(f) the set (h · Im(f)) ∩ Im(f) is not
empty, hence h belongs to Im(f) · (Im(f))−1 ⊂ Im(f).

1.3 Connectedness
Definition 1.3.1. An algebraic group is connected if it underlying topological space is connected (for
the Zariski topology).

Proposition 1.3.2. Let G be a linear algebraic group.

a) The irreducible components of G are pairwise disjoint, so they are the connected components of G.

b) The irreducible component G◦ containing 1G is a closed normal subgroup of finite index in G.

c) Any closed subgroup H of G of finite index contains G◦.
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Proof. a) Let X,Y be two irreducible components of G with non trivial intersection. We can assume
1G ∈ X ∩ Y . The image of X × Y via the multiplication m : G×G→ G is irreducible and contains X
and Y and so, by maximality, we have X = m(X × Y ) = Y .

b) G◦ and (G◦)−1 are irreducible components of G containing 1G, hence they must coincide. Analo-
gously m(G◦ ×G◦) ⊂ G◦, therefore it is a subgroup of G. It is normal since g−1G◦g is irreducible and
contains 1G.

Since an affine algebraic variety has only finitely many maximal irreducible subsets it is enough to
notice that every irreducible components is a translation of G◦.

c) Since |G : H◦| = |G : H| · |H : H◦| is finite and H◦ ≤ G◦ ≤ G, being G◦ and H◦ connected, we
have

G◦ =
⊔
gH◦ = H0.

Remark. Notice that Theorem 1.0.6 implies the point a) of the previous proposition.

Remark. A connected linear algebraic group can not have proper closed subgroup of finite index. In
particular, for a finite group G we always have G◦ = 1.

Definition 1.3.3. The derived subgroup G′ of an algebraic groupG is the intersection of all the subgroups
containing the scheme theoretical image of the map G×G→ G, given by the association (x, y) 7→ [x, y] :=
xyx−1y−1.

Proposition 1.3.4. Let G be a connected linear group. Then G′, the derived group of G, is a closed
and connected subgroup of G.

Proof. Consider the maps fi : G2i → G given by (x1, . . . , xi, y1, . . . , yi) 7→ [x1, y1] . . . [xi, yi] for any i ≥ 0.
Each image Im(fi) is closed, by Proposition 1.2.2, and connected, since it is the image of a connected;
hence irreducible subgroup. Thus Im(f1) ⊂ · · · ⊂ Im(fi) ⊂ . . . is a chain of connected subgroups, and G′
is their union. The chain stabilizes, since it is bounded by dim(G), hence G′ is a closed and connected
subgroup of G.

Proposition 1.3.5. Consider an exact sequence of linear algebraic group

1→ A→ B → C → 1.

If A and C are connected so does B; conversely, if B is connected, so also is C.

Proof. Consider the exact sequence defining the group of connected components of B:

1→ B◦ → B
π−→ π0(B)→ 1.

Assume A and C to be connected. Since A lies in the kernel of B π−→ π0(B), then, by the universal
property of quotients, we have the factorization π : B → B/A ∼= C → π0(B); but C is connected, hence
Im(π) = 1. It follows that the inclusion B◦ → B is an isomorphism.

The other implication is clear since C is the image of B via the projection map.

1.4 Unipotent groups
Theorem 1.4.1 (Characterizations of unipotent groups). Let G/k a linear algebraic group and k of
characteristic zero. The following are equivalent.

a) G is unipotent;

b) G admits a closed embedding in Un for some n ≥ 0;

c) G admits a finite composition series such that each successive quotient is isomorphic to Ga;

d) every element of G(k) is unipotent, i.e. every u ∈ G(k) satisfies (u− 1)n = 0;

e) the underlying k-scheme of G is isomorphic to Ank for some n ≥ 0.

Proof. For the proof see [Poo16], Theorem 5.4.8.
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Corollary 1.4.2. Unipotent groups, over a field of characteristic zero, are connected.

Proof. It is clear from the above characterization, using e).

Corollary 1.4.3. Subgroups, quotients, and extensions of unipotent groups are unipotent.

Proof. For subgroups is clear from the above characterization, using b). For quotients it follows from c).
More details can be found in [Mil11], Corollary 15.7.

It is not hard to prove the following.

Proposition 1.4.4. Let k a field of characteristic zero. If G is a commutative unipotent group over k,
then G ∼= (Ga)n, as group schemes, for some n ≥ 0.

A general fact is the following. For a more standard and elementary approach see for example [PR94],
section 2.2.

Proposition 1.4.5. Let k a field of characteristic zero. For any unipotent k-group G we have H1(k,G) =
0. If G is commutative unipotent then Hi(k,G) = 0 for any i ≥ 1.

Proof. First of all notice that Hi(k,Ga) = 0 for any i > 0. This is clear since Ga is a quasi-coherent
module over k, hence its cohomology can be computed on the Zariski site; fields have trivial Zariski-
cohomological dimension since are irreducible topological spaces. We conclude by induction on dimension
of G: By Theorem 1.4.1 we can write an exact sequence

1→ H ∼= Ga → G→ G/H → 1

which yields an exact sequence of pointed sets

H1(k,H)→ H1(k,G)→ H1(k,G/H)

Since the term on the left is zero by what is proved above, and the right one also by induction, we have
that H1(k,G) is trivial. For the second statement the same argument applies to the cohomological exact
sequence of above for any i ≥ 1 (alternatively one can use Proposition 1.4.4).

These two results explain why, for our purpose, the unipotent part of an algebraic group plays no
role and lead us to the definition of the next section.

Remark. The proof of Proposition 1.4.5 shows also that any Ga,k-torsor over an affine k-variety is trivial,
since, over an affine scheme X, the functor Γ(X,−) : Qcoh(X) → Ab is exact (and provides the same
cohomology as the derived functor of Γ(X,−) : Sh(X) → Ab, when restricted to the quasi-coherent
modules).

We end this section with some useful results.

Definition 1.4.6. An algebraic group G/k is called nilpotent if it admits a central series of finite length,
i.e. consider

γ1 = G, γ2 = [G,G], . . . , γn = [γn−1, G], . . . (1.4.0.1)

then there exists k such that γk = 1.

By point c) of Theorem 1.4.1 it is clear that unipotent groups are nilpotent.

Proposition 1.4.7. Let G be an algebraic non trivial unipotent k group. Then the center of G is non
trivial.

Proof. Since G is nilpotent, we can consider the central series 1.4.0.1. Chose n such that γn = 1 and
γn−1 6= 1. γn is trivial if and only if for all x ∈ γn−1 and for all g ∈ G, x−1g−1xg = 1, or, equivalently
xg = gx. The last condition means that γn−1 is a subgroup of Z(G).
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1.5 Reductive groups
Definition 1.5.1. A linear algebraic group G is solvable if there exists a finite sequence of algebraic
groups

1 = Gn ⊂ Gn−1 ⊂ · · · ⊂ G0 = G

such that each Gi+1 is normal in Gi and Gi/Gi+1 is commutative.

Example. Subgroups, quotients, and extensions of solvable algebraic groups are solvable.
To give sense to the next definitions we need a preliminary result. In this section k will always denote

a field of characteristic zero.

Proposition 1.5.2. Let G/k be an algebraic group.

a) There exists a largest connected normal solvable subgroup of G, denoted RG and called the radical
of G.

b) There exists a largest connected normal unipotent subgroup, denoted RuG and called the unipotent
radical of G.

The idea is to consider the product of all connected normal solvable (or unipotent) subgroups of G.
This amounts to prove the following lemma.

Lemma 1.5.3. Let N and H be algebraic subgroups of G with N normal. If H and N are solvable (resp.
unipotent, resp. connected), then HN is solvable (resp. unipotent, resp. connected).

Proof. It is enough to consider the following exact sequence

1→ N → HN → HN/N ∼= H/H ∩N → 1

where the last isomorphism can be checked at the level of group functor thanks to the construction of
the quotients. As remarked above, if H is solvable, so also is its quotient H/H ∩N ; this concludes since
HN is an extension of solvable groups.

The same argument works also for unipotent groups (thanks to Corollary 1.4.3,) and for connected
(thanks to Proposition 1.3.5).

Definition 1.5.4. A semisimple group is a connected linear algebraic group whose geometric radical,
R(Gk), is trivial. A reductive group is a connected linear algebraic group whose geometric unipotent
radical is trivial.

Remark. Semisimple groups, in particular, are reductive.
Another useful construction is the following.

Theorem 1.5.5. Let G be a connected solvable group, then there exists a unique connected normal
algebraic subgroup Gu of G such that

- Gu is unipotent,

- G/Gu is of multiplicative type (in the sense of Definition 1.7.1).

Taking Gu commutes with base change of the field.

Proof. See [Mil11], Theorem 16.33.

Proposition 1.5.6. Let G an algebraic group, radicals commute with base change of the base field.
Moreover RuG = (RG)u.

Proof. The result follows by uniqueness and maximality of the objects involved and the usual Galois
Descent’s theorem.

Immediately we have.

Corollary 1.5.7. Let G be a connected algebraic group (over a perfect field k).

- G is semisimple if and only if RG = 1.

- G is reductive if and only if RuG = 1.

Example. Let G be connected algebraic group, the quotient group G/RG is semisimple, and G/RuG is
reductive.

11



1.6 Algebraic tori
Definition 1.6.1. A split torus is an algebraic group isomorphic to a finite product of copies of Gm. A
torus is a k-algebraic group such that Tk is a split torus.

Remark. If k is an algebraically closed field, then all tori are split.

Let G be an algebraic group over k. A k-torus T ⊂ G is said to be maximal if Tk is maximal in Gk,
i.e. Tk is not properly contained in any other torus.

Theorem 1.6.2 (Existence of maximal k-tori). Let G be a smooth connected affine group over an
arbitrary field k. Then G contains a maximal k-torus T .

Proof. For the proof, in this generality, see [Con10] Theorem 1.1. If k is assumed to be perfect easier
arguments are possible.

Theorem 1.6.3 (Conjugacy Theorem for maximal tori). Let G be a connected group over an algebraically
closed field k. If T and T0 are maximal tori in G, then T0 = g−1Tg for some g ∈ G(k).

Proof. For the proof see [Spr98], Theorem 6.3.5. We can deduce this result from Theorem 1.9.2. . .

1.6.1 The variety of maximal tori, weak approximation
Let G be a reductive k-group, T ⊂ G a maximal k-torus and N = NG(T ) its normalizer. Thanks to

Theorem 1.6.3, the map g−1Tg 7→ gN gives a bijection between the maximal tori of G and the points
of the k-variety of maximal tori, T := G/N . Notice that the k-points of T correspond to the maximal
k-tori of G; in particular it does not depend on the choice of the k-torus T .

Theorem 1.6.4. In characteristic zero, T is a rational smooth k-rational variety, i.e. biregularly iso-
morphic to an affine space.

Proof. It is smooth since it is an homogeneous space under G, smooth group (see Section 1.1). The
rationality is established in [PR94], Theorem 2.18, for a sketch of proof see for example [Gil07b], Theorem
2.3.

It is a classical result that if X is a irreducible, smooth k-rational variety, then it satisfies weak
approximation. We just sketch the argument: The k-rationality of X implies the existence of a biregular
k-isomorphism between a Zariski open subset U of Adim(X) and a Zariski open subsetW ofX. Adim(X) has
the weak approximation property since it is a product of A1 which does (a classical result of elementary
number theory), and since the v-adic topology on the kv-points of Adim(X) is stronger than the Zariski
topology also U has the weak approximation property; by biregularity the same holds for W , i.e. W (k)
is dense in

∏
v∈Ωk

W (kv). To conclude it is enough to prove that W (kv) is dense in the kv-points of
X, but, since X is smooth, this can be done thanks to the Implicit Function Theorem, see for example
[PR94], Lemma 3.2.

Weak approximation for T , which is satisfied by the above discussion, can be expressed in a nice way.

Corollary 1.6.5. Let S be any finite subset of Ωk. Given T (v) a maximal kv-torus of G for all v ∈ S,
there exists a maximal k-torus T of G which, for any v ∈ S, is conjugate to Tv via a kv-point of G.

Proof. For any v ∈ S, let xv be the point in T corresponding to T (v). Every torus in the conjugacy class
{g−1T (v)g}g∈G(kv) corresponds exactly to a point of the orbit Uv = G(kv) · xv. If Uv is open in T , then,
by the weak approximation on T , there exists x ∈ T (k) ∩

∏
v∈S Uv, and it corresponds to the torus T

we were looking for. We conclude since we can apply [PR94], Proposition 3.3, Corollary 2. on Uv.

Remark. Notice that weak approximation for T holds independently of the fact that this property holds
or not on G. This will remain an isolated phenomenon: in general we try to deduce arithmetic properties
on an homogeneous space from properties of the group acting on it.
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1.7 Groups of multiplicative type
Definition 1.7.1. A group of multiplicative type over k is a commutative linear k-group which is an
extension of a finite group by a torus.

Recall that the module of characters of G is the abelian group Ĝ = Hom(Gk,Gm), equipped with the
action of the Galois group Γk (induced by the action of Γk on Gm), it will be also denoted with X∗(G).
Analogously the module of co-characters will be denoted with X∗(G) = Hom(Gm, Gk).

We state two classical results about groups of multiplicative type.

Theorem 1.7.2 (Rosenlicht’s Theorem). Let X,Y be geometrically irreducible k-varieties, then k[X]∗/k
∗

is a free abelian group of finite rank and there is an isomorphism of groups

k[X ×k Y ]∗/k
∗ ∼= k[X]∗/k

∗ × k[Y ]∗/k
∗
.

If G is a connected linear group we have

k[G]∗/k∗ ∼= Ĝ(k).

Proof. For the proof see [Vos98] I, 3.4; cf. also [San81], Lemma 6.5.

Theorem 1.7.3. Let G be a k-group. The association G Ĝ gives an equivalence of category between
the category of k-groups of multiplicative type and the category of discrete Γk-modules of finite type.
Moreover a sequence of groups of multiplicative type is exact if and only if the dual of Γk-modules of
characters is exact.

The following result will be useful in many occasion, in particular applied to the inner action to show
that some subgroups of a connected linear group are central.

Theorem 1.7.4 (Rigidity). Let G be a connected (linear) k-group G, and N ⊂ G a normal k-subgroup
of multiplicative type. Then N is central in G.

We prove the result thanks to two lemmas.

Lemma 1.7.5. If G is connected and N a finite normal subgroup, then N is central.

Proof. For any a ∈ N consider the map G→ G given by x 7→ x−1ax. Notice that the image of the map
is contained in N (since N is normal), contains 1G (taking x = 1G), contains just one point (the image
of a connected is connected but N is finite). Hence a commutes with any element of G.

Lemma 1.7.6. Let M be a finitely generated Z-module. The only map M →M that fits in the commu-
tative diagrams

M M

M/nM M/nM

π π

Id

for all n ∈ N, is the identity map.

Proof. We may assume M to be torsion free. Let α : M →M be a map fitting in the diagrams, we can
write it as a matrix (ai,j), with ai,j ∈ Z. By assumption we have that ai,j = 0 mod m for all i 6= j, for
all m ∈ N , i.e. ai,j = 0, analogously for i = j we have ai,i = 1. The result is proven.

Thanks to the equivalence of categories displayed by Theorem 1.7.3, we have that the only endomor-
phism of a group of multiplicative type whose restriction to the n-torsion is the identity map for any
n ∈ N, is the identity.

Proof of Theorem 1.7.4. Thanks to the first lemma the n-torsion of N is central in G for any n ∈ N.
The union of all the n-torsion point of N is still central, and so does their Zariski-closure. In virtue of
the second lemma, this is enough to conclude.

Remark. Notice that the groups of multiplicative type are not closed by extensions. For example let
σ : Gm → Gm be the automorphism given by x 7→ x−1, Gm o 〈σ〉 is not even commutative.
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Another property for a torus we will consider is the following.

Definition 1.7.7. A k-torus T is called anisotropic if X∗(T )Γk is trivial.

Proposition 1.7.8. Every torus admits a largest split sub-torus Ts and a largest anisotropic sub-torus
Ta. Moreover Ts ∩ Ta is finite and T = Ts · Ta (over k).

Proof. For the proof see [Mil11], Corollary 14.26.

1.8 More about semisimple groups
We can characterise this properties in terms of commutative subgroups (if k is not perfect, also in

the smooth case, just one implication holds) as follows.

Proposition 1.8.1. Let G be a connected algebraic group. The following hold.

a) G is semisimple if and only if every connected normal commutative subgroup is trivial.

b) G is reductive if and only if every connected normal commutative subgroup is a torus.

Proof. We prove just the easy implication, for the converse we refer the reader to [Mil11], Proposition
17.7. In a) , if G is semisimple and H ⊂ G connected normal, then Hk = 1, hence H = 1. In b), If G is
reductive and H ⊂ G is as above, then Hk ⊂ RGk, which has no unipotent subgroups.

Theorem 1.8.2. If G is reductive then the derived group G′ of G is semisimple, the connected center
Z(G)◦ of G is a torus, and Z(G) ∩G′ is the (finite) center of G′; moreover

G = Z(G)◦ ·G′.

Proof. As usual it is enough to prove the result over the algebraic closure of k. Since RG is connected
and (RG)u = 0, then Theorem 1.5.5 ensure that RG is a torus. By Theorem 1.7.4 is contained in Z(G)◦

and by maximality of RG we conclude that Z(G)◦ = RG is a torus.
Notice that Z(G)◦ · G′ is a normal subgroup of G and the quotient G/Z(G)◦ · G′ is trivial: It is

commutative (being a quotient of G/G′) and semisimple (being a quotient of G/Z(G)◦ = G/RG = Gss,
since G is reductive). Hence the decomposition G = Z(G)◦ ·G′ is proven.

