
Amadou Diogo Barry

The abc Conjecture and k-free
numbers

Master’s thesis, defended on June 20, 2007

Thesis advisor: Dr. Jan-Hendrik Evertse

Mathematisch Instituut
Universiteit Leiden



Exam committee

Dr. Jan-Hendrik Evertse (supervisor)

Prof.dr. P. Stevenhagen

Prof.dr. R. Tijdeman



Abstract

In his paper [14], A. Granville proved several strong results about the dis-
tribution of square-free values of polynomials, under the assumption of the
abc-conjecture. In our thesis, we generalize some of Granville’s results to
k-free values of polynomials (i.e., values of polynomials not divisible by the
k-th power of a prime) . Further, we generalize a result of Granville on the
gaps between consecutive square-free numbers to gaps between integers, such
that the values of a given polynomial f evaluated at them are k-free.
All our results are under assumption of the abc-conjecture.
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Notation

Let f : R→ C and g : R→ C be complex valued functions and h : R→ R+.
We use the following notation:

f(X) = g(X) + O(h(X)) as X →∞

if there are constants X0 and C > 0 such that

|f(X)− g(X)| ≤ Ch(X)

for all X ∈ R and X ≥ X0;

f(X) = g(X) + o(h(X)) as X →∞ iff limX→∞
f(X)−g(X)

h(X)
= 0;

f(X) ∼ g(X) as X →∞ iff limX→∞
f(X)
g(X)

= 1.

We write f(X)� g(X) or g(X)� f(X) to indicate that f(X) = O (g(X))

We denote by gcd (a1, a2, . . . , ar) , lcm (a1, a2, . . . , ar) , the greatest common
divisor, and the lowest common multiple, respectively, of the integers
a1, a2, . . . , ar.

We say that a positive integer n is k-free if n is not divisible by the k-th
power of a prime number.
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Chapter 1

Introduction

In 1985, Oesterlé and Masser posed the following conjecture:

The abc-conjecture. Fix ε > 0. If a, b, c are coprime positive integers satis-
fying a+ b = c then

c�ε N(abc)1+ε,

where for a given integer m, N(m) denotes the product of the distinct primes
dividing m.

In fact, Oesterlé first posed a weaker conjecture, motivated by a conjecture
of Szpiro regarding elliptic curves. Then Masser posed the abc-conjecture
as stated above motivated by a Theorem of Mason, which gives an similar
statement for polynomials.
On its own, the abc-conjecture merits much admiration. Like the most in-
triguing problems in Number Theory, the abc-conjecture is easy to state but
apparently very difficult to prove.The abc-conjecture has many fascinating
applications; for instance Fermat’s last Theorem, Roth’s theorem, and the
Mordell conjecture, proved by G. Faltings [4] in 1984.
Another consequence is the following result proved by Langevin [22] and
Granville [14]:
Assume that the abc-conjecture is true. Let F (X, Y ) ∈ Q [X, Y ] be a homo-
geneous polynomial of degree d ≥ 3, without any repeated linear factor such
that F (m,n) ∈ Z for all m,n ∈ Z. Fix ε > 0. Then, for any coprime integers
m and n,

N (F (m,n))� max{|m|, |n|}d−2−ε,

where the constant implied by� depends only on ε and F. With this conse-
quence we generalize some results of Granville [14] on the distribution prob-
lem for the square free values of polynomials to the distribution problem for
k-free values of polynomials for every k ≥ 2.
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Let f(X) ∈ Q[X] be a non-zero polynomial without repeated roots such that
f(n) ∈ Z for all n ∈ Z.
In his paper, Granville proved, under the abc-conjecture assumption, that
if gcdn∈Z (f(n)) is square free, then there are asymptotically cfN positive
integers n ≤ N such that f(n) is square free, where cf is a positive constant
depending only on f.
In section 3.1, we generalize this as follows:

Assume the abc-conjecture. Let k be an integer ≥ 2 and suppose that gcdn∈Z (f(n))
is k-free. Then there is a positive constant cf,k such that:

#{n ∈ Z : n ≤ N, f(n) k-free} ∼ cf,kN as N →∞

If we do not assume the abc-conjecture only under much stronger constraints
results have been proved. For example Hooley [18] obtained only the following
result.
Let f(X) be an irreducible polynomial of degree d ≥ 3 for which gcdn∈Z f(n)
is (d− 1)-free. Then if S(x) is the number of positive integers ≤ x for which
f(n) is (d− 1)-free, we have as x→∞

S(x) = x
∏
p

(
1− ωf (p)

pd−1

)
+ O

(
x

(log x)A/ log log log x

)
,

where ωf (p) = #{0 ≤ n < pd−1 : f(n) ≡ 0 (mod pd−1)} and A is a positive
constant depending only on f.

In section 3.2 we will investigate the problem of finding an h = h(x) as small
as possible such that, for x sufficiently large, there is an integerm ∈ (x, x+ h]
such that f(m) is k-free, where f(X) ∈ Q[X] is irreducible and f(n) ∈ Z for
every n ∈ Z.
This problem has been investigated in the case f(X) = X and k = 2 by Roth
[26], and Filaseta and Trifonov [10].In particular Filaseta and Trifonov have
shown in 1990 that there is a constant c > 0 such that, for x sufficiently large,
the interval (x, x+ h] with h = cx8/37 contains a square free number. Using
exponential sums, they showed that 8/37 may be replaced by 3/14. A few
years later, in 1993, the same authors obtained the following improvement:
there exists a constant c > 0 such that for x sufficiently large the interval(
x, x+ cx1/3 log x

]
contains a square free number. Under the abc-conjecture,

Granville [14] showed that h(x) = xε (ε > 0 arbitrary) can be taken.

Again assuming the abc-conjecture we extend this as follows:

For every ε > 0 and every sufficiently large x, there is an integer m ∈
(x, x+ xε] such that f(m) is k-free.

