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Introduction

The Iwasawa Main Conjecture gives relations between some algebraically defined
Iwasawa modules and the analytically defined p-adic L-functions. It was proved for
abelian Number Fields by Mazur and Wiles in 1984 using deep techniques from
Algebraic Geometry. Therefore it is also known as "The Mazur-Wiles theorem".

In 1990, Karl Rubin found a simpler proof using a particular example of the so-called
Kolyvagin’s Euler Systems. The aim of this thesis is to give a detailed exposition of
Rubin’s proof of "The Main Conjecture" of Iwasawa theory for Q(¢p~), with p odd
prime, providing the necessary background to understand it.

The thesis is divided into 5 chapters as follows.

In chapter 1 we give some basic results about the arithmeticity of Cyclotomic fields
(with a special focus on Q(¢,»)) and we introduce CM-fields and their maximal real
subfields. Moreover we discuss the Cyclotomic units of Q(¢,»)" to deduce properties
of the Cyclotomic units of Q(&,n) itself, such as some facts about their corresponding
class numbers. The main reference for this is [Wa].

In chapter 2 we study Dirichlet characters (in particular the Teichmiiller character
w), Dirichlet L-series and p-adic L-functions. We follow basically [Con1], [Wa] and
[Iw], but also some notes taken during a course held by Professor Massimo Bertolini
regarding Modular forms.

In chapter 3, we describe the algebraic properties of the Iwasawa algebra A = Z,[|T|],
with special attention to the Structure theorem for finitely generated A-modules given
in terms of a pseudo-isomorphism. This is done referring to [Neu2] and to some
notes taken during a course on Iwasawa theory held by Professor Andreas Nickel.
Then, following again [Wa] and [Iw], we conclude the chapter applying some of the
previous results to describe another way to construct p-adic L-functions. The most
important result about this section is that we can find a power series f(T, «’) such that
Ly(s, ') = f((1 + p)* —1,«’). This turns out to be fundamental for stating The Main
Conjecture.

In chapter 4 we treat the theory of Z,-extensions. Following [Wa] and [Wi] we give
an introduction to Infinite Galois theory and the corresponding Ramification theory.
Next, we show how to prove the Iwasawa’s theorem about ideal class groups in Z,-
extensions, using the approaches of [Wa] and [Bro|. Furthermore, we define the
orthogonal idempotents and we study some consequences of the decomposition that
they produce on A-modules, following [Sa3]. Finally, as an important application, we
discuss in the setting of Q(¢,m) the behavior of the local units modulo Cyclotomic
units and the Maximal Abelian p-extension unramified outside p. For this we refer
to [Wa] and [Lan1].

In chapter 5, we finally prove The Iwasawa Main Conjecture. We introduce the Euler
Systems of Cyclotomic units that we need in order to study the problem in detail.



Besides, we discuss the cardinality of the ideal class group of Q(¢,)* using the basic
properties of the previously defined Euler systems. The proof of the most important
result of this section gives an idea of the strategy that is used to prove the Mazur-
Wiles theorem. After this, we give three equivalent statements of The Iwasawa Main
Conjecture. In order to prove the equivalence, we develop a small part of the theory
of Adjoints. Finally, we need to discuss other important techniques of Iwasawa theory
which allow us to conclude the proof. The main reference for this chapter is [Wa].
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Chapter 1

Basic results on Cyclotomic fields and
Cyclotomic units

The aim of this chapter is to give the basic background about Cyclotomic fields,
CM-fields and Cyclotomic units.

1.1 Some facts on Cyclotomic fields

Let ¢, be a primitive n-th root of unity for every n > 1. We start proving some useful
arithmetic properties of Q(¢,). In order to do this, we recall some results that we
take for granted.

Facts. 1. Remind that the n-th cyclotomic polynomial is defined to be &,(X) =
]_[Cesn (X — €) where S, is the set of the primitive n-th roots of unity. One can
prove that ®,(x) € Z[X] and that it is irreducible for every n > 1. If n = p™
where p is a prime number, then we have

XP -1
- By(X) = Dp(X) = e = XP bk X i m
Xpm_1 m-—1 m-1
- q)n(X) = qum(X) = W= XP (p—1) + ...+ XP +1if m > 2

2. Recall also that if ¢ € S, then [Q(¢) : Q] = ¢(n) where ¢ is the Euler function.

3. Let K be a number field. We will denote by Ok its ring of integers. Then it is
known that for K = Q(¢&,) we have O = Z[(,].

4. A prime number p ramifies in Q(¢&,) if and only if p | n.

5. A prime number p splits completely in Q(¢,) if and only if p =1 mod n.

Lemma 1.1.1. Let n > 1 and K = Q(&,). If € and & are two primitive n-th roots of

unity, then 11%2/ is a unit in Ok.

Proof. We know by elementary group theory that there must be an integer s relatively
prime to n such that ' = ¢*. Now notice that

1 -6

_ s—1 _
1—¢ =1+C+ ...+ €0k =2Z[C).




2 CHAPTER 1. CYCLOTOMIC FIELDS AND CYCLOTOMIC UNITS

Smce we can interchange the roles of ¢ and ¢/, arguing as above we also find that
1 C/ € Ok. This implies the statement.
[

Proposition 1.1.2. Suppose that n is not a prime power. Then 1 — ¢, is a unit of
Z[ty) and [Jo<j<n(1 = &) = 1.

(jn)=1

Proof. From fact number 1 above we get that X* ! + X" 24+ | + X +1 = ﬂ;:f (X =)
Setting X = 1 follows that n = [—[?2_11(1 — ¢J). Now let g be a prime dividing n
and say that q® is the biggest power of q that divides n. Since j runs trough the
multlples of n/q® lesser or equal than n — 1, we deduce that the above product has

? n 1(1 — éa) q® between its factors. Removing this product and applying this
reasoning to every prime that divides n, it follows that 1 = [—[].(1 — ¢J) where the
product is over those j ’s such that ¢/ has not a prime power order. Since n has
at least two distinct prime factors we must have that 1 — ¢, appears in the previous
product. Therefore it is a unit. This proves the first part of the proposition. For the
second one, notice that Ngi,)jo(1 —&n) = ]—[(} )= ¢l) = £1. However since in this
case the complex conjugation is in Gal(Q(&,) ]Q the norm of every element can be
written in the form aa for some a. Hence we deduce that previous norm must be 1,
ie. []jn-1(1 — &) = 1. Thus the proof is complete. O

Proposition 1.1.3. Let p be a prime number and let K = Q(¢,m). Then the principal
ideal (1 — ¢)Ox is a prime ideal of O and pOx = (1 — €)*P")Ok. In particular, p is
totally ramified in Ok.

Proof. Firstly, notice that by the previous remark one finds that ®,~(1) = p but also

(1) = [ ] (41 =¢) =1 =) 1-c

¢'eSpm ¢'eSpm

def
Now by the previous lemma, we have that € = HC’G Sym 11 % is a unit in Ok. Putting all

together we get p = €(1 — )" and so pOx = (1 — £)*P"Ok. Now let (1 — £)Ox =
pi' - - p be the factorization of (1 — ¢)Ok into prime ideals. Thus we deduce that

POk = (1 = £)*MOg = pye .. pginie
Comparing this to the fundamental equation about the degrees, we find that
[Q(Em) : Q] = ¢(n) = ) | eifip(n)
1<i<r

Hence we deduce that r = e; = f; = 1. This implies the statement. O

Lemma 1.1.4. Let m and n be two positive integers. Then Q(Cp) N Q(Cn) = Q(Cim,n))-
In particular, if (m,n) =1 then Q(¢,) N Q&) = 1.

Proof. Clearly we have that Q({m n) € Q(&m) N Q(&n). Now we show that actually the
equality holds proving that Q(&,) N Q(¢,) and Q(Em,n) have the same degree over Q.
We indicate by [m, n] the least common multiple of m and n. Notice that
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[Q(Cm ) - Q] - [QEm) N QL) - QI = [Q[Cm) - Q] - [Q(Cr) : Q

Then using Fact 2 above follows that

o olm)éln)
Q) Q1) : 0] = ST

Next, recalling that mn/[m,n] = (m,n) and applying the known formulas for ¢

(see [Con?2]) we deduce that [Q(Cn) NQ(EL) : Q] = ¢((m, n)). However this is the degree

of Q(&m n)) over Q. This concludes the proof. ]

Remark 1. Let m and n two positive integers such that (m,n) = 1 as before. Since
Q(6m)|Q and Q(&,)|Q are two Galois extensions, then the previous lemma implies that
Q(¢m) and Q(&,) are linearly disjoint over Q (one can look at [Cla] for more details
about the notion of linear disjointness).

Lemma 1.1.5. If an algebraic integer is such that its conjugates have absolufe value
1, then it is a root of unity.

Proof. First of all, consider any polynomial in Q[X] of degree n such that all its roots
have absolute value equal to 1. Then if we consider the coefficient of this polynomial
related to the power X!, we have that it is bounded by (’;) Then set m = [K : Q]
and let f(X) be the minimal polynomial of a over Q where « is an algebraic integer
whose conjugates have absolute value 1. Then we know that actually the coefficients
of f(X) are in Z. Thus using the previous bound and the fact that the coefficients of
f(X) are integers we can deduce that there only finitely many algebraic integers as a.
Now consider a power of a, say a'. This is clearly an algebraic integer and its degree
over Q is at most m. Moreover, if a; = a,ay, ..., a,, are the conjugates of a then
aj, ..., ay, are the conjugates of a". Hence, by the above argument, we deduce that
the set of powers of a form a finite multiplicative group. This concludes the lemma.

[

Proposition 1.1.6. Let € be a unit of Z[(,]). Then there exist €, € Q(&, + C;i) and
r € Z such that € = (y&.

Proof. Let a = €/€. Notice that the complex conjugation p is such that p(Z[(,]) = Z[¢p)
(just let p act on the Z-basis {1,¢,, ...,C5“2}). Hence also € is a unit of Z[£,]. This
implies that a is an algebraic integer. Moreover, since p commutes with every element
of Gal(Q(¢,)|Q) we have that all conjugates of a have absolute value 1. By lemma 1.1.5,
we deduce that « is a root of unity and therefore e/€ = +(5 for some integer a (recall
that the only roots of unity in Q(¢,) are of this form). Suppose then that a = —¢5 and
write € = bg+b1p + ... + bp_QCP*Q with b; € Z for every i. Then € = by+by+... +b,_9
mod (1 — ¢,). Moreover € = by + bi," + ... =bg+ by + ... + by_y =€ = —(J€ = —€
mod (1 — ¢,). Hence 2€ = 0 mod (1 — ¢,). However 2 ¢ (1 — ¢,). Since (1 — &) is
a prime ideal, we deduce that € € (1 — ¢,) and this is a contradiction because € is a
unit. Therefore we have that €/€ = +(, ie. € = ;%€ Let r € Z such that 2r = a
mod p and let €, = ("€ (notice that such r exists because p is odd). Then € = Cp€r
and €, = (€ = ("€ = €. This proves the proposition since Q¢ + Cy 1) is the fixed
field of p. O

Lemma 1.1.7. The roots of unity in Q(¢,,) are of the form +¢J, for j € Z. The plus
sign holds if m is even, the minus if m is odd.
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Proof. Let ¢, be a primitive n-th root of unity in Q(¢,,). Suppose that m is even and
write m = 2k with k > 1. Then Q(¢,,) contains a primitive r-th root of unity where
r is the least common multiple of n and m. This implies that Q(¢,) C Q(¢,) and
so considering the degrees over Q we obtain that ¢(r) | ¢(2k), where ¢ is the Euler
function. Since 2k is even, using the known formulas for ¢ (see [Con2]) one can
prove that this implies r = 2k = m. Hence n | m and so ¢, is an m-th root of unity.
Now suppose that m is odd. Notice that then Q(£,,) = Q(Con). Arguing as above we
obtain that &, is a 2m-th root of unity. Since ,, = —,», we can conclude the proof.

[

Remark 2. Now we discuss an important subfield of Q(¢,) for n > 3. In particular, we
consider Q(&,) NR. Notice that ¢, + ¢! is real. Then one can show that Q(¢,) NR =
Q(&, + €, Y). This is the maximal real subfield of Q(¢,) and is denoted by Q(¢&,)*. Tt is
important to point out that the extension Q(¢,)|Q(&, + &, 1) is of degree 2 since ¢, is
a root of X2 — (&, + ;)X + 1. More in general, if K is a number field we denote by
K* its maximal real subfield.

Lemma 1.1.8. Let n = p™ and consider the extension Q((,)|Q(¢,)*. This is ramified
at a finite prime p if and only if p lies above p.

Proof. Keep on mind that by lemma 1.1.3 we know that p is totally ramified in Q(¢&,).
Moreover, by fact number 4 at the beginning of the chapter, we know that p is the
only prime number that ramifies in Q(¢&,).
Now let p be a prime of Q(£,)* that ramifies. Say that q is a prime of Q(¢&,) that lies
above p and that appears in its factorization with exponent e > 2. Say q = p N Z is
the prime of Z under p. Then ¢ lies also under q and so it ramifies in Q(&,). This
implies q = p.
On the other hand, if p is a prime of Q(¢,)" that lies above p then (1 — &,)Ogy,) is
necessarily the only prime ideal above p. Using that p is totally ramified, the previous
remark and the known formulas for the degrees, one finds that the ramification index
of (1 — &,)Oq,) at p is equal to 2. This implies the statement.

[

Remark 3. Consider again n = p™ and the extension Q(&,)|Q(¢,)*". Let 7w = (1 —
€n)Oqge,) and v, be the sr-valuation. Now notice that one can give a shorter proof of
the previous lemma using the ramification indices. However, we decided not to use
this argument since the previous proof shows an interesting property of v,. If | is
an ideal of Og,)+ then v,(J) is necessarily even. To see this, is enough to consider
the factorization on | and to use that a prime in its factorization has valuation equal
to 2, as showed in the above proof.

We conclude this section just stating the following interesting proposition. We
refer to [Wa] for a proof.

Proposition 1.1.9. Let n € N and K = Q(¢, + ¢;'). Then Ok = Z[¢, + €1

1.2 CM-fields

In this section we are going to study some properties of the CM-fields so that we can
deduce some results about the ideal class group of Q(¢&,).
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Definition 1.2.1. - A number field is called fotally real if all its embeddings into
C lie in R. On the other hand, a number field is called totfally imaginary if none
of its embeddings lie in R.

- A CM-field is a totally imaginary quadratic extension of a totally real number
field.

Example 1. let n > 1. Recalling that the maximal real subfield of Q(&,) is Q(¢&, + &1,
one finds that Q(¢,) is a CM-field.

We decided to omit the proof of the following theorem since it follows applying
a result of Class field theory whose proof has nothing to do with cyclotomic units. A
proof can be found in [Lan1] or [Wa].

Theorem 1.2.1. Let K be a CM-field, K* its maximal real subfield, and let h and

h™ be the respective class numbers. Then h™ divides h. The ratio h™ o h% is called
the relative class number.

Theorem 1.2.2. Let K be a CM-field and let E be its unit group. Let E* be the unit

group of K™ and let W be the group of roots of unity in K. Then Q . [E: WE*] =1
or 2.

Proof. Define ¢ : E — W by ¢(e) = €/€. Since K is a CM-field, we have that €% = (€)°
for all embeddings o of K into C. Hence |¢(€)°| = 1 for every 0. By lemma 1.1.5, we
deduce that ¢(e) € W. Denote by ¥ : E — W/W? the natural map induced by ¢. Now
we want to show that Ker(y) = WE™. Firstly, notice that |[W/W?| = 2 (we have just
the cosets of 1 and of a suitable primitive root of unity). Thus, consider € = e; with
¢ € Wand ¢ € E*. Then ¢le) = ¢* € W? (recall that ¢ = ¢') and so € € Ker(1).
Conversely, suppose ¢(e) = ¢? € W?. Notice that it follows that ¢; = ¢ '€ is real since
€/€é = ¢* implies ¢, = ¢7'e = ¢€ and so € = €€ = ¢ '€ = €. Thus also the other
inclusion holds and we get that Ker(i)) = WE™. Since |[W/W?| = 2, we can conclude.

]

Remark 4. With the notation as in the previous theorem, notice that we have Q = 2
if p(E) = W and Q =1 if ¢p(E) = W2

For completeness, we state an interesting corollary. For a proof see [Wa] again.

Corollary 1.2.3. Let K = Q(¢,). Then Q =1 if n is a prime power and Q = 2 if n is
not a prime power.

Notation: From now on, given a number field K, we will denote by CI(K) its ideal
class group.

Theorem 1.2.4. The natural map Cl(Q(&,)") — ClQ(&,)) is injective.

Proof. Suppose that I is an ideal of Q(¢,)" such that its lift to Q(¢,) is a principal ideal,
namely [ is in the kernel of the natural map. Then for proving the claim is enough
to show that actually I is principal. Now let I - Q(&,) = (a) with a € Q(¢&,). Then
(@/a) = (1) since I C R. This implies that a/a is a unit. Moreover notice that it has
absolute value equal to 1. By lemma 1.1.5, we obtain that @/« is a root of unity. Now if
n is not a prime power, then Q = 2. Therefore by the proof of the previous theorem
we have that there exists a unit € of Q(£,) such that €/€ = a@/a. Hence ae = ac is
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real and I - Q(¢,) = (a) = (ae). By the unique factorization of ideals we deduce that
I = (ae), so that [ is principal in Q(¢,)".

Now suppose that n = p™. By proposition 1.1.3 we know that 5t . Cpm — 1 is a prime
element. Observe that we have 71/t = —(,», which generates the roots of unity in
Q(¢pm) by lemma. Hence, there exists d € Z such that @/a = (71/77)?. Now consider
the sr-valuation v,,. By remark 3 we know that v, (Q(¢,)") € 2Z and recalling that asr?
and I is real, we get that d = v, (am?) — v, (a) = v, (amr?) — v,(I) is even. This implies
ala = (—Cpm)d € W2 Tt follows that @/a = /7 for some root of unity y and that ay
is real. Arguing as in the previous case, we deduce that I = (ay). Hence I is actually
principal and we can conclude the proof.

[

Moreover, as a consequence of a general result of Class field theory about norms
map, one has the following theorem. For details about it, we refer to [Lani].

Theorem 1.2.5. Consider Cl(Q(¢&,)) and let K be an imaginary abelian extension of
Q. Then the norm map

Ngk+ : CUQ(Cn)) — CUQ(E,)") is surjective.

1.3 Cyclotomic units of Q(C,m)*

Definition 1.3.1. - Let n £ 2 mod 4. Define V, as the multiplicative group gen-
erated by

{1 -Gl <a<n-1}

- Let E, be the group of units of Q(¢£,) and define C, = E, NV,. Then C, is called
the group of cyclotomic units of Q(&,).

- If K is an abelian number field, we define the cyclotomic units of K by letting

K C Q(¢&,) with n minimal and setting Cg . Ex N C, where Ek is the group of
units of K (notice that this definition is suitable for Q(¢,)").

Lemma 1.3.1. Let p be a prime and m > 1.

1. The cyclotomic units of Q(¢,m)" are generated by —1 and the units:

o b — G

(1-a
ga = Cpm 1 _ Cpm

with 1 < a < % and (a,p) = 1.

2. The cyclotomic units of Q(Cym) are generated by ¢,» and the cyclotomic units

of @(Cpm)+-

Proof. For simplicity about the notation, write £ = {,». Recall that the definition of the
cyclotomic units involves 1 — €% with a £ 0 mod p™. Now let k < m and (b,p) = 1.

Then using the relation 1 — XP* = ﬂfjai(i — P X), we get that
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S N (Rl

Since (p,b + jp™*) = 1, we can deduce that it is enough to consider those a with
(a,p) = 1. Moreover, 1 —* and 1 — ¢~ @ differ only by the factor —(¢, so similarly we
can consider only those a with 1 < a < %. Suppose now that

def

£ = =] Ju -
1§a<%
(ap)=1

with d, ¢, € Z for all a, is a unit of Q(£). Since by lemma 1.1.1 the ideals (1 — %)
are all the same, it follows that ¢, = 0. Therefore

£=iCdl_[<11fca> _Cel—’gca

1§a<§ 1<a<p
(a,p)=1 (a,p)= 1
def 1 n . .
where e = d + ; ZKK%’(a,p):i cqla —1). If £ € Q(&) then since each factor in

the above product is real, +¢° must be real, hence equal to +1. This proves 1. Now
if p = 2 then (a,p) = 1 implies that a is odd, so that ¢ is in Q(¢) in all cases. This
completes the proof of 2. ]

For completeness we give the following statement. The proof involves the theory
of regulators, and so we decided not to give the details. If one is interested, we suggest
to look at [Wa], again.

Theorem 1.3.2. Let p be a prime and m > 1. The cyclotomic units Cj. of Q(Eym)*
are of finite index in the full unit group E;., then

hyn = [Egn = Cpin]
where h. is the class number of Q(Cpm)".

We conclude the section with a proposition that provide us a particular cyclotomic
unit that will be used in the proof of The Iwasawa Main conjecture.

Proposition 1.3.3. Let g be a primitive root modulo p". Then

1 -9
_ Cp
generates C;./{+1} as a module over Z[Gal(Q(Cp)*|Q)].
Proof. For simplicity of the notation, write £ = . Let (a,p) = 1. Then a = g"
mod p" for some r > 0 by definition of primitive root. Hence
,1-c —@ - —@” 1 =%\
(1-a)/ (1-g") g'-g -9)/2,
¢ 1-c¢ =4 1-C = Il ¢ e = [Tz < 1 - C>

Then we can conclude the proof using lemma 1.3.1. ]






Chapter 2

Characters and L-functions

The aim of this chapter is to give the analytic background for studying The Iwasawa
Main Conjecture. We start discussing Dirichlet characters, and then we pass to the
classical L-functions and to their analogous for the p-adic setting.

2.1 Dirichlet characters

Definition 2.1.1. Let n > 1. A Dirichlet character modulo n is a multiplicative
homomorphism y : (Z/nZ)* — C*. When it will be clear from the context we will
say only "character” to indicate a Dirichlet character.

Remark 5. Notice that if n|m then a Dirichlet character y : (Z/nZ)* — C* induces
a homomorphism (Z/mZ)* — C* by composition with the natural map (Z/mZ)* —
(Z/nZ)*. In this way, one can regard ¥ as being defined modulo m or modulo n. This
leads us to the following

Definition 2.1.2. Let the notation be as in the above remark. If n is minimal, then
it is called the conductor of x and it is denoted by f,. When a Dirichlet character is
defined modulo its conductor then it is called primitive.

Remark 6. - Notice that 1 = x(1) = x((—1) - (=1)) = x(—=1)?. This implies that
x(—1) = +1.

- Recall that |(Z/nZ)*| = ¢(n) where ¢ is the Euler function. Thus for every a
mod n € (Z/nZ)* we have 1 = x(1) = x(@®™ mod n) = xla mod n)*™. This
means that the image of x is contained in the set of the ¢(n)-th root of unity.

- It is common to extend a Dirichlet character ¥ to a map ¥ : Z — C in the
following way: we set x(a) = 0 if (a,f,) + 1, otherwise we set x(a) = x(a
mod n). When it will be clear on the context, we will write just x instead of .

Definition 2.1.3. A Dirichlet character such that x(—1) = 1 is said to be even; if
x(—1) = —1 then y is said to be odd.

Remark 7. Here are some useful properties about Dirichlet characters:

- Let ¥ be any character modulo n and let ¥ = ¥ where the bar indicates the
complex conjugation. Then ¥(a mod n) = x¥(a mod n)~'. It follows that yx(a

8
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mod n) = 1 for every a coprime with n. Thus the set of characters of conductor
n is actually a multiplicative group with multiplication defined pointwise. The
identity element is called the trivial character and clearly it is the character
that maps everything to 1. By convention, we say that the trivial character has
conductor 1.

- If (f,, fy) = 1 then f, = f, fo-

For our purposes will be useful to be able to define a product of primitive char-
acters with different conductors. We give the following:

Definition 2.1.4. Let ¥ and ¥ be primitive Dirichlet characters of conductors respec-
tively f, and f,. We define the product x as follows. Consider the homomorphism

v (Zllemlf,, fu)Z)* — C*
defined by y(a) = x(a)¥(a). Then 3 is the primitive character associated to 7.

Now we are going to generalize the notion of characters.

Definition 2.1.5. Let G be a finite abelian group and let G be the group of the multi-
plicative homomorphisms from G to C* (the group law is the pointwise multiplication).
We call it the group of the Dirichlet characters of G.

Proposition 2.1.1. Let G be a finite cyclic group of size n with a fixed generator 7.
Then there are exactly n characters of G.

Proof. First of all notice that since v generates G then the values of a character y
are determined by its value on 7. By the above remark, we know that ¥(v) is an n-th
root of unity. Hence there are at most n characters. Now we show that there are at
least n characters, so that the statement holds. Let ¢4, ..., £, be all the n-th roots of
unity and for every i define y;(y) = . We have that xi, ..., ¥, are characters and they
are all distinct since they have different values on the generator 7. This concludes
the proof.

