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1 Introduction

”In learning the sciences, examples are of more use than precepts”

This project represents a compressed introduction to fiber bundles and char-
acteristic classes, with the aim of acquiring the minimal amount of machinery
required to examine some of their copious and diverse applications to differen-
tiable manifolds.

Very generally, characteristic classes assign collections of vector spaces parame-
terised by a space X to elements of the cohomology ring of X, in such a way that
this assignment has certain reasonable properties. Before giving a less nebulous
definition, let us talk about some questions on smooth manifolds where these
classes can provide some potential insights.

Given a manifold, M , of dimension n an interesting question to ask is “what is
the smallest k such that the manifold M can be immersed in Rn+k”?. If the
dimension of the manifold is n then by Whitney[18] such an immersion always
exists when k ≥ n − 1. So we have an upper bound for our answer. On the
other hand if the manifold is parallelizable (has a trivializable tangent bundle)
by a theorem of Hirsch and Smale[5] we can immerse such a manifold into Rn+1.
The characteristic classes of the tangent bundle of a manifold measure, in some
sense, how far this bundle is from being trivial, and so play a defining role in
this question. An easy but useful obstruction to finding an embedding of a
particular manifold in Rn+k will be given and the case of the real projective
spaces will be treated in detail.

Certain characteristic classes can be defined only when particular structures
are present on the tangent bundle of a manifold, important examples of such
structure being an orientation, or complex or symplectic structures. The non-
existence of these classes can then be used to provide evidence of the lack of
existence of a certain structure on the manifold. A very easy illustration of this
will be given by showing that for a sphere of dimension 4k cannot have the
structure of a complex manifold.

Yet another general question in which these classes can help is the following
“given a manifold M and a manifold N of dimension greater than M how many
inequivalent ways can we embed M in N”. This time the bundle of interest is
the normal bundle, consisting of tangent vectors of N orthogonal to the tangent
space of the embedded M in N . An investigation of a question of this type led
to the following surprising discovery: there are at least 14 inequivalent smooth
structures on the 7-sphere. A large part of this project will be devoted to
this discovery of Milnor, which remains one of the most unexpected results in
differential topology.
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When Milnor first discovered the exotic differentiable structure of the 7-sphere
it was generally assumed that any homeomorphism between smooth manifolds
could be smoothed to give a diffeomorphism. Milnor’s original aim was quite
different[10]. He wished to study the topology of 2n-dimensional manifolds
which are (n−1)-connected. The choice of this type of manifold was a practical
one: the homotopy class of such a manifold can be realised by attaching a 2n-cell,
e2n, to a bouquet of n-spheres by idenfying the boundary ∂e2n with Sn∨· · ·∨Sn
using an attaching map. A homotopy class of this type of structure depends
on the homotopy class a the attaching map f : ∂e2n → Sn ∨ · · · ∨ Sn. At
the time homotopy group π2n−1(Sn ∨ · · · ∨ Sn) was reasonably well understood
when very few methods existed which would allow the calculation of general
homotopy groups. It was possible, then, to work with the homotopy theory of
such manifolds.

The “problem” arises when attempting to construct explicit examples of man-
ifolds in the given homotopy class. An attempt to construct these manifolds
for the relatively easy case m = 1 with a single sphere in the ’bouquet’ led to
Milnor’s discovery of exotic differentiable structures.

To examine the properties of manifolds M8 of the same homotopy type as an
8-cell attached to a 4-sphere we could look at the embedding of S4 in the hy-
pothetical M8. In fact we look at a tubular neighbourhood of such a sphere or,
equivalently, the normal disk bundle of S4 in the manifold M8. We can also
ask the question in the other direction - given a an equivalence class of disk
bundles over the 4-sphere, can a 8-cell can be attached to the boundary in such
a way as to give a smooth, closed, orientable manifold? In order to do this the
boundary of the disk bundle should, at least, be S7. It is possible to find many
disk bundles over S4 with boundary S7 and examples are constructed later. We
can then attempt to attach an 8-cell to this boundary in such a way as to get
an 8-manifold satisfying the above conditions. This is obviously possible in the
when the boundary is the standard 7-sphere. However it can be shown that for
some of the sphere bundles constructed later, this is impossible. Whence this
bundle cannot have the differentiable structure of the standard 7-sphere.

Showing that the construction of such an M8 is impossible requires computing
the Pontrjagin numbers of this hypothetical manifold. Hizerbruch’s signature
theorem gives a formula for the second Pontrjagin class of the potential M8 (and
use of this theorem is why we have so many conditions on M8). However for
some of the given constructed sphere bundles this formula will give a fractional
value for p2([M8]) which is impossible. The necessary conclusion is that such
an M8 cannot exist.

Conventions:

• a map is a continuous function between topological spaces. Sometimes
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the phrase continuous function or continuous map is used, to emphasise,
or because I forgot this convention

• a topologicalspace is a Hausdorff and paracompact topological space

• Homology and cohomology are taken with integer coefficients, unless spec-
ified otherwise i.e. Hn(X) means Hn(X;Z).
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2 Fiber Bundles

This is taken predominantly from[4, 13, 16]

2.1 The Category of Topological Fiber Bundles

The simplest example of a fiber bundle is the cartesian product of two topological
spaces E = B×F . This is called the trivial bundle with base space B and fiber
F . Such an object is simply described with coordinates E = {(b, v) : b ∈ B, v ∈
F}

Figure 1: A failed attempt to embed the circle
into the sphere by identifying elements (drawn
in red) of neighbouring vector spaces

Examples of non-trivial fiber
bundles occur when the fiber
possesses a symmetry group
which allows a “twisting”
of the fibers as we travel
along the base space. The
fiber bundle looks locally like
an ordinary cartesian prod-
uct and “twisting” only be-
comes apparent when exam-
ining (potential) embeddings
B ↪→ E of the base space in
the total space. If the bundle is trivial it will always be possible to embed F
copies of B into the total space. Indeed given any v ∈ F , there is an embedded
copy of B given by {(b, v) : b ∈ B}. Once a “twist” is introduced however, it will
not be possible to get such a collection of embeddings of B into the total space.
In other words we no longer have the nice global coordinates (b, v) of the trivial
bundle and it is impossible to “compare” neighboring fibers in a compatible
way. A more technical definition is as follows:

Definition. A fiber bundle consists of three topological spaces: E, the total
space, B the base space and F the fibre with a continuous surjection π : E → B
such that

1. B has a cover by open sets Ui on which π−1(Ui) is homeomorphic to the
cartesian product Ui × F

2. The homeomorphism φi : π−1(Ui) → Ui × F is such that the following
diagram commutes
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π−1(Ui) Ui × F

Ui

φ

π

The homeomorphisms φi are called the local trivialisations of the bundle. The
bundle is said to be locally trivial over the open sets Ui and a cover of the base
space for which the above homeomorphisms exist is called a trivialising open
cover.

Let Ui , Uj be open sets on B so that the bundle is locally trivial over Ui and Uj
and Ui ∩Uj 6= ∅. Then the local trivialisations φi, φj induce a homeomorphism
on fibers over b ∈ Ui ∩ Uj

gij :=φi ◦ φj−1(b) : F × {b} → F × {b}

These functions are called the transition functions of the fiber bundle. They
take values in the topological group1 Homeo(F ) and this is referred to as the
structure group of the bundle.

Definition. A fiber bundle morphism, defined for bundles with a common fiber
F , is a pair of continuous funtions (f, g) between the base and total spaces of
the bundle so that following diagram commutes

E1 E2

B1 B2

g

π1 π2

f

i.e. g sends the fiber π−11 ({b}) of E1 to the fiber π−12 ({f(b)}) of E2.

A map between total spaces which is “fiberwise” (i.e. sends fibers to fibers)
induces a map f on the base spaces for which the above diagram commutes.
Thus the map f is completely determined by the map of total spaces g. If the
bundles have a common base space B a “morphism of fibre bundles” is usually
understood to have the identity on B as the induced map of base spaces i.e. we
require g(π−11 ({b})) ⊆ π−12 ({b}). Naturally,

Definition. An isomorphism of fiber bundles is a morphism of fiber bundles
which has an inverse that is again a morphism of fiber bundles.

1Homeo(F ) is a topological group whenever F is Hausdorff, locally connected and locally
compact. In particular it is so when F is a topological manifold
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In the statements and proofs that follow we will assume for simplicity that
bundles over the same base space have the same trivialising open cover. We will
see later that we can assume that this is always the case.

First a useful sufficient condition for a bundle map of two bundles over a common
base space to be an isomorphism.

Lemma 2.1. A morphism of fiber bundles g : E → E′ over B is an isomorphism
of fiber bundles if its restriction to each fiber π−1({b}) is a homeomorphism of
fibers.

Proof. Now assume that g : E → E′ is a morphism of bundles which restricts
to a homeomorphism of fibers on each fiber. g is clearly bijective. We need
to check that the inverse morphism g−1 is continuous as a map from the total
space E′ to E. By composing with the trivialisations hi,h

′
i of the bundles E,E′

we can see that the isomorphism of fibers induced by g induces an isomorphism
of charts

Ui × F → Ui × F
(x, a) 7→ (x, λi(x)(a))

where λ(x) is an element of the structure group depending continuously on
x ∈ B. The inverse of this map is given by (x, a) 7→ (x, λ−1i (x)(a)). But λi(x)
continuous implies λ−1(x) continuous (as Homeo(F ) is a topological group)
and the composition h−1i ◦ (id, λ−1i ) ◦ h′i(e′) = g−1(e′) is therefore a continu-
ous morphism from π′−1(Ui) to π−1(Ui). Thus g−1 is a bundle morphism as
required.

Corollary 2.2. Two fiber bundles are isomorphic if there exists continuous
functions λi : Vi → G so that the transition functions gij , g

′
ij : Vi ∩ Vj → G

satisfy
g′ij(x) = λi(x)gij(x)λ−1j (x)

where λi(x) : B → Homeo(F ) is continuous from the base space to the group of
homeomorphisms of the fiber.

Proof. As above an isomorphism of fiber bundles induces a homeomorphism of
fibers and in turn, upon composing with the trivialisation functions, homeomor-
phisms of fibers of the trivialisation of the bundle which will vary continuously
with respect to a coordinate on the base space x. Looking at the commutative
diagram

hi(π
−1{x}) h′i(π

−1{x})

hj(π
−1{x}) h′j(π

−1{x})

λi(x)

gij g′ij

λj(x)
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The result follows.

Conversely suppose we have λi : Vi → G so that the transition functions
are related by g′ij(x) = λi(x)gij(x)λ−1j (x). Define the map fi : Ui × F →
Ui × F by fi(x, a) → (x, λ−1i (x)(a)). Define the morphism of fiber bundles
f : E → E′ locally by specifying f(π−1(Ui)) = h′i

−1fihi(π
−1(Ui)). f(π−1(Ui))

and f(π−1(Uj)) agree on the bundle over the intersection of Ui and Uj and so
do, in fact, give a morphism of fiber bundles. The resulting morphism clearly
induces a homeomorphism of fibers and so is an isomorphism.

Two fiber bundles being isomorphic an equivalence relation and so one can speak
of “equivalence classes of bundles over a base space”. A “fiber bundle over B”
is often understood to mean “an equivalence class of fiber bundles over B”.

2.2 Structure group of Vector Bundles

Some important classes of fiber bundles are constrained to have a structure
group smaller that Homeo(F ). Eliminating this flexibility often gives extra
structure on our bundles. Important examples include (real) vector bundles.
These are fiber bundles with individual fibers vector spaces over R and transition
functions induced by the local trivialisations taking values in the general linear
group GL(n,R). Similarly a complex vector bundle of rank n has fibers which
are vector spaces over C and structure group GL(n,C).

A real vector bundle is said to be orientable if it is possible to choose a consistent
orientation on the fibers i.e. a choice of orientation on each fiber so that the
trivialisations hij : U × Rn → π−1(U) is orientation preserving on each fiber
(where Rn has the standard orientation). It is easy to see that we can make
such a choice if and only if the transition functions have everywhere positive
determinants so that the structure group takes values in GL(n,R)+.

Given a complex vector bundle the underlying real bundle (given by simply
“forgetting” the complex structure) is always orientable. This can be seen by
looking directly at the transition functions for the bundle. For a complex vector
bundle of rank n the transition functions of the underlying real bundle are found
in GL(n,R)+.

If the manifold M has a differentiable structure then it can be shown that M
orientable if and only if its tangent bundle is orientable as a vector bundle.

