


Master Thesis.

ii



Acknowledgement.

I take this opportunity to express gratitude to Prof. Paolo Stellari for giving
me continuous support during thewhole process. I am extremly thankful and
indebted to him for sharing expertise, and sincere and valuable guidance and
encouragement extended to me. I also thank my parents for the unceasing
encouragement, support and attention.

iii



Master Thesis. Acknowledgement.

iv



Introduction.

Our aim is to give the notion of a stability condition on a triangulated cate-
gory and discuss its main properties. The special case we are interested in is
the bounded derived category of coherent sheaves over a smooth projective
scheme X . Our main focus of study is when X is a curve and a surface. The
most interesting feature is that the set of stability conditions Stab(D) on a
�xed triangulated category D comes with a natural topology. After setting
up the necessary de�nitions, we prove that the space Stab(D) with its natu-
ral topology is a �nite dimensional complex manifold.

The motivation for the de�nition of stability condition came from the
work of M.R Douglas on Π-stability of Dirichlet branes. Bridgeland gets
the motivation from there and he gave a rigorous mathematical treatment in
his paper Stability condition on triangulated categories in the year 2007. He
also presents a paper which gives full description of a connected component
of Stab(D) where D is the bounded derived category of coherent sheaves
on a K3 surface. A bit after, Arcara, Bertram, Toda and many other math-
ematicians describe the moduli spaces of Bridgeland stable objects over a
K3 surface. In 2008, Kontsevich and Soibelman introduced the concept of
support property of a stability condition in the paper Stabilty structures, mo-

tivic Donaldson-Thomas invariants and cluster transformations. Since then,
stability conditions on triangulated categories have been highly in�uential,
due to their connections to physics, mirror symmetry, representation theory,
and due to their applications in algebraic geometry, for example to the bira-
tional geometry of moduli spaces. The main theorem we are gonna prove is
stated below.

Theorem 0.1. The space of stability conditions Stab(D) on a �xed triangu-

lated category D with the support property is a �nite dimensional complex

manifold.

The main reference of this theorem is Bayer’s paper titledA short proof of

the deformation property of Bridgeland stabillity conditions. Such a result has
very nice applications. As said before, we look into the special case when D
is the bounded derived category of coherent sheaves over a smooth projec-
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tive scheme X .

Let us look at the case when X is a curve. Recall that any coherent sheaf
E has a unique Harder-Narasimhan �ltration with the descending value of
slope stability. Let K(D) � K(Coh(X)) be the Grothendieck Group ofD. We
de�ne a group homomorphism Z : K(Coh(X))→ C by the formula :

Z(E) = −deg(E) + i rank(E)

for any non-zero sheafE. By de�ning the phase ofE asφ(E) = 1/πarg(Z(E))
and extending this de�ntion to any object in D(X), we get a generalized
Harder-Narasimhan �ltration of any object in the bounded dervied cate-
gory. A stability condition has this similar notion of generalized Harder-
Narasimhan Filtration. The concept of t-structures and heart of a t-structure
are needed to de�ne the stability conditions and are use as a replacement of
the category of coherent sheaves in the example above.

The striking remark is that under the action of a group, this is the only
stability condition possible. Thus the stability manifold Stab(D) in the case
of curve is completely understood. When we move to surfaces or higher
dimension, this example does not work. The precise result we are going to
prove in the thesis is the following:

Proposition 0.1. Let Y be a smooth projective variety over C of dimension

≥ 2. There is no numerical stability condition σ ∈ Stab(Y )with heart Coh(Y ).

The theorem infers the fact that it is a di�cult task to construct the
stability condition on the bounded derived categories of smooth projective
schemes. The case of dimension 2 is already interesting and highly non-
trivial. The third main result in this thesis will be the following:

Theorem 0.2. Let X be a smooth projective surface over C. Then

Stab(Db(X)) , φ.

Now we brie�y state the contents of each chapter of the thesis.

The �rst chapter is a recall of basic de�nitions of the Chow ring, intersec-
tion theory of varieties and Chern classes. We end this chapter by computing
Chern classes of some speci�c sheaves which shall be needed in the later part
of the thesis.

The second chapter starts with a brief recall of the de�nition of the two
types of stabilities of a coherent sheaf: Geiseker and µ-stability of sheaves.
We also state the two types of �ltrations in the category of coherent sheaves:
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Harder-Narasimhan and Jordan-Holder �ltrations.