3



Now, let s1, s2, . . . denote the positive integers m in ascending order such
that f(m) is k-free.
The main purpose of chapter 4 is to study the average moments of sn+1− sn;
that is, the asymptotic behaviour of 1

x

∑
sn+1≤x

(sn+1 − sn)A as x→∞.

It was Erdős [5] who began to study this problem in the case f(X) = X.
Erdős showed that, if 0 ≤ A ≤ 2, then∑

sn+1≤x

(sn+1 − sn)A ∼ βAx as x→∞ (1.1)

where βA is a function depending only on A. In 1973 Hooley[19] extended
the range of validity of this result to 0 ≤ A ≤ 3; and in 1993, Filaseta [9]
extended this further to 0 ≤ A < 29/9 = 3, 222 . . .
In our case we will allow any A > 0 and generalize this result to every
irreducible polynomial f(X) ∈ Q[X] such that f(n) is an integer for every
n ∈ Z. Before we state our Theorem we recall the result obtained by Beasley
and Filaseta [1] without the assumption of the abc-conjecture.
Let d = deg(f) ≥ 2, and let k ≥ (

√
2− 1/2)d. Let

φ1 =
(2s+ d)(k − s)− d(d− 1)

(2s+ d)(k − s) + d(2s+ 1)
,

where

s =

{
1 if 2 ≤ d ≤ 4[(√

2− 1
)
d/2
]

if d ≥ 5

Let

φ2 =

{
8d(d−1)

(2k+d)2−4
if
(√

2− 1/2
)
≤ k ≤ d

d
(2k−d+r) if k ≥ d+ 1,

where r is the largest positive integer such that r(r − 1) < 2d. Then φ1 > 0,
φ2 > 0,
and if

0 ≤ A < min

{
1

φ2

, 1 +
φ1

φ2

, k

}
,

then for every irreducible polynomial f(X) ∈ Z[X] of degree d such that
gcdn∈Z f(n) is k-free,∑

sn+1≤x

(sn+1 − sn)A ∼ βAx as x→∞

for some constant βA depending only on A, f(x), and k.
Assuming the abc-conjecture we establish the following result, which was
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proved by Granville [14] in the special case f(X) = X, k = 2 :

Let k be an integer ≥ min (3, deg(f)) . Let f(X) ∈ Q[X] be an irreducible
polynomial without any repeated root such that f(n) ∈ Z for all n ∈ Z and
gcdn∈Z f(n) is k-free. Suppose the abc-conjecture is true. Then for every real
A > 0 there exists a constant βA > 0 such that:∑

sn≤x

(sn+1 − sn)A ∼ βAx as x→∞.
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Chapter 2

The abc-conjecture and some
consequences

2.1 The abc-conjecture

We recall the abc-conjecture.
The abc-conjecture [Oesterlé,Masser,Szpiro].
Fix ε > 0. If a, b, c are coprime positive integers satisfying a+ b = c then

c�ε N(abc)1+ε,

where for a given integer m, N(m) denotes the product of the distinct primes
dividing m.

2.2 Consequences of the abc-conjecture

Now we state a consequence of the abc-conjecture, obtained independently
by Granville [14] and Langevin [22] [23], on which all our results will rely.

Theorem 2.1. Assume that the abc-conjecture is true. Let F (X, Y ) ∈
Q [X, Y ] be a homogeneous polynomial of degree d ≥ 3, without any repeated
linear factor such that F (m,n) ∈ Z for all m,n ∈ Z. Fix ε > 0. Then, for
any coprime integers m and n,

N (F (m,n))� max{|m|, |n|}d−2−ε,

where the constant implied by � depends only on ε and F.

The proof of this Theorem depends on some Lemmas which we state after
giving some definitions.

6



Let ϕ(z) = f(z)
g(z)

a rational function, where f(z), g(z) ∈ C[z] are coprime

polynomials. We define deg(ϕ) = max (deg(f), deg(g)) .

ϕ defines a map from P1 (C) = C ∪ {∞} to P1 (C) by defining:

(i) ϕ(z) =∞ if z 6=∞, g(z) = 0;

(ii) ϕ(∞) =∞ if deg(f) > deg(g);

(iii) ϕ(∞) = 0 if deg(f) < deg(g);

(iv) ϕ(∞) = lc(f)/lc(g) if deg(f) = deg(g),

where lc(f) denotes the leading coefficients of a polynomial f.
We define the multiplicity, multzo(ϕ) of ϕ at z0 ∈ P1(C) as follows:

- if z0 6= ∞, ϕ(z0) 6= ∞ we define multz0(ϕ) to be the integer n such that
ϕ(z)− ϕ(z0) = c (z − z0)

n + (higher power of (z − z0)) and c 6= 0;

- if z0 6=∞, ϕ(z0) =∞, define multz0(ϕ) = multz0

(
1
ϕ

)
;

- if z0 =∞, define multz0(ϕ) = multz0(ϕ
∗) where ϕ∗(z) = ϕ

(
1
z

)
.

We say that ϕ is ramified at z0 if multz0(ϕ) > 1.
We say that ϕ is ramified over w0 if there is z0 ∈ P1(C) with ϕ(z0) = w0 such
that ϕ is ramified at z0.
In general we have

∑
z0∈ϕ−1(w0)

multz0(ϕ) = deg(ϕ) for w0 ∈ P1(C).

The following is a special case of the Riemann-Hurwitz formula:

Lemma 2.2. Let ϕ ∈ C(z) be a rational function. Then:

2 deg(ϕ)− 2 =
∑

z0∈P1(C)

(multz0(ϕ)− 1) ,

Proof. For a statement and proof of the general Riemann-Hurwitz formula,
see [24] or [29].

Let Q denote the algebraic closure of Q in C.

Lemma 2.3 (Belyi[2]). For any finite subset S of P1
(
Q
)
, there exists a

rational function φ(X) ∈ Q(X), ramified only over {0, 1,∞}, such that
φ(S) ⊂ {0, 1,∞}.