If the base space B is a smooth manifold, then the total space E of a vector
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bundle can be given the structure of a smooth manifold. If the projection
function is smooth we can call the vector bundle smooth. The next examples
of fiber bundles should make it unsurprising that these particular bundles find
wide applications in the field of differentiable topology.

2.3 Motivating Examples

2.3.1 Tangent and Normal Bundles

The tangent (or cotangent) bundle of a manifold is one of the most natural
constructions of vector bundles over a manifold. This already provides examples
and motivations for studying non-trivial fiber bundles. A classical theorem is
that one cannot find an everywhere non-vanishing smooth vector field on S2, so
the tangent bundle on the 2-sphere cannot be trivial.

Another important example of a vector bundle is the concept of the normal bun-
dle of a submanifold. Let i : X ↪→ M be an embedded submanifold. Consider
tangent space of X at a point x ∈ X. This can be viewed as a subspace of the
tangent space TxM with inclusion given by

dix : TxX → TxM

Definition. The normal space of X at x is defined as the quotient space NxX =
TxM/TxX. The normal vector bundle NX of X in M is defined as the union of
the normal spaces over X

NX = {(x, v) : v ∈ NxX}

The tubular neighbourhood theorem states that the (open) normal disk bundle
over X ⊂ M is diffeomorphic to an open neighbourhood of X in M . Thus, by
classifying the rank-n disk bundles over a space X we can examine its possible
embeddings in an dim(X) + n manifold.

2.3.2 Sphere Bundles and the Hopf Fibration

A sphere bundle is a fiber bundle with individual fibers n-spheres such that
the transition functions induced by the local trivialisations take values in the
group O(n). A section of a vector bundle is a continuous function s : B → E
with π ◦ s = Id. A metric on a vector bundle π : E → B is a collection of
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inner products on the fibers the bundle that is continuous in the sense that if
s, t : B → E are continuous sections then the the inner product on each fiber
〈s(b), t(b)〉b is a continuous function from B to R. If the vector bundle has the
structure of a smooth manifold we can also require a smoothly varying inner
product.

We form the associated sphere bundle of a vector bundle by taking all vectors of
norm one2. The associated (open) disk bundle of a vector bundle is composed
of all vectors of norm less than one.

The famous Hopf fibration provides a (non-trivial) fibration of the 3-sphere over
the 2-sphere in the following way:

A complex line through the origin in C2 is parameterised by (z,mz) where
m ∈ C − 0 is the (complex) slope of the line. Identify the 3-sphere as the set
S3 = {(z, w) ∈ C2 | |z|2 + |w|2 = 1}. Each line will meet the 3-sphere in a circle
S1 ⊂ C2 which consists of points {(z, w) ∈ S3 | wz = m} and each of these circles
will be disjoint. Project each of these circles to an element of CP 1 ∼= S2 which
represents its slope and the set (0, z) to the “point at infinity”. Explicitly in
homogenous coordinates

p : S3 → CP 1

p(λ, µ) = [λ : µ]

and we get a fibration of S3 over S2 whose fibres are S1. A completely analogous

Figure 2: A graphical representation of the Hopf fibration with the circle in
“S3” being sent to the complex slope of the plane

construction works to find a fibration of the 7-sphere by 3-spheres. We can
identify the 7-sphere as the set S7 = {(q, r) ∈ H × H | |q|2 + |r|2 = 1}. We can
identify the 3-sphere with the set of quaternions of norm 1. A (quaternionic)
line in H2 will intersect the 7-sphere along such a set of quaternions. Projecting
a given 3-sphere of this form to a point representing its (quaternionic) slope is

2Every vector bundle (over a paracompact space) has a metric, this will be shown later
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given by the mapping (q, r) → [q : r] ∈ HP 1 ∼= S4. Thus S7 can be expressed
as a fiber bundle over S4 with fiber S3.

This can be further extended to find a fibration of the 15-sphere over the 8-
sphere by 7-spheres by using the structure of the octonions, though the details
are slightly harder here. The division algebra structure of C,H and O are used
to construct these fibrations and by Adam’s theorem sphere bundles (meaning
fiber bundles with base space, fiber and total space all spheres) can only occur
in these dimensions, and the rather less exciting case of the fibration of S1 by
0-spheres.

2.4 The Pull Back of a Vector Bundle

Now that we are duly motivated, we give a construction in theory of vector
bundles with particular importance to classifying the possible vector bundles
over a given base space. Given a continuous function f : B′ → B and a bundle
π : E → B we create a bundle over a space B′.

Definition. The pull back of the bundle π : E → B under a map f : B′ → B
has as total space the set

f∗E = {(b′, e) ∈ B′ × E | f(b′) = π(e)} ⊂ B′ × E

equipped with the subspace topology and the projection function π′(b′, e) = b′

This is clearly a vector bundle over B′ with trivialising open cover f−1(Ui)
where Ui is the trivialising cover for E and homeomorphisms to f−1(Ui) × F
induced by the corresponding trivialisations of π : E → B. There is a bundle
morphism

f∗E E

B′ B

g

π′ π

f

where g is the projection f∗E → E given by g(b′, e) = e. Commutativity of the
diagram is automatically satisfied. This leads to an alternative useful definition
of the pull back of the bundle:

Lemma 2.3. The pull back of the bundle π : E → B under the map f : B′ → B
is the unique vector bundle f∗(E) over B such that there is a bundle morphism
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f∗E E

B′ B

f̃

π′ π

f

so that f̃ restricts to an isomorphism on each fiber

Proof. g obviously restricts to a homeomorphism on each fiber. We need to
show that any bundle satisfying this definition is equivalent to the one just
described. Let E′ be a vector bundle over B so that there is a bundle map
g : E′ → E which is fiberwise and restricts to a homeomorphism of fibers,
on fibers. Then the bundle morphism sending each element v of a fiber of E′

(π′(v), g(v)) ∈ f∗(E) is a bundle morphism which restricts to homeomorphisms
of fibers. Hence E′ and f∗(E) are equivalent bundles.

In terms of the transition functions of the bundle we have the following:

Lemma 2.4. The pull back bundle has as an open cover of the base space the
set f−1(Vi) where Vi is the cover of B and as transition functions the pull back
of the transition functions of B.

Proof. This is immediate upon composing the trivialisations of the pull back
bundle.

Note that in this way a map f : B′ → B induces a mapping f∗ : V ect(B) →
V ect(B′) from the set V ect(B) of equivalence classes of vector bundles over
B to the set of vector bundles over B′. A key observation when categorising
the vector bundles which can occur over a particular space B is that given two
maps f1, f2 : B → A the pull back bundles of a vector bundle E → A are
isomorphic if f1 and f2 are homotopic. The idea of the proof is to construct a
vector bundle over B × [0, 1] which is f∗1 (E) at B × {0} and f∗2 (E) at B × {1}.
We can “untwist” the bundle over as we travel along (B, t) to show that these
bundles are isomorphic. The proof is long but not difficult so we refer to [4], pg
20 for the details.

An immediate corollary is that homotopy equivalences of base spaces induce
bijection between isomorphism classes of vector bundles over these bases. In
particular for a contractible space there is a bijection f∗ : V ect(B)

∼−→ V ect({x})
for a point x ∈ B and as the only possible vector bundle over a point is the
trivial bundle, we conclude that any vector bundle over a contractible space is
trivial.
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To take this idea further we will now show how every vector bundle of an
appropriate rank over a base space can be given as the pull back of a “uni-
versal bundle” with classes of vector bundles in correspondence with homotopy
classes of maps between the base and the base space of the universal bundle. Of
course, the problem of categorising vector bundles over a space is now given by
the problem of classifying homotopy classes of maps from that space to a new
complicated space which, in general, is still difficult.

2.5 Classifying Bundles: The Universal Bundle

Let M be a k-dimensional manifold embedded in Rn. By the Whitney embed-
ding theorem, such an embedding can always be realized as long as n ≥ 2k. At
each point x ∈M ⊂ Rn the tangent space at x defines a k-dimensional subspace
of the vector space Rn given by translating the space TxM to the origin. This is
a mapping from the manifold into the Grassmanian Gk(Rn), a manifold3 whose
points are the k-dimensional subspaces of Rn.

Consider the following natural vector bundle4 over Gk(Rn)

Ek(Rn) = {(V, v) ∈ Gk(Rn)× Rn | v ∈ V }

i.e. the set of all vectors in the subspace V ∈ Gk(Rn). This is called the
tautological bundle over Gk(Rn). The tangent bundle of M is clearly the pull
back of this tautological bundle under the “generalised Gauss map”5 sending
each tangent space to the associated plane through the origin. With a little
more work we can prove that in fact every rank-k real vector bundle over a
base space B can be given as the pull back of the tautological bundle over a
Grassmanian manifold.

Theorem 2.5. Every rank-k bundle over a compact space X is the pullback of
Ek(Rn) for some n, under a mapping f : X → Gk(Rn). There is a bijection
between homotopy classes of maps [f ] : X → Gk and classes of isomorphic
vector bundles over X.

Proof. Let Ui be a open cover of the base space X such that the bundle is
trivial over each Ui. Since X is compact we can find an open subcover so that
the cardinality of this cover, m, is finite. Let λi : Ui → [0, 1] be a partition of
unity subordinate to this open cover. Consider the trivialisations hi : π−1(Ui)→
Ui×Rk and the projection p : Ui×Rk → Rk. The composition of these functions
is clearly a linear injection on each fiber. Let v be an element of the fiber above

3This is indeed a manifold cf Hatcher [4]
4This is indeed a vector bundle cf Hatcher [4]
5Named after the map of Gauss, who essentially defined this map for surfaces in R3
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x i.e. and consider the function h′i(v) = λi(x)p(hi(v)). This induces a map

g : π−1({x})→ Rk ⊕ · · · ⊕ Rk ∼= Rn

f(v) = (λ1(x)p(h1(v)), · · · , λm(x)p(hm(v)))

where n = km. This is clearly a linear mapping of the vector space V =
π−1({x}) which defines a plane in Rn, an element of Gk(Rn). Let f(x) map
x ∈ X to the point in Gk(Rn) given by g(π−1({x})). Then the pair (f, g) is
a bundle map from π′ : E → X to π : Ek(Rn) → Gk(Rn) which is a linear
injection (and so an isomorphism of vector spaces) on each fiber of E. Thus, E
is isomorphic to the pull back of the bundle Ek(Rn) under the map f .

This completes the proof when the bundle has a trivialising cover of finite car-
dinality. We can extend this to a paracompact base (⇒ countable trivialising
cover) using the following.

Consider the inclusions Rn ⊂ Rn+1 ⊂ · · · which lead to the inclusions Gk(Rn) ⊂
Gk(Rn+1) ⊂ · · · . We take the direct limit and form the space

Gk = Gk(R∞) =
⋃
n∈N

Gk(Rn)

equipped with the direct limit topology. Likewise we form the tautological
bundle over Gk by taking

Ek = Ek(R∞) =
⋃
n∈N

Gk(Rn)

It can be shown that Ek is indeed a vector bundle and by using an extension
of the idea for compact manifolds we have that every vector bundle over a
paracompact base, X, is the pullback of tautological bundle under a map f :
X → Gk. For this reason the space Gk is called the classifying space (of real
vector bundles of rank k) and the bundle Ek is called the universal bundle.

For complex vector bundles the construction of a classifying space and universal
bundle is completely analogous, first taking the Grassmanian Gk(Cn) whose
points represent k-dimensional complex planes through the origin of Cn, defining
the tautological bundle similarly and then passing to the direct limit.

This theorem is useful as it allows us to make statements about properties of
vector bundles by “pulling back” a property of the tautological bundle. In
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particular an immediate corollary is that every real vector bundle has a metric
defined on fibers as follows: The fibers of Ek(Rn) are planes in Rn. The vector
bundle thus inherits a metric given by the restriction of the standard Euclidean
metric of Rn to fibers of Ek(Rn). In turn every vector bundle is equipped with
a metric which we get by pulling back the metric on Ek(Rn). Similarly every
complex vector bundle has a Hermitian metric.

Unfortunately this theorem does not afford us the ability to classify bundles over
X explicitly as finding all homotopy classes of maps f : X → Gk is too difficult
in general. For this reason we now give another way of classifying vector bundles
over spheres which reduces to the significantly easier6 problem of calculating the
homotopy groups πk−1(SO(n)).

