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Introduction
The Iwasawa Main Conjecture gives relations between some algebraically defined
Iwasawa modules and the analytically defined �-adic L-functions. It was proved for
abelian Number Fields by Mazur and Wiles in 1984 using deep techniques from
Algebraic Geometry. Therefore it is also known as "The Mazur-Wiles theorem".
In 1990, Karl Rubin found a simpler proof using a particular example of the so-called
Kolyvagin’s Euler Systems. The aim of this thesis is to give a detailed exposition of
Rubin’s proof of "The Main Conjecture" of Iwasawa theory for Q(ζ�∞), with � odd
prime, providing the necessary background to understand it.
The thesis is divided into 5 chapters as follows.
In chapter 1 we give some basic results about the arithmeticity of Cyclotomic fields
(with a special focus on Q(ζ�� )) and we introduce CM-fields and their maximal real
subfields. Moreover we discuss the Cyclotomic units of Q(ζ�� )+ to deduce properties
of the Cyclotomic units of Q(ζ�� ) itself, such as some facts about their corresponding
class numbers. The main reference for this is [Wa].
In chapter 2 we study Dirichlet characters (in particular the Teichmüller character
ω), Dirichlet L-series and �-adic L-functions. We follow basically [Con1], [Wa] and
[Iw], but also some notes taken during a course held by Professor Massimo Bertolini
regarding Modular forms.
In chapter 3, we describe the algebraic properties of the Iwasawa algebra Λ = Z�[|T|],
with special attention to the Structure theorem for finitely generated Λ-modules given
in terms of a pseudo-isomorphism. This is done referring to [Neu2] and to some
notes taken during a course on Iwasawa theory held by Professor Andreas Nickel.
Then, following again [Wa] and [Iw], we conclude the chapter applying some of the
previous results to describe another way to construct �-adic L-functions. The most
important result about this section is that we can find a power series � (T� ω�) such that
L�(�� ω�) = � ((1 + �)� − 1� ω�). This turns out to be fundamental for stating The Main
Conjecture.
In chapter 4 we treat the theory of Z�-extensions. Following [Wa] and [Wi] we give
an introduction to Infinite Galois theory and the corresponding Ramification theory.
Next, we show how to prove the Iwasawa’s theorem about ideal class groups in Z�-
extensions, using the approaches of [Wa] and [Bro]. Furthermore, we define the
orthogonal idempotents and we study some consequences of the decomposition that
they produce on Λ-modules, following [Sa3]. Finally, as an important application, we
discuss in the setting of Q(ζ�� ) the behavior of the local units modulo Cyclotomic
units and the Maximal Abelian �-extension unramified outside �. For this we refer
to [Wa] and [Lan1].
In chapter 5, we finally prove The Iwasawa Main Conjecture. We introduce the Euler
Systems of Cyclotomic units that we need in order to study the problem in detail.



Besides, we discuss the cardinality of the ideal class group of Q(ζ�)+ using the basic
properties of the previously defined Euler systems. The proof of the most important
result of this section gives an idea of the strategy that is used to prove the Mazur-
Wiles theorem. After this, we give three equivalent statements of The Iwasawa Main
Conjecture. In order to prove the equivalence, we develop a small part of the theory
of Adjoints. Finally, we need to discuss other important techniques of Iwasawa theory
which allow us to conclude the proof. The main reference for this chapter is [Wa].
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Chapter 1Basic results on Cyclotomic fields andCyclotomic units
The aim of this chapter is to give the basic background about Cyclotomic fields,
CM-fields and Cyclotomic units.

1.1 Some facts on Cyclotomic fields
Let ζ� be a primitive �-th root of unity for every � ≥ 1. We start proving some useful
arithmetic properties of Q(ζ�). In order to do this, we recall some results that we
take for granted.
Facts. 1. Remind that the �-th cyclotomic polynomial is defined to be Φ�(X) =�

ζ∈S�
(X − ζ) where S� is the set of the primitive �-th roots of unity. One can

prove that Φ�(�) ∈ Z[X] and that it is irreducible for every � ≥ 1. If � = ��

where � is a prime number, then we have

- Φ�(X) = Φ�(X) =
X� − 1
X − 1 = X�−1 + ��� + X + 1 if � = 1

- Φ�(X) = Φ�� (X) =
X�� − 1

X��−1 − 1
= X��−1(�−1) + ��� + X��−1 + 1 if � ≥ 2

2. Recall also that if ζ ∈ S� then [Q(ζ) : Q] = φ(�) where φ is the Euler function.

3. Let K be a number field. We will denote by �K its ring of integers. Then it is
known that for K = Q(ζ�) we have �K = Z[ζ�].

4. A prime number � ramifies in Q(ζ�) if and only if � | �.

5. A prime number � splits completely in Q(ζ�) if and only if � ≡ 1 mod �.Lemma 1.1.1. Let � ≥ 1 and K = Q(ζ�). If ζ and ζ� are two primitive �-th roots of
unity, then 1−ζ�

1−ζ is a unit in �K .

Proof. We know by elementary group theory that there must be an integer � relatively
prime to � such that ζ� = ζ�. Now notice that

1 − ζ�

1 − ζ = 1 + ζ + ��� + ζ�−1 ∈ �K = Z[ζ�]�

1
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Since we can interchange the roles of ζ and ζ�, arguing as above we also find that
1−ζ
1−ζ� ∈ �K . This implies the statement.

Proposition 1.1.2. Suppose that � is not a prime power. Then 1 − ζ� is a unit of
Z[ζ�] and

�
0<�<�
(���)=1

(1 − ζ�
�) = 1.

Proof. From fact number 1 above we get that X�−1 +X�−2 + ���+X +1 =
��−1

�=1 (X −ζ�
�).

Setting X = 1 follows that � =
��−1

�=1 (1 − ζ�
�). Now let � be a prime dividing �

and say that �� is the biggest power of � that divides �. Since � runs trough the
multiples of �/�� lesser or equal than � − 1, we deduce that the above product has���−1

�=1 (1 − ζ�
�� ) = �� between its factors. Removing this product and applying this

reasoning to every prime that divides �, it follows that 1 =
�

�(1 − ζ�
�) where the

product is over those � ’s such that ζ�
� has not a prime power order. Since � has

at least two distinct prime factors we must have that 1 − ζ� appears in the previous
product. Therefore it is a unit. This proves the first part of the proposition. For the
second one, notice that �Q(ζ�)|Q(1 − ζ�) =

�
(���)=1(1 − ζ�

�) = ±1. However since in this
case the complex conjugation is in G��(Q(ζ�)|Q), the norm of every element can be
written in the form αα for some α. Hence we deduce that previous norm must be 1,
i.e.

�
(���)=1(1 − ζ�

�) = 1. Thus the proof is complete.

Proposition 1.1.3. Let � be a prime number and let K = Q(ζ�� ). Then the principal
ideal (1 − ζ)�K is a prime ideal of �K and ��K = (1 − ζ)φ(��)�K . In particular, � is
totally ramified in �K .

Proof. Firstly, notice that by the previous remark one finds that Φ�� (1) = � but also

Φ�� (1) =
�

ζ�∈S��

(1 − ζ�) = (1 − ζ)φ(��)
�

ζ�∈S��

1 − ζ�

1 − ζ

Now by the previous lemma, we have that �
def
=

�
ζ�∈S��

1−ζ�

1−ζ is a unit in �K . Putting all
together we get � = �(1 − ζ)φ(��) and so ��K = (1 − ζ)φ(��)�K . Now let (1 − ζ)�K =
p�1

1 · · · p��
� be the factorization of (1 − ζ)�K into prime ideals. Thus we deduce that

��K = (1 − ζ)φ(�)�K = pφ(�)�1
1 · · · pφ(�)��

�

Comparing this to the fundamental equation about the degrees, we find that

[Q(ζ�� ) : Q] = φ(�) =
�

1≤�≤�
����φ(�)

Hence we deduce that � = �1 = �1 = 1. This implies the statement.

Lemma 1.1.4. Let � and � be two positive integers. Then Q(ζ�) ∩ Q(ζ�) = Q(ζ(���)).
In particular, if (�� �) = 1 then Q(ζ�) ∩ Q(ζ�) = 1.

Proof. Clearly we have that Q(ζ(���)) ⊆ Q(ζ�) ∩ Q(ζ�). Now we show that actually the
equality holds proving that Q(ζ�) ∩ Q(ζ�) and Q(ζ(���) have the same degree over Q.
We indicate by [�� �] the least common multiple of � and �. Notice that
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[Q(ζ[���]) : Q] · [Q(ζ�) ∩ Q(ζ�) : Q] = [Q(ζ�) : Q] · [Q(ζ�) : Q]
Then using Fact 2 above follows that

[Q(ζ�) ∩ Q(ζ�) : Q] = φ(�)φ(�)
φ([�� �])

Next, recalling that ��/[�� �] = (�� �) and applying the known formulas for φ
(see [Con2]) we deduce that [Q(ζ�)∩Q(ζ�) : Q] = φ((�� �)). However this is the degree
of Q(ζ(���)) over Q. This concludes the proof.

Remark 1. Let � and � two positive integers such that (�� �) = 1 as before. Since
Q(ζ�)|Q and Q(ζ�)|Q are two Galois extensions, then the previous lemma implies that
Q(ζ�) and Q(ζ�) are linearly disjoint over Q (one can look at [Cla] for more details
about the notion of linear disjointness).Lemma 1.1.5. If an algebraic integer is such that its conjugates have absolute value
1, then it is a root of unity.

Proof. First of all, consider any polynomial in Q[X] of degree � such that all its roots
have absolute value equal to 1. Then if we consider the coefficient of this polynomial
related to the power X� , we have that it is bounded by

��
�
�
. Then set � = [K : Q]

and let � (X) be the minimal polynomial of α over Q where α is an algebraic integer
whose conjugates have absolute value 1. Then we know that actually the coefficients
of � (X) are in Z. Thus using the previous bound and the fact that the coefficients of
� (X) are integers we can deduce that there only finitely many algebraic integers as α.
Now consider a power of α, say α� . This is clearly an algebraic integer and its degree
over Q is at most �. Moreover, if α1 = α� α2� ���� α� are the conjugates of α then
α�

1� ���� α�
� are the conjugates of α� . Hence, by the above argument, we deduce that

the set of powers of α form a finite multiplicative group. This concludes the lemma.

Proposition 1.1.6. Let � be a unit of Z[ζ�]. Then there exist �1 ∈ Q(ζ� + ζ−1
� ) and

� ∈ Z such that � = ζ�
��1.

Proof. Let α = �/� . Notice that the complex conjugation ρ is such that ρ(Z[ζ�]) = Z[ζ�]
(just let ρ act on the Z-basis {1� ζ�� ���� ζ�−2

� }). Hence also � is a unit of Z[ζ�]. This
implies that α is an algebraic integer. Moreover, since ρ commutes with every element
of G��(Q(ζ�)|Q) we have that all conjugates of α have absolute value 1. By lemma 1.1.5,
we deduce that α is a root of unity and therefore �/� = ±ζ�

� for some integer � (recall
that the only roots of unity in Q(ζ�) are of this form). Suppose then that α = −ζ�

� and
write � = �0 +�1ζ� + ���+��−2ζ�−2 with �� ∈ Z for every �. Then � ≡ �0 +�1 + ���+��−2
mod (1 − ζ�). Moreover � = �0 + ��ζ−1

� + ��� ≡ �0 + �1 + ��� + ��−2 ≡ � = −ζ�
�� ≡ −�

mod (1 − ζ�). Hence 2� ≡ 0 mod (1 − ζ�). However 2 �∈ (1 − ζ�). Since (1 − ζ�) is
a prime ideal, we deduce that � ∈ (1 − ζ�) and this is a contradiction because � is a
unit. Therefore we have that �/� = +ζ�

� , i.e. � = ζ−�
� � . Let � ∈ Z such that 2� ≡ �

mod � and let �1 = ζ−�
� � (notice that such � exists because � is odd). Then � = ζ�

��1
and �1 = ζ�

�� = ζ�−�
� � = �1. This proves the proposition since Q(ζ� + ζ−1

� ) is the fixed
field of ρ.Lemma 1.1.7. The roots of unity in Q(ζ�) are of the form ±ζ�

� for � ∈ Z. The plus
sign holds if � is even, the minus if � is odd.
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Proof. Let ζ� be a primitive �-th root of unity in Q(ζ�). Suppose that � is even and
write � = 2� with � ≥ 1. Then Q(ζ�) contains a primitive �-th root of unity where
� is the least common multiple of � and �. This implies that Q(ζ�) ⊆ Q(ζ�) and
so considering the degrees over Q we obtain that φ(�) | φ(2�), where φ is the Euler
function. Since 2� is even, using the known formulas for φ (see [Con2]) one can
prove that this implies � = 2� = �. Hence � | � and so ζ� is an �-th root of unity.
Now suppose that � is odd. Notice that then Q(ζ�) = Q(ζ2�). Arguing as above we
obtain that ζ� is a 2�-th root of unity. Since ζ2� = −ζ�, we can conclude the proof.

Remark 2. Now we discuss an important subfield of Q(ζ�) for � ≥ 3. In particular, we
consider Q(ζ�) ∩ R. Notice that ζ� + ζ−1

� is real. Then one can show that Q(ζ�) ∩ R =
Q(ζ� + ζ−1

� ). This is the maximal real subfield of Q(ζ�) and is denoted by Q(ζ�)+. It is
important to point out that the extension Q(ζ�)|Q(ζ� + ζ−1

� ) is of degree 2 since ζ� is
a root of X2 − (ζ� + ζ−1

� )X + 1. More in general, if K is a number field we denote by
K+ its maximal real subfield.

Lemma 1.1.8. Let � = �� and consider the extension Q(ζ�)|Q(ζ�)+. This is ramified
at a finite prime p if and only if p lies above �.

Proof. Keep on mind that by lemma 1.1.3 we know that � is totally ramified in Q(ζ�).
Moreover, by fact number 4 at the beginning of the chapter, we know that � is the
only prime number that ramifies in Q(ζ�).
Now let p be a prime of Q(ζ�)+ that ramifies. Say that q is a prime of Q(ζ�) that lies
above p and that appears in its factorization with exponent � ≥ 2. Say � = p ∩ Z is
the prime of Z under p. Then � lies also under q and so it ramifies in Q(ζ�). This
implies � = �.
On the other hand, if p is a prime of Q(ζ�)+ that lies above � then (1 − ζ�)�Q(ζ�) is
necessarily the only prime ideal above p. Using that � is totally ramified, the previous
remark and the known formulas for the degrees, one finds that the ramification index
of (1 − ζ�)�Q(ζ�) at p is equal to 2. This implies the statement.

Remark 3. Consider again � = �� and the extension Q(ζ�)|Q(ζ�)+. Let π = (1 −
ζ�)�Q(ζ�) and νπ be the π-valuation. Now notice that one can give a shorter proof of
the previous lemma using the ramification indices. However, we decided not to use
this argument since the previous proof shows an interesting property of νπ . If J is
an ideal of �Q(ζ�)+ then νπ(J) is necessarily even. To see this, is enough to consider
the factorization on J and to use that a prime in its factorization has valuation equal
to 2, as showed in the above proof.

We conclude this section just stating the following interesting proposition. We
refer to [Wa] for a proof.

Proposition 1.1.9. Let � ∈ N and K = Q(ζ� + ζ−1
� ). Then �K = Z[ζ� + ζ−1

� ].

1.2 CM-fields
In this section we are going to study some properties of the CM-fields so that we can
deduce some results about the ideal class group of Q(ζ�).
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Definition 1.2.1. - A number field is called totally real if all its embeddings into
C lie in R. On the other hand, a number field is called totally imaginary if none
of its embeddings lie in R.

- A CM-field is a totally imaginary quadratic extension of a totally real number
field.

Example 1. let � ≥ 1. Recalling that the maximal real subfield of Q(ζ�) is Q(ζ� + ζ−1
� ),

one finds that Q(ζ�) is a CM-field.
We decided to omit the proof of the following theorem since it follows applying

a result of Class field theory whose proof has nothing to do with cyclotomic units. A
proof can be found in [Lan1] or [Wa].Theorem 1.2.1. Let K be a CM-field, K+ its maximal real subfield, and let � and
�+ be the respective class numbers. Then �+ divides �. The ratio �− def

= �
�+ is called

the relative class number.Theorem 1.2.2. Let K be a CM-field and let E be its unit group. Let E+ be the unit
group of K+ and let W be the group of roots of unity in K. Then Q

def
= [E : WE+] = 1

or 2.

Proof. Define φ : E → W by φ(�) = �/� . Since K is a CM-field, we have that �σ = (�)σ
for all embeddings σ of K into C. Hence |φ(�)σ | = 1 for every σ . By lemma 1.1.5, we
deduce that φ(�) ∈ W . Denote by ψ : E → W/W 2 the natural map induced by φ. Now
we want to show that K��(ψ) = WE+. Firstly, notice that |W/W 2| = 2 (we have just
the cosets of 1 and of a suitable primitive root of unity). Thus, consider � = ζ�1 with
ζ ∈ W and �1 ∈ E+. Then φ(�) = ζ2 ∈ W 2 (recall that ζ = ζ−1) and so � ∈ K��(ψ).
Conversely, suppose φ(�) = ζ2 ∈ W 2. Notice that it follows that �1 = ζ−1� is real since
�/� = ζ2 implies �1 = ζ−1� = ζ� and so �1 = ζ� = ζ−1� = �1. Thus also the other
inclusion holds and we get that K��(ψ) = WE+. Since |W/W 2| = 2, we can conclude.

Remark 4. With the notation as in the previous theorem, notice that we have Q = 2
if φ(E) = W and Q = 1 if φ(E) = W 2.

For completeness, we state an interesting corollary. For a proof see [Wa] again.Corollary 1.2.3. Let K = Q(ζ�). Then Q = 1 if � is a prime power and Q = 2 if � is
not a prime power.Notation: From now on, given a number field K, we will denote by C�(K) its ideal
class group.Theorem 1.2.4. The natural map C�(Q(ζ�)+) � C�(Q(ζ�)) is injective.

Proof. Suppose that I is an ideal of Q(ζ�)+ such that its lift to Q(ζ�) is a principal ideal,
namely I is in the kernel of the natural map. Then for proving the claim is enough
to show that actually I is principal. Now let I · Q(ζ�) = (α) with α ∈ Q(ζ�). Then
(α/α) = (1) since I ⊆ R. This implies that α/α is a unit. Moreover notice that it has
absolute value equal to 1. By lemma 1.1.5, we obtain that α/α is a root of unity. Now if
� is not a prime power, then Q = 2. Therefore by the proof of the previous theorem
we have that there exists a unit � of Q(ζ�) such that �/� = α/α. Hence α� = α� is
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real and I · Q(ζ�) = (α) = (α�). By the unique factorization of ideals we deduce that
I = (α�), so that I is principal in Q(ζ�)+.
Now suppose that � = ��. By proposition 1.1.3 we know that π

def
= ζ�� − 1 is a prime

element. Observe that we have π/π = −ζ�� , which generates the roots of unity in
Q(ζ�� ) by lemma. Hence, there exists � ∈ Z such that α/α = (π/π)� . Now consider
the π-valuation νπ . By remark 3 we know that νπ(Q(ζ�)+) ⊆ 2Z and recalling that απ�

and I is real, we get that � = νπ(απ�) − νπ(α) = νπ(απ�) − νπ(I) is even. This implies
α/α = (−ζ�� )� ∈ W 2. It follows that α/α = γ/γ for some root of unity γ and that αγ
is real. Arguing as in the previous case, we deduce that I = (αγ). Hence I is actually
principal and we can conclude the proof.

Moreover, as a consequence of a general result of Class field theory about norms
map, one has the following theorem. For details about it, we refer to [Lan1].Theorem 1.2.5. Consider C�(Q(ζ�)) and let K be an imaginary abelian extension of
Q. Then the norm map

NK|K+ : C�(Q(ζ�)) → C�(Q(ζ�)+) is surjective.

1.3 Cyclotomic units of Q(ζ��)+

Definition 1.3.1. - Let � �≡ 2 mod 4. Define V� as the multiplicative group gen-
erated by

{±ζ�� 1 − ζ�
�|1 ≤ � ≤ � − 1}

- Let E� be the group of units of Q(ζ�) and define C� = E� ∩V�. Then C� is called
the group of cyclotomic units of Q(ζ�).

- If K is an abelian number field, we define the cyclotomic units of K by letting
K ⊆ Q(ζ�) with � minimal and setting CK

def
= EK ∩ C� where EK is the group of

units of K (notice that this definition is suitable for Q(ζ�)+).Lemma 1.3.1. Let � be a prime and � ≥ 1.

1. The cyclotomic units of Q(ζ�� )+ are generated by −1 and the units:

ξ� = ζ(1−�)/2
��

1 − ζ�
��

1 − ζ��

with 1 < � < ��

2 and (�� �) = 1.

2. The cyclotomic units of Q(ζ�� ) are generated by ζ�� and the cyclotomic units
of Q(ζ�� )+.

Proof. For simplicity about the notation, write ζ = ζ�� . Recall that the definition of the
cyclotomic units involves 1 − ζ� with � �≡ 0 mod ��. Now let � < � and (�� �) = 1.
Then using the relation 1 − X�� =

���−1
�=0 (1 − ζ���−�X), we get that
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1 − ζ��� =
���−1

�=0 (1 − ζ�+���−� )

Since (�� � + ���−�) = 1, we can deduce that it is enough to consider those � with
(�� �) = 1. Moreover, 1 − ζ� and 1 − ζ−� differ only by the factor −ζ�, so similarly we
can consider only those � with 1 ≤ � < ��

2 . Suppose now that

ξ
def
= ±ζ�

�

1≤�< ��
2

(���)=1

(1 − ζ�)��

with �, �� ∈ Z for all �, is a unit of Q(ζ). Since by lemma 1.1.1 the ideals (1 − ζ�)
are all the same, it follows that

�
� �� = 0. Therefore

ξ = ±ζ�
�

1≤�< ��
2

(���)=1

�
1 − ζ�

1 − ζ

���

= ±ζ�
�

1<�< ��
2

(���)=1

ξ��
�

where �
def
= � + 1

2
�

1≤�< ��
2 �(���)=1 ��(� − 1). If ξ ∈ Q(ζ)+ then since each factor in

the above product is real, ±ζ� must be real, hence equal to ±1. This proves 1� Now
if � = 2 then (�� �) = 1 implies that � is odd, so that ζ� is in Q(ζ) in all cases. This
completes the proof of 2�

For completeness we give the following statement. The proof involves the theory
of regulators, and so we decided not to give the details. If one is interested, we suggest
to look at [Wa], again.Theorem 1.3.2. Let � be a prime and � ≥ 1. The cyclotomic units C+

�� of Q(ζ�� )+
are of finite index in the full unit group E+

�� , then

�+
�� = [E+

�� : C+
�� ]

where �+
�� is the class number of Q(ζ�� )+.

We conclude the section with a proposition that provide us a particular cyclotomic
unit that will be used in the proof of The Iwasawa Main conjecture.Proposition 1.3.3. Let � be a primitive root modulo ��. Then

ζ(1−�)/2
��

1 − ζ�
��

1 − ζ��

generates C+
��/{±1} as a module over Z[G��(Q(ζ�� )+|Q)].

Proof. For simplicity of the notation, write ζ = ζ�� . Let (�� �) = 1. Then � ≡ ��

mod �� for some � > 0 by definition of primitive root. Hence

ζ(1−�)/2·
1 − ζ�

1 − ζ = ζ(1−�� )/2·
1 − ζ��

1 − ζ =
��−1

�=0 ζ(��−� (�+1))/2·
1 − ζ��+1

1 − ζ�� =
��−1

�=0

�
ζ(1−�)/2·

1 − ζ�

1 − ζ

�σ�
�

Then we can conclude the proof using lemma 1.3.1.





Chapter 2Characters and L-functions
The aim of this chapter is to give the analytic background for studying The Iwasawa
Main Conjecture. We start discussing Dirichlet characters, and then we pass to the
classical L-functions and to their analogous for the �-adic setting.

2.1 Dirichlet characters
Definition 2.1.1. Let � ≥ 1. A Dirichlet character modulo � is a multiplicative
homomorphism χ : (Z/�Z)× → C×. When it will be clear from the context we will
say only "character" to indicate a Dirichlet character.

Remark 5. Notice that if �|� then a Dirichlet character χ : (Z/�Z)× → C× induces
a homomorphism (Z/�Z)× → C× by composition with the natural map (Z/�Z)× →
(Z/�Z)×. In this way, one can regard χ as being defined modulo � or modulo �. This
leads us to the following

Definition 2.1.2. Let the notation be as in the above remark. If � is minimal, then
it is called the conductor of χ and it is denoted by �χ . When a Dirichlet character is
defined modulo its conductor then it is called ���������.

Remark 6. - Notice that 1 = χ(1) = χ((−1) · (−1)) = χ(−1)2. This implies that
χ(−1) = ±1.

- Recall that |(Z/�Z)×| = φ(�) where φ is the Euler function. Thus for every �
mod � ∈ (Z/�Z)× we have 1 = χ(1) = χ(�φ(�) mod �) = χ(� mod �)φ(�). This
means that the image of χ is contained in the set of the φ(�)-th root of unity.

- It is common to extend a Dirichlet character χ to a map �χ : Z → C in the
following way: we set �χ(�) = 0 if (�� �χ) �= 1, otherwise we set �χ(�) = χ(�
mod �). When it will be clear on the context, we will write just χ instead of �χ.

Definition 2.1.3. A Dirichlet character such that χ(−1) = 1 is said to be even; if
χ(−1) = −1 then χ is said to be odd.

Remark 7. Here are some useful properties about Dirichlet characters:

- Let χ be any character modulo � and let ψ = χ where the bar indicates the
complex conjugation. Then ψ(� mod �) = χ(� mod �)−1. It follows that χχ(�

8
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mod �) = 1 for every � coprime with �. Thus the set of characters of conductor
� is actually a multiplicative group with multiplication defined pointwise. The
identity element is called the trivial character and clearly it is the character
that maps everything to 1. By convention, we say that the trivial character has
conductor 1.

- If (�χ� �ψ) = 1 then �χψ = �χ�ψ .

For our purposes will be useful to be able to define a product of primitive char-
acters with different conductors. We give the following:

Definition 2.1.4. Let χ and ψ be primitive Dirichlet characters of conductors respec-
tively �χ and �ψ . We define the product χψ as follows. Consider the homomorphism

γ : (Z/���(�χ� �ψ)Z)× → C×

defined by γ(�) = χ(�)ψ(�). Then χψ is the primitive character associated to γ .

Now we are going to generalize the notion of characters.

Definition 2.1.5. Let G be a finite abelian group and let �G be the group of the multi-
plicative homomorphisms from G to C× (the group law is the pointwise multiplication).
We call it the group of the Dirichlet characters of G .

Proposition 2.1.1. Let G be a finite cyclic group of size � with a fixed generator γ .
Then there are exactly � characters of G .

Proof. First of all notice that since γ generates G then the values of a character χ
are determined by its value on γ . By the above remark, we know that χ(γ) is an �-th
root of unity. Hence there are at most � characters. Now we show that there are at
least � characters, so that the statement holds. Let ζ1� ���� ζ� be all the �-th roots of
unity and for every � define χ�(γ) = ζ�. We have that χ1� ���� χ� are characters and they
are all distinct since they have different values on the generator γ . This concludes
the proof.

Even if the next result is important, its proof requires some space and so we
decided to omit it. The interested reader can find a proof in [Con1].

Lemma 2.1.2. Let G be a finite abelian group and let H be a subgroup of G . Then
any character of H can be extended to a character of G in [G : H] ways.

Lemma 2.1.3. Let G be a finite abelian group and let � ∈ G a non-trivial element.
Then χ(�) �= 1 for some character χ of G . Moreover we have |G| = �G .

Proof. Consider the cyclic group ��� and say that |���| = �. Since ��� is non-trivial
then � > 1. Now also the group of the �-th roots of unity µ� is cyclic and has
cardinality equal to �. Therefore we have ��� � µ�. Notice that this isomorphism
gives us a character χ of the group ��� such that χ(�) �= 1. By lemma 2.1.2, we have
that χ extends to at least one character �χ of G . This proves the first part of the lemma.
For the second part, call H = {1G} and �H = {ψ}. Now we apply lemma 2.1.2 to H . In
this way, we find that ψ extends to |G| distinct elements of |�G| and so |G| ≤ |�G|. On
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the other hand, an element of �G when restricted becomes a character of H and so
it must be one of the extensions of ψ. This proves that |�G| ≤ |G| and concludes the
proof.