Proof. This useful Lemma is proved, for instance, by Serre as Theorem B on
page 71 of [28] (for variations, see Belyi [2], Elkies [4], Langevin [22], [23], or
Granville [16]).
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Lemma 2.4. Let F (X, Y ) ∈ Q [X, Y ] be any non-zero homogeneous polyno-
mial. Then we can determine a positive integer D, and homogeneous polyno-
mials a(X, Y ), b(X, Y ), c(X, Y ) ∈ Z [X, Y ] all of degree D, without common
factors such that:

(i) a(X, Y )b(X, Y )c(X, Y ) has exactly D+2 non-proportional linear factors,
including the factors of F ;

(ii) a(X, Y ) + b(X, Y ) = c(X, Y ).

Proof. We apply Lemma 2.3 with S = {(α, β) ∈ P1 : F (α, β) = 0}. Let φ(X)
be the rational function from Lemma 2.3, and write φ(X/Y ) = a(X, Y )/c(X, Y ),
where a(X, Y ), c(X, Y ) ∈ Z [X, Y ] are homogeneous forms, of the same de-
gree as φ, (call it D) and without common factors. Let b(x, y) = c(x, y) −
a(x, y). Note that:

φ(x/y) = 0 if and only if a(x, y) = 0;
φ(x/y) = 1 if and only if b(x, y) = 0;
φ(x/y) =∞ if and only if c(x, y) = 0.

Therefore F (x, y) divides a(x, y)b(x, y)c(x, y). If we write #φ−1(u) for the
number of distinct t ∈ P1(Q) for which φ(t) = u, then #φ−1(0) + #φ−1(1) +
#φ−1(∞) equals the number of distinct linear factors of a(x, y)b(x, y)c(x, y),
by the observation immediately above. On the other hand, applying the
Riemann-Hurwitz formula to the map φ : P1 → P1, and the fact that φ is
ramified only over {0, 1,∞} we get:

2D = 2 +
∑

u∈φ−1({0,1,∞})

(multu (φ)− 1)

= 2 +
∑

u∈{0,1,∞}

D −
∑

u∈φ−1{0,1,∞}

1

= 2 +
∑

u∈{0,1,∞}

D +
∑

u∈{0,1,∞}

#φ−1 (u)

= 2 +
∑

u∈{0,1,∞}

{D −#φ−1(u)}.

Thus #φ−1(0)+#φ−1(1)+#φ−1(∞) = D+2 which concludes the proof.

Here we give the definition of discriminant, resultant, and some of their
properties.

Definition 2.5. Let, g(X) = b
∏r

i=1(X − βi) ∈ Q[X] then we define the
discriminant of g by:

∆(g) = b2r−2
∏

1≤i<j≤r

(βi − βj)2 .
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Definition 2.6. The resultant of two non-zero polynomials

f(X) = b
s∏
i=1

(X − βi), g(X) = c

r∏
j=1

(X − γj) ∈ Q[X]

is defined by:

R(f, g) = brcs
s∏
i=1

r∏
j=1

(βi − γj).

We easily deduce from these definitions the following properties:

(R1) R(f, g) = (−1)rsR(g, f);

(R2) R(f, g) = br
s∏
i=1

g(βi);

(R3) ∆(f) = (−1)s(s−1)/2 b−1R(f, f ′);

(R4) If f(X), g(X) ∈ Z[X], there exist two polynomials
a (X) , b (X) ∈ Z[X] with deg(a) ≤ r − 1, deg(b) ≤ s− 1 such that:

a(X)f(X) + b(X)g(X) = R(f, g).

For this last remark see [21] .

Definition 2.7. Let F (X, Y ) =
s∑
i=0

aiX
s−iY i, G(X, Y ) =

r∑
j=0

bjX
r−jY j be

two binary homogeneous polynomials in Z[X, Y ] such that a0 6= 0, b0 6= 0.
Then we define the resultant of F and G, R(F,G), by: R(F,G) = R(f, g),
where f(X) = F (X, 1) and g(X) = G(X, 1).

Lemma 2.8. Let F,G ∈ Z[X, Y ] be two binary homogeneous polynomials,
without common factor. Let m,n ∈ Z with gcd(m,n) = 1. Then:

gcd (F (m,n), G(m,n)) |R(F,G).

Proof. Let F (X, Y ) = Y sf
(
X
Y

)
and G(X, Y ) = Y rg

(
X
Y

)
then by (R4) there

are two polynomials a (X) , b (X) ∈ Z[X] such that a(X)f(X)+ b(X)g(X) =
R(f, g). Now put A(X, Y ) = Y r−1a

(
X
Y

)
, B(X, Y ) = Y s−1b

(
X
Y

)
. Then

A(X, Y )F (X, Y ) +B(X, Y )G(X, Y ) = Y r+s−1R(F,G).

So
gcd (F (m,n), G(m,n)) |nr+s−1R(F,G).
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By interchanging m and n we get:

gcd (F (m,n), G(m,n)) |mr+s−1R(F,G),

since gcd(m,n) = 1. Thus,

gcd (F (m,n), G(m,n)) |R(F,G).

For more details see [21] or [25].

Proof of Theorem 2.1. There is no loss of generality to assume that
F (X, Y ) ∈ Z[X, Y ]. Let d = deg(F ) and let a(x, y), b(x, y), c(x, y) be the
homogeneous polynomials from Lemma 2.4. By multiplying together the irre-
ducible factors of a(x, y)b(x, y)c(x, y), we obtain a new polynomial F (x, y)G(x, y)
of degree D + 2.
Let m,n ∈ Z with gcd(m,n) = 1 and put r = gcd(a(m,n), b(m,n)). r is
bounded since it divides R(a, b) which is a non-zero integer. Now using this

remark we apply the abc-conjecture directly to the equation a(m,n)
r

+ b(m,n)
r

=
c(m,n)
r

to get

max {|a(m,n)|, |b(m,n)|} �

∏
p|abc

p

1+ε/D

,

where here and below constants implied by � depend on F and ε. This
implies:

max {|a(m,n)|, |b(m,n)|}1−ε/D �

∏
p|abc

p

1−ε2/D2

≤

∏
p|abc

p

 ;

hence

max {|a(m,n)|, |b(m,n)|}1−ε/D �

∏
p|FG

p

� G(m,n)

 ∏
p|F (m,n)

p

 .