2.6 Classifying Bundles over Spheres

For the sphere there is another way of categorising vector bundles, which relies
on the fact that an n-sphere can be covered by exactly two contractible open
sets (in fact this property categorises topological n-spheres). First we reduce
our very large structure group into a considerably smaller one

Lemma 2.6. Let E be a rank-k real vector bundle with structure group GL(k,R).
Then E is equivalent to a bundle which has transition functions which take val-
ues in the subgroup O(k) ⊂ GL(k,R). If E is orientable with structure group
GL(k,R)+ then E is equivalent to a bundle with transition functions in the
subgroup SO(k) ⊂ GL(k,R)+

Proof. Let Uα be a trivialising open cover of the base space B. As the bundle
is trivial over each of the Uα we can find k linearly independent sections, whose
restrictions to each fibre form a basis of the vector space Rk. Let sαi , 0 ≤ i ≤ k be

such a collection of sections over a trivialising open subset Uα and sβj , 0 ≤ j ≤ k
such a collection of sections over a trivialising open subset Uβ .

For all x ∈ Uα ∩Uβ there is an induced metric on the fiber Ex. Therefore using
the Gram-Schmidt orthogonalisation process we can find an orthonormal basis
tαi (x) which is a linear combination of the sαi (x). Similarly we can construct

an orthonormal basis tβj (x) of Ex from the sections sβj (x). Such a change of
basis will be continuous as a function from the base space to GL(n,R) and
so produces an equivalent bundle. But the transition function at x is then
from an orthonormal basis of Rk to an orthonormal basis of Rk and so takes
values in O(k). If the bundle is orientable, the bases can be ordered so that the
transition functions preserve orientation and then will take values in SO(k). So
by a suitable choice of basis of the fibers of the bundle, it can be arranged that

6But in high dimensions still difficult
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the structure group of a vector bundle is O(k) and, if the bundle is orientable,
in SO(k).

We now put a vector bundle over a sphere in “normal form”, where the bundle
is trivial over two sets which cover the sphere so that the intersection is a
band along the equator. The isomorphism classes of the vector bundle are the
given by homotopy classes of maps from the equator to the structure group of
the vector bundle. We are interested in the particular case of orientable real
bundles, though similar constructions exist for non orientable real bundles and
complex bundles.

Theorem 2.7. Equivalence classes of rank-n orientable, real vector bundles
p : E → Sk over the k-sphere are given by elements πk−1(SO(n))

Figure 3: A sphere covered by two open
sets

Proof. Choose an open cover of Sk

consisting of two open sets V0, V1 so
that V0, V1 cover the upper and lower
hemispheres of Sk and their intersec-
tion is a product Sk−1 × (−ε, ε). Let
(x, t) be coordinates on this intersec-
tion. Given a map f : Sk−1 → SO(n)
we form the vector bundle Ef over
Sk associated to f as the quotient
of the trivial bundles V0,1 × Rn with
(x, t, v) ∼ (x, t, f(x)(v)) for (x, t) ∈
V0 ∩ V1.

Conversely let p : E → B be a vector
bundle over Sn. As V0, V1 are con-
tractible, it is possible to find triv-
ialisations of the vector bundle over
these sets. We constuct the map
E 7→ πk−1(SO(n)) by sending E to
the homotopy class of the transition
function g01 : V0 ∩ V1 → SO(n) re-
stricted to a sphere (Sk−1, t0) ⊂ V0 ∩ V1. A homotopy between any two such
Sk−1 leads to a homotopy the restrictions of g01 to these spheres, so this is a
well defined operation. Now we wish to show that two bundles are equivalent
iff they have the same associated homotopy class.

If E is a bundle and x0 a chosen point on the equator we can always find a
bundle equivalent to E with transition function g01(x0) = e, the identity in
SO(n) by sending the trivialisation of each fiber over V1 with coordinates (b, v)
to the homeomorphic image (b, g01(x0)−1v). If E,E′ are equivalent bundles the
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trivialisations of E,E′ over V0, V1 differ by maps λ0,1 : V0,1 → SO(n). Finally
V0, V1 are contractible so we can find a retraction of each of these sets to x0.

The transition functions of E,E′ are related by g′01(x) = λ0(x)g01(x)λ1(x)−1.
But if H0(t, x) is a deformation retract of V0 to x0 and H1(t, x) deformation
retract of V1 to x0, then g(t, x) 7→ λ0(H0(t, x))g01(x)λ1(H1(t, x))−1 is a ho-
motopy from g′01 to λ0(x0)g01λ1(x0)−1. Moreover as SO(n) is path connected
there is a path γ(t) from λ0(x0) to e and γ(t)g01γ(t)−1 is a homotopy from
λ0(x0)g01(x)λ1(x0)−1 to g01(x). Therefore g′01

∼= g01 as required.

Conversely let E,E′ be vector bundles over Sk so that the restriction of the
transition (Sk−1, t0) ⊆ V0 ∩ V1 are homotopic. Then g′01(x)g01(x)−1 is homo-
topic to the constant map, so such a mapping can be extended over the whole
disk D0. Denote this extension by λ0 and let λ1 be the identity. We have
continuous maps λ0,1 : V0,1 → (SO(n)) with g′01(x) = λ0(x)g01(x)λ−11 and
g′10(x) = λ1(x)g01(x)λ−10 so these bundles are equivalent, as required.

Thus the map E 7→ πn−1(SO(n)) is well defined with well defined inverse
πk−1(SO(n)) 3 f 7→ Ef and there is a bijection between vector bundles over Sk

and elements of πn−1(SO(n)).
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3 Cohomology of Fiber Bundles

This is taken predominantly from [13, 3]

The cohomology of fiber bundles is difficult to calculate in general. For a special
class of sphere bundle known as orientable sphere bundles, however, it is possible
to use more elementary techniques. Let p : E → B be a rank n vector bundle.
If E is a normed bundle we can form the sphere bundle SE associated to E by
taking the set of elements of E of norm one. If we know the cohomology of
the base space we can calculate the cohomology of the associated sphere bundle
using the long exact sequence

· · · → Hi−n(B)→ Hi(B)→ Hi(SE)→ Hi−n+1(B) · · ·

known as the Gysin sequence. This is derived from the long exact sequence
associated to the relative cohomology of the pair H∗(E,E0) where E0 is the set
of non-zero vectors in E using an isomorphism Hi(B) ∼= Hi+n(E,E0) known as
the Thom isomorphism.

3.1 Relative Cohomology of Pairs

Relative cohomology is dual to relative homology. The relative cohomology of a
pair of topological spaces (X,A) is the cohomology of cochains which vanish on
simplices in A. As with absolute cohomology if we take the direct sum of the rel-
ative cohomology groups H∗(X,A) we have a graded ring where multiplication
is now given by the relative cup product.

Many theorems in absolute cohomology have important generalisations for rel-
ative cohomology. The proof of the Thom isomorphism employs the following,
which here are only stated. They play identical roles to their counterparts in
absolute cohomology: The Künneth formula tells us the cohomology of a Carte-
sian product, given the cohomology of the pair and the Mayer-Vietoris sequence
tells us how to construct cohomology classes on the union of topological spaces,
given classes on the subspaces.

Theorem 3.1 (The Künneth Formula for Relative Cohomology). Let (X,A), (Y,B)
be pairs of topological spaces and denote by p1, p2 the projections from X×Y onto
the first and second factors respectively. Suppose Hk(Y,B) is a free Z-module
for all k. Then the cross product homomorphism

H∗(X,A)×H∗(Y,B)→ H∗(X × Y,X ×B ∪A× Y )

(a, b) 7→ p∗1(a) ^ p∗2(b)

is an isomorphism of graded rings.
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Theorem 3.2 (The Mayer Vietoris Sequence for Relative Cohomology). There
exists a long exact sequence

· · · → Hn(X1 ∪X2, A1 ∪A1)→ Hn(X1, A1)⊕Hn(X2, A2)

→ Hn(X1 ∩X2, A1 ∩A2)→ Hn+1(X1 ∪X2, A1 ∪A1)→ · · ·

Where the first morphism is given as the pull back under the inclusion of
subspaces and the second as the difference i∗ − j∗ of the pullbacks of
cohomology groups under the inclusions i : X1 ∩X2 ↪→ X1, j : X1 ∩X2 ↪→ X2

3.2 The Thom Isomorphism Theorem

In what follows a “choice of orientation” of a vector space is a choice of generator
of the top relative cohomology group Hn(V, V − 0). This is equivalent to the
“usual” definition of orientation given by an ordering of basis elements of V 7.
Recall that an orientable bundle is one such that we can choose this generator
in a way so that local trivialisations are orientation preserving on each fiber.

Theorem 3.3 (The Thom isomorphism theorem). Let p : E → B be an ori-
ented real vector bundle of rank n. Denote by E0 the set of non-zero vectors
in E. There exists a unique class u ∈ Hn(E,E0;Z) such that for any fiber F
the restriction u|(F,F0) ∈ Hn(F, F0;Z) is the class giving the orientation of F .

Moreover Hk(B) ∼= Hk+n(E,E0) and this isomorphism is given explicitly by
x 7→ x ∪ u.

The Thom isomorphism theorem is proved by first showing the case of the trivial
bundle and then extending to general vector bundles using the Mayer Vietoris
sequence. The class u is called the Thom Class

Lemma 3.4. Let B be a space and Rn a real vector space with the canonical
orientation. Then there exists a class u ∈ Hn(B × Rn, B × Rn0 ), unique up to
a choice of orientation of Rn so that u|(F,F0) is the orientation on the fiber F

and x 7→ x ∪ u is an isomorphism Hk(B) ∼= Hk+n(B × Rn, B × Rn0 )

Proof. By looking at the long exact sequence for relative cohomologyHn(Rn,Rn0 ) ∼=
Z and Hk(Rn,Rn0 ) is trivial for all k 6= n. Therefore using the relative Künneth
formula with the pairs (B, ∅) and (Rn,Rn0 ) we have an isomorphism Hk(B) ∼=
Hk+n(B×Rn, B×Rn0 ). Let 1 be the generating element of H0(B) and u be the
pull back of the chosen generating element of Hn(Rn,Rn0 ) under the projection
(B × Rn, B × Rn0 )→ (Rn,Rn0 ). Then 1× u ∈ Hn(B × Rn, B × Rn0 ) restricts to
the orientation form on each fiber. The cup product y ^ 1× u 7→ y × u is the
isomorphism given by the Künneth formula.

7see appendix
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We now need to show that if the vector bundle is orientable then there exists
a unique class in Hn(E,E0) which restricts to the orientation form on each
fiber. Then we need to show that cupping with this class gives the required
isomorphism.

Proof. (of the Thom isomorphism theorem) Suppose that B is covered by two
open sets U, V so that the vector bundle is trivial over U and V . Since E is
orientable, we can give an orientation on each fiber of E so that the trivialisations
are orientation preserving. By the lemma above there exist unique Thom classes
ui ∈ Hn(U×Rn, U×Rn0 ). As the trivialisations are orientation preserving these
pull back to classes whose restriction to each fiber generate the cohomology
Hn(F, F0). So we have the Thom isomorphism for the vector bundle restricted
to U and V .

The restrictions of the class ui to the bundle over U∩V restricts to an orientation
form on each fiber, so we likewise have the Thom isomorphism theorem for U∩V .
The restriction of both classes ui give the same orientation on each fiber as the
trivialisations are orientation preserving. By the uniqueness of the choice of
Thom class, these must agree on and so we have a well defined class u on E.

Let EU be the restriction of the vector bundle to U , E∩ the restriction of E
to U ∩ V and Ė the restriction to the set of non-zero vectors. By the relative
Mayer-Vietoris sequence we have that

· · · → Hn−1(E∩, Ė∩)→Hn(E, Ė)

(i∗,j∗)−−−−→Hn(EU , ĖU )⊕Hn(EV , ĖV ))
ψ−→ Hn(E∩, Ė∩)→ · · ·

is exact. By the Thom isomorphism theorem for U∩V we have thatHn−1(E∩, Ė∩) ∼=
H−1(U ∩ V ) = 0 and so (i∗, j∗) is injective. Thus the class u is unique.

We now need to prove that cupping with this form gives the Thom isomorphism.
Consider the exact sequences

Hn(EU )⊕Hn(EV ) Hn(E∩) Hn+1(E) Hn+1(EU )⊕Hn+1(EV ) Hn+1(E∩)

Hn(EU , ĖU )⊕Hn(EV , ĖV ) Hn(E∩Ė∩) Hn+1(E, Ė) Hn+1(EU , EU )⊕Hn+1(EV , ĖV )) Hn+1(E∩, Ė∩)

with isomorphisms from absolute to relative cohomology given on either side by
the Thom isomorphism. Applying the five lemma we see that cupping with the
form u gives an isomorphism from Hn(E) to Hn(E, Ė).
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Here the result for two open sets is enough as spheres can be covered by two
open sets. The result is easily extended to finite open sets and the result can
be proved in the general case using a direct limit argument.