Lemma 2.1.4. If G is a finite cyclic group then G � �G .

Proof. We have to show only that also �G is a cyclic group. This will imply the
statement since by lemma 2.1.3 we have |�G| = |G|. Let |G| = � and let γ be a
generator of G . Now choose ζ a primitive �-th root of unity and define χ ∈ �G by
χ(γ) = ζ. Notice that if ψ is another element of �G then ψ(γ) = ζ� for some integer �.
Hence ψ = χ� and this proves that χ generates �G .

Proposition 2.1.5. If G1 and G2 are finite abelian groups then \G1 × G2 � �G1 × �G2.

Proof. Let χ be a character of G1 × G2. Let χG1 and χG2 be the restrictions of χ to G1
and G2 respectively, i.e. χG1 (�) = χ(�� 1) and χG2 (�) = χ(1� �). Then χG1 and χG2 are
characters of G1 and G2 respectively and χ(�� �) = χ((�� 1)(1� �)) = χ(�� 1)χ(1� �) =
χG1 (�)χG2 (�). Hence we get a map

φ : \G1 × G2 → �G1 × �G2,
χ �� (χG1� χG2 )

Notice that φ is a group homomorphism and moreover its kernel is trivial since if χ is
in the kernel then χG1 and χG2 are trivial characters and so χ(�� �) = χG1 (�)χG2 (�) = 1,
i.e. also χ is trivial. By lemma 2.1.3 the domain and codomain of φ have same
cardinality and so we conclude the proof.

Lemma 2.1.6. If G is a finite abelian group, then G � �G (non-canonically).

Proof. By hypothesis G is isomorphic to the direct product of several finite cyclic
groups, say G � H1 × ��� × H� with H� finite cyclic for every �. As a consequence
of the previous lemma, we have that \(H1 × ��� × H�) � �H1 × ��� × �H� . However H� is
finite and cyclic for every � and so �H� � H�. This proves that �G � \(H1 × ��� × H�) �
H1 × ��� × H� � G and so we are done.

Corollary 2.1.7. We have ��G � G (canonically).

Proof. Let � ∈ G and define �� : �G → C× by χ �� χ(�). Consider the homomorphism
of groups φ : G → ��G defined by � �� �� . We prove that φ is an isomorphism. Then
let � ∈ K��(φ), i.e. suppose that χ(�) = 1 for all χ ∈ �G . By lemma 2.1.3 we deduce
that � = 1, so that φ is injective. Still by lemma 2.1.3 we have that |G| = |�G| = |��G|
and this proves the corollary.

Remark 8. It is usually convenient to identify ��G with G thanks to the previous corol-
lary. Moreover notice that we have a natural pairing
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G × �G → C×

(�� χ) �� χ(�)

The interesting fact is that this pairing is non-degenerate, i.e. if χ(�) = 1 for all χ ∈ �G
then � = 1 by the argument in the previous proof and if χ(�) = 1 for all � ∈ G then
by definition of the trivial character we get χ = 1.

Now we give a fundamental example of character that we will use heavily in the
proof of the Main Conjecture. The notation that we are going to introduce will be
used in the rest of the treatment.
Example 2 (The Teichmüller character). First of all, we review some basic facts
of �-adic analysis. Recall that (Q�� | · |�) is the completion of (Q� | · |�) where | · |� is
the �-adic norm. Moreover Z� = {� ∈ Q� : |�|� ≤ 1} is a subring of Q� and Z is
dense in Z� since Q is dense in Q� . Furthermore, Z� is a DVR with maximal ideal
�Z� = {� ∈ Q� : |�|� < 1} and so Z×

� = {� ∈ Q� : |�|� = 1}. It is known (see [Gou]
for example) that Z�/�Z� � Z/�Z. From now on, we will identify them.
Now consider the natural surjective map π : Z� ⇣ Z�/�Z� = Z/�Z = F� which
induces a map �π : Z×

� → F×
� still surjective. Consider also the equation ��−1 − 1 = 0

in F� . Its roots are exactly the elements of F×
� and so in particular they are simple.

By the Hensel Lemma, if δ is a root then it lifts through �π to a unique element β of
Z×

� such that β mod � = δ and β�−1 − 1 = 0 in Z� . This implies that µ�−1= group
of (� − 1)-st roots of unity is isomorphic to a subgroup of Z×

� . In particular one
obtains a decomposition Z×

� = µ�−1 × (1 + �Z�) where notice that 1 + �Z� = K��(�π)
(for details about the decomposition, see [Gou]). Since Q� = Z�[ 1

� ], one finds that
Q×

� = �Z ×Z×
� = �Z × µ�−1 × (1 + �Z�). Therefore, any α ∈ Q×

� can be written uniquely
as α = �� · ζ · (1 + �β) for � ∈ Z, ζ ∈ µ�−1, β ∈ Z� . Notice that � = ν�(α), �α� = (1 + β)
and denote ζ by ω(α). Hence we have just defined a map

ω : Z×
� → µ�−1, α �� ω(α)

The above function is called the Teichmüller map. From the fact that every α ∈ Z×
�

can be written in a unique way as ω(α)·(1+�β) we also have the fundamental property
that ω(α) ≡ α mod �.
Now notice that ω induces an isomorphism

(Z/�Z)× = (Z�/�Z�)× → µ�−1,
α mod � �� ω(α)

Fixing once and for all embeddings of Q into C� and into C we may view µ�−1
contained either in C� or C according to our needs. In particular, in this way we have
just defined a Dirichlet character (Z/�Z)× → C× that we will still denote by ω and that
is called the Teichmüller character. One can show that ω is an odd character.

2.2 �-adic L-functions
In this section we firstly recall the basic notion of L-function. After that, we are going
to define its analogous for the �-adic case and to study some of its properties which
will be very important in what follows.Convention: In what follows, including also the next chapters, by saying "Dirichlet
character", we actually mean "primitive Dirichlet character".
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Definition 2.2.1. Let χ be a Dirichlet character of conductor � . The L-function at-
tached to χ is the series defined by

L(�� χ) =
∞�

�=1

χ(�)
��

for R�(�) > 1.

Remark 9. - Notice that for χ = 1 the L-series is nothing but the Riemann zeta
function. It is well known that L(�� χ) may be continued analytically to the
whole complex plane, except for a simple pole at � = 1 when χ = 1 (see [Fr]
for example).

- Let P be the set of all prime numbers. Then L(�� χ) has the following convergent
"Euler" product expansion:

L(�� χ) =
�

�∈P(1 − χ(�)�−�)−1 =
�

�-� (1 − χ(�)�−�)−1

with R�(�) > 1. For a reference, see [Fr] again. Notice that using the above
formula is clear that L(�� χ) �= 0 for R�(�) > 1, since χ(�)�� �= 0 for every prime
� (see the remark on page 198 in [Fr]).

Definition 2.2.2. Recall that the Bernoulli numbers B� are defined as those rational
numbers such that

�
�� − 1 =

∞�

�=0
B�

��

�!

Remark 10. Let Q[|�|] be the ring of formal power series with coefficients in Q. The
previous definition makes sense since �� =

�∞
�=0

��

�! implies that �� − 1 =
�∞

�=1
��

�! ∈
Q[|�|]×. In particular we get that

�
�� − 1 = 1

1 + �
2 + �2

3! + ���
=

� ∞�

�=0

��

(� + 1)!

�−1

∈ Q[|�|]×

Definition 2.2.3. Let χ be a Dirichlet character of conductor � as before and denote
by Q(χ) the field generated over Q by χ(�) with � ∈ Z. The generalized Bernoulli
numbers B��χ are defined by

��

�=1

χ(�)����

��� − 1 =
∞�

�=0
B��χ

��

�! ∈ Q(χ)[|�|]

Remark 11. - Also this definition makes sense since arguing as above we get
��� − 1 ∈ Q(χ)[[�]]×.

- Notice that we always have χ(� ) = 0 unless χ is the trivial character. If this is
the case, we have � = 1.
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- When χ = 1 we obtain

∞�

�=0
B��1

��

�! =
���

�� − 1 =
�

�� − 1 + �

so that B��1 = B� except for � = 1 when we have B1�1 = 1
2 � B1 = −1

2 . Observe
also that if χ �= 1 then B0�χ = 0 since

��
�=1 χ(�) = 0.

Definition 2.2.4. We define the Bernoulli polynomials B�(X) as those polynomials
such that

��X�

�� − 1 =
∞�

�=0
B�(X) ��

�!

Remark 12. - By a direct computation one finds that B�(1 − X) = (−1)�B�(X).

- Since the generating function is the product of �
��−1 =

�
B�

��

�! and �X� =
�

X� ��

�!
it follows that B�(X) =

��
�=0

��
�
�
(B�)X�−�.

Proposition 2.2.1. Let F be any multiple of � . Then

B��χ = F�−1
F�

�=1
χ(�)B�

� �
F

�

Proof. Notice that

∞�

�=0
[F�−1 ��

�!

F�

�=1
χ(�)B�( �

F )] =
F�

�=1
χ(�)��

(�/F )F�

�F� − 1
def
= (�)

since

(F�)�( �
F )(F�)

�F� − 1 =
∞�

�=0
B�

� �
F

� (F�)�
�!

by definition of Bernoulli polynomials.
Let � = F/� and � = � + �� . Then we have:

(�) =
���

�+��=1
χ(� + �� )��

( �+��
�� )���

���� − 1 =
��

�=1
[
�−1�

�=0
χ(�) ��(�+�� )�

���� − 1] =
��

�=1
[χ(�) ����

���� − 1

�−1�

�=0
���� ] =

=
��

�=1
[χ(�) ����

���� − 1 · ���� − 1
��� − 1 ] =

��

�=1
χ(�) ����

��� − 1 =

=
∞�

�=0
B��χ

��

�!

and so looking at the definition of (�) and at the last expression that we obtained,
we can conclude the proof.



14 CHAPTER 2. CHARACTERS AND L-FUNCTIONS

Definition 2.2.5. For a complex variable � with R�(�) > 1 and for a real number �
with 0 < � ≤ 1 we define the Hurwitz zeta function

ζ(�� �) =
∞�

�=0

1
(� + �)�

Now let
H(�� �� F ) =

�

�≡� mod F
�>0

�−� =
∞�

�=0

1
(� + �F )� = F−�ζ(�� �

F )

where � and F are integers with 0 < � < F . Then

H(1 − �� �� F ) = −F�−1B�(�/F )
� ∈ Q

where � ≥ 1. Hence H has a simple pole at � = 1 with residue 1/F .

Definition 2.2.6. Let C� be the completion of (Q�� | · |�) and consider B(�) = {� ∈
C� : |�| ≤ 1}. A function � : B(�) → C� is said to be �-adic analytic on B(�) if � is
represented by a power series

�∞
�=0 ���� with �� ∈ C� converging on B(�).

Definition 2.2.7. Let B(�) as above. A function � : B(�) → C� is said to be �-adic
analytic on B(�) except for a simple pole with residue ρ at �0 ∈ B(�) if

1. (� − �0)�(�) is �-adic analytic on B(�);

2. lim�→�0 �(�) = ρ.

Definition 2.2.8. For every � ∈ N>0 let Q[X]� be the set of all polynomials of Q[X] of
degree �. Define

�
X
�

�
= X(X − 1) · ��� · (X − � + 1)

�! ∈ Q[X]�

If � = 0, we set
�X

0
�

= 1.

Remark 13. We indicate always by
�X

�
�

the following function on N associated to
�X

�
�
:

for �� � ∈ N if � ≥ � we set
�X

�
�
(�) =

��
�
�

while if � < � we put
�X

�
�
(�) = 0. Hence�X

�
�

take values in N ∪ {0}. Since N is dense in Z� and
�X

�
�

is �-adically continuous
we obtain that

�X
�
�

extends uniquely to a function
�X

�
�

: Z� → Z� (see [Gou] for more
details about this).Notation: From now on, we will write | · | to indicate the �-adic norm | · |� .
Moreover, � will always be an odd prime.

Lemma 2.2.2. The expression � (X) =
�∞

�=0 ��
�X

�
�

for �� ∈ Q� such that �� → 0
�-adically defines a continuous function � : Z� → Q� .

Sketch of proof. Clearly we have pointwise convergence. Indeed: |��
��

�
�
| = |��| ·

|
��

�
�
| ≤ |��| since |

��
�
�
| ≤ 1. However one can deduce that the same estimate shows the

uniform convergence. Hence the �-adically continuos function
��

�=1 ��
�X

�
�

converges
(as � → ∞) to a �-adically continuous function as in the statement.
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Remark 14. Notice that if �� ∈ Z� for every � then � : Z� → Z� .Proposition 2.2.3. Suppose � < �−1/(�−1) < 1 and

� (X) =
∞�

�=0
��

�
X
�

�

with |��| ≤ M�� for some M . Then � (X) may be expressed as a power series
with radius of convergence at least � = (��1/(�−1))−1 > 1.
Proof. First of all recall that � (X) is continuos on Z� since �� → 0 as � → ∞. For
every � ∈ N>0 define P�(X) =

�
�≤� ��

�X
�
�

=
�

�≤� ����X�. Then

���� = ��
�������

�! + ��+1
�������
(� + 1)! + ��� + ��

�������
�!

and so
|����| ≤ ����≤�≤�{

���
�� · (�������)

�!

���} ≤ ����≤�≤�

���
��

�!

���

Now since 1
�! < �

�
�−1 we have that |��

�! | < M(�� 1
�−1 )� = MR−� . Hence |����| < MR−�.

Moreover, the same computation shows that

|���� − ����+�| =
�����+1

�������
(� + 1)! + ��� + ��+�

�������
(� + �)!

��� ≤ MR−(�+1) → 0 as � → ∞

Therefore {����}∞
�=1 is a Cauchy sequence. Let ���∞ = lim�→∞ ����. Then |���∞| ≤

MR−�. Define P∞(X) =
�∞

�=0 ���∞X�. Hence P∞ converges in D = {� ∈ C� : |�| < R}.
Of course also the polynomials P1� P2� ��� converge in D. Finally, if � ∈ D then

�� �

�≤�0

�������� ≤ ����≤�0{MR−�|�|�} → 0 as �0 → ∞, uniformly in �

Thus � (�) = lim�→∞ P�(�) = P∞(�) and so � is analytic in D as we wanted.

Theorem 2.2.4 (Von Staudt-Clausen). Let � be even and positive. Then

B� +
�

�∈P
(�−1)|�

1
� ∈ Z

Proof. We want to show that for each prime � we have B� = −1/� or 0 modulo Z� ,
depending on wether � −1 does or does not divide �. We proceed by induction. Thus
assume that the statement holds for � < �. It follows that �B� ∈ Z� for � < �.
Notice that the claim is clearly true for � = 0� 1 and so we can assume that � ≥ 2 is
even. By remark 12 and proposition 2.2.1 we get that

B� = B��1 = ��−1
��

�=1
B�(�� ) = ��−1

��

�=1

��

�=0

�
�
�

�
(B�)

�
�
�

��−�

=

=
��

�=1

��

�=0

�
�
�

�
(�B�)��−���−2 ≡

≡
��

�=1
(�B0���−2 + ��B1��−1�−1 + �B���−2) mod Z�
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Now notice that if � �= 2, then B1 = −1
2 ∈ Z� . Moreover, being � even, we also have

that �B1 ∈ Z2. Therefore we may omit the term with B1 in the above congruence.
Recalling that B0 = 1 and looking respectively at the first and last terms of the above
expression, we obtain:

(1 − ��)B� ≡ 1
�

��
�=1 �� ≡ �−1

� if (� − 1)|� or ≡ 0 if (� − 1) - �.

Since 1 − �� ≡ 1 mod �, we deduce that B� ≡ − 1
� or ≡ 0 modulo Z� . Now

consider B� +
�

�∈P
(�−1)|�

1
� . By the above line, we deduce that this is a rational number

which lies in Z� for every � ∈ P. This implies that there are no prime numbers in its
denominator and so it is actually an integer. This concludes the proof.

Now we state a theorem which will give us an important formula about the Hurwitz
zeta function that we will use later. The proof is entirely analytical and uses a contour
argument, so we decided to omit it. The interested reader can find a proof in [Wa].Theorem 2.2.5 (proof omitted). L(1 − �� χ) = −B��χ/� with � ≥ 1. More generally,
ζ(1 − �� �) = −B�(�)/� with 0 < � ≤ 1.Theorem 2.2.6. Suppose that 1 ≤ � ≤ F and � is an odd prime such that �|F ,
� - � and ω denotes the Teichmüller character. Then there exists a �-adic analytic
function H�(�� F � �) on B(�) = {� ∈ C�} for � > 1 except for a simple pole at � = 1
with residue 1

F such that

H�(1 − �� �� F ) = ω−�H(1 − �� �� F )

for all � ≥ 1.

Proof. First of all, since � does not divide � then � ∈ Z×
� and ��� is defined in 1+�Z� .

Now set
H�(�� �� F ) = 1

� − 1
1
F ���1−�

∞�

�=0

�
1 − �

�

�
(B�)

�
F
�

��

and assume the convergence for the moment. Then

H�(1 − �� �� F ) = −1
�F ����

��

�=0

�
�
�

�
(B�)

�
F
�

��

=

= −1
�F ����( �

F )−�
��

�=0

�
�
�

�
(B�)

� �
F

��−�
=

= −F�−1ω−�(�)
� B�

� �
F

�
= ω−�(�)H(1 − �� �� F )

where in the second equality we used the fact � = ω(�)���, in the third remark
12 and in the last one H(1 − �� �� F ) = F�−1ζ(1 − �� �

F ) = F�−1 −B�( �
F )

� (this holds by
theorem 2.2.5).
At � = 1, we have residue:

lim
�→1

H(�� �� F ) = 1
F ���0

∞�

�=0

�
0
�

�
(B�)

�
F
�

��

= 1
F
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It remains to prove the convergence. We know that ���� def
= ����(� · �������) is

analytic on B(�
�−2
�−1 ) since ����(� · �������) converges if and only if |� · �������| <

�−1/(�−1)� Moreover notice that |�| < � with � > 1 if and only if |1 − �| < � with
� > 1. We deduce that ���1−� converges on B(�) with � > 1. Now we study the
analiticity of

�∞
�=0

�1−�
�

�
(B�)(F

� )� . We have that |B�(F
� )� | ≤ |B� | · |F |� and by theorem 2.2.4

we know that �B� ∈ Z� . Thus |�B� | ≤ 1. This implies that |B� | ≤ 1
|�| = �. On the other

hand, by hypothesis �|F . Say � = ν�(F ) ≥ 1 where ν� is the �-adic valuation. Hence
|F |� = �−�� ≤ �� . Therefore |B� · (F

� )�)| ≤ � · �−� � Then we apply proposition 2.2.3 with
M = �, � = �−1<�−1/(��1) . We get that � = �

�−2
�−1 > 1� Thus H�(�� �� F ) is �-adic analytic

on B(�) except for a simple pole at � = 1 with residue 1/F .

Theorem 2.2.7. Let χ be a Dirichlet character of conductor � ≥ 1. Then there exists
a �-adic analytic function L�(�� χ) on B(�) with � > 1, except for a simple pole at
� = 1 with residue 1 − 1

� if χ = 1 satisfying

L�(1 − �� χ) = −(1 − χω−�(�)��−1)B��χω−�

�

with � ≥ 1.
Furthermore, we have the formula:

L�(�� χ) = 1
F

1
� − 1

F�

�=1
�-�

�
χ(�)���1−�

∞�

�=0

�
1 − �

�

�
(B�)

�
F
�

�� �
(2.1)

Proof. Fix F such that � |F and �|F . In particular say F = �� with � ≥ 1. We show
that the formula 2.1 gives the desired function. By the definition of H�(�� �� F ) that
we gave in the previous proof, we have that L�(χ� �) =

�F
�=1��-� χ(�)H�(�� F � �). This

implies that L�(χ� �) is �-adic analytic on B(�) with � > 1 except possibly for a simple
pole at � = 1. Now by the previous theorem we have that, at � = 1, L�(�� χ) has residue�F

�=1��-� χ(�) 1
F . Suppose now χ = 1. Then this sum is equal to 1 − 1

� . Indeed, first of
all recall that by our notation on characters, we have that � = 1 and so � - � . Then
notice that � runs through exactly (� − 1)� values such that � does not divide �. Thus
the sum is clearly equal to (� − 1)� · 1

�� = 1 − 1
� . Suppose then that χ is not trivial, then

the same sum is equal to:

1
F

F�

�=1
χ(�) − 1

F

F/��

�=1
χ(��)

However the first sum is 0 since
��

�=1 χ(�) = 0 and χ is periodic of period � .
Moreover, if �|� then χ(��) = 0 for all �. If � does not divide � then � |(F/�), so also
the second sum is always 0 by the previous argument. Hence L�(�� χ) has no pole at
� = 1 if χ is not trivial. If � ≥ 1 then:
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L�(1 − �� χ) =
F�

�=1
�-�

χ(�)H�(1 − �� �� F ) =
F�

�=1
�-�

χ(�)ω−�(�)H(1 − �� �� F ) =

=
F�

�=1
�-�

χ(�)ω−�(�)
�−F�−1B�( �

F )
�

�
= − 1

�F�−1
F�

�=1
�-�

χω−�(�)B�

� �
F

�
=

= − 1
�F�−1

F�

�=1
χω−�(�)B�

� �
F

�
+ 1

���−1
�

F
�

��−1 F/��

�=1
χω−�(��)B�

�
�

F/�

�
=

def
= (�)

where in the third equality we used the fact that if χ1� χ2 are two characters then
χ1(�)χ2(�) = (χ1χ2)(�) unless χ1(�) = χ2(�) = 0. Now by proposition 2.2.1 we have
that the first sum is equal to − 1

�B��χω−� . Now if �|�χω−� then χω−�(��) = 0 and so
we obtain directly the formula of the statement. Otherwise �χω−� divides F/�. Again
by proposition 2.2.1 we have that the second sum is equal to 1

�χω−�(�)��−1B��χω−� . In
other words, we obtain:

(�) = − 1
� (B�χω−� − χω−�(�)��−1B��χω−� ) = − 1

� (1 − χω−�(�)��−1)B��χω−�

This completes the proof.

Remark 15. Notice that if χ is odd then � and χω−� have different parities and so
B��χω−� = 0. Therefore, L�(�� χ) is identically zero for odd χ.

Theorem 2.2.8. .
Suppose χ �= 1 and �2 - �χ . Then

L�(�� χ) =
∞�

�=0
��(� − �)�

with |�0| ≤ 1 and with �|�� for all � ≥ 1.

Remark 16. Notice that since L�(�� χ) has radius of convergence greater than 1, �� → 0
as � → ∞; therefore a priori we have �|�� for large �.

Proof. If χ is odd, then by remark 15 the theorem holds. Hence we may assume that
χ is even by remark 15. We choose F as in the previous theorem so that �|F but
�2 - F . We need to consider formula 2.1:

L�(�� χ) = 1
F

1
� − 1

F�

�=1
�-�

�
χ(�)���1−�

∞�

�=0

�
1 − �

�

�
B� ·

�
F
�

�� �

Notice that from this formula it is clear that L�(�� χ) may be expressed in the form�∞
�=0 ��(� − 1)�. Hence we need to focus our attention on the divisibility property of
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the coefficients stated in the theorem. Now, by our choice of F , we have that |F | = 1
� .

Moreover in the previous proof we observed that |B� · (F
� )� | ≤ 1

��−1 . We claim that
| 1

�! | ≤ �
�

�−1 . Indeed, since there are [ �
�� ] multiples of �� less than or equal to �, we can

deduce that the exponent of � in �! is
�

�
�

�
+

�
�

�2

�
+ ��� < �

� − 1

From the above we get that:
����
B� · F �−1

�! · ��

���� ≤ ��/(�−1) · � · 1
��−1 = �

2(�+�)−��
�−1 ≤ 1

�

for � ≥ 3. Therefore the coefficients in the power series expansion of

1
F

�

�≥3

�
1 − �

�

�
B� ·

�
F
�

��

are divisible by �. Similarly

���1−� = ���((1 − �)�������) =
�∞

�=0
1
�! (1 − �)�(�������)�

has all coefficients in Z� , and moreover they are divisible by �2 for � ≥ 2. Indeed:
we know that �|������� and so |�������| ≤ 1

� . Recalling that | 1
�! | ≤ �

�
�−1 we obtain that

| 1
�! �������| ≤ �2�−�� ≤ 1

�2 for � ≥ 2. Therefore it remains to consider

1
� − 1

F�

�=1��-�

χ(�)(1 + (1 − �)�������)
� 1

F − 1 − �
2� + (1 − �)(1 − � − 1)F

12�2

�

From this expression we deduce that

�0 ≡ −
F�

�=1��-�

χ(�)
� 1

F · ������� − 1
2� − F

12�2

�
mod �

Clearly (1/F )������� and F/12 are in Z� . Since � ≡ ω(�) mod � and �|F , we get:

F�

�=1��-�

χ(�) 1
� ≡

F�

�=1��-�

χω−1(�) ≡ 0 mod �

This implies that |�0| ≤ 1 (use also the fact that every root of unity has norm equal
to 1).
Next, we observe that

�1 ≡ −
�

�-�

χ(�)
� F

12�2 − �������
2� − F · �������

12�2

�
mod �

It is also clear that F · �������/(12�2) and �������/(2�) are divisible by �. If � ≥ 5
then F/12 ∈ �Z� , so �|�1. Now if � = 3, we have F/12 ∈ Z×

� . However, if � - � then
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�2 ≡ 1 mod � and so
�

�-� χ(�)�−2 ≡
�

�-� χ(�) ≡ 0. Again we obtain �|�1.
Finally, we have

�2 ≡ −
�

�-�

(�������) F
12�2 ≡ 0 mod �

Since we showed at the beginning of the proof that all the coefficients �� with
� ≥ 3 are divisible by �, the theorem is proved.

Remark 17. It is important to point out that one can prove that as a �-adic analytic
function on B(�) (with a simple pole if χ = 1) L�(�� χ) is uniquely characterized by
theorems 2.2.7 and 2.2.8. This fact will be used later. For the details about it, see [Iw].

We conclude the section with a useful lemma whose proof involve the theory of
�-adic regulators. Details can be found in [Wa].

Lemma 2.2.9. Let χ �= 1 be an even Dirichlet character. Then L�(1� χ) �= 0.





Chapter 3Iwasawa Algebra and Λ-modules
The aim of this chapter is to introduce and study the Iwasawa Algebra Λ. We start
with group rings and then we pass to define Λ and to prove the Structure theorem
for finitely generated Λ-modules. We will conclude the chapter applying what we will
have learnt to find a new way to construct �-adic L-functions. All of this plays a key
role for The Iwasawa Main Conjecture.

3.1 Group rings
We start this section with recalling some facts on topological groups.

Definition 3.1.1. A topological group is a triple (G� τ� ·) where (G� τ) is a topological
space and (G� ·) is a group such that the maps (·) : G × G → G , (�� �) �� �� and
(−1) : G → G , � �� �−1 are continuous with respect to τ and the product topology
τ × τ .

The following are basic properties that follow directly from the definition of topo-
logical group.

Proposition 3.1.1. Let (G� τ� ·) be a topological group. Then

1. If H is a subgroup of G which is open (respectively closed of finite index) then
H is closed (resp. open).

2. If (G� τ) is compact and H is an open subgroup of G , then [G : H] < ∞.

Proof. 1. Denote by T a set of representatives for the right cosets of H in G . Thus
we have that G =

�
�∈T H�. This implies that H = G \

�
1�=�∈T H�. Notice that for

each � ∈ G the map � �� �� from G to G is an homeomorphism. We deduce
that

�
1 �= � ∈ TH� is open (resp. closed). Hence we get the first statement.

2. As above, we have that G =
�

�∈T H� where each H� is open. Since G is
compact, it follows that it is the union of finitely many cosets. This concludes
the proof.

Definition 3.1.2. A topological space is said to be totally disconnected if its only
connected subsets are the empty set and the one-point sets.

21
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Definition 3.1.3. We say that a topological group (G� τ� ·) is a profinite group if and
only if G is Hausdorff, compact and totally disconnected.

Example 3. The most important example of profinite group for us is the additive
group of Z� .Lemma 3.1.2. Let G be a profinite group. Then

G � lim�−
N

G/N

� �� (� mod N)N
where N runs through the open normal subgroups of G ordered by reverse

inclusion, and all the G/N ’s are finite groups equipped with the discrete topology.