Consider the exact sequence (using the isomorphism as in the proof of Lemma 1.5.3)

1→ Z(G)◦ ∩G′ → G′ → G/RG→ 1,

since Z(G)◦∩G′ is finite (for this computation we refer the reader to [Mil11], the proof of Theorem 17.20),
G′ must be semisimple. Of course Z(G) ∩ G′ is contained in Z(G′), but we have also Z(G′) ⊂ Z(G),
since G = Z(G)◦ · G′ and Z(G)◦ is commutative; hence Z(G) ∩ G′ is the center of G′. The result is
proven.

We can summarise the properties proven until now in the following proposition.

Proposition 1.8.3. Let G be a reductive k-group. The following are equivalent.

- G is semisimple;

- there is no normal subtorus Gm ⊂ G;

- the center of G is a finite group scheme;

- the derived subgroup of G is equal to G;

- G is character free;

- any invertible function on G is constant.

Proof. We have already proven that, for a semisimple group G, G = Gss. It follows that Ĝ = 1;
Rosenlicht’s Theorem implies that k[G]∗ ∼= k∗. The previous proposition shows that, if G is semisimple,
G = G′. For missing equivalences we refer the reader to [CT07], Proposition 4.17.
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1.9 Borel and parabolic subgroups
Definition 1.9.1. A Borel subgroup of a linear algebraic group G is a subgroup B such that Bk is a
maximal connected solvable subgroup of Gk.

The main goal of this section is to prove the following results.

Theorem 1.9.2. Let G a reductive group over k.

a) The quotients by a Borel subgroups produce a projective variety.

b) Any two Borel subgroups of G are conjugate by an element of G(k).

Remark. It is not possible to obtain an analogue of Theorem 1.6.2 for Borel subgroups. Indeed quasi-split
groups over a field are reductive groups with a Borel subgroup defined over the field. In [Ser73], III-2.2
Theorem 1 is proven that, for a perfect field k, each linear k-group contains a Borel subgroup defined
over k if and only if H1(k,G) = 0 for all connected linear group L. In particular this implies that k has
cohomological dimension smaller or equal to 1, hence it is possible to find a non quasi-split group, for
example, over any number field.

Theorem 1.9.3. For any Borel subgroup B of G, G = ∪g∈G(k)g
−1Bg.

Proof. For the proof see [Mil11], V. Theorem 3.24.

Remark. Bruhat decomposition.
In the case k = k a generalization of Borel subgroups is also useful.

Definition 1.9.4. Let G be a group over k. A subgroup P of G is parabolic if the quotient variety G/P
is projective.

Theorem 1.9.5. Let G be a connected algebraic k-group and P a subgroup. Then P is parabolic if and
only if it contains a Borel subgroup.

Proof. For the proof see [Mil11], V-Theorem 3.27. The only missing ingredient to prove this result is the
Borel fixed point theorem.

1.10 Split reductive groups
Definition 1.10.1. A reductive group is split if it contains a split maximal torus.

Remark. Having a torus that is maximal among the split tori, i.e. a maximal split torus, is a different
property.
Example. Any reductive group over an algebraically closed field, thanks to Remark 1.6.
Example. GLn is split reductive (over any field), with maximal split torus Dn. SLn is a split semisimple
group, with split maximal torus given by the diagonal matrices of determinant 1.

1.10.1 Kneser-Tits conjecure
In this section we briefly describe a result we will use in what follows. For more about this topic we

refer the reader to [Gil07a] and [Tit77].
For a (connected) reductive k-group G we write G+(k) for the normal subgroup of G(k) generated

by U(k), where U runs trough the k-subgroups of G isomorphic to the additive group Ga. The quotient

W (G, k) := G(k)/G+(k)

is called the Whitehead group of the group G/k. The original conjecture of Kneser-Tits asserts that
W (G, k) = 1 for any simply connected group G such that G(k)/Z(G(k)) is simple.

In the exposé of Tits, [Tit77], are presented many evidences of the conjecture (and also counterex-
amples, due to Platonov); in particular we are interested in the following.

Theorem 1.10.2. Let G be a split reductive group on a field of characteristic 0, then W (G, k) = 1.

Proof. For the proof see [Tit77], Theorem 1.1.2.
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Remark. Notice that any k-group G with trivial Whitehead group has the following interesting property:
It is “A1

k-connected”, in the sense that for any x, y ∈ G(k) there are algebraic maps

h1, . . . , hm : A1
k → G

such that h1(0) = x, hi(1) = hi+1(0) for i = 1, . . . ,m− 1 and hm(1) = y.

1.11 Root Data from algebraic group

1.11.1 Lie algebra associated and the adjoint representation
Denote with k[ε] the ring of dual numbers and denote π : k[ε] → k the map given by ε 7→ 0, and

i : k → k[ε] the canonical inclusion.

Definition 1.11.1. Let G an algebraic group, its Lie algebra is Lie(G) = Ker(G(k[ε])→ G(k)).

The following proposition is just a corollary of the general theory of algebraic derivations.

Proposition 1.11.2. Let I be the kernel of ε : O(G)→ k. Then Lie(G) is isomorphic to Homk(I/I2, k),
in particular it is a k-vector space.

Example. Lie(Ga) = k and Lie(GLn) = gln, the Lie algebra of n×n-matrices over k with the Lie bracket
given by [X,Y ] = XY − Y X; Lie(SLn) = sln := {A ∈ gln | tr(A) = 0}

Given an algebraic group G we have a canonical morphism of algebraic group

Ad : G→ Aut(Lie(G))

given by
x 7→ Ad(x)

where Ad(x) is the automorphism defined by y 7→ i(x)yi(x)−1. We call the map Ad the adjoint repre-
sentation.

1.11.2 Root Data
Regarding the root datum we follow [Spr79], section 1 and 2.

Definition 1.11.3. A root datum is a quadruple Ψ = (X,R,X∨, R∨) where: X and X∨ are free Z-
modules of finite rank in duality by a pairing X ×X∨ → Z denoted by 〈, 〉, R and R∨ are finite subsets
of X and X∨ in bijection α↔ α∨. For α ∈ R define an endomorphism sα of X, respectively sα∨ of X∨,
by

sα : x 7→ x− 〈x, α∨〉α, sα∨ : y 7→ y − 〈α, y〉α∨.

And impose the following axioms:

(RD1) For all α ∈ R, 〈α, α∨〉 = 2;

(RD2) For all α ∈ R, sα(R) ⊂ R and sα∨(R∨) ⊂ R∨.

Remark. From the first axiom we have that sα(α) = −α, s2
α = 1 and sα(x) = x if 〈x, α∨〉 = 0. Hence sα

should be thought as an abstract reflection in the hyperplane orthogonal to α∨.
The main goal of this section is to associate to each pair (G,T ) made of a reductive group G and

a split maximal torus T , a root datum Ψ(G,T ). If we fix also a Borel subgroup containing T , we can
obtain something more: a based root datum.

Let (G,T ) be a split reductive group, and consider the adjoint representation

Ad : G→ GL(Lie(G)).

Recall the standard fact that semisimple element (i.e. diagonalizable over k) are simultaneously diago-
nalizable if and only if they commute (see, for example, [Con14], Theorem 5.1). Since the image of T via
Ad is made by semisimple commutative element an action on Lie(G) be can consider the decomposition

Lie(G) = g0 ⊕
⊕
χ

gχ,
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where g0 is the subspace on which T acts trivially and gχ is the subspace with the action given by a non
trivial character χ. The non zero χ appearing in this decomposition are called roots of (G,T ), denoted
with R; it is a finite subset of X∗(T ). This association determines the root datum Ψ(G,T ) attached to
(G,T ).

The importance of the root data is due to the following important result.

Theorem 1.11.4 (Chevalley Classification Theorem). Two semisimple linear algebraic groups are iso-
morphic if and only if they have isomorphic root data. For each root datum there exists a semisimple
algebraic group which realizes it.

Proof. For the proof see [Spr79], Theorem 2.9 i).

1.11.3 Isogeny, More Root Data
Definition 1.11.5. A surjective homomorphism G→ H of algebraic k-groups with finite kernel is called
an isogeny. Notice that, by Theorem 1.7.4, we have that (in characteristic zero) every isogeny is central.

In the category of split reductive groups we define a central isogeny of (G,T ) to (G′, T ′) as an isogeny
G→ G′ such that Im(T ) = T ′. In terms of root data the following definition make sense: Let Ψ = (X,R),
Ψ′ = (X ′, R′) be two root data, a homomorphism f : X ′ → X is called an isogeny of Ψ′ in Ψ if

- f is injective and Im f has finite index in X;

- f induces a bijection of R and R′, and its transpose a bijection between R∨ and R′∨.

Proposition 1.11.6. If φ is a central isogeny of (G,T ) onto (G′, T ′), then φ∗ : χ∗(T ) → χ∗(T ′) is an
isogeny of Ψ(G′, T ′) into Ψ(G,T ). Moreover, given two isognenies φ, φ′ as before, if φ∗ = φ′

∗ then they
differ by conjugation by an element of t, i.e. there exists t ∈ T with φ′ = φ ◦ Int(t).

Proof. For the proof see [Spr79], Proposition 2.5 and Theorem 2.9 ii).

Corollary 1.11.7. There is a split exact sequence

1→ Int(G)→ Aut(G)→ Aut(φ0(G))→ 1,

where φ0(G) is the based rood datum associated to a triple (G,B, T ), with G a connected reductive
algebraic group.

Proof. See [Spr79], Proposition 2.13, Corollary 2.14.

1.12 Important properties of semisimple simply connected alge-
braic groups

Definition 1.12.1. Let G be semisimple k-group, we say that G is semisimple simply connected if there
is no connected finite étale Galois cover of Gk. An arbitrary (connected) k-group G is called simply
connected if it is an extension of a semisimple simply connected group by an unipotent. In particular a
reductive simply connected group must be semisimple.

The properties of G, a semisimple simply connected algebraic group defined over a field k of charac-
teristic zero, we will use more often are the following:

- k[G]∗ ∼= k∗;

- Pic(G) = 0;

- Br(G) ∼= Br(k).

The first property is clear and holds for any semisimple group, as proven in Proposition 1.8.3. The last
two require more work, we devote this section to their proofs.

Remark. Suppose G is a k-group such that k[G]∗ = k∗ and Pic(G) = 0. Of course those assumptions
are satisfied by any unipotent group, but if we suppose G to be reductive then G must be a semisimple
simply connected algebraic group. The proof of this fact will be clear using Proposition 1.8.3 and 1.12.5.
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1.12.1 The existence of a simply connected covering
The results discussed in this section are useful in many situation.

Theorem 1.12.2. Let G be a semisimple k-group. There exists a uniquely defined isogeny Gsc → G,
where Gsc/k is a semisimple simply connected k-group. The kernel is a finite k-group of multiplicative
type whose character group is the Γk-module given by Pic(Gk).

Proof. For the proof see [CT07], Proposition 4.22. Over k see also [FI73], Section 4.

Studying arithmetic properties of a group G, it is quite common to encounter “covering” of a group
G, i.e. short exact sequences

1→ B → G̃→ G→ 1

with different properties on B (eg. finite or a torus) and on G̃ (eg. semisimple simply connected,
a product of a quasi trivial torus and a semisimple simply connected group). The key role of such
coverings is to deduce arithmetic properties on G proving the same properties on G̃, taking in account
the subgroup B. In particular in Chapter 3 we will need the following.

Theorem 1.12.3. Let G be a reductive k-group. There exists a central extension of k-groups

1→ Z → G1 → G→ 1

such that Gss
1 is simply connected and N is a torus.

Proof. For the proof of this result, originally proved by Langlands, we refer to [MS82], Proposition
3.1.

If the group G is not reductive, we can refine the previous result as follows.

Theorem 1.12.4. Let G be a connected k-group. There exists an extension

1→ Z → G0 → G→ 1

where (G0)ssu is simply connected and Z is a torus.

Proof. Thanks to the Levi decomposition (see [PR94], Theorem 2.3), we can write G as the semidirect
product Gu oGred. Consider the exact sequence produced by the previous result:

1→ Z → G1 → Gred → 1,

it is enough to define G0 as the semidirect product Gu oG1.

1.12.2 The Picard Group of a semisimple simply connected algebraic group
The main goal of this section is to prove that Pic(G) is trivial when G is a semisimple simply connected

algebraic group defined over a number field k.

Proposition 1.12.5. For a semisimple k-group G, the following properties are equivalent.

- G is semisimple simply connected;

- There is no non-trivial isogeny G1 → G;

- Pic(G) = 0.

Proof. For the proof see [CT07], Proposition 4.19. See also Lemma 6.9, (iii) of [San81].

To show that the Picard group vanishes already over k, we recall the exact sequence of [San81],
Lemma 6.9 (i); where Bra(G) is defined as Ker(Br(G)→ Br(Gk))/Br(k).

Lemma 1.12.6. Let G/k be a connected linear group. The following sequence is exact:

0→ H1(k, Ĝ)→ Pic(G)→ Pic(Gk)Γk → H2(k, Ĝ)→ Bra(G)→ H1(k,Pic(Gk))→ H3(k, Ĝ).
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Proof. The sequence displayed is nothing else, using Rosenlicht’s Lemma, than the quotient of the
low degree exact sequence of the Hochshild-Serre spectral sequence associated to the Galois covering
Gk → G.

SinceG is semisimple, Proposition 1.8.3 implies that Ĝ = 1. In particular the exact sequence displayed
above shows that Pic(G) and Pic(Gk)Γk = 0 are canonically isomorphic. The result is proven.

Example. We prove that SLn,k is semisimple simply connected. Thanks to Proposition 1.8.3 and 1.12.5,
it is enough to prove that it is a semisimple group with trivial Picard group.

Notice that SLn,k is reductive, since it is a normal subgroup of GLn,k which is a reductive group,
and semisimple, since its center is µn,k, a finite group scheme. As a k-variety GLn,k is isomorphic to
SLn,k ×Gm, in particular we have 0 = Pic(GLn,k) ∼= Pic(SLn,k) ⊕ Pic(Gm), where the first equality
holds since Pic(An2

k ) surjects onto Pic(GLn,k), and the second using [San81], Lemma 6.6. It follows that
Pic(SLn,k) = 0.

1.12.3 The Brauer Group of a semisimple simply connected algebraic group
The main goal of this section is to prove that Br(G) is canonically isomorphic to Br(k) when G is a

semisimple simply connected group and k a number field. The proof is taken from [Gil09], see Theorem
4.3.

Theorem 1.12.7 (Bhatt). Let k be an algebraically closed field of characteristic zero. Let X/k be an
integral, quasi compact, regular scheme with function field E = k(X). Let ξ ∈ X(E) be the generic point.

Assume there exists a rational point x ∈ X(k) and morphisms

h1, . . . , hm : A1
E → X

such that h1(0) = x, hi(1) = hi+1(0) for i = 1, . . . ,m− 1 and hm(1) = ξ. Then Br(X) = 0.

Before proving the theorem we recall two useful facts; for more details about the proposition see
[Mil80], Example 2.22.

Theorem 1.12.8. Let E be a field of characteristic zero. Br(AnE) is isomorphic to Br(E) via the
structural map AnE → E.

Proof. For the proof see [AG60], Theorem 7.5.

Proposition 1.12.9. Let k be any field. Let X/k be an irreducible, quasi compact, regular scheme and
j : ξ → X the inclusion of the generic point. Then we have an exact sequence of étale X-sheaves

0→ Gm → j∗Gm →
⊕

x∈X(1)

(ix)∗Z→ 0.

The short exact sequence displayed above, combined with the Leray spectral sequence, implies the
exactness of the following

0→ Br(X)→ Br(E).

Moreover we notice that the map Br(X)→ Br(E) is the one induced in cohomology by ξ → X.

Proof of Bhatt. Thanks to the discussion above, it is enough to prove that the map induced by the
inclusion of the generic point Br(X)→ Br(E) is zero. We denote with s0, s1 : k → A1

k
the rational points

0 and 1, analogously for s0,E , s1,E : E → A1
E .

Claim 1. Let f : A1
E → X be such that s∗0,E ◦f∗ : Br(X)→ Br(E) is the zero map, then also s∗1,E ◦f∗

does. The maps s∗0,E , s
∗
1,E are two sections of π∗E : Br(E)→ Br(A1

E); since π∗E is an isomorphism (thanks
to Theorem 1.12.8) we have s∗0,E = s∗1,E .

Claim 2. Let x ∈ X(k) ⊂ X(E) and f : A1
E → X a map such that f(0) = x, then s∗0,E ◦f∗ : Br(X)→

Br(E) is trivial. Notice that the composition f ◦s0,E : E → A1
E → X, thanks to the assumption f(0) = x,

factorized through k, hence s∗0,E ◦ f∗ factorizes through Br(k) = 0.
We end by induction applying Claim 1 and 2 to get that s∗1,E ◦ h∗m : Br(X) → Br(E) is zero, where

hm ◦ s1,E is the inclusion of the generic point in X. The theorem is proven.
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Thanks to the Kneser-Tits Conjecture for split groups (see the Remark in Section 1.10.1) we have
that Br(Gk) = 0. To deduce our initial claim it is enough to prove that Bra(G) = 0. To do this it is
enough to consider the exact sequence of Lemma 1.12.6: Since G is semisimple simply connected we have
Pic(Gk) = 0 (see the previous section) and Ĝ = 1, it follows that Bra(G) = 0. The result is proven.

Corollary 1.12.10. Let G be a semisimple simply connected group, and H a k-subgroup of G. Write
X := G/H for the corresponding homogeneous space and π : G → X for the projection map.The kernel
of the map π∗ : Br(X)→ Br(G) is canonically isomorphic to Br(X)/Br(k).