3.3 The Gysin Sequence

The bundle E0 of non-zero vectors of E deformation retracts to SE so we have
the isomorphism H∗(E0) ∼= H∗(SE). Similarly H∗(E) ∼= H∗(B). Using these
isomorphisms and the long exact sequence of cohomology groups of the pair
(E,E0) we get the Gysin sequence

· · ·Hi(E,E0) Hi(E) Hi(E0) Hi+1(E,E0) · · ·

· · ·Hi−n(B) Hi(B) Hi(SE) Hi−n+1(B) · · ·

j

∪e

∪u p∗ ∼ ∪u

for i < k, we have that Hi−n(B) = 0 and the Gysin breaks up into exact
sequences 0 → Hi(B) → Hi(SE) → 0 giving Hi(B) ∼= Hi(SE). For higher
cohomology groups the situation is more interesting and the relation between
Hi(B) and Hi(SE) depends on the Euler class, e which is defined as the image
of the Thom class under the morphisms (p∗)−1 ◦ j(u).

If the bundle SE → B has a section, we have s ◦ p = Id and the induced map
on the cohomology of B is an isomorphism. Necessarily then p∗ : Hn(B) →
Hn(SE) is injective. By the exactness of

H0(B) Hn(B) Hn(SE)∪e p∗

then, the Euler class must be zero. Conversely, if the Euler class is non zero
then there cannot be a nowhere vanishing section and in particular the bundle
cannot be trivial.

3.4 The Thom Isomorphism Theorem with Z2 coefficients

Let us examine what “goes wrong” in the Thom isomorphism theorem when
our bundle is non-orientable by looking at the classic case of the Mobius strip.
The Mobius strip can be formed by taking two charts on the circle U0, U1 over
which the bundles are trivial, twisting one and gluing together. We certainly
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have a Thom classes u0, u1 over the two trivial bundles but when we glue these
together u0 = −u1 on one component of the intersection and so we cannot find
a global well-defined form. However, if we take cohomology with Z2 coefficients,
both forms evaluate to the unique non-trivial element in H1(F, F0) and so these
classes do agree mod 2. Whence we have a statement of the Thom isomorphism
theorem, valid for all vector bundles.

Theorem 3.5. Let p : E → B be an real vector bundle. Denote by E0 the set
of non-zero vectors in E. There exists a unique class u ∈ Hn(E,E0;Z2) such
that for any fiber F the restriction u|(F,F0) is the unique non trivial class in

Hn(F, F0;Z2). Moreover Hk(B) ∼= Hk+n(E,E0) and this isomorphism is given
explicitly by x 7→ x ∪ u.

21



4 Characteristic Classes

Every vector bundle over a base space can be given as the pull back of a uni-
versal bundle of the appropriate rank. As pull back bundles under homotopy
equivalent maps from the base space are equivalent, the set of vector bundles
over a base space is given by the set homotopy equivalent classes of maps from
the base space to the classifying space of rank n vector bundles. It is difficult
to find all homotopy classes of these maps in general. However, we can at least
look at the induced map on cohomology. Characteristic classes are the image
of cohomology groups of the classifying space under this induced map. In par-
ticular, if the classifying map of the bundle induces a non-trivial map from the
cohomology groups of the classifying space (i.e. there is a non-zero characteris-
tic class associated to the bundle) the map to the classifying space the bundle
is not null-homotopic and the bundle cannot be trivial.

A characteristic class of a vector bundle, then, is an element of the cohomology
group of the base space. The associated classes can also be defined by an
axiomatic definition - for instance, given a mapping f : X → B we obviously
would ask that the pull back of the characteristic class be the characteristic class
of the pull back bundle, a condition called naturality. In practise, the easiest way
to calculate the classes of bundles is using the axiomatic definition. Historically
(and more intuitively), non trivial characteristic classes indicated that one could
not find an appropriate number of everywhere linearly independent, everywhere
non-vanishing sections of the bundle which is obvious condition for triviality.

4.1 The Euler Class

The Euler class is the image of the Thom class under the canonical map from
relative cohomology to absolute cohomology followed by restriction to the zero
section. As seen in the last section, the Euler class vanishes if there exists a
nowhere vanishing section of the vector bundle (though the converse is not true).

Lemma 4.1. The Euler class is natural, i.e. f∗(e(E)) = e(f∗(E))

Proof. By the definition of the pull back bundle there is a mapping from f∗(E)
to E which restricts to a linear isomorphism on each fiber. The pull-back of
the Thom class on E under this mapping is a class which is non-zero on each
fiber of f∗(E). But this is necessarily the (unique) Thom class of f∗(E). As
the Euler class is just the Thom class restricted to the zero section we have that
the Euler class of the pull-back bundle is the pull-back of the Euler class.
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4.2 The Chern Classes

If we have a complex vector bundle with a Hermitian metric we can define
the Chern classes. For an n-plane complex bundle there will be n of these
classes with ci ∈ H2i(B;Z). The non-vanishing of the ith Chern class is an
obstruction to finding (n−i+1) linearly independent nowhere vanishing sections
and Chern classes were initially defined in these terms. It can be difficult,
however, to calculate the Chern classes when defined in this manner. The
equivalent axiomatic definition is easier, in practise, to work with.

Definition. Let p : E → B be a complex vector bundle. Chern classes are
elements ci ∈ H2i(B;Z) which satisfy the following properties. Let c = 1 + c1 +
· · ·+ cn. Then

• Naturality: ck(f∗E) = f∗(ck(E)) for f : Y → X for f a continuous
function where f∗E is the pull-back bundle

• Stability: c(E ⊕ ε) = c(E) for ε the trivial bundle

• Whitney sum formula: c(E ⊕ F ) = c(E)c(F )

• Normalization: c of the tautological line bundle on CP 1 is a fixed generator
of H2(CP 1;Z)

Note that the product of total Chern classes given in the Whitney sum formula
is the product in the graded cohomology ring H∗(B). This is given by the cup
product of elements and distributivity laws i.e γ(α+ β) = γ ^ α+ γ ^ β.

Theorem 4.2. For a complex vector bundle over a paracompact space the Chern
classes exist and are unique.

Proof. An explicit construction of the Chern classes can be given in terms of
the Euler class of affiliated vector bundles. These can be shown to satisfy the
given axioms.

Let p : E → B be a complex vector bundle with a Hermitian metric. We can
always find a Hermitian metric on E when the base is paracompact. Let En−1
be the vector bundle which has as its base space, Bn−1, the set of non-zero
vectors in E (denoted E0 until now). An element v ∈ Bn−1 belongs to a fiber F
of E. Define the fiber over v to be the set of vectors of F which are orthogonal
to v with respect to the given Hermitian metric. This is a (n− 1)-plane bundle
over the base space Bn−1. Define En−i inductively by performing the same
procedure on the new vector bundle.

As the real 2n-plane bundle underlying a complex n-plane bundle is always
orientable we can find an Euler class. Define the top Chern class cn to be
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the Euler class of E. From the Gysin sequence we have that (p∗)−1 is an
isomorphism from H2m(Bn−1) to H2m(B) whenever m < n. Define cn−1 to
be the image of the Euler class of the bundle En−1 under this isomorphism.
Define cn−i to be the image of the Euler class of En−i in H2(n−i)(B) under the
successive isomorphisms H2(n−i)(Bk)→̃H2(n−i)(Bk+1).

Proof of Naturality

The naturality of the top Chern class follows from the naturality of the Euler
class of E. Let f : B′ → B be a continuous mapping and consider the pull back
back bundle f∗(E). For the pull back bundle there is a commutative diagram

f∗(E) E

B′ B

g

p′ p

f

Denote by g0 the restriction of g to non-zero vectors, which is a bundle map
(f∗(E))0 ∼= f∗(E0) → E0. If f∗(E) has the pullback Hermitian metric and v⊥

denotes subset of vectors in the fiber containing v which are perpendicular to
v ∈ (f∗(E))0 we have g0(v⊥) = (g0(v))⊥. Form the vector bundle En−1 over
the base E0 = Bn−1 as detailed earlier. Likewise form the bundle (f∗(E))n−1
over the base (f∗(E))0. As g0(v⊥) = (g0(v))⊥ we have (f∗(E))n−1 = g∗0(En−1).
By this equivalence and the naturality of the Euler class on the bundle En−1
then f∗(cn−1(E)) = cn−1(f∗(E)). The result on the other classes follows by
induction.

Proof of Stability

Note that the bundle E ⊕ ε with ε the trivial bundle has the obvious cross
section s(x) = (0, 1). Then the Euler class and so the top Chern class cn+1

is 0. Consider the pull back of the bundle (E ⊕ ε)⊥ under the section s. The
restriction of this bundle to image of the section s in (E ⊕ ε) is clearly E itself
over the (embedded) image of B in (E ⊕ ε) and so pulls back to the bundle E
over B.

Now consider the projection p : (E ⊕ ε)0 → B. Now by the definition of the
Chern classes we have ci(E ⊕ ε) = (p∗)−1(ci((E ⊕ ε)⊥)). But p ◦ s = id and so
we have

ci(E ⊕ ε) = (p∗)−1(ci((E ⊕ ε)⊥)) = s∗(ci((E ⊕ ε)⊥) = ci(s
∗(E ⊕ ε)⊥)) = ci(E)

(1)
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as required.

Proof of Normalisation

This is seen in the next section in the calculation of the cohomology groups of
complex projective space.

Whitney Sum Formula

This is proved by proving the corresponding statement for the universal bundle,
the proof for a general bundle then follows. See [13] for details

As discussed a non-zero Euler class is an obstruction to finding an everywhere
non-zero section of the bundle. The Euler class of the bundle E⊥ being non-zero
is an obstruction to finding a section of everywhere non-zero vectors perpendic-
ular to vectors in the bundle E, so the relation between this construction and
earlier constructions where the Chern classes measured an inability to find ev-
erywhere non-vanishing, linearly independent vector fields of the bundle is clear.

Let us define the conjugate bundle Ē associated to a complex vector bundle E
as a complex vector bundle of the same dimension for which the action of C
on each fiber is given by (a + bi)v = av − ibv. This is easily seen to be the
vector bundle which has as transtion functions the conjugate of the transition
functions of E.

We have the following

Lemma 4.3. The Chern classes of the complex conjugate bundle, Ē, are given
by ci(Ē) = (−1)ici(E)

Proof. Let Ē denote the complex conjugate bundle. If (v1, · · · , vn) is the ori-
entation of the complex bundle then (v1, iv1, · · · vn, ivn) is the orientation for
the underlying real bundle. The orientation of the real bundle underlying the
complex conjugate bundle is then (v1,−iv1, · · · vn,−ivn) and is so (−1)n times
the orientation of the bundle E and so e(Ē) = (−1)ne(E). As (Ē)⊥ = Ē⊥ the
result follows.

Corollary 4.4. The odd Chern classes of a complexified bundle are 2-torsion
elements

Proof. For a complexified bundle E ⊗C we have E ⊗C ∼= E ⊗ C and the result
follows directly from the above equation
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4.3 The Steifel-Whitney classes

We recall the version of the Thom isomorphism with coefficent ring Z2. We
will now use this to form characteristic classes very similar to the Chern classes,
which can be defined on real vector bundles. Define the “unoriented” Euler
class of the bundle as the restriction of the Thom class u ∈ Hn(E;Z2) to the
zero section. The axioms definining the Steifel-Whitney classes should not be
entirely surprising.

Definition. Let p : E → B be a real vector bundle. Steifel-Whitney classes
are elements wi ∈ Hi(B;Z2) which satisfy the following properties. Let w =
1 + w1 + · · ·+ wn. Then

• Naturality: wk(f∗E) = f∗(wk(E)) for f : Y → X for f a continuous
function where f∗E is the pull-back bundle

• Stability: w(E ⊕ ε) = w(E) for ε the trivial bundle

• Whitney sum formula: w(E ⊕ F ) = w(E)w(F )

• Normalization: w of the tautological line bundle on RP 1 is the unique
non-zero element of H1(RP 1;Z2)

The proof of the first three axioms is the same as that of the Chern classes,
and writing Z2 everywhere. The proof of Normalization is given in the next
section when calculating the cohomology ring of real projective space with Z2

coefficients.