Sketch of proof. Notice that by proposition 3.1.1 (2�) since G is compact we deduce
that G/N is a finite group for every N as in the statement. Consider ι : G → lim�−N G/N ,
� �� (� mod N)N . This is a continuous map with dense image (see [Wi]). Now notice
that lim�−N G/N is Hausdorff and so ι is also a closed map since G is compact. Therefore
the map is surjective. However ι is injective too. Indeed, if � ∈ K��(ι) then � ∈

�
N N

where N runs as in the statement. Since G is Hausdorff, we have
�

U∈�1
U = {1}

where �1 is the set of all the open neighborhoods of 1. Since G is compact and
totally disconnected, the open normal subgroups of G form a basis of neighborhoods
at 1 (see [Wi] again for details). Hence every U as above is the union of some N �s
as in the statement. This implies that

�
N N = {1}. Thus we deduce that it is an

isomorphism of topological groups.

Remark 18. Actually one can prove also a converse of the previous proposition: if a
group is a projective limit of finite groups, then it is a profinite group. This gives us
an equivalent definition of profinite groups (look at [Wi] for this).Lemma 3.1.3. If {0} �= H is a closed subgroup of Z� then H = ��Z� for some � ∈ N.

Proof. Let ν� be the �-adic valuation. Choose � ∈ H such that � = ν�(�) is minimal.
Thinking of � as a power series we deduce that we can write � = ��� with � ∈ Z×

� .
Clearly �Z ⊆ H but H is closed and so �Z� ⊆ H because Z is dense in Z� . However if
there exists � ∈ H \ ��Z� � then ν�(�) < �, contradicting the minimality of �. Hence
we deduce that H = �Z� = ��Z� .

Definition 3.1.4. Let R be a commutative ring and let G be a finite group. We define
the group ring of G over R as R[G] = {

�
σ∈G(�σ · σ ) : �σ ∈ R} where:

-
�

σ (�σ · σ )
def
=

�
σ (γσ · σ ) if and only if �σ = γσ ,

-
�

σ (�σ · σ ) +
�

σ (γσ · σ )
def
=

�
σ [(�σ + γσ ) · σ ],

- [
�

σ (�σ · σ )] · [
�

σ (γσ · σ )]
def
=

�
σ [(

�
τ∈G �τγτ−1σ ) · σ ]

Now we are going to consider R[G]-modules. Of course, if G is not abelian then
we have to distinguish between left and right R[G]-modules. Wlog, we can focus our
attention on the firsts.
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Examples 1. 1. M = R with trivial G-action. Let � ∈ M = R. Then (
�

σ �σ · σ ) · �
def
=

(
�

σ �σ ) · �.

2. The map

��� : R[G] → R,
�

σ (�σ · σ ) ��
�

σ �σ

is an R[G]-homomorphism and is called the augmentation map. The kernel of
this map K��(���) = {

�
σ (�σ ·σ ) ∈ R[G] :

�
σ �σ = 0} is clearly R[G]-submodule

and is called the augmentation ideal.

3. If M1 and M2 are R[G]-modules, so are

- H��R(M1� M2) via (σ ·φ) : M1 → M2, �1 �� σφ(σ−1�1) with φ ∈ H��R(M1� M2),
σ ∈ G .

- M1 ⊗R M2 via σ · (�1 ⊗ �2)
def
= σ�1 ⊗ σ�2.

4. Let L|K be a finite Galois extension and let G = G��(L|K). Then:

- L is a K[G]-module: let
�

σ (�σ · σ ) ∈ K[G] and � ∈ L; set [
�

σ (�σ · σ )] · �
def
=�

σ (�σ · σ (�))

- L× is a Z[G]-module: let
�

σ �σσ ∈ Z[G] and let � ∈ L×; set
�

σ (�σ · σ ) · �
def
=�

σ σ (�)�σ ∈ L×

- Suppose L|K are number fields, then C�(L) is a Z[G]-module: let
�

σ (�σ ·σ ) ∈
Z[G] and let [�] ∈ C�(L) with � a fractional ideal of �L; set [

�
σ (�σ ·σ )] · [�]

def
=�

σ∈G[σ (�)]�σ ∈ C�(L)

3.2 The Iwasawa Algebra
Notation: From now on, let G be a profinite group and let � be a commutative
noetherian local ring with finite residue field of characteristic �. We call p its maximal
ideal. We assume also that � is complete in its p-adic topology.
Example 4. The most important situations that one has to keep on mind are when
� = Z� or more in general � = �F with F |Q� a finite extension.

Definition 3.2.1. - The complete group algebra of G over � is the inverse limit
�[|G|]

def
= lim�−N �[G/N] where N runs through the open normal subgroups of G

ordered by reverse inclusion.

- Let Γ be a multiplicative topological group isomorphic to (Z�� +). We call Λ
def
=

Z�[|Γ|] the Iwasawa Algebra.

- The surjective augmentation map �[G/N] ⇣ � with N as above induces a sur-
jective map �[|G|] ⇣ � which is still called the augmentation map. Its kernel
is denoted by ∆(G) or ∆�(G) and its called again the augmentation ideal.
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Example 5. Considering the second definition above, one can take into account 1 +
�Z� . This is clearly a multiplicative group and one can show that it is isomorphic to
the additive group (Z�� +). See [Sa3] for more details about this.

Now we fix Γ a generic multiplicative topological group isomorphic to (Z�� +) and
we also choose γ ∈ Γ a topological generator (e.g. γ may corresponds to 1 through
the chosen isomorphism, since 1Z = Z and Z is dense in Z�). For � ∈ N we set
Γ�

def
= Γ/Γ�� � Z�/��Z� . Observe that this is a cyclic group of order �� and that we

have natural maps Γ� → Γ� if � ≤ �. Moreover, notice that �[Γ�] � �[T]/ω�(T) as
rings through the map

γ mod Γ�� �� (1 + T) mod ω�(T)

where ω�(T)
def
= P�

def
= (1+T)�� −1. Comparing the roots, we deduce that for � ≤ �

we have ω�(T)|ω�(T) and that the following diagram

�[Γ�] �[T]/ω�(T)

�[Γ�] �[T]/ω�(T)

�

Γ�→Γ� ω�|ω�

�

commutes. Therefore �[|Γ|]
�
= lim�−� �[Γ�] � lim�−� �[T]/ω�(T).

Remark 19 (�). By lemma 3.1.3 we know that all non-trivial closed subgroups of Z�
are of the form ��Z� for some � ∈ N. This implies that also every open subgroup
has this form since we know by lemma 3.1.1 that an open subgroup is closed too.
On the other hand, since multiplication by � is an homeomorphism, every subgroup
��Z� is open. This implies that the limit lim�−� �[Γ/Γ�� ] really is the complete group
algebra of Γ over �.Lemma 3.2.1. Let R be a commutative ring. Then R[|T|]× = {

�∞
�=0 ��T � : �� ∈ R� �0 ∈

R×}. In particular, if R is a local ring with maximal ideal q, also R[|T|] is local and
its maximal ideal is generated by T and q.

Proof. Let � =
�∞

�=0 ��T �� � =
�∞

�=0 ��T � ∈ R[|T|] and suppose �� =
�∞

�=0(
��

�=0 ����−�)T � =
1. Then looking at the coefficients we deduce that �0�0 = 1 and so �0 ∈ R×.
On the other hand, if �0 ∈ R× then set �0 = �−1

0 and inductively define �� =
−�−1

0 (�1��−1 + ��� + ���0) ∈ R. This produces an inverse element. For the rest of
the statement, just notice that R[|T|]× = (T� q)R[|T|].

Proposition 3.2.2 (Division with remainder). Let p be the maximal ideal in � and
let � � � ∈ �[|T|] such that � =

�∞
�=0 ��T � �= 0 and �0� ���� ��−1 ∈ p� �� �∈ p for some

� ∈ N. Then there exists a unique � ∈ �[|T|] and a unique � ∈ �[T] such that � = 0
or ���(�) < � and � = �� + �.

Proof. Existence: We define a shift-operator τ = τ� : �[|T|] → �[|T|],
�∞

�=0 ��T �) ���∞
�=� ��T �−�. This map have the following properties (that one can check directly by

computations):

- τ is �-linear
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- τ(T��) = � for all � ∈ �[|T|]

- τ(�) = 0 if and only if � ∈ �[T] and ���(�) < � or � = 0

Notice we can write � = P + T�U where P
def
=

��−1
�=0 ��T � and U

def
= �� + ��+1T +

��� = τ(� ) ∈ �[|T|]×. Set �
def
= 1

U ·
�∞

�=0(−1)�(τ ◦ P
U )� ◦ τ(�) ∈ �[|T|] where for every

� ∈ �[|T|] we define inductively (τ ◦ P
U )� ◦ � by (τ ◦ P

U ) ◦ � = τ( P
U �) and (τ ◦ P

U )2 ◦ � =
τ( P

U τ( P
U �)). Now notice that �� = �P + T��U and so using the above properties we

get τ(�� ) = τ(�P) + τ(T��U) = τ(�P) + �U = [(τ ◦ P
U ) ◦

�∞
�=0(−1)�(τ ◦ P

U )� ◦ τ(�)] + �U =
[−

�∞
�=1(τ ◦ P

U )� ◦τ(�)]+�U = −�U +τ(�)+�U = τ(�). Therefore, we have shown that
τ(�� ) = τ(�). Then the first and the third properties above imply that � − �� belongs
to �[T] and either ���(� −�� ) < � or � −�� = 0. Setting �

def
= � −�� we can conclude

this part of the proof.Uniqueness: Suppose we can write � in two ways such as in the statement: �� + � =
� = ��� + ��. Then (� − ��)� + (� − ��) = 0 and so wlog we may consider �� + � = 0
and prove that � = 0 (notice that this implies � = 0). Let � =

�∞
�=0 ��T� ∈ �[|T|].

We show that �� ∈ p� for every �� � ≥ 0. This will imply that �� ∈
�

� p� = {0}.
If � = 0 the statement follows. Now we proceed by double induction on � and �.
Assume �� ∈ p�−1 for every � ≥ 0 and �� ∈ p� for � < �. We compare the coefficients
of T�+� in �� + � = 0, i.e. we consider

(�0��+� + ��� + ��−1��+1) + ���� + (��+1��−1 + ��� + ��+��0) = 0

Since both the terms in the parenthesis lie in p� we deduce that ���� ∈ p� and
so �� ∈ p� since �� �∈ p by hypothesis.

Definition 3.2.2. An element �(T) ∈ �[T] is called distinguished or a Weierstrass
polynomial if �(T) = T� + ��−1T�−1 + ��� + �0 for some � > 0 and �0� ���� ��−1 ∈ p.

Example 6. The polynomial ω�(T) = (1 + T)�� − 1 ∈ Z�[T] is distinguished.Theorem 3.2.3 (�-adic Weierstrass Preparation theorem). Let 0 �= � =
�∞

�=0 ��T � ∈
�[|T|] such that �0� ���� ��−1 ∈ p� �� �∈ p for some � ∈ N. Then there is a unique
decomposition of � = P · U where P is a Weierstrass polynomial of degree � and
U ∈ �[|T|]×. In particular, if � is a DVR with p = (π) then every � �= 0 may be
uniquely written as � = π�PU for some � ≥ 0.

Proof. Existence: Applying proposition 3.2.2 with � = T� we obtain that T� = �� + �
with � = 0 or ���(�) < �. Now looking at this expression modulo p we obtain
T� ≡ � ·

�∞
�=� ��T � + � mod p. Therefore � ≡ 0 mod p since ���(�) < �. Thus we

set P
def
= T� − � which is a distinguished polynomial. We claim that � ∈ �[|T|]×. If this

holds, then set U
def
= �−1. Now we prove the claim: let � =

�∞
�=0 ��T � and recall that

T� ≡ (�0+�1T+���)·(��T�+���) mod p where the � �
�� are the coefficients of � . Looking

at the coefficient of T� we get 1 ≡ �0�� mod p. This implies that �0�� = 1 + � for
some � ∈ p. Since � is local, then it follows that �0 ∈ �× and so � ∈ �[|T|]× by lemma
3.2.1.Uniqueness: Suppose � = �P �U . Clearly �P can be written in the form �P = T� − ��
as above. Then we deduce that T� = �U−1� + �� = U−1� + �. However division with
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remainder is unique, and so we can conclude the proof of the first part. The second
part follows directly collecting a power of π from the coefficients of � .

Corollary 3.2.4. Let � = �F where F |Q� is a finite extension. Assume 0 �= � ∈ �[|T|].
Then there are only finitely many � ∈ C� = �Q� with |�| < 1 such that � (�) = 0.

Proof. Write � = π�PU where U = �0 + �1T + ��� with �0 �∈ p, i.e. |�0| = 1. Notice we
can write U(�) = �0 + ��(�) with � as in the statement. Since �0 has norm equal to
1 and ��(�) has norm lesser than 1 we deduce that |U(�)| = 1 and so U(�) �= 0. This
implies that P(�) = 0. However P is a polynomial and therefore it has only finitely
many zeros.

Lemma 3.2.5. Let P� � ∈ �[T] with P distinguished. If �
P ∈ �[|T|] then �

P ∈ �[T].

Proof. Let � = ���(P). Then we can write � ≡ � mod (P · �[T]) with � ∈ �[T] and
���(�) < �. Hence � = �P + � with � ∈ �[T]. On the other hand � = �

P · P, so
proposition 3.2.2 implies that � = 0 and �

P = � .

Now we have all the tools to prove the main result of this section.Theorem 3.2.6. �[|Γ|] � �[|T|], γ �� 1 + T (non-canonical since we chose γ).

Proof. We showed that �[|Γ|] � lim�−�
�[T]
ω�(T) thanks to the isomorphism �[Γ�] � �[T]

ω�(T) � γ
mod Γ� �� (1+T) mod ω�(T). Moreover recall that for every � ∈ N there is a natural
map �[|T|] → �[T] mod ω�(T) given by � = ��ω� + �� with ���(��) < �� = ���(ω�).
Hence proving the theorem is equivalent to prove that the map �[|T|] → lim�−�

�[T]
ω�(T) ,

� �� (��)� is an isomorphism. We need to prove that this is well-defined, injective and
surjective.Well-defined: For � ≥ � ≥ 0 we have ��−�� = (�−��ω�)−(�−��ω�) = ω�(��−��·ω�

ω�
).

Notice that ω�
ω�

∈ �[T] and so ��−��
ω�

∈ �[|T|] and therefore it lies in �[T] by the previous
lemma. Hence �� ≡ �� mod ω�.Injective: Let �� ≡ 0 mod ω� for every �. Then �� ≡ 0 mod ω� for every �. We
claim that ω� ∈ (�� T)�+1. If this holds then � ∈

�∞
�=1(�� T)� = {0}. We prove the claim

by induction on �. If � = 0 then ω0 = T ∈ (�� T). Now suppose the claim holds for �,
we prove it for �+1. Notice that ω�+1

ω�
= 1+(1+T)�� +���+(1+T)��(�−1) = �+T� ∈ (�� T)

for some polynomial �, using the inductive hypothesis.Surjective: Let (��)� ∈ lim�−� �[T]/ω�(T). For every � we write ��(T) =
�∞

�=0 ���T �

with ��� ∈ �� ��� = 0 for � sufficiently large. Now for every � ≥ � ≥ 0 notice that
�� ≡ �� mod ω�(T) implies �� ≡ �� mod (�� T)�+1. Therefore the constant terms are
congruent modulo ��+1, the linear terms modulo �� and so on. In particular, one
finds that for fixed � the (���)�≥0 is a Cauchy sequence in �. Set ��

def
= lim�→∞ ��� ∈ �.

Thus � (T)
def
= lim�→∞ ��(T) =

�∞
�=0 ��T � ∈ �[|T|] is a preimage of (��)� by construction.

Theorem 3.2.7. Let � as before and set m
def
= p + (T) ⊆ �[|T|]. Then �[|T|] is a

noetherian local ring with maximal ideal m and �[|T|]/m � �/p. If � is a DVR with
p = (π) then:
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1. the irreducible elements (up to units) of �[|T|] are π and the irreducible dis-
tinguished polynomials

2. �[|T|] is a UFD

3. the prime ideals of �[|T|] are {0}� (π)�m = (π� T) and (P) where P is irreducible
distinguished.

Proof. By lemma 3.2.1 we know that m = �[|T|] \ �[|T|]× and so �[|T|] is a local ring
with maximal ideal m. Let Z

def
= ��� : � ∈ I��[|T|] be a generic ideal of �[|T|]. Using

proposition 3.2.3 wlog we may assume �� ∈ �[T] for every � ∈ I . Let J
def
= ��� : � ∈

I��[T]. Now we know by the Hilbert’s basis theorem that �[T] is noetherian and so
J = ��1� ���� ����[T] for some � ≥ 1. Then Z = J�[|T|] = ��1� ���� ����[|T|] and so �[|T|]
is noetherian.
In the rest of the proof assume also that � is a DVR.

1. Let 0 �= � ∈ �[|T|] be an irreducible element. Now the second part of proposition
3.2.3 implies that � = π�PU with U ∈ �[|T|]× and some � ≥ 0. Since π� and P
cannot be invertibles, this implies that, up to units, � is equal either π or P with
P irreducible distinguished polynomial.

2. We need to show that being irreducible implies being a prime element. Now
π is prime since �[|T|]/(π) = �/(π)[|T|] is an integral domain. Let P be an
irreducible distinguished polynomial and assume P|�� . By proposition 3.2.3
we have decompositions � = π�1P1U1 and � = π�2P2U2 for some �1� �2 ≥ 0.
This implies that P divides π�1+�2P1P2 in �[|T|]. Now lemma 3.2.5 tells us that
P|π�1+�2P1P2 in �[T] and so P|P1P2 in �[T] since �[T] is a UFD. This implies
that P|P1 or P|P2 since P is a prime element of �[T], i.e. P|� or P|� . By the
previous point, this suffices to prove that �[|T|] is a UFD.

3. Since every irreducible element is prime, part 1� implies that all the stated
ideals are prime. Let {0} �= q be prime. Choose 0 �= � ∈ q a polynomial of
minimal degree (notice that it exists by proposition 3.2.3); wlog, we may assume
� = π�P where P = 1 or P distinguished polynomial. However, q is prime
and therefore either π� ∈ q (so that π ∈ q) or P ∈ q (so that P is irreducible
since � has minimal degree and q is prime). Thus (� ) ⊆ q where � = π or � is
irreducible distinguished. Suppose now that (� ) is contained properly in q. We
claim that q = (π� T). Indeed, choose � ∈ q \ (� ). In particular, � does not divide
� . If � is irreducible distinguished we can write � = �� + � with 0 �= � ∈ q
and ���(�) < ���(� )� However, this is a contradiction since ���(� ) is minimal.
Hence we must have (� ) = (π). As (π) is properly contained in q there exists
�P ∈ q distinguished. Since �P ≡ T� mod (π) we obtain T� ∈ q and this implies
T ∈ q. Therefore (π� T) ⊆ q. On the other hand, (π� T) is maximal and so
(π� T) = q.

Remark 20. One can also show that if �[|T|] is as in the previous theorem, then it is
also a complete topological ring with respect to the (p� T)-adic topology.

Observe that using theorem 3.2.6 and arguing inductively one deduces that:
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Corollary 3.2.8. For every � ∈ N we have:

1. �[|T1� ���� T�|] is a noetherian complete local ring

2. if Γ � Z�
� as profinite groups then �[|Γ|] � �[|T1� ���� T�|].

We end the section with a couple of easy but still interesting lemmas.Lemma 3.2.9. Consider Λ = Z�[|T|] as above. Suppose that � � � ∈ Λ are relatively
prime. Then the ideal (� � �) is of finite index in Λ.

Proof. Take � ∈ (� � �) an element of minimal degree. Then � must be of the form
��H with H = 1 or H distinguished polynomial. Say that H �= 1. Since � and � are
relatively prime by hypothesis, we may assume that H does not divide � . However
using proposition 3.2.2 we can write

� = H� + �
with ���(�) < ���(H) = ���(�), so that ��� = �� + ���. Therefore, since ���(���) <
���(�) and ��� ∈ (� � �), we obtain a contradiction. Hence H = 1 and so � = ��.
Notice that wlog we may assume that � is not divisible by � and moreover that it is
a distinguished polynomial (otherwise we could use � or divide by a unit). Thus we
deduce that (� � �) ⊇ (��� � ). Notice that proposition 3.2.2 implies that any element of
Λ is congruent modulo � to a polynomial of degree less than ���(� ). Since there are
only finitely many such polynomials modulo �� , we deduce that the ideal (��� � ) must
have finite index. Thus we can conclude the proof.Lemma 3.2.10. Let � ∈ Λ with � �∈ Λ×. Then Λ/(� ) is infinite.

Clearly we may assume that � �= 0. By theorem 3.2.7 it is enough to consider the
cases where � is either � or a distinguished polynomial. If � = �, then just notice
that Λ/(�) � Z/�Z[|T|]. In the second case, the statement follows applying the division
algorithm (prop 3.2.2).

3.3 The Structure theorem for finitely generated Λ-modules
Definition 3.3.1. - Let R be a commutative ring and let p ∈ S���(R) a prime ideal.

Then we define ��(p) as the supremum in N∪ {∞} of the lengths of the chains
of the form p0 ⊂ p1 ⊂ · · · ⊂ p� = p where every p� is a prime ideal of R. Then
��(p) is called the height of p.

- We say that ���(R)
def
= sup

p∈S���(R)
{��(p)} = sup

p∈M��(R)
{��(p)} is the Krull dimension

of R.

- We set P(R)
def
= {p ∈ S���(R) : ��(p) = 1}.

Remark 21. - R noetherian � ��(p) < ∞ for every p ∈ S���(R).

- Let R be a noetherian domain. Then R is a Dedekind domain if and only if R
is integrally closed and ���(R) = 1.
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- A DVR is a local PID of dimension 1.

- If � is a DVR and R = �[|T|] then ���(R) = 2 (this follows from theorem 3.2.7).
Now we are going to state or assume some facts whose proofs come from com-

mutative algebra and linear algebra. Therefore we consider them not so interesting
for our purposes. For the proofs look at [Neu2] and [Bou1].
In what follows, assume that R is a commutative noetherian integrally closed domain.

Proposition 3.3.1. 1. For every p ∈ P(R), we have that Rp is a DVR.

2. R =
�

p∈P(R) Rp where the intersection is taken in F���(R).

Definition 3.3.2. Let M be an R-module.

1. The module M+ def
= H��R(M� R) is called the R-dual of M . Moreover we will

denote by V the K-vector space M(0) = M ⊕R K where K = F���(R).

2. M is called reflexive if the canonical map φM : M → M++, � �� [φM (�) : � ��
� (�)] is an isomorphism.

Example 7. Put M = R. If M1� M2 are reflexive then M1 ⊕ M2 is reflexive. Hence in
particular R� is reflexive for every � ∈ N.

Lemma 3.3.2. We have that M+ is a torsion-free module. In particular, if M is
reflexive then it is also torsion-free.

Lemma 3.3.3. Let M be a finitely generated torsion-free R-module. Then

1. M+ =
�

p∈P(R) M+
p where the intersection is taken in V ∗.

2. M++ =
�

p∈P(R) Mp where the intersection is taken in (V ∗)∗.

3. M =
�

p∈P(R) Mp if and only if M is reflexive.

Corollary 3.3.4. If M is a finitely generated torsion-free R-module then M+ is re-
flexive.

Lemma 3.3.5. Let M be a finitely generated R-module. TFAE:

1. Mp = 0 for every prime ideal p such that ��(p) ≤ 1.

2. Set a
def
= A��R(M). Say that p is a prime ideal such that a ⊆ p. Then ��(p) ≥ 2.

Proof. Let p ∈ S���(R) and notice that Mp = 0 if and only if there exists � ∈ R \ p :
�M = 0. However this is true if and only if a �⊆ p. This shows the above equivalence.

Definition 3.3.3. Let M be a finitely generated R-module. Then M is said to be
pseudo-null if and only if M satisfies the equivalent conditions of the previous lemma.

Definition 3.3.4. The set ����(M)
def
= {p ∈ S���(R) : Mp �= 0} = {p : a ⊆ p} is called

the support of M.
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Remark 22. It is useful to recall that in any short exact sequence of groups, modules,
rings 0 → A → B → C → 0 one has that B is finite if and only if A and B are finite.
Moreover, if this is the case, we also have that |B| = |A| · |C|.

Proposition 3.3.6. Let M be a finitely generated R-module.

1. If M is pseudo-null then it is a torsion-module.

2. If R is a Dedekind domain then: M is pseudo-null if and only if M = 0.

3. If R is local with maximal ideal m, |R/m| < ∞ and ���(R) = 2, then M is
pseudo-null if and only if |M| < ∞.

Proof. 1. Set S = R \ {0}. Then notice that S−1R ⊗R M = M(0) = S−1M = 0. This
means that 0 = �

1 ∈ S−1M for every � ∈ M . Hence M is a torsion-module.

2. Assume that M is pseudo-null. Then by the previous point we can choose � ∈ R
such that �M = 0. Now consider the factorization of �R =

��
�=1 p

��
� . Thus, for

every � by hypothesis we have Mp� = 0 and so there exists �� ∈ R \ p� such that
�� ∈ p� for every � �= � and ��M = 0. Indeed, if �� is an element of R \ p� such
that ��M = 0 and �� �∈ p� for some � �= �, then choose �� ∈ p� \ p� and replace ��

by ����. Set ��
def
= �1 + ��� + �� . It follows that �� ∈ a. Therefore �� �∈ p� for every

1 ≤ � ≤ �. In fact, if this is not true then �� ∈ p� for some �, contradiction. Now
notice that � and �� are relatively prime (otherwise there is a non-zero prime
ideal which contains (��� �). This implies that �� ⊆ p� for some �, contradiction).
Thus R = (����) ⊆ a and so M = 0.

3. Assume that |M| < ∞. Notice that M ⊇ mM ⊇ m2M ⊇ ��� Being M finite, then
there exists � ∈ N such that m�M = m�+1M . Thus Nakayama’s lemma implies
that m�M = 0. Hence m� ⊆ a. Let p be a prime ideal such that a ⊆ p. Therefore
m� ⊆ p implies that m ⊆ p and so m = p. Then ��(p) = 2, namely M is pseudo-
null.
Conversely, for the rest of the proof we need the following lemma of commu-
tative algebra:

Lemma 3.3.7. Only for this lemma, let R be a commutative ring. Moreover let
0 �= M be an R-module. Then

- For 0 �= � ∈ M consider the ideals I�
def
= A��R(�) and say that I

def
= I�0

is a maximal element of the set of the I� ’ s ordered with respect to the
inclusion. Then I is a prime ideal.

- Suppose also that R is a noetherian ring and that M is a finitely generated
R-module. Then there exists a filtration 0 = M0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ M� =
M of M such that M�+1/M� � R/p� where p� is a prime ideal for every �.

proof of part 1. First of all observe that A��R(M) ⊆ I� for every � ∈ M . Sup-
pose now that �� ∈ I but � �∈ I . This implies that ���0 = 0 and ��0 �= 0.
Therefore I ⊆ (�) + I ⊆ A��R(��0). However by the maximality of I we must
have (�) + I = I , i.e. � ∈ I . Thus we can conclude.
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Applying part 1� of the above lemma, we can choose �1 ∈ M such that A��R(�1)
is a prime ideal. Being M pseudo-null, we deduce that ����(M) ⊆ ���R(�1).
Since R is a local ring with ���(R) = 2, it follows that ���R(�1) = m. Now
set M1

def
= R/m and consider the injective map M1 �� M given by 1 �� �1 and

the natural surjection M ⇣ M/M1. Since M/M1 is again pseudo-null, we can
repeat the above argument and we can construct a sequence 0 = M0 ⊆ M1 ⊆
· · · ⊆ M� = M such that M�+1/M� � R/m. Then for every � there exists an
exact sequence 0 → M� → M�+1 → R/m → 0. Being R/m and M0 = 0 finite and
arguing by induction on �, it follows that also M� = M has finite cardinality.

Definition 3.3.5. A morphism � : M → N of finitely generated R-modules is called
a pseudo-isomorphism if K��(� ) and C����(� ) are pseudo-null, i.e. �p : Mp

�−� Np for
every prime p with ��(p) ≤ 1. We write in this case � : M ∼ N .

Remark 23. - Suppose that R = �[|T|] where � is a DVR and let M and N be
two R-modules. Then in this case M ∼ N if and only if there exists an exact
sequence:

0 → F1 → M → N → F2 → 0

where F1 and F2 are finite R-modules (look at proposition 3.3.6).

- It is interesting to point out that in general M ∼ N does not imply that N ∼ M .
Indeed, let R = Λ = Z�[|T|] and consider the exact sequence 0 → m = (�� T) →
Λ → Λ/m = F� → 0. This implies that m ∼ Λ. However, if we take the map
Λ → m given by 1 �� � where � is any element of m, then |m/(�)| = ∞ since
|Λ/(�)| = ∞ by lemma 3.2.10. Therefore Λ �∼ m.