The third chapter deals with the concept of derived and triangulated cat-
egories. We list all the important properties of derived and triangulated cat-
egories. Also we give a brief summary on the construction of the derived
category by de�ning the homotopy category of complexes and the cone of
a moprhism of complexes. We then look into the special case of the derived
category of coherent sheaves and prove some important lemmas which shall
be needed later. The chapter ends with the properties of derived functors on
coherent sheaves.

The fourth chapter is about t-structures: a way to construct abelian sub-
categories of a triangulated category. By proving some basic facts about
t-structures, we show that the heart of the t-structure is an abelian sub-
category. The chapter ends with an important fact which states the precise
condition when an abelian subcategory of a triangulated category can be the
heart of a t-structure.

The �fth chapter is the beginning of the main part of the thesis. We in-
troduce the de�nition of Bridgeland stability function (also called a central
charge) on a triangulated category and the de�nition of Harder-Narasimhan
property of such a function. We then de�ne the slicing of a triangulated
category which leads to the de�nition of Bridgeland stability condition. At
last, we prove an important theorem which says that having a stability con-
dition is equivalent of having a stability function on the heart of a bounded
t-structure. This theorem turns out to be an important tool in constructing
stability conditions on curves and surfaces.

The sixth chapter deals with the examples of stability conditions. At �rst,
we deal with the example of stability conditions on a curve (the one men-
tioned in the beginning). We introduce the action of two groups on the set of
stability conditions Stab(D), namely the group of automorphisms of the tri-
angulated categoryD (denoted byAut(D)) and the universal covering space
of Gl+2 (R) (denoted by G̃l+2 (R)). We prove that in case of curves, the action

of G̃l+2 (R) on Stab(D) is free and transitive. The chapter ends with the proof
of Proposition 0.1.

The seventh chapter is about proving Therorem 0.1. At �rst, we de�ne
the support property of a stability condition and state Theorem 0.1 more
technically. Before proving the theorem, we de�ne the topology on the space
Stab(D) and introduce the concept of Harder-Narasimhan polygons which
will be an important tool needed for the proof. Assuming some facts, we
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�rst prove the theorem. The proof ends by showing that we can reduce the
theorem under those assumptions.

The eighth chapter deals with problem of constructing the stability con-
ditions on surfaces. We introduce the concept of tilting of abelian categories
which helps us to construct a new t-structure from a known t-structure. We
use this concept to construct new t- structures from the standard t-structure
on D(X). Finally, we construct a stability condition on any surface thus
proving Theorem 0.2 .
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Chapter 1
Chern Classes of Coherent Sheaves.

Chern classes of coherent sheaves are important invariants of a coherent
sheaf over a smooth non-singular projective scheme. At �rst, we recall in-
tersection theory and properties of Chow ring which shall lead to de�nition
of Chern Classes.

1.1 Intersection Theory.

De�nition 1.1. Let X be a variety over an algebraically closed �eld k. A
cycle of codimension r on X is an element of the free abelian group generated
by closed irreducible subvarieties of X of codimension r . We write a cycle as

Y =
∑

niYi

where Yi are subvarieties and ni ∈Z.

For de�ning the Chow ring, we recall the de�nition of rational equiva-
lence.

De�nition 1.2. Given V a subvariety of X , let f : Ṽ → V be the normal-
ization of V . Two cycles W1,W2 on X are said to be rational equivalent if
W1 = f∗V1 and W2 = f∗V2, where V1,V2 are linearly equivalent Weil Divi-
sors on Ṽ .

De�nition 1.3. Denote Ar(X) be the group of cycles of codimension r on
X modulo the rational equivalence. We denote A(X) = ⊕nr=0Ar(X) be the
graded group.

Remark. 1. A0(X) =Z.

2. If X is complete, we have the deg function : deg : An(X)→ Z given
by

∑
nipi →

∑
ni to be a group homomorphism.

1
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3. If f : X→ X ′ be a morphism of varieties, then we have a map

f∗ : A(X)→ A(X ′)

as follows. Let Y be a subvariety of X .

(a) If dim f (Y ) < dimY , then f∗(Y ) = 0.

(b) If dim f (Y ) = dimY , then K(Y ) is a �nite extension of K(f (Y ))
and we de�ne :

f∗(Y ) = [K(Y ) : K(f (Y ))].f (Y ).