4.4 The Pontrjagin Classes

It is not surprising that the Steifel-Whitney classes do not capture all infor-
mation on the cohomology of a real vector bundle. We define another type of
characterstic class, defined on real vector bundles. The Pontrjagin classes be
described in terms of the Chern classes of the complexification of the bundle
as follows: Let p : E → B be a real vector bundle. The ith Pontrjagin class
pi(E) ∈ H4i(B) is given by pi(E) = (−1)ic2i(E ⊗ C) where (E ⊗ C) is the
complexification of the bundle. The Ponrjagin classes satisfy

• pk(f∗E) = f∗(pk(E))

• p(E ⊕ ε) = p(E) for ε the trivial bundle

• p(E ⊕ F )− p(E)p(F ) is a 2-torsion element.
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Proof. The naturality and stability of the Pontrjagin classes follows directly
from the naturality of the Chern classes. For the Whitney sum formula we have
that (E ⊕ F )⊗ C = (E ⊗ C)⊕ (F ⊗ C) and so for 0 ≤ i ≤ 1

2 (rank(E ⊕ F ))

c(E ⊕ F ) =
∑
i

c2i−1((E ⊗ C)⊕ (F ⊗ C)) +
∑
i

c2i((E ⊗ C)⊕ (F ⊗ C))

=
∑
i

c2i−1((E ⊗ C)⊕ (F ⊗ C)) +
∑
i

(−1)i(pi(E ⊕ F ))

and

c(E)c(F ) = (
∑
i

c2i−1(E) +
∑
i

c2i(E))(
∑
i

c2i−1(F ) +
∑
i

c2i(F ))

= (
∑
i

c2i−1(E) +
∑
i

(−1)ipi(E))(
∑
i

c2i−1(F ) +
∑
i

(−1)ipi(F ))

And so modding out elements of order 2∑
i

(−1)i(pi(E ⊕ F )) = p(E)p(F ) mod 2

p(E ⊕ F ) = p(E)p(F ) mod 2

Lemma 4.5. If E is a complex vector bundle then the complexification of the
underlying real bundle E ⊗ C is isomorphic over C to E ⊕ Ē

Proof. We need to find a C-linear vector space isomorphism on the fibers of the
bundles.

The complexification of E as has its fibers the direct sum of two copies of the
underlying real vector space V ⊕ V together with the almost complex structure
J(z, w) = (−w, z), where here z and w are considered pairs of real variables.
The direct sum E⊕Ē is pairs of complex variables with the action of C given by
λ(z, w) = (λz, λ̄w) for λ a complex constant. Consider the linear homomorphism
φ : E⊕Ē → E⊗C given by φ(z, w)→ (z+w,−iz+ iw). Then for z = x+ iy we
have φ(i(z, 0)) = φ((iz, 0)) = (iz, z) = J(z,−iz) = J(φ(z, 0)) so φ is C-linear in
the first variable. Similarly φ(i(0, w)) = φ((0,−iw)) = J(φ(0, w)).

Lemma 4.6. For any real vector bundle with a complex structure the Pontrjagin
classes satisfy

1− p1 + p2 − · · · ± pn = (1− c1 + · · · ± cn)(1 + c1 + c2 · · ·+ cn)

Proof. c(E ⊗ C) = c(E ⊕ Ē) = c(E)c(Ē) For i odd the associated Chern class
is ci(E⊕ Ē) =

∑
i(−1)i(ci(E)ck−i(E)) = 0. And so product c(E⊗C) is simply

the sum of even Chern classes c2i(E⊗C). By the definition of Pontrjagin classes
this is 1− p1 + p2 − · · · ± pn
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Also we have an easy calculation which will be important later

Lemma 4.7. The Pontrjagin classes of the tangent bundle of a sphere are
trivial.

Proof. The tangent space of the sphere at ∈ Sn can be described by

TxS = {v ∈ Rn+1 : 〈x, v〉 = 0} (2)

and the normal bundle at x as

NxS = {v ∈ Rn+1 : v = λx, λ ∈ R} (3)

The normal bundle is trivial as we have the nowhere vanishing section (x, x).
The Whitney sum of the tangent and normal bundles of a sphere is trivial and so,
directly from the axioms for Pontrjagin classes, we have p(TSn) = p(TSn⊕ε) =
p(εn) = p(ε) = 1 where εn is the n-fold Whitney sum of the trivial bundle.

The stability property of the Chern and Pontrjagin classes shows how they may
“fail” to pick up non-triviality in a vector bundle. One of the simplest examples
of this is S5. The tangent bundle of the sphere will have all trivial Chern and
Pontrjagin classes by above and the Euler class will also be zero, as it is for all
spheres of odd dimension. The tangent bundle of S5, however, is not isomorphic
to the trivial bundle.

4.5 Characteristic Numbers

By evaluating combinations of characteristic classes of the tangent bundle on
the fundamental class of the connected, orientable, closed manifold we can get
some derived useful invariants.

Given an n dimensional complex manifold M with fundamental class [M ] and
integers i1, . . . , il such that

∑
deg cij = n, the corresponding Chern number is

defined ci1 ^ ci2 ^ · · ·^ cim([M ]).

Similarly we can define the Steifel-Whitney numbers and, if the the dimension of
the manifold is divisable by four, the Pontrjagin numbers. These are topological
invariants of the manifold and are particularly important as they are complete
invariants of a manifold’s oriented bordism class i.e. there is an oriented bordism
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between two manifolds if and only if they have the same Steifel-Whitney and
Pontrjagin numbers8.

As the Pontrjagin numbers are a topological invariant we have an interesting
corollory of a manifold possessing a non-zero Pontrjagin number. Reversing the
orientation of manifold has no effect on the Pontrjagin classes (indeed we do
not even need an orientation on M to define them), but reverses the sign of
the fundamental class and so of a Pontrjagin number. Whence if a Pontrjagin
number of M is non-zero there exists no orientation reversing homeomorphism
of the manifold to itself.

4.6 Hizerbruch’s Signature Theorem

Now we will discuss another topological invariant, defined for manifolds which
are orientable, closed and of dimension 4k, with k an integer.

First define the bilinear pairing

H2k(M)×H2k(M)→ H4k(M)

(α, β) 7→ α ^ β

There is explicit isomorphism between H4k(M) and Z given by evalating an
element of the group on a chosen fundamental class [M ] ∈ H4k(M). We can
thus view the above pairing as defining a bilinear form from H2k(M) to Z.

The basic property of the cup product

αp ^ βq = (−1)pq(βq ^ αp)

ensures that this bilinear form is symmetric. The signature of the manifold is
defined to be the signature of this quadratic form.

The signature of the manifold can be proved to be a topological invariant and,
in fact, a bordism invariant. Moveover it is easily seen to be additive upon
taking the disjoint union of manifolds and multiplicative upon taking Cartesian
products. Thus, the signature defines an ring homomorphism from the oriented
bordism ring to Q or equivalently an algebra homomorphism from the oriented
bordism ring Ω tensored with Q . We mentioned earlier that the Pontrjagin
numbers and Stiefel Whitney numbers are a complete invariant for oriented

8For a basic definition of the oriented cobordism class and ring structure, see the appendix.
Details can be found in [13]
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bordism classes of manifolds. Tensoring the oriented bordism ring Ω with Q
kills torsion, so it can be seen that the Pontrjagin classes determine completely
the algebra homomorphisms Ω ⊗ Q → Q. We can conclude that the signature
of the manifold must be given by a linear combination of Pontrjagin numbers
with coefficients in Q.

The Hirzebruch Signature theorem gives explicit coefficients of this relation and
gives the signature of the manifold as an explicit combination of the Pontrjagin
numbers of the manifold. Verifiying the theorem is difficult, a proof is given in
[6]. We will only need the result for the case of an 8-manifold, which is given
explicitly by

σ(M) = 〈[M ],
1

45
(7p2(M)− p1(M)2〉

One notable thing about this formula is that σ(M) is necessarily an integer
while the right hand side is an integer only for certain combinations of values of
p1 and p2. This is what Milnor used to prove the existent of exotic differentiable
structures on 7-spheres.
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5 Applications: Projective Spaces and Complex
Structures on Spheres

Having worked hard to gain the very useful tools of characteristic classes, we
are now rewarded with a plethora of easily constructed, interesting results on
differentiable manifolds. As an initial application we study projective space,
manifolds ubiquitous in physics thanks to quantum mechanics, ubiquitous in al-
gebraic geometry due to the very well behaved intersection theory of projective
curves and ubiquitous in real life because we look at very far away things.

“Projective geometry is all geometry”

5.1 Cohomology Ring of Projective Space

The Gysin sequence provides an easy way to compute the cohomology of these
important spaces

Theorem 5.1. The cohomology groups of the projective space CPn are given
by the following.

Hp(CPn;Z) =

{
Z, p even, 0 ≤ p ≤ 2n
0, otherwise

(4)

Moreover the ring H∗(CPn) is generated by the Euler class of the tautological
bundle

Proof. Consider the bundle γ0, the tautological bundle over CPn less the zero
section. The map Cn+1 3 v 7→ (Cv, v) gives a homeomorphism between Cn+1−
{0} and γ0. Whence Hi(γ0) ∼= Z for i = 0, 2n+ 1 and zero otherwise9. Looking
at the Gysin sequence

· · · → Hi(γ0)→ Hi(CPn)
∪e−−→ Hi+2(CPn)→ Hi+1(γ0) · · ·

For i = −1,−2 the Gysin sequence gives the isomorphismsH0(CPn) ∼= H0(γ0) ∼=
Z and H1(CPn) ∼= H1(γ0) = 0. For all 0 ≤ i ≤ 2n cupping with the Euler class
of the tautological bundle gives an isomorphism Hi(CPn)

∼−→ Hi+2(CPn) and
clearly all groups Hi(CPn) are zero for i ≥ 2n. Thus we have a complete
description of the cohomology ring

H∗(CPn;Z) = Z[e] mod en+1 (5)

9Recall that the cohomology of the sphere is given by H0(Sn) ∼= Hn(Sn) ∼= Z and
Hk(Sn) = 0, k 6= 0, n, as can be found in any introduction to algebraic topology e.g. [3]. It is
clear that Cn+1−{0} is homotopic to a 2n+ 1 sphere and so these have identical cohomology
groups
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as required

A completely analogous construction with the Gysin sequence of the tautological
bundle over RPn, where now the “unoriented” Euler class lives in H1(RPn;Z2)
gives the result

Theorem 5.2. The cohomology groups with Z2 coefficients of the projective
space R are given by the following.

Hp(RPn;Z2) =

{
Z2, 0 ≤ p ≤ n

0, otherwise
(6)

Moreover, if a generates H1(RPn;Z2) then aj generates Hj(RPn;Z2) for all
j ≤ n

So now we know something about the topology of these important spaces.

5.2 Immersions

The Whitney Embedding theorem was one of the first and remains one of the
strongest and most famous results in immersion theory. Whitney proved that
every n-dimnsional manifold can be immersed in Rm as long as m ≥ 2n− 1. In
fact this sharp i.e. this is the lowest bound on m for which the result remains
true for all manifolds, which can be seen by examining the immersions of real
projective space. In this section we will get an obstruction to general immersions
of a manifold given by the Steifel-Whitney classes of tangent bundle and prove
the following

Theorem 5.3. Let n = 2r, r ≥ 1. Then RPn can be immersed in Rm if and
only if m ≥ 2n− 1

5.2.1 The Inverse Steifel-Whitney Classes

Let B be a space. We will construct a group stucture on a subring of the graded
ring H∗(B;Z2). Consider the set of all series

w = 1 + w1 + w2 + · · · ∈ H∗(B;Z2) (7)

which have leading term 1 ∈ H0(B;Z2) and where wi ∈ Hi(B;Z2). We have
the following
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Lemma 5.4. Every element w ∈ H∗(B;Z2) with leading term 1 has a multi-
plicative inverse

Proof. If w = 1 + w1 + w2 + · · · define w−1 by

w−1 = 1 +
∑
n≥1

(w1 + w2 + · · · )n (8)

We have

(w)(w−1) = (1 + (w1 + w2 + · · · ))(1 +
∑
n

(w1 + w2 + · · · )n)

= 1(1 +
∑
n

(w1 + w2 + · · · )n) + (w1 + w2 + · · · )(1 +
∑
n

(w1 + w2 + · · · )n)

= 1 +
∑
n

(w1 + w2 + · · · )n +
∑
n

(w1 + w2 + · · · )n = 1

as all elements are of order 2.

5.2.2 Obstructions to Immersions

We can now show the non-existence of an potential immersion of a manifold
into Rn+k by using the Steifel-Whitney classes and their inverses

Theorem 5.5. The Whitney Duality Theorem Let M be an n-dimensional man-
ifold which is immersed in Rn+k. Then the Steifel-Whitney classes satisfy

w(ν) = w−1(τ) (9)

where τ is the tangent bundle of the embedded M and ν the normal bundle

Proof. If M is immersed in Rn+k then the Whitney sum of the tangent bundle
of M and the normal bundle of M is trivial.