Lemma 3.3.8. Let M be a finitely generated R-module and let 0 �= α ∈ R such
that ����(R/α) ∩ ����(M) ∩ P(R) = ∅. Then the multiplication map M α·−� M is a
pseudo-isomorphism.

Proof. Let p ∈ P(R) ∩ ����(M). Then p �∈ ����(R/α) and so α �∈ p, i.e. α ∈ R×
p .

This implies that the map Mp
α·−� Mp is an isomorphism. Moreover, if p ∈ P(R) and

p �∈ ����(M), then Mp = 0 by definition of support. This concludes the proof.

Lemma 3.3.9. Let M be a finitely generated R-torsion module. Then ����(M)∩P(R)
is a finite set.

Proof. By part 2� of lemma 3.3.7, there exists a filtration 0 = M0 ⊂ M1 ⊂ ··· ⊂ M� = M
such that M�+1/M� � R/p� for some p� prime ideals. Now since M is torsion, then
M�+1/M� is torsion for every �. We deduce that p� �= 0. Now let p ∈ ����(M) ∩ P(R).
Then Mp �= 0 and so there must be an � such that (R/p�)p �= 0 (otherwise we localize
the exact sequences 0 → M� → M�+1 → R/p� → 0 at p and by induction we find
that (M�)p = 0 for every �, contradiction). Hence p ∈ ����(R/p�) = {q ∈ S���(R) :
A��R(R/p�) ⊆ q}. It follows that 0 ⊂ p� ⊆ p. However ��(p) = 1 and so p� = p. Since
there are only finitely many such p� ’s, this ends the proof.
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Theorem 3.3.10. Let M be a finitely generated R-module and set T(M)
def
= the torsion

submodule of M and F (M)
def
= M/T(M), Then:

1. There exists a pseudo-isomorphism � : M → F (M) ⊕ T(M).

2. There exist a finite set I , p� ∈ P(R), �� ∈ N for � ∈ I and a pseudo-isomorphism
� : T(M) → ⊕�∈IR/p��

�

Moreover the p� ’s and the �� ’s are uniquely determined by T(M).
Proof. 1. Case 1: Suppose that ����(T(M)) ∩ P(R) = ∅, i.e. T(M)p = 0 for every

p ∈ P(R). Then, not only � : T(M) → 0 is a pseudo-isomorphism but also the
projection map � : M → F (M) since for every p ∈ P(R) we have (M/T(M))p =
Mp/T(M)p = Mp/{0}.Case 2: Suppose that ����(T(M)) ∩ P(R) �= ∅. Then by lemma 3.3.9 we deduce
that it must be a finite set. Say that it is equal to {p1� ���� p�}. Set S

def
= R \

��
�=1 p�.

Recall that the prime ideals in S−1R are exactly the ideals of the form S−1P
where P is a prime ideal of R and P ∩ S = ∅. However, this is equivalent to say
that a such P is contained in

��
�=1 p�. By the well known lemma of commutative

algebra "Prime avoidance", this is true if and only if either P = p� for some � or
P = 0 (recall that every p� has height 1). Thus S−1R is a Dedekind domain with
finitely many prime ideals, hence it is a PID. Moreover, S−1T(M) is the S−1R-
torsion submodule of S−1M . By the Structure theorem of modules over a PID
(see [Du]), we deduce that S−1M � F ⊕ S−1T(M) where F is a free S−1R-module
of finite rank. Moreover by commutative algebra we know that:

H��S−1R(S−1M� S−1T(M)) = S−1H��R(M� T(M))

Therefore there exist �0 ∈ H��R(M� T(M)) and �0 ∈ S such that �0
�0

=projection
map S−1(M) → S−1(T(M)). In particular, notice that �0

�0
�S−1T(M)= ��S−1T(M). It

follows that �0 �T(M)= �0 · ��T(M).

Now set �
def
= (����� �0) : M → F (M) ⊕ T(M) and consider the following commu-

tative diagram (it exists by the Snake lemma):

0 0

K��(�0) K��(� )

0 T(M) M F (M) 0

0 T(M) F (M) ⊕ T(M) F (M) 0

C����(�0) C����(� )

0 0

�

�0=�0·�� � ��

�
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Being �0 ∈ S, we get that �0 �∈ p� for 1 ≤ � ≤ � and so p� �∈ V (A��R(R/�0)) =
����(R/�0). By lemma 3.3.8 follows that �0 is a pseudo-isomorphism and so
looking at the diagram we deduce that also � is a pseudo-isomorphism.

2. From the above and from the Structure theorem for modules over a PID, we
deduce that there exists an isomorphism �0 : S−1T(M) �−� S−1E where E

def
=

⊕�
�=1 ⊕�

�=1 R/p���
� . As before we get that there are � ∈ H��R(T(M)� E) and � ∈ S

such that �0 = �
� . Notice that � ∈ R×

p� for every � and that � is a pseudo-
isomorphism. Indeed �p� = � · (�0)p� is an isomorphism for 1 ≤ � ≤ � and if
p ∈ P(R) \ {p1� ���� p�} then T(M)p = 0 = Ep.

Remark 24. One can prove that being pseudo-isomorphic is an equivalence relation
on finitely generated R-torsion module.

Proposition 3.3.11. Let M be a finitely generated R-module and assume that M is
torsion-free. Then there is an injective pseudo-isomorphism M �� M � where M � is
a reflexive module. In particular, the statement holds for M � = M++.

Definition 3.3.6. Let (R�m) be a Noetherian local ring with ���(R) = �. Then R is
said to be a regular local ring if there exist �1� ���� �� ∈ R such that m = (�1� ���� ��).

Example 8. Let � be a DVR and let π be a uniformizer. Then �[|T|] is a 2-dimensional
regular local ring with maximal ideal m = (π� T).
Remark 25. Using some arguments of commutative algebra, one can prove that a
regular local ring is an integrally closed domain (see [Bou2] or [Mat]).
Theorem 3.3.12. If M is a reflexive finitely generated R-module M over a 2-dimensional
regular local ring, then M is free.

Proof. First of all, let m = (�1� �2) with �1� �2 ∈ R. Thus R/(�1) is a regular local ring
of dimension 1. This means that R/(�1) is a DVR.
Now since M is reflexive then it is torsion-free and so the multiplication map M ��·−� M
is injective. Choose a surjective morphism φ : R� ⇣ M with � minimal. Now consider
the following commutative diagram:

0 R� R� (R/��R)� 0

0 M M M/��M 0

φ

��·

φ φ
��·

We claim that M/�1M is a free R/(�1)-module. Indeed: R/(�1) is an integral domain
and so H��R(M� R/(�1)) is torsion-free as R/(�1)-module. Consider the map M++ →
H��R(M+� R/(�1)) given by � �� [� �� � (�) mod (�1)]. Now we study its kernel:
suppose that � (�) ≡ 0 mod (�1) for every � ∈ M+. Then, since �1 is not a zero-divisor,
follows that for every � ∈ M+ there exists a unique �� ∈ R such that � (�) = �1�� .
This means that there is a function � ∈ M++ such that � (�) = �1�(�) for every
� ∈ M+. Therefore, the kernel is equal to �1M++. Being M reflexive, we deduce
that M/�1M � M++/�1M++ injects into the torsion-free module H��R(M+� R/(�1)).
It follows that M/�1M is torsion-free too and so it is a free module since R/(�1) is
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a PID. Hence φ is an isomorphism, otherwise M/�1M � ((R/�1R)�/K��(φ)) is a free
R/(�1)-module of rank � < �. Since �1 ∈ m, then by Nakayama’s lemma we get that
there exists a surjective map R� ⇣ M , contradicting the minimality of �.
Now by the Snake lemma applied to the above diagram, we have that K��(φ) �1·−�
K��(φ) is an isomorphism. This implies that �1 · K��(φ) = K��(φ) so that K��(φ) = 0
again by Nakayama’s lemma. Therefore M � R� and we can conclude the proof.

Thus we can finally prove the most important result of this section.Corollary 3.3.13 (The Structure theorem for finitely generated Λ-modules). Let R
be a 2-dimensional regular local ring and let M be a finitely generated R-module.
Then there exist finitely many prime ideals p� with � ∈ I of height 1, a nonnegative
integer �, natural numbers �� ∈ N and a pseudo-isomorphism:

M ∼ R� ⊕
�

�∈I R/p��
�

Moreover, the prime ideals p� and the numbers �� �� are uniquely determined
by M :

� = ���K(M ⊗R K)� {p� : � ∈ I} = ����(M) ∩ P(R)

with K = F���(R).

Proof. By theorem 3.3.10 and remark 25, we already know that M ∼ F (M) ⊕ T(M) ∼
F (M) ⊕

�
�∈I R/p� with I� �� and the p� ’s as in the above statement. Thus applying

proposition 3.3.11 we also find that M ∼ F (M)++ ⊕
�

�∈I R/p��
� . However, the previous

theorem tells us that F (M)++ is a free R-module. This implies that there exists � such
that M ∼ R� ⊕

�
�∈I R/p��

� . Looking at the previous proofs, one deduces that � and the
p� ’s satisfy the requested properties. This concludes the corollary.

We conclude the section applying the corollary to the most importante case for
us. This leads us to some important definitions.Definition 3.3.7. Applying the previous corollary with R = Z�[|T|] and M a finitely
generated Λ-module we get that

M ∼ Λ� ⊕
��

�=1 Λ/���
� ⊕

��
�=1 Λ/(P��

� )

where �� �� ��� �� ∈ N and the P� ’s are irreducible distinguished polynomials. Then
we can define:

- �Λ(M) = � the Λ-rank of M

- µ(M) =
��

�=1 �� the Iwasawa µ-invariant of M

- λ(M) =
��

�=1 �� · ���(P�) the Iwasawa λ-invariant of M

- ����(M) = �µ(M) ·
��

�=1 P��
� the characteristic polynomial of M

- ����Λ(M) = ����(M)Λ the characteristic ideal of M

Furthermore, we call a finitely generated Λ-module of the form
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E = Λ� ⊕
��

�=1 Λ/��� ⊕
��

�=1 Λ/(P��
� )

an elementary Λ-module.

Remark 26. 1. By definition, we have ���(����(M)) = λ(M).

2. Observe that the invariants defined above depend on M only up to pseudo-
isomorphism and �Λ(M)� µ(M) and λ(M) are independent of the chosen genera-
tor γ . This is not true for the characteristic polynomial, so that we should write
����γ(M) to be more precise. Moreover, notice that ����γ(M) = ����γ(TΛ(M))
where TΛ(M) is the Λ-torsion submodule of M .

3.4 Application: another way to construct �-adic L-functions
In this section we want to present another method to construct �-adic L-functions
that will provide us an important tool for stating The Iwasawa Main conjecture. In
particular, we are going to show that there exists a power series � (T� ω�) such that
L�(�� ω�) = � ((1 + �)� − 1� ω�).

Let � be an odd prime as usual. It is known that G��(Q(ζ��+1)|Q) � (Z/��+1Z)×. If we
let

Q(ζ�∞) =
�

�≥0 Q(ζ��+1),

then it follows that G��(Q(ζ�∞)|Q) � lim�−�≥0(Z/��+1Z)× = Z×
� . More explicitly, let

� =
�

� ���� ∈ Z×
� and let ζ = ζ�� for some �. Then we set

σ�(ζ)
def
= ζ� def

=
�

� ζ����

which is a finite product since ζ�� = 1 for � ≥ �. Clearly σ� gives an element of
G��(Q(ζ�∞)|Q). However notice that every automorphism must be of this form, since
it is known what happens at each finite �-level. Now for what we said in the example
2 we have a decomposition

Z×
� � (Z/�Z)× × (1 + �Z�) � (Z/�Z)× × Z�

and one can see that they are given by the isomorphisms

� �� (ω(�) mod �� ���) �� (ω(�) mod �� �������
����(1 + �) )

Now observe that 1 + � is a topological generator for 1 + �Z� since (1 + �)Z� =
1 + �Z� .
Let � be a positive integer with (�� �) = 1 and let �� = ��+1�� K� = Q(ζ�� ), and
K∞ =

�
�≥0 Q(ζ�� ). Then K� = K0(ζ��+1) and K∞ = K0(ζ�∞). It follows that

G��(K∞|Q) = lim�−
�

G��(K�|Q) � lim�−
�

(Z/��Z)× �

� lim�−
�

((Z/�Z)× × (Z/��+1)×) � (Z/�Z)× × Z×
�

However by the above we have Z×
� � (Z/�Z)× × Z� and so
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G��(K∞|Q) � ∆ × Γ

where ∆ = G��(K0|Q) � (Z/��Z)× and Γ = G��(K∞|K0) � (1 + �Z�� ·) � (Z�� +).
In particular, identifying Γ with 1 + �Z� , we have Γ = 1 + �0Z� = (1 + �0)Z� since
(�� �) = 1 and so also 1 + �0 gives a topological generator.
The elements of Γ which fix K� can be clearly identified with the elements of 1 +
��Z� = (1 + �0)�

�Z� = Γ�� . Therefore by Galois theory we deduce that G��(K�|K0) �
Γ/Γ�� def

= Γ�. Furthermore, notice that arguing as before we get that

G��(K�|Q) � ∆ × Γ�.

Using this isomorphism, for � =
�

� ���� ∈ Z×
� as above, we write:

σ� = δ(�)γ�(�)

with δ(�) ∈ ∆� γ�(�) ∈ Γ�. In particular observe that by our writing we have
γ�(1 + �0) = 1 + �0 mod Γ�� .
Now let χ be a Dirichlet character whose conductor is of the form ��� for some � ≥ 0.
Clearly, we may regard χ as a character of G��(K�|Q) so that we can uniquely write
χ = θψ where θ ∈ �∆� ψ ∈ �Γ�. Then θ is a character with conductor � or �� (hence
�2 - �θ), while ψ is a character of Γ�, so ψ has �-power order and is either trivial or
has conductor equal to �� and � ≥ 1.Definition 3.4.1. Let χ = θψ a character of conductor ��� with � ≥ 1 as above. Then
we call θ a character of the first kind and ψ a character of the second kind.

Remark 27. One can show that ψ is an even character since the fixed field of its
kernel is a real field (see [Wa] for the details). Thus, if χ is even then θ is even.

Now assume χ = θψ is an even character and let θ∗ = ωθ−1 (thus θ∗ is odd).
Moreover, define

ξ� = − 1
��

·
�

0<�<��
(���0)=1

�δ(�)−1γ�(�)−1 ∈ Q�[∆ × Γ�]

and

η� = (1 − (1 + �0)γ�(1 + �0)−1)ξ� =

= −
�

0<�<��
(���0)=1

�
�(1 + �0)

��
− (1 + �0)

�
��

�
δ(�)−1γ�(�)−1γ�(1 + �0)−1 ∈ Z�[∆ × Γ�]�

Let Kθ = Q�(θ), �θ = Z�[θ] (the notation has the similar meaning of Q(χ)) and

�θ∗
def
= 1

|∆|
�

δ∈∆
θ∗(δ)δ−1

The above �θ∗ is called the idempotent for θ∗. There is a more general theory
about idempotents that we will treat in the following sections.
Notice that �θ∗ξ� = ξ�(θ)�θ∗ and �θ∗η� = η�(θ)�θ∗ , where
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ξ�(θ)
def
= − 1

��
·
�

0<�<��
(���0)=1

�θω−1(�)γ�(�)−1 ∈ Kθ[Γ�]

and

η�(θ)
def
= (1 − (1 + �0)γ�(1 + �0)−1)ξ�(θ) =

=
�

0<�<��
(���0)=1

�
(1 + �0)

�
��

− �(1 + �0)
��

�
· θω−1(�)γ�(�)−1γ�(1 + �0)−1 ∈ �θ[Γ�]

Proposition 3.4.1. 1. 1
2η�(θ) ∈ �θ[Γ�]

2. if θ �= 1 then 1
2ξ�(θ) ∈ �θ[Γ�]

3. if � ≥ � ≥ 0 then η�(θ) �� η�(θ) and ξ�(θ) �� ξ�(θ) under the natural map
from Kθ[Γ�] to Kθ[Γ�].

Partial proof. We give complete proofs of 1� and 3. Since the proof of 2� involves a lot
of computations, we decided not to present it. However, we will state some important
formulas that arise from its proof. This can be find with all the details in [Wa].

1. By definition, η�(θ) ∈ �θ[Γ�]. Now since � is odd we have that |1
2 | = 1 and so

1
2 ∈ Z� . Therefore multiplying η�(θ) by 1

2 we still obtain an element of �θ[Γ�].

3. Notice that under the natural map Γ�+1 → Γ� we have γ�+1(�) �� γ�(�). There-
fore

ξ�+1(θ) �� ξ �
�(θ) = − 1

��+1

�

0<�<��+1�
(���0)=1

�θω−1(�)γ�(�)−1�

Notice that for every � in the sum we can write � = � + ��� with 0 ≤ � <
��� (�� �0) = 1� and 0 ≤ � < �. Then � ≡ � mod �� implies γ�(�) = γ�(�) (this
follows from the fact that G��(K�Q) � (Z/��Z)× and by its decomposition as
∆ × Γ�). Now �θ = � or �� and �ω = �, therefore �θω−1 divides �0 = �� =
���(�� �� ��). Thus �θω−1 divides �� and so � ≡ � mod �� implies also that
θω−1(�) = θω−1(�). It follows that

ξ �
�(θ) = − 1

��+1

�

0≤�<��
(���0)=1

�
θω−1(�)γ�(�)−1

�−1�

�=0
(� + ���)

�
=

= − �
��+1

�

0≤�<��
(���0)=1

�
θω−1(�)γ�(�)−1

�−1�

�=0
�

�
− ��

��+1

�

0≤�<��
(���0)=1

θω−1(�)γ�(�)−1
�−1�

�=1
� =

= ξ� − � − 1
2

�

0≤�<��
(���0)=1

θω−1(�)γ�(�)−1�
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Now observe that
�

0≤�<��
(���0)=1

θω−1(�)γ�(�)−1 =
�

0≤�< ��
2

(���0)=1

(θω−1(�)γ�(�)−1 + θω−1(�� − �)γ�(�� − �)−1)

However: since θω−1 = θ(−1)ω(−1) = −1 then θω−1(�� − �) = θω−1(−�) =
θω−1(�); similarly γ�(�� − �) = γ�(−�) = γ�(−1)γ�(�) = γ�(�). Hence

�

0≤�<��
(���0)=1

θω−1(�)γ−1
� (�) = 0

This implies that ξ �
�(θ) = ξ�(θ). Noticing that γ�(�) �� γ�(�) through Γ� → Γ�,

also the general case follows.

As promised in the previous proof, we will state some important formulas that one
can find in proving part 2� of the previous proposition.Proposition 3.4.2. Assume θ �= 1. Let R denote the set of (� − 1)-st roots of unity
and R� be a set of representatives for R modulo ±1. Moreover let T denote a set of
representatives of elements of (Z/��Z)× such that Γ� = {γ�(�) : � ∈ T}. Hence:

1. If �θ = �� then

1
2ξ�(θ) = − 1

2��+1

�

�∈T

�

α∈R
��(�α)θω−1(�α)γ�(�)−1

2. If �θ �= �, then

1
2ξ(θ) = −1

�
�

�∈T

�

α∈R�

�−1�

�=0
�θω−1(��(�α) + ����)γ�(�)−1

Using proposition 3.4.1 and the fact that �θ[|Γ|] � �θ[|T|], we deduce that there are
power series � � �� � ∈ �θ[[T]] with the following correspondences:

lim�−
�

ξ�(θ) ↔ � (T� θ)� ��θ �= 1

lim�−
�

η�(θ) ↔ �(T� θ)

lim�−
�

(1 − (1 + �0)γ�(1 + �0)−1) ↔ �(T� θ)

Moreover one can show that �(T� θ) = 1 −
1 + �0

1 + T and that � (T� θ) =
�(T� θ)
�(T� θ) (if

θ = 1, we take this as definition of � (T� θ)).
The following lemma will be useful to prove the main result of this chapter. The
proof is just a matter of computations and so we decided to omit it. The interested
reader can look at [[Wa]] for the details.
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Lemma 3.4.3.
lim
�→∞

� 1
��

·
�

0<�<��
(���0)=1

χω−�(�)��
�

= (1 − χω−�(�)��−1)B��χω−�

Theorem 3.4.4. Let χ = θψ be an even Dirichlet character of conductor ��� with
� ≥ 1 as above (θ of first kind, ψ of second kind). Moreover let ζψ

def
= ψ(1 + �0)−1 =

χ(1 + �0)−1. Then

L�(�� χ) = � (ζψ(1 + �0)� − 1� θ).

Proof. First of all notice that ζψ is a ��-th root of unity for some � ≥ 1. Moreover
observe that if |�| < �

�−2
�−1 then

|(1 + �0)� − 1| = |����(� · ����(1 + �0)) − 1| < 1

and so also |ζψ(1+�0)� −1| = |����(����(ζψ))+����(� · ����(1+�0))| < 1. Therefore
the RHS of the statement converges and is an analytic function of �. Consequently,
by the uniqueness discussed in remark 17, we only need to prove the above equal-
ity for � = 1 − �, where � is a positive integer. Let �(�)

def
= �������/����(1 + �0).

Since γ�(1 + �0) generates Γ� then it corresponds to
�
(1 + T) mod ((1 + T)�� − 1)

�
∈

Z�[|T|]/(ω�(T)Z�[|T|]). It follows that γ�(�) = γ�(1 + �0)�(�) corresponds to (1 + T)�(�)

mod ((1 + T)�� − 1). From the definition of η�(θ) we have

�(T� θ) ≡
�

0<�<��
(���0)=1

�
((1 + �0)

�
��

− (1 + �0)�
��

) · θω−1(�)(1 + T)−�(�)−1
�

mod ((1 + T)�� − 1)�

Let (1 + �0)� = �1 + �2�� with 0 ≤ �1 < ��. By definition of ���� we have that
�(�) + 1 = �((1 + �0)�). Moreover notice that (1 + �0)� ≡ �1 mod �� implies:

- ω((1 + �0)�) = ω(�1);

- θ((1 + �0)�) = θ(�1);

- γ�((1 + �0)�) = γ�(�1);

- �(1 + �0)�� = ω((1 + �0)�)−1(1 + �0)� = ω(�1)−1(�1 + �2��) = ��1� + ω(�1)−1�2��.

So in particular we get �(�) + 1 = �((1 + �0)�) ≡ �(�1) modulo ��. Thus

�(T� θ) ≡
�

0<�<��
(���0)=1

�2θω−1(�1)(1 + T)−�(�1) mod ((1 + T)�� − 1)�

Now if � is a positive integer and � is sufficiently large we have:

(ζψ(1 + �0)1−�)�� − 1 = (1 + �0)(1−�)�� − 1 ≡ 0 mod ��
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Then:

�(ζψ(1 + �0)1−� − 1� θ) ≡
�

0<�<��
(���0)=1

�2θω−1(�1)(ζ−1
ψ (1 + �0)�−1)�(�1) mod ���

However ζ−�(�1)
ψ = ψ(1 + �0)�(�1) = ψ(�1) and (1 + �0)�(�1) = ��1�. Therefore

�(ζψ(1 + �0)1−� − 1� θ) ≡
�

0<�<��
(���0)=1

�2θω−1(�1)ψ(�1)��1��−1

≡
�

0<�<��
(���0)=1

�2χω−�(�1)��−1
1 mod ���

If � is large enough that �ψ divides ��, then χω−�((1+�0)�) = χω−�(�1). Moreover,

((1 + �0)�)� = (�1 + �2��)� ≡ ��
1 + ���−1

1 ���2 mod �2
�,

and so

χω−�(1 + �0)(1 + �0)�
�

0<�<��
(���0)=1

χω−�(�)�� ≡
�

0<�<��
(���0)=1

χω−�(�1)��
1 +

+ ���
�

0<�<��
(���0)=1

�2χω−�(�1)��−1
1 mod �2

��

This implies

�(ζψ(1 + �0)1−� − 1� θ) ≡ (χω−�(1 + �0)(1 + �0)� − 1) 1
���

�

0<�<��
(���0)=1

χω−�(�)�� mod ��

Now observe that as � runs from 1 to ��, so does �1 and furthermore that χω−�(1+
�0) = χ(1 + �0). Hence, recalling the definitions of �� and of �-adic limit, and using
also the previous lemma, we obtain:

�(ζψ(1 + �0)1−� − 1� θ) = ((1 + �0)�χ(1 + �0) − 1) 1
� lim

�→∞

� 1
��

�

0<�<��
(���0)=1

χω−�(�)��
�

=

= −�(ζψ(1 + �0)1−� − 1� θ) 1
� lim

�→∞

� 1
��

�

0<�<��
(���0)=1

χω−�(�)��
�

=

= −�(ζψ(1 + �0)1−� − 1� θ) 1
� (1 − χω−�(�)��−1)B��χω−��

Therefore dividing �(ζψ(1 + �0)1−�� θ) by �(ζψ(1 + �0)1−� − 1� θ) and recalling the
formulas for � (T� θ) and L�(1 − �� χ) we can conclude the proof.





Chapter 4Iwasawa’s theory of Z�-extensions
The aim of this chapter is to give other necessary background on Iwasawa theory
in order to start the study of the proof of The Iwasawa Main Conjecture. We start
with some remarks in infinite Galois theory and then we pass to study the Iwasawa’s
theorem for ideal class groups in Z�-extensions. Next we discuss Modules decompo-
sition with respect to orthogonal idempotents. We conclude the chapter with a brief
discussion on cyclotomic units and on the maximal unramified abelian �-extension
unramified outside �.

4.1 Infinite Galois theory and Ramification theory
In this section we want just to collect the key properties of infinite Galois extensions
and their corresponding Ramification theory in order to prove the Iwasawa’s theo-
rem. Thus, we are not going to prove most of the claims. For the proofs, see [Wi]
and [Wa].
Let L|K be an algebraic field extension. Let P be a non-zero prime ideal of �L and
let p = P ∩ �K , which is a prime ideal of �K , as it is known by commutative algebra.
In particular, one says that P lies above p.
Clearly these rings of integers are not Dedekind domains in general, but one can
show anyway that �L/P is a field extension of �K/p. In particular it is an abelian
extension since one can prove that �L|F� is a Galois extension. On the other hand, by
commutative algebra we know that given a prime ideal p of �K there exists a prime
P of �L lying above p.
As in the finite case, if L|K is Galois then G��(L|K) indicates the group of automor-
phisms of L which fix K pointwise. Now let F be a field such that K ⊆ F ⊆ L and F |K
is finite. Set GF

def
= G��(L|F ). Notice that by our assumption this has finite index in

G��(L|K). Then we give a topology on G��(L|K) letting such GF form a basis for the
neighborhoods of the identity in G��(L|K). Consider now two fields F1 and F2 with
the same just mentioned properties of F and such that F1 ⊆ F2. Then we have natural
maps G��(F2|K) → G��(F1|K). Hence we get that G��(L|K) is a profinite group and

G��(L|K) � lim�− G/GF � lim�− G��(F |K)

where the limit is taken with respect to: F runs through the normal finite subex-
tensions F |K, the order on the indices is given via inclusion and the maps are the

41
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natural ones defined above. Thus now we can state the Galois correspondence also
for infinite extensions:Theorem 4.1.1. Let L|K be a Galois extension. Then the map Φ defined by Φ(M) =
G��(L|M) is an inclusion-reversing bijection from the set of the intermediate fields
of L|K to the set of subgroups of G��(L|K). Its inverse Φ−1 maps each subgroup H
to the field KH of all elements fixed by H .Proposition 4.1.2. Let L|K be a Galois extension and let M be an intermediate field.
Then

- G��(L|M) is open in G��(L|K) if and only if [M : K] is finite. If this is the case
then [G��(L|K) : G��(L|M)] = [M : K].

- G��(L|M) E G��(L|K) if and only if M|K is a Galois extension. If this is the
case then the restriction map G��(L|K) → G��(M|K) is surjective and its kernel
is G��(L|M). Consequently

G��(M|K) � G��(L|K)/G��(L|M)

One can also show that, as for finite extensions, if L|K is Galois then the action
of G��(L|K) on the primes above p is transitive. In other words:Lemma 4.1.3. Suppose L|K is a Galois extension and let P and P� be primes of K
lying above p. Then there exists σ ∈ G��(L|K) such that σP = P�.