]

Even if the next result is important, its proof requires some space and so we
decided to omit it. The interested reader can find a proof in [Coni].

Lemma 2.1.2. Let G be a finite abelian group and let H be a subgroup of G. Then
any character of H can be extended to a character of G in [G : H] ways.

Lemma 2.1.3. Let G be a finite abelian group and let g € G a non-trivial element.
Then x(g) # 1 for some character x of G. Moreover we have |G| =

Proof. Consider the cyclic group (g) and say that |(g)| = m. Since (g) is non-trivial
then m > 1. Now also the group of the m-th roots of unity p,, is cyclic and has
cardinality equal to m. Therefore we have (g) = p,,. Notice that this isomorphism
gives us a character ¥ of the group (g) such that y(g) # 1. By lemma 2.1.2, we have
that x extends to at least one character ) of G. This proves the first part of the lemma.
For the second part, call H = {15} and H = {¥}. Now we apply lemma 2.1.2 to H. In

this way, we find that 1 extends to |G| distinct elements of |G| and so |G| < |G| On
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the other hand, an element of G when restricted becomes a character of H and so
it must be one of the extensions of . This proves that |G| < |G| and concludes the
proof.

O

Lemma 2.1.4. If G is a finite cyclic group then G = G.

Proof. We have to show only that also Gis a cyclic group. This will imply the
statement since by lemma 2.1.3 we have [é] = |G|. Let |G] = n and let y be a
generator of G. Now choose ¢ a primitive n-th root of unity and define y € G by
x(v) = €. Notice that if ¥ is another element of G then Yly) = ¢* for some integer k.
Hence ¥ = x* and this proves that y generates G.

O

Proposition 2.1.5. If G; and G, are finite abelian groups then Gi/X\GQ =~ @1 X 632.

Proof. Let x be a character of G; x Gy. Let xg, and xg, be the restrictions of x to G;
and G, respectively, i.e. xg (g) = x(g,1) and xg,(h) = x(1,h). Then yg, and yg, are
characters of G; and G, respectively and x(g, h) = x((g,1)(1,h)) = x(g,1)x(1,h) =
X6, (g)xc,(h). Hence we get a map

¢iG;<\GQ - 61 X ég,
X (XG1'XG2)

Notice that ¢ is a group homomorphism and moreover its kernel is trivial since if y is
in the kernel then yg, and g, are trivial characters and so x(g, h) = xc, (g)xc,(h) = 1,
ie. also y is trivial. By lemma 2.1.3 the domain and codomain of ¢ have same
cardinality and so we conclude the proof.

[

Lemma 2.1.6. If G is a finite abelian group, then G = G (non-canonically).

Proof. By hypothesis G is isomorphic to the direct product of several finite cyclic
groups, say G = H; x ... x Hy with H; finite cyclic for every i. As a consequence

—

of the previous lemma, we have that (Hy x ... x Hy) = Ifli X ... X ?It. However H; is

finite and cyclic for every i and so IA{i =~ H;. This proves that G ~ (Hy x ... x Hy) =
H; x ... x Hi = G and so we are done.
O

Corollary 2.1.7. We have G = G (canonically).

Proof. Let g € G and define g : G — C~ by x +— x(g). Consider the homomorphism

of groups ¢ : G — G defined by g +— g. We prove that ¢ is an isomorphism. Then
let g € Ker(¢), i.e. suppose that ¥(g) = 1 for all ¥ € G. By lemma 2.1.3 we deduce

that g = 1, so that ¢ is injective. Still by lemma 2.1.3 we have that |G| = |@| = |(A3[
and this proves the corollary.
O

Remark 8. It is usually convenient to identify G with G thanks to the previous corol-
lary. Moreover notice that we have a natural pairing
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G x é — C*
(g.x)— xlg)

The interesting fact is that this pairing is non-degenerate, i.e. if y(g) = 1 for all ¥ € G
then g = 1 by the argument in the previous proof and if x(g) = 1 for all g € G then
by definition of the trivial character we get y = 1.

Now we give a fundamental example of character that we will use heavily in the
proof of the Main Conjecture. The notation that we are going to introduce will be
used in the rest of the treatment.

Example 2 (The Teichmiiller character). First of all, we review some basic facts
of p-adic analysis. Recall that (Q,,] - |,) is the completion of (Q,] - |,) where |- |, is
the p-adic norm. Moreover Z, = {x € Q, : |x|, < 1} is a subring of Q, and Z is
dense in Z, since Q is dense in Q,. Furthermore, Z, is a DVR with maximal ideal
pZy = {x € Qp:|x|, <1} and so Z; = {x € Q, : |x|, = 1]. It is known (see [Goul]
for example) that Z,/pZ, =~ Z/pZ. From now on, we will identify them.

Now consider the natural surjective map =n : Z, - Z,/pZ, = Z/pZ = F, which
induces a map 71 : Z, — [ still surjective. Consider also the equation Pt —-1=0
in F,. Its roots are exactly the elements of F and so in particular they are simple.
By the Hensel Lemma, if & is a root then it lifts through 7 to a unique element B of
Zy such that B mod p = § and f°~! —1 = 0 in Z,. This implies that y1, ;= group
of (p — 1)-st roots of unity is isomorphic to a subgroup of Z;. In particular one
obtains a decomposition Z; = p, 1 x (1 + pZp) where notice that 1 + pZ, = Ker(r)
(for details about the decomposition, see [Gou]). Since Q, = Zp[ll)], one finds that
Qp = p?x L} = p” x pp_1 x (1 + pZp). Therefore, any a € Q; can be written uniquely
asa=p"-C-(1+pp)forneZ €ecp,y, B e Zy, Notice that n = vy(a), (a) = (1 + )
and denote ¢ by w(a). Hence we have just defined a map

W: Zy = Py, Q> w(a)

The above function is called the Teichmiiller map. From the fact that every a € Z;
can be written in a unique way as w(a)- (1 + pB) we also have the fundamental property
that w(a) = a mod p.

Now notice that w induces an isomorphism

(ZIPZ)* = (ZpIPpZp)* — pip-1,
a mod p — w(a)
Fixing once and for all embeddings of Q into C, and into C we may view 1,4
contained either in C, or C according to our needs. In particular, in this way we have

just defined a Dirichlet character (Z/pZ)* — C* that we will still denote by w and that
is called the Teichmuiller character. One can show that w is an odd character.

2.2 p-adic L-functions

In this section we firstly recall the basic notion of L-function. After that, we are going
to define its analogous for the p-adic case and to study some of its properties which
will be very important in what follows.

Convention: In what follows, including also the next chapters, by saying "Dirichlet
character’, we actually mean "primitive Dirichlet character'.
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Definition 2.2.1. Let ) be a Dirichlet character of conductor f. The L-function at-
tached to y is the series defined by

= x(n)
L(s, =
(s, ) Z:; pe
for Re(s) > 1.
Remark 9. - Notice that for ¥ = 1 the L-series is nothing but the Riemann zeta

function. It is well known that L(s,¥) may be continued analytically to the
whole complex plane, except for a simple pole at s = 1 when ¥ = 1 (see [Fr]
for example).

- Let IP be the set of all prime numbers. Then L(s, x¥) has the following convergent
"Euler" product expansion:

Lis, %) = [Tyep(t = x(@)q )" = T 1,1 = xlq)q=®)"

with Re(s) > 1. For a reference, see [Fr] again. Notice that using the above
formula is clear that L(s, x) + 0 for Re(s) > 1, since x(q)q°® # O for every prime
q (see the remark on page 198 in [Fr]).

Definition 2.2.2. Recall that the Bernoulli numbers B,, are defined as those rational
numbers such that

t e
ef —1 :Ig;B”E

Remark 10. Let Q[|t|] be the ring of formal power series with coefficients in Q. The
previous definition makes sense since e = Y’ 'L implies that ! —1 = Y707, L ¢
Q[|t|]*. In particular we get that

&)

-1
t 1 t x
= <ZO (n+1)!> c Q[lt]]

el =1 1+f+L 4.

Definition 2.2.3. Let x be a Dirichlet character of conductor f as before and denote
by Q(x) the field generated over Q by x(a) with a € Z. The generalized Bernoulli
numbers B, , are defined by

f t at S T
Sy B QU]
a=1 n=0

Remark 11. - Also this definition makes sense since arguing as above we get
et =1 QU)[[t]".

- Notice that we always have x(f) = 0 unless y is the trivial character. If this is
the case, we have f = 1.
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- When x = 1 we obtain

e t

ZBni 1 ef—1+t

so that B, = B, except for n = 1 when we have By = %,81 = —
also that if x # 1 then By, = 0 since Y/ _, x(a) = 0.

1. Observe

Definition 2.2.4. We define the Bernoulli polynomials B,(X) as those polynomials
such that

teXt 0 n
of 1 = BH(X)F
n=0
Remark 12. - By a direct computation one finds that B,(1 — X) = (—1)"B,(X).
- Since the generating function is the product of 5 =} B, L 7 and eXl = ZX"

it follows that B, (X) = Y"1 (7)(B;)X" .

Proposition 2.2.1. Let F be any multiple of f. Then

F

_ pn-t a
Buy = "' xlalB, (%)
Proof. Notice that
= e d a tel@/FIFt gt
e
Z;[ p lema)Bn(f)J - X;Ma) iy = ™

since

(FijeP o <a> (Ff)n

eft —1
n=0

by definition of Bernoulli polynomials.
Let g = F/f and a = b + cf. Then we have:

af tel "o laft f g telbref)t f ebt 9= ;
_ _ C
<*>—b2“><<b+cf>—egﬂ_1 —;[Xojxw)—efgt_ﬂ Z efgt_1§ ;e
+cf= c= =

~

bt e]‘gt _ 1

f
= [x(b) efzf_ ; ZX

b=1
(ee]

tn

= Buys
n=0

and so looking at the definition of (x) and at the last expression that we obtained,
we can conclude the proof.
O
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Definition 2.2.5. For a complex variable s with Re(s) > 1 and for a real number b
with 0 < b < 1 we define the Hurwitz zeta function

(]
(S3
+ |~
=
[}

(s, b) =

Now let
s - 1 s a
H(s,a,F) = Em —E TnF)S_F C(S'f)

m=a mod F n=0

m>0

where a and F are integers with 0 < a < F. Then

F*'B,(a/F)

H1 -n,a,F) = — cQ

where n > 1. Hence H has a simple pole at s = 1 with residue 1/F.

Definition 2.2.6. Let C, be the completion of (Q,, |- |,) and consider B(r) = {s €
Cp : |s| < 1}. A function f : B(r) — C, is said to be p-adic analytic on B( ) if f is
represented by a power series Y ja,s" with a, € C, converging on B(r).

Definition 2.2.7. Let B(r) as above. A function g : B(r) — C, is said to be p-adic
analytic on B(r) except for a simple pole with residue p at so € B(r) if

1. (s — sg)g(s) is p-adic analytic on B(r);
2. limg 5, gls) = p.

Definition 2.2.8. For every n € N. let Q[X], be the set of all polynomials of Q[X] of
degree n. Define

n = € Q[X]n

<x> X(X —1)- nr (X —n+1)

If n =0, we set (g) =1.

Remark 13. We indicate always by (f) the following function on N associated to (f)
for m,n € Nif m > n we set (X)(m) = (") while if m < n we put (%)(m) = 0. Hence
(%) take values in NU {0}. Since N is dense in Z, and (}) is p-adically continuous

we obtain that (i) extends uniquely to a function (f) : Zy — Z, (see [Gou] for more
details about this).

Notation: From now on, we will write | - | to indicate the p-adic norm | - |,.
Moreover, p will always be an odd prime.

Lemma 2.2.2. The expression f(X) = Y7 an(f) for a, € Q, such that a, — 0
p-adically defines a continuous function f : Z, — Q,.

Sketch of proof. Clearly we have pointwise convergence. Indeed: |a,(})| = |an| -
|(%)] < |an]| since |(%)| < 1. However one can deduce that the same estimate shows the
uniform convergence. Hence the p-adically continuos function Y ), a (i) converges
(as n — oo) to a p-adically continuous function as in the statement. O]
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Remark 14. Notice that if a, € Z, for every n then f : Z, — Z,.
Proposition 2.2.3. Suppose r < p~1P~1 <1 and

F1x) - ij)a <)n<>

with |a,| < Mr" for some M. Then f(X) may be expressed as a power series
with radius of convergence at least r = (rp"P-1)=1 > 1.

Proof. First of all recall that f(X) is continuos on Z, since a, — 0 as n — oco. For
every k € N.g define Pp(X) =Y _,an (%) = > ok An kX" Then

n

S aninteger N anﬂinteger - akinteger
‘ n! (n+1)! k!
and so .
ane| < maxy<j<n{ M } < maxp<j<p %‘

Now since § < pr1 we have that 5] < M(rpp 1) = MR. Hence |a, | < MR™.
Moreover, the same computation shows that

integer integer
[an,k — an,k+h| = ‘ak+1(kTgi)[ + ...+ ak+h(k+—gh>" < MR*(IQH) S 0as bk — 0o

Therefore {a,}32 4 is @ Cauchy sequence. Let ap ., = limp_o, anp. Then |ap | <
MR™. Define P (X) = Y anX". Hence P, convergesin D = {x € C, : |x| < R}.
Of course also the polynomials Py, P,, ... converge in D. Finally, if x € D then

‘ Z an,kxn‘ < maxy<p, {MR™"|x|"} — 0 as ny — oo, uniformly in k

n<ng

Thus f(x) = limy_,., Pp(x) = P, (x) and so f is analytic in D as we wanted.

]
Theorem 2.2.4 (Von Staudt-Clausen). Let n be even and positive. Then
1
Bi+) - €L
peP b
(p—1)n
Proof. We want to show that for each prime p we have B, = —1/p or 0 modulo Z,,

depending on wether p —1 does or does not divide n. We proceed by induction. Thus
assume that the statement holds for m < n. It follows that pB,, € Z, for m < n.
Notice that the claim is clearly true for m = 0,1 and so we can assume that n > 2 is
even. By remark 12 and proposition 2.2.1 we get that

p
a
Bn = Bn,l = Pn% ZBH(E)

a=1

Y [ m (2) -

-1 j=0

S Q

[]=

(%) tpBiap2 -

a=1 j=0

(pBoa"p~? + npBia™ 'p~!' + pB,p" ) mod Z,

[~

Q
I
-
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Now notice that if p # 2, then By = —% € Z,. Moreover, being n even, we also have
that nB; € Z,. Therefore we may omit the term with B; in the above congruence.
Recalling that By = 1 and looking respectively at the first and last terms of the above
expression, we obtain:

(1—p”)BnE% b_jat = pT?iif(p—i)In or=0if (p—1)1n.
Since 1 — p" = 1 mod p, we deduce that B, = —% or = 0 modulo Z,. Now

consider B, + ) pep %. By the above line, we deduce that this is a rational number
(p—1)|n
which lies in Z,, for every p € P. This implies that there are no prime numbers in its

denominator and so it is actually an integer. This concludes the proof.
O

Now we state a theorem which will give us an important formula about the Hurwitz
zeta function that we will use later. The proof is entirely analytical and uses a contour
argument, so we decided to omit it. The interested reader can find a proof in [Wa].

Theorem 2.2.5 (proof omitted). L(1 — n,x) = —B,,/n with n > 1. More generally,
¢(1 —n,b) = —B,(b)/n with 0 < b < 1.

Theorem 2.2.6. Suppose that 1 < a < F and p is an odd prime such that p|F,
p t a and w denotes the Teichmiiller character. Then there exists a p-adic analytic
function Hy(a, F,s) on B(r) = {x € C,} for r > 1 except for a simple pole at s = 1
with residue + such that

H,(1 —n,a,F)=w"H( —n,a,F)
forall n > 1.

Proof. First of all, since p does not divide a then a € Z; and (a) is defined in 1 + pZ,.

Now set 00 J
Hyls,a,F) = - ! 1%@“Z <1 ;s> (Bil <§>

j=0

and assume the convergence for the moment. Then

=0
@Y () )" -
_ w& <%> — w(a)HA - n,a, F)

where in the second equality we used the fact a = w(a){a), in the third remark
12 and in the last one H(1 — n,a,F) = F*'¢(1 —n, §) = F*! “5E) this holds by
theorem 2.2.5).
At s = 1, we have residue:

lim H(s,a, F) = 0i<> <F>j:%

J=
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def
[t remains to prove the convergence. We know that (a)® = expp(s - logy(a)) is

analytic on B(pg%%) since exp,(s - log,(a)) converges if and only if |s - log,(a)| <
p~"P=1) Moreover notice that |s| < r with r > 1 if and only if [1 — s| < r with
r > 1. We deduce that (a)!~® converges on B(r) with r > 1. Now we study the
analiticity of Y (1]_.5)(Bj)(§)f. We have that |B,(£)/| < |Bj| - |[F} and by theorem 2.2.4
we know that pB; € Z,. Thus |pBj| < 1. This implies that |Bj| < ¢; = p. On the other
hand, by hypothesis p|F. Say n = v,(F) > 1 where v, is the p-adic valuation. Hence
|[FJ = p™ < p/. Therefore |B; - (5)’)] < p-p~J. Then we apply proposition 2.2.3 with
M =p, r=p "™ We get that r = pg%f > 1. Thus Hy(s,a, F) is p-adic analytic
on B(r) except for a simple pole at s = 1 with residue 1/F.

O

Theorem 2.2.7. Let ¥ be a Dirichlet character of conductor f > 1. Then there exists
a p-adic analytic function Lp(s, x) on B(r) with r > 1, except for a simple pole at
s = 1 with residue 1 — ll) if x =1 satisfying

n—i) BH’wan

L,(1 —n,x) = —(1 = xw"(p)p .

with n > 1.
Furthermore, we have the formula:

s = g S a3 (15 ) sy ()] 21)

Proof. Fix F such that f|F and p|F. In particular say F = pt with t > 1. We show
that the formula 2.1 gives the desired function. By the definition of H,(s, a, F) that
we gave in the previous proof, we have that L,(x,s) = Z§=1,pm x(a)Hy(a, F,s). This
implies that L,(x, s) is p-adic analytic on B(r) with r > 1 except possibly for a simple
pole at s = 1. Now by the previous theorem we have that, at s = 1, L, (s, x) has residue
Zizirm x(a)£. Suppose now x = 1. Then this sum is equal to 1 — 2—). Indeed, first of
all recall that by our notation on characters, we have that f = 1 and so p 1 f. Then
notice that a runs through exactly (p — 1)t values such that p does not divide a. Thus
the sum is clearly equal to (p —1)t- # =1- %. Suppose then that y is not trivial, then
the same sum is equal to:

1 F 1 Flp
F ZX(CQ T ZX(Pb>
a=1 b=1
However the first sum is O since Z£=1 x(a) = 0 and y is periodic of period f.

Moreover, if p|f then x(pb) = 0 for all b. If p does not divide f then f|(F/p), so also
the second sum is always O by the previous argument. Hence L,(s, x) has no pole at
s =1 if ¥ is not trivial. If n > 1 then:
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F F
Ly(1 —n,x) = Zx(a)Hp(l —-n,a,F) = Zx(a)a)*“(a)H(i —-n,a,F) =
b ba
F _Fn,iBn a F
- xla)w™"(a) <—n (F)> = —%F"“izxw“n(a)BH <%> —
ba ba
1 e ayv 1 . (F\"'IE b
— _HF 1;;@) (a)Bn <f> + P ! <E> ;X(u (pb)B,, <F_/p> —
=

where in the third equality we used the fact that if ¥y, x» are two characters then
xila)xo(a) = (xixe)(a) unless yila) = xola) = 0. Now by proposition 2.2.1 we have
that the first sum is equal to —1B, ,,-. Now if p|f,,—n then xw™"(pb) = 0 and so
we obtain directly the formula of the statement. Otherwise f,,,» divides F/p. Again
by proposition 2.2.1 we have that the second sum is equal to %Xuf”(p)p““iBn,XWn. In
other words, we obtain:

1

—nj - 1 e
(*) = _H(anw*“ —XW (p)p 1Bn,xw*”) = (1 - XW (p>p 1)Bn,xw*“

n

This completes the proof.
[

Remark 15. Notice that if y is odd then n and yw™ have different parities and so
Bn - = 0. Therefore, Ly(s, x) is identically zero for odd .

Theorem 2.2.8. .
Suppose x + 1 and p* 1 f,. Then

(o.¢]

Lols, %) = 3 anls = n)"

n=0
with |ag| <1 and with pla; for all i > 1.

Remark 16. Notice that since L,(s, x) has radius of convergence greater than 1, a; — 0
as i — oo; therefore a priori we have pla; for large i.

Proof. If i is odd, then by remark 15 the theorem holds. Hence we may assume that
x is even by remark 15. We choose F as in the previous theorem so that p|F but
p? 1 F. We need to consider formula 2.1:

Lp(s, x) = %s 1 1 i [X(a)<a>1—s§: <1 ]—S> B; - <§>J}
Va

j=0

Notice that from this formula it is clear that L, (s, x) may be expressed in the form
Y gan(s —1)". Hence we need to focus our attention on the divisibility property of
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the coefficients stated in the theorem. Now, by our choice of F, we have that |F| =

Moreover in the previous proof we observed that |B; - ( E)j | < # We claim that

|] | < pv p-1. Indeed, since there are [p ] multiples of p' less than or equal to n, we can
deduce that the exponent of p in j! is

1
D’
at

J J J
“+ |5+ < —
2 2 p—1
From the above we get that:
ji—1 .
B]. . FJ' < pj/(p 1) p- 1 _ pﬂp;l){lp < 1
jr-ar | = P! oD

for j > 3. Therefore the coefficients in the power series expansion of

F;<1—S> <§>]

are divisible by p. Similarly
(@)™ = exp(ll - s)logp(a)) = 3577 (1 — s (logy(a))

has all coefficients in Z,, and moreover they are divisible by p? for j > 2. Indeed:
we know that p|log,(a) and so |log,(a)| < %. Recalling that ]]1,[ < p7T we obtain that
|3logy(a)] < p? P < 5 for j > 2. Therefore it remains to consider

F
S f 1 x(a)(t +(1 - s)zogp<a>><% B 12—as - s)(112(—123 —~ 1)F>

a=1,pta

From this expression we deduce that

F
1 1 F
ap = — Z X(a)<f -logy(a) — 5q W> mod p

a=1,pta

Clearly (1/F)log,(a) and F/12 are in Z,. Since a = w(a) mod p and p|F, we get:
F
a=1,p’[a

This implies that |a| < 1 (use also the fact that every root of unity has norm equal
to 1).

Next, we observe that

log,(a) F -logy(a)
= — - - d
= ;X <12a2 % s ) medp

EZX(U )=0 modp

a=1,pta

QI)A

It is also clear that F - log,{a)/(12a?) and log,{a)/(2a) are divisible by p. If p > 5
then F/12 € pZp, so pla;. Now if p =3, we have F/12 € Z;. However, if p { a then
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a®=1 mod p andso ), xlaja™ =3, xla) = 0. Again we obtain pla;.

Finally, we have

F
ay = —2{:(logp(a>)12a2 =0 modp
pfa
Since we showed at the beginning of the proof that all the coefficients a, with
n > 5 are divisible by p, the theorem is proved.
[

Remark 17. 1t is important to point out that one can prove that as a p-adic analytic
function on B(r) (with a simple pole if ¥ = 1) L,(s, x) is uniquely characterized by
theorems 2.2.7 and 2.2.8. This fact will be used later. For the details about it, see [Iw].

We conclude the section with a useful lemma whose proof involve the theory of
p-adic regulators. Details can be found in [Wa].

Lemma 2.2.9. Let y + 1 be an even Dirichlet character. Then L,(1, x) + O.






Chapter 3

Iwasawa Algebra and A-modules

The aim of this chapter is to introduce and study the Iwasawa Algebra A. We start
with group rings and then we pass to define A and to prove the Structure theorem
for finitely generated A-modules. We will conclude the chapter applying what we will
have learnt to find a new way to construct p-adic L-functions. All of this plays a key
role for The Iwasawa Main Conjecture.

3.1 Group rings

We start this section with recalling some facts on topological groups.

Definition 3.1.1. A fopological group is a triple (G, T, ) where (G, 1) is a topological
space and (G, -) is a group such that the maps (-) : G x G —» G, (x,y) — xy and
(<1): G - G, x + x~! are continuous with respect to T and the product topology
T X T.

The following are basic properties that follow directly from the definition of topo-
logical group.

Proposition 3.1.1. Let (G, 1, ) be a topological group. Then

1. If H is a subgroup of G which is open (respectively closed of finite index) then
H is closed (resp. open,).

2. If (G, 1) is compact and H is an open subgroup of G, then [G : H] < .

Proof. 1. Denote by T a set of representatives for the right cosets of H in G. Thus
we have that G = [, Hx. This implies that H = G\, ., .y Hx. Notice that for
each g € G the map z +— zg from G to G is an homeomorphism. We deduce
that [ J1 # x € THx is open (resp. closed). Hence we get the first statement.

2. As above, we have that G = |J,.; Hx where each Hx is open. Since G is
compact, it follows that it is the union of finitely many cosets. This concludes
the proof.