Proof. Denote with πX : X → k and πG : G → k the structural maps of X and G. The above theorem
states that π∗G : Br(G) → Br(k) is an isomorphism; by functoriality it makes the following diagram
commutative:

Br(k) Br(k)

Br(X) Br(G)

Id

π∗X π∗G

π∗

To conclude it is enough to show that the kernel of (π∗G)
−1 ◦ π∗ : Br(X) → Br(k) is isomorphic to

Br(X)/Br(k); but this is true by abstract non sense and the commutativity of the previous diagram.

1.13 More about the center
Proposition 1.13.1. Let G be a linear algebraic group, and Gsc the special covering of G′. The com-
position map ρ : Gsc → G′ → G induces an isomorphism

Gsc/Z(Gsc) ∼= G/Z(G).

Proof. As usual, thanks to the Levi decomposition we may assume G to be reductive. Let µ be the
kernel of Gsc → G′, since µ is finite Proposition 1.7.4 ensures that µ = µ ∩ Z(Gsc). Moreover we have
the following morphism of short exact sequence induced by the natural inclusions:

1 µ = µ ∩ Z(Gsc) Z(Gsc) Z(G′) 1

1 µ Gsc G′ 1

Id

,

where the first sequence is right exact again by the Rigidity property. This proves the result when G is
semisimple, and it is enough to conclude in virtue of Theorem 1.8.2.

Proposition 1.13.2. Let G be a connected linear algebraic group and G′ its derived subgroup. The
following is exact

1→ Z(G′)→ Z(G)→ Gtor → 1.

Proof. It follows from the proof of Theorem 1.8.2, after a reduction to G = Gred.

Lemma 1.13.3. Let G/k be a connected algebraic group, Z its center. Then the center of G/Z is
unipotent.

Proof. For the proof see [ABD+66], Exposé XVII, Lemma 7.3.2.

Proposition 1.13.4. Let G be a reductive k-group. The quotient of G by its center is a semisimple
group which is centerless.

Proof. For the proof see [CT07], Proposition 4.21.
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1.14 Some vanishing results
In this section we resume some vanishing results for the second Tate-Shafarevich group with coefficient

in a torus. Important tools will be the Tate-Nakayama and Poitou-Tate dualities.
Let k be a number field and T a k-torus. As usual we set

X2(k, T ) = Ker

(
H2(k, T )→

∏
v∈Ωk

H2(kv, T )

)

Analogously we define X1(k, T ) and X1(k, T̂ ). Moreover we define also X2
ω(T̂ ) := {α ∈ H2(k, T̂ ), αv =

0 ∈ H2(kv, T̂ ) for almost all v ∈ Ωk}.
We state and prove Lemma 6.7 of [Bor93]. The proof is obtained from Lemma 1.9 of [San81] and

Lemma 3.4.1 of [Bor92].

Lemma 1.14.1. Let T and k as above. Assume at least one of the following holds:

i) T is a quasi-trivial k-torus (i.e. a product of tori of the form RK/kGm for K/k finite);

ii) There exists v0 ∈ Ωk such that Tkv0 is kv0
-anisotropic (see Definition 1.7.7);

iii) T is split over a finite cyclic extension K/k;

iv) T is one dimensional.

Then X2(k, T ) vanishes.

Proof. The exactness of Brauer-Hasse-Noether implies that X2(k,Gm) = 0, this proves i), since

H2(K,Gm) ∼= H2(k,RK/kGm)

by the exactness of the Weil restriction functor.
The strategy to prove ii) and iii) is the same:

Claim 1. X2(k, T ) ∼= X2(K/k, T ) where K/k is a finite galois extension that splits T .

Fact 2. X2(K/k, T ) is the cokernel of the mapH1(K/k, T (AK))→ H1(K/k, T (AK)/T (K)), which
can be identified (thanks to Tate-Nakayama duality) to the cokernel of

ς : qv∈ΩkH
−1(Gal(Kw, kv), X∗(TK))→ H−1(Gal(K/k), X∗(TK));

where w is a place of K over v and H−1 denotes the homological group H0
T modified à la Tate.

Claim 3. ς is surjective.

To prove Claim 1. notice that H1(K, T̂ ) = 0 since T̂ is a permutation Γk-module. Thanks to the
infilation-restriction exact sequence we deduce that X1(K/k, T̂ ) ∼= X1(k, (̂T )). The duality provided
by Poitou-Tate for tori proves the claim.

To prove Claim 3. we distinguish the two cases we are dealing with. In ii) we have that

H0(Gal(Kw0
, kv0

), X∗(T )) = 0,

and in particular the norm map, at the place v0, is the zero map. It follows that the component of ς at
the place v0 is a quotient of the identity map, by construction of the Tate cohomology group H−1, hence
surjective. In iii), in the whole reasoning, we can choose K to be the cyclic extension that splits T .
There exists v ∈ Ωk such that Gal(Kw, kv) is canonically isomorphic to Gal(K, k), by applying Čebotarev
Density Theorem to a generator of the cyclic group Gal(K, k). Hence ς contains a copy of the identity
map.

Since the k-forms of Gm are parametrized by H1(k, Aut(Gm)), and Aut(Gm) has two elements, we
have just two possibilities: or T is isomorphic to Gm or it splits over a quadratic field extension of k,
hence iv) implies iii).

Being a quasi-trivial k-torus is equivalent to say that T̂ is an induced Γk-module. In particular we
have also two more results.
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Lemma 1.14.2. Let T be a quasi-trivial k-torus. Then H1(k, T̂ ) = X2
ω(k, T̂ ) = 0.

Proof. The statement about H1(k, T̂ ) follows from Shapiro’s Lemma (cf. [Har12], Theorem 1.20), which
ensures that induced modules are acyclic. For the second part notice that if T = Gm, the results follows
since X2

ω(Z) = 0, by Čebotarev as in [Har12], Proposition 9.2. This is enough to conclude apply again
Shapiro’s and to reduce the case of an arbitrary quasi-trivial torus to Gm.

Proposition 1.14.3. Let T be a quasi-trivial k-torus. Then Pic(T ) = 0.

Proof. By the exact sequence 1.12.6 we have that, for any torus T , Pic(T ) is isomorphic to H1(k, T̂ ),
which is zero since T is quasi trivial (as proven above).

1.14.1 Tate-Nakayama duality
Theorem 1.14.4. Let k be a non-archimedean local field of characteristic 0. Let T be a group of
multiplicative type. The cup product defines a duality between the discrete group H2(k, T ) and the compact
group H0(k,X∗(T ))∧, where the upper script means the completion relative to the topology of subgroups
of finite index. In particular H2(k, T ) = 0 if and only if X∗(T )Γk = 0, where X∗(T ) denotes the group
of characters of T .

Proof. For the proof see [Mil06], 0.2 Corollary 2.4

More about Tate-Nakayama duality for tori can be found in [Ono63], in particular the second section
is devoted to prove the Fact we used during the proof of Lemma 1.14.1.

1.15 Important exact sequences
Theorem 1.15.1. Let G/k be a semisimple simply connected group over a local field of characteristic
zero or a number field and let Z be the center of G. The connecting map δG : H1(k,Gad) → H2(k, Z),
induced by the exact sequence 1→ Z → G→ Gad → 1, is surjective.

Before proving the Theorem we need a lemma for the local case.

Lemma 1.15.2. Let G be as above, and k a local field (real or non-archimedean), there exists a maximal
k-torus T of G such that H2(k, T ) = 1.

Proof. If k = R this is Lemma 6.18 of [PR94], if k is non-archimedean Theorem 6.21 of [PR94] pro-
duce an anisotropic maximal k-torus T which, thanks to Tate-Nakayama duality, satisfies the condition
H2(k, T ) = 1.

Proof of the Theorem. Local case. Let T be the maximal torus of the Lemma, and denote T ′ the image
of T in Gad, it is a subgroup of Gad thanks to Proposition 1.2.2. Since Z is contained in T we have a
commutative diagram wit exact rows:

1 Z T T ′ 1

1 Z G Gad 1

a

iId

.

By functoriality of cohomology, we obtain the following commutative diagram:

H1(k, T ′) H2(k, Z) H2(k, T ) = 1

H1(k,Gad) H2(k, Z)

δT a∗

i∗ Id

δG

It follows that δG ◦ i∗ is an epimorphism, and so δG does.
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Global case. Fix an element η ∈ H2(k, Z). We start showing that there exists a finite set of places
S = Sη, containing an archimedean place, such that the restrictions ηv ∈ H2(kv, Z) are trivial for all
v ∈ Ωk − S.

We choose a finite extension K/k that η ∈ Im(H2(K/k,Z)
inf−−→ H2(k, Z)), for example the fixed

field of the subgroup of Γk acting trivially on the cocycle representing η. By functoriality ηv belongs to
Im(H2(Kw/kv, Z)

inf−−→ H2(kv, Z)) where w is a place of K over v. Up to a finite number of primes, we
can suppose Kw/kv to be unramified, hence H2(Kw/kv, Z) = 1 (since the maximal unramified extension
of kv is a C1 field, see [Har12] Thm 5.1, and the fact that Z is finite) and the claim is proven.

For any place v ∈ S we choose a kv-torus Tv as in Lemma 1.15.2. By Weak Approximation, as
explained in Section 1.6.1, there exists a k-torus T in G such that, as kv-torus, it is isomorphic to Tv for
all v ∈ S. As above set T ′ for the image of T in Gad and consider the following “local to global” diagram
chasing with exact rows:

H1(k, T ′) H2(k, Z) H2(k, T )

∏
v∈Ωk

H1(kv, T
′)

∏
v∈Ωk

H2(kv, Z)
∏
v∈Ωk

H2(kv, T )

δT a∗

Since S contains a real place, by the proof of Lemma 1.15.2, one of the Tvs appearing in
∏
v∈Ωk

H2(kv, T )

is anisotropic, hence Proposition 1.14.1 ii) ensures that the vertical map H2(k, T ) →
∏
v∈Ωk

H2(kv, T )
is injective.

As in the local case it is enough to show that our η ∈ H2(k, Z) belongs to Ker(a∗) or, equivalently that
it goes to zero in

∏
v∈Ωk

H2(kv, T ). But this is true since outside S it is already zero in
∏
v∈Ωk

H2(kv, Z),
and in S we have imposed the whole H2(kv, T ) to be zero. The theorem is proven.

Proposition 1.15.3. Let k a number field and G/k be a connected group. Then the natural map
H1(k,G)→

∏
v∈Ω∞

H1(kv, G) is surjective.

Proof. For the proof see [PR94], Proposition 6.17. The proof consists in two steps: a reduction to the
case of tori, and the proof for tori. We sketch a simple argument to show the result when G = T a
k-torus, using the dualities of the previous section. The cokernel of H1(k,G) →

∏
v∈Ω∞

H1(kv, G) can
be identified, as in the proof of Lemma 1.14.1, with X2

Ω∞
(k, T ). The result follows since ΓR is cyclic.

We conclude this section with an important and hard fact.

Theorem 1.15.4. Let G be a semisimple simply connected group over a non archimedean local field k.
Then H1(k,G) = 1.

Proof. This is Theorem 6.4 of [PR94], its proof occupies the sections 6.6 (for classical groups) and 6.7
(for Exceptional groups). A uniform proof, based on Bruhat-Tits theory, is also possible.

1.16 Extension of algebraic groups
With Extr we will denote the Yoneda Ext. For much more about this we refer to [Mil06] or the notes

[Har06].

Proposition 1.16.1. Let k be a field of characteristic zero. Let N be a finite k-group scheme. For any
r ≥ 0, there exists a canonical isomorphism

Extrk(N,Gm) ∼= ExtrΓk(N(k), k
∗
).

Remark. From now on, in this situation, we will confuse the two extension groups.

Proof. For r = 0 the two groups are clearly the same. Thanks the duality between k-groups and groups
of multiplicative we have that Exts

k
(Fk,Gm) = Exts(Z, F̂ ) = 0, for any s. From the degeneracy of the

spectral sequence displayed above we have

Extrk(N,Gm) ∼= Hr(k,HomZ(N(k), k
∗
)) ∼= ExtrΓk(N(k), k

∗
),

where the last isomorphism holds thanks to the composition low of derived functors, just noticing that
HomZ(−, k∗) is exact.
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1.16.1 Central extensions Hochschild cohomology
From now on Extck(H,Gm) will denote the abelian group of isomorphism classes of central extensions

of k-algebraic groups of H by Gm.

Remark. If H is a connected linear algebraic group, then any extension is central, and it is possible to
prove that Extck(H,Gm) is isomorphic to Pic(H), see [CT08] Corollary 5.7.

For the definition of Hochschild cohomology we refer the reader to [DG80] II.3 Section 1. We just
collect here two results we will use later.

Proposition 1.16.2. Let H be a constant k-algebraic group. There exists a canonical isomorphism of
abelian groups H2(H, k∗) ∼= H2

0 (H,Gm), where the second group is the group of Hochschild cohomology
of the trivial action of k-group H on the k-group Gm.

Proposition 1.16.3. Let M be a G-module, then Extck(G,M) ∼= H2
0 (G,M).

Proof. For the proof see [DG80] II.3 Proposition 2.3

1.16.2 Brauer group and central extensions
Thanks to the previous results, we are now ready to state and prove an isomorphism which will play

a crucial role in the proof of Theorem 4.2.1 (cf. [Dem15], Proposition 1.1).
Let k be a field of characteristic zero and G be a semisimple simply connected k-group. Let H

be a constant finite k-subgroup of G, write X := G/H for the corresponding homogeneous space and
π : G → X for the projection map. Write Br(X,G) for the kernel of the map π∗ : Br(X) → Br(G) (cf.
Corollary 1.12.10).

Theorem 1.16.4. There exists a canonical isomorphism

∆X : Extck(H,Gm)
∼=−→ Br(X,G) ∼= Br(X)/Br(k).

Moreover ∆X is functorial in H in the following sense: for any Z ⊂ H, set Y := G/K for the corre-
sponding homogeneous space and f : Y → X the canonical morphism; the natural diagram

Extck(H,Gm) Br(X)/Br(k)

Extck(Z,Gm) Br(Y )/Br(k)

∆X

f∗

∆Y

is commutative.

Proof. Notice that π : G → X is an X-torsor under the group H. Since H is a constant group scheme
we can consider (see for example [Mil13], Theorem 14.9) the Hochschild-Serre spectral sequence:

Ep,q2 = Hp(H,Hq(G,Gm))⇒ Hp+q(X,Gm).

Since H0(G,Gm) = k[G]∗ = k∗, the last part of the low degree exact sequence becomes

H0(k,Pic(G))→ H2(H, k∗)→ Ker(Br(X)
π∗−→ Br(G))→ H1(H,Pic(G)),

where the action of H on k∗ is trivial by construction. As explained in the beginning of Section 1.12, we
have Pic(G) = 0; it follows that H2(H, k∗) is canonically isomorphic to Br(X,G).

We have H2(H, k∗) ∼= H2
0 (H,Gm) ∼= Extck(H,Gm) where the first is an isomorphism by Proposition

1.16.2, and the second by Proposition 1.16.3. Hence we have constructed a canonical isomorphism
∆X : Extck(H,Gm)→ Br(X,G). Corollary 1.12.10 concludes the proof.

1.17 More about homogeneous spaces

1.17.1 Symmetric spaces
In this section we present an interesting example of homogeneous space.
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Definition 1.17.1. Let G/k an algebraic group. A symmetric spaces for G is an homogeneous space
X/k such that the stabilizer H is the group of invariants of an involution of Gk, i.e. of a σ ∈ Aut(Gk)
such that σ2 = Id.

The reason why we are interested in symmetric space under semisimple simply connected algebraic
groups is due to the following theorem.

Definition 1.17.2. Let G a linear algebraic k-group. An automorphism σ : G → G is semisimple if
there exists an embedding G ↪→ G0 such that σ is realized by conjugation by some semisimple element
s ∈ G0.

Theorem 1.17.3 (A basic theorem on connectedness). Let G be a semisimple, simply connected k-group.
If σ a semisimple automorphism, then the group of fixed points Gσ is connected and reductive.

Proof. For the proof see [Ste68], Theorem 8.1.

This result applies for symmetric spaces (G,H). Since G is semisimple, the group Out(G) is finite,
hence every automorphism can be realized as conjugation in a larger group and we can diagonalize every
involution (k has characteristic different from 2). This shows that the stabilizer H is connected.
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Chapter 2

Abelianization of the second
nonabelian Galois Cohomology

In this chapter we present the main results proven by Borovoi in [Bor93]. Borovoi’s results are also
discussed in [Sko01] (briefly) and in the master thesis [LA10] (with many details). Moreover the results
we present here, on nonabelian Galois cohomology, have been recently extended to a general base scheme,
see [GA12].

2.1 Lien and the second nonabelian Galois Cohomology
Let k be a field of characteristic zero, and fix an algebraic closure k. For a σ ∈ Γk we denote with

σ∗ : Spec(k)→ Spec(k), the morphism induced by σ−1 : k → k. Let p : G→ k an algebraic k-group. We
denote by SAut(G) ⊂ Aut(G/k) the subgroup of semialgebraic (or semilinear) k-automorphisms of G.
Those are the elements s ∈ Aut(G/k) such that p◦ϕ = (σ∗)◦p, for some σ ∈ Γk. Such a σ is unique, it is
enough to consider the restriction to k of the automorphism of the ring of regular function k[G] induced
by s−1. The map q : SAut(G)→ Γk sending s to σ is an homomorphism. An element s ∈ SAut(G) such
that q(s) = σ is called σ-semialgebraic.