Similarly to the finite case, one definesDefinition 4.1.1. Let L|K be a Galois extension and let P lie above p. We define the
decomposition group as

D = D(P|p) = {σ ∈ G��(L|K) : σP = P}Definition 4.1.2. Let L|K be a Galois extension and let P lie above p. We define the
inertia group as

I = I(P|p) = {σ ∈ D(P|p) : σ (α) ≡ α mod P for all α ∈ �L}

Remark 28. - It can be shown also that D is a closed group of G��(L|K) and
moreover I is a closed group of D itself.

- As in the finite case, we still have the exact sequence

1 → I → D → G��((�L/P)|(�K|p)) → 1
Now assume for the moment that the extension L|K is just algebraic, that Q ⊆ K

and let Q be the algebraic closure of Q. Then clearly Q|L and Q|K are Galois
extensions. As usual, let P be a prime of �L that lies above a prime p of �K . Choose
a prime ideal Q of �Q lying above P. We obtain

I(Q|p) ⊆ G��(Q|K)
I(Q|P) ⊆ G��(Q|L) ⊆ G��(Q|K)
I(Q|P) = I(Q|p) ∩ G��(Q|L)

These observations allow us to define the ramification index as
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�(P|p) = [I(Q|p) : I(Q|P)]

which clearly could be infinite.
If Q� is another prime lying above P then by lemma 4.1.1 there exists some σ ∈ G��(Q)
such that Q� = σQ. Moreover one has

I(Q�|p) = σI(Q|p)σ−1

I(Q�|P) = σI(Q|P)σ−1

Therefore, the ramification index �(P|p) does not depend on the choice of Q.
This shows also that if the extension L|K is abelian, then the definition of inertia
group does not depend on the particular prime above p. Similarly, one finds that this
last fact holds also for the definition of decomposition group.
Now re-add the hypothesis that the extension L|K is Galois. Then there is a natural
restriction map

G��(Q|K) → G��(L|K)
with kernel equal to G��(Q|K). Furthermore, one can show that the induced map
I(Q|p) → I(P|p) is surjective, with kernel equal to I(Q|P). Hence we deduce

I(Q|p)/I(Q|P) � I(P|p)
and so

�(P|p) = |I(P|p)|
.

Clearly this is coherent with the definitions given in the finite case.
Remark 29. Let L|K be a Galois extension and let p a prime ideal of �K . Notice that
by the definition of the decomposition group and the transitive action of G��(L|K)
follows that the numbers of prime ideals of �L above p is equal to [G��(L|K) : D(P|p)],
which clearly can be infinite and does not depend on the prime ideal P of �L lying
above p.

Now we give some definitions that will generalize the ones for the finite case.Definition 4.1.3. Let L|K be a Galois extension and let p a prime of �K . We say that:

- L|K is ramified at p if there exists a prime P of �L lying above p such that
I(P|p) �= {1}.

- L|K is unramified at p if for every prime P of �L lying above p one has I(P|p) =
{1}.

- L|K is unramified if the extension is unramified at every prime of �K .

- L|K is totally ramified at p if there exists a prime P of �L lying above p such
that I(P|p) = G��(L|K).

- L|K is totally ramified if every prime in �K is totally ramified in L|K.

Remark 30. One can prove that p is unramified or totally ramified if so is in every
finite normal subextension F |K with K ⊆ F ⊆ L.
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We conclude the section with a couple of easy lemmas that will play an important
role during the proof of the Iwasawa’s theorem. The first follows just by definition
of inertia group and arguing by double inclusion. The second one is a consequence
of the Galois correspondence.Lemma 4.1.4. Let L|K and M|K be Galois extensions with M ⊆ L. Suppose that p
is a prime ideal of �L. Then

IL|M (p|p ∩ �M ) = IL|K(p|p ∩ �K) ∩ G��(L|M)

Lemma 4.1.5. Let L|K and M|K be finite Galois extensions. Then

G��(LM|M) � G��(L|L ∩ M).

4.2 Iwasawa’s theorem
Definition 4.2.1. A Z�-extension of a number field K is a Galois extension K∞|K such
that G��(K∞|K) � (Z�� +).Proposition 4.2.1. Let K∞|K be a Z�-extension. Then, for each � ≥ 0, there is a
unique field K� of degree �� over K, and these K�, plus K∞, are the only fields
between K and K∞.

Proof. By infinite Galois theory and by the definition of Z�-extension, we know that
the intermediate fields of K∞|K correspond to the closed subgroups of Z� . By lemma
3.1.3, we know that they have the form ��Z� for some �. Since Z�/��Z� � Z/��Z, by
the correspondence of Galois theory we can conclude the proof.

The consequence of the previous proposition is that to give a Z�-extension K∞|K
is the same to give a sequence of fields

K = K0 ⊂ K1 ⊂ · · · ⊂ K∞ =
�

�≥0 K�

such that G��(K�|K) � Z/��Z for every � ≥ 0.
Remark 31. Every number field K has at least one particular Z�-extension, called the
cyclotomic Z�-extension of K. Indeed, let � be an odd prime and set � = � if � is
odd or � = 4 otherwise. Then notice that we have an isomorphism (Z/���Z)× �
(Z/�Z)× × (cyclic group of order ��). Thus for every � ≥ 1 there exists a unique
(unless � = 2 and � = 1) subfield of Q(ζ��� ) which is cyclic of degree �� over Q
(it is the fixed field by (Z/�Z)×). Call them B� for every � ≥ 1. Therefore setting
B0 = Q and B∞ =

�
�≥0 B� we deduce that B∞|Q is a Z�-extension. Now let K be any

number field and let K∞ = KB∞. We now prove that K∞|K is a Z�-extension. Say
that � ≥ 0 is such that B� = K ∩ B∞. Thus, by lemma 4.1.5 we have G��(K∞|K) �
G��(B∞|B∞ ∩ K) � ��Z� � Z� , as we wanted. Moreover notice that if K contains
Q(ζ�) then the extension is obtained by simply adjoining all ��-th roots of unity for
all � ≥ 1.
Example 9. Let � be an odd prime. The most important example of Z�-extension
for us is Q(ζ�∞)|Q(ζ�) where Q(ζ�∞) =

�
�≥0 Q(ζ��+1) (this is actually the cyclotomic

Z�-extension of Q(ζ�) by the above remark).
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The following proposition will play an important role for proving the Iwasawa’s
theorem. The arguments involved to prove it are completely about class field theory,
so we decided to omit the proof. For the details, see [Wa] or [Lan1].

Proposition 4.2.2. Let K∞|K be a Z�-extension and let �� be a prime of K (finite or
infinite) which does not lie above �. Then K∞|K is unramified at ��.

The meaning of the previous proposition is that Z�-extensions are "unramified
outside �".

Lemma 4.2.3. Let K∞|K be a Z�-extension. At least one prime ramifies in this
extension, and there exists � ≥ 0 such that every prime which ramifies in K∞|K�
is totally ramified.

Proof. By a classical result in algebraic number theory (see [Sam] for example)
we know that the class number of K is finite. This implies that also the maximal
abelian unramified extension H of K is finite since by class field theory we know that
G��(H|K) � C�(K). Hence since K∞|K is an infinite extension, we can deduce that at
least one prime ramifies in K∞|K. By the previous proposition, we get that the only
primes that may ramify are those of K above �. We know that there are only finitely
many such primes since K is a number field and we call them p1� ���� p�. Let I1� ���� I�
be the corresponding inertia groups for the extension K∞|K. These are closed sub-
groups of G��(K∞|K) = Z� and so also

��
�=1 I� is closed. Thus there exists � ≥ 0

such that
��

�=1 I� = ��Z� . Now the corresponding Galois group is G��(K∞|K�) = ��Z�
which is clearly contained in each inertia group I� . We have to show that this implies
that all the primes of K� above p� are totally ramified. Fix a � and let P a prime above
p� and consider its inertia group IK∞|K� for the extension K∞|K�. Notice that

IK∞|K� = I� ∩ G��(K∞|K�) = G��(K∞|K�)

where the first equality holds since in this cases the Galois groups are abelian and
the second one because G��(K∞|K�) ⊆ I� . Therefore, we have just show that all the
primes of K� above each p� are totally ramified in K∞|K�. Noticing that a prime of
K� that ramifies in K∞|K� is necessary above some p� , we can conclude the proof.

We are now arrived to the most important result of this chapter. Given a Z�-
extension K∞|K, denote by Γ = G��(K∞|K) � Z� and let γ0 be a topological generator
of Γ. Let L� be the maximal unramified abelian �-extension of K� and let A� = �-
Sylow of the ideal class group of K�. Moreover let L∞ =

�
�≥0 L�, X� = G��(L�|K�)

and X = G��(L∞|K∞).

Theorem 4.2.4 (Iwasawa’s theorem). Let K∞|K be a Z�-extension. Let ��� be the
exact power of � dividing the class number of K�. Then there exist integers λ ≥
0� µ ≥ 0 and ν, all independent of �, and an integer �0 such that

�� = λ� + µ�� + ν

for all � ≥ �0.
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Proof. First of all notice that by our notation and by class field theory we have that
X� � A� (look at [Sa2] and [Sa3]). More precisely, for � > � we have a commutative
diagram:

A� X�

A� X�

�

N ι

�

where N is the norm map and ι is defined by σ �� σ �L� . Moreover, each L� is Galois
over K since L� is maximal and so L∞|K is a Galois extension too. Let G

def
= G��(L∞|K).

Now we are going to make some observations and to prove some statements under a
further assumption that we will be able to remove at a certain point thanks to lemma
4.2.3.Iwasawa’s assumption: All primes which are ramified in K∞|K are totally ramified.
By this assumption, notice that for every � we get K�+1 ∩ L� = K�. Indeed, as we
discussed before, since by class field theory the maximal unramified abelian exten-
sion is finite, we must have a prime p of K that ramifies in K∞|K. The assumption
implies that p is totally ramified in K∞|K and then by remark 30 so is in any finite
subextension F |K with K ⊆ F ⊆ K∞. From this we deduce that p totally ramifies also
in the abelian extension (K�+1 ∩ L�)|K. Now let P a prime of K� lying over p. Denote
by I(P) the inertia group of p for the extension (K�+1 ∩ L�)|K� and by I(p) the inertia
group of p for the extension (L� ∩ K�+1)|K. Since I(P) = I(q) ∩ G��((K�+1 ∩ L�)|K�)
we deduce that P is totally ramified too in the extension (K�+1 ∩ L�)|K�. However,
L�|K� is unramified and so also (K�+1 ∩L�)|K� must be unramified. This is impossible
unless L� ∩ K�+1 = K�.

Using lemma 4.1.5, we obtain that G��(L�K�+1|K�+1) � G��(L�|L�∩K�+1) = G��(L�|K�),
which is isomorphic to a quotient of X�+1 by Galois theory. Notice that to the norm
map A�+1 → A� corresponds a natural map X�+1 → X� and moreover we have
X� � G��(L�K∞|K∞). Hence

lim�−
�

X� = lim�−
�

G��(L�|K�) � lim�−
�

G��(L�K∞|K∞) �

� G��((
�

L�K∞)|K∞) = G��(L∞|K∞) = X

Now recall that Γ� = Γ/Γ�� � Z/��Z � G��(K�|K). Then if we consider γ� ∈ Γ�
it makes sense to extend it to an element �γ� ∈ G��(L�|K). Let �� ∈ X�. Then there is
an action of γ� on �� given by

�γ�
�

def
= �γ����γ�

−1.
Since G��(L�|K�) is abelian, �γ�

� is well defined (moreover this action corresponds to
the one on A�). Hence we get that X� is a Z�[Γ�]-module. Moreover since an element
of X � lim�− X� may be viewed as a vector of the form (�0� �1� ���) we can make Z�[Γ�]
acting on the �-th component for every �, so that X becomes a Λ-module. Observe
that using the isomorphism Λ � Z�[|T|] we obtain that 1 + T acts as γ0 ∈ Γ. In
particular one has that

�γ = �γ��γ−1, for γ ∈ Γ, � ∈ X.
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where �γ is an extension of γ to G .
Let p1� ���� p� be the primes which ramify in K∞|K and fix a prime �p� of L∞ lying over
p�. Let I� ⊆ G be its inertia group. Since L∞|K∞ is an unramified extension, we obtain
that I� ∩ X = 1. This implies that we have an injection I� �� G/X � Γ. On the other
hand, since K∞|K is totally ramified at p�, we obtain that the map above is surjective
too, and so is an isomorphism. Hence we deduce that

G = I�X = XI� for � = 1� ���� �.

Now let σ� ∈ I� such that it maps to γ0 under the above bijection. Then σ1 must be
a topological generator of I�. Using that G = XI1 we have I� ⊆ XI1 for � = 1� ���� �.
Therefore we get σ� = ��σ1 for some �� ∈ X. In particular notice that �1 = 1.
Remark 32. Notice that the isomorphism Z� � Γ may be written as � �� γ�

0 with
� ∈ Z� . This is how we are going to think of the isomorphism from now on. If we
define (1 + T)�

def
=

�∞
�=0

��
�
�
T�, where the binomial has been discussed in chapter 2,

one can prove that γ�
0 corresponds to (1 + T)� under the isomorphism of theorem

3.2.6. This fact will be used in the next lemma.Lemma 4.2.5. Suppose that the Iwasawa’s assumption holds. Then

[G� G] = Xγ0−1 = TX

Proof. Since Γ � I1 ⊆ G maps onto Γ � G/X, we identify Γ with I1 and define the
action of Γ on X via this identification, so that �γ = γ�γ−1. Consider now �1� �2 ∈ G .
Recalling that G = ΓX, there are γ1� γ2 ∈ Γ and �1� �2 ∈ X such that �1 = γ1�1 and
�2 = γ2�2. Using the fact that Γ is abelian we get that

�1�2�−1
1 �−1

2 = γ1�1γ2�2�−1
1 γ−1

1 �−1
2 γ−1

2 =
= �γ1

1 γ1γ2�2�−1
1 γ−1

1 �−1
2 γ−1

2 = �γ1
1 (�2�−1

1 )γ1γ2 (�−1
2 )γ2

Using also that X is abelian we obtain

�(1−γ2)γ1
1 �(γ1−1)γ2

2 = (γ1�1γ−1
1 )(1−γ2)(γ2�2γ−1

2 )(γ1−1) =
= γ1�1γ−1

1 γ2γ1�−1
1 γ−1

1 γ−1
2 γ1γ2�2γ−1

2 γ−1
1 γ2�−1

2 γ−1
2 =

= �γ1
1 (�2�−1

1 )γ1γ2 (�−1
2 )γ2

Putting altogether one has

�1�2�−1
1 �−1

2 = �(1−γ2)γ1
1 �(γ1−1)γ2

2

In particular, setting γ2 = 1 and γ1 = γ0, we find that �(γ0−1)
2 ∈ [G� G]. Hence X(γ0−1) ⊆

[G� G].
Now let γ ∈ Γ be arbitrary. By the previous remark, there must be � ∈ Z� such that
γ = γ�

0 . Moreover, remark implies also that

1 − γ = 1 − γ�
0 = 1 − (1 + T)� = 1 −

�∞
�=0

��
�
�
T� ∈ TΛ.

In particular we obtain that �(1−γ2)γ1
1 ∈ X(γ0−1) and �(1−γ1)γ2

2 ∈ X(γ0−1). Therefore [G� G] ⊆
X(γ0−1). This concludes the proof.
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Remark 33. Notice that TX is closed since it is the image of the compact set X. This
implies that also [G� G] is closed.Lemma 4.2.6. Suppose again that the Iwasawa’s assumption holds. Let Y0 be the
Z�-submodule of X generated by {�� : 2 ≤ � ≤ �} and by Xγ0−1 = TX. Let Y�

def
=

ν�Y0
def
= Y ν�

0 , where

ν�
def
= 1 + γ0 + γ2

0 + ��� + γ��−1
0 = γ��

0 − 1
γ0 − 1 = (1 + T)�� − 1

T

Then we have X� � X/Y� for � ≥ 0.

Proof. Notation: In this proof, if M is a submodule of X, we will write ν�M to indicate
Mν� .
First of all consider � = 0. We have K ⊆ L0 ⊆ L∞ and moreover L0 is the maximal
abelian unramified �-extension of K. Since L|K is a �-extension too, then L0|K is
the maximal unramified abelian �-subextension of L|K. Therefore G��(L∞|L0) must
be the closed subgroup of G generated by [G� G] and all the inertia groups I� for
1 ≤ � ≤ �. In particular we have that G��(L∞|L0) is the closure of the group generated
by Xγ0−1� I1� and �2� ���� ��. Thus

X0 = G��(L0|K) = G/G��(L∞|L0) = XI1/�X(γ0−1)� �2� ���� ��� I1� �
� X/�X(γ0−1)� �2� ���� ��� = X/Y0

This concludes the case � = 0.
Now, suppose that � ≥ 1. The idea is to argue as above. Replace K by K� and so γ0
is replaced by γ��

0 because G��(K∞|K�) � Γ�� . In particular, this makes σ1 become
σ��

� . Observe that

σ�+1
� = (��σ1)�+1 = ��σ1��σ−1

1 σ2
1 ��σ−2

1 · · · σ�
1 ��σ−�

1 σ�+1
1 =

= �1+σ1+���+σ�
1

� σ�+1
1

Therefore we get σ��

� = (ν���)σ��

1 , so we need to replace �� by ν���. Finally,
we replace Xγ0−1 by X(γ��

0 −1) = ν�X(γ0−1). Therefore Y0 becomes ν�Y0 = Y�. This
completes the proof.

The above result will play a key role since it allows us to recover information
about X� from information about X.Lemma 4.2.7 (Nakayama’s Lemma for compact Λ-modules). Let M be a compact
Λ-module. Then the following are equivalent:

(1) M is a finitely generated Λ-module

(2) M/TM is a finitely generated Z�-module

(3) M/(�� T)M is a finitely dimensional F�-vector space
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Proof. Notice that passing to the proper quotients we deduce immediately the im-
plications (1) � (2) � (3)� Thus we assume (3) and we now prove (1). let U be a
neighborhood of 0 in M . Since (�� T)� → 0 in Λ, each � ∈ M has a neighborhood U�
such that (�� T)�� U� ⊆ U for some �� (we shrink U if necessary). Since M is compact
it follows that we can find finitely many U� ’s covering M . Therefore (�� T)�M ⊆ U
for a large �. This implies that

�
�((�� T)�M) = 0 for any compact Λ-module M .

Now by hypothesis, there exist elements �1� ���� �� ∈ M whose residue classes gen-
erate M/(�� T)M as F�-vector space. Consider then the compact Λ-module N

def
=

Λ�1 + ��� + Λ�� ⊆ M (it is the image of Λ�). We have that M = N + (�� T)M and so

M
N = N + (�� T)M

N = (�� T)MN

Iterating this equality we get that M/N = (�� T)�M/N for all � > 0. Notice that N
is also closed and so M/N is a compact Λ-module. Therefore we can apply the above
argument to deduce that M/N =

�
�(�� T)�M/N = 0, i.e. M = N . Since N is a finitely

generated Λ-module by definition, this concludes the proof.

We state as a corollary the following trivial (but interesting) consequence:Corollary 4.2.8. Let M be a compact Λ-module. Then M = 0 ⇔ M/TM = 0 ⇔
M/(�� T)M = 0.Lemma 4.2.9. Continue to assume that the Iwasawa’s assumption holds. Then
X = G��(L∞|K∞) is a finitely generated Λ-module.

Proof. Clearly ν1 = (1+T)�−1
T ∈ (�� T) and so Y0/(�� T)Y0 is isomorphic to a quotient

of Y0/ν1Y0 = Y0/Y1 ⊆ X/Y1 = X1. We know that X1 is a finite set and so we deduce
that also Y0/(�� T)Y0 is finite. By the previous lemma, it follows that Y0 is finitely
generated. Since X/Y0 = X0 is finite, this implies that X must be finitely generated
too. This concludes the proof.

Removing the Iwasawa’s assumption: Now we indicate how to remove the Iwa-
sawa’s assumption wlog. Let K∞|K be a Z�-extension. By lemma 4.2.3 we can choose
� ≥ 0 such that in K∞|K� all ramified primes are totally ramified. Then lemmas 4.2.6
and 4.2.9 apply to K∞|K� . In particular X, which is the same for K� and K, is a finitely
generated Λ-module. For � ≥ �, noticing that G��(K∞|K�) � Γ�� is generated by γ��

0 ,
we replace ν� by ν��� where

ν���
def
= ν�

ν�
= 1 + γ��

0 + γ2��

0 + ��� + γ��−��

0 .

Let Y� replace Y0 in lemma 4.2.6. Then we get

Y� = ν���Y� , and X� � X/Y� for � ≥ �.

Notice that with these observations we have proved the followingLemma 4.2.10. Let K∞|K be a Z�-extension. Then X is a finitely generated Λ-
module, and there exists � ≥ 0 such that

X� � X/ν���Y� for all � ≥ �.
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We can now apply theorem 3.3.13 to X. We can also apply it to Y� with the
same answer, since X/Y� is finite and the theorem is given in terms of pseudo-
isomorphisms. So we have

Y� ∼ X ∼ Λ� ⊕ (
�

Λ/(��� )) ⊕ (
�

Λ/(��(T)�� )).

Now we want to study the summands that appear on the right side. In particular,
our next step is to compute M/ν���M for each summand M on the RHS. Doing this,
we will be able to obtain the desired bounds on |X�|.

1. Consider M = Λ. Notice that ν��� is not a unit in Λ since it is a distinguished
polynomial. By lemma 3.2.10, we know that Λ/(ν���) is infinite. Since Y�/ν���Y�
is finite, it follows that Λ does not occur as a summand, i.e. � = 0.

2. Consider M = Λ/(��) with � > 0. In this case, we have M/ν���M � Λ/(��� ν���).
One can show that if the ratio of two distinguished polynomials is a polynomial,
then it is distinguished or constant. Therefore

ν��� = ν�

ν�
= ((1 + T)�� − 1)/T

((1 + T)�� − 1)/T

is distinguished. Applying the division algorithm, one finds that every element
of Λ/(��� ν���) is represented uniquely by a polynomial mod �� of degree less
than ���(ν���) = �� − �� . Hence

|M/ν���M| = ��(�� − ��) = ����+� ,

where � = −��� is a constant depending on K.

3. Consider M = Λ/(� (T)�) and let �(T)
def
= � (T)�. Say that � has degree �. Since

� is distinguished, so is � . Thus

T� ≡ � · (����) mod �

where by ����� �, we mean a polynomial. In what follows, we are going to use
the term ����� � not necessarily to indicate the same polynomial at each step.
Therefore

T� ≡ (�) · (����) mod � for � ≥ �.

If �� ≥ � then

(1 + T)�� = 1 + (�) · (����) + T�� ≡ 1 + (�) · (����) mod � .
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In particular notice that

(1 + T)��+1 = ((1 + T)�� )� ≡ (1 + � · (����))� mod � ≡
≡ 1 + �2 · (����) mod �

Now for every � ∈ N set P�(T)
def
= (1 + T)�� − 1. It follows that

P�+2(T) = (1 + T)��+2 − 1 = ((1 + T)��+1 − 1)(1 + (1 + T)��+1 + ��� + (1 + T)��+1(�−1)) =
= P�+1(T)(1 + (1 + T)��+1 + ��� + (1 + T)��+1(�−1) ≡
≡ P�+1(T)(1 + ��� + 1 + �2 · (����) mod � ≡
≡ P�+1(T)(� + �2 · (����)) mod � ≡ �(1 + � · (����))P�+1(T) mod �

Since 1 + (�)(����������) ∈ Λ×, we see that

P�+2
P�+1

acts on Λ/(�) as (�) · (����)

as long as �� ≥ �.
Now assume that �0 > �� ��0 ≥ �, and � ≥ �0. Then

ν�+2��

ν�+1��
= ν�+2

ν�+1
= P�+2

P�+1

and so
ν�+2��M = P�+2

P�+1
(ν�+1��M) = �ν�+1��M

Therefore

|M/ν�+2��M| = |M/�M| · |�M/�ν�+1��M|

for � ≥ �0. Now since � is a distinguished polynomial, we have (�� �) = 1. This
implies that multiplication by � is injective, so that

|�M/�ν�+1��M| = |M/ν�+1��M|

Since M/�M � Λ/(�� �) = Λ/(�� T�), we obtain |M/�M| = �� . By induction, one
finds that

|M/ν���M| = ��(�−�0−1) · |M/ν�0+1��M|

for � ≥ �0+1. Therefore, if |M/ν���M| is finite for all �, then we get |M/ν����M| =
���+� for some constant � depending on K and � ≥ �0 +1. If M/ν���M is infinite
for some �, then M cannot occur as summand on the RHS, as observed in the
first case, because this happens only when (ν���� � ) �= 1 by lemma 3.2.10.
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Putting all these observations together, we deduce the followingProposition 4.2.11. Suppose that

E
def
= Λ� ⊕ (

��
�=1 Λ/(��� )) ⊕ (

��
�=1 Λ/(��(T))),

where each ��(T) is distinguished. Let � =
�

� �� and � =
�

� ���(��). If E/ν���E is
finite for all �, then � = 0 and there exist �0 and � such that

|E/ν���E| = ����+��+�

for all � > �0.
Now consider E as in the previous proposition. Then we saw that Y� ∼ E and so,

equivalently, we have an exact sequence

0 → A → Y� → E → B → 0

where A and B are finite Λ-modules. We know the cardinality of E/ν���E for all
� > �0. It remains to obtain similar information for Y� . At the moment, we only
know that E� = ��� + �� + �� where �� is bounded. The following lemma solves
this problem. The proof is not particularly enlightning, so we decided to omit it. The
main idea is that it follows by applying the Snake lemma to the following commutative
diagram

0 ν���Y Y Y/ν���Y 0

0 ν���E E E/ν���E 0

Lemma 4.2.12. Suppose Y and E are Λ-modules with Y ∼ E such that Y/ν���Y is
finite for all � ≥ �. Then, for some constant � and some �0 we have

|Y/ν���Y | = �� · |E/ν���E|

for all � ≥ �0.
Therefore, considering this lemma and E as in the previous proposition, we deduce

that there exist integers �0� ν� λ ≥ 0 and µ ≥ 0 such that

��� = |X�| = |X/Y�| · |Y�/ν���Y�| = (��������) · |E/ν���E| = �λ�+µ��+ν

for all � > �0.
This concludes the proof of Iwasawa’s theorem.

Remark 34. An important fact that can be shown in detail, is that λ and µ actually are
such that λ = λ(X), µ = µ(X). This can be found in [Neu2] and it will be used later.

Now we look immediately at a consequence that will be useful later.

Corollary 4.2.13. Suppose K∞|K is a Z�-extension in which exactly one prime is
ramified, and assume it is totally ramified. Then

A� � X� � X/((1 + T)�� − 1)X

Moreover, � - �0 if and only if � - �� for all � ≥ 0.
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Proof. Since K∞|K satisfies the Iwasawa’s assumption, we can apply lemma 4.2.6. We
obtain � = 1, and so Y0 = TX. Thus

Y� = ν�TX = ((1+T)�� −1)
T TX

This proves the first part.
For the second one, if � - �0, then X0 = 0, namely X/TX = 0. This implies also that
X/(�� T)X = 0. By Nakayama’s lemma 4.2.7, we get X = 0. Thus we can conclude.

Even if we have already proved using explicitly the topological Nakayama’s lemma
that X is a finitely generated Λ-module, it can be proved that it is also a torsion module
using the following more algebraic lemma. A proof can be found in [Sa3].

Lemma 4.2.14. Let m be the maximal ideal of Λ. Let M be a profinite Λ-module,
i.e. a Λ-module of the form M = lim�−� M� where M� is a finite Λ-module and the
canonical maps M → M� are surjective for every �. Moreover, suppose that for
some element � ∈ m we have that M/�M is a finite Λ-module. Then M is a finitely
generated torsion Λ-module.

Corollary 4.2.15. Let X be as above. Then X is a finitely generated torsion Λ-module.

Proof. Once again, given our Z�-extension K∞|K, we choose � ≥ 0 such that in K∞|K�
all ramified primes are totally ramified. Moreover we fix � ≥ �. Since we have
X � G��(L∞|K∞) and A� � G��(L�|K�) � G��(L�K∞|K∞) we deduce that the natural
map X → A� is surjective. Let �Y�

def
= K��(X → A�). As above, let γ0 be a generator

of Γ = G��(K∞|K�) as a Z�-module. Then one can show that �Y� = Y� and that the
natural map X → A�+1 induces an isomorphism Y�/ν1Y � K��(A�+1

����−−−� A�) (see
[Sa3] for more details). Since the RHS of this isomorphism is finite and kernels of
abelian groups commute with projective limits, it follows by the previous lemma that
Y� is a finitely generated torsion Λ-module. Finally, we know that A� � X� � X/Y�.
Thus X and Y� differ only by a finite group. This implies that also X is a finitely
generated torsion Λ-module.