O

Definition 3.1.2. A topological space is said to be fotally disconnected if its only
connected subsets are the empty set and the one-point sets.

21
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Definition 3.1.3. We say that a topological group (G, 1, ) is a profinite group if and
only if G is Hausdorff, compact and totally disconnected.

Example 3. The most important example of profinite group for us is the additive
group of Z,.

Lemma 3.1.2. Let G be a profinite group. Then

G ~ lim G/N
H
N
g— (g mod N)y

where N runs through the open normal subgroups of G ordered by reverse
inclusion, and all the G/N’s are finite groups equipped with the discrete topology.

Sketch of proof. Notice that by proposition 3.1.1 (2.) since G is compact we deduce
that G/N is a finite group for every N as in the statement. Consider1: G — lim G/N,
g (g mod N)y. This is a continuous map with dense image (see [Wi]). Now notice
that @ N G/N is Hausdorff and so t is also a closed map since G is compact. Therefore
the map is surjective. However ( is injective too. Indeed, if g € Ker(i) then g € [y N
where N runs as in the statement. Since G is Hausdorff, we have (., U = {1}
where U, is the set of all the open neighborhoods of 1. Since G is compact and
totally disconnected, the open normal subgroups of G form a basis of neighborhoods
at 1 (see [Wi] again for details). Hence every U as above is the union of some N's
as in the statement. This implies that (|4 N = {1}. Thus we deduce that it is an
isomorphism of topological groups. O]

Remark 18. Actually one can prove also a converse of the previous proposition: if a
group is a projective limit of finite groups, then it is a profinite group. This gives us
an equivalent definition of profinite groups (look at [Wi] for this).

Lemma 3.1.3. If {0} + H is a closed subgroup of Z, then H = p"Z, for some n € N.

Proof. Let v, be the p-adic valuation. Choose x € H such that n = v,(x) is minimal.
Thinking of x as a power series we deduce that we can write x = p"e with € € Z].
Clearly xZ C H but H is closed and so xZ, C H because Z is dense in Z,. However if
there exists y € H \ p"Z, n then v,(y) < n, contradicting the minimality of n. Hence
we deduce that H = xZ, = p"Z,,.

[

Definition 3.1.4. Let R be a commutative ring and let G be a finite group. We define
the group ring of G over R as R[G] = {)_, s(rs - 0) : rs € R} where:
- Y (15 - 0) . Y (76 - 0) if and only if ry = 7,

- Zc<ro - 0) + Zg<')/o - 0) = Zc[(rd + %) - O,

def

- [Zg(ro -0)] - [Zg(’}’o -0)] = Zo[(ZTEG riYr-g) - O]

Now we are going to consider R|[G]-modules. Of course, if G is not abelian then
we have to distinguish between left and right R[G]-modules. Wlog, we can focus our
attention on the firsts.
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Examples 1. 1. M = R with trivial G-action. Letr ¢ M = R. Then (} r;-0)-r =
> ,rs) -1

2. The map
aug :R[G] = R, Y (rs-0)— > s

is an R[G]-homomorphism and is called the augmentation map. The kernel of
this map Ker(aug) = {)_,(rs-0) € R[G]: ), rs = 0} is clearly R[G]-submodule
and is called the augmentation ideal.

3. If My and M, are R[G]-modules, so are

- HomR(Mi, MQ) via (Od)) : M1 — MQ, my — o<b(6"1m1) with (b € HOmR(M1, Mg),
oecG.

det
- My ®p M, via 0 - (my ® my) = omy @ omo.

4. Let L|K be a finite Galois extension and let G = Gal(L|K). Then:

- L is a K[G]-module: let ’ (ry-0) € K[G]and y € L; set [} (rs-0)] -y =
Y sl - 0())

- L* is a Z[G]-module: let ) z,0 € Z[G] and let y € L*; set ) (z5-0) -y =
[[,0(y) e L*

- Suppose L|K are number fields, then CI(L) is a Z[G]-module: let Y (z,-0) €

Z[G] and let [9] € CI(L) with 9 a fractional ideal of Oy; set [> (z5-0)]-[9] .

[1oeslo(9))7 € CUL)

3.2 The Iwasawa Algebra

Notation: From now on, let G be a profinite group and let O be a commutative
noetherian local ring with finite residue field of characteristic p. We call p its maximal
ideal. We assume also that O is complete in its p-adic topology.

Example 4. The most important situations that one has to keep on mind are when
O = Z, or more in general O = Op with F|Q, a finite extension.

Definition 3.2.1. - The complete group algebra of G over O is the inverse limit
O[Gl] o lim O[G/N] where N runs through the open normal subgroups of G

ordered by reverse inclusion.
- Let I be a multiplicative topological group isomorphic to (Z,, +). We call A i
Zp||T'|] the Iwasawa Algebra.

- The surjective augmentation map O[G/N] — O with N as above induces a sur-
jective map O[|G|] - O which is still called the augmentation map. Its kernel
is denoted by A(G) or Ay(G) and its called again the augmentation ideal.
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Example 5. Considering the second definition above, one can take into account 1 +
pZ,. This is clearly a multiplicative group and one can show that it is isomorphic to
the additive group (Z,, +). See [Sa3] for more details about this.

Now we fix [ a generic multiplicative topological group isomorphic to (Z,, +) and
we also choose y € I' a topological generator (e.g. 7 may corresponds to 1 through

the chosen isomorphism, since 1Z = Z and Z is dense in Z,). For n € N we set

I, “ L/TP" = Z,/p"Z,. Observe that this is a cyclic group of order p™ and that we

have natural maps ', — 'y, if m < n. Moreover, notice that O[[",] = O[T]/w,(T) as
rings through the map

v mod I'" +— (1 + T) mod w,(T)
where w,(T) . b, i (1+T)P" —1. Comparing the roots, we deduce that for m < n
we have wp,(T)|w,(T) and that the following diagram

O[Tn] —— O[T)/wn(T)

ll"n—el"m lwm\wn

O[T m] —— O[T/ wn(T)

commutes. Therefore O[|'|] ~ lim O[] = lim O[T}/w,(T).

Remark 19 (x). By lemma 3.1.3 we know that all non-trivial closed subgroups of Z,
are of the form p"Z, for some n € N. This implies that also every open subgroup
has this form since we know by lemma 3.1.1 that an open subgroup is closed too.
On the other hand, since multiplication by p is an homeomorphism, every subgroup
p¥Z, is open. This implies that the limit lim O[T /TP"] really is the complete group
algebra of I' over O.

Lemma 3.2.1. Let R be a commutative ring. Then R[|T|]* = {d . a;T" :a; € R,a¢ €
R*]. In particular, if R is a local ring with maximal ideal q, also R[|T|] is local and
its maximal ideal is generated by T and q.

Proof. Letf =Y °ga;T', g = Y07 b;T" € R[|T|] and suppose fg = Y032 _g a;b; ) T
1. Then looking at the coefficients we deduce that apby = 1 and so ag € R*.
On the other hand, if ag € R* then set by = a; ! and inductively define b; =
—a, Yaibi_t + ... + a;bg) € R. This produces an inverse element. For the rest of
the statement, just notice that R[|T||* = (T, q)R[|T|].

O]

Proposition 3.2.2 (Division with remainder). Let p be the maximal ideal in O and
let f,g € O[|T|] such that f = Y. a;T" + 0 and ao,...,an-1 € p,a, ¢ p for some
n € N. Then there exists a unique q € O[|T|] and a unique r € O[T] such thatr = 0
ordeg(r) < nandg = qf +r.

Proof. Existence: We define a shift-operator v = 1, : O[|T[] — O[|T]], Y..2,biT) —
Y2, biT . This map have the following properties (that one can check directly by
computations):

- 17 is O-linear
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- 7(T"h) = h for all h € O[|T|]
- 7(h) = 0 if and only if h € O[T] and deg(h) < n or h =0

. . n def n-1 i def
Notice we can write f = P + T"U where P = Y " Ja;T" and U = a, + a,T +

.= 1(f) € O[|T|]*. Setq o 3 Yoo(=1)(To £V o 1(g) € O[|T]] where for every
O[|T|] we define inductively (to £} ox by (To£)ox = 1(fx) and (to £)? o x =
( T(%I)). Now notice that qf = qP + T"qU and so using the above properties we
get 1(qf) = t(qP) + 1(T"qU) = 1(qP) + qU = [(to §)o Y 7 y(=1)(to g) o T(g)] + qU =
[ (o 2Votlg)l+qU = —qU + tlg) + qU = t(g). Therefore, we have shown that
T(gf) = 1(g). Then the first and the third properties above imply that g — qf belongs

X
T

oM

to O[T] and either deg(g —qf) < n or g —qf = 0. Setting r . g —qf we can conclude
this part of the proof.

Uniqueness: Suppose we can write g in two ways such as in the statement: qf + r =
g =qf +r. Then (q —q)f + (r —r) = 0 and so wlog we may consider qf +r = 0
and prove that ¢ = O (notice that this implies r = 0). Let q = Y .-, b,T* € O[|T]].
We show that b, € p™ for every k,m > 0. This will imply that b, € (), p™ = {0}.
If m = 0 the statement follows. Now we proceed by double induction on m and k.
Assume b; € p™~! for every i > 0 and b; € p™ for i < k. We compare the coefficients
of T"** in qf + r = 0, i.e. we consider

(boQnsk + - + Dp_1Gnst) + bean + (bps1@ny + ... 4+ brinao) =0

Since both the terms in the parenthesis lie in p™ we deduce that b,a, € p™ and
so by € p™ since a, ¢ p by hypothesis.
H

Definition 3.2.2. An element p(T) € O[T] is called distinguished or a Weierstrass
polynomial if p(T) = T" + a,_1T" ' + ... + ao for some n > 0 and aq, ...,a,_1 € p.

Example 6. The polynomial w,(T) = (1 + T)P" —1 € Z,[T] is distinguished.

Theorem 3.2.3 (p-adic Weierstrass Preparation theorem). Let 0 + f = Y a;T" €
O[|T|] such that ay,...,an1 € p,a, ¢ p for some n € N. Then there is a unique
decomposition of f = P - U where P is a Weierstrass polynomial of degree n and
U € O[|T|]*. In particular, if O is a DVR with p = (i) then every f + 0 may be
uniquely written as f = m°PU for some s > 0.

Proof. Existence: Applying proposition 3.2.2 with g = T" we obtain that T" = qf + r
with r = 0 or deg(r) < n. Now looking at this expression modulo p we obtain
T =q-Y. 2, a;T"+r mod p. Therefore r = 0 mod p since deg(r) < n. Thus we

set P o T™ — r which is a distinguished polynomial. We claim that g € O[|T|]*. If this

holds, then set U i q~!. Now we prove the claim: let ¢ = Y7, ¢;T" and recall that
T" = (qo+q:T+...)- (@, T"+...) mod p where the g's are the coefficients of q. Looking
at the coefficient of T" we get 1 = qoa, mod p. This implies that qoa, = 1 + y for
some y € p. Since O is local, then it follows that gy € O* and so q € O[|T|]* by lemma
321.

Uniqueness: Suppose f = PU. Clearly P can be written in the form P = T* — 7
as above. Then we deduce that T" = U~'f + 7 = U~'f + r. However division with
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remainder is unique, and so we can conclude the proof of the first part. The second
part follows directly collecting a power of 7t from the coefficients of f.
[

Corollary 3.2.4. Let O = Or where F|Q, is a finite extension. Assume 0 + f € O[|T|].
Then there are only finitely many x € C, = Q, with |x| < 1 such that f(x) =

Proof. Write f = m°PU where U = up + wy T + ... with up ¢ p, i.e. |ug| = 1. Notice we
can write U(x) = uy + xh(x) with x as in the statement. Since uy has norm equal to
1 and xh(x) has norm lesser than 1 we deduce that |U(x)| = 1 and so U(x) + 0. This
implies that P(x) = 0. However P is a polynomial and therefore it has only finitely
many zeros.

0

Lemma 3.2.5. Let P,g <€ O[T] with P distinguished. If § € O[|T|] then § € O[T.

Proof. Let n = deg(P). Then we can write g = r mod (P - O[T]) with r € O[T] and
deg(r) < n. Hence g = qP + r with g € O[T]. On the other hand g = § - P, so
proposition 3.2.2 implies that r = 0 and § =

]

Now we have all the tools to prove the main result of this section.
Theorem 3.2.6. O[|I'|] = O[|T|], ¥ = 1 + T (non-canonical since we chose y).

Proof. We showed that O[|I'|] = lim 51 thanks to the isomorphism O[I',] = %(TT]) Y
mod I', — (1+T) mod wy(T). Moreover recall that for every n € N there is a natural
map O[|T|] — O[T] mod w,(T) given by f = quw, + f, with deg(f,) < p" = deg(wy).
Hence proving the theorem is equivalent to prove that the map O[|T|] — @n %
f +— (fu)n is an isomorphism. We need to prove that this is well-defined, injective and

surjective.
Well-defined: For m > n > O we have f,, —f, = (f =qmwm) —(f —qnwn) = wn(qn —qm-t’)—’:).

Notice that ¢= € O[T] and so f’” —In ¢ O [|T|] and therefore it lies in O[T] by the previous
lemma. Hence fm = fn mod u)n

Injective: Let f, = 0 mod w, for every n. Then f, = 0 mod w, for every n. We
claim that w, € (p, T)"*!. If this holds then f € (., (p, T)" = {0}. We prove the claim
by induction on n. If n = 0 then wy = T € (p, T). Now suppose the claim holds for n,
we prove it for n+1. Notice that “2t — 14+ (1 4+ T)P" +...+(1+T)"" =) — p+Tr e (p, T)
for some polynomial r, using the inductive hypothesis.

Surjective: Let (fy)n € lim O[T]/w,(T). For every n we write fo(T) = Yoo anT
with an; € O,an; = 0 for j sufficiently large. Now for every m > n > 0 notice that
fm = fn mod w,(T) implies f,, = f, mod (p, T)**!. Therefore the constant terms are
congruent modulo p"*!, the linear terms modulo p" and so on. In particular, one

finds that for fixed j the (a,;)n>0 is @ Cauchy sequence in O. Set q; . lim,_,. an; € O.
Thus f(T) « lim, o fn(T) = Z?io a;T' € O[|T|] is a preimage of (f,), by construction.
O

Theorem 3.2.7. Let O as before and set m i + (T) € O[|T|]. Then O[|T|] is a
noetherian local ring with maximal ideal m and (9[|T|]/m =~ O/p. If O is a DVR with
p = (1) then:
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1. the irreducible elements (up to units) of O[|T|] are ;t and the irreducible dis-
tinguished polynomials

2. O[|T|] is a UFD

3. the prime ideals of O[|T|] are {0}, (;r), m = (51, T) and (P) where P is irreducible
distinguished.

Proof. By lemma 3.2.1 we know that m = O[|T|]\ O[|T|]* and so O[|T|] is a local ring
with maximal ideal m. Let Z = (fi i € HO[|T|] be a generic ideal of O[|T|]. Using
proposition 3.2.3 wlog we may assume f; € O[T] for every i € I. Let | = (fi 11 €
IO[T]. Now we know by the Hilbert’s basis theorem that O[T] is noetherian and so
J = {fi,...fs)O[T] for some s > 1. Then Z = JO[|T|] = (f1,....fs)O[|T|] and so O[|T]]
is noetherian.

In the rest of the proof assume also that O is a DVR.

1. Let O + f € O[|T|] be an irreducible element. Now the second part of proposition
3.2.3 implies that f = 7m"PU with U € O[|T|]* and some n > 0. Since 7" and P
cannot be invertibles, this implies that, up to units, f is equal either st or P with
P irreducible distinguished polynomial.

2. We need to show that being irreducible implies being a prime element. Now
gt is prime since O[|T|]/(;t) = O/(7)[|T|] is an integral domain. Let P be an
irreducible distinguished polynomial and assume P|fg. By proposition 3.2.3
we have decompositions f = 7™ P;U; and g = m™P,U, for some ny,ny, > 0.
This implies that P divides 7™*™P,; P, in O[|T|]. Now lemma 3.2.5 tells us that
D|mm* 2Py Py in O[T] and so P|PyP, in O[T] since O[T] is a UFD. This implies
that P|P; or P|P, since P is a prime element of O[T], i.e. P|f or P|g. By the
previous point, this suffices to prove that O[|T|] is a UFD.

3. Since every irreducible element is prime, part 1. implies that all the stated
ideals are prime. Let {0} + q be prime. Choose 0 + f € q a polynomial of
minimal degree (notice that it exists by proposition 3.2.3); wlog, we may assume
f = m°P where P = 1 or P distinguished polynomial. However, q is prime
and therefore either 71° € q (so that ;t € q) or P € q (so that P is irreducible
since f has minimal degree and q is prime). Thus (f) C q where f = s or f is
irreducible distinguished. Suppose now that (f) is contained properly in q. We
claim that ¢ = (71, T). Indeed, choose g € q \ (f). In particular, f does not divide
g. If f is irreducible distinguished we can write g = qf + r with 0 £ r € g
and deg(r) < deg(f). However, this is a contradiction since deg(f) is minimal.
Hence we must have (f) = (). As () is properly contained in q there exists
P e q distinguished. Since P = T" mod (;1) we obtain T" € q and this implies
T € g. Therefore (1, T) C q. On the other hand, (71, T) is maximal and so
(7, T) = q.

]

Remark 20. One can also show that if O[|T|] is as in the previous theorem, then it is
also a complete topological ring with respect to the (p, T)-adic topology.

Observe that using theorem 3.2.6 and arguing inductively one deduces that:
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Corollary 3.2.8. For every n € N we have:
1. O[|Ty, ..., Th|] is a noetherian complete local ring
2. if I' = Zj as profinite groups then O[|T'[] = O[|T}, ..., Ty|].
We end the section with a couple of easy but still interesting lemmas.

Lemma 3.2.9. Consider A\ = Z,[|T|] as above. Suppose that f,g € N\ are relatively
prime. Then the ideal (f,g) is of finite index in A.

Proof. Take h € (f,g) an element of minimal degree. Then h must be of the form
p°H with H = 1 or H distinguished polynomial. Say that H # 1. Since f and g are
relatively prime by hypothesis, we may assume that H does not divide f. However
using proposition 3.2.2 we can write

f=Hq+r

with deg(r) < deg(H) = deg(h), so that p°f = hq + p°r. Therefore, since deg(p°r) <
deg(h) and p°r € (f,g), we obtain a contradiction. Hence H = 1 and so h = p°®.
Notice that wlog we may assume that f is not divisible by p and moreover that it is
a distinguished polynomial (otherwise we could use g or divide by a unit). Thus we
deduce that (f,g) D (p®, f). Notice that proposition 3.2.2 implies that any element of
A is congruent modulo f to a polynomial of degree less than deg(f). Since there are
only finitely many such polynomials modulo p®, we deduce that the ideal (p®, f) must
have finite index. Thus we can conclude the proof. O]

Lemma 3.2.10. Let f € A with f ¢ A*. Then M\/(f) is infinite.

Clearly we may assume that f + 0. By theorem 3.2.7 it is enough to consider the
cases where f is either p or a distinguished polynomial. If f = p, then just notice
that A/(p) = Z/pZ[|T|]. In the second case, the statement follows applying the division
algorithm (prop 3.2.2).

3.3 The Structure theorem for finitely generated A-
modules

Definition 3.3.1. - Let R be a commutative ring and let p € Spec(R) a prime ideal.
Then we define ht(p) as the supremum in NU {co} of the lengths of the chains
of the form py C py C - -+ C p, = p where every p; is a prime ideal of R. Then
ht(p) is called the height of p.

def
- We say that dim(R) = sup {ht(p)} = sup {ht(p)} is the Krull dimension
peSpec(R) peMax(R)
of R.
- We set P(R) . {p € Spec(R) : ht(p) =11].
Remark 21. - R noetherian = ht(p) < oo for every p € Spec(R).

- Let R be a noetherian domain. Then R is a Dedekind domain if and only if R
is integrally closed and dim(R) = 1.
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- A DVR is a local PID of dimension 1.
- If Oisa DVR and R = O[|T|] then dim(R) = 2 (this follows from theorem 3.2.7).

Now we are going to state or assume some facts whose proofs come from com-
mutative algebra and linear algebra. Therefore we consider them not so interesting
for our purposes. For the proofs look at [Neu2] and [Boul].

In what follows, assume that R is a commutative noetherian integrally closed domain.
Proposition 3.3.1. 1. For every p € P(R), we have that R, is a DVR.
2. R =(\,cpir) Ry where the intersection is taken in Frac(R).

Definition 3.3.2. Let M be an R-module.

1. The module M* . Homp(M, R) is called the R-dual of M. Moreover we will
denote by V the K-vector space My = M @&p K where K = Frac(R).

2. M is called reflexive if the canonical map ¢y : M — M, m +— [py(m) : f +—
f(m)] is an isomorphism.

Example 7. Put M = R. If My, M, are reflexive then M; & M, is reflexive. Hence in
particular R" is reflexive for every n € N.

Lemma 3.3.2. We have that M* is a torsion-free module. In particular, if M is
reflexive then it is also torsion-free.

Lemma 3.3.3. Let M be a finitely generated torsion-free R-module. Then

1. M* =(\,cpy M, where the intersection is taken in V*.
2. M*™* = (,.pp) M, where the infersection is taken in (V*)*.

5. M = (Vyeppy My if and only if M is reflexive.

Corollary 3.3.4. If M is a finitely generated torsion-free R-module then M* is re-
flexive.

Lemma 3.3.5. Let M be a finitely generated R-module. TFAE:

1. M, = O for every prime ideal p such that ht(p) < 1.

2. Seta “ Annp(M). Say that p is a prime ideal such that a C p. Then ht(p) > 2.

Proof. Let p € Spec(R) and notice that M, = 0 if and only if there exists s € R\ p:
sM = 0. However this is true if and only if a £ p. This shows the above equivalence.
]

Definition 3.3.3. Let M be a finitely generated R-module. Then M is said to be
pseudo-null if and only if M satisfies the equivalent conditions of the previous lemma.

Definition 3.3.4. The set supp(M) i {p € Spec(R) : M, + 0} = {p:a C p} is called
the support of M.
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Remark 22. 1t is useful to recall that in any short exact sequence of groups, modules,
rings 0 - A —- B — C — 0 one has that B is finite if and only if A and B are finite.
Moreover, if this is the case, we also have that |B| = |A] - |C]|.

Proposition 3.3.6. Let M be a finitely generated R-module.

1. If M is pseudo-null then it is a torsion-module.
2. If R is a Dedekind domain then: M is pseudo-null if and only if M = Q.

3. If R is local with maximal ideal m, |R/m| < oo and dim(R) = 2, then M is

pseudo-null if and only if |[M| < oco.

Proof. 1. Set S = R\ {0}. Then notice that S"'R®@r M = Mjy, = S'M = 0. This

means that 0 = 7 € S~'M for every m € M. Hence M is a torsion-module.

2. Assume that M is pseudo-null. Then by the previous point we can choose s € R

r

such that sM = 0. Now consider the factorization of sR = [[];_, p;". Thus, for
every i by hypothesis we have M,, = 0 and so there exists s; € R\ p; such that
si € p; for every j + i and s;M = 0. Indeed, if s; is an element of R\ p; such

that s;M = 0 and s; ¢ p; for some j + i, then choose x; € p; \ p; and replace s;

_ def ~ -
by x;s;. Set s = Sy + ... + s.. It follows that s € a. Therefore s ¢ p; for every

1 <i < r. In fact, if this is not true then s; € p; for some i, contradiction. Now
notice that s and s are relatively prime (otherwise there is a non-zero prime
ideal which contains (s,s). This implies that s C p; for some i, contradiction).
Thus R = (s,s) Caand so M = 0.

. Assume that |M| < co. Notice that M D mM D m?M D ... Being M finite, then

there exists r € N such that m"M = m"*'M. Thus Nakayama’s lemma implies
that m"M = 0. Hence m" C a. Let p be a prime ideal such that a C p. Therefore
m” C p implies that m C p and so m = p. Then ht(p) = 2, namely M is pseudo-
null.

Conversely, for the rest of the proof we need the following lemma of commu-
tative algebra:

Lemma 3.3.7. Only for this lemma, let R be a commutative ring. Moreover let
0 + M be an R-module. Then

- For 0 # m € M consider the ideals I, . Annp(m) and say that I o Im,

is a maximal element of the set of the I,,” s ordered with respect to the
inclusion. Then I is a prime ideal.

- Suppose also that R is a noetherian ring and that M is a finitely generated
R-module. Then there exists a filtration 0 = My Cc My c My C --- C M, =
M of M such that M;,1/M; = R/p; where p; is a prime ideal for every i.

proof of part 1. First of all observe that Anngy(M) C I, for every m € M. Sup-
pose now that rs € I but s ¢ I. This implies that rsmy, = 0 and smy + 0.
Therefore I C (r) + I C Annp(smg). However by the maximality of I we must
have (r) + I = I, ie. r € I. Thus we can conclude. O
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Applying part 1. of the above lemma, we can choose my € M such that Annp(m;)
is a prime ideal. Being M pseudo-null, we deduce that ann,(M) C anng(my).