Now we want this group A(X) to be a commutative associative graded
ring with identity. This is done by the intersection theory.

De�nition 1.4. An intersection theory on a given class of varietiesB con-
sists of a pairing Ar(X)×As(X)→ Ar+s(X) for each r, s and for each X ∈B ,
satis�ying the axioms below. If Y ∈ Ar(X),Z ∈ As(X), we denote the inter-
section cycle as Y.Z .

In the axioms mentioned below, we use the following :
If f : X ′ → X is a morphism of varieties in B . Assume X ×X ′ ∈ B . We
de�ne f ∗ : A(X ′)→ A(X) as for a subvariety y′ ∈ X ′ , we de�ne :

f ∗(y′) = p1∗(Γf .p
−1
2 (y′))

where Γf is the graph of f as a cycle in X ×X ′ and the other symbols are
de�ned in the diagram below :

X ×X ′

X X ′

p2
p1

f

The axioms are as follows:

1. The intersection pairing makes A(X) to be commutative associative
graded ring with identity for every X ∈B . It is called the Chow ring

of X .

2. If f : X → X ′ a proper morphism of varieties, then f ∗, f∗ are group
homomorphisms. Also, we have:

(f ∗ ◦ g∗) = (g ◦ f )∗ ; g∗ ◦ f∗ = (g ◦ f )∗
where g : X ′→ X ′′ is another morphism.

2
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3. If f : X→ X ′ is a proper morphism and if x ∈ A(X), y ∈ A(X ′) , then

f∗(x.f
∗y) = f∗(x).y

4. (Reduction to diagonal) If y,z are cycles on X , then if ∆ : X → X ×X
is the diagonal morphism, then :

y.z = ∆
∗(y × z)

5. If y and z are subvarieties of X which intersect properly [that means
the codimension of every irreducible component of y ∩ z is same as
codim(y) + codim(z)], then we have

y.z =
∑

i(y.z;wj )wj

where the sum runs over the irreducible components wj of y∩z. Also
the integer i(y,z;w) depends only on a neighbourhood of a generic
point of wj on X . i(y,z;w) is called the local intersection multiplicity

of y and z along wj .

6. (Normalization) If y is a subvariety of X , and z is an e�ective Cartier
divisor meeting y properly, then y.z is just the cycle associated to the
Cartier divisor y ∩ z in y.

The next theorem states that we can have intersection theory in the spe-
ci�c set of varieties we are interested.

Theorem 1.1. LetB be the class of non-singular varieties over a �xed alge-

braically closed �eld k. Then there is a unique intersection theory for cycles

modulo the rational equivalence of varieties X ∈B which saris�es the above

axioms of De�ntion 1.4.

Remark. In the above theorem, if y and z intersect properly, and if w is an
irreducible component of y ∩ z, the intersection multiplicity de�ned (due to
Serre) as :

i(y,z : w) =
∑

(−1)i lengthTorAi (A/a,A/b).
where A is the local ring Ov,X at the generic point of v of X and a,b corre-
spond to ideals of y and z in A.

1.2 Properties of the Chow ring.

For any non-singular projective variety X , we now consider the Chow Ring
A(X) and list some of its properties:

3
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1. The cycles in codimension 1 are just Weil-Divisors and rational equiv-
alence is same as the linear equivalence of divisors. Also X is non-
singular which leads us to have A1(X) � Pic(X).

2. A(Pn) � Z[h]
hn+1

, where h is in degree 1 and is the class of the hyper-
plane. It follows from the fact that any subvariety of degree d in Pn is
rationally equivalent to d times a linear space of same dimension.

3. Let E be a locally free sheaf of rank r on X , let P(E ) be the asso-
ciated projective space bundle .Let π : P(E ) → X be the projection
map. Let ζ ∈ A1(P(E )) be the divisor corresponding to the line bun-
dle OP(E )(1). Then π

∗ : A(X)→ A(P(E ))makes A(P(E )) a free A(X)

module generated by 1,ζ,ζ2, · · · ,ζn−1.

1.3 Chern classes.

De�nition 1.5. Let E be a locally free sheaf of rank r on a non-singular
quasi-projective variety X . For each i = 0,1,2, · · · , r ,we de�ne the i th Chern
class ci(E ) ∈ Ai(X) by the requirement c0(E ) = 1 and :

r∑

i=0

(−1)iπ∗ci(E ).ζr−1 = 0

in Ar(P(E )) using then notation of Property 3.