Now to finish our proof it remains to find an upper bound and a lower bound
respectively for |G(m,n)| =

∑D+2−d
i=0 gim

inD+2−d−i and
max{|a(m,n)|, |b(m,n)|}.
Write H(m,n) = max{|m|, |n|}, thus |G(m,n)| = |

∑D+2−d
i=0 gim

inD+2−d| �

10



HD+2−d. Note that for every fixed real α, |m − αn| � H. Moreover, for
every real α and β with α 6= β we have (m − αn) − (m − βn) = −(α −
β)n, and α(m − βn) − β(m − αn) = (α − β)m. Thus, we deduce that
max{|m − αn|, |m − βn|} � H. So, since a(x, y), b(x, y) have no common
factors, max{|a(m,n)|, |b(m,n)|} � HD. Substituting these two estimates
into the equation above we get:∏
primes p|F (m,n)

p� max{a(m,n), b(m,n)}1−ε/D

G(m,n)
� max{|m|, |n|}deg(F )−2−ε.

If we wish to consider f(X) ∈ Z [X] , then we can obtain a stronger
consequence of Theorem 2.1 than comes from simply setting n = 1. If f(X)
has degree d then we let F (X, Y ) = Y d+1f(X/Y ); thus f(X) = F (X, 1), but
deg(F ) = deg(f) + 1. So now, applying Theorem 2.1,∏

primes p|f(m)

p =
∏

primes p|F (m,1)

p� max{|m|, |1|}deg(F )−2−ε = |m|deg(f)−1−ε.

This yields

Corollary 2.9. Assume that the abc-conjecture is true. Suppose that
f(X) ∈ Z [X] , has no repeated roots. Fix ε > 0. Then∏

primes p|f(m)

p� |m|deg(f)−1−ε.

Where the constant implied by � depends on f and ε.

The next result, although an immediate corollary of the Theorem 2.1,
will be stated like a Theorem because it will play an important role in what
follows.

Theorem 2.10. Let k be an integer ≥ 2. Assume that the abc-conjecture is
true. Suppose that F (X, Y ) ∈ Z [X, Y ] is homogeneous, without any repeated
linear factors. Fix ε > 0. If there exists an integer q such that qk divides
F (m,n) for some coprime integers m and n then q � max{|m|, |n|}(2+ε)/(k−1).
Also, if f(X) ∈ Z [X] has no repeated roots and qk divides f(m), then
q � |m|(1+ε)/(k−1).

Here the constants implied by � depend on ε, and F, f respectively.

Proof. By Theorem 2.1 we have∏
primes p|F (m,n)

p� max{|m|, |n|}deg(F )−2−ε.
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This is equivalent to

max{|m|, |n|}2+ε ·
∏

primes p|F (m,n)

p� max{|m|, |n|}deg(F ).

This implies that

|F (m,n)| � max{|m|, |n|}2+ε ·
∏

primes p|F (m,n)

p.

Since clearly

qk−1
∏

primes p|F (m,n)

p� |F (m,n)|,

we obtain
q � max{|m|, |n|}(2+ε)/(k−1)

as required.

In the case f(X) ∈ Z[X] the proof is similar.
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Chapter 3

Asymptotic estimate for the
density of integers n for which
f (n) is k-free

Let k be an integer ≥ 2; let f(X) ∈ Q [X] be a polynomial such that f(n) ∈ Z
for all n ∈ Z and gcdn∈Z f(n) is k-free. Now we will use the previous chapters
to derive an asymptotic estimate for the number of positive integers n ≤ N
such that f(n) is k-free. Further we prove that for every ε > 0 and every
sufficiently large z there is an integer m ∈ [z, z + zε) , for which f(m) is
k-free. Both results are proved assuming the abc-conjecture.

3.1 Asymptotic estimate of integers n for which

f (n) is k-free

Let k be an integer ≥ 2 and f (X) a polynomial in Q [X] of degree d with-
out any repeated roots. We assume that f(m) ∈ Z for all m ∈ Z and
gcdm∈Z(f(m)) is k-free. Under these conditions, we expect that there are
infinitely many integers m for which f(m) is k-free but unconditionally this
is far from being established.

The following result is an extension of a result of Granville [14] from square-
free values to k-free values of polynomials.

Theorem 3.1. Assume that the abc-conjecture is true. Then, as N → ∞,
there are ∼ cf,kN positive integers n ≤ N for which f(n) is k-free, with:

cf,k :=
∏

p prime

(
1− ωf,k(p)

pk

)

13



where, for each prime p, ωf,k(p) denotes the number of integers a in the range
1 ≤ a ≤ pk for which f(a) ≡ 0 (mod pk).

We first give a definition.

Definition 3.2. For a polynomial f(X) ∈ Q[X], we define L(f) := lcm (b,∆(bf)) ,
where b is the smallest positive integer such that bf(X) ∈ Z[X].

In the prove of this Theorem we need some auxiliary results.

Lemma 3.3 (Hensel’s lemma). Let f(x) be a polynomial with integer coeffi-
cients of degree d, and let a0 ∈ Z be such that f(a0) ≡ 0 (mod p), f ′(a0) 6≡ 0
(mod p). Then for every k ≥ 1 there is precisely one congruence class
a (mod pk) such that

f(a) ≡ 0 (mod pk), a ≡ a0 (mod p).

Proof. For this proof see also [20].

Remark 3.4. If p does not divide the discriminant of f, and f (r) ≡ 0
(mod p), then f ′ (r) 6≡ 0 (mod p).

Corollary 3.5. Let f(X) ∈ Q[X] be a polynomial of degree d, such that
f(n) ∈ Z for all n ∈ Z and let p be a prime such that p does not divide L(f).
Then:

ωf,k(p) = |{a (mod pk) : f(a) ≡ 0 (mod pk)}| ≤ d.