A semialgebraic automorphism s ∈ SAut(G) is an algebraic automorphism of G (i.e an automorphism
of G as an algebraic group over k) if and only if q(s) = 1; if q(s) 6= 1 then s is not a morphism of
k-varieties. The group of algebraic automorphism of G will be denoted with Aut(G). For any x ∈ G(k)
we define int(x) for the inner automorphism of G given by y 7→ xyx−1, and we write Int(G) for the group
of inner automorphisms, i.e. the subgroup of Aut(G) given by int(x) for x ∈ G(k). We can identify
Int(G) with the quotient of G(k) by the k-points of the center. Since it is a normal subgroup in SAut(G),
it make sense to define Out(G) := Aut(G)/ Int(G) and SOut(G) := SAut(G)/ Int(G).

We have the following exact sequences:

1→ Aut(G)→ SAut(G)
q−→ Γk (2.1.0.1)

1→ Out(G)→ SOut(G)
q−→ Γk, (2.1.0.2)

where the second is obtained from the first by taking the quotient by Int(G).
We will consider the group SAut(G) equipped with the weak topology with respect to the family

of evaluation maps evx : SAut(G) → G(k), ϕ 7→ ϕ(x), where G(k) has the discrete topology (see also
[FSS98]). In other words, this is the coarsest group topology on SAut(G) such that the stabilizers of
geometric points of G are open.

Definition 2.1.1. A k-lien (k-band, k-kernel) is a pair L = (G, κ) where G is a k-group and κ : Γk →
SOut(G) is a group homomorphism satisfying

- κ is a splitting of 2.1.0.2, i.e. q ◦ κ = IdΓk ;

- κ can be lifted to a continuous map f : Γk → SAut(G).

If the map f : Γk → SAut(G) is also an homomorphism we say that L is representable.
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For a k-lien L = (G, κ) we define the second Galois cohomology set H2(k, L) = H2(k,G, κ) trying to
emulate the description in terms of cocycles of the abelian H2.

Definition 2.1.2. A 2-cocycle is a pair (f, u) of continuous maps f : Γk → SAut(G), u : Γk×Γk → G(k)
such that for any σ, τ, ρ ∈ Γk the following formulas hold:

int(uσ,τ ) ◦ fσ ◦ fτ = fστ , (2.1.0.3)

uσ,τρ · (fσ(uτ,ρ)) = uστ,ρuσ,τ , (2.1.0.4)

fσ mod IntG = κ(σ). (2.1.0.5)

The set of 2-cocycles is denoted with Z2(k, L). A cocycle of the form (f, 1) is called a neutral cocycle.

Remark. Notice that when a cocycle is of the form (f, 1), then the equation of 2.1.0.3 says that f : Γk →
SAut(G) is a continuous homomorphism.

The group C(k,G) of continuous maps c : Γ→ G(k) acts on Z2(k, L) acts on the left via the formula
c · (f, u) = (c · f, c · u) where

(c · f)σ = int(cσ) ◦ fσ, (2.1.0.6)

(c · u)σ,τ = cστ · uσ,τ · fσ(cτ )−1 · c−1
σ . (2.1.0.7)

By direct computation one shows that the action is well defined.

Definition 2.1.3. The quotient set H2(k, L) = Z2(k, L)/C(k,G) is called the second Galois cohomology
set of k with coefficient in L. A neutral cohomology class in H2(k, L) is the class of a neutral cocycle.

From now on we will denote with Cl the projection map Z2(k, L)→ H2(k, L), (f, u) 7→ Cl(f, u).

Remark. In the abelian case this definition agrees with the usual one.

Remark. A possible more natural way to define our H2 is to follow the algebraic interpretation of the
group H2(G,A) for a G-module A. Namely, this group parametrizes the equivalence classes of extensions
of the form 0→ A→ E → G→ 0 (cf. [Wei94], Classification Theorem 6.6.3). This path will lead us to
the following equivalent description of H2(k, L). Consider an extensions of topological groups

1→ G(k)→ E
q−→ Γk → 1. (2.1.0.8)

We do not require that the arrows to be continuous but we require that 2.1.0.8 is locally split, in the sense
that there exists a finite field extension K/k such that the induced map E ∩ q−1(ΓK)

qK−−→ ΓK admits
a continuous homomorphic section. Two such extensions are called equivalent if there is a topological
isomorphism of their middle terms commuting with the identities on the boundary terms. For the proof
that the two definition agree see [LA10], Proposition 2.6.3.

In [FSS98] the condition of being locally split for the extensions is replaced by the equivalent conditions
on the maps of 2.1.0.8, namely the first map has to be strict, i.e. the (discrete) topology on G(k) must
be induced by the topology on E, and the second must be open onto its image (for this equivalence see
[HS02], Appendix A: Extensions of Topological Groups).

Lemma 2.1.4 (Galois Descent). Let G a k-algebraic group. The continuous homomorphic sections of
q : SAut(G)→ Γk are in natural bijective correspondence with the k-forms of G.

Proof. If G = G × k, the map fG : Γk → SAut(G) given by σ 7→ 1 × σ∗ is an homomorphic section
of q : SAut(G) → Γk, and it is continuous because the preimage of the stabilizer of g ∈ G(k) is the
open subgroup of the absolute Galois group, defined by the the field of definition of g (which is a finite
extension of k).

Conversely for a k-group G any continuous homomorphic sections f : Γk → SAut(G) induces an
action of Γk on G(k) such that the stabilizers are open (as above). We obtain a k-form G of G defining
G = Spec(k[G]Γk). To check that G is actually a k-variety and that Gk is isomorphic to G see [Ser75],
Ch V-20, Prop. 12 and [BS63], 2.12.

Remark. Consider L = (G, κ) a k-lien with G abelian then κ is trivial, since Aut(G) = Out(G). By
Galois Descent we always obtain a k-form G of G.
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In general the set H2(k, L) does not necessarily have neutral elements, may contain more than one
neutral element, or can be empty. However for a k-group G, the class of (fG, 1), as constructed above,
is a canonical neutral element (cf. Construction 2.3.1).

Construction 2.1.5. Let L = (G, κ) be a k-lien, and N be a normal k-subgroup of G, denote with G
′

the quotient group of G by N and π : G → G
′
the projection to the quotient. If N is fixed by all the

semialgebraic automorphisms of G, e.g. N = Z(G), then it makes sense to consider the homomorphism
π : SAut(G)→ SAut(G

′
) and the homomorphism κ′ = π ◦ κ : Γk → SOut(G

′
). We have constructed the

quotient k-lien L′ = (G
′
, κ′). Moreover we can define a canonical map

π∗ : H2(k, L)→ H2(k, L′), Cl(f, u) 7→ Cl(π ◦ f, π ◦ u)

which restricts to the set of neutral elements.

Two examples of this construction we will often use are the following.

• If N contains the derived subgroup of G then G
′
is abelian, and so κ′ : Γk → SOut(G

′
) is a

continuous homomorphism Γk → SAut(G
′
). By Galois descent it determines a k-form G′ of G

′
,

and we obtain a map π∗ : H2(k, L)→ H2(k,G′), where H2(k,G′) is the usual Galois cohomology
group for abelian Γk-modules.

• Let L = (G, κ) be a connected k-lien and consider t : G→ G
tor

, where G
tor

is the k-torus G
red
/G

ss
.

By construction the subgroup Ker(t) contains the derived subgroup of G, and it is fixed by the
elements of SAut(G). As in the previous case we obtain a k-form Gtor of G

tor
and a canonical map

t∗ : H2(k, L)→ H2(k,Gtor). This map will pay a crucial role in the study of neutral elements.

2.1.1 The action of H2(k, Z)

Let L = (G, κ) be a k-lien, and Z be the center of G. We can consider the restriction homomorphism
SAut(G) → SAut(Z) which, since Z is abelian, factorizes through SOut(G). The composition Γk

κ−→
SOut(G) → SAut(Z), by Galois descent, determines a k-form Z of Z, which will be called the center of
L. Notice that, in the case L = (Gk, κG) for a k-group G, this notion agrees with the usual definition of
center.

For any k-lien L = (G, κ) the abelian group H2(k, Z) acts on the set H2(k, L) by the formula
Cl(ϕ) + Cl(f, u) = Cl(f, ϕu) where ϕ ∈ Z2(k, Z), (f, u) ∈ Z2(k, L). The action is well defined since Z is
commutative: for any c ∈ C(k,G), we have ϕ(cu) = c(ϕu); the same reasoning applies to c′ ∈ C(k, Z).

Lemma 2.1.6. Let L and Z be as above. If H2(k, L) 6= ∅, then the action of H2(k, Z) on H2(k, L) is
simply transitive.

Proof. A detailed proof can be found in [LA10], Proposition 2.6.1. Here we just notice that, give two
elements Cl(f, u),Cl(f ′, u′) ∈ H2(k, L) we can always suppose f = f ′. By 2.1.0.5 we know that fσ = f ′σ
mod IntG for all σ ∈ Γk; lifting the association cσ = fσ(f ′σ)−1 ∈ IntG to G, we obtain a continuous
map c : Γk → G(k) such that cf ′ = f .

2.1.2 An exact sequence
Let G be a discrete Γk group, and B a subgroup of G (not necessary normal). The set of continuous

maps Γk → G satisfying σB = a−1
σ Baσ and aσσaτa−1

στ ∈ B, denoted with Z1(Γk, G,B), is called the set
of relative 1-cocycle. Given an element a ∈ Z1(Γk, G,B) the map

κa : Γk → SOut(B), σ 7→
(
b 7→ aσ

σba−1
σ mod Int(B)

)
makes (B, κa) a k-lien. We define H2(k,BrelG) as the following set( ∐

a∈Z1(Γk,G,B)

H2(k, (B, κa))
)
/N

where N is the normalizer of B. For more details see [LA10].
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Proposition 2.1.7. Let G be a k group, and N ⊂ G be a normal k-subgroup fixed by all the semialgebraic
automorphisms of G. There exists a an exact sequence of pointed set

1→ H0(k,N)→ H0(k,G)→ H0(k,G/N)→ H1(k,N)→

→ H1(k,G)→ H1(k,G/N)→ H2(k,NrelG)→ H2(k, L)

where L = (Gk, κG) is the trivial lien structure given by G on Gk, as in Lemma 2.1.4.

Proof. For the proof see [LA10], Corollary 2.9.1.2 (see also Proposition 2.9.1 if N is not normal in G).

2.2 The Springer class of a homogeneous space
To a homogeneous space X/k of an algebraic group G/k, we want to associate a lien L = (H,κ),

where H is the stabilizer of some point x0 ∈ X(k) (not necessarily defined on k), and a cohomology class
ηX ∈ H2(k, L).

Construction 2.2.1 (the k-lien L = (H,κ)). For σ ∈ Γk we write σx0 = x0 · gσ where gσ ∈ G(k) in
such a way that the map σ 7→ gσ is continuous (up to multiply gσ by an element of H(k)). Consider
fσ = int(hσ) ◦ σ∗ ∈ SAut(Gk), it can be restricted to an element of SAut(H). Then the map f : Γk →
SAut(H) is continuous, the composition

κ : Γ
f−→ SAut(H)→ SOut(H)

is an homomorphism, and L = (H,κ) is a k-lien.

Construction 2.2.2 (the class ηX ∈ H2(k, L)). For any σ ∈ Γk consider gσ as above, and set

x ∈ Gk νσ(x) = gσ · σx, νσ = lgσ ◦ σ∗

where lgσ : Gk → Gk is the left translation by gσ. Then νσ is a σ-semialgebraic Gk equivariant automor-
phism of Gk, compatible with σ∗. Consider the following automorphism of Gk :

λσ,τ = νστ ◦ ν−1
τ ◦ ν−1

σ

Notice that ν−1
σ is the map sending x ∈ Gk to σ−1

(gσ)−1 · σ−1

x, and so, by direct computation, we have

λσ,τ (x) = uσ,τ · x

where uσ,τ = gστ ·
σ
g−1
τ · g−1

σ ∈ H(k).
Let f be the map constructed above, the reader can check that (f, u) ∈ Z2(k, L) where L = (H,κ)

as above. We set ηX = Cl(f, u) to be the Springer Class of a homogeneous space X.

Remark. The Springer Class has a nice description also as extension. Namely it is defined by

1→ H → EX → Γk → 1

where EX is the subgroup of G(k) o Γk made of the elements gσ such that g · x0 = σ(x0); cf. [FSS98]
(5.1).

The two constructions show the existence of a k-torsor Y underG and aG-equivariant map α : Y → X
defined over k, namely Y = Gk, and α : Y → Xk given by g 7→ x0 · g. We can interpret the class
ηX ∈ H2(k, L) as an obstruction to define the pair (Y , α) over k.

Proposition 2.2.3. Let X/k be a (right) homogeneous space of an algebraic group G/k. The following
hold.

a) If X(k) 6= ∅ then ηX is neutral.

b) The class ηX is neutral if and only there exists a k-form (Y, α) of (Y , α).

Proof. a) In this case the stabilizers H is defined over k, the element gσ of Construction 2.2.1 can be
chosen to be the identity, hence the uσ,τ we have exhibited above is trivial.

b) If ηX is trivial we obtain the relation 1 = uσ,τ = gστ ·
σ
g−1
τ · g−1

σ for a certain family (gσ); this
means that ν : Γk → SAut(Gk) is a (continuous) homomorphism. Via Galois descent it define a k form
of the pair (Y , α), hence we obtain a pair (Y, α) as wanted. Viceversa, given a k-form (Y, α) we can take
νσ to be σ∗. As in the previous point, this concludes.
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Statement b) suggests that, if the class ηX is neutral, we could deduce the Hasse principle for homo-
geneous spaces from the Hasse principle for principal homogeneous spaces. This remark, combined with
the Kneser, Harder and Chernousov’s Hasse Principle, produces the following result.

Theorem 2.2.4. Let X/k a homogeneous space of a semisimple simply connected algebraic group G/k
with connected stabilizers. If the class ηX is neutral, then the Hasse principle (with respect to the real
places) holds, i.e. if X(kv) 6= ∅ for all archimedean places v of k, then X(k) 6= ∅.

Proof. Since ηX is neutral we can consider Y → X as in Proposition 2.2.3. Moreover there exits a
connected algebraic group H defined over k such that the isomorphism class of Y in H1(k,G) is defined
up to twist by an element of H1(k,H). To produce such an H consider AutX,G(Y ), the group of G-
automorphism of Y → X; over k it is isomorphic to the stabilizer of a k-point of X, and inherits a non
trivial action of Γk (since G, Y and X are defined over k), we define the group scheme H choosing a
k-form of the above group. It is connected since it does on k, by assumption: k-scheme is geometrically
connected if and only if its base change to k is connected.

Choose some points Pv ∈ X(kv) for all v ∈ Ω∞, and consider the classes of the fibers [YPv ] ∈
H1(kv, H). Since the map

H1(k,H) −→
∏
v∈Ω∞

H1(kv, H)

is surjective for any connected k-group H (see Prop. 1.15.3), we can consider a k-torsor under H whose
class restricts to [YPv ] for all v ∈ Ω∞. Twisting Y by this torsor, we force Y (kv) 6= ∅ for all v ∈ Ω∞, the
result of Kneser, Harder and Chernousov for torsors under semisimple simply connected groups ensure
that Y (k) 6= ∅; in particular X(k) 6= ∅.

The rest of the chapter will be devoted to give a precise description of the neutral elements, in order
to have sufficient condition to apply the previous theorem in many concrete situations.

2.3 Neutral cohomology classes
Let G be k-group. To any k-form G of G we want to associate a neutral cohomology class n(G), the

neutral cohomology class defined by the form G of G.

Construction 2.3.1. As in the proof of Galois Descent, to the k-form G we can associate a continuous
homomorphism f = fG : Γk → SAut(G). Define κG : Γk → SOut(G) via the association σ 7→ fσ
mod Int(G), therefore it makes sense to consider the neutral cohomology class n(G) := Cl(fG, 1) ∈
H2(k, (G, κG)) =: H2(k,G).

Remark. LetG, G be as in Construction 2.3.1, and set Z = Z(G). Consider a cocycle ψ ∈ Z1(k,G/Z); the
twisted group G′ = ψG (see [Ser73], I 5.3), determines, via Galois Descent, a continuous homomorphism
f ′ = fG′ : Γk → SAut(G) satisfying the relation f ′σ = ψσfσ. Thanks to the relations (due to the equality
(G/Z)(k) = Int(G))

f ′σ mod Int(G) = fσ mod Int(G) = κG(σ),

the neutral cohomology class n(G′) = Cl(f ′, 1), defined by G′ = ψG lies in H2(k, (G, κG)).
In particular, if the cocycle ψ is obtained as the projection of a cocycle with values in G, say ϕ ∈

Z1(k,G), we have (fG′ , 1) = ϕ · (fG, 1); in particular in this case n(G) = n(G′).
The following lemma allows us to study the neutral classes η ∈ H2(k, L) for any k-lien L = (G, κ),

in the easier case when L is a k-lien associated to a k-form of G.

Lemma 2.3.2. Let L = (G, κ) be a k-lien and η ∈ H2(k, L) a neutral class. There exists a k-from G
of G such that η = n(G). Moreover such a k-form is uniquely determined up to twisting by a cocycle
ϕ ∈ Z1(k,G).

Proof. For some homomorphism f : Γk → SAut(G), we can write η = Cl(f, 1); by Galois Descent it
corresponds to a k-form G of G. By Construction 2.3.1, we have η = n(G). To conclude it is enough to
notice, thanks to the above Remark, that the relation (f ′, 1) = ϕ · (f, 1) for some ϕ ∈ C(k,G) can hold
if and only if ϕ ∈ Z1(k,G). This follows from the equality

1 = ϕ · 1 = ϕστfσ(ϕτ )−1ϕ−1
σ .
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The main goal of this section is to characterize neutral elements as follow.

Proposition 2.3.3. Let G be a k-group, and Z its center. An element η ∈ H2(k,G) is neutral if and
only if η − n(G), in the sense of Lemma 2.1.6, belongs to the image of δG : H1(k,G/Z)→ H2(k, Z).