Remark. The above expression makes sense as from property 3, we get that
ζr can be written as linear combination of 1,ζ,ζ2, ...ζr−1 over π∗(A(X)) and
thus the above expression in the de�nition makes sense.

De�nition 1.6. The Chern polynomial is de�ned as

ct(E ) = c0(E) + c1(E )t + · · ·+ cr(E )tr

using the notation of De�nition 1.5.

De�nition 1.7. Write

ct(E ) =
r∏

i=1

(1 + ait)

where ai are formal symbols,
Then we de�ne the Chern character of E as :

ch(E ) =

r∑

i=1

eai

where ex = 1+ x + x2/2! + · · · .

4
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Now we list some properties of Chern class and Chern polynomials:

1. If E is a line bundle, then E � Ł(D) for a divisorD. Then we have that
P(E ) � X and OP(E )(1) � Ł(D). Thus we have then ζ =D. Hence by
de�nition, we have

c1(E).1− 1.D = 0.

which implies c1(E) =D. So we have

ct(Ł(D)) = 1+Dt.

2. If f : X ′ → X is a morphism and E is a locally free sheaf of X , then
we have

ci(f
∗
E ) = f ∗(ci(E))

where the latter f ∗ is the map f ∗ : A(X)→ A(X ′).

3. If
0→ E ′→ E → E ′′→ 0

is an exact sequence of locally free sheaves, then we have :

ct(E ) = ct(E
′).ct(E

′′)

4. (Splitting Principle) Given E a locally free sheaf of rank r on X , there
exists a morphism f : X ′→ X such that f ∗ : A(X)→ A(X ′) is injective
and E ′ = f ∗E splits i.e E ′ has �ltration :

E = E0 ⊃ E ′1 ⊃ E′2 · · · ⊃ E ′r = 0

where E ′i /E
′
i+1 are invertible sheaves for all 1 ≤ i ≤ r − 1.

5. Thus we get that if E splits and has a �ltration Ł1,Ł2, ...Łr , as quo-
tients, then we have :

ct(E ) =
r∏

i=1

ct(Łi)

6. Using the splitting principle, we can calculate the chern class of tensor
product of sheaves. Let E andF are locally free sheaves of rank r and
s respectively. Write

ct(E ) =
r∏

i=1

(1 + ait) ; ct(F ) =

s∏

j=1

(1 + bj t).

Then we have

ct(E ⊗F ) =
∏

i,j

(1 + (ai + bj )t).

5
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7. By property 3 of this section, we have then :

ch(E ) = ch(E ′) + ch(E ′′)

where 0→ E ′ → E → E ′′ → 0 is an exact sequence of locally free
sheaves.

Now we de�ne the Chern character for a general sheaf.

De�nition 1.8. Given any sheaf E on a non-singular quasi-projective vari-
ety X , we de�ne

ch(E ) =

n∑

i=0

(−1)i ch(Fi)

where Fi are de�ned as elements of the exact sequence of the �nite free
resolution of F given as :

Fn→ Fn−1→ Fn−2 · · ·F1→ F0→ E → 0

Remark. The above de�nition asserts the fact that Chern character is addi-
tive on short exact sequences. For a coherent sheaf E over a non-singular
projective variety X of dimension n, we usually write

ch(E ) = (ch0(E),ch1(E),ch2(E), · · · ,chn(E))

where chi(E) corresponds to elements in codimension i of the expression∑
eai .

1.4 Computation on Chern classes.

We compute Chern classes of sheaves in special cases which shall be needed
afterwards.

1. (Curves). Let X be a curve. Then we have two Chern characters
c ch(E) = (c0(E), c1(E)). The �rst one turns out to be rank of the sheaf
E and the second one turns out to be the degree of the sheaf E .

2. (Line Bundles) As computed in 1, we have Chern character of line bun-
dle as (1,D) = eD .

3. (Skyscraper sheaf.) Let κ(p) be the skyscaper sheaf of a rational point

p in a smooth projective scheme X of dimension n over a �eld k = k.
We have a �nite free resolution of κ(p) which is a locally a koszul
complex given as

0→O(−n)→ ·· ·O(−2)⊕(n2)→O(−1)⊕n→O→ κ(p)→ 0

6
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Thus we have by de�nition

ch(E ) =

n∑

i=0

(−1)i ch(O(−i)⊕(ni ) =
n∑

i=0

(−1)i
(
n

i

)
e−iζ = (1− e−ζ)n = ζn.

where ζ is the class of hyperplane in degree 1 . The last equality is due
to the fact ζn+1 = 0. Thus ch(κ(p)) = (0,0, · · · ,1).