Since R is a local ring with dim(R) = 2, it follows that annp(my) = m. Now
set M, . R/m and consider the injective map M; «— M given by 1 +— m; and

the natural surjection M — M/M;. Since M/M; is again pseudo-null, we can
repeat the above argument and we can construct a sequence 0 = My C M; C
- C M, = M such that M;.1/M; = R/m. Then for every i there exists an
exact sequence 0 —» M; — M;,; — R/m — 0. Being R/m and M, = O finite and

arguing by induction on i, it follows that also M, = M has finite cardinality.
]

Definition 3.3.5. A morphism f : M — N of finitely generated R-modules is called
a pseudo-isomorphism if Ker(f) and Coker(f) are pseudo-null, ie. f, : M, — N, for
every prime p with ht(p) < 1. We write in this case f : M ~ N.

Remark 23. - Suppose that R = O[|T|] where O is a DVR and let M and N be
two R-modules. Then in this case M ~ N if and only if there exists an exact
sequence:

O—-F ->M-N->F—->0

where F; and F, are finite R-modules (look at proposition 3.3.6).

- It is interesting to point out that in general M ~ N does not imply that N ~ M.
Indeed, let R = A = Z,[|T|] and consider the exact sequence 0 - m = (p, T) —
AN — A/m = F, — 0. This implies that m ~ A. However, if we take the map
A — m given by 1 — g where g is any element of m, then |m/(g)| = oo since
|A/(g)] = co by lemma 3.2.10. Therefore A + m.

Lemma 3.3.8. Let M be a finitely generated R-module and let 0 + a € R such
that supp(R/a) N supp(M) N P(R) = §. Then the multiplication map M < M is a
pseudo-isomorphism.

Proof. Let p € P(R) N supp(M). Then p ¢ supp(R/a) and so a ¢ p, ie. a € R

This implies that the map M, SN M, is an isomorphism. Moreover, if p € P(R) and
p ¢ supp(M), then M, = 0 by definition of support. This concludes the proof.
O

Lemma 3.3.9. Let M be a finitely generated R-torsion module. Then supp(M)NP(R)
is a finite set.

Proof. By part 2. of lemma 3.3.7, there exists a filtration 0 = My c My C --- C M, = M
such that M;,(/M; = R/p; for some p; prime ideals. Now since M is torsion, then
M; . 1/M; is torsion for every i. We deduce that p; &= 0. Now let p € supp(M) N P(R).
Then M, + 0 and so there must be an i such that (R/p;), + O (otherwise we localize
the exact sequences 0 — M; — M;,y — R/p; — 0 at p and by induction we find
that (M;), = O for every i, contradiction). Hence p € supp(R/p;) = {q € Spec(R) :
Anng(R/p;) C q}. It follows that O C p; C p. However ht(p) = 1 and so p; = p. Since
there are only finitely many such p;’s, this ends the proof.

O
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Theorem 3.3.10. Let M be a finitely generated R-module and set T(M) o the torsion
submodule of M and F(M) . M/T(M), Then:
1. There exists a pseudo-isomorphism f : M — F(M) @ T(M).

2. There exist a finite set I, p; € P(R), n; € N for i € I and a pseudo-isomorphism
g . T(M) — @IEIR/p?l
Moreover the p;’s and the n;’s are uniquely determined by T(M).

Proof. 1. Case 1: Suppose that supp(T(M)) N P(R) = @, ie. T(M), = O for every
p € P(R). Then, not only g : T(M) — 0 is a pseudo-isomorphism but also the
projection map f : M — F(M) since for every p € P(R) we have (M/T(M)), =
M,/T(M), = M,/{0}.

Case 2: Suppose that supp(T(M)) N P(R) # @. Then by lemma 3.3.9 we deduce

that it must be a finite set. Say that it is equal to {py,...,pn}. Set S i R\ U, »:.
Recall that the prime ideals in S™'R are exactly the ideals of the form S~'P
where P is a prime ideal of R and P NS = (. However, this is equivalent to say
that a such P is contained in Ugl:l pi. By the well known lemma of commutative
algebra "Prime avoidance’, this is true if and only if either P = p; for some i or
P = 0 (recall that every p; has height 1). Thus S7'R is a Dedekind domain with
finitely many prime ideals, hence it is a PID. Moreover, S~'T(M) is the S~'R-
torsion submodule of S~*M. By the Structure theorem of modules over a PID
(see [Du]), we deduce that S~'M ~ F @ S™'T(M) where F is a free S~! R-module
of finite rank. Moreover by commutative algebra we know that:

Homg-1p(S*M,S™IT(M)) = S 'Homg(M, T(M))
Therefore there exist fo € Homp(M, T(M)) and sy € S such that £—3=projection
map S~'M) — S7YT(M)). In particular, notice that i—g ls-iron= ids-1rpy. It

follows that fo rT(M)Z So idT(M).

Now set f . (proj, fo) : M — F(M) & T(M) and consider the following commu-
tative diagram (it exists by the Snake lemma):




3.3. THE STRUCTURE THEOREM FOR FINITELY GENERATED A-MODULES 33

Being sy € S, we get that sy ¢ p; for 1 < i < h and so p; € V(Annp(R/sy)) =
supp(R/sp). By lemma 3.3.8 follows that f; is a pseudo-isomorphism and so
looking at the diagram we deduce that also f is a pseudo-isomorphism.

2. From the above and from the Structure theorem for modules over a PID, we
- def
deduce that there exists an isomorphism gy : S™'T(M) = S~'E where E =

@, @7y R/p;". As before we get that there are g € Homg(T(M),E) and s € S
such that go = <. Notice that s ¢ R, for every i and that g is a pseudo-
isomorphism. Indeed g, = s - (go)y, is an isomorphism for 1 < i < h and if
p e P(R)\ {p1,....pn} then T(M), = 0 = E,.

Il

Remark 24. One can prove that being pseudo-isomorphic is an equivalence relation
on finitely generated R-torsion module.

Proposition 3.3.11. Let M be a finitely generated R-module and assume that M is
torsion-free. Then there is an injective pseudo-isomorphism M — M’ where M’ is
a reflexive module. In particular, the statement holds for M' = M™**.

Definition 3.3.6. Let (R, m) be a Noetherian local ring with dim(R) = n. Then R is
said to be a regular local ring if there exist py, ..., p, € R such that m = (py, ..., pn).

Example 8. Let O be a DVR and let st be a uniformizer. Then O[|T|] is a 2-dimensional
regular local ring with maximal ideal m = (s, T).

Remark 25. Using some arguments of commutative algebra, one can prove that a
regular local ring is an integrally closed domain (see [Bou2] or [Mat]).

Theorem 3.3.12. If M is a reflexive finitely generated R-module M over a 2-dimensional
regular local ring, then M is free.

Proof. First of all, let m = (py, py) with py, ps € R. Thus R/(py) is a regular local ring
of dimension 1. This means that R/(p;) is a DVR.

Now since M is reflexive then it is torsion-free and so the multiplication map M 2 M
is injective. Choose a surjective morphism ¢ : R" — M with r minimal. Now consider
the following commutative diagram:

0 y Rr 2, pr s (R/piR)" —— 0
SO
0 sy M 2 M » M/piM —— 0

We claim that M/p;M is a free R/(py)-module. Indeed: R/(p;) is an integral domain
and so Homg(M, R/(py)) is torsion-free as R/(p;)-module. Consider the map M+ —
Homp(M™,R/(p1)) given by f + [g +— f(g) mod (p;)]. Now we study its kernel:
suppose that f(g) = 0 mod (p4) for every g € M*. Then, since p; is not a zero-divisor,
follows that for every g € M™ there exists a unique x, € R such that f(g) = p1xy.
This means that there is a function h € M** such that f(g) = pih(g) for every
g € M™. Therefore, the kernel is equal to ptM*™". Being M reflexive, we deduce
that M/pyM = M**/piM™** injects into the torsion-free module Homgp(M™, R/(p1)).
It follows that M/piM is torsion-free too and so it is a free module since R/(p) is
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a PID. Hence ¢ is an isomorphism, otherwise M/piM =~ ((R/piR)"/Ker(¢)) is a free
R/(p1)-module of rank s < r. Since p; € m, then by Nakayama’s lemma we get that
there exists a surjective map R" — M, contradicting the minimality of r.
Now by the Snake lemma applied to the above diagram, we have that Ker(¢) LN
Ker(¢) is an isomorphism. This implies that p; - Ker(¢) = Ker(¢) so that Ker(¢) = 0
again by Nakayama’s lemma. Therefore M = R" and we can conclude the proof.

[

Thus we can finally prove the most important result of this section.

Corollary 3.3.13 (The Structure theorem for finitely generated A-modules). Let R
be a 2-dimensional regular local ring and let M be a finitely generated R-module.
Then there exist finitely many prime ideals p; with i € I of height 1, a nonnegative
integer r, natural numbers n; € N and a pseudo-isomorphism:

M ~ R" & P, R/p;"

Moreover, the prime ideals p; and the numbers r, n; are uniquely determined
by M:

r =dimg(M ®gr K), {p;i:iel}=supp(M)n P(R)
with K = Frac(R).

Proof. By theorem 3.3.10 and remark 25, we already know that M ~ F(M)® T(M) ~
F(M) & @,.; R/pi with I, n; and the p;’s as in the above statement. Thus applying
proposition 3.3.11 we also find that M ~ F(M)™* & P,_; R/p;". However, the previous
theorem tells us that F(M)** is a free R-module. This implies that there exists r such
that M ~ R" &P, R/p{"". Looking at the previous proofs, one deduces that r and the
p;’s satisfy the requested properties. This concludes the corollary. ]

We conclude the section applying the corollary to the most importante case for
us. This leads us to some important definitions.

Definition 3.3.7. Applying the previous corollary with R = Z,[|T|] and M a finitely
generated A-module we get that

M ~ A& @ Mp™ o P AP}

where s,t, m;,n; € N and the Pj's are irreducible distinguished polynomials. Then
we can define:

- ry(M) = r the A-rank of M

- p(M) =Y, m; the Iwasawa p-invariant of M

- AMM) = 2;21 n; - deg(P;) the Iwasawa A-invariant of M

- char(M) = p*™) . ﬂ;=1 P the characteristic polynomial of M
- chary(M) = char(M)A the characteristic ideal of M

Furthermore, we call a finitely generated A-module of the form
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E =N &, AMp™ &P, MP)
an elementary A-module.

Remark 26. 1. By definition, we have deg(char(M)) = A(M).

2. Observe that the invariants defined above depend on M only up to pseudo-
isomorphism and r (M), u(M) and A(M) are independent of the chosen genera-
tor 7. This is not true for the characteristic polynomial, so that we should write
char?(M) to be more precise. Moreover, notice that char?(M) = char?(Ty(M))
where T (M) is the A-torsion submodule of M.

3.4 Application: another way to construct p-adic L-functions

In this section we want to present another method to construct p-adic L-functions
that will provide us an important tool for stating The Iwasawa Main conjecture. In
particular, we are going to show that there exists a power series f(T, «’) such that
Ly(s, /) = f((1 + p)* — 1, w).

Let p be an odd prime as usual. It is known that Gal(Q(&yn+1)|Q) = (Z/p™™Z)*. 1f we
let

Q(Cpm) = Un20 Q(Cpn“)'

then it follows that Gal(Q(6y~)|Q) = lim _ (Z/p"*'Z)* = Z;. More explicitly, let
a=Y, ap e Z; and let £ = (,n for some n. Then we set

def def
a

oulC) = ¢ =[]

which is a finite product since Cpi = 1 for i > n. Clearly o, gives an element of
Gal(Q(&y~)|Q). However notice that every automorphism must be of this form, since
it is known what happens at each finite n-level. Now for what we said in the example
2 we have a decomposition

Z; = (ZIpZ)* x (1 + pZy) = (ZIpZ)* x Z,

and one can see that they are given by the isomorphisms
[
a+— (wla) mod p,{a))— (wla) mod p, o

Now observe that 1 + p is a topological generator for 1 + pZ, since (1 + p)% =
1+ pZp.
Let d be a positive integer with (p,d) = 1 and let q, = p""'d,K, = Q(¢&,) and
Koo = Upo0 Q&) Then Ky = Ko(Cpnt) and Ko, = Ko(Cp). It follows that

Gal(K..|Q) = lim Gal(K,|Q) = lim(Z/q,Z)* =

= Im((Z/dZ)* x (Z/p"*')*) = (Z/dZ)* x Z;

n

However by the above we have Z; =~ (Z/pZ)* x Z, and so



56 CHAPTER 3. TWASAWA ALGEBRA AND A-MODULES

GallK,|Q) = Ax T’

where A = Gal(Ky|Q) = (Z/pdZ)* and I = Gal(K|Ko) = (1 + pZ,,-) = (Zp, +).
In particular, identifying I with 1 + pZ,, we have I' = 1 + qoZ, = (1 + qo)% since
(p,d) =1 and so also 1 + qp gives a topological generator.
The elements of I" which fix K, can be clearly identified with the elements of 1 +
QnZp = (1 + qo)P"% = I'P". Therefore by Galois theory we deduce that Gal(K,|Ko) =

o def

r/re" < [',. Furthermore, notice that arguing as before we get that
GallK,|Q) = A x T'y.

Using this isomorphism, for a = Y, a;p' € Z, as above, we write:

Oq = 6<a)7n(a)

with 6(a) € A, yu(a) € I'y. In particular observe that by our writing we have
Yol +qo) =1 +qo mod I'P".

Now let x be a Dirichlet character whose conductor is of the form p’d for some j > 0.
Clearly, we may regard y as a character of Gal(K,|Q) so that we can uniquely write
x = 0y where 0 ¢ A, Ve fn. Then 6 is a character with conductor d or pd (hence
p? 1 fg), while ¥ is a character of ', so ¥ has p-power order and is either trivial or
has conductor equal to p/ and j > 1.

Definition 3.4.1. Let ¥ = 0¥ a character of conductor dp’ with j > 1 as above. Then
we call 6 a character of the first kind and ¥ a character of the second kind.

Remark 27. One can show that ¥ is an even character since the fixed field of its
kernel is a real field (see [Wa] for the details). Thus, if ¥ is even then 6 is even.

Now assume y = 6¢ is an even character and let 8* = w8~' (thus 6* is odd).
Moreover, define

gn = T acS(a) 1’)/,1(61)71 € QP[A X Fn]
An 0<a<qn
(a,qo)=1
and
Nn = (1 - (1 + qO)?/nM + CIO)gl)gn =
a(l + a _ _ _
- —Z( Wl 4 +QO)—> 510) () 7ald + qo) ™! € ZpA x Tl
0<a<qn n
(a,qo)=1

Let Ky = Q,(0), Op = Z,[0] (the notation has the similar meaning of Q(y)) and
ef 1
= =Y 0(6)5"
|A| 6eA

The above ey is called the idempotent for 6*. There is a more general theory
about idempotents that we will treat in the following sections.
Notice that €&, = £,(0)eg- and g1, = N, (0)€g-, where
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&0 L —qi S abw(a)yala) € KolTs)

0<a<qn
(a,qo)=1

and

def

M(0) = (1 — (1 + qo)yn(l + qo) " )&nl6) =

a a(l+
-3 (1 oS - SR gt alala) talt + o € O
Proposition 3.4.1. 1. 1n,(0) € Op[L,]

2.if 0 £ 1 then L£,(0) € Op[T',]

3. if m > n > 0 then n,(0) — n,(0) and &,(0) — &,(0) under the natural map
from Kg[I',,,] to Ky[I'y].

Partial proof. We give complete proofs of 1. and 3. Since the proof of 2. involves a lot
of computations, we decided not to present it. However, we will state some important
formulas that arise from its proof. This can be find with all the details in [Wa].

1. By definition, n,(0) € Op['y]. Now since p is odd we have that |}| = 1 and so
% € Zp. Therefore multiplying n,(6) by % we still obtain an element of Oy[I",].

3. Notice that under the natural map I',,,1 — ', we have y,.1(a)+— y,(a). There-
fore

1

dn+1

abw™(a)yala)™.

0<a<qn+1,
(a.qo)=1

£n+1(9> = g;l(e) = =

Notice that for every a in the sum we can write a = b + iq, with 0 < b <
qn,(b,q0) =1,and 0 < i < p. Then a = b mod q, implies y,(a) = y,(b) (this
follows from the fact that Gal(K,Q) = (Z/q,Z)* and by its decomposition as
A x I'y). Now fy = d or pd and f, = p, therefore fq,1+ divides qy = pd =
lecm(p,d,pd). Thus fg,+ divides q, and so a = b mod q, implies also that
Ow ' (a) = Ow'(b). It follows that

, 1 ] IR
£,(6) = — . <9w '(b)yalb) ! <b+zqn>> -
n+1 o257, i—0
(b,go)=1
p—1 p—1
-2 . <ew—1(bm<b)—1 b> _ Y bw T b)ya(b) Y i =
In+1 o252, i—0 An+1 65524, i
(b,qo)=1 (b,qo)=1
p—-1 1 1
— & —5— > 6w '(b)ya(b)
0<b<qn
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Now observe that

Y 0w b)ralb) " = Y (Bw (b)ya(b) ™ + Bw (qn — b)yalqn — b))
0<b<qn 0<b<
(b,qo)=1 (b,qo)=1

However: since Ow™! = 0(—1)w(—1) = —1 then Ow='(q, — b) = Bw=(=b) =
Ow~!(b); similarly 7n(qn — b) = ¥a(=b) = ¥a(—1)7a(b) = 7a(b). Hence

D 0w (b)y, (b) = 0

This implies that £ (0) = &,(0). Noticing that y,(a) — y,(a) through 'y, — Ty,
also the general case follows.

]

As promised in the previous proof, we will state some important formulas that one
can find in proving part 2. of the previous proposition.

Proposition 3.4.2. Assume 0 + 1. Let R denote the set of (p — 1)-st roots of unity
and R’ be a set of representatives for R modulo +1. Moreover let T denote a set of
representatives of elements of (Z/qy,Z)* such that I';, = {7,(b):b € T}. Hence:

1. If fo = p, then

1 1

—£,(0) = ——— 3" s,(ba)w (ba), (b) !
2 2P beT acR
2. If fo + p, then
1 1 d—1
5E0) = =3 2D > 10w (sn(ba) + iap")yalb)™!
beT acR i=0

Using proposition 3.4.1 and the fact that Og[|I'|] = Og[|T|], we deduce that there are
power series f,g, h € Oy[[T]] with the following correspondences:

lim &,(6) < f(T,0),if0 + 1

lg;_nnn(é)) < g(T,0)

Lim(1 — (1 + qo)yn(t +qo) ') « h(T.,6)

g(T,0)
h(T, 6)

+ o
Moreover one can show that h(T,0) = 1 — [T

0 = 1, we take this as definition of f(T, 6)).

The following lemma will be useful to prove the main result of this chapter. The
proof is just a matter of computations and so we decided to omit it. The interested
reader can look at [[Wa]] for the details.

and that f(T,0) = (if
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Lemma 3.4.3.

. 1 -m m —m m-
lim <_ E :Xw (a)a > = (1 = xw ™™ (p)p"™ ") B,y n
An 0<a<qn

(a,qo)=1

Theorem 3.4.4. Let ¥ = 0¥ be an even Dirichlet character of conductor dp’ with

j > 1 as above (0 of first kind, ¥ of second kind). Moreover let ¢, < Y+ qo) ! =
x(1 + qo)~'. Then

Ly(s, x) = f(Cy(1 + qo)°* —1,0).

Proof. First of all notice that ¢ is a p*-th root of unity for some k > 1. Moreover
observe that if |s| < pg%f then

(1 +qo)° — 1] = [expp(s - log,(1 + qo)) — 1] <1

and so also |€y(1 +qo)® —1] = |exp,y(log,(Cy)) + expy(s-logy(1 +qo))| < 1. Therefore
the RHS of the statement converges and is an analytic function of s. Consequently,
by the uniqueness discussed in remark 17, we only need to prove the above equal-

ity for s = 1 — m, where m is a positive integer. Let i(a) . logy(a)/logy(1 + qo).
Since 7,(1 + qo) generates I', then it corresponds to ((1 + T) mod ((1 + T)P" —1)) €
Zp[| TN/ (wn(T)Zp[|T]). Tt follows that yula) = 7a(1 + qo)'@ corresponds to (1 + T)i@
mod ((1 + T)?" —1). From the definition of n,(0) we have

g(T,0) = Z <((1 + qo)qg - (12—6{0)(1) Bw Ha) + T)’i(‘”’l) mod ((1 + T)*" —1).
0<a<qn n n
(@,qo)=1

Let (1 + qo)a = a; + asqn with 0 < a; < qn. By definition of log, we have that
ila)+1 =1i((1 + qo)a). Moreover notice that (1 + qp)a = a; mod q, implies:

- w((1 + qo)a) = wlay);

- 0((1 + qo)a) = Blay);

- (1 + qo)a) = yalay);

- {1 + qo)a) = w((1 + qo)a) (1 + qo)a = wlay) Hay + asqy) = (a1) + wlay) asqy.

So in particular we get i(a) +1 = i((1 + qo)a) = i(a;) modulo p™. Thus

g(T.0) = E , asfwHay)(1 + T)_i(c”) mod ((1 + T)P" —1).
0<a<qn
(a.qo)=1

Now if m is a positive integer and n is sufficiently large we have:

(Col1 +qo)t ™" =1 = (1 + qo)' ™PF" =1 =0 mod gn
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Then:

gt +q) ™ =1,00= > afw )& 1+ qo)" ") mod qn.

O<a<QH
(a,qo)=1

However (;;i(‘“) = Y1 + qo) ™ = Play) and (1 + qo)'® = (a;). Therefore

gl(Cy(1 + Qo) ™™ —1,6) = Z as0w as)las){ay)™

0<a<qn
(a,qo)=1

mod qy.

If n is large enough that f, divides q,, then yw™™((1 4+ qo)a) = xw "(ay). Moreover,
(1 + qo)a)™ = (ay + asqy)™ = a + mal*'q,as mod q2,

and so

xw ™ML+ qo)L+qo)" Y xw ™Ma)a™ = > | xw M ay)al+
0<a<dqn 0<a<qn
(a,qo)=1 (a.qo)=1
Fmae Y el mod ol
0<a<qn
(a,qo)=1

This implies

glCslt +qo)' ™ —1,0) = (xw ™1 + qo)(1 + qo)" — 1)m1 Z xw ™(a)a™ mod qn

Now observe that as a runs from 1 to q,, so does a; and furthermore that yw ™(1 +
Qo) = x(1 + qo). Hence, recalling the definitions of g, and of p-adic limit, and using
also the previous lemma, we obtain:

1 1
1-m _ m o e - -m m)\ _
g(Cu(1 + qo) 1,6) = (1 + qo)™x(1 + qo) 1)m£§o<qn Y xw™M(a)a >

0<a<qn
(@.q0)=1

= Chlet 4 @) = 1,0 lim (3w ajan) -
m n=eo A qn 0<a<qn
(@.qo)=1

= —h(Gyt + o) " = 1,6) (1 = xw ™" (P)P" ) B -

Therefore dividing g(&,(1 + qo)' ™™, 6) by h(Cy(1 + qo)!™™ — 1, 0) and recalling the
formulas for f(T,0) and L,(1 —m, x) we can conclude the proof. ]






Chapter 4

Iwasawa'’s theory of Zp-extensions

The aim of this chapter is to give other necessary background on Iwasawa theory
in order to start the study of the proof of The Iwasawa Main Conjecture. We start
with some remarks in infinite Galois theory and then we pass to study the Iwasawa’s
theorem for ideal class groups in Z,-extensions. Next we discuss Modules decompo-
sition with respect to orthogonal idempotents. We conclude the chapter with a brief
discussion on cyclotomic units and on the maximal unramified abelian p-extension
unramified outside p.

4.1 Infinite Galois theory and Ramification theory

In this section we want just to collect the key properties of infinite Galois extensions
and their corresponding Ramification theory in order to prove the Iwasawa’s theo-
rem. Thus, we are not going to prove most of the claims. For the proofs, see [Wi]
and [Wa].

Let L|K be an algebraic field extension. Let ¥ be a non-zero prime ideal of O, and
let p = P N Ok, which is a prime ideal of Ok, as it is known by commutative algebra.
In particular, one says that 3 lies above p.

Clearly these rings of integers are not Dedekind domains in general, but one can
show anyway that O,/ is a field extension of Ok/p. In particular it is an abelian
extension since one can prove that O |F, is a Galois extension. On the other hand, by
commutative algebra we know that given a prime ideal p of Ok there exists a prime
B of Op lying above p.