We end the section stating an important theorem due by Washington that will be
very important in the next chapters. The proof is very long and so we are forced to
omit it. The interested reader can look at [Wa].

Theorem 4.2.16. Let K be an abelian extension of Q, let � be any prime, and let
K∞|K be the cyclotomic Z�-extension of K. Then µ = 0.

Remark 35. For our purposes, the most important application of this theorem is when
K = Q(ζ�) and � is an odd prime number.

4.3 Modules decomposition
Proposition 4.3.1. Let R be a commutative ring and G an abelian group of order �.
Suppose that R contains 1

� and a primitive �-th primitive root of unity. Moreover
let �G

def
= H��(G� R×) (this is a harmless abuse of notation). Then:
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1. For χ ∈ �G , set �χ
def
= 1

�
�

σ∈G χ(σ )σ−1 ∈ R[G]. Thus we have:

- �2
χ = �χ

- �χσ = χ(σ )�χ

-
�

χ∈G �χ = 1
- �χ · �χ� = 0 when χ �= χ �

2. If M is an R[G]-module, then M decomposes into M = ⊕χ∈�G�χM .

Proof. The proof of 1� follows from direct computations so we focus on the proof
of 2� Since by 1� we know that 1 =

�
χ �χ , we deduce that for every � ∈ M one has

� =
�

χ �χ�. Now suppose that
�

χ �χ�χ = 0, with �χ ∈ M . Then �χ�(
�

χ �χ) = �χ�0 = 0
and so �χ��χ = 0. By the generality of χ � we can deduce that �χ�χ = 0 for every χ.
Thus, we obtain that the above sum is direct.

Remark 36. Let M be an R[G]-module. Then, using the just given definitions and
properties, one has the two following easy but still interesting observations:

- If N is another R[G]-module such that M � N , then �χM � �χN for every χ ∈ �G .

- For every χ ∈ �G we have that �χM = {� ∈ M : σ (�) = χ(σ )� for all σ ∈ G}

Now let � be an odd prime and let ρ be the complex conjugation. Set G
def
=

G��(Q(ζ�)|Q) � (Z/�Z)× and notice that �G = {ω� : 0 ≤ � ≤ � − 2} where ω is the
Teichmüller character. For a Z�-module M on which the complex conjugation ρ acts,
set M+ def

= {� ∈ M : ρ(�) = �} and M− def
= {� ∈ M : ρ(�) = −�}. Since � is odd,

applying the previous proposition properly we get that

M = M+ ⊕ M−

Moreover, if M is also a Z�[G]-module, we deduce that

M+ = 1 + ρ
2 M =

�

χ∈�G
χ even

�χM

M− = 1 − ρ
2 M =

�

χ∈�G
χ odd

�χM

Now for every � ≥ 1 set C�
def
= C�(Q(ζ�)). Since ρ still acts on C� then we can define

C−
� as before. Now we prove an interesting result about class numbers.

Proposition 4.3.2. The sequence

1 � C−
� −� C�

NK|K+
−−−� C�(Q(ζ�)+) � 1

is exact. In particular, we have that C�(Q(ζ�)+) � C�/C−
� .
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Proof. Consider theorems 1.2.4 and 1.2.5. In particular, we look at the composition
of maps

C�
����−−−� C�(Q(ζ�)+) ���−� C�

By definition, one finds that the kernel of this composition is C−
� . Since K��(��� ◦

����) = K��(����), the claims follow.

Clearly one deduces the following

Corollary 4.3.3. �−
� = ��

�+
�

= |C−
� |.

Remark 37. Let A0 be the �-Sylow subgroup of the ideal class group of Q(ζ�). Notice
that there exists � ≥ 0 such that �� · A0 = 0, and so we can make A0 into a Z�-
module by defining (

�∞
�=0 ����) · �

def
=

�∞
�=0(�����), with � ∈ A0, since the latter sum is

finite. Furthermore, G also acts naturally on A0, so that A0 is actually a Z�[G]-module.
Moreover, since ρ acts on A0, by lemma 4.3.1 we have a decomposition A0 = A+

0 ⊕A−
0 .

Denote by A0(Q(ζ�)+) the �-Sylow subgroup of C�(Q(ζ�)+). Applying the previous
proposition one deduces that A0(Q(ζ�)+) � A0/A−

0 � A+
0 .

Now we make an important consideration that will be used to state properly The
Iwasawa Main Conjecture. As we saw in section 3.4 we have a decomposition

G��(Q(ζ�∞)|Q) = ∆ × Γ

where ∆ = G��(Q(ζ�)|Q) and Γ = G��(Q(ζ�∞)|Q(ζ�). Because of this, follows that Λ∗ def
=

Z�[|G��(Q(ζ�∞)|Q)|] is isomorphic to Z�[∆][|Γ|]. Now let X denote lim�−� X� � lim�−� A�
as above. We know that G��(Q(ζ�∞|Q) acts on X, so that X is a Λ∗-module. Hence,
because Λ∗ � Z�[∆][|Γ|], we deduce that X is also a Z�[∆][|Γ|]-module. Recalling that
ω generates �∆, by proposition 4.3.1 follows that

X =
�−2�

�=0
�ω�X

For every � ≥ 0, let A� be the ideal class group of Q(ζ��+1), as usual. Now we show
that �ω�X corresponds to the projective limit of the ω�-component of A�, so that �ω�X
becomes a Λ-module. Furthermore, still in section 3.4 we saw that G��(Q(ζ�� )|Q) is
isomorphic to ∆ × G��(Q(ζ�� )|Q(ζ�)). Hence we can make ∆ acting on A�. Again, by
proposition 4.3.1, we have a decomposition A� =

��−2
�=0 �ω�A�. However, by remark 36

we also know that

�ω�X = {� ∈ X : σ (�) = ω�(σ )� for all σ ∈ ∆}
���

�ω�A� = {� ∈ A� : σ (�) = ω�(σ )� for all σ ∈ ∆}

Therefore we deduce that �ω�X � lim�−� �ω�A�. Since every �ω�A� is clearly a Z�[Γ�|-
module, follows that �ω�X is a Λ = lim�−� Z�[Γ�]-module.
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Remark 38. We give some ideas about a generalization of the previous remark and
further consequences of the Iwasawa’s theorem, but we do not give all the details.
For every � ≥ 0 let K� = Q(ζ��+1) and set K∞ =

�
�≥0 K�. Then the field extension

K+
∞|K+

0 is a Z�-extension. Moreover, denote by A� the �-Sylow subgroup of the ideal
class group of K�, as usual. This is a Z�[G]-module and the complex conjugation acts
on it. In particular, it decomposes as

A� = A+
� ⊕ A−

�

As above, one also has that A(K+
� ) � A�/A−

� � A+
� . Moreover, for every � ∈ N we have

that even X� decomposes as

X� = X+
� ⊕ X−

�

so that X = X+ ⊕ X−. Proceeding as in the proof of the Iwasawa’s theorem, one finds
that:

A±
� � X±

� � X±/ν���Y±
� .

Furthermore, if ��±
� is the largest power of � dividing �±

� , then one obtains

�� = �+
� + �−

�

and that there exist non-negative integers λ±� µ±� ν± and �±
0 such that

�±
� = λ±� + µ±�� + ν± for � ≥ �±

0

with λ = λ+ + λ−, µ = µ+ + µ− and ν = ν+ + ν−.

4.4 Local units modulo Cyclotomic units
In this section we present a theorem that relates the Iwasawa Algebra Λ with the
units of Q(ζ�). We will omit the proofs and most of the details. Anyway we believe
that, as it is organized, the section still is a useful exposition of the subject. For the
proofs look at [Wa].

Let � be an odd prime and let U1 be the units of Q�(ζ�) which are congruent to 1
mod (ζ� − 1). We have the following:

Lemma 4.4.1. Let 2 ≤ � ≤ � − 2 and let �� be the corresponding idempotent of
Z�[G��(Q(ζ�)|Q]. Then there exists λ� ∈ Z� , λ� �= 1 with λ�−1

� = 1 such that

ξ� = ��

�
λ� − ζ�

ω(λ� − 1)

�

generates ��U1 (here ω denotes the Teichmüller map).
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Now we generalize the previous definition. For � ≥ 0, let U�
1 be the units of

Q�(ζ��+1) which are congruent to 1 mod (ζ��+1 − 1). One can show that the norm of
the extension Q�(ζ��+1)|Q�(ζ�� ) maps U�

1 into U�−1
1 . Denote by N���−1 this norm. Thus

we can define
U∞

1
def
= lim�−

�
U�

1

Arguing as above, we have that U∞
1 is a Λ-module and also a Z�[G��(Q�(ζ�)|Q�)]-

module. Notice that, wlog, we may assume that ζ�
��+1 = ζ�� . This assumption will hold

in the rest of the section.

Let 2 ≤ � ≤ � − 2 and let λ� as in corollary 4.4.1. Define more in general

ξ�
�

def
= ��

�
λ� − ζ��+1

ω(λ� − 1)

�

Then

N���−1(ξ�
� ) = ��

� �

ζ∈µ�

�
λ − ζζ��+1

ω(λ� − 1)

� �
= ��

�
λ�

� − ζ��

ω(λ� − 1)�

�
= ξ�−1

�

Hence

ξ∞
�

def
= (ξ�

� )� ∈ ��U

.
This definition lead us to the following

Theorem 4.4.2. Let the notation as above. Then

Λ � ��U∞
1

through � �� �ξ∞
� and

Λ/((1 + T)�� − 1) � ��U�
1

through � �� �ξ�
� .

In particular, ��U∞
1 is a free Λ-module or rank 1.

We conclude the section with a consideration that will be used later. Let C� denote
the cyclotomic units of Q(ζ��+1), define C�

1
def
= C� ∩ U�

1 and let C�
1 be the closure of C�

1
in U�

1 . Then, in the usual way, C�
1 is a Z�[G��(Q�(ζ��+1)|Q�)]-module. Moreover, we

can also define C∞
1

def
= lim�−� C�

1 with respect to the norm map as above. Then we have
that C∞

1 is a Λ-module and a G��(Q�(ζ�)|Q�)-module. Hence, similarly to the previous
theorem, applying proposition 1.3.3 one can prove the following:

Theorem 4.4.3. Let 2 ≤ � ≤ � − 2. Then

��(C∞
1 /ω�C∞

1 ) � ��C�
1

where ω� = γ��

0 − 1 = (1 + T)�� − 1 as usual.
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Now fix � a primitive root modulo �2. Then � is a primitive root modulo �� for
all � ≥ 1. Thus define

η�
def
=

�
ζ(1−�)/2

��+1
ζ�

��+1 − 1
ζ��+1 − 1

��−1

One can show that N���−1(��η�) = ��η�−1. This implies that ��η
def
= (��η�)� ∈ ��C∞

1 .
Hence we can state the important (see [Lan1] for this):Proposition 4.4.4. Let � �= 1. Then ��(C∞

1 ) = Λ��η. In particular, ��(C∞
1 ) is a free

Λ-module of rank 1.

Finally we have:Theorem 4.4.5. Let � �≡ 0 mod (� − 1) be even. Then

��U∞
1 /��C∞

1 � Λ/(��(T))

where ��(T) is an element of Λ such that

��(κ�
0 − 1) = L�(1 − �� ω�)

and κ0 is defined by γ0ζ�� = ζκ0
�� for all � ≥ 1. In particular, ��U∞

1 /��C∞
1 is a finitely

generated torsion Λ-module.

The above theorems will play a key role in the proof of the Main Conjecture.

4.5 The Maximal Abelian �-extension unramified out-side �
This section is only a collection of some observations that we will use later. We do
not give all the details. For these, we refer to [Wa].
Let � be an odd prime, F a totally real field (like Q) and set K0 = F (ζ�). Moreover
denote by K∞|K0 the cyclotomic Z�-extension of K0 and let K� for every � ≥ 1 be
as usual. Denote by M∞ the maximal abelian �-extension of K∞ which is unramified
outside � (it exists by class field theory) and set

Σ∞
def
= G��(M∞|K∞)

Notice also that Σ∞ is a Λ-module as we expect (similar action that we put on X).
Now let M� be the maximal abelian �-extension of K� which is unramified outside �
(the existence is still guaranteed by class field theory). Observe also that K∞ ⊆ M�.
Proceeding in a similar way as in the proof of lemma 4.2.6, one can find that

Σ�
def
= G��(M�|K∞) � Σ∞/ω�Σ∞

where ω� = P� = (γ��

0 −1) = (1+T)�� −1 as before. Then one can show that Σ� is a
finitely generated Z�-module (see [Wa] for the details); thus by lemma 4.2.7 we deduce
that Σ∞ is a finitely generated Λ-module. This implies that Σ∞ ∼ Λ� ⊕ (�������) for
some � ≥ 0. However, one can improve this result. Indeed (look at [Wa] for details),
if 2�2 denotes the number of complex embeddings of K0, then one has
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Σ∞ ∼ Λ�2 ⊕ (�������)

Now set F = Q. We give an idea of the proof of an interesting proposition. For every
� ≥ 0, let W��+1 denote the set of the ��+1-st roots of unity and set W�∞ =

�
�≥0 W��+1 .

Moreover let T be equal to lim�−� W��+1 where the inverse limit is taken with respect
to the �-th power map. Then we have an isomorphism of abelian groups T � Z� .
Furthermore the Galois group G��(K∞|Q) � Z×

� acts on T : indeed if � ∈ Z×
� , � ∈ T

and we write T additively, we define an action by σ�(�) = �� . Finally set T (−1) =
H��Z� (T�Z�). Clearly also T (−1) is isomorphic to Z� as abelian group. Furthermore,
T (−1) is a G��(K∞|Q)-module thanks to the just defined action on T . In particular, if
� ∈ T (−1) and � ∈ T then we let the action be

(σ�� )(�)
def
= σ�(� (σ−1

� �)) = � (�−1�) = �−1� (�)

where we used the fact that σ� acts trivially on Z� . In other words, this action is
given in a such way that σ�� = �−1� . Now recall that �� indicates the idempotents of
G��(Q(ζ�)|Q) then one defines the "twist" of ��Σ∞(−1) as

��Σ∞(−1)
def
= ��Σ∞ ⊗Z� T (−1)

The Galois action is now defined through σ�(� ⊗ � ) = σ�(�) ⊗ �−1� = �−1σ�(�) ⊗ � with
� ∈ Z×

� , � ∈ ��Σ∞ and � ∈ T (−1). Define also A∞ = lim−�� A� where the limit is taken
with respect to the natural maps A� → A�+1 given by the inclusions Q(ζ�� ) ⊂ Q(ζ��+1).
Then we have the following

Proposition 4.5.1. ��Σ∞(−1) � H��Z� (��A∞�Q�/Z�) as Λ-modules, where � + � ≡ 1
mod (� − 1) and � is odd.

Proof. We show that

H��Z� (B�Q�/Z�) � H��Z� (B� W�∞) ⊗Z� T (−1)

for any Λ-module B. Since there is a non-degenerate Kummer pairing

��Σ∞ × ��A∞ → W�∞

with � and � as in the statement (see [Wa]) we deduce that ��Σ∞ � H��Z� (��A∞� W�∞)
(this is an isomorphism of Λ-modules when we define the action (σ� )(�) = σ (� (σ−1�))
for σ ∈ G��(K∞|Q) and � ∈ H��Z� (��A∞� W�∞)). This clearly will complete the proof.
First of all notice that the function φ : Q�/Z� → W�∞ , given by �

�� �� ζ�
�� is an

isomorphism of abelian groups. Now fix �0 a generator of T (−1) as Z�-module. Then
the abelian groups of the statement are isomorphic through the map � ψ−� (φ�) ⊗
�0 where � ∈ H��Z� (B�Q�/Z�). Therefore it remains to prove that we have an
isomorphism of Γ-modules too. Let σ� ∈ Γ for some � ∈ Z×

� . Hence we get

(σ��)(�) = σ�(�(σ−1
� �)) = �(σ−1

� �)

but also

σ�(φ� ⊗ �0) = σ�φ�σ−1 ⊗ σ��0 = �φ�σ−1
� ⊗ �−1�0 =

= φ�σ�1 ⊗ �0
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This implies that under the above isomorphism σ�� is mapped to σ�(φ� ⊗ �0). Indeed:
ψ((σ��)(�)) = ψ(�(σ−1

� �)) = (φ�σ−1
� (�)) ⊗ �0 = σ�(φ�(�) ⊗ �0) = σ�ψ(�(�)). However

this means that we have an isomorphism of Γ-modules. Thus we also have the
isomorphism of Λ = Z�[|Γ|]-modules of the statement and so we can conclude the
proof.





Chapter 5
The Iwasawa Main Conjecture
The aim of this chapter is to prove The Iwasawa Main Conjecture for Q(ζ�∞), with
� odd prime. Before giving the statement, we study some properties of the Euler
Systems of Cyclotomic units. As application, we see how to use them to study the
ideal class group of Q(ζ�)+. After that, we apply some definitions and results of the
previous chapters to enunciate The Iwasawa Main Conjecture. In order to prove it,
we will develop some theory of Adjoints and further techniques of Iwasawa theory.

5.1 Euler Systems of Cyclotomic units
Let � ≥ 3, � an odd prime and let F = Q(ζ�)+. The setting for this section is the
following:

- M = a large power of �

- � ≡ 1 mod �M with � prime

- L = a product of distinct primes, each ≡ 1 mod �M

- ζL =
�

�|L ζ�

- F (L) = F (ζL)

- N�L|L = NF (�L)|F (L)= the norm for the extension F (�L)|F (L)

Now we are ready to discuss one particular example of the so-called Kolyvagin’s
Euler Systems. For the general theory about them, look at [Ru] for example. We give
the following:

Definition 5.1.1. In the above setting, an Euler System of Cyclotomic units is the
collection of the following data:

- α =
�

�((1 − ζ�
�)(1 − ζ−�

� ))�� with �� �� ≥ 1

- α(L) =
�

�((1 − ζ�
�ζL)(1 − ζ−�

� ζL))�� with the �� ’s as above

61
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Remark 39. We want just to point out that if � is not a prime power then α is a
cyclotomic unit of F (follows from proposition 1.1.2). This is not clearly true if � is
a prime power (recall proposition 1.1.3) but, with a little abuse of terminology, in a
context like the one we are discussing one still says that α is a cyclotomic unit of F .
On the other hand, for any �, we have that α(L) is a unit of F (L) (to see this notice
that 1 − ζ�

�ζL ∈ Z[ζ�ζL]× for every � ≥ 1, again by proposition 1.1.2). Finally, observe
that [Q(ζ�� ζL) : F (L)] = 2 and α(L) = NQ(ζ��ζL)|F (L)(

�
�(1 − ζ�

�ζL)�� ).Notation: For typographical reasons, we will write ring actions additively, so for
example (σ − 1)α means the same as σα/α.

Lemma 5.1.1. We have:

1. Assume � does not divide L. Then N�L|Lα(�L) = α(L)F����−1 where F���� is the
Frobenius element for � for the extension F (L)|Q.

2. α(�L) ≡ α(L) modulo all primes of F (�L) above �.

Proof. 1. For this part it is enough to observe that the norm for the extension
Q(ζ�� ζ�L)|Q(ζ�� ζL) of the element 1 − ζ�

�ζ�L is equal to

�−1�

�=1
(1 − ζ�

�ζLζ�
� ) = 1 − ζ��

�ζ�
L

1 − ζ�
�ζL

= (1 − ζ�
�ζL)F����−1

Indeed replacing ζ�
� with ζ−�

� and using the fact (as in the above remark) that
α(�L) = NQ(ζ��ζ�L)|F (�L)(

�
�(1 − ζ�

�ζ�L)�� ), we get the first claim.

2. Notice that ζ� ≡ 1 modulo all primes above � (if p is a prime of F (�L) lying above
�, then �F (�L)/p is a field of characteristic �). Hence the second claim is true too.

The two properties above 1� and 2� are fundamental to prove the Main Conjecture
and they are actually taken inside the definition of Kolyvagin’s Euler Systems in their
general theory (see [Ru]).
Now for each prime � as above, fix a primitive root � mod �. Define σ� ∈ G��(F (�)|F )
by σ�(ζ�) = ζ�

� . Notice that we may extend σ� when needed so that σ� = �� on roots of
unity of order prime to �. Then we obtain that �σ�� = G��(F (�L)|F (L)). Let

D�
def
=

��−2
�=0 �σ �

�

By a direct calculation one finds that

(σ� − 1)D� = � − 1 − N�

where N�
def
=

��−2
�=0 σ�

� can be identified with the norm N�L|L defined above. Define

DL =
�

�|L D�

Then we can prove the following proposition that gives us explicit formulas for some
algebraic integers κ(L) and βL that will play a key role in the chapter.
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Proposition 5.1.2. There exists βL ∈ F (L)× and κ(L) ∈ F× such that

DLα(L) = κ(L)βM
L

and ((σ − 1)D�α(L))1/M = βσ−1
L for all σ ∈ G��(F (L)|F ).

Proof. Denote by H = (F (L)×/F (L)×M )G the elements of F (L)×/F (L)×M fixed by G =
G��(F (L)|F ). We claim that DLα(L) mod (F (L)×)M ∈ H . We prove it by induction on
the number of prime factors of L. If L = 1 then G = 1 so that the claim holds.
Suppose then that the claim is true for all L� with fewer prime factors than L. Let �|L
and let L� such that L = �L�. Then we have:

(σ� − 1)D�L�α(�L�) = (σ� − 1)D�(DL�α(�L�)) = (� − 1 − N�)DL�α(�L�) =

= DL�α(�L�))�
DL�α(�L�) · 1

N�(DL�α(�L�)) = (M �������)/DL�N�α(�L�) =

= (M �������)/DLα(L�)F����−1 =
= (M �������) · (κ(L�)βM

L� )F����−1 = (M �������)(M �������)

where in the fourth equality we used that � − 1 ≡ 0 mod M , in the fifth that � does
not divide L� and in the sixth the inductive assumption. Therefore σ� fixes DLα(L)
modulo M �� powers for each �|L. Since the set of σ� with �|L generates G , this proves
the claim.
Now we claim that F (L) contains no non-trivial �-power roots of unity. Indeed: Q(ζL)
and Q(ζ�� ζ�) are linearly disjoint over Q and then so are F (L) and F (ζ�) over F . On
the other hand

[F (L)(ζ�) : F ] = [F (L)(ζ�) : F (L)] · [F (L) : F ] = [F (L)(ζ�) : F (ζ�)] · [F (ζ�) : F ]

However by disjointness we have [F (L)(ζ�) : F (ζ�)] = [F (L) : F ]. Thus, since F is
properly contained in F (ζ�), from the line above follows that [F (L)(ζ�) : F (L)] = [F (ζ�) :
F ] �= 1. Therefore ζ� �∈ F (L), as we wanted.
Then by this observation we can define � : G → F (L)× by �(σ ) = ((σ − 1)DLα(L))1/M .
Indeed this is well-defined because F (L) contains no non-trivial M �� roots of unity by
our choice of M and by the just proved claim. By a direct calculation, we find that �
satisfies the cocycle relation:

�(σ1σ2) = �(σ1)�(σ2)σ .

To conclude the proof, we need the following

Lemma 5.1.3. There exists β ∈ F (L)× such that �(σ ) = βσ−1 for all σ ∈ G .

Proof. By the linear independence of characters, there exists � ∈ F (L)× such that
� = Σσ∈G�(σ )σ (�) �= 0. Now let τ ∈ G . The cocycle condition implies that

τ� = Σσ�(σ )τσ (�) = Σσ�(τσ )�(τ)−1τσ (�) = �(τ)−1 �
σ �(στ)τσ (�) = �(τ)−1� .

Hence �(τ) = �1−τ . Setting β = �−1, we conclude the lemma.
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Now we come back to the proof of the proposition: let β be as in the previous
lemma and let κ(L) = DLα(L)/βM . Then

(σ − 1)κ(L) = (σ − 1)DLα(L)
(σ − 1)βM = �(σ )M

((σ − 1)β)M = 1

for all σ ∈ G , so κ(L) ∈ F× (last equality holds by the previous lemma). This
completes the proof.

Remark 40. Consider p a prime of F such that p - L. Notice that F (L) is the com-
positum of F and Q(ζL). Then looking at the ramification indices we deduce that p is
unramified in F (L)|F . Observe also that by lemma 5.1.2 follows that (κ(L)) = (β−1

L )M as
ideals in F (L). Thus we obtain that the p-adic valuation satisfies νp(κ(L)) = 0 mod M .

Now fix L and let � ≡ 1 mod (�ML). Let λ be a prime of F above � and let � be
a prime of F (�L) above λ. We assume that κ(L) �≡ 0 mod λ. Since � ≡ 1 mod (�ML),
we get that � splits completely in F (L)|Q and that is totally ramified in F (�L)|F (L) (see
again the ramification indices). This implies that if � is a primitive root modulo �,
then it is also a primitive root modulo λ and modulo �.

Proposition 5.1.4. Suppose κ(L) ≡ �� mod λ. Then the λ-adic valuation of κ(�L)
satisfies

�λ(κ(�L)) ≡ −� mod M

Proof. Using lemma 5.1.1 and proposition 5.1.2, one finds that

(σ� − 1)β�L = ((σ� − 1)D�Lα(�L))1/M = ((� − 1 − N�)DLα(�L))1/M =
= (DLα(�L))(�−1)/M ≡ (DLα(L))(�−1)/M mod p

where p is any prime above � and where the third equality holds since � ≡ 1 mod �ML
implies that F���� = 1 and so N�L|Lα(�L) = 1 by lemma 5.1.1. Let �� ∈ N such that
DLα(L) ≡ ��� mod �. Then by proposition 5.1.2 we deduce that �� ≡ � mod M .
Therefore

(σ� − 1)β�L ≡ �� mod �,

where � = ��(�−1)/M ≡ �(�−1)/M mod (�−1). Now set � = ν�(β�L). Since ν�(1−ζ�) =
1, we can write β = (1 − ζ�)�� where ν�(�) = 0. Notice that

(1 − ζ�)σ�−1 = 1 − ζ�
�

1 − ζ�
≡ � mod �

since by the binomial expansion we have ζ�
� −1 = (ζ� −1+1)� −1 = −�(1−ζ�)+ · · ·.

Moreover, being � totally ramified in F (�L)|F (L), σ� belongs to the inertia group of
�, so σ�� ≡ � mod �. Therefore

�� ≡ (σ� − 1)β�L = ((1 − ζ�)σ�−1)��σ�−1 ≡ �� · 1 ≡ �� mod �
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Hence we deduce that � ≡ � mod (� − 1). Since ��−1 = λ, recalling the above
properties of �� we have

νλ(κ(�L)) = 1
� − 1ν�(κ(�L)) = − 1

� − 1ν�(βM
�L ) =

= − M�
� − 1 ≡ − M�

� − 1 ≡ −� mod M

This concludes the proof of the proposition.

5.2 Example: The Ideal Class Group of Q(ζ�)+

In this section we show how to use the previous results about the Euler System
of Cyclotomic units in order to study the ideal class group of Q(ζ�)+. This is not
needed for the proof of The Iwasawa Main Conjecture but it gives us some important
strategies that will be generalized in the next sections.
The setting is the same as before with � = � (with � odd prime as usual) and
M = �|A+| · |(E/C)�| = �|A+|2 where A+ is the �-part of the ideal class group of
F = Q(ζ�)+, E is the group of units of F , C is the subgroup of cyclotomic units and
(E/C)� is the �-part of (E/C).
Let χ be an even �-adic valued character of G

def
= G��(Q(ζ�)+|Q). Now recall by

theorem 1.3.2 that [E : C] is the class number of Q(ζ�)+. The main theorem of
this section tells us that this equality holds componentwise with respect to the χ-
components, namely:Theorem 5.2.1. Let χ be a character as above. Then |�χ(A+)| = |�χ(E/C)�| where
�χ(E/C)� indicates the χ-component of (E/C)� .

Proof. First of all, notice that if χ is trivial then |�χ(A+)| = 1 = |�χ(E/C)�| (this is
because in this case �χ = 2

�−1����). Therefore, we can consider χ to be non-trivial
in the rest of the proof. Notice that by the results and remarks of section 4.3, we
have:

�

χ even
|�χ(A+)| = �-part of the class number of Q(ζ�)+ =

= �-part of |E/C| =
�

χ even
|�χ(E/C)�|

This implies that to prove the equality |�χ(A+)| = |�χ(E/C)�| is enough to show that
�χ(A+) divides |�χ(E/C)�| for each χ as above. Notice now that for every idempotent
�χ ∈ Z�[G] we can define an element � �

χ ∈ Z[G] that has the same coefficients of �χ
but modulo M (this is done because �χκ is not defined in general). In this way � �

χκ(L),
� �

χκ(�L) are defined and moreover �χ(A+) = � �
χ(A+). If �χ =

�
σ χ(σ )σ−1 then we write

� �
χ =

�
σ χ �(σ )σ−1. Now we need the following:Lemma 5.2.2. Let λ� �� L and � as in the previous section with � ≡ 1 mod �ML.