7
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Chapter 2
Stability and �ltrations of sheaves.

In this chapter, we recall the two concept of stabilities of sheaves : Gieseker
and µ-stability. With the help of these concepts, we recall the concept of
two �ltrations in sheaves: Harder-Narasimhan and Jordan-Holder �ltrations.
This �ltrations reduces us to study a sheaf in terms of stable sheaves.

2.1 Geiseker and µ-stability.

LetX be a noetherian scheme. ByCoh(X)wemean the category of coherent
sheaves on X . At �rst we de�ne:

De�nition 2.1. The support of E is the closed set: Supp(E) := {x ∈ X |Ex ,
0}. Its dimension is called the dimension of sheaf E (denoted by dim(E))

De�nition 2.2. E is pure of dimension d if dim(F) = d for all non trivial
coherent subsheaves F ⊂ E

De�nition 2.3. The torsion �ltration of a coherent sheaf E is the unique
�ltration :

0 ⊂ T0(E) ⊂ · · · · · · ⊂ Td(E) = E
where d = dim(E) and Ti(E) is the maximal subsheaf of dimension ≤ i

De�nition 2.4. A coherent sheafE on an integral schemeX is called torsion-
free if for any x ∈ X and any s ∈ OX,x − {0}, the multiplication map :

.s : Ex→ Ex

is injective.

Remark. E is torsion-free if Td−1(E) = 0 ( d = dim(E)). Pure is a generaliza-
tion of being torsion free.

9
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De�nition 2.5. The saturation of a subsheaf F ⊂ E is the minimal subsheaf
F ′ containing F such that E/F ′ is pure of dimension d = dim(E) or zero.

Remark. Clearly the saturation of a sheaf F is the kernel of the map :

E→ E/F→ (E/F)/Td−1(E/F)

Nowwe do a brief recall of depth and homological dimension of amodule
M over a local ring A.

De�nition 2.6. A set {a1, a2, · · · , al} ∈m is anM-regular sequence if ai is not
a zero divisor inM/(a1, a2, ....ai−1)M for all i .

De�nition 2.7. The maximal length of a M-regular sequence is called the
depth ofM Its denoted by depth(M).

De�nition 2.8. The maximal length of the projective resolution of M is
called the homological dimension, denoted by dh(M)

Theorem 2.1. (Auslander-Buchsbaum Formula) IfA is a regular ring we have

:

dh(M) + depth(M) = dimA

Now we go back to the coherent sheaf setting and we de�ne:

De�nition 2.9. For a coherent sheafE on a noetheriam schemeX , we de�ne
dh(E) := max{dh(Ex)|x ∈ X}.

Remark. For a general sheaf dh(E) is in�nite. By the Auslander-Buchsbaum
Formula, as we are on �nitely many a�ne opens ( Noetherian Scheme), we
have that if the scheme is regular then dh(E) ≤ dim(X). If it is torsion free
then it is bounded by dim(X)− 1

Next we de�ne the version of regularity in terms of sections of cohomol-
ogy.

De�nition 2.10. Let X be a Noetherian Scheme. Let E be a coherent sheaf
on X . Let L be a line bundle on X . A section s ∈H0(X,L) is called E-regular

i� E ⊗ Lv .s−→ E is injective. A sequence s1, ..sl is called E- regular if si is
regular in E/(s1, s2, · · ·si−1)(E ⊗Lv)∀i = 1, · · · l

Consider X to be a projective scheme over a �eld k. We have χ(E) =∑
(−1)ihi(X,E) where hi = dim(H i). We �x an ample line bundle O(1) on

X .
The Hilbert Polynomial P(E) is given by

m→ χ(E ⊗O(m))

10
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Lemma 2.1. Let E be a coherent sheaf of dimension d and let H1,H2, ..Hd ∈
|O(1)| be an E- regular sequence, then :

P(E,m) := χ(E ⊗O(m)) :=

d∑

i=0

χ(E|∩j≤iHj )
(
m+ i − 1

i

)

Remark. The proof is done by induction on the dimension of the scheme.