As in the finite case, if L|K is Galois then Gal(L|K) indicates the group of automor-

phisms of L which fix K pointwise. Now let F be a field such that K C F C L and F|K

def
is finite. Set Gp — Gal(L|F). Notice that by our assumption this has finite index in

Gal(L|K). Then we give a topology on Gal(L|K) letting such Gy form a basis for the
neighborhoods of the identity in Gal(L|K). Consider now two fields F; and F, with
the same just mentioned properties of F and such that F; C F,. Then we have natural
maps Gal(F,|K) — Gal(Fy|K). Hence we get that Gal(L|K) is a profinite group and

Gal(L|K) = lim G/Gy = lim Gal(F|K)

where the limit is taken with respect to: F runs through the normal finite subex-
tensions F|K, the order on the indices is given via inclusion and the maps are the

41
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natural ones defined above. Thus now we can state the Galois correspondence also
for infinite extensions:

Theorem 4.1.1. Let L|K be a Galois extension. Then the map ¢ defined by (M) =
Gal(L|M) is an inclusion-reversing bijection from the set of the intermediate fields
of LIK to the set of subgroups of Gal(L|K). Its inverse ®~! maps each subgroup H
fo the field K" of all elements fixed by H.

Proposition 4.1.2. Let L|K be a Galois extension and let M be an intermediate field.
Then

- Gal(L|M) is open in Gal(L|K) if and only if [M : K] is finite. If this is the case
then [Gal(L|K) : Gal(L|M)] = [M : K].

- Gal(L|M) < Gal(L|K) if and only if M|K is a Galois extension. If this is the
case then the restriction map Gal(L|K) — Gal(M|K) is surjective and its kernel
is Gal(L|M). Consequently

Gal(M|K) = Gal(L|K)/Gal(L|M)
One can also show that, as for finite extensions, if L|K is Galois then the action

of Gal(L|K) on the primes above p is transitive. In other words:

Lemma 4.1.3. Suppose L|K is a Galois extension and let g and B’ be primes of K
lying above p. Then there exists 0 € Gal(L|K) such that o3 = .

Similarly to the finite case, one defines

Definition 4.1.1. Let L|K be a Galois extension and let B lie above p. We define the
decomposition group as

D = D($|p) = {o € Gal(L|K) : 0B = B}
Definition 4.1.2. Let L|K be a Galois extension and let ‘B lie above p. We define the
inertia group as

[ =1(Blp) = {o € D(Pp) : ola) = a mod P for all a € O}

Remark 28. - It can be shown also that D is a closed group of Gal(L|K) and
moreover [ is a closed group of D itself.

- As in the finite case, we still have the exact sequence

1 T - D - Gal((Op/R)|(Ok]p) - 1

Now assume for the moment that the extension L|K is jEst algebliiic, that Q C K
and let Q be the algebraic closure of Q. Then clearly Q|L and Q|K are Galois
extensions. As usual, let 8 be a prime of O}, that lies above a prime p of Ok. Choose
a prime ideal 9 of Og lying above . We obtain

I(Qlp) € Gal@QIK)
I(QIP) € Gal@|L) € Gal(@QIK)
1) = I(Qp) N Gal@|L)

These observations allow us to define the ramification index as
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e(Blp) = [I(Qlp) : I(QPB)]

which clearly could be infinite. o
If ' is another prime lying above P then by lemma 4.1.1 there exists some 0 € Gal(Q)
such that Q' = 0Q. Moreover one has

19']p) = ol(Qlp)o!
19 9) = oI(QP)o~"
Therefore, the ramification index e(B|p) does not depend on the choice of Q.

This shows also that if the extension L|K is abelian, then the definition of inertia
group does not depend on the particular prime above p. Similarly, one finds that this
last fact holds also for the definition of decomposition group.

Now re-add the hypothesis that the extension L|K is Galois. Then there is a natural
restriction map

Gal(Q|K) — Gal(L|K)

with kernel equal to Gal(Q|K). Furthermore, one can show that the induced map
[(Qlp) — I(P|p) is surjective, with kernel equal to I(Q[P). Hence we deduce

[(Q[p)/1(Q[P) = I(Pp)
and so

e(Blp) = [I(B|p)]

Clearly this is coherent with the definitions given in the finite case.

Remark 29. Let L|K be a Galois extension and let p a prime ideal of Ok. Notice that
by the definition of the decomposition group and the transitive action of Gal(L|K)
follows that the numbers of prime ideals of O;, above p is equal to [Gal(L|K) : D(B|p)],
which clearly can be infinite and does not depend on the prime ideal B of Oy, lying
above p.

Now we give some definitions that will generalize the ones for the finite case.

Definition 4.1.3. Let L|K be a Galois extension and let p a prime of Ox. We say that:

- L|K is ramified at p if there exists a prime P of O, lying above p such that
I(Blp) # {1}

- L|K is unramified at p if for every prime P of O, lying above p one has I(P|p) =

{1}
- L|K is unramified if the extension is unramified at every prime of Ok.

- LK is totally ramified at p if there exists a prime B of O, lying above p such
that I(B|p) = Gal(L|K).

- LIK is totally ramified if every prime in Oy is totally ramified in L|K.

Remark 30. One can prove that p is unramified or totally ramified if so is in every
finite normal subextension F|K with K C F C L.
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We conclude the section with a couple of easy lemmas that will play an important
role during the proof of the Iwasawa’s theorem. The first follows just by definition
of inertia group and arguing by double inclusion. The second one is a consequence
of the Galois correspondence.

Lemma 4.1.4. Let L|K and M|K be Galois extensions with M C L. Suppose that p
is a prime ideal of O;. Then

Lm(plp 0 Om) = Iyx(plp N Ok) N Gal(L|M)
Lemma 4.1.5. Let L|K and M|K be finite Galois extensions. Then

Gal(LM|M) =~ Gal(L|L n M).

4.2 Iwasawa’s theorem

Definition 4.2.1. A Z,-extension of a number field K is a Galois extension K.|K such
that Gal(K.|K) = (Z,, +).

Proposition 4.2.1. Let K. |K be a Z,-extension. Then, for each n > 0, there is a
unique field K, of degree p" over K, and these K,, plus K., are the only fields
between K and K.

Proof. By infinite Galois theory and by the definition of Z,-extension, we know that
the intermediate fields of K,|K correspond to the closed subgroups of Z,. By lemma
3.1.3, we know that they have the form p"Z, for some n. Since Z,/p"Z, = Z/p"Z, by
the correspondence of Galois theory we can conclude the proof.

[

The consequence of the previous proposition is that to give a Z,-extension K, |K
is the same to give a sequence of fields

K=KyCKiC- - CKy=U,0Kn

such that Gal(K,|K) = Z/p"Z for every n > 0.

Remark 31. Every number field K has at least one particular Z,-extension, called the
cyclotomic Z,-extension of K. Indeed, let p be an odd prime and set q = p if p is
odd or q = 4 otherwise. Then notice that we have an isomorphism (Z/qp"Z)* =
(ZIqZ)* x (cyclic group of order p™). Thus for every n > 1 there exists a unique
(unless p = 2 and n = 1) subfield of Q(¢;y») which is cyclic of degree p" over Q
(it is the fixed field by (Z/qZ)*). Call them B, for every n > 1. Therefore setting
By = Q and B, = .o Bn we deduce that B,,|Q is a Z,-extension. Now let K be any
number field and let K., = KB.. We now prove that Ky |K is a Z,-extension. Say
that e > 0 is such that B, = K N B,. Thus, by lemma 4.1.5 we have Gal(K.|K) =
Gal(By|Bo N K) = p°Z, = Z,, as we wanted. Moreover notice that if K contains
Q(¢,) then the extension is obtained by simply adjoining all p"-th roots of unity for
all n > 1.

Example 9. Let p be an odd prime. The most important example of Z,-extension
for us is Q(Cp~)|Q(C,) where Q(Cpx) = (U, Q(Cpn+1) (this is actually the cyclotomic
Zpy-extension of Q(¢,) by the above remark).
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The following proposition will play an important role for proving the Iwasawa’s
theorem. The arguments involved to prove it are completely about class field theory,
so we decided to omit the proof. For the details, see [Wa] or [Lan1].

Proposition 4.2.2. Let K |K be a Z,-extension and let 1 be a prime of K (finite or
infinite) which does not lie above p. Then K |K is unramified at L

The meaning of the previous proposition is that Z,-extensions are "unramified
outside p".

Lemma 4.2.3. Let K |K be a Z,-extension. At least one prime ramifies in this
extension, and there exists n > 0 such that every prime which ramifies in K |K,
is totally ramified.

Proof. By a classical result in algebraic number theory (see [Sam] for example)
we know that the class number of K is finite. This implies that also the maximal
abelian unramified extension H of K is finite since by class field theory we know that
Gal(H|K) = CI(K). Hence since K, |K is an infinite extension, we can deduce that at
least one prime ramifies in K., |K. By the previous proposition, we get that the only
primes that may ramify are those of K above p. We know that there are only finitely
many such primes since K is a number field and we call them py, ..., ps. Let I, ..., I
be the corresponding inertia groups for the extension K. |K. These are closed sub-
groups of Gal(K|K) = Z, and so also ();_, I; is closed. Thus there exists n > 0
such that ﬂle I; = p"Z,. Now the corresponding Galois group is Gal(K.|K,) = p"Z,
which is clearly contained in each inertia group I, We have to show that this implies
that all the primes of K, above p; are totally ramified. Fix a j and let 3 a prime above
p; and consider its inertia group Ix_k, for the extension K. |K,. Notice that

Ik k, = I N Gal(K|Kn) = Gal(Ky|Kn)

where the first equality holds since in this cases the Galois groups are abelian and
the second one because Gal(K.|K,) C I;. Therefore, we have just show that all the
primes of K, above each p; are totally ramified in K. |K,. Noticing that a prime of
K, that ramifies in K |K, is necessary above some p;, we can conclude the proof.
[

We are now arrived to the most important result of this chapter. Given a Z,-
extension K. |K, denote by I' = Gal(K.|K) = Z, and let 7, be a topological generator
of I'. Let L, be the maximal unramified abelian p-extension of K, and let A, = p-
Sylow of the ideal class group of K,. Moreover let L., = | J,-, Ln, Xn = Gal(L,|Ky)
and X = Gal(L.|K.). B

Theorem 4.2.4 (Iwasawa’s theorem). Let K |K be a Zy-extension. Let p° be the
exact power of p dividing the class number of K,. Then there exist integers A >
0,1 > 0 and v, all independent of n, and an integer ny such that

en = An+ pp" + v

for all n > ny.
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Proof. First of all notice that by our notation and by class field theory we have that
Xp = A, (look at [Sa2] and [Sa3]). More precisely, for m > n we have a commutative
diagram:

A, —— Xn

v |
A, — X,

where N is the norm map and t is defined by 0+ o [,. Moreover, each L, is Galois

def
over K since L, is maximal and so L., |K is a Galois extension too. Let G = Gal(Ly|K).
Now we are going to make some observations and to prove some statements under a
further assumption that we will be able to remove at a certain point thanks to lemma
4.2.3.

Iwasawa’s assumption: All primes which are ramified in K.|K are totally ramified.

By this assumption, notice that for every n we get K,.4 N L, = K,. Indeed, as we
discussed before, since by class field theory the maximal unramified abelian exten-
sion is finite, we must have a prime p of K that ramifies in K, |K. The assumption
implies that p is totally ramified in K,,|K and then by remark 30 so is in any finite
subextension F|K with K C F C K,,. From this we deduce that p totally ramifies also
in the abelian extension (K, N L,)|K. Now let ¥ a prime of K,, lying over p. Denote
by I(B) the inertia group of p for the extension (K,,1 N L,)|K, and by I(p) the inertia
group of p for the extension (L, N K, 1)|K. Since I(P) = I(q) N Gal((K,1 N Ly)|Ky)
we deduce that P is totally ramified too in the extension (K,,; N L,)|K,. However,
L,|K, is unramified and so also (K, N L,)|K, must be unramified. This is impossible
unless L, N K,,.1 = K,,.

Using lemma 4.1.5, we obtain that Gal(L,K,.1|Kny1) = Gal(L,|L,NK,11) = Gal(L,|K,),
which is isomorphic to a quotient of X, by Galois theory. Notice that to the norm
map A,,1 — A, corresponds a natural map X,,1 — X, and moreover we have
Xy = Gal(L,K|Ks). Hence

lim X, = lim Gal(L,|K,) = lim Gal(L,K|K.) =
= = P

n n n

=~ Gal((| ) LnKoo)|Ke) = GallLo|Kao) = X

Now recall that ', = I'/TP" =~ Z/p"Z ~ Gal(K,|K). Then if we consider 7, € I,
it makes sense to extend it to an element v, € Gal(L,|K). Let x,, € X,,. Then there is
an action of vy, on x, given by

def _ 4
X" = YnXn¥n -

Since Gal(L,|K},) is abelian, x?» is well defined (moreover this action corresponds to
the one on A,). Hence we get that X, is a Z,[I',]-module. Moreover since an element
of X = lim X, may be viewed as a vector of the form (x0, x1, ...) we can make Z,[I',]
acting on the n-th component for every n, so that X becomes a A-module. Observe
that using the isomorphism A = Z,[|T|] we obtain that 1 + T acts as 99 € I'. In
particular one has that

x? =yxyLforyel, xecX
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where 7 is an extension of y to G.

Let py, ..., ps be the primes which ramify in K, |K and fix a prime p; of L., lying over
pi. Let I; C G be its inertia group. Since L, |K, is an unramified extension, we obtain
that I; N X = 1. This implies that we have an injection I; — G/X = I'. On the other
hand, since K |K is totally ramified at p;, we obtain that the map above is surjective
too, and so is an isomorphism. Hence we deduce that

G=LX=X]fori=1,..s.

Now let o0; € [; such that it maps to 7, under the above bijection. Then o; must be
a topological generator of ;. Using that G = XI; we have I; C XI; fori =1,...,s.
Therefore we get 0; = a;0; for some a; € X. In particular notice that a; = 1.

Remark 32. Notice that the isomorphism Z, ~ I' may be written as x +— ) with
x € Zyp. This is how we are going to think of the isomorphism from now on. If we

define (1 + T)* < S, (£)T", where the binomial has been discussed in chapter 2,

one can prove that 7§ corresponds to (1 + T)* under the isomorphism of theorem
3.2.6. This fact will be used in the next lemma.

Lemma 4.2.5. Suppose that the Iwasawa’s assumption holds. Then
[G,G] = X" ! =TX

Proof. Since I' = I} C G maps onto I' = G/X, we identify I with [; and define the
action of I' on X via this identification, so that x? = yxy~!. Consider now g1, g, € G.
Recalling that G = I'X, there are 7,7, € I' and xy,xy € X such that gy = y;x; and
Jo = 7ox9. Using the fact that [' is abelian we get that

G19091 g5 = mxiyexexy ey tyy ! =

_ " e P B I R £ —1\7172 -1\
= X{' VYXoXy Y Xy Yy = Xi (xox; )" (xy")

Using also that X is abelian we obtain

1- -1 _1\(1=79) INCES
ri ?/2)71%71 e _ (yixiyrh) 2 (yox275) n=1 _
= vy e v s ey o ey Myt =
_ If/i (12I1_1)7172<I2_1)72

Putting altogether one has

g1gggfigg_1 _ xilf'mmxé%fi)?/g
In particular, setting 7, = 1 and 7, = 7, we find that x°™" € [G, G]. Hence X"t C
G, G].

Now let € I' be arbitrary. By the previous remark, there must be ¢ € Z, such that
v = 7§. Moreover, remark implies also that

-y =1—95=1-0+T)=1-3"(;)T" € TA.

In particular we obtain that x{' 72" & X0~ and x! 77" € X1, Therefore [G, G] C
X0-1_ This concludes the proof. O
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Remark 33. Notice that TX is closed since it is the image of the compact set X. This
implies that also [G, G] is closed.

Lemma 4.2.6. Suppose again that the Iwasawa’s assumption holds. Let Y, be the
Z,-submodule of X generated by {a; : 2 <i < s} and by X! = TX. Let ¥, .

ef »
Y = Y,", where

of o -1 TP -1
=1+ 9+ ) = =
70 70 %0 v —1 T

d

Then we have X,, ~ X/Y, for n > 0.

Proof. Notation: In this proof, if M is a submodule of X, we will write v, M to indicate
MPn,

First of all consider n = 0. We have K C Ly C L., and moreover L, is the maximal
abelian unramified p-extension of K. Since L|K is a p-extension too, then Ly|K is
the maximal unramified abelian p-subextension of L|K. Therefore Gal(Ls|Lo) must
be the closed subgroup of G generated by [G, G] and all the inertia groups I; for
1 <i < s. In particular we have that Gal(L..|Lo) is the closure of the group generated
by X7-! I,, and ay, ...,as. Thus

Xy = GallLo|K) = G/Gal(Lu|Lo) = XIi/(XW 1, ay, ..., as, I) =~
~ XX, ay, ..., as) = X/Vy

This concludes the case n = 0.

Now, suppose that n > 1. The idea is to argue as above. Replace K by K, and so 7y
is replaced by @yg” because Gal(K.|K,) = I'". In particular, this makes 0; become
o”". Observe that

bl k+1 1.9 - —k b+l
1401 +...+0F
; 1 1Of+1

Therefore we get O = (vnai)oip , so we need to replace a; by v,a;. Finally,

we replace X?~! by X0 - - v, X1 Therefore V, becomes v,¥, = Y,. This
completes the proof.
[l

The above result will play a key role since it allows us to recover information
about X, from information about X.

Lemma 4.2.7 (Nakayama’s Lemma for compact A-modules). Let M be a compact
NA-module. Then the following are equivalent:

(1) M is a finitely generated A-module
(2) M/TM is a finitely generated Z,-module

(3) M/(p, T)M is a finitely dimensional F,-vector space
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Proof. Notice that passing to the proper quotients we deduce immediately the im-
plications (1) = (2) = (3). Thus we assume (3) and we now prove (1). let U be a
neighborhood of 0 in M. Since (p, T)" — 0 in A, each x € M has a neighborhood U,
such that (p, T)™ U, C U for some n, (we shrink U if necessary). Since M is compact
it follows that we can find finitely many U,'s covering M. Therefore (p, T)"M C U
for a large n. This implies that (", ((p, T)"M) = 0 for any compact A-module M.

Now by hypothesis, there exist elements my, ..., m, € M whose residue classes gen-
def
erate M/(p, T)M as F,-vector space. Consider then the compact A-module N =

Amy + ...+ Am, C M (it is the image of A"). We have that M = N + (p, T)M and so

M N+ (p, T)M M
S St e S N/
N N b T)g

Iterating this equality we get that M/N = (p, T)*M/N for all k > 0. Notice that N
is also closed and so M/N is a Compact A-module. Therefore we can apply the above
argument to deduce that M/N = (,(p, T)"M/N = 0, ie. M = N. Since N is a finitely
generated A-module by definition, this concludes the proof. O]

We state as a corollary the following trivial (but interesting) consequence:

Corollary 4.2.8. Let M be a compact A-module. Then M = 0 & M/TM =0 &
M/(p, T)M = 0.

Lemma 4.2.9. Continue fo assume that the Iwasawa’s assumption holds. Then
X = Gal(L|K) is a finitely generated N-module.

Proof. Clearly v = (“T# € (p,T) and so Y/(p, T)Y, is isomorphic to a quotient

of YVo/vi¥y = YW/Y C XY, = X;. We know that X is a finite set and so we deduce
that also Yo/(p, T)Y, is finite. By the previous lemma, it follows that Y, is finitely
generated. Since X/Yy = Xy is finite, this implies that X must be finitely generated
too. This concludes the proof.

O

Removing the Iwasawa’s assumption: Now we indicate how to remove the Iwa-
sawa’s assumption wlog. Let K |K be a Z,-extension. By lemma 4.2.3 we can choose
e > 0 such that in K, |K, all ramified primes are totally ramified. Then lemmas 4.2.6
and 4.2.9 apply to K, |K.. In particular X, which is the same for K, and K, is a finitely
generated A-module. For n > e, noticing that Gal(K,|K.) = I'?* is generated by 75’6,
we replace v, by v, . where

e

def n__
vnle=”“—1+70 +70 +...+7§ P

Ve

Let V. replace Y, in lemma 4.2.6. Then we get
Vo = VoY, and X, = X/V, for n > e.

Notice that with these observations we have proved the following

Lemma 4.2.10. Let K. |K be a Z,-extension. Then X is a finitely generated -
module, and there exists e > 0 such that

Xn = X/vpeVYe forall n > e.
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We can now apply theorem 3.313 to X. We can also apply it to Y, with the
same answer, since X/Y, is finite and the theorem is given in terms of pseudo-
isomorphisms. So we have

Ve ~ X ~ A" & (P N/ (p")) @ (D A/(f;(T)™)).

Now we want to study the summands that appear on the right side. In particular,
our next step is to compute M/v, .M for each summand M on the RHS. Doing this,
we will be able to obtain the desired bounds on |X,,]|.

1. Consider M = A. Notice that v, is not a unit in A since it is a distinguished
polynomial. By lemma 3.2.10, we know that A/(v, ) is infinite. Since Y./v, .Y,
is finite, it follows that A does not occur as a summand, i.e. r = 0.

2. Consider M = A/(p*) with k > 0. In this case, we have M/v, .M ~ A/(p¥, vy o).
One can show that if the ratio of two distinguished polynomials is a polynomial,
then it is distinguished or constant. Therefore

vo (A + TP —1)/T

ve (1 +T)P° —1)/T

vn,e -

is distinguished. Applying the division algorithm, one finds that every element
of A/(p*, v,.) is represented uniquely by a polynomial mod p* of degree less
than deg(v, ) = p" — p°. Hence

|M/vpeM| = pk(p" — p®) = p*"*e,

where ¢ = —kp°® is a constant depending on K.

3. Consider M = A/(f(T)™) and let g(T) i f(T)™. Say that g has degree d. Since
f is distinguished, so is g. Thus

T! =p- (poly) mod g

where by ‘poly’, we mean a polynomial. In what follows, we are going to use
the term ‘poly’ not necessarily to indicate the same polynomial at each step.
Therefore

T* = (p) - (poly) mod g for k > d.
If p" > d then

1+ TP =1+ (p)-(poly) + TP" =1 + (p) - (poly) mod g.
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In particular notice that

n+1

A+ TP =(1+T)P)P=01+p-(poly)’ modg =

=1+ p?-(poly) mod g

Now for every n € N set P,(T) i (1 + T)P" — 1. It follows that

n+1 n+1

PoiolT) = (1 + TP —1 = ((1 + T)P —1)(1 + (1 + T) (14 TPy o
— Pt (T) + (1 + T)P" + (1 + TP <
=P (T +...+1+p?- (poly) mod g =
= Pt (T)(p + p” - (poly)) mod g = p(1 + p - (poly))Pni(T) mod g

Since 1 + (p)(polynomial) € A*, we see that

gz—j acts on A/(g) as (p) - (unit)

as long as p" > d.
Now assume that ny > e, p™ > d, and n > ny. Then

Vni2e  Vn+2 DPpio

Vn+le Vn+1 Pn+1

and so
Pn+2

D (vn+1,eM> = pvn+1,eM
n+1

vn+2,eM =
Therefore
IM/vp0eM| = |M/pM| - |pM/pvyi1eM|

for n > ny. Now since g is a distinguished polynomial, we have (g, p) = 1. This
implies that multiplication by p is injective, so that

|pM/pvn+1,eM| = |M/vn+1,eM[

Since M/pM = MA/(p,g) = N(p, T4), we obtain [M/pM| = p?. By induction, one
finds that

M /v, eM| = pd®=n0=1 | M /vy, 1 M|

for n > ny+1. Therefore, if |[M/v, .M]| is finite for all n, then we get |[M/v, M| =
pd"*te for some constant ¢ depending on K and n > ng+1. If M/v, .M is infinite
for some n, then M cannot occur as summand on the RHS, as observed in the
first case, because this happens only when (v, ., f) # 1 by lemma 3.2.10.
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Putting all these observations together, we deduce the following

Proposition 4.2.11. Suppose that

ES A @ (@, Mph) @ (DL, Mg(T)

where each g;j(T) is distinguished. Let m = Y ki and | =} deg(g;). If E/vycE is
finite for all n, then r = 0 and there exist ny and ¢ such that

IE/Vn,eE| — pmp”+nl+c
for all n > n,.

Now consider E as in the previous proposition. Then we saw that Y. ~ E and so,
equivalently, we have an exact sequence

0—-A—-Y.—-E—-B-=0

where A and B are finite A-modules. We know the cardinality of E/v,.E for all
n > ng. It remains to obtain similar information for Y.. At the moment, we only
know that E, = mp" + nl + ¢, where ¢, is bounded. The following lemma solves
this problem. The proof is not particularly enlightning, so we decided to omit it. The
main idea is that it follows by applying the Snake lemma to the following commutative
diagram

0 —— 1Y > YV > Y e¥Y —— 0
0 —— v oE > E » E/lvpecE —— 0O

Lemma 4.2.12. Suppose Y and E are A-modules with Y ~ E such that Y/v,.Y is
finite for all n > e. Then, for some constant ¢ and some ny we have

|[V/vpeY| = p° - |E/vneE]|

for all n > ny.

Therefore, considering this lemma and E as in the previous proposition, we deduce
that there exist integers ng, v,A > 0 and g > 0 such that

pr = |X,| = |X/Ys| - |Ye/vneYs| = (constant) - |E/vyoE| = p* e+

for all n > n,.
This concludes the proof of Iwasawa’s theorem. ]

Remark 34. An important fact that can be shown in detail, is that A and p actually are
such that A = A(X), p = p(X). This can be found in [Neu2| and it will be used later.