Whence

w(ν ⊕ τ) = 1⇒ w(ν) = w−1(τ)

This has the immediate corollary

Corollary 5.6. Denote by w−1i (τ) the ith homogeneous element10 of w−1(τ)
Suppose w−1i (τ) 6= 0 for some i > k. Then M cannot be immersed in Rn+k

10i.e. w−1
i (τ) ∈ Hi(B;Z2)
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Proof. By the Whitney duality theorem wi(ν) = w−1i (τ), where ν is the normal
bundle of the embedded M . But wi(ν) = 0 for all i > k.

5.2.3 Calculation of the Steifel-Whitney Classes

Now we need to find the Stiefel Whitney classes of the tangent bundle of RPn.

Lemma 5.7. Let τ be the tangent bundle of RPn and ε the trivial bundle. the
Whitney sum τ ⊕ ε is the (n+1)-fold Whitney sum γ⊕· · ·⊕γ of the tautological
bundle of RPn

Proof. We know that the direct sum of the tangent bundle of Sn with the
normal bundle is isomorphic to the trivial bundle Sn×Rn. Quotient the bundle
T (Sn) ⊕ N(Sn) by the relation (x, v) ∼ (−x,−v). The image of the tangent
bundle of the sphere under this quotient is easily seen to give the tangent bundle
of RPn. Nowhere vanishing section of the normal bundle, which consists of
elements {(x, tx)|x ∈ Sn, t ∈ R} are quotiented by (x, tx) ∼ (−x,−x(t)) and
so give nowhere vanishing sections of the image given by ({±x}, t). Whence,
image of the normal bundle is the trivial bundle.

Now let us look at the image of Sn × Rn under the above quotient. The above
quotient of the bundle sends pairs (x, t), (−x,−t) to the same equivalence class
[(x, t)]. The trivial line bundle Sn × R is isomorphic to the normal bundle
under the isomorphism (x, t) 7→ (x, tx). But under the isomorphism from the
trivial bundle to the normal bundle we have that (−x,−t) 7→ (−x, (−t)(−x)) =
(−x, tx). Whence pairs of the form (x, t), (−x,−t) are mapped to equivalence
classes ({±x}, tx) . This is clearly isomorphic to the tautological bundle over
RPn and so we have our result.

this has the immediate corollary

Corollary 5.8. The total Steifel-Whitney class of the tangent bundle of RPn
is given by w(RPn) = (1 + a)n+1 where a is the generator of H1(RPn)

Proof. As ε is the trivial bundle we have w(τ) = w(τ ⊕ ε) = w(γ ⊕ · · · ⊕ γ) =
w(γ)w(γ) · · ·w(γ) = (1 + a)n+1

Taking the binomial expansion for this series we find that

wi(RPn) =

((
n+ 1

i

)
mod 2

)
ai
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Where as before a is the generating element of H1(RPn;Z2). The total Steifel-
Whitney class of the tangent bundle of projective space is then given w(RPn) =
1 +

∑n
i=1 wi(RPn)

Theorem 5.9. Let n = 2r, r ≥ 1. Then RPn can be immersed in Rm only if
m ≥ 2n− 1

Proof. Looking at the binomial coefficent
(
2r+1
i

)
mod 2 we can see this is non-

zero for precisely i = 1, 2r and so the total Steifel-Whitney class of the tauto-
logical bundle is given by

w = 1 + a+ an (10)

As all cohomology groups Hi(RPn) are zero for i > n we have that (a+ an)i =
ai for all i ≤ n. Thus the total inverse Steifel-Whitney class is given by
w−1(RPn) = 1 + a + a2 · · · an and by the Whitney Duality Theorem we have
that RPn cannot be embedded in Rm unless m ≥ 2n− 1.

As mentioned before, this example shows that the Whitney theorem for immer-
sions gives a sharp bound.

In constrast, now let n = 2r−1. We find that these RPn are the only projective
spaces with a chance of being “simple” in the following sense

Lemma 5.10. RPn has non-trivial Steifel-Whitney class if and only if n+ 1 is
a power of 2. Hence RPn cannot be parallelizable unless n = 2r − 1.

Proof. If n = 2r−1, so n+ 1 is a power of two then the coefficent of the Steifel-
Whitney class

(
2r

i

)
mod 2 is always zero. So for n = 2r − 1, w(RPn) = 1.

Conversely let n + 1 = k2r for k odd. Then w(RPn) cannot be trivial. As the
Steifel-Whitney classes have mod 2 coefficents we find

w(RPn) = (1 + a)k2
r

= (1 + a2
r

)k (11)

But then
(
k
1

)
mod 2 6= 0 and the Steifel-Whitney class is not trivial. The

tangent bundle of RPn cannot be trivial if it possesses a non-trivial characteristic
class, so RPn cannot be parallelizable unless n+1 is a power of two as required.

Comment: Given a bilinear product operation

Rn × Rn → Rn (12)
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it is not difficult to prove (details in e.g. [13]) that such a product induces n−1
linearly independent nowhere vanishing sections of the tangent bundle of real
projective n − 1-space if such a product operation has no zero divisors. The
above lemma then implies that bilinear product for Rn with no zero-divisors
can only occur when n is a power of two. The cases n = 1, 2, 4, 8 of course refer
to the division algebras of the reals, the complex numbers, the quaternions and
the non-associative division algebra of the octonions respectively. There are no
others, which can be proved using characteristic classes as a corollary of the
Bott Periodicity theorem[1].

5.3 Obstructions to the existence of complex structures

As a final easy but impressive application of characteristic classes before moving
on to the more laborious task of proving the existence of exotic differentiable
structures on spheres, let us prove the following

Theorem 5.11. The sphere S4k cannot be a complex manifold

First we need to calculate the Euler class of the tangent bundle of a sphere

Lemma 5.12. The Euler class of an even dimensional sphere is twice a gener-
ator of the top homology group

Proof. Consider the set Sn × Sn \A where A is the anti-diagonal subset of the
product space consisting of antipodal pairs (x,−x). This is isomorphic to the
tangent bundle of the sphere, with an explicit isomorphism given by sending
the pair (x, y) to the element of the tangent plane of x which intersects the line
through (−x, y). All pairs (x, x) in the diagonal subset D are sent to the zero
section of the tangent bundle, so we know that Sn × Sn \ (A,D) is isomorphic
to the tangent bundle of the sphere less the zero section. Therefore, by excision
we have that

H∗(E,E0) ∼= H∗(Sn × Sn \A,Sn × Sn \ (A,D)) ∼= H∗(Sn × Sn, Sn × Sn \D)

Now, Sn × Sn \ D homotopy equivalent to the subspace D. Indeed given a
function

f : Sn × Sn \D → D

(x, y) 7→ (x, x)
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and a function

h : D → Sn × Sn \D
(x, x) 7→ (x, gx)

for some element of g ∈ O(n) not equal to the identity, every set (x0, y) ⊂
Sn × Sn \ D is a sphere minus a single point and so contractible to a point.
Thus we can get a retraction of Sn × Sn \D onto (x, gx) and so Sn × Sn \D is
homotopic to the subspace D. We have the isomorphisms

H∗(E,E0) ∼= H∗(Sn × Sn, D)

From the long exact sequence of the cohmology of the pair H∗(Sn × Sn, D) we
get the short exact sequence

0→ Hn(Sn × Sn, D)→ Hn(Sn × Sn)→ Hn(D)→ 0

as D ∼= Sn implies Hn−1(D) = 0. A generator of the kernel of the map Hn(Sn×
Sn) → Hn(D) is of the form α − β where α, β are the pull backs of forms
generating Hn(Sn) under the canonical projection function Sn × Sn → Sn

chosen so that these restrict to the same generator of Hn(D). Therefore α− β
generates the cohomology group Hn(Sn×Sn, D) and corresponds to the Thom
class.

Under the Thom isomorphism the Euler class is sent to the square of the Thom
class. Now as α,β are the pull backs of the generating elements of the Sn we
have that α2 = β2 = 0 and so (α − β)2 = −βα − αβ. If the dimension of the
sphere is even we have that the cup product is symmetric and (α−β)2 = −2βα
corressponds to twice a generating element of Hn(E,E0). Therefore e(E) must
be twice a generating element of Hn(Sn).

Now we prove that S4k cannot have a complex structure.

Proof. For S4k we know that e ∈ H4k(S4k) is twice a generating element of
H4k(S4k). Whence if S4k is a complex manifold we have for the top Chern class
c2k(TS4k) = e.

Now by the definition of Pontrjagin classes we have
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pk(TS4k) = ±c2k(TS4k ⊗ C) = ±c2k(TS4k ⊕ TS4k) (13)

But then by the Whitney sum formula and Lemma 4.7 we find that pk(TS4k) =
±c2k(TS4k ⊗ C) = ±2e 6= 0 which is a contradiction, as the Pontrjagin classes
for the tangent bundle of a sphere are trivial.

Another corollory of Bott Periodicity further restricts the possible dimension of
spheres which can have Chern classes defined on their tangent bundles. This
can be used to prove that the only spheres which can possibly have a complex
structure are S2 and S6. S2 is of course the Riemann sphere. Whether or not
S6 possesses a complex structure remains an open question.
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6 Construction of Milnor Spheres

6.1 The Structure of the Quaternions

This background material on quaternions and quaternionic projective space is
taken predominantly from [14]. The material on exotic sphere is taken mostly
from Milnor’s original paper [9] and [17]

6.1.1 The Division Algebra H

We will review some well known facts of the quaternions which will be used in
the coming chapter.

The quaternions are a four dimensional vector space over R equipped with the
usual sum and scalar multiplication such that the basis elements 1, i, j, k obey
the relations i2 = j2 = k2 = ijk = −1. Quaternion multiplication is then well
defined by using the distributive law, giving H the structure of an algebra over
R . In fact this makes the quaternions a (non commutative) division algebra.

Given a quaternion q = a+ bi+ cj + dk we define

• the conjugate q∗ of q by q∗ = a− bi− cj − dk

• the norm ‖q‖ of q by ‖q‖ =
√
qq∗ =

√
q∗q =

√
a2 + b2 + c2 + d2.

The inverse of a quaternion is then given by q−1 = q∗

‖q‖2 .

Express q = a+ bi+ cj + dk = a+ v. The exponential of q is given by

exp(q) =
∑∞
n=0

qn

n! = ea
(

cos ‖v‖+ v
‖v‖ sin ‖v‖

)
Analagous to the complex case we now have the polar form of q

q = ‖q‖en̂θ = ‖q‖ (cos(θ) + n̂ sin(θ))

exponentiating then becomes

qα = ‖q‖αen̂αθ = ‖q‖α (cos(αθ) + n̂ sin(αθ))
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6.1.2 Quaternions and Rotations

The space of pure quaternions {h = a + bi + cj + dk ∈ H|a = 0} is identified
with R3. The set of quaternions of norm one q = cos(θ) + n̂ sin(θ) is identified
naturally with S3 =

{
x ∈ R4 : ‖x‖ = 1

}
. The operation of conjugation of a pure

quaternion by a quaternion of norm one h→ qhq−1 gives a rotation of angle 2θ
about the axis n̂ ∈ R3. So S3 identified with the unit quaternions provides a
double cover of SO(3) - the set of rotations of R3 - with q and −q representing
the same rotation.

We now wish to see how the unit quaternions act on R4. Consider an arbitrary
rotation φ in R4 ∼= H. If φ(1) = q then q−1φ is a rotation fixing 1 and so is
a rotation of the pure quaternions. But then, as above, this rotation is given
by h → q̃hq̃−1 for some unit quaternion q̃. The rotation φ is thus given by
h→ qq̃hq̃−1 and so there is an isomorphism SO(4) ∼= S3 × SO(3).

6.2 The tautological bundle on Quaternionic Projective
Space

Quaternionic projective space is defined as the set of (quaternionic) one dimen-
sional subspaces of H × H. In other words it is the quotient space of H × H
under the equivalence relation given by (u0, · · · , un) ∼ (λu0, · · · , λun). The
tautological vector bundle over HP 1 is defined

γH = {(x, v) ∈ HP 1 ×H2 such that [v] = x}

The sphere bundle associated to the tautological vector bundle is in fact the
7-sphere. The fibers of the tautological vector bundle are quaternionic lines
through the origin where the fibre over [u0 : u1] is exactly the line (q, u1

u0
q) (as

with the Hopf fibration we have a “point at infinity” at [0 : u] and a line of
“infinite slope”). Such a line will intersect the 7-sphere to give a set {(q, r) ∈
S7 qr = u1

u0
}, which are exactly the elements of the tautological bundle of norm

1, so we get exactly the Hopf fibration of the 7-sphere discussed earlier.