Assume that the ideal class C of λ is in �χ(A+) and also that the classes of the prime
ideals of F dividing L are in �χ(A+). Suppose:



66 CHAPTER 5. THE IWASAWA MAIN CONJECTURE

1. C has order � in the quotient of �χ(A+) by the subgroup generated by the
classes of the primes dividing L

2. � �
χκ(�L) ∈ (F×)�� with �� ≤ M and M�−�A+ = 0

3. if � �
χκ(L) ≡ �� mod λ and ��� || �, then ��� < M

Then �� ≥ � and � | ���−� .

Proof. Let σ ∈ G��(F |Q). Then � is also a primitive root modulo σλ. Let

κ(L) ≡ ��σ mod σλ.

It follows that σ−1κ(L) ≡ ��σ mod λ. Therefore

� �
χκ(L) ≡ �� mod λ with � ≡

�

σ
χ�(σ )�σ mod M

From now on let � and �� be as in assumptions 2� and 3� By construction then we
have ��� || �. By proposition 5.1.4 we get that

νσλ(κ(�L)) ≡ −�σ mod M

Since νλ(σ−1κ) = νσλ(κ) it follows also that

νλ(� �
χκ(�L)) ≡

�

σ
χ �(σ )νσλ(κ(�L)) ≡

�

σ
χ�(σ )(−�σ ) ≡ −� mod M

Now since we know that �� divides νλ(� �
χκ(�L)), we deduce that �� | �, so that � ≤ ��.

Furthermore,

νσ−1λ(� �
χκ(�L)) = νλ(σ� �

χκ(�L)) ≡ χ(σ )νλ(� �
χκ(�L)) ≡ −χ(σ )� mod M

Thus by remark 40 we deduce also that there is an ideal I such that

(� �
χκ(�L)) =

�

σ
(σ−1λ)−�χ�(σ ) · (primes dividing L) · IM =

= λ−�� �
χ · (primes dividing L) · IM

Notice that le LHS is a ��-th power. Hence the exponent of every prime ideal on the
RHS is a multiple of �� and so we may take the ��-th root of the equation. Moreover
considering the classes of the ideals in the previous expression and using again the
fact that � �

χκ(�L) ∈ (F×)�� , it follows that the class of I lies in A+. Since M�−� annihilates
A+ by hypothesis, we deduce that the ideal IM�−� is principal. By hypothesis we can
also identify � �

χC with C. Thus −��−�C = −��−�� �
χC is equal to 0 in the quotient of

�χ(A+) by the subgroup generated by the classes of the primes dividing L. Therefore
� | ��−� . Recalling that ��� || � and observing that � must be a power of �, we can
conclude the proof.

By the Structure theorem for finite abelian groups, we can write

�χ(A+) � Z/�1Z ⊕ · · · ⊕ Z/��Z
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for some � ≥ 1 and some powers of prime numbers �1� ���� ��. Now proceeding
inductively, we can choose classes C1� ����C� in �χ(A+) such that C�+1 has order ��+1 in
�χ(A+)/(C1� ����C�). We also need (see [Wa] for details):Proposition 5.2.3. Let N ≥ 1 and let � be even with 2 ≤ � ≤ � − 3. Set E�N = E/E�N

and E+
�N = E+/(E+)�N . Then

��(E+
�N ) � Z/�NZ

Applying the above proposition, it follows that �χ(E/C)� is cyclic. Say that it has
cardinality ��0 . Then we can choose � ∈ E such that � �∈ E� and ���0 ∈ C. Let
α

def
= ���0 . Notice that we may assume that σ� ≡ �χ(σ ) modulo M ��-powers for all

σ ∈ G (if not, replace � with �� �
χ ). Therefore we also have that σα ≡ αχ(σ ) modulo

M ��-powers for all σ ∈ G . Choose also primes λ1� ���� λ� lying above rational primes
�1� ���� �� such that λ� ∈ C� and �� ≡ 1 mod ML�−1, where L�−1 = �1 · · · ��−1.
Starting with α, we obtain κ(L�) in the same way as we did in the previous section.
Then let � �

χκ(L�) ∈ F��� with �� not necessarily maximal and let � �
χκ(L�) be a ���

� -th
power modulo λ�+1 with ��

� maximal, so that ��
� ≥ ��. Now we want apply the previous

lemma. Thus we need to show that all the hypothesis are satisfied. After that, we will
deduce that ��

� = �� for every � and we will be able to conclude. Suppose now that we
have chosen the primes λ1� ���� λ� such that �0 ≥ �� = ��

� for all � < �. Let �� be the
largest integer less than or equal to �0 + 1 such that � �

χκ(L�) ∈ F��� . Then we obtain
that M�−��A+ = 0. Indeed, notice that M�−�0−1A+ = �−�0|A+|2A+ = 0 since ��0 | |A+|
by our definition of �0. Thus condition 2� of the previous lemma is fulfilled with
L = L�−1 and � = ��. Since ��

�−1 = ��−1 ≤ �0, we have ���
�−1 < M , so that also condition 3�

is satisfied. Clearly for condition 1. we consider the ideal classes C1� ����C�. It follows
that we can apply the previous lemma. On one hand we obtain that ��

�−1 ≥ ��, so that
�� ≤ �0. This implies that �� �= �0 + 1. Therefore �� is the maximal integer such that
� �

χκ(L�) ∈ F��� . On the other hand we also get that ��
� ≥ ��+1 and

|�χ(A+)| = �1 · · · �� | �(��
0−�1)+(��

1−�2)+···(��
�−1−��)

Now we take for granted another result. We refer again to [Wa] for a proof.Proposition 5.2.4. Let C be one of the ideal classes of F defined above. Let � and
� be positive integers with � | �. Let β ∈ F×. Suppose that λ ∈ C lies over a prime
� ≡ 1 mod � and satisfies β ≡ c-th power mod λ. Then

β = �-th power in F if � is odd

β = ±�
2 -th power in F if � is even

By the previous proposition with � = ML� and � = ���
� we deduce that �� ≥ ��

�
and so �� = ��

� for all �. Therefore |�χ(A+)| divides ��0−�� and this implies that |�χ(A+)|
divides ��0 = |�χ(E/C)�|. This completes the proof of the theorem.

5.3 Introduction to the problem and statement
Let � be an odd prime and let ζ� be a primitive �-th root of unity as usual. Consider
the Z�-extension Q(ζ�∞)|Q(ζ�) and the following notations for � ≥ 0:
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- A� = �-part of the ideal class group of Q(ζ��+1)

- A∞ = lim−�� A� with respect to the maps A� → A�+1 given by the inclusions
Q(ζ�� ) ⊂ Q(ζ��+1)

- X = G��(L∞|Q(ζ�∞)) where L∞ is the maximal unramified abelian �−extension
of Q(ζ�∞)

- Σ� = G��(M�|Q(ζ�∞)) where M� is the maximal abelian �-extension of Q(ζ��+1)
unramified outside �, for � ≤ ∞

- �� = the ��� idempotent for G��(Q(ζ�)|Q) with � odd

- L�(�� ω�) = �-adic L-function for ω� with � even and nonzero

- � (T� ω�) = the power series in �ω� [|T|] (where �ω� = Z�[ω� ]) such that L�(�� ω�) =
� ((1 + �)� − 1� ω�)

Let M be a finitely generated torsion Λ-module. Then by corollary 3.3.13 M is
pseudo-isomorphic to an elementary Λ-module E =

��
�=1 Λ/��� ⊕

��
�=1 Λ/(P��

� ) where
the P� ’s are irreducible distinguished polynomials. Recall that all height one prime
ideals of Λ, namely those other than 0 and (�� T) are of the form p where p is either
� or an irreducible distinguished polynomial.
Let M as above. Recall also that at the end of section 3.3 we defined the characteristicpolynomial of M to be ����(M) =

��
�=1 �µ(M) · P��

� =
��

�=1 P��
� .

Remark 41. By corollary 4.2.15, we know that X is a finitely generated torsion Λ-
module. Moreover, by theorem 4.2.16 we have that µ(X) = 0. This implies that
X ∼

��
�=1 Λ/(P�

�� ) where each P� is an irreducible distinguished polynomial. Hence
the characteristic polynomial of X is ����(X) =

��
�=1 P�

�� . Furthermore, in section
4.3 we saw that ��X is a Λ-module for every �. Then notice that actually it is also a
finitely generated torsion Λ-module since so it is X and since Λ is a noetherian ring.

Now we can state:

Theorem 5.3.1 (The Iwasawa Main Conjecture). Let � be an odd prime and let i be
odd, � �≡ 1 mod (� − 1). Then ����(��X) = � (T� ω1−�)�(T) with �(T) ∈ Λ×.

There are many beautiful formulas in mathematics. Among them, this is consid-
ered one of the most fascinating: on the LHS we have an algebraic and arithmetic
object, determined by the ideal class groups while on the RHS we have a �-adic ana-
lytic object, determined by the values of �-adic L-functions.
There are several equivalent forms of the Main Conjecture. Before seeing some of
them, we need to prepare properly the setting. Recall the norm maps of the ex-
tensions Q�(ζ��+2)|Q�(ζ��+1) and Q(ζ��+2)|Q(ζ��+1) for every � ≥ 0. Then, we fix other
notations:

- U�
1 = units of Q�(ζ��+1) congruent to 1 mod (ζ��+1 − 1)

- E�
1 = units of Q(ζ��+1) congruent to 1 mod (ζ��+1 − 1)

- C� = group of cyclotomic units of Q(ζ��+1)
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- C�
1 = C� ∩ U�

1

- E�
1 = closure of E�

1 ∩ U�
1 in U�

1

- C�
1 = closure of C�

1 in U�
1

- U∞
1 = lim�− U�

1 with respect to the norm maps

- E∞
1 = lim�− E�

1 with respect to the norm maps

- C∞
1 = lim�− C�

1 with respect to the norm maps

Remark 42. For the next claim it is worth to observe that if � is even with � �≡ 0
mod (� − 1) then theorem 4.4.5 implies that ��(E

∞
1 /C∞

1 )) is a finitely generated torsion
Λ-module.Proposition 5.3.2. The following are equivalent:

1. ����(��X) = � (T� ω1−�)��(T) for all odd � �≡ 1 mod (� − 1) where �� ∈ Λ×;

2. ����(��(E
∞
1 /C∞

1 )) = ����(��X) for all even � �≡ 0 mod (� − 1);

3. ����(��X) divides ����(��(E
∞
1 /C∞

1 )) for all even � �≡ 0 mod (� − 1).

The proof is postponed at the end of section 5.5. To prove The Main Conjecture,
we will prove that actually statement 3 of the previous proposition holds. To do this,
we need the following corollary whose proof follows from a general result of Class
field theory that relates the local units of a number field with its Hilbert Class field.
For a proof, look at [Wa].Corollary 5.3.3. Let � ≥ 0 and let L� be the maximal unramified abelian �-extension
of Q(ζ��+1), as usual. Then U�

1 /E�
1 � G��(M�|L�). In particular, there is an injective

map U�
1 /E�

1 �� Σ�.

5.4 Adjoints
In this section we introduce the theory of Adjoints in order to give an idea of the
proof of proposition 5.4.15.Lemma 5.4.1. Let M be a finitely generated torsion Λ-module.

1. ����(M) · M is finite

2. If M is finite, then (�� T)�M = 0 for � sufficiently large; hence, the annihilator
of X is of finite index in Λ

3. If for each � ∈ M there exist relatively prime � � � ∈ Λ (depending on �) such
that �� = �� = 0, then M is finite.

Proof. 1. Since M is a finitely generated torsion Λ-module, there is an exact se-
quence 0 → A → M → E with A finite contained in M and E elementary Λ-
module. If � ∈ M , then ����(M)� maps to 0 in E (by definition of ����(M)).
Hence it lies in A.
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2. If � ∈ (�� T) and � ∈ M . Being M finite, we have that � �� = � �� for some �� �
with 0 < � < � . Since 1−� �−� ∈ Λ×, then � �� = 0. In particular ��� = T�� = 0 for
some �. Now notice that (�� T)2� ⊆ (��� T�) for every � and that, being M finite,
the annihilator of M contains (��� T�) for � sufficiently large. Since Λ/(��� T�)
is finite, the statement follows.

3. Let �1� ���� �� be a set of generators for M and let ���� = ���� = 0, where ��
and �� are relatively prime elements of Λ for every �. Then the finite module�

� Λ/(��� ��) surjects onto M (consider λ+(��� ��) �� λ��), which is therefore finite.

From now on, for each height one prime ideal p = (� ), let Λp be the localization
of Λ at p.

Lemma 5.4.2. Let M ∼ E
def
=

�
� Λ/(���

� ). Then M ⊗Λ Λp =
�

(��)=p Λp/���
� Λp.

Proof. Since M ∼ E there exists an exact sequence of Λ-modules 0 → A → M → E →
B → 0 with A� B finite. Recall that localization preserves exact sequences (i.e. it is an
exact functor) and so we have that 0 → A⊗Λ Λp → M ⊗Λ Λp → E ⊗Λ Λp → B⊗Λ Λp → 0
is exact. Now let � ∈ (�� T) with � �∈ p. Since A is finite, ��A = 0 for some � > 0.
It follows that A ⊗Λ Λp = 0 since �/1 is a unit in Λp. Similarly, B ⊗Λ Λp = 0. If � is
irreducible and (� ) �= p, then ��(Λ/(��)) = 0 and again �/1 is a unit in Λp, so tensoring
with Λp removes these terms. Indeed: (

�
� Λ/(��)�� ) ⊗Λ Λp =

�
�(Λ/(���

� ) ⊗Λ Λp) =�
(��)=p(Λ/(���

� ) ⊗Λ Λp) =
�

(��)=p Λp/���
� Λp. This proves the lemma.

Remark 43. Notice that Λp is a PID since it is a noetherian integrally closed domain
of dimension 1.

Proposition 5.4.3. Let 0 → M1 → M2 → M3 → 0 be an exact sequence of finitely
generated Λ-modules. Then ����(M1) · ����(M2) = ����(M3).

Proof. This follows from the lemma above and from the structure theorem for mod-
ules over a PID.

Lemma 5.4.4. The natural assignment ψ : M →
�

p(M
�

Λ Λp) gives a well defined
map. Moreover K��(ψ) is finite and is the maximal finite submodule of M .

Proof. First of all, notice that by lemma 5.4.2 we have that M
�

Λ Λp = 0 if p does
not divide ����(M), so the sum over p is actually finite. This gives a well defined
map. Notice that every finite submodule of M is contained in K��(ψ). Since Λ is
Noetherian and M is finitely generated, K��(ψ) is finitely generated. It is therefore
finite by definition of Kernel.

Now for any Λ-module X define

�α(X)
def
= H��Z� (C����(ψ)�Q�/Z�).
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Notice that we have an action of Γ on �α(X): (γ� )(�) = � (γ−1�) for γ ∈ Γ and
� ∈ C����(ψ). Now we define an action of Λ is a similar way: (�(T)� )(�) = � (�((1 +
T)−1−1)�) for �(T) ∈ Λ. It is convenient to twist this action. Hence �α(X) is a Λ-module.
Consider the involution:

τ : Λ → Λ, �(T) �� �((1 + T)−1 − 1) = ��(T)

If X is any Λ-module, let �X be X with a new action of Λ:

�(T) � �
def
= ��(T)�

In a similar way we set γ � � = γ−1� for γ ∈ Γ. In particular note that

τ : ]Λ/(� ) → Λ/(�� )

is an isomorphism of Λ-modules since �(T) � �(T) = ��(T)�(T) maps to �(T)��(T).

Definition 5.4.1. Let the notation as above. Then α(X) = ��α(X) is called the Iwasawa-
adjoint of X.

Observe that the definition is not suitable for computations, so we need another
approach. For a fixed finitely generated torsion Λ-module M as before, we define an
admissible sequence to be a sequence σ0� σ1� ��� of elements of Λ such that σ� and
����(M) are relatively prime, with σ� �= 0 (observe that this works also for finite M),
and σ�+1/σ� ∈ (�� T) for all � ≥ 0. Note that

1
σ0

Λ ⊂ 1
σ1

Λ ⊆ 1
σ2

Λ ⊂ · · ·

and so
lim−�

1
σ�

Λ =
� 1

σ�
Λ

Proposition 5.4.5. The map

φ : M ⊗Λ (
�

�
1
σ�

Λ) →
�

p(M ⊗Λ Λp), � ⊗ 1
σ�

�� (���� � ⊗ 1
σ�

� ���)

is an isomorphism of Λ-modules (the direct sum is taken over any set of prime
ideals p containing all (height one) prime divisors of ����(M) and such that σ� ∈ Λp

×

for all � and p).

Proof. Note that every element on the LHS can be written in the form �⊗ 1
σ�

. Suppose
now that φ(� ⊗ 1

σ�
) = 0. Multiplying by σ�, we find that � ⊗ 1 = 0 in M ⊗Λ Λp for all p

(since σ� ∈ Λ×
p ). Therefore � ∈ K��(ψ), which is finite. Lemma 5.4.1 (part 2.) implies

that (σ�+�/σ�)� = 0 for some � ≥ 0, so

� ⊗ 1
σ�

= σ�+�

σ�
� ⊗ 1

σ�+�
= 0

Hence φ is injective.
Let p = (� ) and let � ⊗ 1

η ∈ M ⊗Λ Λp. To prove that φ is surjective, by the linearity of
the map it is enough to show that (0� ���� � ⊗ 1

η � ���� 0) ∈ I�(φ) with η ∈ Λ \ p = S. Let



72 CHAPTER 5. THE IWASAWA MAIN CONJECTURE

λ ∈ Λ be such that λM = 0 but λ �= 0 (for example, a suitable multiple of ����(X)
will work by lemma 5.4.1, part 1.). Write λ = ��λ1, with � such that does not divide λ1.
Let Y = λ1M/λ2

1ηM . Then (λ1η� ��)Y = 0. Notice that (λ1η� ��) has finite index in Λ:
indeed � is a prime element, η ∈ S, we choose λ1 properly and moreover we have a
previous lemma. Hence since Y is finitely generated, Y is finite. Therefore σ�Y = 0
for some � ≥ 0, so σ�λ1� = λ2

1η� for some � ∈ M . In M ⊗Λ Λp we have that:

λ1� ⊗ 1
σ�

= λ2
1η� ⊗ 1

λ1ησ�
= � ⊗ 1

η

In M ⊗Λ Λq, with q �= p, we get:

λ1� ⊗ 1
σ�

= ��λ1� ⊗ 1
σ��� = 0

Therefore φ is surjective.

Now applying M⊗Λ (which is a right exact functor) to the exact sequence

0 → Λ →
�

�
1
σ�

Λ → (
�

�
1
σ�

Λ)/Λ → 0

we obtain:

X →
�

p(X
�

Λ Λp) → X
�

Λ(
�

�
1
σ�

Λ)/Λ → 0

Therefore we deduce that

C����(ψ) � X
�

Λ(
�

�
1
σ�

Λ)/Λ

Now notice that if σ� = (T − π)� with π ∈ �Z� then:
�

�
1
σ�

Λ = Λ[ 1
T−π ] = Z�((T − π))

where the last term is the ring of Laurent series with only finitely many negative
exponents (for the above line recall that Λ = Z�[[T]] = Z�[[T − π]]).Proposition 5.4.6. Assume � ∈ Λ� π ∈ �Z� , and � (π) �= 0. Then

Λ/(� ) � H��Z� (Λ/(� )
�

Λ Λ[ 1
T−π ]/Λ�Q�/Z�) � α(Λ/(� ))

Corollary 5.4.7. If E is an elementary torsion Λ-module, then E � α(E).Proposition 5.4.8. 1. α(M) has no non-zero finite Λ-submodules

2. If M is finite, then α(M) = 0.

Proof. For both the claims, notice that it suffices to prove them for �α(M).

1. Choose π ∈ �Z� ⊂ �Λ so that {(T − π)�}� is an admissible sequence for M . Let
φ lie in a finite Λ-submodule of �α(X) = H��Z� (M ⊗Λ Λ[ 1

T−π ]/Λ�Q�/Z�). Since
^(T − π) = (1 + T)−1 − π − 1 ∈ (�� T), then lemma 5.4.1 implies that ^(T − π)�φ = 0

for � sufficiently large. Now consider � ⊗ � ∈ X ⊗Λ Λ[ 1
T−π ]/Λ. Then we have

� ⊗ � = (T − π)�� ⊗ �/(T − π)� and so



5.4. ADJOINTS 73

φ(� ⊗ �) = φ((T − π)�� ⊗ �/(T − π)�) = ( ^(T − π)�φ)(� ⊗ �/(T − π)�) = 0

We deduce that φ = 0 and so we are done.

2. If X is finite, then still by lemma 5.4.1 we have (T − π)�X = 0 for � sufficiently
large, so that X ⊗Λ [ 1

T−π ]/Λ = 0 arguing similarly to the previous claim.

Proposition 5.4.9. An exact sequence 0 → X → Y → Z → 0 of finitely generated
torsion Λ-modules induces an exact sequence

0 → α(Z) → α(Y ) → α(X) → some finite Λ-module.

Proof. Notice that also for this claim is enough to prove that it holds for �α(X)� �α(Y )
and �α(Z). Consider the commutative diagram:

0 X Y Z 0

0 ⊕p(X ⊗Λ Λp) ⊕p(Y ⊗Λ Λp) ⊕p(Z ⊗Λ Λp) 0

ψX ψY ψZ

Since localization is exact, we have that the bottom row is exact. Hence the Snake
Lemma gives us an exact sequence:

K��(ψZ) → C����(ψX) → C����(ψY ) → C����(ψZ) → 0.

Since Q�/Z� is an injective Z�-module, we have that H��Z� (−�Q�/Z�) is an exact
contravariant functor and applying it to the sequence above we obtain the result (using
also the fact that K��(ψZ) is finite by lemma 5.4.4).

Proposition 5.4.10. Let X and Y be finitely generated torsion Λ-modules with X ∼ Y .
Then α(Y ) ∼ α(X).

Proof. By hypothesis, there is an exact sequence:

0 → A → X → Y → B → 0

with A and B finite Λ-modules. Of course, we may assume A contained in X and
so considering 0 → A → X → X/A → 0 and the previous proposition we obtain an
exact sequence

0 → α(X/A) → α(X) → α(A)
By proposition 5.5.11, we have that α(A) = 0 and so we deduce α(X/A) � α(X). On

the other hand, notice that we have an exact sequence 0 → X/A → Y → B → 0 and
so still applying the previous proposition we get

0 → α(B) → α(Y ) → α(X/A) → some finite Λ-module
Again by proposition 5.5.11, we have α(B) = 0. This implies α(Y ) ∼ α(X/A) � α(X).
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Corollary 5.4.11. X ∼ α(X) and also α(X) is a finitely generated torsion Λ-module.

Proof. By the structure theorem we deduce that there is an elementary Λ-module
E such that X ∼ E . By corollary 5.4.7 and the previous proposition, we have that
X ∼ E � α(E) ∼ α(X). Hence, since X is a finitely generated torsion Λ-module, so
must be α(X).

Proposition 5.4.12. lim−� X/σ�X � X
�

Λ(
�

�
1
σ�

Λ/Λ) and so

�α(X) � H��Z� (lim−� X/σ�X�Q�/Z�)

Proof. By a basic property of tensor products (see [Bou1] or [At]) we have that:

X/σ�X � X
�

Λ(Λ/σ�Λ) � X
�

Λ( 1
σ�

Λ/Λ)

Now we give { 1
σ�

Λ/Λ}� the structure of a direct system through the natural in-
clusions 1

σ�
Λ/Λ → 1

σ�+1Λ/Λ . Hence using the facts that lim−� is a functor and that direct
limits commute with tensor products (see [At] again), we get that:

lim−� X/σ�X � lim−�(X ⊗Λ ( 1
σ�

Λ/Λ)) � X ⊗Λ lim−�( 1
σ�

Λ/Λ) � X ⊗Λ (
�

�
1
σ�

Λ/Λ)

Now we recall some notation of chapter 4.
Let K∞|K be a Z�-extension of a number field K. Let A� be the �-part of the class
group of K� and L� be the Hilbert �-class field of K�, so that

X� = G��(L�|X�) � A�.

It follows that X = lim�−� X� � lim�−� A�. By lemma 4.2.6 there is an index � and a
submodule Y� ⊆ X such that

A� � X� � X/ν���Y�

for all � ≥ �, where

ν���
def
= ((1 + T)�� − 1)/((1 + T)�� − 1)

Moreover we consider lim−�� A� with respect to the natural maps A� → A�+1. Then
one can prove that the following diagram

A� A�+1

X� X�+1

�������

� �
� ��ν�+1���

commutes for every � (see [Wa] for details). Using this fact, we prove the next
proposition.Proposition 5.4.13. �X ∼ H��Z� (lim−� A��Q�/Z�)

Proof. Consider the exact sequence:
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0 → Y�/ν���Y� → X/ν���Y� → X/Y� → 0

We know that lim−� is an exact functor (see [[Bou1]] for example), and so using the
previous observation and recalling that A� � X� = X/ν���Y� we get another exact
sequence

0 → lim−�(Y�/ν���Y�) → lim−� A� → lim−� X/Y� → 0

Now since X/Y� � A� is finite (by a previous proposition), by the definition of ν���
there exist � ≥ � ≥ � such that ν���X/Y� = 0. Notice that this implies lim−� X/Y� =
0. Then lim−� Y�/ν���Y� � lim−� A�. From proposition 5.4.12 we deduce that �α(Y�) =
H��(lim−� Y�/ν���Y��Q�/Z�) (notice that {ν���}� form an admissible sequence for Y�).
Since by a previous proposition Y� � X, we have �X ∼ �α(X) ∼ �α(Y�) and so the claim
holds.

Let the notation be as in a previous proposition. Notice that the previous proof
shows also that the following fact holds:

Proposition 5.4.14. ���X � H��Z� (lim−� ��A��Q�/Z�)

Now we arrive to the main result of this section. A complete proof requires an
additional work on Σ∞ that we decided to omit. Therefore, we are going to sketch
the proof (more details can be found in [Wa]).Proposition 5.4.15. Suppose ��X has characteristic polynomial � (T). Then

H��Z� (lim−� ��A��Q�/Z�)

has characteristic polynomial equal to � ((1 + T)−1 − 1) and �1−�Σ∞ has charac-
teristic polynomial � (κ(1 + T)−1 − 1) where κ ∈ 1 + �Z� is defined by γ0ζ�� = ζκ

�� for
all �.

Sketch of proof. The first part follows from the previous proposition and the defini-
tion of the action of Λ on ���X. For the second one, one may observe that if γ0 acts on
��X as (1+T), then it acts on ](��X)(1)

def
= ���X ⊗Z� T � ��Σ∞ by κ(1+T)−1 (where T here

is the same of proposition ) . Then one may prove that this implies the statement.

5.5 Some techniques of Iwasawa theory
The following technical results will be fundamental to prove the Main conjecture.
First of all, we need to fix other notations:

- � = an odd prime

- γ0 = a generator of Γ = G��(Q(ζ�∞)|Q(ζ�))

- P� = ω� = (1 + T)�� − 1 = γ��

0 − 1 (we use the usual identification γ0 = 1 + T)

- Γ� = the subgroup of Γ of index ��
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- MΓ� = {� ∈ M|γ��

0 � = �} = K��(M P�−� M) where M is a Λ-module

- MΓ� = M/P� = M/(P�M) = C����(M P�−� M)

- χ = ω� = ���-power of the Teichmüller character ω for some � > 0� � even (i.e. a
non trivial even character of G��(Q(ζ�)|Q))

Now we summarize in a proposition some fundamental results that, more or less,
we saw earlier:

Proposition 5.5.1. Let C�
1 � X�� U�

1 and Σ� as in the previous sections. Then:

1. �χ(C∞
1 /P�) � �χC�

1

2. �χ(X/P�) � �χX�

3. �χ(U∞
1 /P�) � �χU�

1

4. �χ(Σ∞/P�) � �χΣ�

Proof. The first statement follows by theorem 4.4.3. The second and the third ones
respectively by corollary 4.2.13 and theorem 4.4.2. The last one is discussed in section
4.5.