Proof. Let f(X) = a0X
d+a1X

d−1 + . . .+ad. Let b be as in the Definition 3.2
and let g(X) = bf(X). Then g(X) = b0X

d + b1X
d−1 + . . . + bd ∈ Z[X] with

bi = bai (i = 0, 1, . . . , d).
Now f(a) ≡ 0 (mod pk) is equivalent to g(a) ≡ 0 (mod pk) since p does not
divide b.
The congruence g(X) ≡ 0 (mod p) has at most d solutions modulo p (since
g(X) = 0 (mod p) has at most d zeros in Fp).
Let x1, x2, . . . , xr (mod p) be the solutions to g(X) ≡ 0 (mod p).
We have L(f) = lcm (b,∆(g)) , so by assumption, p does not divide ∆(g).
Further,

∆(g) = ±b0R(g, g′).

Now if there is an integer a such that p|g(a), p|g′(a) then p|R(g, g′). That is,
p|∆(g). But this is against our assumption.
So if g(a) ≡ 0 (mod p), then g′(a) 6≡ 0 (mod p).
Now let a (mod pk) be a solution to f(x) ≡ 0 (mod pk). Then g(a) ≡
0 (mod pk), so g(a) ≡ 0 (mod p). Hence a ≡ xi (mod p) for some i ∈
{1, 2, . . . , r}. But the residue class a (mod pk) such that g(a) ≡ 0 (mod pk)
and a ≡ xi (mod p) is unique, by Lemma 3.3.
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In what follows, we assume that f(X) ∈ Q[X], f(m) ∈ Z for all m ∈ Z
and gcdm∈Z f(m) is k-free.

Proposition 3.6. Let α be a fixed real number ≥ 1.
Then uniformly for u ≥ 0, the number of integers n ∈ (u, u+ N ] for which
f(n) is not divisible by the k-th power of a prime p ≤ αN is ∼ cf,kN as
N →∞.

Remark 3.7. By this we mean the following: for every ε > 0 there is N0 > 0
such that for every N ≥ N0 and every u ≥ 0 we have:

|S (u,N)− cf,kN | < εN,

where S (u,N) is the number of integers n ∈ (u, u+ N ] such that f (n) is
not divisible by the k-th power of a prime p ≤ αN.

Proof. Let z = 1
k+1

logN and choose N large enough such that z > L(f);

let M =
∏
p≤z

pk = exp

(
k
∑
p≤z

log p

)
= ekθ(z). By the prime number theorem

θ(z) = z + o(z), and so M = e
k
k+1

logN(1+o(1)) = N
k
k+1

+o(1) as N →∞.
For every prime p ≤ z and every number x ≥ 0, there are M

pk
ωf,k(p) integers

n ∈ (x, x+ M ] such that f(n) ≡ 0 (mod pk).Hence there areM
(

1− ωf,k(p)

pk

)
integers n ∈ (x, x+ M ] such that f(n) is not divisible by pk. So, by the Chi-

nese Remainder Theorem, there are exactly M
∏
p≤z

(
1− ωf,k(p)

pk

)
integers n in

any interval (x, x+ M ] , for which f(n) is not divisible by the k-th power of
a prime p ≤ z. Thus there are

M

(
N

M
+ O(1)

)∏
p≤z

(
1− ωf,k(p)

pk

)
= N

(
1 + O

(
M

N

))∏
p≤z

(
1− ωf,k(p)

pk

)
integers n ∈ (u, u+ N ] for which f(n) is not divisible by the k-th power of
a prime p ≤ z. Notice that the constant implied by O does not depend on u.
Now, if a prime p does not divide L(f) then by Corollary 3.4, ωf,k(p) ≤ d.
Hence ∑

p>z

ωf,k(p)

pk
≤ d

∑
p>z

1

pk
≤
∑
n>z

1

nk
� 1

zk−1
.

This yields, that cf,k/
∏
p≤z

(
1− ωf,k(p)

pk

)
= 1+O

(
1

zk−1

)
, and so we have proved

that, uniformly in u, there are ∼ cf,kN, as N →∞, integers n in the interval
(u, u+ N ] for which f(n) is not divisible by the k-th power of a prime p ≤ z.
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As we have shown above there are ωf,k(p){N/pk + O(1)} integers in the
interval (u, u+ N ] for which f(n) ≡ 0 (mod pk), for any given prime p. If
p > z then this number is, by Corollary 3.4, ≤ dN/pk + O(d). Therefore the
number of integers n ∈ (u, u+ N ] such that there is a prime p ∈ (z, αN ] for
which f(n) ≡ 0 (mod pk) is

�d

∑
z<p≤αN

(
N

pk
+ 1

)
� N

zk−1
+

N

logN
= o(N).

Then the number of integers n ∈ (u, u+ N ] such that f(n) is not divisible
by the k-th power of a prime p ≤ z but f(n) ≡ 0 (mod pk) for some prime
p ∈ (z, αN ] is equal to o(N) hence the number of integer n ∈ (u, u+ N ] for
which f(n) is not divisible by the k-th power of a prime p ≤ αN is ∼ cf,kN
uniformly in u as N →∞.

We complete the proof of Theorem 3.1 by showing that, for any fixed
ε > 0, there are O(εN) integers n ≤ N for which f(n) is divisible by the
square of a prime > N. Observe that this result is true for f(X) it is true for
all irreducible factors of f(X); thus we will assume that f(X) is irreducible.
Hence it is sufficient to prove the following:

Theorem 3.8. Assume that the abc-conjecture is true. Suppose that f(X) ∈
Q[X] is irreducible of degree d ≥ 2, with f(n) ∈ Z for n ∈ Z. Then for every
ε > 0 there are O(εN) integers n ≤ N such that f(n) is divisible by the
square of a prime p > N.

Remark 3.9. We may assume d ≥ 2 since the square of any prime p > N
is � N2 and so, if N is sufficiently large, cannot divide a non-zero value of
a linear polynomial.