Corollary 6.1. The Euler class of the tautological vector bundle is a generator
of H4(HP 1). The total Chern class of the tautological bundle is c[γH] = 1 + e.
The total Pontrajagin class is p[γH] = 1− 2e

Proof. Looking at the following portion of the Gysin sequence of the associated
sphere bundle Sγ
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H3(Sγ)→ H0(HP 1)
∪e−−→ H4(HP 1)→ H4(Sγ) · · ·

The sphere bundle is homeomorphic to the 7-sphere so Hk(Sγ) ∼= 0 for k 6= 0, 1.
The base space is homeomorphic to the 4-sphere, with cohomology H0(HP 1) ∼=
H4(HP 1) ∼= Z. By the exactness of the Gysin sequence, then, cupping with the
Euler class is an isomorphism sending 1 ∈ H0(HP 1) to a generating element of
H4(HP 1).

The first Chern class of the tautological bundle c1 ∈ H2(HP 1) is zero as HP 1

has the cohomology of the 4-sphere. Since γH is a also a complex vector bundle
of dimension 2 we have by Lemma 4.7

1− p1 + p2 = (1 + c2)(1 + c2) = (1 + e)(1 + e) = 1 + 2e+ e2

but e2 is zero as H8(HP 1) is trivial.

6.3 Rank-4 real vector bundles over S4

The discussion on quaternions and rotations gives a way to explicitly construct
vector bundles over the 4-sphere. From Chapter 1, categorising rank-4 real
vector bundles over S4 is equivalent to classifying the homotopy classes of maps
S3 → SO(4), so first we catergorise these.

By above there is an isomorphism SO(4) ∼= S3 × SO(3). It is a well known
fact that two maps from a connected, oriented manifold without boundary to
a sphere are homotopic if and only if the degree of the mappings are equal
(see [12], pg. 51). So classes of maps π3(S3) = Z are given by covering maps
f : S3 → S3 classified by deg(f). Viewing S3 as the space of unit quaternions
and recalling the formula qα = ‖q‖αen̂αθ = ‖q‖α (cos(αθ) + n̂ sin(αθ)) it is clear
the map q → qn is a covering map of degree n. So the composition

S3 → S3 × S3 → S3 × SO(3)→ SO(4)

u 7→ (ua, ub) 7→ (ua, ubqu−b) 7→ (q 7→ ua+bqu−b)

Defining the homomorphism

φhj : S3 → SO(4)

u 7→ (q 7→ uhquj)
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there is a group isomorphism

Z⊕ Z→ π3(SO(4))

(h, j)→ φhj

And so there is an isomorphism class of vector bundles over S4, denoted Ehj ,
for each homotopy class of clutching functions φhj .

To construct these bundles explicitly we see that HP 1 is diffeomorphic to the
standard 4-sphere by the map

[u0 : u1] 7→
(

2ū1u0
‖u0‖2 + ‖u1‖2

,
‖u0‖2 − ‖u1‖2

‖u0‖2 + ‖u1‖2

)

The charts Ui = {[u0 : u1] |ui 6= 0} are both isomorphic to H with an explicit
isomorphism given by U0 3 [u0 : u1] 7→ (u1/u0), so a vector bundle over HP 1

will be trivial over these charts. Form the vector bundle Ehj by taking trivial
vector bundles (here, a real vector bundle of rank four or a quaternionic line
bundle) over H and identifying

([1 : u], v) ∼
(

[u−1 : 1],
uhvuj

‖u‖h+j

)
(14)

and the homotopy class of the restriction of the map v 7→ φ(v) to the equator
‖u‖ = ‖u‖−1 = 1 gives an element of the homotopy group π3(SO(4)).

Lemma 6.2. The tautological bundle over HP 1 is isomorphic to the vector
bundle E01.

Proof. Vector bundles E, Ẽ with transition functions gij , g̃ij are isomorphic if
and only if we can find continuous mappings λi, λj : Vi ∩ Vj → SO(4) so that
the transition functions satisfy

g̃ij = λ−1i gijλj

To get the transition functions of the tautological bundle over HP 1, note that
we have the following trivilisations of the bundle
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h0 : ([1 : t0], (q, qt0))→ (t0, q)

h1 : ([t1 : 1], (rt1, r))→ (t1, r)

on U0 and U1 respectively. The transition functions from the chart U0 to the
chart U1 is then given by

h1 ◦ h−10 (t0, q) = h1([1 : t0], (q, qt0)) = h1([t−10 : 1], ((qt0)t−10 , qt0)) = (t−10 , qt0)

so g01([1 : t0])(q) = qt0. Similarly g10([1 : t0])(q) = qt−10 ;

The transition functions of the bundle E01 is given by g̃10(u)(v) = vu
‖u‖ which is

just a continuous “resizing” of fibers. The functions λ1(u) = ‖u‖ and λ0(u) =
1 satisfy g̃10(u) = λ1(u)−1g10(u)λ0(u) and g̃01(u) = λ0(u)−1g01(u)λ1(u) as
required

6.4 Characteristic Classes of Ehj

Now the Euler and Pontrjagin classes of the bundle Ehj are calculated. These
will be expressed using the Euler and Pontrjagin classes of the tautological
bundle on HP 1.

There is a continuous map from Sn to the wedge sum11 Sn ∨ Sn collapsing
the equator to a point. The homology and cohomology groups are given by
Hn(Sn∨Sn) = Hn(Sn∨Sn) ∼= Z⊕Z. Let α1 ∈ Hn(Sn∨Sn) send the generator
of the homology of the “first” sphere σ1 to 1 and α2 send the generator of the
second sphere σ2 to 1, i.e. αi(σj) = δij . The generator of Hn(Sn) gets sent to
the sum of generators σ1 + σ2 of Hn(Sn ∨ Sn) so that the pull back of α1 + α2

on the generator of Hn(Sn) gives f∗(hα1 + jα2)(σ) = (hα1 + jα2)(σ1 + σ2) =
hα1(σ1) + jα2(σ2). Whence the induced pull back on the cohomology group
sends the cohomology class corresponding to (h, j) to h + j. If h is a degree h
mapping from the sphere to itself preserving the common point of the spheres
then pulling back the generator α2 by

11The wedge sum of spheres is quotient of the disjoint union of spheres obtained by ident-
fying a single chosen point. See [3]
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Figure 4: a mapping of sphere covered by three open sets to the wedge product
of spheres

Sn ∨ Sn → Sn ∨ Sn

(q, r)→ (h(q), r)

gives hα1. Likewise pulling back α1 under the map (q, r)→ (q, j(r)) gives jα2.

Now consider the vector bundle on S4∨S4 with charts V−, V0, V1 (shown below)
which has clutching functions u → uv and u → vu on the equators of the first
and second sphere. The pull back of this bundle under the mapping

S4 → S4 ∨ S4 → S4 ∨ S4

h→ (q, r)→ (h(q), j(r))

This bundle is the pull back of such a bundle is equivalent to one given by
extending the open sets V− and V+ and composing the tranisiton functions on
the overlap. The homotopy class of the map from the equator to SO(4) of
this bundle is evidently v → uhvuj . Consider the tautological bundle γH ∼=
E01 which we recall has the clutching function v → vu. The conjugate of the
tautolgical bundle is taken by conjugating each of the fibers. This is isomorphic
to the bundle which has the conjugate clutching function v → u−1v12. Taking

12recall q−1 = q∗

‖q‖2
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the conjugate of each fiber reverses the underlying real orientation of the bundle,
so e(E−10) = −e(E01). As reversing orientation preserves the Pontrjagin classes
we find p(E−10) = p(E01). But since Ehj is given by then by the induced map
on cohomology discussed above we have e(Ehj) = e(−hE−10 + jE01) = (h+ j)e
where e is the Euler class of the tautological bundle. Similarly p1(Ehj) =
p1(−hE−10+jE01) = (j−h)p1 where p1 is the Pontrjagin class of the tautological
bundle. As p1 = 2e we have p1(Ehj) = 2(j − h)e

6.5 Milnor’s Spheres

Taking the set of vectors of norm ≤ 1 in the previously constructed Ehj gives the
associated disk bundle Dhj . The boundary of the fiber bundle is the associated
sphere bundle Bhj consisting of vectors of norm one. The cohomology of Bhj can
be deduced using the Gysin sequence and the cohomology of spheres. Looking
at the portion

· · ·Hi−4(S4) Hi(S4) Hi(Bhj) Hi−4+1(S4) · · ·∪e

there is an isomorphism and using Hk(S4) ∼= 0, k 6= 0, 4 we find Hi(S4) ∼=
Hi(Bhj) for i = 0, 1, 2, 5, 6. For i = 7 the sequence gives an isomorphism
between H7(Bhj) ∼= H4(S4) ∼= Z. As Bhj is of dimension seven the cohomology
groups Hi(Bhj) are zero i ≥ 8. For the cases i = 3, 4 the sequence

0 H3(Bhj) H0(S4) H4(S4) H4(Bhj) 0∪e

is exact so we find H4(Bhj) ∼= Z/(h + j)Z. If the Euler class is trivial (i.e.
h + j = 0) then H3(Bhj) ∼= Z. Otherwise H3(Bhj) = 0. So for h + j = 1 the
manifold Bhj has the same cohomology as the sphere S7. We will now prove
that each of these bundles is, in fact, homeomorphic to a 7-sphere.

The following is a well-known important result in Morse theory, known as Reeb’s
theorem

Theorem 6.3. Let M be a n-dimensional closed, oriented, smooth manifold
which admits a smooth function having exactly two critical points, both of which
are non-degenerate. Then there exists a homeomorphism from M to Sn. More-
over, this homeomorphism is a diffeomorphism except at (possibly) a single
point.
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Proof. Sketch Using the implicit function theorem we can construct a closed
neighbourhood of both critical points which is homeomorphic to the n dimen-
sional closed disk and these can be extended so both disks cover the manifold
and intersect along their boundary. The manifold is then clearly homeomorphic
to the n-sphere. Details can be found in any book on Morse theory, for example
[11] pg. 25

Lemma 6.4. The sphere bundles Bhj constructed earlier are homeomorphic to
the 7-sphere whenever h+ j = 1.

Proof. Let Bhj , h+j = 1 be the sphere bundle described about. Let (u, v), u, v ∈
H be coordinates of the sphere bundle over a trivialising neighbourhood and
define a function

f : H×H→ R (15)

(u, v) 7→ Re(v)

(1 + ‖u‖2)1/2
(16)

This has critical points only at (0, 1) and (0,−1).

In the coordinates of the second chart ũ = u−1, ṽ = (uhvu1−h)
‖u‖ such a function

is given by

f(ũ, ṽ) 7→ Re(ũṽ)

(1 + ‖ũṽ‖2)1/2
(17)

This is smooth on the second chart and has no critical points. Therefore by
Reeb’s theorem the manifold that we have created is homeomorphic to the 7-
sphere.

6.6 Milnor’s λ invariant

We have a collection of disk bundles Dhj with boundaries Bhj homeomorphic
to S7 for h + j = 1 (to be proven later). Following the discussion in the intro-
duction, we can attempt to attach an 8-cell to Dhj along Bhj in such a way as
to get a smooth, closed, orientable 8-manifold Mhj . This is possible when the
boundary is the differentiable 7-sphere but for certain combinations of h, j sat-
isfying h+j = 1, despite Bhj being homeomorphic to the 7-sphere, constructing
such an 8-manifold is impossible. Whence this bundle cannot diffeomorphic to
the standard 7-sphere.

To achieve this we relate the characteristic classes and signature of the hypo-
thetical Mhj to the characteristic classes and signature of the components of the
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glued manifold. They will be expressed in terms of an invariant λ of the bound-
ary manfolds Bhj although defined in terms of the manifolds with boundary
Dhj , turns out to depend only on the Bhj .

Definition. Let B be a closed, oriented 7-manifold which is the boundary of a
smooth oriented 8-manifold. Fix an orientaion µ of B and let ν be a generating
element of Hn(M,B) which induces the orientation µ on B. Define the relative
signature of the pair (M,B) as the signature σ(M,B) of the bilinear form

H4(M,B;R)×H4(M,B;R)→ R
(α, β) 7→ 〈ν, α ∪ β〉

where α ∪ β is the relative cup product.