Now we look immediately at a consequence that will be useful later.

Corollary 4.2.13. Suppose K |K is a Z,-extension in which exactly one prime is
ramified, and assume it is totally ramified. Then

A, = X, = X/(1+T)P" —1)X

Moreover, p t hy if and only if p 1 h, for all n > 0.
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Proof. Since K, |K satisfies the Iwasawa’s assumption, we can apply lemma 4.2.6. We
obtain s = 1, and so Yy = TX. Thus

Yy = v, TX = (L Ury

This proves the first part.

For the second one, if p 1 hy, then Xy = 0, namely X/TX = 0. This implies also that
X/(p, T)X = 0. By Nakayama'’s lemma 4.2.7, we get X = 0. Thus we can conclude. [

Even if we have already proved using explicitly the topological Nakayama’s lemma
that X is a finitely generated A-module, it can be proved that it is also a torsion module
using the following more algebraic lemma. A proof can be found in [Sa3].

Lemma 4.2.14. Let m be the maximal ideal of A. Let M be a profinite A-module,
iie. a A-module of the form M = thi M; where M; is a finite A-module and the
canonical maps M — M; are surjective for every i. Moreover, suppose that for
some element f € m we have that M/fM is a finite A-module. Then M is a finitely
generated torsion A-module.

Corollary 4.2.15. Let X be as above. Then X is a finitely generated torsion A-module.

Proof. Once again, given our Z,-extension K.,|K, we choose e > 0 such that in K |Ke
all ramified primes are totally ramified. Moreover we fix n > e. Since we have
X = Gal(L|Ky) and A, = Gal(L,|K,) = Gal(L,K|K«) we deduce that the natural

— def
map X — A, is surjective. Let Y, “ Ker(X — A,). As above, lAe/t Yo be a generator
of I' = Gal(K.|Ky) as a Z,-module. Then one can show that ¥, = ¥, and that the

natural map X — A, induces an isomorphism Y,/n YV = Ker(A,.; — A,) (see

[Sa3] for more details). Since the RHS of this isomorphism is finite and kernels of
abelian groups commute with projective limits, it follows by the previous lemma that
Y, is a finitely generated torsion A-module. Finally, we know that A, = X,, = X/V,.
Thus X and Y, differ only by a finite group. This implies that also X is a finitely
generated torsion A-module.

[

We end the section stating an important theorem due by Washington that will be
very important in the next chapters. The proof is very long and so we are forced to
omit it. The interested reader can look at [Wal].

Theorem 4.2.16. Let K be an abelian extension of Q, let p be any prime, and let
K. |K be the cyclotomic Zp,-extension of K. Then p1 = 0.

Remark 35. For our purposes, the most important application of this theorem is when
K = Q(¢p) and p is an odd prime number.

4.3 Modules decomposition

Proposition 4.3.1. Let R be a commutative ring and G an abelian group of order n.
Suppose that R contains % and a primitive n-th primitive root of unity. Moreover

let G= Hom(G, R*) (this is a harmless abuse of notation). Then:
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1. For x € G, set € o %Zdeex(c)(ﬁl € R[G]. Thus we have:

-€,-€,=0when x + ¥
2. If M is an R[G]-module, then M decomposes into M = &, g€, M.

Proof. The proof of 1. follows from direct computations so we focus on the proof
of 2. Since by 1. we know that 1 = Zx €y, we deduce that for every x € M one has
x =) €x. Now suppose that )} €,a, =0, witha, € M. Then €,(}, a,) = ¢€,0=0
and so €,a, = 0. By the generality of x’ we can deduce that €,a,, = 0 for every y.
Thus, we obtain that the above sum is direct. [

Remark 36. Let M be an R[G]-module. Then, using the just given definitions and
properties, one has the two following easy but still interesting observations:

- If N is another R[G]-module such that M ~ N, then ¢, M =~ ¢, N for every x < G.

- For every y € G we have that e M = {x e M:olx) = xlo)x forall 0 € G}
Now let p be an odd prime and let p be the complex conjugation. Set G .
Gal(Q(&,)|Q) = (Z/pZ)* and notice that G = {w' : 0 < i < p — 2} where w is the

Teichmiller character. For a Z,-module M on which the complex conjugation p acts,
def

def
set M = {x ¢ M :p(x) = x}and M~ = {x € M : p(x) = —x}. Since p is odd,
applying the previous proposition properly we get that
M=M"$ M~

Moreover, if M is also a Z,[G]-module, we deduce that

+

M 5 M ZeXM
xeG
X even

1-p

M 5 M EA:eXM
xeG
x odd

def
Now for every n > 1 set C, = CIl(Q(&,)). Since p still acts on C, then we can define
C,, as before. Now we prove an interesting result about class numbers.

Proposition 4.3.2. The sequence

NK\K'*‘

1—-Cp— Cy — ClQ()") — 1

is exact. In particular, we have that CLQ(&,)") = C,/C,,.
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Proof. Consider theorems 1.2.4 and 1.25. In particular, we look at the composition
of maps

Cn 22 CUQ(E)T) =5 Cy

By definition, one finds that the kernel of this composition is C,. Since Ker(inj o
norm) = Ker(norm), the claims follow. O

Clearly one deduces the following
Corollary 4.3.3. h, = = = |C;|.

Remark 37. Let Ay be the p-Sylow subgroup of the ideal class group of Q(¢,). Notice

that there exists n > 0 such that p" - Ay = 0, and so we can make A, into a Z-

0o . def 0 . . . .
module by defining () ", bip’) -a =} ”((b;p’a), with a € Ay, since the latter sum is

finite. Furthermore, G also acts naturally on Ay, so that Ay is actually a Z,[G]-module.
Moreover, since p acts on Ay, by lemma 4.3.1 we have a decomposition Ay = Aj & Ag.
Denote by Ay(Q(¢&,)*) the p-Sylow subgroup of ClUQ(¢,)*). Applying the previous
proposition one deduces that Ay(Q(&,)") = Ag/Ay = Aj.

Now we make an important consideration that will be used to state properly The
Iwasawa Main Conjecture. As we saw in section 3.4 we have a decomposition

GallQ(Cp)|Q) = A x T

where A = Gal(Q(£,)|Q) and I' = Gal(Q(&y~)|Q(&p). Because of this, follows that A* i
Zp||Gal(Q(¢p=)|Q)]] is isomorphic to Z,[A][|I'|]. Now let X denote lim X, = lim A,
as above. We know that Gal(Q(£y~|Q) acts on X, so that X is a A*module. Hence,
because A* = Z,[A][|I'|], we deduce that X is also a Z,[A][|I'|]-module. Recalling that

w generates A, by proposition 4.3.1 follows that

p—2
X = @ewix
i=0

For every n > 0, let A, be the ideal class group of Q({,n+1), as usual. Now we show
that €, X corresponds to the projective limit of the w'-component of A,, so that €,X
becomes a A-module. Furthermore, still in section 3.4 we saw that Gal(Q(y)|Q) is
isomorphic to A x Gal(Q(¢p)|Q(&y)). Hence we can make A acting on A,. Again, by

proposition 4.3.1, we have a decomposition A, = @?:_02 €, A,. However, by remark 36
we also know that

€wX = {x e X:0lx)=w'(o)x forall o € A}
and
€wAn = {x € Ay :0(x) = w'(o)x forall 0 € A}

Therefore we deduce that €, X = @n €4iAn. Since every €,A, is clearly a Z,[I',|-
module, follows that €,,X is a A = lim Z,[I';]-module.
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Remark 38. We give some ideas about a generalization of the previous remark and
further consequences of the Iwasawa’s theorem, but we do not give all the details.
For every n > 0 let K, = Q(&yn+1) and set K, = |J,,.o Kn. Then the field extension
KZ|K{ is a Zy-extension. Moreover, denote by A, the p-Sylow subgroup of the ideal
class group of K, as usual. This is a Z,[G]-module and the complex conjugation acts
on it. In particular, it decomposes as

Ap =A@ A;

As above, one also has that A(K") = A, /A, = A}. Moreover, for every n € N we have
that even X,, decomposes as

Xp = X @ X

so that X = X* @ X~. Proceeding as in the proof of the Iwasawa’s theorem, one finds
that:

Ar = XE = X* v, VE
Furthermore, if p® is the largest power of p dividing h;, then one obtains
en=¢e, +e,
and that there exist non-negative integers A*, u*, v* and ng such that
ef =A*n+ p*p" +v* for n > n;

withA=A"+A", p=p"+p andv =" +v".

4.4  Local units modulo Cyclotomic units

In this section we present a theorem that relates the Iwasawa Algebra A with the
units of Q(¢,). We will omit the proofs and most of the details. Anyway we believe
that, as it is organized, the section still is a useful exposition of the subject. For the
proofs look at [Wa].

Let p be an odd prime and let U; be the units of Q,(¢,) which are congruent to 1
mod (€, — 1). We have the following:

Lemma 4.4.1. Let 2 < i < p — 2 and let ¢ be the corresponding idempotent of
Zp|Gal(Q(¢)|Q]. Then there exists A; € Zp, A; + 1 with )Llp_1 = 1 such that

Ai =

generates €;U; (here w denotes the Teichmiiller map).
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Now we generalize the previous definition. For n > 0, let U' be the units of
Qp(Cpn+1) which are congruent to 1 mod (€,n-1 — 1). One can show that the norm of
the extension Q,(¢,n+1)|Qp(¢pn) maps UP into U™, Denote by Ny, ,_4 this norm. Thus

we can define

oo def . n
H

n

Arguing as above, we have that U® is a A-module and also a Z,[Gal(Q,(£,)|Qp)]-
module. Notice that, wlog, we may assume that CS w1 = Cpn. This assumption will hold
in the rest of the section.

Let 2 <i <p —2and let A; as in corollary 4.4.1. Define more in general

n dEf . )\'i — C n+1
gi = € <—w()ui _p1)>

Then

n )L—CCHJA )\,lp'—Cn n—
Nn,n—l(gi) = €i<!—l <w(T—pi)> ) = € <m> =& !
enp

Hence
def
(o]

gi = (gln)n € 6iU

This definition lead us to the following

Theorem 4.4.2. Let the notation as above. Then

A= €; Ufo
through g — g&° and
AN+ TP —1) = U
through g — gé&;.

In particular, €Uy is a free A-module or rank 1.

We conclude the section with a consideration that will be used later. Let C,, denote

the cyclotomic units of Q(¢,n+1), define Cf' - C, N UM and let CT be the closure of CI

in U!. Then, in the usual way, CJ is a Zp|GallQp(Epn+1)|Qp)]-module. Moreover, we

— def R
can also define C{* = gr_mn C}' with respect to the norm map as above. Then we have

that C{° is a A-module and a Gal(Q,(¢,)|Q,)-module. Hence, similarly to the previous
theorem, applying proposition 1.3.3 one can prove the following:

Theorem 4.4.3. Let 2 <i < p —2. Then
€i(C_i>o/wnC_(1>o) =~ €iC_f

where w, = 70 —1 = (1 + T)?" =1 as usual.
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Now fix g a primitive root modulo p?. Then g is a primitive root modulo p™" for
all n > 1. Thus define
¢ — 1\ p-t
dif <C(1ﬁg)/2 pr+ >P
" prt Cpn+1 - 1

def -
One can show that N, ,_1(€n,) = €nn_1. This implies that € = () € €C.
Hence we can state the important (see [Lan1] for this):

Proposition 4.4.4. Let i # 1. Then ¢(C°) = Agn. In particular, &(C°) is a free
A-module of rank 1.

Finally we have:

Theorem 4.4.5. Leti £ 0 mod (p — 1) be even. Then
e U/ C =~ N (fi(T))
where f;(T) is an element of \ such that

filkg —1) = L,(1 — 5,0

and Ky is defined by yoCyn = ¢ for all n > 1. In particular, € U°/€;CP° is a finitely
generated torsion A-module.

The above theorems will play a key role in the proof of the Main Conjecture.

45 The Maximal Abelian p-extension unramified out-
side p

This section is only a collection of some observations that we will use later. We do
not give all the details. For these, we refer to [Wa].

Let p be an odd prime, F a totally real field (like Q) and set Ky = F((,). Moreover
denote by K. |Ky the cyclotomic Zp,-extension of K; and let K, for every n > 1 be
as usual. Denote by M, the maximal abelian p-extension of K., which is unramified
outside p (it exists by class field theory) and set

def
T = GallM.|K.)

Notice also that ¥, is a A-module as we expect (similar action that we put on X).
Now let M,, be the maximal abelian p-extension of K, which is unramified outside p
(the existence is still guaranteed by class field theory). Observe also that K., C M,.
Proceeding in a similar way as in the proof of lemma 4.2.6, one can find that

def
S S GallMy|Ko) = Soown L

where w, = P, = (;yé’n —1) = (1 +T)"" —1 as before. Then one can show that ¥, is a
finitely generated Z,-module (see [Wa] for the details); thus by lemma 4.2.7 we deduce
that X, is a finitely generated A-module. This implies that ¥, ~ A® & (torsion) for
some a > 0. However, one can improve this result. Indeed (look at [Wa] for details),
if 2r, denotes the number of complex embeddings of Ky, then one has



45. THE MAXIMAL ABELIAN P-EXTENSION UNRAMIFIED OUTSIDE P 59

Yoo ~ A" @ (torsion)

Now set F = Q. We give an idea of the proof of an interesting proposition. For every
n > 0, let Wynit denote the set of the p™*'-st roots of unity and set Wy = ;oo Wpns1.
Moreover let T be equal to lim Wyn.i where the inverse limit is taken with respect
to the p-th power map. Then we have an isomorphism of abelian groups T = Z,.
Furthermore the Galois group Gal(K.|Q) =~ Z, acts on T: indeed if a € Z;, t € T
and we write T additively, we define an action by o,(f) = at. Finally set T —
Homyg, (T, Zy). Clearly also T'=1 is isomorphic to Z,, as abelian group. Furthermore,
T is a Gal(K,|Q)-module thanks to the just defined action on T. In particular, if
f e T-Y and t € T then we let the action be

(@ f)(t) S calflozt) = flatt) = a ()

where we used the fact that o, acts trivially on Z,. In other words, this action is
given in a such way that o,f = a~'f. Now recall that €; indicates the idempotents of
Gal(Q(¢&,)|Q) then one defines the "twist" of X, (—1) as

ejzoo<_1> dif 6]'X:oo ®Zp T(_i)

The Galois action is now defined through o,(x ® f) = o,(x)®a~'f = a~'o,(x) ® f with
a €y, x € ¢€ly,and f € T=1. Define also A., = thn A, where the limit is taken
with respect to the natural maps A, — A,y given by the inclusions Q(¢pn) C Q(Epn+1).
Then we have the following

Proposition 45.1. X, (—-1) ~ Homg, (€A, Qy/Zp) as A-modules, where i +j = 1
mod (p —1) and i is odd.

Proof. We show that
Homg, (B, Qp/Z,) = Homg, (B, W) @z, T
for any A-module B. Since there is a non-degenerate Kummer pairing
€200 X €hAce = Wy

with j and i as in the statement (see [Wa]) we deduce that €3, ~ Homg, (€A, Wp~)
(this is an isomorphism of A-modules when we define the action (of)(a) = o(f(o~'a))
for 0 € Gal(K|Q) and f € Homg, (€A, Wy)). This clearly will complete the proof.
First of all notice that the function ¢ : Q,/Z, — Wy, given by ;—n — Cpn IS an

isomorphism of abelian groups. Now fix t, a generator of T-" as Zp-module. Then

the abelian groups of the statement are isomorphic through the map h 2 (ph) ®
fo where h € Homg, (B,Q,/Zy,). Therefore it remains to prove that we have an
isomorphism of I"-modules too. Let g, € I for some a € Z;. Hence we get

(02h)(b) = 0a(h(0,; b)) = hlo,'b)

but also

0.(¢h @ to) = 0,0h0 ™ @ 0.ty = adho, ' @ a 'ty =

dho'! @ ty
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This implies that under the above isomorphism o, h is mapped to o,(¢ph @ t). Indeed:
({0, h)(b)) = Y(h(oz'b)) = (hoy' (b)) @ ty = 0u(Sh(b) ® to) = o, (h(b)). However
this means that we have an isomorphism of ['-modules. Thus we also have the
isomorphism of A = Z,[|I'|]-modules of the statement and so we can conclude the
proof. ]






Chapter 5

The Iwasawa Main Conjecture

The aim of this chapter is to prove The Iwasawa Main Conjecture for Q(¢p~), with
p odd prime. Before giving the statement, we study some properties of the Euler
Systems of Cyclotomic units. As application, we see how to use them to study the
ideal class group of Q(&,)*. After that, we apply some definitions and results of the
previous chapters to enunciate The Iwasawa Main Conjecture. In order to prove it,
we will develop some theory of Adjoints and further techniques of Iwasawa theory.

5.1 Euler Systems of Cyclotomic units

Let m > 3, p an odd prime and let F = Q(£,)*. The setting for this section is the
following:

- M = a large power of p

-l =1 mod mM with [ prime

- L = a product of distinct primes, each =1 mod mM
-G =1l G

- F(L) = F(CL)

- Nt = Neqrypiy= the norm for the extension F(IL)|F(L)

Now we are ready to discuss one particular example of the so-called Kolyvagin's
Euler Systems. For the general theory about them, look at [Ru] for example. We give
the following:

Definition 5.1.1. In the above setting, an Euler System of Cyclotomic units is the
collection of the following data:

-a =1 = &)1 =&)Y with j,a; > 1
- a(l) = [T,((1 = &6t = &,/¢))" with the aj’s as above

61
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Remark 39. We want just to point out that if m is not a prime power then «a is a
cyclotomic unit of F (follows from proposition 1.1.2). This is not clearly true if m is
a prime power (recall proposition 1.1.3) but, with a little abuse of terminology, in a
context like the one we are discussing one still says that a is a cyclotomic unit of F.
On the other hand, for any m, we have that a(L) is a unit of F(L) (to see this notice
that 1 — ¢, ¢, € Z[¢EnCL)* for every j > 1, again by proposition 1.1.2). Finally, observe
that [Q(&m, €1) : F(L)] = 2 and a(L) = Noe,, coirm (1,01 = E6L)").

Notation: For typographical reasons, we will write ring actions additively, so for
example (0 — 1)a means the same as oa/a.

Lemma 5.1.1. We have:

1. Assume | does not divide L. Then Ny a(lL) = a(L)f*°"~' where Frob, is the
Frobenius element for | for the extension F(L)|Q.

2. a(lL) = a(L) modulo all primes of F(LL) above .

Proof. 1. For this part it is enough to observe that the norm for the extension
QCm, GiL)|Q(Em, €1) of the element 1 — ¢, 6y, is equal to

I—

[

_ gl ol .
(1 - CinCLClk) = 1—% — (1 _ CinCL)Frobl—l
1 1 —EmC

bl
Il

Indeed replacing ¢/, with ¢,7 and using the fact (as in the above remark) that
a(lL) = Noiey cpyrun([ 1;(1 = E,6)"), we get the first claim.

2. Notice that ¢; = 1 modulo all primes above [ (if p is a prime of F(IL) lying above
[, then Opqp,/p is a field of characteristic [). Hence the second claim is true too.
O]

The two properties above 1. and 2. are fundamental to prove the Main Conjecture
and they are actually taken inside the definition of Kolyvagin’s Euler Systems in their
general theory (see [Ru]).

Now for each prime [ as above, fix a primitive root s mod [. Define 0; € Gal(F(l)|F)
by 01(¢;) = &. Notice that we may extend o, when needed so that 0; = id on roots of
unity of order prime to [. Then we obtain that (0;) = Gal(F(IL)|F(L)). Let

def 12 . j
Dy = ijo jop
By a direct calculation one finds that

(61—1>D1=l—1—N[

where N, o Z;;g O,j can be identified with the norm Ny, defined above. Define

Dy, = nz[L Dy

Then we can prove the following proposition that gives us explicit formulas for some
algebraic integers k(L) and ;, that will play a key role in the chapter.
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Proposition 5.1.2. There exists B, € F(L)* and k(L) € F* such that

Dpa(L) = k(L )BL
and ((0 —1)Dya(L))"™ = B~ for all o € Gal(F(L)|F).

Proof. Denote by H = (F(L)*/F(L)*™)¢ the elements of F(L)*/F(L)*™ fixed by G =
Gal(F(L)|F). We claim that Dya(L) mod (F(L)*)™ € H. We prove it by induction on
the number of prime factors of L. If L = 1 then G = 1 so that the claim holds.
Suppose then that the claim is true for all L’ with fewer prime factors than L. Let [|L
and let L’ such that L = [L". Then we have:
(o = 1)Diyalll’) = (o — 1)Di(Dya(lL)) = (I =1 — Ni)Dya(lL’) =

Dy af(lL))! 1 h ,
= : = (M Dy Nia(lL') =

DyallL) NiDyatry) ~ M Powerl/Putiall)
= (M"power)/Dya(L/)"o ! =

= (M"™power) - (k(L)BM)Frob=t = (M™power)(M"™power)

where in the fourth equality we used that | — 1 = 0 mod M, in the fifth that [ does
not divide L’ and in the sixth the inductive assumption. Therefore o; fixes D;a(L)
modulo M™ powers for each [|L. Since the set of o; with | generates G, this proves
the claim.

Now we claim that F(L) contains no non-trivial p-power roots of unity. Indeed: Q(¢;)
and Q(¢&,, &) are linearly disjoint over Q and then so are F(L) and F(¢,) over F. On
the other hand

[F(L)(Cp) : F1 = [F(L)(Cp) - F(L)] - [F(L) : F] = [F(L)(Cp) : F(Gp)] - [F(Cp) : F

However by disjointness we have [F(L)(&,) : F(¢,)] = [F(L) : F]. Thus, since F is
properly contained in F(&,), from the line above follows that [F(L)(&,) : F(L)] = [F(¢p)
F] # 1. Therefore ¢, ¢ F(L), as we wanted.

Then by this observation we can define ¢ : G — F(L)* by c(o) = ((0 — 1)Dya(L))'M.
Indeed this is well-defined because F(L) contains no non-trivial M roots of unity by
our choice of M and by the just proved claim. By a direct calculation, we find that c
satisfies the cocycle relation:

c(o10y) = c(oy)c(og)°.
To conclude the proof, we need the following

Lemma 5.1.3. There exists B € F(L)* such that c(o) = B! for all 0 € G.

Proof. By the linear independence of characters, there exists x € F(L)* such that
Vv = Xsecelo)o(x) £ 0. Now let T € G. The cocycle condition implies that

Ty = Ysc(0)0(x) = Ese(ro)e(r)trolx) 1y clot)tolx) = c(t)ty.

Hence c(1) = y' 7. Setting B = y~', we conclude the lemma. O
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Now we come back to the proof of the proposition: let S be as in the previous
lemma and let k(L) = Dya(L)/B™. Then

(o~ 1Dyall) _ clo)"
o= = T T o1

for all 0 € G, so k(L) € F* (last equality holds by the previous lemma). This
completes the proof.

O

Remark 40. Consider p a prime of F such that p t L. Notice that F(L) is the com-
positum of F and Q(¢;,). Then looking at the ramification indices we deduce that p is
unramified in F(L)|F. Observe also that by lemma 5.1.2 follows that (k(L)) = (8;")™ as
ideals in F(L). Thus we obtain that the p-adic valuation satisfies v,(k(L)) = 0 mod M.

Now fix L and let | =1 mod (mML). Let A be a prime of F above [ and let £ be
a prime of F(IL) above A. We assume that k(L) # 0 mod A. Since | =1 mod (mML),
we get that [ splits completely in F(L)|Q and that is totally ramified in F(IL)|F(L) (see
again the ramification indices). This implies that if s is a primitive root modulo I,
then it is also a primitive root modulo A and modulo £.

Proposition 5.1.4. Suppose k(L) = s® mod A. Then the A-adic valuation of k(IL)
satisfies

v,(k(IL)) = —a mod M

Proof. Using lemma 5.1.1 and proposition 5.1.2, one finds that

(01 = 1)Bu = ((0y = 1)DyalIL)™ = (I = 1 — Ny)Dpa(IL)"™ —
= (Dra(IL)"""™ = (Dya(L)"™"™  mod p
where p is any prime above [ and where the third equality holds sincel = 1 mod mML
implies that Frob; = 1 and so Ny a(lL) = 1 by lemma 5.1.1. Let a’ € N such that

DialL) = s* mod £. Then by proposition 5.1.2 we deduce that @’ = a mod M.
Therefore

(0 —1)Bi, = s mod £,

where b = a’(l-1)/M = a(l—-1)/M mod (I—1). Now setc = v¢(Bj1). Since vp(1—¢) =
1, we can write B = (1 — ¢)°y where v,(y) = 0. Notice that

1 ¢
1) '="—-33 =5 mod.L
(1-4&) -

since by the binomial expansion we have ¢ —1 = (¢ —1+1)° =1 = —s(1 =) +---.