With δG we mean the connecting map. We briefly recall its construction (cf. [Ser73], I-5.6): given a
cocycle ψ ∈ Z1(k,G/Z), choose a continuous lifting of ψ in C1(k,G), namely σ 7→ ψ̃σ ∈ G, and define
λσ,τ = ψ̃σ

σ
ψ̃τ ψ̃

−1
στ . One can check that λ is a 2-cocycle with values in Z, and that this association is well

defined; it make sense to define δG(Cl(ψ̃)) = Cl(λ).
Before proving the characterization of neutral elements we need two lemmas.

Lemma 2.3.4. An element η ∈ H2(k,G) is neutral if and only if η = n(ψG) for some ψ ∈ Z1(k,G/Z).

Proof. If η = n(ψG), then it is neutral by the above Remark. For the converse we write n(G) = Cl(f, 1),
η = Cl(f ′, 1); as in the proof of Lemma 2.1.6, we have f ′σ = ψσfσ for some ψ ∈ C(k,G). By the equation
of 2.1.0.5 we have ψσ ∈ Int(Gk) = (G/Z)(k). To conclude it is enough to show that ψ is a cocycle. This
follows from 2.1.0.3, since ψστ = ψσfσψτf

−1
σ = ψσ · σψτ . We have η = Cl(ψf, 1) = n(ψG), hence the

result is proven.

Lemma 2.3.5. Let G be a k-group, Z its center and ψ ∈ Z1(k,G/Z). Then n(ψG)−n(G) = δG(Cl(ψ)).

Proof. As in the previous lemma, we write f, f ′ : Γk → SAut(Gk) for the homomorphisms defined by G
and ψG, with the relation f ′ = ψf .

Now we follow the construction displayed above: Let ψ̃ ∈ C1(k,G) be a continuous lifting of ψ. By
the relations of 2.1.0.6 and 2.1.0.7 we can write (ψf, 1) = ψ̃ · (f, λ), where λσ,τ = ψ̃−1

στ · ψ̃σ · fσ(ψ̃τ ). Since
λ takes value in the center (because it is defined in terms of the lifting of a cocycle with values in G/Z),
we can rewrite λσ,τ = ψ̃σfσ(ψ̃τ )ψ̃−1

στ . By definition we have Cl(λ) = δG(Cl(ψ)). Our construction proves
the following equalities:

Cl(ϕf, 1) = Cl(f, λ) = Cl(λ) + Cl(f, 1) = δG(Cl(ψ)) + Cl(f, 1).

It follows that n(ψG)− n(G) = Cl(ϕf, 1)− Cl(f, 1) = δG(Cl(ψ)); which was the claim.

Proof of Proposition 2.3.3. Let η ∈ H2(k, L) be a neutral element and write η = n(ψG), as in Lemma
2.3.4. By lemma 2.3.5 we have that n(ψG)− n(G) belongs to the image of δG.

Viceversa, let η ∈ H2(k, L) be any element such that η − n(G) ∈ Im(δG), i.e. η = δG(Cl(ψ)) + n(G)
for some ψ ∈ Z1(k,G/Z). Lemma 2.3.5 allows us to write n(G) = n(ψG) − δG(Cl(ψ)). Combining the
two equations we get η = n(ψG), hence η is neutral.

2.3.1 Reductive case
Let G be a connected reductive k-group and G0 a k-form of G (it exists by Chevalley, see [Spr98],

Theorem 9.6.2 and Theorem 16.3.3). In the same spirit of Section 1.11.3, we fix T ⊂ G0 a split maximal
torus and B a Borel subgroup containing T . To the triple (G0, B, T ) is associated the based root datum
Ψ(G0, B, T ). As in Proposition 1.11.6, we have an exact sequence

1→ Gad
0 (k)→ Aut(G0k)→ Aut(Ψ)→ 1

To any roots α of Ψ we obtain a splitting Aut(Ψ) → Autk(G0) ⊂ Aut(G0k) of the sequence displayed
above (cf. [BT65] 2.3), and such a splitting is Γk-equivariant since Γk acts trivially on Ψ. Moreover,
thanks to this exact sequence, we conclude that Out(G) ∼= Aut(Ψ), Γk-equivariantly.

Lemma 2.3.6. Let G be a connected reductive group. The set of k-lien L = (G, κ), with G given, is
canonically in bijection with the set of continuous homomorphisms Γk → Aut(Ψ).

Proof. The k-form G0, obtained as above, defines a splitting of SAut(G)→ Γk in virtue of Galois descent;
in particular we can write SOut(G) as semidirect product of Out(G) and Γk. As discussed above Γk acts
trivially on Aut(Ψ) ∼= Out(G), hence the semidirect product can be rewritten as

Aut(Ψ)× Γk ∼= SOut(G). (2.3.1.1)

Now the data of a k-lien structure corresponds to a continuous morphism Γk → SOut(G), which splits
2.1.0.2, which, composed with the projection on the first factor, can be seen as a map Γk → Aut(Ψ).
Viceversa, given f : Γk → Aut(Ψ), a k-lien structure is given by (f, 1) : Aut(Ψ)×Γk ∼= Out(G)→ Γk.
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We have developed all the machinery to prove the main result of the section.

Proposition 2.3.7. Let L = (G, κ) be a connected reductive k-lien. The set of neutral cohomology
classes in H2(k, L) is non empty.

Proof. The previous lemmas associates to L = (G, κ) a morphism µ : Γk → Aut(Ψ). Consider the map
ψ : spl ◦ µ, where spl : Aut(Ψ) → Aut(G) is a splitting associated to a certain root of Ψ. Since, as
remarked above, Γk acts trivially on the image of spl we have that ψ belongs to Z1(k, Aut(G0)), just
because it is a homomorphism. We can consider n(ψG0) ∈ H2(k, L) (since f

ψG0
= κ mod Int(G)).

Clearly it is a neutral element; the result is proven.

2.3.2 Non-reductive case
Let L = (G, κ) be a k-lien, not necessarily connected. The unipotent radical of G

◦
, denoted with G

u
,

is a normal subgroup invariant under all elements of SAut(G). By the Quotient Construction 2.1.5 we
can consider the k-lien Lred = (G

red
, κred) and a canonical map r : H2(k, L) → H2(k, Lred) associated

to the group G
red

= G/G
u
. From the construction we know that the map r send neutral elements to

neutral elements; viceversa we have the following result.

Proposition 2.3.8. Let L = (G, κ) be k-lien. An element η ∈ H2(k, L) is neutral if and only if
r(η) ∈ H2(k, Lred) is neutral.

Proof. If G
u

= 1 the assertion is clear. We argue by induction. Consider the center Z of G
u
, in virtue

of Proposition 1.4.7 we have dimZ > 0. Since Z satisfies the assumptions of the Quotient Construction
2.1.5, we can consider the k-lien L′ = (G

′
, κ′) and a canonical map v : H2(k, L)→ H2(k, L′) associated

to G
′

= G/Z. Since dim(G
′u

) < dim(G
u
), we may assume the result holds for L′.

Let η = Cl(f, u) ∈ H2(k, L) be such that r(η) is neutral. By the commutativity of the diagram

H2(k, L) H2(k, Lred)

H2(k, L′) H2(k, L′red)

r

v

r′

and the previous remark, we know that v(η) = Cl(f ′, u′) is neutral, i.e. u′ = 1 and f ′ is an homomorphism
(where f ′ and u′ are the applications obtained form f and u taking the quotient, upto changing (f, u)
with a suitable cohomologous cocycle). By restriction of the target of u to Z and via the map SAut(G)→
SAut(Z), we can interpret (f, u) as an element of H2(k, Z, κ). Since Z is abelian, as in the Remark to
Galois Descent, we have always a k-form Z of Z and, by Proposition 1.4.5 (which can by applied by
Proposition 1.4.3) we have H2(k, Z, κ) = H2(k, Z) = 0. It follows that Cl(f, u) = 1 in H2(k, Z), i.e.
there exists c ∈ C1(Γk, Z(k)) such that

cστuσ,τfσ(cτ )−1c−1
σ = 1.

This means that c · (f, u) is a neutral cocycle, hence η = Cl(f, u) ∈ H2(k, L) is neutral. The proposition
is proven.

Corollary 2.3.9. Let (U, κ) be a unipotent k-lien. Then any element η ∈ H2(k, (U, κ)) is neutral.

Proof. By Proposition 1.4.2 we have U
red

= 1, and so we can apply the previous result.

In the same spirit of Theorem 2.2.4, we can now prove the following; cf. [Bor96], Lemma 3.2.

Proposition 2.3.10. Let U be a unipotent k-group and X/k a homogeneous space of U . Then X(k) 6= ∅.

Proof. Let H be the stabilizers of a k point of X, since it is a subgroup of Uk it is unipotent (thanks
to Proposition 1.4.3). The class ηX ∈ H2(k, (H,κ)) is neutral in virtue of the previous corollary. The
result follows since any principal homogeneous space under a unipotent group has a k-point, as proven
in Proposition 1.4.5.

We conclude this section presenting a different proof of Lemma 1.13 of [San81]. As usual we specialize
our selves to the case of zero characteristic, but the proof works for every field (except for the statement
about the unipotent radical, where the field must be assumed perfect).
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Corollary 2.3.11. Let G/K be a linear group, k a field of characteristic zero. If U is a k-subgroup,
unipotent, invariant and k-solvable, then the canonical application π : H1(k,G) → H1(k,G/U) is a
bijection. In particular this is the case when U is the unipotent radical of G.

Proof. Since H1(k, U) is trivial and H2(k, (U, κ)) is made of neutral elements. Thanks to Proposition
2.1.7, we conclude.

2.4 Abelianization
A general principle, calledWhitehead principle in [Toe02], for non abelian cohomology is the following:

Non-abelian cohomology is controlled by non-abelian cohomology in degree one (i.e. torsors theory) and
usual abelian cohomology. In our case this means that the H1 and the H2 of a connected (reductive)
non commutative group can be understood in terms of the abelian groups H1 and H2 with values in a
complex of abelian groups.

In this section, for a connected k-lien L, we define an abelian group H2
ab(k, L) and an abelianization

map ab : H2(k, L) → H2
ab(k, L) which will provide necessary and sufficient conditions for an element

η ∈ H2(k, L) to be neutral (see Theorem 2.4.3).

Construction 2.4.1 (H2
ab(k, L)). Let L = (G, κ) be a reductive k-lien, and consider G

ss
, G

sc
(cf. the

notation in the introduction). We write Z, Z
ss
, Z

sc
for the center of G, G

ss
, G

sc
, respectively, and Z, Zss,

Zsc for the center (in the sense of Section 2.1.1) of the k-forms G, Gss and Gsc. The map ρ : G
sc → G

induces an homomorphism ρ : Zsc → Z defined over k.
We define H2

ab(k, L) = H2(k, (Z(sc) ρ−→ Z)[1]), i.e. the Galois hypercohomology group of k with
coefficient in the complex (Z(sc) → Z)[1].

2.4.1 The abelianization map
Consider the short exact sequence of (abelian) complexes

1→ (1→ Z)[1]
j−→ (Z(sc) ρ−→ Z)[1]→ (Zsc → 1)[1]→ 1.

This gives rise to the following exact sequence of abelian groups:

H2(k, Z(sc))
ρ∗−→ H2(k, Z)

j∗−→ H2
ab(k, L)→ H3(k, Z(sc)). (2.4.1.1)

Thanks to Lemma 2.1.6, the map j∗ : H2(k, Z)→ H2
ab(k, L) suffices to define an “association” H2(k, L)→

H2
ab(k, L); but to obtain a well defined map we need a Lemma.

Lemma 2.4.2. Let L = (G, κ) be a connected reductive k-lien. Let η, η′ ∈ H2(k, L) be neutral elements.
Then j∗(η − η′) = 0.

Proof. Since the homomorphism ρ : Gsc → G induces an isomorphism Gsc/Z(sc) ∼= Gad (as proven in
Section 1.13), it makes sense to consider the following commutative diagram with exact rows

1 Z(sc) Gsc Gad 1

1 Z G Gad 1

Idρ ρ

.

By functoriality we have the following commutative diagram:

H1(k,Gad) H2(k, Z(sc))

H1(k,Gad) H2(k, Z)

δGsc

Id ρ∗

δG

Thanks to Lemma 2.3.2, we can apply Proposition 2.3.3 to write η−η′ ∈ Im(δG : H1(k,Gad)→ H2(k, Z));
but Im(δG) = Im(ρ∗), which coincides with Ker(j∗) by the exactness of 2.4.1.1, i.e. η− η′ ∈ Ker(j∗).
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Let L be as in Lemma 2.4.2, the abelianization map ab : H2(k, L) → H2
ab(k, L) is given by the

following association: for any η ∈ H2(k, L), choose η′ ∈ H2(k, L) a neutral element (it is possible thanks
to 2.3.7), and set

ab(η) = j∗(η − η′) ∈ H2
ab(k, L)

The map is well defined since if η′′ ∈ H2(k, L) is another neutral element we have just proven that
j∗(η

′− η′′) = 0. Notice that if η ∈ H2(k, L) is a neutral element one can choose η′ = η and so ab(η) = 0.
For a general L = (G, κ) a connected k-lien (non necessarily reductive) we define H2

ab(k, L) as
H2

ab(k, Lred) and the abelianization map as the composition

ab : H2(k, L)
r−→ H2(k, Lred)

ab−→ H2
ab(k, Lred) = H2

ab(k, L)

Also in the general case, thanks to Proposition 2.3.8, the abelianization map takes neutral cohomology
classes to 0. For the opposite implication we have the following.

Theorem 2.4.3. Let k be a p-adic field or a number field. Let L = (G, κ) be a connected k-lien. An
element η ∈ H2(k, L) is neutral if and only if ab(η) = 0 in H2

ab(k, L).

Corollary 2.4.4. If, in addition to Theorem 2.4.3, G is semisimple simply connected, then every element
of H2(k, L) is neutral.

Proof of Corollary 2.4.4. Since G is semisimple simply connected we have Z(sc) = Z and the complex
(Z(sc) → Z)[1] becomes Z Id−→ Z. In particular we have H2

ab(k, L) = 0. Theorem 2.4.3 implies that every
element is neutral.

Proof of Theorem 2.4.3. By Proposition 2.3.8, we may assume L to be reduced. Let η ∈ Ker(ab). Thanks
to Lemma 2.3.2 and Proposition 2.3.7 there exists a neutral class in H2(k, L) of the form n(G) for some
k-form G of G. By assumption we have j∗(η − n(G)) = 0 and, thanks to the exactness of 2.4.1.1, we
can write η − n(G) = ρ∗(χ) for some χ ∈ H2(k, Z(sc)). Via Theorem 1.15.1, we can chose an element
ξ ∈ H1(k,Gad) such that δGsc(ξ) = χ. As explained in the proof of Lemma 2.4.2 we have δG = ρ∗ ◦ δGsc ,
in particular η − n(G) belongs to the image of δG. Proposition 2.3.3 grantees that η ∈ H2(k, L) is
neutral.

2.5 Hasse principle for nonabelian H2

Let L = (G, κ) be a connected k-lien where k is a local field of characteristic 0 or a number field.
Consider the biggest k-quotient torus of G, G

tor
= G

red
/G

ss
and the canonical epimorphism t : G→ G

tor
.

By construction G
ss

is a subgroup of Ker t, and so any semialgebraic automorphism fixes Ker t. As in
the quotient construction we can consider a k-form Gtor of G

tor
and a canonical map t∗ : H2(k, L) →

H2(k,Gtor).
Let Z,Z(sc), Z(ss) be as in the previous section. Thanks to the discussion in Section 1.13 we have the

following exact sequence of abelian groups

1→ Z(ss) → Z → Gtor → 1

which implies the exactness, in the category of abelian complexes, of

1→ (Z(sc) → Z(ss))→ (Z(sc) → Z)→ (1→ Gtor)→ 1

We can consider the induced exact sequence in hypercohomology

H1(k,Gtor)→ H3(k,Ker ρ)→ H2
ab(k, L)

tab−−→ H2(k,Gtor) (2.5.0.2)

Lemma 2.5.1. The composition H2(k, L)
ab−→ H2

ab(k, L)
tab−−→ H2(k,Gtor) is the canonical map t∗ :

H2(k, L)→ H2(k,Gtor).

Proof. We can suppose L = Lred. Identifying H2(k, L) with H2(k, Z), the map ab is nothing else than
j∗. More details are provided in [LA10], Lemma 5.1.4.

In particular, thanks to the easy part of Theorem 2.4.3, neutral elements of H2(k, L) are killed by
t∗. For the opposite implication we discuss separately the local and the global case.
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Proposition 2.5.2. Let k be a p-adic field. Let L = (G, κ) be a connected k-lien. An element η ∈
H2(k, L) is neutral if and only if t∗(η) = 0.

Proof. Since p-adic fields have strict cohomological dimension equal to 2 (see [Ser73], II-5.3, Prop. 15
or [Har12], Theorem 7.15) and Ker ρ is finite (it is contained in Z(G

(sc)
), by Theorem 1.7.4), the exact

sequence 2.5.0.2 implies that tab is injective.
We conclude by Lemma 2.5.1 and Theorem 2.4.3.

Theorem 2.5.3. Let L = (G, κ) and k be as in the previous proposition. Assume that one of the
following holds:

i) Gtor is k-anisotropic (see Definition 1.7.7);

ii) G
tor

= 1;

iii) G is semisimple.

Then any element η ∈ H2(k, L) is neutral.

Proof. Clearly iii)⇒ ii)⇒ i). If Gtor is k-anisotropic, by Tate-Nakayama Duality (see Theorem 1.14.4),
the canonical map t∗ : H2(k, L)→ H2(k,Gtor) = 0 is the zero map. Proposition 2.5.2 ends the proof.