We assume from now on that B is a closed, oriented 7-manifold which is the
boundary of a smooth oriented 8-manifold, denoted M , and that H3(B) and
H4(B) vanish (as is the case for our topological 7-spheres). By the long exact
sequence for relative cohomology, ı : H4(B,M)→̃H4(B) is an isomorphism.
This allows us to define the following

Definition. Define the relative Pontrjagin number of the pair (M,B)

q(M,B) = 〈ν, i−1(p1(B))2〉

Where i is the isomorphism given in the exact sequence for relative cohomology

Now we assume that we have two oriented smooth manifolds M1 and M2 both
with boundary B. We form a closed oriented manifold C by gluing along the
common boundary. Note that the orientation on C inducs opposite orientations
of the pair of ’B’s bounding the M1 and M2. The signature σ(C) and Pontrjagin
numbers of the glued manifold can be expressed as a combination of the relative
signature and relative Pontrjagin number of the components.

Lemma 6.5. Let M1,M2 be manifolds bounded by B and form a smooth, closed,
oriented manifold C = M1 ∪M2 by gluing along the common boundary. Then
we have

σ(C) = σ(M1, B)− σ(M2, B)

q(C) = q(M1, B)− q(M2, B)

where σ(C) is the signature of the glued manifold and q(C) is the Pontrjagin
number q(C) = 〈ν, p1(C)2〉
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Proof. Choose an orientation ν of C which induces the orientation ν1 on M1,
where νi induces the chosen orientation µ on the boundary B. Then ν induces
the orientation −ν2 on M2.

The Mayer Vietoris sequence for relative cohomology gives an isomorphism
Hn(C,B) ∼= Hn(M1, B)⊕Hn(M2, B) for all n. As H3(B) and H4(B) vanish the
long exact sequence of relative cohomology gives an isomorphism H4(C,B) ∼=
H4(C). Therefore a cohomology class in H4(C) is the image of classes (α1, α2) ∈
Hn(M1, B)⊕Hn(M2, B).

Hn(C,B) Hn(M1, B)⊕Hn(M2, B)

Hn(C) Hn(M1)⊕Hn(M2)

h

j i1⊕i2

k

Likewise for n = 4 we have the dual isomorphisms on homology H4(C) ∼=
H4(C,B) and H4(M1, B)⊕H4(M2, B) ∼= H4(C,B) In particular for the signa-
ture of C we have

〈ν, α2〉 = 〈ν, j(h−1(α1 ⊕ α2))2〉 = 〈ν1 ⊕−ν2, α2
1 ⊕ α2

2〉 = 〈ν1, α2
1〉+ 〈ν1, α2

1〉

and the quadratic form on H2(C) is the direct sum of the quadratic forms on the
components. This implies that the signature of the manifold C is the relative
signature of (M1, B) less the relative signature of (M2, B).

Similarily we have that the class p1(C) is the image of classes in Hn(M1, B)⊕
Hn(M2, B) under the isomorphisms j◦h−1 and the conclusion for the Pontrjagin
number follows in a similar manner to the calculation of the signature.

We are now ready to define the λ-invariant of B.

Definition.
λ(B) = 2q(M,B)− σ(M,B) mod 7

An easy consequence of the above lemma is that this depends only on the
boundary manifold B and so defines an invariant of these manifolds.

Lemma 6.6. Let M1,M2 be manifolds bounded by B, where as before B is a
closed, oriented manifold such that H3(B) and H4(B) vanish. Then 2q(M1, B)−
σ(M1, B) = 2q(M2, B)− σ(M2, B) mod 7

Proof. By the Hirzebruch signature theorem
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σ(C) = 〈ν, 1

45
(7p2(C)− p1(C)2〉

and so
45σ(C) + 〈ν, p1(C)2〉 ≡ 2q(C)− σ(C) mod 7

so that 2(q(M1, B)− q(M2, B))− (σ(M1, B)− σ(M2, B)) ≡ 0 mod 7.

Note that the above proof relies implicitly on the idea that we can glue man-
ifolds with diffeomorphic boundaries to get a smooth, closed manifold. If two
manifolds B1, B2 have λ invariants which are not inverses mod 7 then the
Hirzebruch signature theorem gives a fractional value for 〈ν, p2〉 upon gluing
manifolds bounded by B1, B2 and so B1 cannot be diffeomorphic to B2 (with
the opposite orientation).

Note that we have proved that λ depends on the classes of tangent bundle of B
and so it is invariant under diffeomorphisms of B. We now wish to compute this
invariant for the sphere bundles Bhj , h+j = 1 built earlier. These bundles fulfill
the conditions for the λ-invariant to be defined and bound the disk-bundles Dhj .
As the λ invariant is independent of the choice of bounded manifold, we may as
well calculate the λ explicitly using the Dhj .

Lemma 6.7. For the Bhj given earlier we have

λ(Bhj) = (h− j)2 − 1 mod 7 (18)

Proof. The mappings Dhj ↪→ Ehj
π−→ S4 are clearly homotopy equivalences and

so the pullbacks of cohomology groups under these mappings are isomorphisms.
The cohomology group H4(Dhj) is then generated by the cohomology class
α = i∗(π∗e), where as before e is the Euler class of the tautological bundle over
HP 1, which is a generator of H4(S4). We fix an orientation on Dhj and Bhj by
chosing the generator of H8(Dhj , Bhj) for which q(M,B) = 〈ν, i−1(α)2〉 = 1.
Then the signature of the form σ(B,M) for this orientation is 1.

The disk bundle Dhj is embedded in the vector bundle Ehj and so TDhj =
TEhj |Dhj

. Therefore to find the Pontrjagin classes of the bundle TDhj it is
sufficient to study the classes of the bundle TEhj . The tangent space of a
vector bundle Ehj splits as bundles tangent to the fibers and normal to the
fibers i.e

TEhj = π∗(Ehj)⊕ π∗(TS4) (19)

As H∗(Ehj) has no torsion we have from the Whitney sum formula p(π∗(Ehj)⊕
π∗(TS4)) = p(π∗(Ehj))p(π

∗(TS4)) and in particular
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p1(TEhj) = π∗(p1(TS4)) + π∗(p1(Ehj)) = 0 + π∗(2(h− j)e) = 2(h− j)π∗e

Pull back this class under the inclusion i : Dhj → Ehj to get p1(Dhj) = i∗(2(h−
j)π∗e) = 2(h− j)α. Then

q(M,B) = 〈ν, i−1(2(h− j)α)2〉 = 4(h− j)2 = 〈ν, i−1(α)2〉 = 4(h− j)2 (20)

So we have

λ(Bhj) = 2q − 1 = 8(h− j)2 − 1 = (h− j)2 − 1 mod 7 (21)

Whence we have the conclusion

Corollary 6.8. For (h − j)2 6= 1( mod 7) the differentiable stucture on these
Bhj cannot be the same as the canonical one on S7.

Proof. We have shown that λ is invariant under diffeomorphism. As λ(S7) ≡ 0
mod 7 the result follows.

Corollary 6.9. For (h − j)2 6= 1( mod 7) the manifold Bhj admits no orien-
tation reversing diffeomorphism to itself

Proof. An orientation reversing diffeomorphism on Bhj reverses the sign of the
Pontrjagin numbers and signature of the manifold and so of the invariant λ. As
is invarient under diffeomorphisms, such an orientation reversing diffeomorphism
can only exist if λ ≡ 0

There are four possible values of (h−j)2−1 mod 7 and so we have constructed
four topological spheres which are not diffeomorphic to the standard sphere.
We get three more by taking connected sums, formed by removing a disk from
each sphere and gluing the resulting manifolds along the common boundary.

The question of how many exotic spheres exist in a given dimension has been
addressed by Milnor and Kervaire[8]. Investigation into the geometry of these
objects is ongoing, a very recent development being the discovery by Petersen
and Wilhelm[15] (after quite a long search) of a metric on an exotic sphere which
has everywhere positive sectional curvature. More generally Milnor’s discovery
stimulated research into manifolds with exotic differentiable structures with
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exciting results such as the discovery of an infinitude of differentiable structures
on R4 by Donaldson[2] (Rn has a unique differentible structure for all other
values of n), and the first discovery of a manifold which does not admit any
smooth structure by Kervaire[7].
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7 Appendix

7.1 Orientation of Manifolds

An orientation of a real vector space is an assignment of ”positive” or ”negative”
to each ordering of basis elements of Rn preserved by rotations and reversed
by reflections. To make such a choice we can fix an orientation on a chosen
frame and use that all other frames of the vector space are the image of the
chose frame under a combination of rotations and relflections. However there
is another way to make this choice which more readily extends to the idea of a
”local” orientation on a manifold.

Definition. An orientation a real vector space Rn at a point x ∈ Rn is a choice
of generator of the infinite cyclic group Hn(Rn,Rn − x).

By looking at the natural isomorphisms Hn(Rn,Rn − x) ∼= Hn−1(Rn − x) ∼=
Hn−1(Sn−1) we see that such a choice induces a choice of generator of the top
homology group of spheres in Rn centered at x. Now a rotation of Rn about x
induces a degree 1 mapping of such a sphere to itself and reflection induces a
degree −1 mapping of the sphere to itself. Thus such a choice satisfies the condi-
tions for this to be a reasonable definition of “orientation”. A similar argument
shows that a choice of generator of the relative cohomology Hn(Rn,Rn − x)
also corresponds to a choice of orientation. A local orientation on the vector
space is a choice of orientation at all points in an open ball which is “consis-
tent”, in the sense that we require the choice of generator of each point be the
image of a chosen generator µ ∈ Hn(Rn,Rn − U) ∼= Z under the isomorphism
Hn(Rn,Rn − U)

∼−→ Hn(Rn,Rn − x).

To extend this definition to a (topological) connected manifold we note that
the local constructions above can be performed equally well in a neighbourhood
x ∈ M homeomorphic to an ball in Rn. We can now define the concept of
orientation for an arbitrary manifold.

Definition. An orientation on a manifold M is a choice of orientation at all
points of M such that these generators are the image a choice of generator in
µi ∈ Hn(M,M −Ui) ∼= Z where the Ui are (topological) balls of finite radius in
M which cover M . If it is possible to make such a choice the manifold is said
to be orientable.

If the manifold is also compact then we can use the following theorem to define
a single orientation class on M which will induce the local orientations at each
point.

Theorem 7.1. Let M be an n-dimensional compact topological manifold and
∂M the boundary of M . If M is connected and orientable then for each x in
the interior of M the natural inclusion Hn(M,∂M) → Hn(M,M − x), is an
isomorphism.
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In particular Hn(M,∂M) ∼= Z and a choice of generator of this group induces an
orientation at all points in the interior of M . If the manifold is closed then the
above isomorphism is an isomorphism from absolute cohomology Hn(M,∂M)→
Hn(M,M − x). We define

Definition. The fundamental class of M is a choice of generator Hn(M) ∼= Z
denoted [M ]. If M is a manifold with boundary then we define the fundamental
class of M to be a choice of genertor Hn(M,∂M).

Note that in the second case the image of [M ] under the boundary map ∂ :
Hn(M,∂M)→ Hn−1(∂M) induces an orientation on the boundary.

Given two orientable manifolds A,B with the same boundary ∂A = ∂B = M
we can form a manifold C as the disjoint union of A and B by identifying
points along the common boundary. The resulting manifold is orientable as
an orientation can be given by “compatible” orientations µA ∈ Hn(A,M) and
µB ∈ Hn(B,M). “Compatible” is defined as follows: Let x be a point on M
and consider the n-dimensional ball about x in C with M intersecting the ball
as an n − 1 ball. An orientation on C induces a local orientation at x and so
on the ball about x. It is clear that the two halves of the ball induce opposite
orientations on the n − 1 dimensional intersection with M . So two orienations
of A and B are compatible and induce and orientation on the glued manifold if
∂µA + ∂µB = 0.

7.2 The Oriented Bordism Ring

Attempting to classify manifolds up to diffeomorphism is a provably hopeless
task. We can however attempt to classify manifolds up to a much courser
equivalence relation that of bordism

Two n-manifolds are said to be cobordant or in the same bordism class if their
disjoint union is the boundary of a smooth (n+ 1)-manifold. This can be seen
to be an equivalence relation. Two oriented manifolds are said to be in the
same oriented bordism class if their disjoint union bounds an oriented (n+ 1)-
manifold and the orientation on this manifold induces the chosen orientations
on the boundary components. The oriented bordism classes of manifolds form
a graded ring (graded with respect to the dimension of the manifolds in the
equivalence class) with the following operations

• an addition operation given by the disjoint union of manifolds

• a product operation given by taking the Cartesian product of manifolds
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