Moreover, being £ totally ramified in F(IL)|F(L), 0; belongs to the inertia group of
L, s0 oy =y mod L. Therefore

s = (0 —1)Bu = (1 = &) )yt =51 =5 mod L
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Hence we deduce that b = ¢ mod (I — 1). Since £!"!' = A, recalling the above
properties of a’ we have

v(k(IL))

1
ve(k(lL)) = —mvi(ﬁ%) =
Mc Mb

This concludes the proof of the proposition.

5.2 Example: The Ideal Class Group of Q(¢,)*

In this section we show how to use the previous results about the Euler System
of Cyclotomic units in order to study the ideal class group of Q(¢,)". This is not
needed for the proof of The Iwasawa Main Conjecture but it gives us some important
strategies that will be generalized in the next sections.

The setting is the same as before with m = p (with p odd prime as usual) and
M = p|A*|-|(E/C),] = p|AT|? where A" is the p-part of the ideal class group of
F = Q(¢,)*, E is the group of units of F, C is the subgroup of cyclotomic units and
(E/C), is the p-part of (E/C).

def

Let x be an even p-adic valued character of G = Gal(Q(¢&,)*]|Q). Now recall by
theorem 1.3.2 that [E : C] is the class number of Q(¢,)*. The main theorem of
this section tells us that this equality holds componentwise with respect to the x-
components, namely:

Theorem 5.2.1. Let x be a character as above. Then |, (A*)| = |€,(E/C),| where
€,(E/C), indicates the y-component of (E/C),.

Proof. First of all, notice that if y is trivial then |e,(A*)] = 1 = |¢,(E/C),| (this is
because in this case €, = %norm). Therefore, we can consider ) to be non-trivial
in the rest of the proof. Notice that by the results and remarks of section 4.3, we
have:

]_[ le,(A")] = p-part of the class number of Q(&,)" =

X even

= p-part of |E/C| = l_[ le, (EIC)p]

X even

This implies that to prove the equality |€,(A")| = |, (E/C),| is enough to show that
e,(A*) divides |e,(E/C),| for each yx as above. Notice now that for every idempotent
€, € Zp|G] we can define an element €, € Z[G] that has the same coefficients of ¢,
but modulo M (this is done because €,k is not defined in general). In this way € k(L),
€,k(IL) are defined and moreover €,(A*) = €,(A*). If €, = Y, x(0)o™" then we write
€ =0 x'(0)o~'. Now we need the following:

Lemma 5.2.2. Let A,l,L and s as in the previous section with | = 1 mod mML.

Assume that the ideal class € of A is in €,(A") and also that the classes of the prime
ideals of F dividing L are in €,(A*). Suppose:
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1. € has order f in the quotient of €,(A*) by the subgroup generated by the
classes of the primes dividing L

2. €,k(lL) € (F*)P" with p" < M and Mp"A* =0

3. if e,k(L) = s* mod A and p" || a, then p” < M

Then r' > r and f | pr T

Proof. Let 0 € Gal(F|Q). Then s is also a primitive root modulo oA. Let
k(L) = s% mod oA

It follows that 0~ !k(L) = s% mod A. Therefore

ek(L) =s" mod A with a = ZX/(O)CLO mod M
o

From now on let r and r’ be as in assumptions 2. and 3. By construction then we
have p” || a. By proposition 5.1.4 we get that

Vou(K(IL)) = —a, mod M

Since 1, (07'k) = vy (k) it follows also that

v(ERL) = S H(opalillL) = Y x(0)(~as) = —a mod M

o

Now since we know that p" divides v, (e, k(IL)), we deduce that p” | a, so that r < r".
Furthermore,

Vo-1i(€ k(L)) = viloe k(lL)) = x(o)vile k(L)) = —x(o)a mod M
Thus by remark 40 we deduce also that there is an ideal I such that

(e kl(lL)) = ]_[(O‘i)u)‘a’“") - (primes dividing L) - IM =
o
— A% . (primes dividing L) - I
Notice that le LHS is a p"-th power. Hence the exponent of every prime ideal on the
RHS is a multiple of p" and so we may take the p"-th root of the equation. Moreover
considering the classes of the ideals in the previous expression and using again the
fact that €/k(IL) € (F*)P', it follows that the class of I lies in A*. Since Mp~" annihilates
A* by hypothesis, we deduce that the ideal I™P™" is principal. By hypothesis we can
also identify €,& with € Thus —ap™¢€ = —ap~"€,€ is equal to O in the quotient of
€,(A") by the subgroup generated by the classes of the primes dividing L. Therefore
f | ap™. Recalling that p" || a and observing that f must be a power of p, we can
conclude the proof. ]

By the Structure theorem for finite abelian groups, we can write

&, (A7) = ZIHKZ & - - & TIfi L
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for some k > 1 and some powers of prime numbers fi,...,f,. Now proceeding
inductively, we can choose classes €4, ..., &, in €,(A") such that €;,4 has order f;,4 in
€, (AT)/(€q, ..., ;). We also need (see [Wa] for details):

Proposition 5.2.3. Let N > 1 and let i be even with 2 <i < p —3. Set E,x = E/EP"
and E}, = E*/(E*)"". Then

&l ;N) = Z/pNZ

Applying the above proposition, it follows that €,(E/C), is cyclic. Say that it has

cardinality p™. Then we can choose u € E such that u ¢ EP and u?’ € C. Let

def
a ‘= uP®. Notice that we may assume that ou = u*° modulo M™"-powers for all

o € G (if not, replace u with u). Therefore we also have that oa = a*° modulo
M -powers for all 0 € G. Choose also primes A4, ..., A, lying above rational primes
Li,...lpsuch that A; € ¢; and ; =1 mod ML,_4, where L,_y =1; - -- li_y.

Starting with a, we obtain k(L;) in the same way as we did in the previous section.
Then let e k(L;) € F P" with r; not necessarily maximal and let e, k(L;) be a p'i-th
power modulo A;,4y with r/ maximal, so that r; > r;. Now we want apply the previous
lemma. Thus we need to show that all the hypothesis are satisfied. After that, we will
deduce that r; = r; for every i and we will be able to conclude. Suppose now that we
have chosen the primes A4, ...,A; such that ro > r; = r’]f for all j < i. Let r; be the
largest integer less than or equal to ry + 1 such that € k(L;) € F P Then we obtain
that Mp~A* = 0. Indeed, notice that Mp"~'A* = p~™|A*]?A* = 0 since p™ | |A*|
by our definition of ro. Thus condition 2. of the previous lemma is fulfilled with
L=1~L;yand !l = 1. Since r; ; = r;_y < ry, we have p’“r‘@1 < M, so that also condition 3.
is satisfied. Clearly for condition 1. we consider the ideal classes €4, ..., €. It follows
that we can apply the previous lemma. On one hand we obtain that r{ , > r;, so that
r; < ro. This implies that r; + ro + 1. Therefore r; is the maximal integer such that
e/ k(L;) € FP". On the other hand we also get that r; > r; 4 and

| (AT)] = fi - fi | ploTrr et
Now we take for granted another result. We refer again to [Wa] for a proof.

Proposition 5.2.4. Let € be one of the ideal classes of F defined above. Let b and
¢ be positive integers with c | b. Let f € F*. Suppose that A € € lies over a prime
| =1 mod b and satisfies 8 = c-th power mod A. Then

B = c-th power in F if ¢ is odd
B = i%—th power in F if ¢ is even

By the previous proposition with b = ML; and ¢ = p" we deduce that r; > r
and so r; = r{ for all i. Therefore |e,(A*)| divides p™~"* and this implies that |e,(A")|

divides p™ = |€,(E/C),|. This completes the proof of the theorem. O

5.3 Introduction to the problem and statement

Let p be an odd prime and let £, be a primitive p-th root of unity as usual. Consider
the Z,-extension Q(¢p~)|Q(&,) and the following notations for n > O:
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- A, = p-part of the ideal class group of Q(&,n+1)

-AL = hLQn A, with respect to the maps A, — A,,1 given by the inclusions

Q(Cpr) € Q(Cpre1)

- X = Gal(L|Q(&p~)) where L, is the maximal unramified abelian p —extension

of Q(Cp“)

- Xn = Gal(M,|Q(¢p~)) where M, is the maximal abelian p-extension of Q(Cn+1)
unramified outside p, for n < co

- & = the i"" idempotent for Gal(Q(¢,)|Q) with i odd
- L,(s, w') = p-adic L-function for «’ with j even and nonzero

- f(T, ') = the power series in O,[|T|] (where O, = Z,[w]) such that Ly(s, o) =
f((1+p) =1,

Let M be a finitely generated forsion A-module. Then by corollary 3.3.13 M is
pseudo-isomorphic to an elementary A-module E = ;_, A/p™ @@;1 N/(P;") where
the P's are irreducible distinguished polynomials. Recall that all height one prime
ideals of A, namely those other than 0 and (p, T) are of the form p where p is either
p or an irreducible distinguished polynomial.

Let M as above. Recall also that at the end of section 3.3 we defined the characteristic
polynomial of M to be char(M) = ﬂ;l prM) . Pl — H;=1 p;.

Remark 41. By corollary 4.2.15, we know that X is a finitely generated torsion A-
module. Moreover, by theorem 4.2.16 we have that u(X) = 0. This implies that
X ~ ;. M(P;”) where each D; is an irreducible distinguished polynomial. Hence
the characteristic polynomial of X is char(X) = [];_; ;. Furthermore, in section
4.3 we saw that €X is a A-module for every i. Then notice that actually it is also a
finitely generated torsion A-module since so it is X and since A is a noetherian ring.

Now we can state:

Theorem 5.3.1 (The Iwasawa Main Conjecture). Let p be an odd prime and let i be
odd, i 1 mod (p —1). Then char(X) = f(T, w'~)u(T) with u(T) € A*.

There are many beautiful formulas in mathematics. Among them, this is consid-

ered one of the most fascinating: on the LHS we have an algebraic and arithmetic
object, determined by the ideal class groups while on the RHS we have a p-adic ana-
lytic object, determined by the values of p-adic L-functions.
There are several equivalent forms of the Main Conjecture. Before seeing some of
them, we need to prepare properly the setting. Recall the norm maps of the ex-
tensions Q,(Cpn+2)|Qp(Epn+1) and Q(Cpn+2)|Q(Epns1) for every n > 0. Then, we fix other
notations:

- Ul' = units of Q,(€yn+1) congruent to 1 mod (Epnet — 1)
- Ef' = units of Q({yn+1) congruent to 1 mod (Epnet — 1)

- C, = group of cyclotomic units of Q(&yn+1)
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- Cr=C,nUr

- E, = closure of E{ N U in U

!
I

closure of Cf' in U

- Up® = lim Uf" with respect to the norm maps

- ETO = @E? with respect to the norm maps

- C, = lim C, with respect to the norm maps
e__

Remark 42. For the next claim it is worth to observe that if j is even with j # 0
mod (p — 1) then theorem 4.4.5 implies that ej(ETO/ C,’)) is a finitely generated torsion
NA-module.

Proposition 5.3.2. The following are equivalent:
1. char(eX) = f(T, w' " )u(T) for all odd i £1 mod (p — 1) where u; € A*;
2. char(ej(Efo/ETO)) = char(eX) for all even j # 0 mod (p —1);
3. char(eX) divides char(e(E, /Cy)) for all even j =0 mod (p — 1).

The proof is postponed at the end of section 5.5. To prove The Main Conjecture,
we will prove that actually statement 3 of the previous proposition holds. To do this,
we need the following corollary whose proof follows from a general result of Class
field theory that relates the local units of a number field with its Hilbert Class field.
For a proof, look at [Wa].

Corollary 5.3.3. Letn > 0 and le_t L, be the maximal unramified abelian p-extension
of Q(€pn+1), as usual. Then UP/EY = Gal(My|Ly). In particular, there is an injective

map Ul'/E]' — %,.

5.4 Adjoints

In this section we introduce the theory of Adjoints in order to give an idea of the
proof of proposition 5.4.15.

Lemma 5.4.1. Let M be a finitely generated torsion A-module.
1. char(M) - M is finite

2. If M is finite, then (p, T)"M = 0 for n sufficiently large; hence, the annihilator
of X is of finite index in A

3. If for each x € M there exist relatively prime f,g € A (depending on x) such
that fx = gx = 0, then M is finite.

Proof. 1. Since M is a finitely generated torsion A-module, there is an exact se-
quence 0 - A —- M — E with A finite contained in M and E elementary A-
module. If m € M, then char(M)m maps to 0 in E (by definition of char(M)).
Hence it lies in A.
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2. If f € (p,T) and m € M. Being M finite, we have that fix = f/x for some i,j
with 0 < i < j. Since 1 —f/~' € A%, then fix = 0. In particular p*x = T"x = 0 for
some r. Now notice that (p, T)*" C (p®, T") for every n and that, being M finite,
the annihilator of M contains (p™, T™) for m sufficiently large. Since A/(p™, T™)
is finite, the statement follows.

3. Let xq,...,x, be a set of generators for M and let fix; = gix; = 0, where f;
and g; are relatively prime elements of A for every i. Then the finite module
P, Alfi, gi) surjects onto M (consider A+ (f;, gi) — Ax;), which is therefore finite.

O

From now on, for each height one prime ideal p = (f), let A, be the localization
of A at p.

Lemma 5.4.2. Let M ~ E = @, M/(f"). Then M @ Ay = @y A/ f™ Ay,

Proof. Since M ~ E there exists an exact sequence of A-modules0 - A - M —» E —
B — 0 with A, B finite. Recall that localization preserves exact sequences (i.e. it is an
exact functor) and so we have that 0 - A®a Ay > M@y A, = EQp N, = B Ay —» 0
is exact. Now let g € (p, T) with g ¢ p. Since A is finite, g"A = 0 for some n > 0.
It follows that A @5 A, = O since g/1 is a unit in A,. Similarly, B @y A, = 0. If f is
irreducible and (f) # p, then f™(A/(f™)) = 0 and again f/1 is a unit in A,, so tensoring
with A, removes these terms. Indeed: (P; A/(fi)™) @a Ny = B,(A/f™) @p Ny) =
@(fi):p(]\/(f.m") @n Np) = Diyjp A,/f{" Ap. This proves the lemma.

1

]

Remark 43. Notice that A, is a PID since it is a noetherian integrally closed domain
of dimension 1.

Proposition 5.4.3. Let 0 - M; — M, — Mz — 0 be an exact sequence of finitely
generated N-modules. Then char(M,) - char(M,) = char(Ms).

Proof. This follows from the lemma above and from the structure theorem for mod-
ules over a PID.
O]

Lemma 5.4.4. The natural assignment ¥ : M — @p(M X\ ) gives a well defined
map. Moreover Ker(1) is finite and is the maximal finite submodule of M.

Proof. First of all, notice that by lemma 5.4.2 we have that M ), A, = 0 if p does
not divide char(M), so the sum over p is actually finite. This gives a well defined
map. Notice that every finite submodule of M is contained in Ker(y). Since A is
Noetherian and M is finitely generated, Ker(3) is finitely generated. It is therefore
finite by definition of Kernel.

O

Now for any A-module X define

a(X) . Homyg, (Coker(¥), Q,/Zy).
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Notice that we have an action of I" on a(X): (yf)(x) = f(y~'x) for y € ' and
x € Coker(y). Now we define an action of A is a similar way: (g(T)f)(x) = f(g((1 +
T)~! —1)x) for g(T) € A. It is convenient to twist this action. Hence a(X) is a A-module.
Consider the involution:

T:AN > A g(T)— gl +T)"' —1) = g(T)

If X is any A-module, let X be X with a new action of A:

def _

g(T)xx = g(T)x

In a similar way we set ¥ xx = y~'x for v € I'. In particular note that

—~— -

T: A/(f) = M)

is an isomorphism of A-modules since g(T) = h(T) = g(T)h(T) maps to g(T)h(T).

Definition 5.4.1. Let the notation as above. Then a(X) = a(X) is called the Iwasawa-
adjoint of X.

Observe that the definition is not suitable for computations, so we need another
approach. For a fixed finitely generated torsion A-module M as before, we define an
admissible sequence to be a sequence 0y, 0, ... of elements of A such that o, and
char(M) are relatively prime, with o, # 0 (observe that this works also for finite M),
and o,.1/0, € (p, T) for all n > 0. Note that

1
Op 01 (0}

and so ) 1 . U 1 .
im—A=| |—
— Oy On
Proposition 5.4.5. The map
¢ My (UpoaN) = BM@aAy) x@ & (x® o)

is an isomorphism of A-modules (the direct sum is taken over any set of prime
ideals p containing all (height one) prime divisors of char(M) and such that o, € A,”
for all n and p).

Proof. Note that every element on the LHS can be written in the form x® Oi—n Suppose
now that ¢(x ® ;—n) = 0. Multiplying by o0,, we find that x ©®1 = 0 in M @5 A, for all p
(since o, € A)). Therefore x € Ker(y), which is finite. Lemma 5.4.1 (part 2.) implies
that (0,,q/0n)x = 0 for some a > 0, so

1 Onia 1

X R— = X
GI[ On On+a

=0

Hence ¢ is injective.
Let p = (f) and let x ® %’ c M ®@a A,. To prove that ¢ is surjective, by the linearity of
the map it is enough to show that (0,...,x ® % ..,0) € Im(¢p) with n e A\ p = S. Let
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A € A be such that AM = 0 but A # 0 (for example, a suitable multiple of char(X)
will work by lemma 5.4.1, part 1.). Write A = f°A,, with f such that does not divide ;.
Let ¥ = 43 M/A?nM. Then (An, f°)Y = 0. Notice that (An, f°) has finite index in A:
indeed f is a prime element, n € S, we choose Ay properly and moreover we have a
previous lemma. Hence since Y is finitely generated, Y is finite. Therefore 0.V =

for some ¢ > 0, so o, x = )Lfny for some y € M. In M ®, A, we have that:

1 1 1
My ® — =23 —r®-=
WO =AW O — @

In M @ Ay, with q + p, we get:

1 1
My @ — = oAy ® — —
157®OC f 1y®chb

Therefore ¢ is surjective.

Now applying M®, (which is a right exact functor) to the exact sequence
0->A->UyaA = Uy =N/A -0
we obtain:
X = @,XQn M) = X @ (U, 5 AN -0
Therefore we deduce that
Coker(¥) = X P, U, 5 A/A
Now notice that if 0, = (T — m)" with st € pZ, then:

Un oA = Al = Z((T = 7))

where the last term is the ring of Laurent series with only finitely many negative

exponents (for the above line recall that A = Z,[[T]] = Z,[[T — 7).
Proposition 5.4.6. Assume f € A\, € pZp, and f(;r) + 0. Then
A/(f) = Homg, (M (f) @p AMz=1/N, QplZy) = al\/(f))
Corollary 5.4.7. If E is an elementary torsion A-module, then E = a(E).
Proposition 5.4.8. 1. a(M) has no non-zero finite A-submodules
2. If M is finite, then a(M) = 0.

Proof. For both the claims, notice that it suffices to prove them for a(M).

1. Choose 7 € pZ, C pA so that {(T —m)" },, is an admissible sequence for M. Let
¢ lie in a finite A-submodule of @(X) = Homgz (M @5 A[7]/A, Qp/Z,). Since

(T —m)=(1+T)"'~m—1¢c(p,T) then lemma 5.4.1 implies that (T — 71)*¢ = 0
for n sufficiently large. Now consider b ® ¢ € X ®p A[ﬁ]/]\. Then we have

bc=(T—-m)"b®c/(T —m)" and so
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—_——

db@c) = (T — )b @ c/(T — 1)) = (T — m)nd)(b @ /(T — 7)) = 0

We deduce that ¢ = 0 and so we are done.

2. If X is finite, then still by lemma 5.4.1 we have (T — 71)"X = 0 for n sufficiently
large, so that X @, [—]/A = 0 arguing similarly to the previous claim.

]

Proposition 5.4.9. An exact sequence 0 - X — Y — Z — 0 of finitely generated
forsion A-modules induces an exact sequence

0 — alZ) - alY) - a(X) — some finite A-module.

Proof. Notice that also for this claim is enough to prove that it holds for a(X), a(V)
and a(Z). Consider the commutative diagram:

> X > Y > 7
| [ |

0 — (X N\y) — Bp(Y@p Ay) —— Bp(Z@p ) —— O

Since localization is exact, we have that the bottom row is exact. Hence the Snake
Lemma gives us an exact sequence:

Ker(y,) — Coker(yy) — Coker(yy) — Coker(y,) — 0.

Since Q,/Z, is an injective Z,-module, we have that Homy, (-, Q,/Z,) is an exact
contravariant functor and applying it to the sequence above we obtain the result (using
also the fact that Ker(yy) is finite by lemma 5.4.4).

[

Proposition 5.4.10. Let X and Y be finitely generated torsion A-modules with X ~ V.
Then a(Y) ~ a(X).

Proof. By hypothesis, there is an exact sequence:
0-A—-X->Y—->B-0

with A and B finite A-modules. Of course, we may assume A contained in X and
so considering 0 - A — X — X/A — 0 and the previous proposition we obtain an
exact sequence
0 — alX/A) - a(X) — alA)

By proposition 55.11, we have that a(A) = 0 and so we deduce a(X/A) =~ a(X). On
the other hand, notice that we have an exact sequence 0 — X/A - Y — B — 0 and
so still applying the previous proposition we get

0 — a(B) — a(Y) - a(X/A) — some finite A-module

Again by proposition 55.11, we have a(B) = 0. This implies a(¥Y) ~ a(X/A) = a(X).
O
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Corollary 5.4.11. X ~ a(X) and also a(X) is a finitely generated torsion A-module.

Proof. By the structure theorem we deduce that there is an elementary A-module
E such that X ~ E. By corollary 5.4.7 and the previous proposition, we have that
X ~ E = a(E) ~ a(X). Hence, since X is a finitely generated torsion A-module, so
must be a(X).

[

Proposition 5.4.12. lim X/0, X = X &, (U, 5 A/A) and so
a(X) = Homg, (lim X/0, X, Qp/Zp)
Proof. By a basic property of tensor products (see [Boul] or [At]) we have that:
X0, X = X Q@ (AoyA) = X Q) (4 >N

Now we give {L ~A/A}, the structure of a direct system through the natural in-
clusions - o NN — m Hence using the facts that lim is a functor and that direct
limits commute with tensor products (see [At] again), we get that:

lim X/0, X = lim(X @ (ZA/A)) = X @ im(EA/A) = X @, (U, ZA/A)
O

Now we recall some notation of chapter 4.
Let K |K be a Zpy-extension of a number field K. Let A, be the p-part of the class
group of K, and L, be the Hilbert p-class field of K,, so that

X = GallLy|X,) = A,

It follows that X = lgg Xp = hm A,. By lemma 4.2.6 there is an index e and a
submodule Y. C X such that

Ap = Xp = X/vpe Ve

for all n > e, where

Vpe = (1 + TP —1)/((1 + T)P" —1)

Moreover we consider lll’_)l’ln A, with respect to the natural maps A, — A,.4. Then
one can prove that the following diagram

natural
An An+1

X—Vn41,nX
Xn

— Xn+t

commutes for every n (see [Wa] for details). Using this fact, we prove the next
proposition.

Proposition 5.4.13. X ~ Homg, (im Ay, Qp/Z))

Proof. Consider the exact sequence:
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0— YolvpeYe » X/vpo¥Ye —» X/Ye —» 0

We know that lim is an exact functor (see [[Boul]] for example), and so using the
previous observation and recalling that A, = X, = X/v,.Y. we get another exact
sequence

0 — lim(Ye/vpe¥e) —» limA, - limX/Y, - 0
- — —

Now since X/V, = A, is finite (by a previous proposition), by the definition of v, .
there exist m > n > e such that v, ,X/V, = 0. Notice that this implies liLnX/ Y, =
0. Then liLnYe/vn,eYe ~ limA,. From proposition 5.4.12 we deduce that a(Ye) =
H om(@ Ve/VneVYe, Qp/Zp) (notice that {v, e}, form an admissible sequence for V).

Since by a previous proposition V. =~ X, we have X ~ a(X) ~ @(V,) and so the claim
holds.
]

Let the notation be as in a previous proposition. Notice that the previous proof
shows also that the following fact holds:

Proposition 5.4.14. E}E ~ Homy, (lii>n €hAn, QplZy)

Now we arrive to the main result of this section. A complete proof requires an
additional work on X, that we decided to omit. Therefore, we are going to sketch
the proof (more details can be found in [Wal]).

Proposition 5.4.15. Suppose €;X has characteristic polynomial f(T). Then
Homg, (lim €A, Qp/Zy)

has characteristic polynomial equal to f((1 + T)™' — 1) and ¢_;X+ has charac-
teristic polynomial f(k(1 + T)™' —1) where k € 1 + pZ, is defined by YCpr = Cin for
all n.