Proof. Consider the new polynomial,

F (X) = f(X)f(X + 1)f(X + 2) · · · f(X + l − 1),

where l is an integer to be chosen later.
We claim that this polynomial has no repeated factors. Indeed, suppose that
F (X) has repeated factors. Then, f(X + i) = f(X + j) for certain integers
i, j with i 6= j, since f is irreducible. By substituting X for X + i we obtain
f(X) = f(X + n) where n = j − i 6= 0.
Taking X = 0, n, 2n, . . . ,etc we obtain f(n) = f(0), f(2n) = f(n) = f(0),
f(3n) = f(0), . . . , i.e. the polynomial f(X) − f(0) has zeros 0, n, 2n, . . .
This is impossible since f is not constant.
For every n < N, write n = jl + i, where 0 ≤ i < l and 0 ≤ j < [N/l]. Note
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that if there exist a prime q > N such that q2 divides f(n), then q
∏

p|f(n)

p ≤

|f(n)| � Ndeg(f) hence
∏

p|f(n)

p� Ndeg(f)−1. Thus if two of the f(n+ i) were

divisible by squares of primes > N, we would have
∏

p|F (n)

p � Ndeg(F )−2,

contradicting Corollary 2.9. This implies that there is at most one number
f(n + i), 0 ≤ i < l, which is divisible by the square of a prime > N. Thus,
in total there are O(N/l) integers n ≤ N such that f(n) is divisible by the
square of a prime > N. Selecting l = [1/ε] the result follows.

Remark 3.10. If k ≥ 3 Theorem 3.1 follows directly from Proposition 3.6
and Theorem 2.10.

3.2 On gaps between integers at which a given

polynomial assumes k-free values

In this section we investigate the problem of finding an as small as possible
function h = h(z) such that for a given polynomial f and for every sufficiently
large z, there is an integer m ∈ (z, z + h] such that f(m) is k-free.

The following result was proved by Granville [14] in the case f(X) = X,
k = 2.

Theorem 3.11. Let k ≥ 2. Let f(X) ∈ Q[X] be an irreducible polynomial
of degree d ≥ 1. Assume again that f(m) ∈ Z for m ∈ Z and that gcdm∈Zf(m)

is k-free. If the abc-conjecture is true then for every ε > 0 and for every
sufficiently large z there is an integer m ∈ (z, z + zε] such that f(m) is
k-free.

Proof. Choose c such that cf,k < 1 − c < 1, and l := [5/cε]. Define g(X) =
f(X + 1)f(X + 2) · · · f(X + l).
By proposition 3.6, there is z0 depending only on f, l, k, ε such that for every
z > z0, there are < (1 − c)zε integers m ∈ (z, z + zε] such that f(m) is not
divisible by the k-th power of a prime ≤ zε. Suppose that there is no integer
m ∈ (z, z + zε] such that f(m) is k-free, thus there are a least czε integers
m ∈ (z, z + zε] such that f(m) is divisible by pk for some prime p > zε.
Assuming z0 is sufficiently large, z ≥ z0, we claim that there is an integer
m0 ∈ (z, z + zε] such that at least c

2
of the integers f(m0 + 1), f(m0 +

2), . . . , f(m0 + l) are divisible by the k-th power of a prime > zε. Thus g(m)

is divisible by the square of an integer > (zε)
cl
2 . Hence g(m) is divisible by

the square of an integer > m2 and this last statement contradicts Theorem
2.10.

17



Proof of the claim: Assume z0 is large enough such that zε0 > l. Let a be the
largest integer at most z and r the largest integer such that a+ rl ≤ z + zε.
Suppose that none of the sets {a+ 1, . . . , a+ l}, {a+ l+ 1, . . . , a+ 2l}, . . . ,
{a+ (r − 1) + 1, . . . , a+ rl} contains more than (c/2)l integers m for which
f(m) is divisible by the k-th power of a prime p > zε. Then (z, z + zε]
contains altogether at most

c

2
rl + l ≤ c

2
zε + l

≤ c

2
zε + [

5

cε
]

< czε

such integers, assuming z is sufficiently large, contradicting our assumption.

18



Chapter 4

The average moments of
sn+1 − sn

In this chapter we will state the most important result of our thesis.
Let k be an integer and let f(X) ∈ Q[X] be an irreducible polynomial of
degree d such that f(n) ∈ Z for all n ∈ Z and gcdn∈Z f(n) is k-free.
Let {sn}∞n=1 be the ordered sequence of positive integers m such that f(m)
is k-free. Suppose that k ≥ min(3, d+ 1).

The following result was proved by Granville [14] in the case f(X) = X,
k = 2.

Theorem 4.1. Suppose the abc-conjecture is true. Then for every real A > 0
there exists a constant βA > 0 such that:∑

sn≤x

(sn+1 − sn)A ∼ βAx as x→∞.

We start with a Lemma.

Lemma 4.2. Assume the abc-conjecture. Let a1, a2, . . . , al be fixed integers.
Then there is a number γa = γ{a1,a2,... ,al} such that the number of integers
m ≤ x such that f(m), f(m + a1), . . . , f(m + al) are all k-free is ∼ γax as
x→∞.

Proof. As we have seen in the proof of Theorem 3.8, since f is irreducible, no
two among the polynomial f(X), f(X + a1), . . . , f(X + al) have a common
factor. So for i, j ∈ {1, 2, . . . , l} with i 6= j, the resultant Ri,j of f(X + ai)
and f(X + aj) is 6= 0. Let y = max{|Ri,j| : 1 ≤ i, j ≤ l, i 6= j}, then
if p is a prime with p > y then p divides at most one of the polynomials
f(m), f(m+ a1), . . . , f(m+ al).
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Now let M =
( ∏
p≤y

p
)k
, and let A be the set of integers a ∈ [0,M − 1) such

that none of f(a), f(a+ a1), . . . , f(a+ al) is divisible by the k-th power of a
prime p ≤ y. Hence for every integer m with 0 ≤ m ≤ x we have:
f(m), f(m + a1), . . . , f(m + al) all k-free is equivalent to m = a (mod M)
for some a ∈ A and f(m), f(m + a1), . . . , f(m + al) not divisible by pk for
some prime p > y.
Writing m = m′M + a with a ∈ A we obtain:
f(m), f(m + a1), . . . , f(m + al) k-free is equivalent to m = a (mod M)
for some a ∈ A and ga(m

′) k-free, where ga(X) = f(a + MX)f(a1 + a +
MX) . . . f(al + a+MX).
Now according to Theorem 3.1 assuming the abc-conjecture, there is ca ≥ 0
such that

# {m′ ≤ x′ : ga(m
′) is k-free} ∼ cax

′ as x′ →∞.