From here we notice that :

P(E,m) :=
∑

αi(E)
mi

i!

For a sheaf of dimension d , we have αd(E) is positive and is called the mul-

tiplicity of E.

De�nition 2.11. If E is a coherent sheaf of dimension d = dim(X), we de-
�ne :

rk(E) :=
αd(E)

αd(OX )
is called the rank of E.

Remark. On a integral scheme X of dimension d and for any d dimensional
coherent sheaf E, there exists an open subset ⊂ X such that E|U is locally
free. The rank of E is the rank of the vector bundle E|U .

De�nition 2.12. The reduced Hilbert Polynomial of a coherent sheaf E is

p(E,m) :=
P(E,m)

(αd(E))

Note: Now we de�ne how to compare two polynomials. We say f ≤ g if
f (m) ≤ g(m)∀m >> 0. Analogously, we say f < g if f (m) < g(m)∀m >> 0.

De�nition 2.13. A coherent sheaf E of dimension d is semistable if E is pure
and for any proper subsheaf F ⊂ E, we have p(F) < p(E) . E is called stable

if the inequality is strict.

We will use () for writing the semi case optional.

Theorem 2.2. Let E be a coherent sheaf of dimension d and E is pure. TFAE:

1. E is (semi)stable.

2. ∀ proper saturated sheaves F ⊂ E ,we have p(F)(≤)p(E).

3. ∀ proper quotient sheavesE→ G withαd(G) ≥ 0 , one has p(F)(≤)p(G).

11
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4. ∀ proper purely d dimensional quotient sheaves E→ G one has p(F)(≤
)p(G).

Sketch of the proof. 1 =⇒ 2 and 3 =⇒ 4 are obvious by de�nition.
Now we consider an exact sequence of sheaves :

0→ F→ E→ G→ 0.

(G � E/F)
The properties needed are as follows:

αd(E) = αd(F) +αd(G),P(E) = P(F) +P(G).

Thus we have :

αd(E)p(E) = αd(G)p(G) +αd(F)p(F)

=⇒ (αd(F) +αd(G))p(E) = αd(G)p(g) +αd(F)p(F)

=⇒ αd(F)(p(F)− p(E)) = αd(G)(p(E)− p(G))

So now if 1 is assumed, then if αd(G) ≥ 0 then αd(E)(≤)αd(G). This proves
1 =⇒ 3.
Now if F is saturated then G is pure and hence the vice versa too. Thus
2⇔ 4
Now we prove 2 =⇒ 1.
Let F ⊂ E. F ′ be its saturation of F . We use thatαd(F) = αd(F

′)We substitute
this in the equation and use p(F)(≤)p(F ′). We get that p(F)(≤)p(E).

Theorem 2.3. Let F andG be semistable pure d dimensional coherent sheaves.

Then :

1. If p(F) > p(G), then Hom(F,G) = 0.

2. If p(F) = p(G) and let f : F → G be a non-trivial morphism , then it is

injective if F is stable, it is surjective if G is stable.

3. If p(F) = p(G) and αd(F) = αd(G) , then f : F→ G is an isomorphism

provided F or G is stable.

The main corollary that follows from it is :

Corollary 2.1. If k is algebraically closed and E is a stable sheaf , then k �
End(E).

Now we de�ne degree and slope of a coherent sheaf E.

12
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De�nition 2.14. Let E be a coherent sheaf on dimension d = dim(X). Then
deg(E) is de�ned by

deg(E) := αd−1(E)− rk(E)αd−1(OX ).

Remark. It can be shown byHirzebruch-Riemann-Roch formula thatdeg(E) =
c1(E).H

d−1 where H is an ample divisor.

De�nition 2.15. A coherent sheaf E of dimX is µ-(semi)stable if Td−2(E) =
Td−1(E) and µ(F)(≤)µ(E) ∀F ⊂ E with 0 < rk(F) < rk(E).

Remark. The condition of the torsion �ltration states that any torsion sub-
sheaf of E has codimension at least 2.

Now we state the main theorem which shall be needed in later part of
the thesis.

Theorem 2.4. If E is a pure coherent sheaf of dimX = d , then :

E is µ− stable =⇒ E is stable =⇒ E is semistable =⇒ E is µ− semistable.

2.2 Harder-Narasimhan and Jordan-Holder Fil-

trations.