Sketch of proof. The first part follows from the previous proposition and the defini-

tion of the action of A on ¢;X. For the second one, one may observe that if 7, acts on

€ X as (1 + T), then it acts on @(1) . gi\)/(®zp T = X, by k(1 + T)~! (where T here
is the same of proposition ) . Then one may prove that this implies the statement.
[

5.5 Some techniques of Iwasawa theory

The following technical results will be fundamental to prove the Main conjecture.
First of all, we need to fix other notations:

- p = an odd prime
- 7 = a generator of I' = Gal(Q(&y~)|Q(&p))
- Py =wy=(1+T)P" —1 =92 —1 (we use the usual identification 75 = 1 + T)

- I'y, = the subgroup of I' of index p"
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- MU = fm e M|?2'm = m} = Ker(M 2 M) where M is a A-module
- My, = M/P, = M/(P,M) = Coker(M 2 M)

- x = W = j""-power of the Teichmiller character w for some j > 0,j even (ie. a
non trivial even character of Gal(Q(¢,)|Q))

Now we summarize in a proposition some fundamental results that, more or less,
we saw earlier:

Proposition 5.5.1. Let é?,Xn, Uft and X, as in the previous sections. Then:
1. ¢,(C,IP,) ~ €,Cy
2. €,(X/Pp) = €,X,
3. €, Ur/Py) = €,Up
4. €(Xe/Py) = €,2,

Proof. The first statement follows by theorem 4.4.3. The second and the third ones

respectively by corollary 4.2.13 and theorem 4.4.2. The last one is discussed in section
4.5,

H
Lemma 5.5.2. Let 0 — M; — My — Mz — 0 be an exact sequence of A-modules.

def
1. Set 'y = I'. Then for every n > 0 there is an exact sequence

0— M" - M" — M;" — <M1)Fn — (MQ)fn — (MS)rn -0
In particular, Ker((M;)r, — (My)r,) = MZ,F“/Im(MQF“).
2. If Ms is a finitely generated \-module and (Mg)rn is finite, then Z\/[3F " is finite

Proof. 1. Consider the diagram

0 —— M, > M, > M3 > 0
lp,f lp"' lp,,
0 —— M, > M, > M > 0

where the vertical maps are multiplication by P, = 75’n — 1. By definition we

have M = Ker(M; 2 M) and (Mi)r, = Coker(M; 2 M,). Then the Snake
Lemma yields the exact sequence of the statement and we can conclude.

2. Assume that Mz/P, is finite. Hence M5 is a A-module with torsion. Now consider
the exact sequence

0— Mim — My 25 My — (Mg)r, — 0.
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We deduce that Mg/MSF” ~ P,Ms5. Therefore char(P,Ms) = chaP(Mg/Mz,rn). On
the other hand if we consider the exact sequence

0— PyMs — M3 — (M3)rn -0
and we use the previous lemma we get that
char(P,Mz) = char(Ms) - char(Ms/P,) = char(Ms)
However char(Ms) = char(M;") - char(Ms/M;") by
0 — Mg" — Ms — Ms/M;" — 0

Substituting, we obtain that char(M;") = 1, hence M:" is finite by lemma 5.4.1.
O

Here is a technical result which deals only with the theory of compact groups.
For more details look at [Wal].

Lemma 5.5.3. Foreachn > 1, let0 — A, b, B, In, C, — 0 be an exact sequence of
compact groups. Then the sequence

0—lim A, L Jim B, L lim C, —»0
<——n <——n <——n
is exact. In particular, lim (B,/A,) = lim B,/lim A,.
&—n &—n <—n

Proposition 5.5.4. There is an ideal Y of A of finite index SllCh that, ]‘or_all n, Y
annihilates the kernel and cokernel of the natural map €,E, /P, — GXE?. The
orders of these kernels and cokernels are bounded independently of n.

Proof. By corollary 5.3.3, lemmas 5.5.3 and 55.2, we have the commutative diagram:

€, (XT/Im(Eln)) —— € (UP/E;) /Py —2s €,500/Py —— €,X/Py —— 0

I | l

0 s €, (UNE)) ——— %y —— €,X, —— 0

The second and third vertical maps are isomorphisms by proposition 55.1. By
a diagram chase, one shows that Ker(¢y) = Ker(m). Since €,X/P, = €,X, is finite,
lemma 55.2 implies that €X(Xrn) is finite too. Let €,Xjinite be the maximum finite
A-submodule of €,X. Then of course eX(XF“) C €,Xfinite- By lemma 5.5.2, using the
top sequence we have that Ker(¢) is isomorphic to a submodule of a quotient of
€, Xfinite- Therefore, the order of Ker(¢,) is finite and bounded independently of n.
Now consider the commutative diagram:

JURED) —— By /Py —2 €,U*/Py —— ¢,(UR/E})/Py — 0

P b

—=n

00— 5 ) — Ut —— ¢(UNE]) ——— 0
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By a diagram chase we deduce that Ker (1) ~ Ker(¢). We claim that ¢, (U{°/E; )/P,
is finite. For the moment we assume that this claim is true and we postpone its proof
until the end of the main proof. Hence by reasoning as above we find that Ker(¢,) is
isomorphic to a quotient of €,(U/E} )inite. Now we replace €,E; by €,(E, )/Ker(¢s)
in the above diagram so that we can apply the Snake Lemma. We deduce that
Ker(m) = Ker(¢,) = Coker(my). Now by lemma 5.4.1 (point 2) we have ideals 4, &,
of finite index in A which annihilate respectively €, Xyinite and €X(UfO/E(1)O>ﬂnite. Con-
sidering U, + 4, we deduce that there exists an ideal U (for example i, + 4, itself) of
finite index in A that annihilates:

€ Xfinite D €X(UfO/ETO)finite

Now since Ker(¢1) and Ker(¢,) are isomorphic to submodules of quotients respec-
tively of €, Xjinite and €, (U® /Eio)ﬁnite, we deduce that { annihilates Ker(rm,) 5 Coker (i)
as we wanted.

Now we prove the claim as promised. First of all notice, that we have a surjection

e, (U /C)IP, — €,(UPIE)/P,

By theorem 4.4.5, we have eX(Ufo/éio) ~ M/(f,) where f,, = f(1+p)-(1+T)"' =1, x) and
f(T, x) is the power series that gives the p-adic L-function. Therefore ¢,(U°/C; )/P, =
MA/(f,,, Py). Now the roots of P, are ¢, —1 with 0 < j < p". Theorem 3.4.4 says that

FE (1 + Py =1, %) = Lp(s, x¥l)

where ¥, (1 + p) = €, is a primitive p"-th root of unity. Hence by lemma 2.2.9 we
get:

[l = 1) = (&1L + p) =1, x) = Ly(L, x¥;7) # 0

Therefore f, and P, have no common roots, i.e. they are relatively prime. By
lemma 3.2.9, we also have that A/(f,, P,) is finite. This proves the claim and conse-
quently even the proposition.

O

Lemma 5.5.5. There is an exact sequence

0 - ¢,E, 2 N - some finite A-module — 0

Proof. By theorem 4.4.2, we know that €, U =~ A. Since A is a noetherian integral
domain, we have that €,E,” C €,U is a finitely generated torsion-free A-module. By
the classification of finitely generated A-modules, we deduce that there is a pseudo-
isomorphism €,E; ~ A. Therefore there exists an exact sequence 0 — A — €,E, iR
A — B — 0 with A, B finite A-modules. However, since ¢,E, is torsion-free, it has

no finite A-submodules, namely A = 0 and so 6 must be an injection.
Il

Proposition 5.5.6. Let 4l be as in the previous proposition and let a € 4. Let h, =
char(eX(ETO/CTO)). For each n > O there is a map

0 :e,E, —» Ay = A/P,
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such that
0:(€,C1) = ahy A,
Proof. The map 6 of the previous lemma induces an exact sequence
0 — ¢,(E; /C) KA M/6(e,C;) — some finite A-module— 0

By abuse of notation, we still write 6 instead of 0. Let n be as in lemma 4.4.4.

Then, by construction of 1, we have exéfo = ¢,(n)A\, so 9(6,(6?0) is the principal ideal
generated by 6(e,n). In particular, €,(E, /C, ) is pseudo-isomorphic to A/6(e,n) (just
take 0 as finite module on the left). Hence by definition of characteristic polynomial,
h, and O(e,n) differ by a unit of A.
Now let 7, : GX(ETO/PH) — exf? be the natural map. By the choice of a, we have
aKer(m,) = 0 = aCoker(m,) = 0. Let 6, : €X(ETO/PH) — A, be induced by 6. Now
notice that A, has no Z,-torsion and so in particular it has no Z-torsion. Moreover
Ker(m,) is finite by the previous lemma. Hence we get:

Ker(”n) g (ex(E(;o/pn))finite c Ker(@n)

Let u € ¢,E;. Define
0z (u) = 6,07, au)) € A,

Since aCokersm, = 0, we have au € Im(m,), so there exists v € 6X(E;>O/Pn) with
7, (v) = au. Since Ker(m,) C Ker(6,), 0,(v) depends only on au, so 07 is well defined.
Indeed if v/, v" € 71 (au) then 0,(v') = 0,(v").

Moreover, since asr, : an(EiO/Pn) - aexélf is surjective (the kernel is 0 and the
image is everything by our choice of a), we have:

9{;(6%6?) = Gn(an(ETO/Pn)) = ah, )\,

as we wanted.
O]

Remark 44. Notice that by the previous proposition and 5.3.2 we can now rewrite the
statement of the Main conjecture as: char(e, X) = char(h,)

Remark 45. 1t is useful in what follows to recall that in any exact sequence of finite
groups, finite modules and finite rings with finite length we have that the product
of the cardinalities of the terms in even positions is equal to the product of the
cardinalities of terms in odd positions.

Proposition 5.5.7. Let ¥ be arbitrary (including xy = 1). There exists a constant
c > 0 such that:

c'e,E; : €,C;] < |M(Py, hy)| < cle,E) 1 €,C)] < o0
for all n < oo

Proof. The case where y = 1 follows from the previous proposition. Assume now
that ¥ # 1. From the proof of proposition 5.5.6, we have an exact sequence

0— €X(E(1X>/CTO) — A/th,) > F -0
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where F is finite.
This yields another exact sequence:

F'™ — ¢,(E, [C})/Py — M(h,, P) — F/P, — 0

Indeed: lemma 55.2 implies that Ker(e,(E, /C,")/P, — A/(h,, Pp)) = F'/Im(A/h)m);

thus we can define a map F'» — F'/Im(A/h)") C ,(E;/C)/P, that gives us the
above sequence.
From this we deduce that

|F/Py| - ey (ELICy | = [FUn| - |A/(hy, Py)]
On one hand we have:

A/, Pu)l = [E/Pal/|IFT"] - |ey(Ey /C )/ Pal <
SIFWIE ] - |€y()/Pa] < [F| - |€,(..) Pl

On the other:
[ A/(hy, Pa)l = 1/|F™| - |€y(..)/Pa| = 1/|F]| - |e,(E} [CY°)/ Pyl
Hence, there is a constant ¢; > 0 (for example, ¢; = |F|) such that
ci ' [€(Ey [CY)/Pa] < |N(hy, Pn)| < cile,(Ey [Cy )Py
Now applying the Snake Lemma to the exact sequence
1 -¢,C, - E, —¢lE [C])—1
we obtain the top row of the following commutative diagram:

6, (Cy IP) — €,(E] IP,) — €,(E; [C)IPy —— 1
] — GXG? _— eXE? _— GX(E’;/G?) — 1

The first vertical map is an isomorphism by proposition 5.5.1. By a diagram chase,
one finds that the kernel and cokernel of the third vertical map are isomorphic to
those of the second vertical map, which have order bounded independently of n by
proposition 5.5.4.

Now call ¢ the third vertical map and consider the exact sequence

0 — Ker(¢) — &,(E; [C)/P, 2 ¢,(E|IC}) — Coker(d) — 0
As in one of the previous propositions, we have that
|[Ker(d)| - |e,(E{/CY)| = |Coker(@)| - |e,(E; [C")/Py|

Now let ¢y = max{|Ker(d)|,|Coker(p)|} + 1. It follows that c, > 0 is such that
¢5 ' |e(EL[CY| < |ey(Ey /CY)IPa| < eoley(E{ICy| < o0
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Indeed, say ¢, = Ker(¢) + 1. Then
|€,(EY"IC)IPa| = [Ker(@)|/|Coker(9)| - |e,(Cy/Cy].
Hence on one hand we have |e,(...)| < cole,(E}/C})|. On the other
l€x(--)| = | (E{/Cy)| = 1/cs - |e,(Ey/Cy)|

The case where cy = Coker(¢) + 1 is similar. Therefore, setting ¢ = c;cy we obtain
the statement.
O

Proposition 5.5.8. Let x arbitrary and let €,X = @eXAn ~ @il N/(f;) with f; €
N. Then there is an ideal B of A of finite index with the following property: for
each a € B and for each n, there are ideal classes €4, ..., &, € €,A, such that the
annthilator Ann(€;) C A, of €; in €, A, /(A€ + ...+ Ny €;_4) satisfies aAnn(C;) C f;A,.

Proof. By hypothesis, there is an exact sequence
€,X — @le ANl(f) - F -0

with F finite A-module. Since the tensor is a right exact functor, tensoring with
N, = N/P, we get

€,(X/Pp) — P Aullfi) = FIPy — 0

Let B be the annihilator of F. By lemma 5.4.1 (part 2.) we have that B8 has
finite index in A. Now let a € B and consider the element y = (0,...,class of
a, ..., 0) € @, \n/(f;) with the class of a in the j-th place. Since in the above sequence y
goes to an element of a(F/P,) = 0, we have that y belongs to the image of €,(X/P,) —
D, An/(fi). Hence there is an ideal class €¢; € €,A, = €,(X/P,) such that it maps
to y under the previous isomorphism and the map of the upper sequence. Now let
g € Ann(¢;) where Ann(¢;) C A, is the annihilator of the class of ¢; in the A,-module
€A (A€ + ... + Ny€iq). Then g- (class of €;) = 0, ie. g€ € Ny&y + ... + N\, &y
However, by the construction of €, with 1 < k < j — 1, under the above composition
of maps we have that

A€+ o+ Ny = Ay, 0,0, .0) + .. + A0, ., ., 0) =
=Ny, a,,...,0,0,0,...) = Y

where the last a is in (j — 1)-st position, so that on one hand g€;+ g -y, on the other
g¢; maps in Y. In other words:

g-y=9g-0,..,a,..0) =(0,..,class of (g-«a),....0) eV

This implies that the class of (g - a) in A,/fjA, is 0, ie. g-a € fjA,. This concludes
the proof.
[

Now suppose that F is a Galois extension of Q and let G = Gal(F|Q). Let [ be a
rational prime that splits completely in F|Q. Moreover fix a prime A of F above [ and
a primitive root s modulo [. Then notice that s is also a primitive root modulo oA for
each 0 € G. Let k € F* be relatively prime to [ and let 0 € G.
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Definition 5.5.1. Let k, [, 0 as above.

1. Define a, = indg; (k) € Z/(l —1)Z by
Kk = s% mod (o))

2. Let M|(l — 1) and define ind; (k) = Yocgindg(k)o € Z/MZ[G]. This definition
depends clearly on the choices of [, A and s.

3. Similarly, for arbitrary k, define b, = v,; (k) =the oA-valuation of k and

Vilk) = Loeboo € Z[G]
Lemma 5.5.9. ind, and v, are Z[G]-homomorphisms.

The following result (due to Rubin) will play a key role in the proof of the Main
Conjecture. Its proof relies on Class field theory and is very technical; we decided
then to omit it. For details look at [Lan1] or [Wal].

Proposition 5.5.10. Let p be an odd prime. Letm > 1,F = Q(¢,,)* and G = Gal(F|Q).
Let € be an ideal class of F of order a power of p, let M be a power of p, and let
L > 1. Suppose we have a finite Z]G]-module

W c F*/(F*M
and a Z|GJ]-homomorphism
YW — Z/IMZ[G]
Then there are infinitely many primes A of F such that:

1. Ae ¢
2. 1=1 mod ML and [ splits completely in F;
3. the A-adic valuation of each w € W is congruent to 0 mod M,

4. there exists u € (Z/MZ)* such that
ind,(w) = ud(w)

forallw e W.

In order to prove proposition 5.3.2, we are going to assume a fact that follows from
some considerations regarding the theory of the ideal class groups. For a proof see
[Wa].

Proposition 55.11. Let x = 1 (ie. €, = €)). Then &(E}/C}) =1 for all n < co.
Moreover, €xX, = 0 for all n < oo (we set X, = X in this case).

Here is the proof of proposition 5.3.2:
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Proof. By theorem 4.45 and lemma 55.3, we know that for even j # 0 mod (p — 1)
we have
1+p

1+ 7T
Now let L, be the maximal unramified abelian p-extension of Q(&,n+1) and let M,

be the maximal abelian p-extension of Q(£,»+1) unramified outside p. Moreover recall

that X, = Gal(L,|Q({pn+1)) and X, = Gal(M,|Q(Epn+1)). From corollary 5.3.3 we have
an injection

&(U/CY) = lim (U} /Cy) = NS —1,w) (5.)

UMNE, — %,

and so U°/E;” «— %
Consider now the following two exact sequences:

1.0 - g(E, /Cy) = €(UZ/Cy) - (UP/E]) - 0

2.0 - X - Xy - (UPE]) -0

By proposition 5.4.3 we get:

- char(e(UP/C)) = char(g(UX/E})) - char(g/(E; [Cy))

- char(gX.) = char(X) - char(e(UP/EY))

Hence dividing the first expression by the second one we obtain:

char(e(U/C)))  charle(E] ICY))

char(¢¥.)  char(gX)

Therefore by the above expression and by expression 5.1 we deduce that:
char(g(E,"/C))) = char(eX) if and only if f(12 — 1, ) differs from char(eX..) by
a unit of A.

By proposition 5.4.15, this is equivalent to f(T, ') and char(e; ;X) differing by a unit
of A. This proves the equivalence of 1. and 2.

Suppose now that char(e;X) divides char(e/(E, /C,)) for all even j & 0 mod (p — 1).
By proposition 55.11 we have that both groups are trivial for j = 0, so we may
assume this divisibility happens for all j. Set €, = Z]. € withjevenand 0 <j < p-3.
Then char(e, X) divides char(e, (E, /C;)) and we have equality if and only if there
is equality for each j.

Notice that:

[1,16(E1/Cy)| = [E{/C}| = p-part of [E": C"] = |, X,| = p* o P"

for all n sufficiently large. Observe that A* = deg(char(e, X)), proceeding as in
the proof of theorem 4.2.4. Now set h; = char(¢(E; /C;)). By proposition 55.7 we
know that there is a constant ¢ > 0 such that

¢! (Ey/Ch)| < [M(Py, hj)| < clg(E{ICy)|
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for all n. Reasoning as in the proof of theorem 4.2.4, we deduce that there exist
A; = deg(h;) and p;, v; such that |A/(P,, h;)| = p»™P % for all n sufficiently large.
Let A = Y, ; and similarly define pp and v. Then:

i + + 0 + n _ + +ph +
c (p 3)/2pk n+ptpt4v < p)»nJr,up +v < C(p 3)/2pA n+ptpt+v

for all n sufficiently large. It follows that p* = p and A" = A. Therefore hoh, - - -
h, s = char(e, X) = [];char(e;X), since one polynomial divides the other and they
are monic of same degree. Hence h; = char(e;X) for every j. Then we can deduce

that 2. and 3. are equivalent.
[

5.6 The Proof

Finally it is time to prove The Main Conjecture.

Proof. Fix n > 0. We are going to use the techniques of the previous chapters to
study

F, = @(Cp““)Jr
Set
G, = Gal(Fn]Q)

and let M and L be respectively a large power of p and a product of primes, as in
section 5.1.

Roughly speaking, the idea is to choose an appropriate k(1) € C;n .1 and to apply induc-
tively some procedures of the previous sections to produce some elements k(L) € F).
In this way we will obtain information on the structure of the class group of F,. Be-
fore doing that, we need some remarks.

First of all: k,[, and A will have the same meanings of the previous paragraphs with
respect to the above F,. Now let x a character as before: since €,k is not defined
in general, we choose ¢, € Z[Gal(Q((,)|Q)] such that €, = €, mod M. Notice that
€,ZLp|Gn] = €, with A, = A/P, as usual. In particular, W(e)’crf) € €,(Ay/MA,) and
v(e,k) mod M may be regarded as an element of €,(An,/MAy).

Proposition 5.6.1. Let k(IL) and k(L) as in the previous sections. Then:
V(e k(L)) = —ind;(€,(k(L)) mod (MA,)

Proof. By proposition 5.1.4 we have that vy (k(IL)) = indy; (k(L)) mod M. Then using
the definitions of ¥ and ind we obtain the claim.
[

Let h, as in proposition 55.6 and let fy, ..., fp and 4, ..., €, as in proposition 5.5.8.
Choose a € 4 N B where i is as in proposition 5.5.4 and B still as in proposition
55.8. Notice that wlog we may assume that a is chosen relatively prime to P, for
all m, so that A,,/al\,, is finite for every m. We know that A/(h,, P,) = A,/h, A\, is
finite by proposition 55.7. Choose hg € N such that p™ annihilates both A,/alA, and
An/hy,N,. Therefore p™A, = al, and p™A, = h,\,, which implies that a|p™ and
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h,|p" in A,. Now we set M = |A,|p"**+Uh where A, is the class group of Q(¢pn+1)
as in the previous sections.

Let k(1) € C,nei be the unit of proposition 1.3.3 (where we replace n by n + 1). Let
¢4, ..., €, be as above and let €, be any ideal class.

We want to find primes A4,...,Apy1 € F, lying respectively above rational primes
li,..., .1 such that for every 1 <i < k + 1 we have:

1. A ed

2. i =1 mod ML,y where Li_y =1} - - - l;_4

3. ind), (€k(Li—1))([ 1, f;) divides e,a’h,, in €,(Ay/MA,)

We start by choosing A. The function 67 in proposition 5.5.6 induces a map
¥ e (EMENM) - Ay/MA, = €, ZIMZ[G,]

Proposition 55.10 implies that there are a prime Ay € €, and a u € (Z/MZ)* such
that I; =1 mod M and ¥(e k(1)) = u -ind,, (e,k(1)) mod (e,MZ[Gy]).

Since ¢, MZ|G,] C ¢,MZy[G,] = ¢,MA, we read the last congruence modulo
e, MA,.
However, by proposition 4.4.4 we know that €,k(1) generates e,CC_i1 and so proposition
5.5.6 implies that

On (e k(1)) = ah,v
for some v € A;;. Therefore recalling how ¥ is induced by 07 we get:
e,ah, = v'u-ind, (€)k(1)) mod (e,MA,)

This proves 3. for i = 1. To prove the general case, we proceed by induction:
suppose i > 1 and that we have found primes A4, ..., A; satisfying 1.,2. and 3. Then we
have the following (see [Wa] for a proof):

Lemma 5.6.2. Let W = ¢, (k(Li)An/MA,) C FX/(FX)M be the multiplicative group
generated by €;<I{I(Li) and its Galois conjugates and let p € \,. Then the map

VW = e, (A/MAy)
av;, (e k(L;
pe,k(Li) p—xl(;‘ (L)
is a well-defined A-homomorphism.
Let W and © as in the previous lemma. Then lemma 55.10 states that there exist
Aipt € €, with [,y =1 mod (ML;) and u € (Z/MZ)* such that

Yle; (’{“<Ll)> =u 'm)u‘ﬂ (69/((’{(111)) mod (€XMAH)

X

Therefore
—a - ind), (€, k(Li1)) = avy,(e,r(Ly) = fivle,r(Ly)) = fiu-ind,,,, (€ r(L))

modulo (MA,).
Now by the inductive hypothesis, we have that
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e,ath, = mki(egcrc(Li_l))(ﬂKi]‘j)- (an element of €, (A,/MAy,)).

Multiplying this equality by a and using the just found congruence, we get that 3.
holds also for i + 1.
Still by induction, we deduce that char(e,X) = ﬂf=1 fi divides a*™'h, in A,/MA,.
Indeed, if k = 1 then consider 3. as above: we have that f; divides ]—[}. —ofj = f1 which
divides €,a’h,, in €,(A,/MA,). Assuming that the result holds for k and using the
same argument of the previous line, one shows that the result holds also for k + 1.
Now by our choice of M, we can view A,/MA, contained in A,/p"A,, and so we
can say that char(e,X) divides a**'h,, also in A,/p"A,. However this implies that for
every n there exists g, € A such that

([T¢, f)gn = a**'h, mod (p", P,)

Since A is compact, there exists a convergent subsequence g, converging to some
g € A Since (4(P", Py) € Njoo(p, TV = 0, it follows that char(e,X)g = a**'h,,.
In other words, for any a € U4 N B relatively prime to P,, for all m, we have that
char(e,X) divides af*'h,. Since 4 N B has finite index in A, both T¢ and p¢ are in
UNDB for some ¢ > 1. Notice then that the polynomials ay = T¢ —p* and ay = T —p*
are relatively prime to each other and to (1 + T)P" —1 for all m because they have no
common roots. So in particular we obtain that char(e,X) divides a¥**'h, and a5*'h,,.
Since A is a UFD, we deduce that char(e,X) divides h,. Then we can conclude the
prove of The Iwasawa Main Conjecture by proposition 5.3.2.

[
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