Corollary 2.5.4. Let k be a p-adic field, and let

1→ G1 → G2 → G3 → 1

be an exact sequence of k-group. If G1 is connected and Gtor
1 = 1, then the map H1(k,G2)→ H1(k,G3)

is surjective.

Proof. The previous theorem ensure that every element in H2(k,G) is neutral. In virtue of Proposition
2.1.7, this concludes as in Corollary 2.3.11.

The main theorem which will allow us to deduce the Hasse principle in many situations, via Theorem
2.2.4, is the following.

Theorem 2.5.5. Let L = (G, κ) be a connected k-lien over a number field k. Consider an element
η ∈ H2(k, L), the following are equivalent:

a) η is neutral;

b) the restriction of η to H2(kv, L) is trivial for all the archimedean places v of k and t∗(η) = 0 in
H2(k,Gtor).

Proof. Assume η to be neutral (in particular H2(k, L) is not empty). Via the commutativity of the
following diagram

H2(k, L) H2
ab(k, L)

H2(kv, L) H2
ab(kv, L)

ab

ab

and Theorem 2.4.3 we have that the condition on the restrictions is satisfied. Moreover t∗(η) = 0 thanks
to the exact sequence 2.5.0.2 and the compatibility between tab and t∗ explained by Lemma 2.5.1.

Viceversa consider the following “local-to-global” diagram chasing:

H1(k,Gtor) H3(k,Ker ρ) H2
ab(k, L) H2(k,Gtor)

∏
v∈Ω∞

H1(kv, G
tor)

∏
v∈Ω∞

H3(kv,Ker ρ)
∏
v∈Ω∞

H2
ab(kv, L)

∏
v∈Ω∞

H2(kv, G
tor)

tab
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Notice that the rows are exact by 2.5.0.2, the first column map is surjective (by Proposition 1.15.3)
and the second column map is an isomorphism (as explained in Proposition 2.5.2 Ker ρ is finite, so it
follows from Poitou-Tate as in [Mil06], Theorem 4.10 (c)). Under the assumptions of b), we can choose
x ∈ H3(k,Ker ρ), a lift of ab(η). Locally it uniquely corresponds to an element x̃ ∈

∏
v∈Ω∞

H3(kv,Ker ρ)

which is mapped to zero in
∏
v∈Ω∞

H2
ab(kv, L), so it can be lifted to an element x′ ∈

∏
v∈Ω∞

H1(kv, G
tor),

and x′ can be lifted to x′′ ∈ H1(k,Gtor). Since x′′ is mapped to x and x to ab(η), it must be ab(η) = 0.
The theorem is proven.

The above theorem tells us that, to drop the assumption about the map t∗, it is enough to add some
assumptions to ensure X2(k,Gtor) = 0. In particular we have the following.

Corollary 2.5.6 (a Hasse Principle for neutral elements). Let L = (G, κ) and k be as in Theorem 2.5.5.
Assume at least one of the following holds:

i) X2(k,Gtor) = 0;

ii) the k torus Gtor satisfies the assumptions of Lemma 1.14.1;

iii) G
tor

= 1;

iv) G is semisimple.

Then an element η ∈ H2(k, L) is neutral if and only if its restrictions to H2(kv, L) are neutral for all
v ∈ Ω∞.

In particular, if k is a totally imaginary number field and L = (G, κ) a connected k-lien satisfying
one of the assumptions i)− iv), then any element of H2(k, L) is neutral.

Moreover we obtain a “local to global” version of Corollary 2.5.4.

Corollary 2.5.7. Let k be a number field, and let

1→ G1 → G2 → G3 → 1

be an exact sequence of k-group where G1 is connected and Gtor
1 = 1. If ξ ∈ H1(k,G3) is such that

(ξv) ∈ Im(
∏
v∈Ωk

H1(kv, G2)→
∏
v∈Ωk

H1(kv, G3)), then ξ ∈ Im(H1(k,G2)→ H1(k,G3)).

2.6 Hasse principle and homogeneous spaces
Theorem 2.6.1 (local case). Let k be a non archimedean local field of characteristic zero. Let G be a
semisimple simply connected k-group and X an homogeneous space with connected stabilizers H. Assume
one of the following holds:

i) the k-torus Htor is k-anisotropic;

ii) H
tor

= 1;

iii) H is semisimple.

Then X has a k-point.

Proof. The Springer Class ηX , defined in Section 2.2, is neutral by Theorem 2.5.3. By Proposition 2.2.3
there exists a k-torsor Y → X under G; to conclude it is enough to show that Y has a k-point, and this
is true since H1(k,G) = 0 (see Theorem 1.15.4).

Theorem 2.6.2 (global case). Let k be a number field. Let G be a semisimple simply connected k-group
and X an homogeneous space with connected stabilizers H. Assume one of the following holds:

i) X2(k,Htor) = 0;

ii) the k-torus Htor is quasi-trivial;

iii) Htor is kv0
anisotropic for some place v0;

iv) Htor splits over a finite cyclic extension of k;
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v) dimH
tor ≤ 1;

vi) H
tor

= 1;

vii) H is semisimple.

Then the Hasse principle holds for X.

Proof. In virtue of Theorem 2.2.4 it is enough to show that the Springer Class ηX is neutral. To do this
we apply Corollary 2.5.6. Since X(kv) 6= ∅ there exists a kv-principal homogeneous space Y → X under
G, namely Y = G and the map that sends g to pv · g for some pv ∈ X(kv) for all v, Proposition 2.2.3
implies that ηX is locally trivial. The result is proven.

Adding some assumptions to control the infinite places of k, we can combine Theorem 2.6.2 with
Theorem 2.6.1 to obtain the Hasse Principle with respect to the infinite places. For example in the
following.

Corollary 2.6.3. In the cases vi) and vii) of Theorem 2.6.2. If X(kv) 6= ∅ for all v ∈ Ω∞, then
X(k) 6= ∅.

Corollary 2.6.4. If X is a projective variety, then the Hasse Principle holds for X.

Proof. By definition the group H is a parabolic subgroup of G. By Lemma 4.3.3 of [Har68], we have
that Htor is a quasi-trivial torus. The result is implied by Theorem 2.6.2 ii).

Corollary 2.6.5. Suppose that X is a symmetric homogeneous space of an absolutely simple simply
connected k-group G. Then the Hasse principle holds for X.

Proof. Thanks to the discussion in Section 1.17.1, the stabilizers of a point H is connected. From the
classification of involutions of simple Lie algebras, as in [Hel78], Chapter 10, Section 5, page 514 we have
that dimH

tor ≤ 1. In particular we can apply Theorem 2.6.2 v).

Theorem 2.6.2 vii) can be generalized without assuming G to be semisimple, cf. [Bor96] Proposition
3.4.

Corollary 2.6.6. Let k be a number field. Let G be simply connected linear k-group and X an homoge-
neous space with connected stabilizer H = H

ssu
(see the Notation at the beginning). If X(kv) 6= ∅ for all

v ∈ Ω∞, then X(k) 6= ∅.

Proof of Corollary 2.6.6. It is enough to reduce the general case to the case G semisimple simply con-
nected, in this case the assumption H = H

ssu
implies that H

tor
= 1. Thanks to Lemma 1.1.6 there exists

the quotient Y = X/Gu, which is an homogeneous space under Gred = G/Gu, and a map ϕ : X → Y . If
X(kv) 6= ∅ for all v ∈ Ω∞, then the same is true for Y . Since Gred is a semisimple simply connected al-
gebraic group, we can apply Corollary 2.6.3 (we are in case vi)) to ensure that there exists y ∈ Y (k) 6= ∅.
The fiber of ϕ in y defines an homogeneous space under the action of Gu; by Proposition 2.3.10 it has a
k-point, which, in particular, is also a k-point of X.

Remark. The argument used to prove of Corollary 2.6.6 is a first application of the so called “fibration
method”, which will be used intensively in Chapter 3.
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Chapter 3

The Brauer-Manin obstructions for
homogeneous spaces with connected or
abelian stabilizers

In this chapter we present the main results proven by Borovoi in [Bor96]. As stated in the introduction,
the main goal is to prove that for a homogeneous space of a connected linear group with connected
stabilizer and for a homogeneous space of a simply connected group with abelian stabilizers, the Brauer-
Manin obstructions explain the failure of the Hasse principle and of weak approximation; see Theorem
3.2.4.

In this chapter k will denote a number field, G a connected linear k-group, X/k a homogeneous space
under G, and H the stabilizer of a point x0 ∈ X(k). If S ⊂ Ωk is a finite set we write kS =

∏
v∈S kv,

and k∞ =
∏
v∈Ω∞

kv.

3.1 Brauer-Manin obstructions
We collect here a brief overview about the Brauer-Manin obstruction, introducing the main notion

we are going to discuss in this and in the following chapter. During this section let k be a number field
and X be a k-variety, i.e. a separated scheme of finite type over k.

For any place v ∈ Ωk, we can endow X(kv) with the topology as v-adic space, and X(Ak) with the
adelic topology, cf. [Con11].

Definition 3.1.1 (Weak approximation). We say that X satisfies weak approximation if the diagonal
map X(k)→

∏
v∈Ωk

X(kv) is dominant, in the right hand side equipped with the product topology.

Let S be a finite set of places of k. We denote with Ok,S the ring of S-integers, i.e. the set of x ∈ k
such that v(x) ≥ 0 for all v ∈ Ωk − S. If S 6= ∅, Ok,S is a Dedekind domain which is not a field, and
if S ⊂ T are finite set of places then Ok,S is contained in Ok,T . We denote with ASk the ring of adeles
outside S, i.e. the ring obtained projecting Ak to

∏
v∈Ωk−S kv endowed with the adelic topology. We

write πS : X(Ak)→ X(ASk ) for the map induced by the projection π : Ak → ASk .

Definition 3.1.2 (Strong approximation). Assume X(k) 6= ∅. We say that X has the strong approx-
imation property off a finite set of places S ⊂ Ωk if the image of the diagonal map X(k) → X(ASk ) is
dense.

We now define an important pairing, introduced for the first time by Manin, which will be fundamental
to describe an obstruction to the existence of rational points. The main ingredient will be the main
exact sequence of Class Field Theory. For more details we refer to [Poo16], [Mil13] and [Sko01]. A quick
introduction is also offered in [CT15].

Theorem 3.1.3. Let k be a number field, Ωk its set of places. Then there is the following exact sequence

0→ Br(k)→
⊕
v∈Ωk

Br(kv)
∑
v invv−−−−−→ Q/Z→ 0. (3.1.0.1)
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Proof. For the proof of this classical result of Global Class field theory see [SN86].

Let X/k a variety and A ∈ Br(X). If L is a k-algebra and x ∈ X(L) then, by functoriality of Br(−),
it induces a homomorphism

Br(X)→ Br(L), A 7→ A(x).

Let X/k be a smooth and geometrically integral variety over a number field k. We are interested in
the Brauer-Manin pairing :

〈 , 〉 : Br(X)×X(Ak)→ Q/Z,

which is defined by the following rule

(A, (Pv)) 7→
∑
v∈Ωk

invv(A(Pv)). (3.1.0.2)

Where A(Pv) makes sense thanks to the previous definition and invv are the local invariant maps ap-
pearing in the exact sequence of Theorem 3.1.0.1. The pairing is well defined, basically because the
Brauer group of any Ov is zero.

Notice that, by the exact sequence 3.1.0.1, our pairing is trivial on Br0(X), and so it can be defined
also as a pairing from Br(X)/Br0(X).

Definition 3.1.4. We define X(Ak)Br(X) as the right kernel of the Brauer-Manin pairing, i.e. as the
subset of X(Ak) orthogonal to all elements of Br(X).

Some fundamental properties are the following:

• The Brauer-Manin pairing is locally constant in the adelic topology, see Corollary 8.2.11 of [Poo16];

• X(k) ⊆ X(Ak)Br(X) ⊆ X(Ak), where the first inclusion follows from the commutativity of the
diagram

X(k) X(Ak)

Br(k)
⊕

v∈Ωk
Br(kv)

and the exact sequence 3.1.0.1.

• In particular the closure of the diagonal image of X(k) via the diagonal embedding in the adelic
points is contained in X(Ak)Br(X).

Remark (Functoriality). Let f : X → Y a k-morphism of smooth geometrically integral k-variety. Give
A ∈ Br(X) and (Pv) an adelic point of Y , we have∑

v∈Ωk

invv(f
∗A(Pv)) =

∑
v∈Ωk

invv(A(f(Pv)))

It follows
Y (Ak)Br(Y ) = ∅ ⇒ X(Ak)Br(X) = ∅.

Now, if the set X(Ak)Br(X) is empty of course the variety will not have rational point. As promised in
the title of the section we introduce the link between the approximation properties and the Brauer-Manin
pairing.

Definition 3.1.5. Let C be a class of varieties. We say that the only obstruction to Hasse principle is
given by the Brauer-Manin obstruction if X(Ak)Br(X) 6= ∅ implies X(k) 6= ∅ for every variety X in C.

If X is not proper, the Brauer-Manin pairing between
∏
vX(kv) and Br(X) is not well defined. To

get rid of this it is enough to consider the Brauer group of a smooth compactification of X, denoted with
Brnr(X); cf. Notation.

Definition 3.1.6. Given a variety X, we say that the only obstruction to weak approximation is given
by the Brauer-Manin obstruction if X(k) is dense in (

∏
vX(kv))

Brnr(X).
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Definition 3.1.7. We say that X satisfies the strong approximation property with Brauer-Manin ob-
struction off S if X(k), via the diagonal map, is dense in πS(X(Ak)Br(X)) with the adelic topology.

WithX(k)
S
we denote the adelic-closure ofX(k) inX(Ak)Br(X) in the sense of the previous definition.

Remark. Other variants of the Brauer-Manin pairing will also be discussed. In particular it is possible
to consider B(X), Bra(X), . . .

3.1.1 Notation
Following [Bor96] we represent the Brauer-Manin obstruction to the Hasse principle for X as an ele-

ment mH(X) ∈ B(X)D = Hom(B(X),Q/Z), and the Brauer-Manin obstruction to weak approximation
off S as a map mW,S(X) : X(kS)→ (BS(X)/B(X))D.

Assume that
∏
v∈Ωk

X(kv) 6= ∅. Recall that the pairing

〈 , 〉 : Bω(X)×
∏
v∈Ωk

X(kv)→ Q/Z,

is defined over the classical Brauer Manin pairing choosing a lift b̃ ∈ Br1(X) of any b ∈ Bω(X). The
result is a continuous well defined pairing (it does not depend on the choice of b̃ thanks to exact sequence
3.1.0.1); cf. [San81], Lemma 6.2.

Let b ∈ B(X) ⊂ Bω(X) and x̃v ∈ Br1(X) be a representative of b. Since the localization of b̃ in
Br1(Xkv ) lies in Br0(Xkv ), x̃v ∈ Br(k) is independent of xv ∈ X(kv); in particular 〈b, (xv)〉 does not
depend on the point (xv). Thus we can consider mH(X) ∈ B(X)D defined as the map b 7→ 〈b, (xv)〉.
Notice that X(k) 6= ∅ implies mH(X) = 0.

Assume that x ∈ X(k) 6= ∅, and S ⊂ Ωk a finite set. Recall that the pairing

〈 , 〉S : BS(X)×X(kS)→ Q/Z, 〈b, (xv)v∈S〉 7→
∑
v∈S

invv(b̃(xv)− invv(b̃(x)))

is continuous and, thanks to exact sequence 3.1.0.1, it does not depend on the choice of the rational
point. Moreover, if b ∈ B(X), then 〈b, xs〉S = 0 for any xS ∈ X(kS); thus we can consider

BS(X)/B(X)×X(kS)→ Q/Z,

equivalently a continuous map mW,S(X) : X(kS) → (BS(X)/B(X))D. Notice that if X satisfies weak
approximation off S, then mW,S is zero.

In Section 3.4 we will use the functoriality of the two obstruction defined above as follows: Let X be
such that

∏
v∈Ωk

X(kv) 6= ∅, and consider a morphism of k-varieties π : X → Y . We have

• π∗(mH(X)) = mH(Y ), where π∗ : B(X)D → B(Y )D is the map induced by π;

• if X(k) 6= ∅ the following is commutative

X(kS) (BS(X)/B(X))D

Y (kS) (BS(Y )/B(Y ))D

mW,S(X)

mW,S(Y )

π π∗

.

3.2 Statements of the main results
As usual, over k, we write Xk = Gk/H (we are not assuming X(k) 6= ∅), and consider the following

conditions:
Gssu is simply connected, (3.2.0.1)

H
mult

:= H/H
ssu

is abelian, hence of multiplicative type. (3.2.0.2)

Theorem 3.2.1 (The only obstruction to the Hasse principle). Let X be a homogeneous space. Consider
the following assumption:
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• G satisfies 3.2.0.1, and the stabilizer H of a k-point of X satisfies 3.2.0.2.

Under this condition the Brauer-Manin obstruction attached to B(X) is the only obstruction to the Hasse
principle for X, i.e. if X(Ak)B(X) 6= ∅, then X(k) 6= ∅.

For the next two statements we assume X(k) 6= ∅, and we write X = G/H for some connected
k-subgroup H.

Theorem 3.2.2 (The only obstruction to weak approximation). Let X = G/H be a homogeneous space.
Consider the following assumption:

• G satisfies 3.2.0.1, and the stabilizer H of a k-point of X satisfies 3.2.0.2.

Under this condition the Brauer-Manin obstruction attached to BS(X)/B(X) is the only obstruction to
the weak approximation property for X, where S ⊂ Ωk is a finite set.

Actually we will prove something stronger.