This section mainly concerns the idea of studying a pure sheaf as building
blocks of semistable sheaves and further to stable sheaves. This idea gets
generalized to abelian categories which shall be discussed later.

De�nition 2.16. Let E be a non-trivial pure sheaf of dimension d over a
projective scheme X with a �xed ample line bundle. A Harder-Narasimhan

�ltration is an increasing �ltration :

0 = HN0(E) ⊂HN1(E) ⊂HN2(E) ⊂ · · · · · · ⊂HNl(E) = E

such that grHNi :=HNi(E)/HNi−1(E)for all i = 1, · · · , l are semistable sheaves
of dimension d with reduced Hilbert Polynomials pi such that

pmax(E) := p1 > p2...pl = pmin(E)

Lemma 2.2. If F,G are pure sheaves of dimension d with pmax(F) > pmin(G)
then Hom(F,G) = 0

The main thoerem regarding this �ltration is the following:

Theorem 2.5. Every pure sheaf E has a unique Harder-Narasimhan Filtration

13
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Remark. The proof of this in the general setting of stability functions on an
abelian category is proved later.

De�nition 2.17. Let E be a semistable sheaf of dimension d . A Jordan-

Holder �ltration of E is a �ltration

0 = E0 ⊂ E1 ⊂ E2 ⊂ E3 · · · ⊂ El = E

such that gri(E) := Ei /Ei−1 are stable with same Hilbert Polynomial p(E).

Unlike the Harder-Narasimhan Filtration, this is not unique �ltration but
its is unique in a weaker context.

Theorem 2.6. The Jordan-Holder Filtration of a semistable sheaf always ex-

ists. Its is not unique. But

gr(E) :=
⊕

i

gri(E)

for a semistable sheaf E is unique upto isomorphism.

We hereby end the discussion by stating the de�nition of S equivalence.

De�nition 2.18. Two semistable sheavesE1 andE2 are said to be S−equivalent
if gr(E1) � gr(E2).

Thus these two �ltrations reduces us to the concept of studying only
stable sheaves. As stated before, we shall generalize this for the context of
stability functions.

14



Chapter 3
Derived and Triangulated
Categories.

This chapter is devoted to the notion of two special type of categories: trian-
gulated and derived cateogries. At �rst we list the properties of triangulated
categories. We then introduce the category of complexes and introduce the
de�nition of derived category. We show that the derived category of com-
plexes is actually a triangullated category. The chapter ends dealing with the
properties of dervied category over coherent sheaves and derived functors
on this category.

3.1 Triangulated categories and exact functors.

De�nition 3.1. Let D be an additive category. The structure of a trinagu-
lated category on D is given by an additive equivalence :

T :D→D

the shift functor, and a set of distinguished triangles :

A→ B→ C→ T (A)

subject to the axioms TR1-TR4 below. In the axioms, we use the notation
A[1] = T (A) and A[n] = T n(A) for any object A ∈ D. The axioms are as
follows :

TR1 (a) Any triangle of the form :

A
id−−→ A→ 0→ A[1]

is distinguished.

15
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(b) Any triangle isomorphic to a distinguished triangle is distinguished.

(c) Any morphism f : A → B can be completed to a distinguished
triangle :

A
f−→ B→ C→ A[1]

TR2 The triangle :

A
f−→ B

g−→ C
h−→ A[1]

is distinguished triangle i�

B
g−→ C

h−→ A[1]
−f [1]−−−−−→ B[1]

is also a distinguished triangle.

TR3 Suppose there exists a commutative diagram of distinguished triangles
with vertical arrows f and g :

A B C A[1]

A′ B′ C ′ A′[1].

f g h f [1]

Then the diagram can be completed to a commutative diagram by the
existence of a morphism h : C→ C ′

TR4 If we have three distinguished triangles :

X→ Y → Z ′→ X[1];Y → Z→ X ′→ Y [1];Z→ X→ Y ′→ Z ′[1]

then there exists a distinguished triangle ;

Z ′→ Y ′→ X ′→ Z ′[1]

This is called the octahedral axiom.

We list properties of distinguished triangles in a triangulated category
D.

Proposition 3.1. Let

A
f−→ B

g−→ C
h−→ A[1]

be a distinguished triangle. We have the following:

16
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1. g ◦ f = 0.