So

|{m ≤ x : f(m), f(m+ a1), . . . ,

f(m+ al), are k-free}| =
∑
a∈A

#

{
m′ ≤ x− a

M
: ga(m

′) k-free

}

∼

(∑
a∈A

ca
M

)
x as x→∞.

Proof of Theorem 4.1. We introduce some new definitions to simplify our
proof:

First, let S(x; t) be the number of integers n such that sn ≤ x and sn+1−sn =
t.

Let S ′ (x, T ) denote the number of integers n such that sn ≤ x, and T ≤
sn+1− sn < 2T, and such that there are ≥ (5c/6)T integers m in the interval
(sn, sn+1) such that f(m) is not divisible by the k-th power of a prime ≤ 2T
or > TA.

Let t be a positive integer. For any subset I of {1, 2, . . . , t − 1} we denote
by SI the set of integers n ≤ x for which f(n), f(n + t) and f(n + a) for
all a ∈ I are k-free. Notice that |S∅| denotes the number of integers n ≤ x
such that f(n), f(n+ t) are k-free and without conditions for f(n+ 1), f(n+
2), . . . , f(n + t− 1). Then by Lemma 4.2, we have |SI | ∼ γI∪{0,1}x for some

20



γI∪{0,1} > 0 and by the rule of inclusion-exclusion,

S (x, t) = |S∅| −
t−1∑
i=1

|S{i}|+
∑

1≤i1<i2≤t−1

|S{i1,i2}| −
∑

1≤i1<i2<i3≤t−1

|S{i1,i2,i3}|+ . . .

=
∑
I

(−1)|I| SI ∼
∑
I

(−1)|I| γI∪{0,1}x = δtx

as x→∞.
We claim, that under assumption of the abc-conjecture, we have for every

sufficiently large x, and T > 0,∑
T≤t<2T

S(x, t)�A x/T
A+1.

Then we have:

1

x

∑
t≥T

S(x, t)tA =
1

x

∞∑
j=0

∑
2jT≤t<2j+1T

S(x, t)tA

� 1

x

∞∑
j=0

x

(2jT )A+1

(
2j+1T

)A
� 2A

T

∞∑
j=0

(
1

2

)j
� 1

T
.

Therefore

1

x

∑
sn≤x

(sn+1 − sn)A =
1

x

∞∑
t=1

S(x, t)tA

=
1

x

T∑
t=1

S(x, t)tA +
1

x

∑
t≥T

S(x, t)tA

=
1

x

T∑
t=1

S(x, t)tA + E(x, T ), with |E(x, T )| ≤ c1
T
,

where c1 is independent of x.

Fixing T and letting x→∞, we infer, 1
x

T∑
t=1

S(x, t)tA →
T∑
t=1

δtt
A.

Hence 1
x

∞∑
t=1

S(x, t)tA is bounded as x→∞, by say c2.
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Now:
1

x

T∑
t=1

S(x, t)tA ≤ 1

x

∞∑
t=1

S(x, t)tA +
c1
T
≤ c2 +

c1
T

for all x.

This implies
T∑
t=1

δtt
A ≤ c2 + c1

T
; so

T∑
t=1

δtt
A is bounded independently of T.

Thus βA :=
∞∑
t=1

δtt
A converges.

Let δ > 0 then for every T > 0 there is x0(δ, T ) such that

|1
x

T∑
t=1

S(x, t)tA −
T∑
t=1

δtt
A| < δ

3

for all x ≥ x0(δ, T ). There is T0 such that

|
T∑
t=1

δtt
A − βA| <

δ

3

for all T ≥ T0.
Take T ≥ max

(
T0,

c2
3δ

)
and then x ≥ x0 (δ, T ) , thus,

|1
x

∑
sn≤x

(sn+1 − sn)A − βA| = |1
x

∞∑
t=1

S(x, t)tA − βA|

≤ |1
x

∞∑
t=1

S(x, t)tA − 1

x

T∑
t=1

S(x, t)tA|

+ |1
x

T∑
t=1

S(x, t)tA −
T∑
t=1

δtt
A|+ |

T∑
t=1

δtt
A − βA|

≤ c1
T

+
δ

3
+
δ

3

≤ δ

3
+
δ

3
+
δ

3
= δ.

So 1
x

∑
n≤x

(sn+1 − sn)A → βA as x→∞.

We can assume that T is sufficiently large. By Theorem 3.11, we know
that S(x, t) = 0 when t ≥ xε and x is sufficiently large.We apply this with

ε =

 min
(

1
kA(A+1)

, k−5/2
A(k−1)2

)
if k ≥ 3, d ≥ 2,

1
kA(A+1)

if k ≥ 2, d = 1.
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Thus we will prove the claim assuming that T < xε and x is sufficiently large.
Let B be the smallest integer ≥ A.