Theorem 3.2.3. Under the assumptions of Theorem 3.2.2, if xS ∈ X(kS) and mW,S(X)(xS) = 0, then
xS belongs to the closure of X(k) in πS(X(Ak)) with respect to the product topology.

The following result ensure that we can apply the previous results in the case we were interested in.

Theorem 3.2.4. Assume one of the following holds:

1. G is a connected k-group and H connected;

2. G satisfies 3.2.0.1 and H is abelian (in particular it satisfies 3.2.0.2).

Then the assumptions of Theorems 3.2.1, 3.2.2, 3.2.3 are satisfied.

We have already introduced all the technical prerequisites (thanks to Theorem 1.12.4) to prove the
last result. Notice that only the first case requires an argument.

Proof of Theorem 3.2.4. In the first case we can consider X as a homogeneous space under another k-
group G0, with connected stabilizer H0 ⊂ G0,k and such that Gssu

0 is simply connected. Namely it is
enough to consider the object G0 → G produced by Theorem 1.12.4; to check that the stabilizer H0 is
connected consider the following exact sequence:

1→ Zk → H0 → H → 1,

and conclude applying Proposition 1.3.5.
Now G0 satisfies 3.2.0.1 and H0/H

ssu
0 = H

tor
0 is clearly abelian. It follow that we can apply the three

theorems we were considering to X seen as homogeneous space under G0. The result is proven.

3.3 Preliminary results
The strategy to prove the results stated in the previous section is to reduce them to known facts. In

this reduction we will see at work the main theorems of Borovoi, proven in Chapter 2; but they are not
enough. In particular the following plays a key role.

Theorem 3.3.1 (The case of a torus). Let X/k be a homogeneous space of G, where G is a k-torus.
The following hold:

i) the assertion of Theorem 3.2.1 is true;

ii) the assertion of Theorem 3.2.3 is true;

iii) X(k) is dense in X(k∞).

Proof. This result was originally proved by Voskresenskii, see also [San81], Section 8. The first assertion
can be also found in [Sko01], Theorem 6.2.1: it basically follows from the comparison of the Brauer-
Manin pairing with the one given by Poitou-Tate, and the fact that the second one is not degenerate.
The implication ii)⇒ iii), due to Serre, can be found in [San81] Corollary 3.5.
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In Chapter 2 we have discussed just the Hasse principle, some times analogous results hold also for
the weak approximation property. For example the analogous of Corollary 2.6.6 holds.

Theorem 3.3.2. Let G be simply connected k-group and X = G/H an homogeneous space with connected
stabilizer H = Hssu. Then X(k) is dense in X(kS) for any finite set S ⊂ Ωk.

Proof. This is one of the main result of the paper [Bor90]. In particular see Theorem 1.1, Theorem 1.4
and Corollary 1.7 of [Bor90].

It is worth noticing that we have also a version of Proposition 2.3.10 for weak approximation.

Proposition 3.3.3. Let U be a unipotent k-group and X/k a homogeneous space of U . Then X(k) is
dense in X(kS), for any finite S ⊂ Ωk.

Proof. Notice that U(k) is dense in U(kS) since U , as k-variety, is isomorphic to Ank , thanks to Theorem
1.4.1 e). To deduce the property for X from the approximation property for U , it is enough to show
that U(kS) acts transitively on X(kS). Let H be the stabilizer of a k-point of X (which exists in virtue
of Proposition 2.3.10), it is a subgroup of U , in particular it is unipotent. We have that X(kS) =
U(kS)/H(kS) using the fact that H1(K,H) = 1 for any field extension K/k, cf. the argument of [Ser73],
I-Proposition 36.

3.4 Proof of the main results
To prove the previous theorems we reduce the situation to a simpler case. From now on let G and X

be as in Theorems 3.2.1 and 3.2.3.

Theorem 3.4.1. It is enough to prove Theorem 3.2.1 and Theorem 3.2.3 under the following extra
assumption:

(†) The homomorphism H
mult → Gtor

k
induced by the inclusion H ⊂ Gk is injective.

The proof of Theorem 3.4.1 is based on the construction of an object Y → X satisfying (†). The
construction of Y is not trivial: we will define a torsor π : Y → Xk under Tk, where T is a quasi trivial
k-torus and we will discuss the existence of a k-form of the pair (Y , π). The argument we will use to
show the existence of a k-form is close to the one of Section 2.2.

Construction 3.4.2 (A k-formHm ofH
mult

). Let σ ∈ Γk, as in Construction 2.2.1, we write σx0 = x0·gσ
for a fixed family gσ ∈ G(k). For any h ∈ H(k) the following relation, by construction, holds:

x0 · gσ · σh = σx0 · σh =
σ
(x0 · h) = x0 · gσ.

In particular it make sense to consider the map

νσ : H → H, h 7→ gσ · σh · g−1
σ ,

which is a σ-semialgebraic automorphism in the sense of Section 2.1; by functoriality we can consider
also νm

σ ∈ SAut(H
mult

). Thanks to the assumption 3.2.0.2 we have that νm
σ does not depend on the

initial choice of the gσs: Indeed, if we choose others g′σ = hgσ, we have ν′σ = Int(h) ◦ νσ, but the inner
automorphism becomes trivial on H

mult
. The usual relation

νm
στ = νm

σ ◦
τνm
σ

defines a k-form Hm of H
mult

, thanks to Galois Descent.
To conclude we notice that the k-form Hm depends only on G and X. Indeed if H1 is the stabilizers

of another point x1 ∈ X(k), we can consider the isomorphism µg : H → H1 given the conjugation by
some g ∈ G(k) such that x1 = x0 · g. As in the previous reasoning we have that induced isomorphism
µm
g : Hm → Hm

1 does not depend on the choice of such a g ∈ G(k).

Construction 3.4.3 (The torsor π : Y → Xk). We choose a closed embedding Hm ↪→ T , where T is
a quasi trivial k-torus. Define F as the k-product G × T ; we can now define a k-homogeneous space
Y := Fk/H under Fk and a Fk-equivariant map

π : Y → Xk, H · (g, t) 7→ H · g.

The importance of this construction is enclosed in the following properties:
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- π : Y → Xk is a torsor under Tk;

- the map H
mult → F tor

k
is injective, since Hm is a subgroup of T ; cf. with the property (†);

- if there exists x ∈ X(k) we have a k-form (Y, π) of (Y , π), just by considering the stabilizer of x.

The following Lemma is the technical heart of Theorem 3.4.1.

Lemma 3.4.4. Suppose that X(kv) 6= ∅ for any v ∈ Ωk. Then there exists a k-form (Y, π) of the pair
(Y , π).

To prove this lemma we construct a class η ∈ H2(k, T ) which represents the obstruction of the
existence of such a k-form, emulating the proof of Proposition 2.2.3.

Proof of Lemma 3.4.4. Step 1: The class η ∈ H2(k, T ). The homomorphism σ∗ : Xk → Xk, induced by
a σ ∈ Γk, can be lifted to a σ-semialgebraic automorphism aσ : Y → Y as follows: Let (gσ ∈ G(k))σ be
the family of Construction 3.4.2. Recall that Y = Fk/H = Gk × Tk/H, and set

aσ : Y → Y , H · (x, t) 7→ H · (gσ · σx, σt).

Notice that, thanks to the relation σx0 = x0 · gσ, we have that σ∗ : Gk/H → Gk/H is defined by the
association H · x 7→ H · (gσ · σx); in particular we have the commutativity π ◦ aσ = σ∗ ◦ π.

By Construction 3.4.3, we have that AutFk,Xk(Y ) = T (k), cf. also the proof of Theorem 2.2.4.
Therefore there exists a unique family (dσ,τ ∈ T (k))σ,τ such that the following relation holds

aσ · σaτ = dσ,τaστ .

By direct computation we see that (dσ,τ ) belongs to Z2(Γk, T (k)), and we define η = Cl(dσ,τ ) ∈ H2(k, T ).
Notice that η is independent of the choice of the family (aσ), since inner automorphisms become trivial
on T , as in Construction 3.4.2.

Step 2: η is trivial. By assumption we have that X has a kv point for any v ∈ Ωk, in particular, by the
last property of Construction 3.4.3, we obtain a kv-form of the kv-pair (Y , π) for any place v. It follows
that, in the previous construction, the aσ : Ykv → Ykv defying ηv ∈ H2(kv, T ) can be defined by the
association aσ = σ∗ since, as remarked above, ηv is independent of the (aσ)s. In particular the relation
aστ = aσ · σaτ implies that dσ,τ = 1, i.e. ηv is trivial in H2(kv, T ) for any v ∈ Ω. In other words we have
proven η ∈X2(k, T ) = 0, where the last equality holds since T is a quasi-trivial k-torus, as in Lemma
1.14.1 i).

Step 3: η is “the obstruction”. Since η ∈ H2(k, T ) is trivial we can choose a family (aσ)σ∈Γk of semialge-
braic automorphism of Y , satisfying aστ = aσ · σaτ ; in particular, as usual, it determines a k-form (Y, π)
of (Y , π).

The Lemma is finally proven.

Proof of Theorem 3.4.1. Consider the T -torsor π : Y → X, which is defined over k thanks to Lemma
3.4.4, and notice that Y satisfies the assumption (†). We first prove that if X satisfies the assumptions
of Theorems 3.2.1 and 3.2.3, then also Y does; supposing the Theorems are true for Y , we will conclude
they hold for X.

Claim: BS(X) ∼= BS(Y ). Since π : Y → X is a T -torsors, the following is exact, cf. (6.10.3) of Proposi-
tion 6.10 of [San81]:

Pic(T ) = 0→ Br1(X)
π∗−→ Br1(Y )→ Bra(T ),

where the equality Pic(T ) = 0 holds since T is a quasi-trivial k-torus (see Proposition 1.14.3). Since
π : Y → X is a map of k-schemes, we have that π∗ is compatible with the natural maps Br(k)→ Br(Y )
and Br(k)→ Br(Y ). In particular, taking the cokernels, we get also the following exact sequence:

0→ Bra(X)
π∗−→ Bra(Y )→ Bra(T ).

Since the same sequence remains exact replacing X with Xkv for any place v outside a finite set of places
S, we obtain, taking the kernels, the following exact sequence:

0→ BS(X)→ BS(Y )→ BS(T ).
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Thanks to the natural exact sequence of Lemma 1.12.6, using that the geometric Picard group of a torus
is trivial, we have that Bω(T ) is isomorphic to X2

ω(k, T̂ ), which is zero as proven in Lemma 1.14.2. In
particular we have that BS(T ) = 0 for any S ⊂ Ωk finite, hence the canonical map BS(X)→ BS(Y ) is
an isomorphism. Notice that, for S = ∅, we have also B(X) ∼= B(Y ).

Reduction for Theorem 3.2.1. First of all notice that, since H1(kv, T ) = 0 and X(kv) 6= ∅ for any v, it
follows that also Y (kv) 6= ∅ for any v ∈ Ωk. Thanks to the previous claim π∗ : B(Y )D → B(X)D is an
isomorphism, by functoriality of the Brauer-Manin pairing, we have that the obstruction given by B(X)
is the only obstruction to the Hasse principle also for Y . In particular if there exists y ∈ Y (k), then π(y)
is a k-point of X.

Reduction for Theorem 3.2.3. As in the previous reduction we have that Y (k) 6= ∅, since is given an
element of X(k). As above we have that π∗ : (BS(Y )/B(Y ))D → (BS(X)/B(X))D is an isomorphism,
hence the equality π∗(mW,S(Y )(yS)) = mW,S(X)(xS) = 0 implies that mW,S(Y )(xS) = 0. By assump-
tion we have that yS belongs to the closure of Y (k) in πS(Y (Ak)), hence the same holds for xS , by
compatibility with the map π.

Theorem 3.4.1 is finally proven.

The “naturality” of reduction method of Borovoi should be now clear. Recall that X is a homogeneous
space under a connected k-group G, such that Gssu is simply connected, with stabilizers H. Thanks to
Lemma 1.1.6 we define V as the quotient X/Gssu, and consider the canonical smooth map

ϕ : X → V,

where V/k is a homogeneous space under G/Gssu = Gtor (for homogeneous spaces under tori Theorem
3.3.1 can be applied) and the fibers are homogeneous spaces of the simply connected group Gssu, with
stabilizers H0 := H ∩ Gssu

k
. Notice that if we had H0 = H

ssu
0 or, in other words, H

mult
0 = 1, then we

could try to apply Corollary 2.6.6, for the Hasse principle, and Theorem 3.3.2, for weak approximation.
See also the argument of Corollary 2.6.6.

We are now ready to ultimate the proof of the main results; cf. [Bor96] Proposition 3.5.

Proof of Theorem 3.2.1. Since X(kv) 6= ∅ for any v ∈ Ωk and by functoriality of the Brauer-Manin
pairing, we have that V satisfies the assumptions of Theorem 3.3.1. It follows, by point i) of Theorem
3.3.1, that there exists y ∈ V (k) 6= ∅. Since V (k) is dense in V (k∞) (by Theorem 3.3.1 iii)) and
ϕ(X(k∞)) is open in V (k∞) (since ϕ is smooth, and applying the Implicit Function Theorem), we can
choose y ∈ V (k) ∩ ϕ(X(k∞)).

Consider the fiberXy = ϕ−1(y). It is a homogeneous space underGssu, with stabilizerH0 := H∩Gssu
k

,
such that, by our choice of y, Xy(k∞) 6= ∅. In virtue of Theorem 3.4.1 we may assume that (†) holds,
since G is connected we have the following injective morphism of short exact sequences:

1 H
ssu

H H
mult 1

1 Gssu
k

Gk Gtor
k 1

injective by (†)

.

By the uniqueness of the Kernels we have H0 = H
ssu

, in particular H0 is connected and H
mult
0 = 1.

Corollary 2.6.6 ensures that Xy(k) 6= ∅, in particular X has a k-point. The result is proven.

Recall that, in the next statement, X(k) 6= ∅, and S is a finite set of places of k. The next argument
is close to the one above, the only difference is how we will deal with the k∞-points.

Proof of Theorem 3.2.3. Let xS ∈ X(kS), and assume that mW.S(X)(xS) is zero ; we first notice that
we may assume that S contains all the real places of k. Indeed denote with Σ the union of S and the
real places, and let xΣ ∈ X(kΣ) be a point which restricts to xS along the projection X(kΣ) → X(kS),
it is enough to show that xΣ belongs to X(k)

Σ . To do this we prove that, for any open neighbourhood
UX of xΣ in X(k)

Σ , UX ∩X(k) 6= ∅.
Consider yΣ = ϕ(yΣ) ∈ V (kΣ), and notice that its projection on V (kS) is yS = ϕ(xS) ∈ V (kS), by

functoriality. Since mW,S(V )(yS) = π∗(mW,S(X)(xS)) = 0, Theorem 3.3.1 ii) implies that yS belongs to
V (k)

S and, by [San81] (3.3.3), that yΣ ∈ V (k)
Σ , since the two Σ and S differ just by the real places.
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Consider the open subset UV := ϕ(UX) of V (kΣ) and notice that, by the previous step, yΣ ∈ Y (k)∩UV .
As above the fiber XyΣ

is a homogeneous space under Gssu whose stabilizer H0 has the property H0 =
Hssu

0 . By construction we have the ∅ 6= XyΣ
(kΣ) ⊂ X(k∞), hence we can apply Theorem 3.3.2 ii) and

iii) to ensure that XyΣ
has a k-point and that XyΣ

(k) is dense in XyΣ
(kΣ).

Since UX∩XyΣ(kΣ) is a non empty open subset in XyΣ(kΣ), it contains a k-point x. Clearly x belongs
to UX ∩X(k); our initial claim is proven.

45



Chapter 4

Integral Brauer-Manin Obstruction for
homogeneous spaces with finite
nilpotent stabilizers

In this chapter we present the main result proven by Demarche in [Dem15] and a general theorem of
[LX15]. In this chapter k will denote a number field.

4.1 Strong Approximation with Brauer Manin obstruction
Let k be a number field, we write Ωk for the set of places of k, Ω∞ for the subset of infinite places

and Ωf for the finite places. If v ∈ Ωk we denote with kv the completion of k in v, and with Ov its ring
of integers (following the convention that Ov = kv if v ∈ Ω∞).

Let S be a finite set of places of k. We denote with Ok,S the ring of S-integers, i.e. the set of x ∈ k
such that v(x) ≥ 0 for all v ∈ Ωk − S. If S 6= ∅, Ok,S is a Dedekind domain which is not a field, and
if S ⊂ T are finite set of places then Ok,S is contained in Ok,T . We denote with ASk the ring of adeles
outside S, i.e. the ring obtained projecting Ak to

∏
v∈Ωk−S kv endowed with the adelic topology. We

write πS : X(Ak)→ X(ASk ) for the map induced by the projection π : Ak → ASk .
Let X be a k-variety, i.e. a separated scheme of finite type over k.

Definition 4.1.1. We say that X satisfies the strong approximation property with Brauer-Manin ob-
struction off S if X(k), via the diagonal map, is dense in πS(X(Ak)Br(X)) with the adelic topology.

WithX(k)
S
we denote the adelic-closure ofX(k) inX(Ak)Br(X) in the sense of the previous definition.

4.1.1 Integral points
We introduce here also the notion of integral points.

Definition 4.1.2. Let X be a k-variety, we say that a separate scheme X finite over Ok is a model of
X if X ' Xη, with η the generic point of Ok.

Usually we will suppose the model to be integral. The following are two classical facts.

Proposition 4.1.3. Any two models of X are isomorphic out a finite number of places. Moreover if the
variety is reduced (resp. irreducible, resp. proper) any model is reduced (resp. irreducible, resp proper)
out a finite number of places.

Theorem 4.1.4 (Existence of models). Let A be a Dedekind domain with field of fraction k. For any
variety X over k there exists a model X over A. Moreover if X is affine or proper or projective then X
can be chosen with the same property.