Lemma 5.5.2. Let 0 → M1 → M2 → M3 → 0 be an exact sequence of Λ-modules.

1. Set Γ0
def
= Γ. Then for every � ≥ 0 there is an exact sequence

0 → MΓ�
1 → MΓ�

2 → MΓ�
3 → (M1)Γ� → (M2)Γ� → (M3)Γ� → 0

In particular, K��((M1)Γ� → (M2)Γ� ) � MΓ�
3 /I�(MΓ�

2 ).

2. If M3 is a finitely generated Λ-module and (M3)Γ� is finite, then MΓ�
3 is finite

Proof. 1. Consider the diagram

0 M1 M2 M3 0

0 M1 M2 M3 0

P�· P�· P�·

where the vertical maps are multiplication by P� = γ��

0 − 1. By definition we
have MΓ�

� = K��(M�
P�·−� M�) and (M�)Γ� = C����(M�

P�·−� M�). Then the Snake
Lemma yields the exact sequence of the statement and we can conclude.

2. Assume that M3/P� is finite. Hence M3 is a Λ-module with torsion. Now consider
the exact sequence

0 → MΓ�
3 → M3

P�·−� M3 → (M3)Γ� → 0.



5.5. SOME TECHNIQUES OF IWASAWA THEORY 77

We deduce that M3/MΓ�
3 � P�M3. Therefore ����(P�M3) = ����(M3/MΓ�

3 ). On
the other hand if we consider the exact sequence

0 → P�M3 → M3 → (M3)Γ� → 0

and we use the previous lemma we get that

����(P�M3) = ����(M3) · ����(M3/P�) = ����(M3)

However ����(M3) = ����(MΓ�
3 ) · ����(M3/MΓ�

3 ) by

0 → MΓ�
3 → M3 → M3/MΓ�

3 → 0

Substituting, we obtain that ����(MΓ�
3 ) = 1, hence MΓ�

3 is finite by lemma 5.4.1.

Here is a technical result which deals only with the theory of compact groups.
For more details look at [Wa].

Lemma 5.5.3. For each � ≥ 1, let 0 � A�
��−� B�

��−� C� → 0 be an exact sequence of
compact groups. Then the sequence

0 → lim�−� A�
�−� lim�−� B�

�−� lim�−� C� → 0

is exact. In particular, lim�−�(B�/A�) � lim�−� B�/ lim�−� A�.Proposition 5.5.4. There is an ideal U of Λ of finite index such that, for all �, U
annihilates the kernel and cokernel of the natural map �χE∞

1 /P� → �χE�
1 . The

orders of these kernels and cokernels are bounded independently of �.

Proof. By corollary 5.3.3, lemmas 5.5.3 and 5.5.2, we have the commutative diagram:

�χ(XΓ∞/I�(ΣΓ�
� )) �χ(U∞

1 /E∞
1 )/P� �χΣ∞/P� �χX/P� 0

0 �χ(U�
1 /E�

1 ) �χΣ� �χX� 0

π1

φ1

The second and third vertical maps are isomorphisms by proposition 5.5.1. By
a diagram chase, one shows that K��(φ1) = K��(π1). Since �χX/P� � �χX� is finite,
lemma 5.5.2 implies that �χ(XΓ� ) is finite too. Let �χX������ be the maximum finite
Λ-submodule of �χX. Then of course �χ(XΓ� ) ⊆ �χX������� By lemma 5.5.2, using the
top sequence we have that K��(φ1) is isomorphic to a submodule of a quotient of
�χX������ . Therefore, the order of K��(φ1) is finite and bounded independently of �.
Now consider the commutative diagram:

�χ(U∞
1 /E∞

1 )Γ� �χE∞
1 /P� �χU∞

1 /P� �χ(U∞
1 /E∞

1 )/P� 0

0 �χ(E�
1 ) �χU�

1 �χ(U�
1 /E�

1 ) 0

π2

φ2

π1
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By a diagram chase we deduce that K��(π2) � K��(φ2). We claim that �χ(U∞
1 /E∞

1 )/P�
is finite. For the moment we assume that this claim is true and we postpone its proof
until the end of the main proof. Hence by reasoning as above we find that K��(φ2) is
isomorphic to a quotient of �χ(U∞

1 /E∞
1 )������ . Now we replace �χE∞

1 by �χ(E∞
1 )/K��(φ2)

in the above diagram so that we can apply the Snake Lemma. We deduce that
K��(π1) = K��(φ1) � C����(π2). Now by lemma 5.4.1 (point 2) we have ideals U1�U2

of finite index in Λ which annihilate respectively �χX������ and �χ(U∞
1 /E∞

1 )������ . Con-
sidering U1 + U2 we deduce that there exists an ideal U (for example U1 + U2 itself) of
finite index in Λ that annihilates:

�χX������
�

�χ(U∞
1 /E∞

1 )������

Now since K��(φ1) and K��(φ2) are isomorphic to submodules of quotients respec-
tively of �χX������ and �χ(U∞

1 /E∞
1 )������ , we deduce that U annihilates K��(π2)

�
C����(π2)

as we wanted.
Now we prove the claim as promised. First of all notice, that we have a surjection

�χ(U∞
1 /C∞

1 )/P� ⇣ �χ(U∞
1 /E∞

1 )/P�

By theorem 4.4.5, we have �χ(U∞
1 /C∞

1 ) � Λ/(�χ) where �χ = � ((1+�)·(1+T)−1−1� χ) and
� (T� χ) is the power series that gives the �-adic L-function. Therefore �χ(U∞

1 /C∞
1 )/P� �

Λ/(�χ� P�). Now the roots of P� are ζ�
�� − 1 with 0 ≤ � < ��. Theorem 3.4.4 says that

� (ζ�
�� (1 + �)� − 1� χ) = L�(�� χψ�

�)

where ψ�(1 + �) = ζ�� is a primitive ��-�� root of unity. Hence by lemma 2.2.9 we
get:

�χ(ζ�
�� − 1) = � (ζ−�

�� (1 + �) − 1� χ) = L�(1� χψ−�
� ) �= 0

Therefore �χ and P� have no common roots, i.e. they are relatively prime. By
lemma 3.2.9, we also have that Λ/(�χ� P�) is finite. This proves the claim and conse-
quently even the proposition.

Lemma 5.5.5. There is an exact sequence

0 → �χE∞
1

θ−� Λ → some finite Λ-module → 0

Proof. By theorem 4.4.2, we know that �χU∞
1 � Λ. Since Λ is a noetherian integral

domain, we have that �χE∞
1 ⊆ �χU∞

1 is a finitely generated torsion-free Λ-module. By
the classification of finitely generated Λ-modules, we deduce that there is a pseudo-
isomorphism �χE∞

1 ∼ Λ. Therefore there exists an exact sequence 0 → A → �χE∞
1

θ−�
Λ → B → 0 with A� B finite Λ-modules. However, since �χE∞

1 is torsion-free, it has
no finite Λ-submodules, namely A = 0 and so θ must be an injection.

Proposition 5.5.6. Let U be as in the previous proposition and let α ∈ U. Let �χ =
����(�χ(E∞

1 /C∞
1 )). For each � ≥ 0 there is a map

θ�
α : �χE�

1 → Λ� = Λ/P�
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such that

θ�
α (�χC�

1 ) = α�χΛ�

Proof. The map θ of the previous lemma induces an exact sequence

0 → �χ(E∞
1 /C∞

1 )
�θ−� Λ/θ(�χC∞

1 ) → some finite Λ-module→ 0

By abuse of notation, we still write θ instead of �θ. Let η be as in lemma 4.4.4.
Then, by construction of η, we have �χC∞

1 = �χ(η)Λ, so θ(�χC∞
1 ) is the principal ideal

generated by θ(�χη). In particular, �χ(E∞
1 /C∞

1 ) is pseudo-isomorphic to Λ/θ(�χη) (just
take 0 as finite module on the left). Hence by definition of characteristic polynomial,
�χ and θ(�χη) differ by a unit of Λ.
Now let π� : �χ(E∞

1 /P�) → �χE�
1 be the natural map. By the choice of α, we have

αK��(π�) = 0 = αC����(π�) = 0. Let θ� : �χ(E∞
1 /P�) → Λ� be induced by θ. Now

notice that Λ� has no Z�-torsion and so in particular it has no Z-torsion. Moreover
K��(π�) is finite by the previous lemma. Hence we get:

K��(π�) ⊆ (�χ(E∞
1 /P�))������ ⊆ K��(θ�)

Let � ∈ �χE�
1 . Define

θ�
α (�) = θ�(π−1

� (α�)) ∈ Λ�

Since αC����π� = 0, we have α� ∈ I�(π�), so there exists � ∈ �χ(E∞
1 /P�) with

π�(�) = α�. Since K��(π�) ⊆ K��(θ�), θ�(�) depends only on α�, so θ�
α is well defined.

Indeed if � �� � �� ∈ π−1
� (α�) then θ�(� �) = θ�(� ��).

Moreover, since απ� : α�χ(C∞
1 /P�) → α�χC�

1 is surjective (the kernel is 0 and the
image is everything by our choice of α), we have:

θ�
α (�χC�

1 ) = θ�(α�χ(C∞
1 /P�)) = α�χΛ�

as we wanted.

Remark 44. Notice that by the previous proposition and 5.3.2 we can now rewrite the
statement of the Main conjecture as: ����(�χX) = ����(�χ)
Remark 45. It is useful in what follows to recall that in any exact sequence of finite
groups, finite modules and finite rings with finite length we have that the product
of the cardinalities of the terms in even positions is equal to the product of the
cardinalities of terms in odd positions.

Proposition 5.5.7. Let χ be arbitrary (including χ = 1). There exists a constant
� > 0 such that:

�−1[�χE�
1 : �χC�

1 ] ≤ |Λ/(P�� �χ)| ≤ �[�χE�
1 : �χC�

1 ] < ∞

for all � < ∞

Proof. The case where χ = 1 follows from the previous proposition. Assume now
that χ �= 1. From the proof of proposition 5.5.6, we have an exact sequence

0 → �χ(E∞
1 /C∞

1 ) → Λ/(�χ) → F → 0



80 CHAPTER 5. THE IWASAWA MAIN CONJECTURE

where F is finite.
This yields another exact sequence:

FΓ� → �χ(E∞
1 /C∞

1 )/P� → Λ/(�χ� P�) → F/P� → 0

Indeed: lemma 5.5.2 implies that K��(�χ(E∞
1 /C∞

1 )/P� → Λ/(�χ� P�)) � FΓ�/I�(Λ/�Γ�
χ );

thus we can define a map FΓ� → FΓ�/I�(Λ/�Γ�
χ ) ⊆ �χ(E∞

1 /C∞
1 )/P� that gives us the

above sequence.
From this we deduce that

|F/P�| · |�χ(E∞
1 /C∞

1 | = |FΓ� | · |Λ/(�χ� P�)|

On one hand we have:

|Λ/(�χ� P�)| = |F/P�|/|FΓ� | · |�χ(E∞
1 /C∞

1 )/P�| ≤
≤ |F |/|FΓ� | · |�χ(���)/P�| ≤ |F | · |�χ(���)/P�|

On the other:

|Λ/(�χ� P�)| ≥ 1/|FΓ� | · |�χ(���)/P�| ≥ 1/|F | · |�χ(E∞
1 /C∞

1 )/P�|

Hence, there is a constant �1 > 0 (for example, �1 = |F |) such that

�−1
1 |�χ(E∞

1 /C∞
1 )/P�| ≤ |Λ/(�χ� P�)| ≤ �1|�χ(E∞

1 /C∞
1 )/P�|

Now applying the Snake Lemma to the exact sequence

1 → �χC∞
1 → �χE∞

1 → �χ(E∞
1 /C∞

1 ) → 1

we obtain the top row of the following commutative diagram:

�χ(C∞
1 /P�) �χ(E∞

1 /P�) �χ(E∞
1 /C∞

1 )/P� 1

1 �χC�
1 �χE�

1 �χ(E�
1 /C�

1 ) 1

The first vertical map is an isomorphism by proposition 5.5.1. By a diagram chase,
one finds that the kernel and cokernel of the third vertical map are isomorphic to
those of the second vertical map, which have order bounded independently of � by
proposition 5.5.4.

Now call φ the third vertical map and consider the exact sequence

0 → K��(φ) → �χ(E∞
1 /C∞

1 )/P�
φ−� �χ(E�

1 /C�
1 ) → C����(φ) → 0

As in one of the previous propositions, we have that

|K��(φ)| · |�χ(E�
1 /C�

1 )| = |C����(φ)| · |�χ(E∞
1 /C∞

1 )/P�|

Now let �2 = max{|K��(φ)|� |C����(φ)|} + 1. It follows that �2 > 0 is such that

�−1
2 |�χ(E�

1 /C�
1 | ≤ |�χ(E∞

1 /C∞
1 )/P�| ≤ �2|�χ(E�

1 /C�
1 | < ∞
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Indeed, say �2 = K��(φ) + 1. Then

|�χ(E∞
1 /C∞

1 )/P�| = |K��(φ)|/|C����(φ)| · |�χ(C�
1 /C�

1 |�

Hence on one hand we have |�χ(���)| ≤ �2|�χ(E�
1 /C�

1 )|. On the other

|�χ(���)| ≥ |�χ(E�
1 /C�

1 )| ≥ 1/�2 · |�χ(E�
1 /C�

1 )|

The case where �2 = C����(φ) + 1 is similar. Therefore, setting � = �1�2 we obtain
the statement.

Proposition 5.5.8. Let χ arbitrary and let �χX � lim�− �χA� ∼
��

�=1 Λ/(��) with �� ∈
Λ. Then there is an ideal B of Λ of finite index with the following property: for
each α ∈ B and for each �, there are ideal classes C1� ����C� ∈ �χA� such that the
annihilator A��(C�) ⊆ Λ� of C� in �χA�/(Λ�C1 + ���+Λ�C�−1) satisfies αA��(C�) ⊆ ��Λ�.

Proof. By hypothesis, there is an exact sequence

�χX →
��

�=1 Λ/(��) → F → 0

with F finite Λ-module. Since the tensor is a right exact functor, tensoring with
Λ� = Λ/P� we get

�χ(X/P�) →
��

�=1 Λ�/(��) → F/P� → 0

Let B be the annihilator of F . By lemma 5.4.1 (part 2.) we have that B has
finite index in Λ. Now let α ∈ B and consider the element � = (0� ���� ����� ��
α� ���� 0) ∈

�
� Λ�/(��) with the class of α in the �-th place. Since in the above sequence �

goes to an element of α(F/P�) = 0, we have that � belongs to the image of �χ(X/P�) →�
� Λ�/(��). Hence there is an ideal class C� ∈ �χA� � �χ(X/P�) such that it maps

to � under the previous isomorphism and the map of the upper sequence. Now let
� ∈ A��(C�) where A��(C�) ⊆ Λ� is the annihilator of the class of C� in the Λ�-module
�χA�/(Λ�C1 + ��� + Λ�C�−1). Then � · (class of C�) = 0, i.e. �C� ∈ Λ�C1 + ��� + Λ�C�−1.
However, by the construction of C� with 1 ≤ � ≤ � − 1, under the above composition
of maps we have that

Λ�C1 + ��� + Λ�C�−1 �� Λ�(α� 0� 0� ���) + ��� + Λ�(0� ���� α� ���� 0) =

= Λ�(α� α� α� ���� 0� 0� 0� ���)
def
= Y

where the last α is in (� − 1)-�� position, so that on one hand �C� �� � · � , on the other
�C� maps in Y . In other words:

� · � = � · (0� ���� α� ���� 0) = (0� ���� class of (� · α)� ���� 0) ∈ Y

This implies that the class of (� · α) in Λ�/��Λ� is 0, i.e. � · α ∈ ��Λ�. This concludes
the proof.

Now suppose that F is a Galois extension of Q and let G = G��(F |Q)� Let � be a
rational prime that splits completely in F |Q. Moreover fix a prime λ of F above � and
a primitive root � modulo �. Then notice that � is also a primitive root modulo σλ for
each σ ∈ G . Let κ ∈ F× be relatively prime to � and let σ ∈ G .
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Definition 5.5.1. Let κ� �� σ as above.

1. Define �σ = ���σλ(κ) ∈ Z/(� − 1)Z by

κ ≡ ��σ mod (σλ)

2. Let M|(� − 1) and define ���λ(κ) = Σσ∈G���σλ(κ)σ ∈ Z/MZ[G]. This definition
depends clearly on the choices of �� λ and �.

3. Similarly, for arbitrary κ, define �σ = �σλ(κ) =the σλ-valuation of κ and

�λ(κ) = Σσ∈G�σσ ∈ Z[G]

Lemma 5.5.9. ���λ and �λ are Z[G]-homomorphisms.

The following result (due to Rubin) will play a key role in the proof of the Main
Conjecture. Its proof relies on Class field theory and is very technical; we decided
then to omit it. For details look at [Lan1] or [Wa].

Proposition 5.5.10. Let � be an odd prime. Let � ≥ 1� F = Q(ζ�)+ and G = G��(F |Q).
Let C be an ideal class of F of order a power of �, let M be a power of �, and let
L ≥ 1. Suppose we have a finite Z[G]-module

W ⊂ F×/(F×)M

and a Z[G]-homomorphism

ψ : W → Z/MZ[G]

Then there are infinitely many primes λ of F such that:

1. λ ∈ C;

2. � ≡ 1 mod ML and � splits completely in F ;

3. the λ-adic valuation of each � ∈ W is congruent to 0 mod M ,

4. there exists � ∈ (Z/MZ)× such that

���λ(�) = �ψ(�)

for all � ∈ W .

In order to prove proposition 5.3.2, we are going to assume a fact that follows from
some considerations regarding the theory of the ideal class groups. For a proof see
[Wa].

Proposition 5.5.11. Let χ = 1 (i.e. �χ = �0). Then �0(E
�
1 /C�

1 ) = 1 for all � ≤ ∞.
Moreover, �0X� = 0 for all � ≤ ∞ (we set X∞ = X in this case).

Here is the proof of proposition 5.3.2:
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Proof. By theorem 4.4.5 and lemma 5.5.3, we know that for even � �≡ 0 mod (� − 1)
we have

��(U∞
1 /C∞

1 ) � lim�− ��(U�
1 /C�

1 ) � Λ/(� ( 1 + �
1 + T − 1� ω�)) (5.1)

Now let L� be the maximal unramified abelian �-extension of Q(ζ��+1) and let M�
be the maximal abelian �-extension of Q(ζ��+1) unramified outside �. Moreover recall
that X� = G��(L�|Q(ζ��+1)) and Σ� = G��(M�|Q(ζ��+1)). From corollary 5.3.3 we have
an injection

U�
1 /E�

1 �� Σ�

and so U∞
1 /E∞

1 �� Σ∞.
Consider now the following two exact sequences:

1. 0 → ��(E
∞
1 /C∞

1 ) → ��(U∞
1 /C∞

1 ) → ��(U∞
1 /E∞

1 ) → 0

2. 0 → ��X → ��Σ∞ → ��(U∞
1 /E∞

1 ) → 0

By proposition 5.4.3 we get:

- ����(��(U∞
1 /C∞

1 ) = ����(��(U∞
1 /E∞

1 )) · ����(��(E
∞
1 /C∞

1 ))

- ����(��Σ∞) = ����(��X) · ����(��(U∞
1 /E∞

1 ))

Hence dividing the first expression by the second one we obtain:

����(��(U∞
1 /C∞

1 ))
����(��Σ∞) = ����(��(E

∞
1 /C∞

1 ))
����(��X)

Therefore by the above expression and by expression 5.1 we deduce that:
����(��(E

∞
1 /C∞

1 )) = ����(��X) if and only if � ( 1+�
1+T − 1� ω�) differs from ����(��Σ∞) by

a unit of Λ.
By proposition 5.4.15, this is equivalent to � (T� ω�) and ����(�1−�X) differing by a unit
of Λ. This proves the equivalence of 1� and 2�
Suppose now that ����(��X) divides ����(��(E

∞
1 /C∞

1 )) for all even � �≡ 0 mod (� − 1).
By proposition 5.5.11 we have that both groups are trivial for � = 0, so we may
assume this divisibility happens for all � . Set �+ =

�
� �� with � even and 0 ≤ � ≤ � − 3.

Then ����(�+X) divides ����(�+(E∞
1 /C∞

1 )) and we have equality if and only if there
is equality for each � .
Notice that:

�
� |��(E

�
1 /C�

1 )| = |E�
1 /C�

1 | = �-part of [E� : C�] = |�+X�| = �λ+�+µ+��+ν+

for all � sufficiently large. Observe that λ+ = ���(����(�+X)), proceeding as in
the proof of theorem 4.2.4. Now set �� = ����(��(E

∞
1 /C∞

1 ))� By proposition 5.5.7 we
know that there is a constant � > 0 such that

�−1|��(E
�
1 /C�

1 )| ≤ |Λ/(P�� ��)| ≤ �|��(E
�
1 /C�

1 )|
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for all �. Reasoning as in the proof of theorem 4.2.4, we deduce that there exist
λ� = ���(��) and µ� � ν� such that |Λ/(P�� ��)| = �λ��+µ� ��+ν� for all � sufficiently large.
Let λ =

�
� λ� and similarly define µ and ν. Then:

�−(�−3)/2�λ+�+µ+��+ν+ ≤ �λ�+µ��+ν ≤ �(�−3)/2�λ+�+µ+��+ν+

for all � sufficiently large. It follows that µ+ = µ and λ+ = λ. Therefore �2�4 · · ·
��−3 = ����(�+X) =

�
� ����(��X), since one polynomial divides the other and they

are monic of same degree. Hence �� = ����(��X) for every � . Then we can deduce
that 2� and 3� are equivalent.

5.6 The Proof
Finally it is time to prove The Main Conjecture.

Proof. Fix � ≥ 0. We are going to use the techniques of the previous chapters to
study

F� = Q(ζ��+1)+

Set
G� = G��(F�|Q)

and let M and L be respectively a large power of � and a product of primes, as in
section 5.1.
Roughly speaking, the idea is to choose an appropriate κ(1) ∈ C+

��+1 and to apply induc-
tively some procedures of the previous sections to produce some elements κ(L) ∈ F×

� .
In this way we will obtain information on the structure of the class group of F�. Be-
fore doing that, we need some remarks.
First of all: κ� �� and λ will have the same meanings of the previous paragraphs with
respect to the above F�. Now let χ a character as before: since �χκ is not defined
in general, we choose � �

χ ∈ Z[G��(Q(ζ�)|Q)] such that �χ ≡ � �
χ mod M . Notice that

�χZ�[G�] = �χΛ� with Λ� = Λ/P� as usual. In particular, ���(� �
χκ) ∈ �χ(Λ�/MΛ�) and

�(� �
χκ) mod M may be regarded as an element of �χ(Λ�/MΛ�).Proposition 5.6.1. Let κ(�L) and κ(L) as in the previous sections. Then:

�(� �
χκ(�L)) ≡ −���λ(� �

χ(κ(L)) mod (MΛ�)

Proof. By proposition 5.1.4 we have that �σλ(κ(�L)) ≡ ���σλ(κ(L)) mod M . Then using
the definitions of � and ��� we obtain the claim.

Let �χ as in proposition 5.5.6 and let �1� ���� �� and C1� ����C� as in proposition 5.5.8.
Choose α ∈ U ∩ B where U is as in proposition 5�5�4 and B still as in proposition
5.5.8. Notice that wlog we may assume that α is chosen relatively prime to P� for
all �, so that Λ�/αΛ� is finite for every �. We know that Λ/(�χ� P�) � Λ�/�χΛ� is
finite by proposition 5.5.7. Choose �0 ∈ N such that ��0 annihilates both Λ�/αΛ� and
Λ�/�χΛ�. Therefore ��0Λ� = αΛ� and ��0Λ� = �χΛ�, which implies that α|��0 and
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�χ|��0 in Λ�. Now we set M = |A�|��+(�+1)�0 where A� is the class group of Q(ζ��+1)
as in the previous sections.
Let κ(1) ∈ C+

��+1 be the unit of proposition 1.3.3 (where we replace � by � + 1). Let
C1� ����C� be as above and let C�+1 be any ideal class.
We want to find primes λ1� ���� λ�+1 ∈ F� lying respectively above rational primes
�1� ���� ��+1 such that for every 1 ≤ � ≤ � + 1 we have:

1. λ� ∈ C�

2. �� ≡ 1 mod ML�−1 where L�−1 = �1 · · · ��−1

3. ���λ� (�χκ(L�−1))(
�

�<� ��) divides �χα��χ in �χ(Λ�/MΛ�)

We start by choosing λ1. The function θ�
α in proposition 5.5.6 induces a map

ψ : �χ(E�
1 /(E�

1 )M ) → Λ�/MΛ�
�χ−� �χZ/MZ[G�]

Proposition 5.5.10 implies that there are a prime λ1 ∈ C1 and a � ∈ (Z/MZ)× such
that �1 ≡ 1 mod M and ψ(� �

χκ(1)) ≡ � · ���λ1 (� �
χκ(1)) mod (�χMZ[G�]).

Since �χMZ[G�] ⊂ �χMZ�[G�] = �χMΛ� we read the last congruence modulo
�χMΛ�.
However, by proposition 4.4.4 we know that �χκ(1) generates �χC�

1 and so proposition
5.5.6 implies that

θ�
α (� �

χκ(1)) = α�χ�
for some � ∈ Λ×

� . Therefore recalling how ψ is induced by θ�
α we get:

�χα�χ ≡ �−1� · ���λ1 (� �
χκ(1)) mod (�χMΛ�)

This proves 3� for � = 1. To prove the general case, we proceed by induction:
suppose � ≥ 1 and that we have found primes λ1� ���� λ� satisfying 1�� 2� and 3� Then we
have the following (see [Wa] for a proof):Lemma 5.6.2. Let W = � �

χ(κ(L�)Λ�/MΛ�) ⊂ F×
� /(F×

� )M be the multiplicative group
generated by � �

χκ(L�) and its Galois conjugates and let ρ ∈ Λ�. Then the map

ψ : W → � �
χ(Λ�/MΛ�)

ρ� �
χκ(L�) �� ρ

α�λ� (� �
χκ(L�))
��

is a well-defined Λ-homomorphism.
Let W and ψ as in the previous lemma. Then lemma 5.5.10 states that there exist

λ�+1 ∈ C�+1, with ��+1 ≡ 1 mod (ML�) and � ∈ (Z/MZ)× such that

ψ(� �
χ(κ(L�)) ≡ � · ���λ�+1(� �

χ(κ(L�)) mod (�χMΛ�)

Therefore

−α · ���λ� (� �
χκ(L�−1)) ≡ α�λ� (� �

χκ(L�)) ≡ ��ψ(� �
χκ(L�)) ≡ ��� · ���λ�+1(� �

χκ(L�))

modulo (MΛ�).
Now by the inductive hypothesis, we have that
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�χα��χ = ���λ� (� �
χκ(L�−1))(

�
�<� ��)· (an element of � �

χ(Λ�/MΛ�)).
Multiplying this equality by α and using the just found congruence, we get that 3�

holds also for � + 1.
Still by induction, we deduce that ����(�χX) =

��
�=1 �� divides α�+1�χ in Λ�/MΛ�.

Indeed, if � = 1 then consider 3� as above: we have that �1 divides
�

�<2 �� = �1 which
divides �χα2�χ in �χ(Λ�/MΛ�). Assuming that the result holds for � and using the
same argument of the previous line, one shows that the result holds also for � + 1.
Now by our choice of M , we can view Λ�/MΛ� contained in Λ�/��Λ�, and so we
can say that ����(�χX) divides α�+1�χ also in Λ�/��Λ�. However this implies that for
every � there exists �� ∈ Λ such that

(
��

�=1 ��)�� ≡ α�+1�χ mod (��� P�)
Since Λ is compact, there exists a convergent subsequence ��� converging to some
� ∈ Λ. Since

�
�≥0(��� � P�� ) ⊆

�
�≥0(�� T)�� = 0, it follows that ����(�χX)� = α�+1�χ .

In other words, for any α ∈ U ∩ B relatively prime to P� for all �, we have that
����(�χX) divides α�+1�χ . Since U ∩ B has finite index in Λ, both T� and �� are in
U∩B for some � ≥ 1. Notice then that the polynomials α1 = T� −�2� and α2 = T� −�3�

are relatively prime to each other and to (1 + T)�� − 1 for all � because they have no
common roots. So in particular we obtain that ����(�χX) divides α�+1

1 �χ and α�+1
2 �χ .

Since Λ is a UFD, we deduce that ����(�χX) divides �χ . Then we can conclude the
prove of The Iwasawa Main Conjecture by proposition 5.3.2.
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