Proof of the claim: By Proposition 3.6, there are ≥ ct integers m, for some
constant c < cf,k, in any interval of length t ≥ T, for which f(m) is not
divisible by the k-th power of a prime ≤ 2T. For any sn ≤ x counted by∑

T≤t<2T S(x; t) but not by S ′(x, T ), there must be > (c/6)T integers m ∈
(sn, sn+1) for which f(m) is divisible by the k-th power of a prime p > TA.
Otherwise there would be at most (c/6)T integers m ∈ (sn, sn+1) for which
f(m) is divisible by the k-th power of a prime p > TA, implying that we
have ≥ T − (c/6)T > (5c/6)T integers m ∈ (sn, sn+1) for which f(m) is not
divisible by the k-th power of a prime p > TA. But this means precisely that
sn ∈ S ′(x, T ), contradicting our choice. Therefore

cT

6

( ∑
T≤t<2T

S(x, t)− S ′(x, T )

)
≤

∑
m≤x

∃ p>TA: pk|f(m)

1

≤
∑
p>TA

∑
m≤x, pk|f(m)

1

≤
∑
p>TA

ωf,k(p)

(
x

pk
+ 1

)
�d

∑
p>TA

x

pk
+

∑
p>TA

∃m≤x: pk|f(m)

1

�d
x

TA(k−1)
+

∑
p>TA

∃m≤x: pk|f(m)

1.

We show that the last sum is � x
TA(k−1) . First assume that k ≥ 2, d = 1.

Then if pk|f(m) we have p� |m|1/k � x1/k hence∑
p>TA

∃m≤x: pk|f(m)

1� x1/k � x

TA(k−1)

by our assumption T < x
1

kA(A+1) .
Second assume that k ≥ 3, d ≥ 2. If pk|f(m) for some integer m ≤ x,
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by Theorem 2.10, p �θ |m|
1+θ
k−1 � x

1+θ
k−1 , for every θ > 0, so in particular

p ≤ x
3/2
k−1 if x is sufficiently large. Hence∑

p>TA

∃m≤x: pk|f(m)

1 < x
3/2
k−1 <

x

TA(k−1)
,

by our assumption T < x
k−5/2

A(k−1)2 . Thus we conclude that if x is sufficiently
large and T < xε we have( ∑

T≤t<2T

S(x, t)− S ′(x, T )

)
� x

TA(k−1)+1
� x

TA+1
.

For every sn counted by S ′(x;T ) we have ≥ (5c/6)T integers in the interval
(sn, sn+1) such that f(m) is divisible by the k-th power of a prime in the
range [2T, TA]. We consider B-tuples of such integers

sn < m1 < m2 < . . . < mB < sn+1.

For such a tuple there are primes p1, p2, . . . , pB with 2T ≤ pi < TA for
i ∈ {1, 2, . . . , B} such that

f(mj) ≡ 0 (mod pkj ),

and the number of such integers is at least
(
[(5c/6)T ]

B

)
.

Let i1 = 1, q1 = p1; let i2 be the smallest index i ∈ {2, 3, . . . , B} such that
pi 6= p1 put q2 = pi2 ; let i3 be the smallest index i ∈ {3, 4, . . . , B} such that
pi3 6∈ {q1, q2}; put q3 = pi3 , etc. Consider this sequence, i1 = 1 < i2 < . . . <
iu ≤ B of indices. Let d2 = mi2 −m1, d3 = mi3 −m1, . . . , du = miu −m1.
The number of possibilities for (d2, d3, . . . , du) is

≤ (2T )u−1 .

Now for any fixed (d2, d3, . . . , du) we have

f(m1) ≡ 0 (mod qk1)
f(mi2) ≡ 0 (mod qk2)
f(mi3) ≡ 0 (mod qk3)

...
f(miu) ≡ 0 (mod qku)

⇐⇒



f(m1) ≡ 0 (mod qk1)
f(m1 + d2) ≡ 0 (mod qk2)
f(m1 + d3) ≡ 0 (mod qk3)

...
f(m1 + du) ≡ 0 (mod qku)
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By Corollary 3.4, mj is congruent to one of ≤ d incongruent numbers modulo
qkj for each j. So by the Chinese Remainder Theorem, m1 belong to one of at
most du residue classes modulo (q1q2 . . . qu)

k. Hence for each of these residue
classes we have

du
(
x/(q1q2 . . . qu)

k + 1
)

possibilities for m1; since (q1q2 . . . qu)
k ≤ TAuk ≤ TABk ≤ TA(A+1)k < x this

gives at most
2x

(q1q2 . . . qu)k
du

possibilities for m1.
Taking into account the possibilities for (d2, d3, . . . , du) we get at most

� T u−1
(
x/(q1q2 . . . qu)

k
)

possibilities for (m1,mi2 , . . . ,miu).
It remains to take into account the mi with i 6∈ {1, i2, . . . , iu}.
Let i 6∈ {1, i2, i3, . . . , iu}. Then pi = qj for some j ∈ {1, 2, . . . , u}, hence

f(mi) ≡ f(mij) ≡ 0 (mod qkj ).

Let ω1, ω2, . . . , ωr be the solutions of f(x) ≡ 0 (mod qj), 0 ≤ x < qj. Then
by corollary 3.4, r ≤ deg(f). Now since |mij − mi| ≤ 2T < qj we have
mij −mi = ωl1 −ωl2 for some l1, l2 ∈ {1, 2, . . . , r}. So given mij , there are at
most d2 possibilities for mi.
This gives altogether at most (

d2
)B−u

possibilities for the tuples (mi : i 6∈ {1, i2, i3, . . . , iu}).
Hence for the tuples (m1,m2, . . . ,mB) we have at most

T u−1
(
x/(q1q2 . . . qu)

k
) (

2d2
)B−u � T u−1

(
x/(q1q2 . . . qu)

k
)

possibilities where q1, q2, . . . , qu are the distinct primes among
p1, p2, . . . , pB. For given q1, q2, . . . , qu there are at most uB ≤ BB � 1 possi-
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bilities for p1, p2, . . . , pB so:

S ′(x, T )TB �
B∑
u=1

∑
2T<q1<...<qu<TA

T u−1 x

(q1 . . . qu)
k

� x
B∑
u=1

T u−1

(∑
q>2T

1

qk

)u

� x
B∑
u=1

T u−1

(
1

T k−1

)u
� x

T

Hence
S ′(x, T )� x

TB+1
� x

TA+1
,

which proves our claim, and completes the proof of Theorem 4.1.
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