Definition 4.1.5. For any finite place v, the canonical map

X (Ov)→ X(kv),
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is an inclusion, as a formal consequence of the valutative criterion of separatedness. The elements in the
image of this map are called integral points. Notice that the integral points may depend on the choice of
a model of X.

4.1.2 Integral model and strong approximation
This section is devoted to the proof of the following; cf. [LX15], Theorem 2.10.

Theorem 4.1.6. Let k be a global field, X be a k-variety and S 6= ∅ a finite set of places. The following
are equivalent

a) X satisfies the strong approximation property with Brauer-Manin obstruction off S;

b) the only obstruction to the existence of integral points for every integral model X of X over Ok,S
is the Brauer-Manin obstruction.

The main ingredient in the proof will be the following result.

Proposition 4.1.7. Let X and S be as in Theorem 4.1.6. Given an open subset U ⊂ X(ASk ) and a
point z ∈ U , there exists a model X of X over Ok,S such that

z ∈
∏
v/∈S

X (Ov) ⊂ U.

Proof of Proposition 4.1.7. For the proof see [LX15], Corollary 2.9.

Remark. In particular the subsets
∏
v/∈S X (Ov) ⊂ X(ASk ) form a basis of the topological space X(ASk ),

where X runs through the Ok,S-integral models of X. Moreover, if X is a smooth algebraic k-group it is
possible to show that the sets

∏
v/∈S X (Ov) are a fundamental system of neighbourhood of 1 ∈ X(ASk ),

where X runs through the smooth group scheme models of X over Ok,S , see the second part of Remark
2.6 in [LX15].

First of all we need an easy lemma.

Lemma 4.1.8. Let X be an integral model of X over Ok,S. Then the following natural diagrams with
injective maps

X (Ok,S) X (Ak,S)

X(k)
∏
v∈Ωk

X(kv)

allows to identify X (Ok,S) with X(k) ∩ X (Ak,S).

Proof. First of all notice that all the maps are injective thanks to the valutative criterion of separatedness
and the fact that the canonical map

X (Ak,S)→
∏
v∈S

X(kv)×
∏
v/∈S

X (Ov)

is bijective (see for example [Con11], Theorem 3.6).
Let σ ∈ X(k) such that, when seen as an element of X(kv), lies in X (Ov) for any v /∈ S. To show

that σ ∈ X (Ok,S) it is enough to see that, for any v /∈ S, σ induces a map Uv → X , for some open
neighbourhood Uv of v ∈ Spec(Ok,S), and glue these morphisms together.

Proof of Theorem 4.1.6. a)⇒ b). Let X be an integral model of X over Ok,S such that X (Ak,S)Br(X) is
not empty. Since the the Brauer-Manin pairing is continuous we have that the X (Ak,S)Br(X) is open in
X(Ak)Br(X), with regard to the adelic topology; hence, by Lemma 4.1.8 and the fact that πS is open, we
can write

X (Ok,S) = X(k) ∩ πS(X (Ak,S)Br(X)) 6= ∅

by the assumption on X. An integral point is produced and the result is proven.

47



b)⇒ a). Let U be any open subset of X(ASk ), with regard to the adelic topology, such that there exists
z ∈ U ∩ πS(X(Ak)Br(X)). By Proposition 4.1.7 we have an integral model X over Ok,S such that

z ∈
∏
v/∈S

X (Ov) ⊂ U.

In particular X (Ak,S)Br(X) is not empty, hence, by assumption, X (Ok,S) 6= ∅. Since the image of the
natural map π : X (Ok,S) ⊂ X(k) → X (ASk ) lies in

∏
v/∈S X (Ov) ⊂ U , it must be, as in the proof of

Lemma 4.1.8, U ∩X(k) 6= ∅ in X(ASk ). The theorem is proven since U contains a rational point of X.

4.2 Brauer-Manin obstruction to strong approximation
Let G be a semisimple simply connected algebraic k-group, H be a finite constant nilpotent k-

subgroup of G and consider the homogeneous space X := G/H. The following results proves that, under
suitable assumptions, the obstruction of Brauer Manin to strong approximation for X is not the only
one.

Theorem 4.2.1. Let p be a prime number and H be a non commutative finite group of order pn.
For any finite set S0 ⊂ Ωk, if k contains the pn+1th roots of unity, then there exists an adelic point
x ∈ X(Ak)Br(X) such that πS0 /∈ X(k)

S0 .

Remark. Of course H has to be assumed non commutative, if not, this result would contradict what
explained in the introduction. Thanks to this assumption n must be bigger than 2, and so, by the fact
that k contains the pn+1th roots of unity, it has no real places (also in the case p = 2).

The only reason why we choose H to be a p-group is, as every nilpotent group, the existence of a
central cyclic non trivial subgroup Z contained in the derived subgroup of H.

The importance of such an Z is enclosed in the following lemma.

Lemma 4.2.2. Under the assumption of Theorem 4.2.1, the canonical morphism Extck(H,Gm) →
Extck(Z,Gm) is the zero map.

Proof of Theorem 4.2.1. Step 1: a local to global diagram. Set Y := G/Z, X := G/H and f : Y → X
for the natural map. The induced map f∗ : Br(X)/Br(k)→ Br(Y )/Br(k) is the zero map, since, via the
isomorphism established by Theorem 1.16.4 (and its functoriality), it corresponds to the map of Lemma
4.2.2.

To use this map we have to check that the Brauer Manin pairingX(Ak)×Br(X)/Br(k)→ Q/Z can be
slightly modified to obtain a pairing P 1(k,H)×Br(X)/Br(k)→ Q/Z (analogously for Y , with P 1(k, Z)
in place of Y (Ak)), where P 1(k,H) denotes the restricted product of the H1(kv, H) with regard to the
subsets H1(Ov, H). The new pairing would produce a map P 1(k,H)

∂H−−→ (Br(X)/Br(k))D (analogously
∂H for Y ).

To do this notice that exact sequence defining X (as Γv-modules, for any v ∈ Ωk) gives us an exact
sequence X(kv) → H1(kv, H) → H1(kv, G). Since v is not real, as remarked before, Theorem 1.15.4
implies that the map X(kv)→ H1(kv, H) is surjective. In particular we can lift any elements of P 1(k,H)
to an adelic point of X. This is enough to define the Brauer-Manin pairing as we wanted, because any
two lifts differ by an element lying in the left kernel of the usual pairing, namely an adelic point of G.

The natural exact sequence
1→ Z → H → H ′ := H/Z → 1

induces the following “local-to-global” diagram with exact rows, where the first two 1s follow from the
fact that Z and H are constant groups:

1

1

H1(k, Z) H1(k,H) H1(k,H ′) H2(k, Z)

P 2(k, Z)P 1(k, Z) P 1(k,H)

(Br(Y )/Br(k))D (Br(X)/Br(k))D

P 1(k,H ′)

(f∗ = 0)D

∂H∂Z

48



Notice that the lower square is commutative thanks to the functoriality of our Brauer-Manin pairing
(deduced from the functoriality of the usual pairing), and the map between the Brauer is zero by what
explained above.

Step 2: a contradiction. Heading for a contradiction suppose there exists a finite set of places S0 such
that πS0(X(Ak)Br) ⊂ X(k)

S0 . We call this assumption the approximation hypothesis.
Given an element (zv) ∈ P 1(k, Z), by the commutativity of the lower square, we have that ∂H(hv) = 0,

where (hv) is just (zv) seen as an element of P 1(k,H) via the inclusion. Since ∂H(hv) is the map
〈(hv),−〉Br(X)/Br(k) → Q/Z, there exists an adelic point hv ∈ X(Ak) orthogonal to Br. By the
approximation hypothesis we have that, for all finite set of places S ⊃ S0 there exists hS ∈ H1(Ok,S , H)

such that hSv = hv for all v ∈ S − S0. Write h′S for the image of hS in H1(Ok,S , H ′).
Claim: h′S = 1 for S big enough. Notice that the canonical map H1(Ok,S0

, H ′) → H1(Ok,S , H ′) is
injective, since the elements in the two sets can be interpreted as classes of torsors. In the same fashion
we have also that H1(Ok,S , H ′) ↪→ H1(k,H ′), this can be also deduced by the inflation-restriction exact
sequence since H1(Ok,S , H ′) = H1(GS , H

′). Since (hv) ∈ P 1(k,H) lies in P 1(k, Z), we have that h′Sv = 1
for all v ∈ S − S0; as in Example A.1 it follows that h′S ∈ H1(Ok,S0

, H ′). Since H ′ is finite, the pointed
set H1(Ok,S0

, H ′) is finite (same proof as in the abelian constant case, cf [Ser73]), and we can write its
elements as {a1, . . . am} for somem. For all i = 1, . . . ,m choose a place vi /∈ S0 such that ai|vi 6= 1 (if it is
not possible set vi = ∅). Consider now the finite set of places S′ := S0 ∪{vi}mi=1, then the image of every
element hS

′ ∈ H1(Ok,S′ , H) obtained by the approximation hypothesis lies in H1(Ok,S0
, H ′) (applying

Harder’s Lemma as before, thanks to our choice of S′). This argument proves that h′S
′

v = 1 for all place
v /∈ S′, in particular h′S

′ ∈ X1
ω(k,H ′), but, by Čebotarev, we have that X1

ω(k,H ′) = 0 (since H ′ is
finite we can apply Proposition 9.2 of [Har12]). The claim is proven, and “big enough” means “containing
S′”. Moreover, as remarked before, h′S = 1 also in H1(k,H ′), hence there exists zS ∈ H1(k, Z) such
that zSv = zv for all v ∈ S − S0.

Recall that, by the nine terms exact sequence of Poitou-Tate, we have the exactness of H1(k, Z) →
P 1(k, Z)→ H1(k, Ẑ)D (about Poitou-Tate duality we refer the reader to [Mil06], Theorem 4.10). Since
H1(k, Ẑ) is not finite, while X1

ω(k, Ẑ) is finite, we can choose (zv) ∈ P 1(k, Z) not orthogonal to H1(k, Ẑ)

(i.e. it is not zero in H1(k, Ẑ)D) such that zv = 0 for all v ∈ S0. Such an element, can not come from
H1(k, Z), by Poitou-Tate, but this is the case by what the previous claim implies. The contradiction is
established and the theorem proven.

Remark. Thanks to Theorem 4.1.6, Theorem 4.2.1 implies the existence of X , an Ok,S0
-model of X, for

which the failure of the integral Hasse principle is not explained by Brauer-Manin. At the moment we
do not have an explicit description of such a model; it would be interesting to find a model with the
structure of homogeneous space, extending the one of X.

4.2.1 Proof of Lemma 4.2.2
Consider (the class of) an extension 1→ Gm → H1 → H → 1 ∈ Extck(H,Gm), we want to show that

its image 1 → Gm → Z1 → Z → 1 in Extck(H,Gm) is trivial. To do this we will perform a diagram
chasing of the the following:

Extck(H,Gm) Extck(Z,Gm)

Extck(H,µpn) Extck(Z, µpn)

Extck(H,µpn+1) Extck(Z, µpn+1)
Z → H

Z → H

µpn → µpn+1µpn → µpn+1

Z → H

µpn → Gm µpn → Gm

µpn+1 → Gm

.

The two main results of Section 1.16.1 imply that Extck(H,Gm) is isomorphic to H2(H, k∗), in particular
it is a group of |H| = pn-torsion (see Corollary 1.26 of [Har12]). Since the natural complex

Extck(H,µpn)
µpn→Gm−−−−−−→ Extck(H,Gm)

[pn]=0−−−−→ Extck(H,Gm)
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is exact (see for example [ABD+66], Exposé XVII, Proposition A.2.1), we deduce that the map

Extck(H,µpn)→ Extck(H,Gm)

is surjective.
By the surjectivity displayed above we can choose a lift, in Extck(H,µpn), of the extension given by

H1, namely 1 → µpn → H2 → H → 1. Write 1 → µpn → Z2 → Z → 1 for the image of the extension
given by H2 in Extck(Z, µpn), and consider its image 1→ µpn+1 → Z3 → Z → 1 in Extck(Z, µpn+1).

Claim: the extension given by Z3 is k-split. The claim proves the result thanks to the commutativity
of the big diagram, since the extension given by Z1 is Extck(Z,Gm) is the image of the the extension
1→ µpn+1 → Z3 → Z → 1 along the (map induced by the) inclusion µpn+1 → Gm.

Proof of the claim. Over k the extension given by Z3 is trivial, since Z has cardinality equal to p and
the extension is obtained pulling-back along the map µpn → µpn+1 given by x 7→ xp. To conclude we
prove that the action of Γk on Z3 is trivial. To do this consider the image of the extension given by H2 in
Extck(H,µpn+1), namely 1 → µpn+1

a−→ H3 → H → 1. The maps µpn+1
a−→ H3, Z2 → H2 → H3 produce

a (unique) map Z3 → H3 which fits in the following injective morphism of short exact sequences:

1 µpn+1 Z3 Z 1

1 µpn+1 H3 H 1
a

Id

.

Notice that, by abstract non sense, the right square is a pull-back diagram.
For all g, h ∈ H3(k) and for all γ ∈ Γk we have γ [g, h] =

γ
(ghg−1h−1) = [γg,γ h]; since the action of

Γk on H is trivial, the elements γg and g differs by element in the center of H3 (the extension of H3 is
central), hence we can write γ [g, h] = [g, h]. In particular the action of Γk is trivial on D(H3).

Since the subgroup Z3(k) of H3(k) is contained, by construction of Z and the fact that the right
square is a pull-back, in the subgroup generated by D(H3(k)) and µpn+1(k) ⊂ k∗, since is k-split, we
have that the action of Γk on Z3(k) is trivial. Hence the extension is trivial not just as abstract groups
but also as Γk-modules.
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Appendix A

The one dimensional case

A.1 Harder’s Lemma
Definition A.1.1. Let X be a scheme, G→ X an fppf group scheme (not necessary commutative) over
X, an X-torsor under G is a X-scheme Y → X, with a G-action such that there exists a fppf covering
{Ui → X} that trivialized Y , in the sense that Y × Ui ' G× Ui compatible with the action of G.

Remark. Let X be scheme and G an group scheme over X which is affine. Then any fppf torsor on X
under G is representable. This, and more, can be found in [Mil80] III Theorem 4.3.

Lemma A.1.2. Let X be a scheme, G → X an affine, smooth group scheme. Given a Zariski open
covering X = U ∪ V , the following natural diagram is a pull-back:

H1(X,G) H1(U,G)

H1(V,G) H1(U ∩ V,G) .

Proof. In virtue of the previous remark we can interpret the element in the H1 as classes of torsors; at
this point the diagram is nothing else than the gluing property of torsors in the intersection.

Proposition A.1.3. Let G be a group as in Lemma A.1.2 Let A be a DVR, K its fraction field. Write
Â, K̂ for the completions of A and K. The following natural diagram is a pull-back:

H1(A,G) H1(Â, G)

H1(K,G) H1(K̂,G) .

Proof. For the proof, which relays on a descent argument, see Proposition A.6 of [GP08].

We state here the so called Harder’s lemma, in the more general version due to Gille and Pianzola,
cf. [GP08], Corollary A.8.

Theorem A.1.4 (Harder’s Lemma). Let X be a regular noetherian integral scheme of function field K.
For x ∈ X(1), write Ôx for the completion of the local ring OX,x and K̂x for its fraction field. Let G be an
affine, smooth group scheme. Let U be an open subset of X and γ ∈ H1(U,G). If, for any x ∈ X(1)−U ,
γK̂x ∈ Im(H1(Ôx, G) → H1(K̂x, G)), then there exists an open subscheme Ũ ⊂ X containing U such
that the codimension of X − Ũ is bigger or equal to 2, and γ belongs to the image of the natural map
H1(Ũ , G)→ H1(U,G).

Proof. Write X(1) − U = {x1, . . . , xn}. By induction on n it is enough to prove the result when X(1) −
U = x. Thanks to Proposition A.1.3 there exists α ∈ H1(OX,x, G) such that α and γ coincide in
U×XOX,x = K. Thanks to Grothendieck-Margaux’s result about the passage to the limit in nonabelian
Čech cohomology (see [GP08], Proposition A.4 for the references), there exists an open neighbourhood
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Vx of x in X and an α̃ ∈ H1(Vx, G) such that α̃ and γ coincide at the generic point. The same argument
implies that α̃ and γ coincide on a dense open subset W0 of X.

Claim: there exists an open subset W of X such that x ∈ U ∩W ⊂ W0. This concludes since, by
Lemma A.1.2, we can glue the classes of γ and α̃ along U ∩W , otherwise stated γ ∈ Im(H1(U ∪W,G)→
H1(U,G)). By construction x belongs to U ∪W , hence Ũ := U ∪W is exactly as wanted.

To prove the claim consider the decomposition in irreducible component X−W0 = {x}∪Z1∪· · ·∪Zm,
and notice that x /∈ Zi since x has codimension one. In particular W := (X − Z1 ∪ 2ts ∪ Zm) ∩ Vx is an
open subset of X as claimed.

Example. We present an application of the previous theorem in the one dimensional case. Let k a number
field and S0 ⊂ S ⊂ Ωk with S finite. Consider X := Spec(Ok,S0), the open subset U := Spec(Ok,S) ⊂ X
and γ ∈ H1(U,G). If γv ∈ H1(Ov, G) is trivial for any v ∈ S − S0, then the Ũ produced by the above
theorem Theorem must be equal to X it self, since dimX = 1, this means that

γ ∈ Im(H1(Ok,S0
, G)→ H1(Ok,S , G)).

If the map H1(Ok,S0 , G) → H1(Ok,S , G) is injective (for example when G is finite), then the previous
condition means exactly that γ lies in H1(Ok,S0

, G).
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