2. If A0 ∈ D, then the following induced sequences are exact:

Hom(A0,A)→Hom(A0,B)→Hom(A0,C)

and

Hom(C,A0)→Hom(B,A0)→Hom(A,A0).

3. A→ B is an isomorphism i� C � 0.

4. If h is the zero map, then B � A⊕C .

5. If we have a morphism of distinguished triangles,

A B C A[1]

A′ B′ C ′ A′[1].

f g h f [1]

then if two of three morphisms f ,g,h are isomorphisms, the third one is

also an isomorphism.

We introduce the concept of exact functors.

De�nition 3.2. An additive functor :

F :D→D′

between triangulated cateogries D and D′ is called exact if the following
conditions are satis�ed.

1. There is a functor isomorphism :

F ◦ [1] �−→ [1] ◦F

2. Any distinguished triangle

A→ B→ C→ A[1]

in D is mapped to a distinguished triangle :

F(A)→ F(B)→ F(C)→ F(A[1])

inD′ where F(A[1]) is identi�ed with F(A)[1] via the functor isomor-
phism in (i).

17
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We state the important proposition regarding exact functors which shall
be needed in the section of t-structures.

Proposition 3.2. Let F : D → D′ be an exact functor between triangulated

categories. Let H,G :D′→D be two additive functors.

If F aH , then H is exact.

If G a F , then G is exact.

The next section is about derived categories which shall lead to the de-
rived category of coherent sheaves. It turns out that the derived category of
coherent sheaves is also a triangulated category.

3.2 Derived Categories.

We start this section by de�nition of category of complexes over an abelian

category A. Recall that a category is abelian if:

• it has a zero object,

• it has all binary biproducts,

• it has all kernels and cokernels,

v• and all monomorphisms and epimorphisms are kernels and cokernels
of some morphisms respectively.

De�nition 3.3. The category of complexes Kom(A) of an abelian category
A is the category whose objects are complexes A• in A and morphisms are
morphisms of complexes.

Remark. For anyA ∈ A, the complexA• withA0 = A andAi = 0 for all i , 0
identi�es A as a full subcategory of Kom(A).

Regarding Kom(A), we have following important property.

Proposition 3.3. The category of complexes Kom(A) of an abelian category

A is abelian.

We introduce the two important features of Kom(A): the shift and the
cohomology functor.

De�nition 3.4. Let A• ∈ Kom(A) with di�erential maps d iA . Then A•[1] is
the complex de�ned by (A•[1])i = Ai+1 and d iA[1] = −d iA.
The shift f [1] of a morphism of complexes f : A → B is the map f [1] :
A[1]→ B[1] de�ned by f [1]i = f i . where f i : Ai → Bi .

An important corollary related to the shift functor is the following.

18
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Corollary 3.1. The shift functor T : Kom(A)→ Kom(A) given byA→ A[1]
de�nes an equivalence of abelian categories.

Recall the cohomology functor H i(A•) of a complex A• = (Ai ,d iA) is the
quotient :

H i(A•) =
ker(d iA)

im(d i−1A )
∈ A

Remark. Proposition 3.3 allows us to speak exact sequences in Kom(A). By
cohomology functors, we have if :

0→ A•→ B•→ C•→ 0

is an exact sequence inKom(A). Thenwe have the corresponding long exact
sequence :

· · · →H i(A•)→H i(B•)→H i(C•)→H i+1(A•)→ ·· ·

We de�ne the notion of quasi-isomorphism.

De�nition 3.5. Amorphism of complexes f : A•→ B• is a quasi-isomorphism
if ∀i ∈Z, H i(f ) :H i(A•)→H i(B•) is an isomorphism.

Now we want to de�ne the derived category. The main idea is to have
quasi-isomorphism complexes as isomorphic objects in the derived category.
We have the following existence theorem:

Theorem 3.1. Let A be an abelian category. Let Kom(A) be the category of

complexes. Then there exists a category D(A), the derived category ofA and a

functor Q : Kom(A)→D(A) such that :

1. If f : A•→ B• is a quasi-isomorphism , then Q(f ) is an isomorphism in

D(A).

2. Any funcctor F : Kom(A)→D satisfying property 1 factorizes uniquely
overQ. i.e there exists a unique functor G :D(A)→D which makes the

diagram below commutative.

Kom(A) D

D(A)

Q

F

!G
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Remark. For construction ofD(A), wewant ifC•→ A• is a quasi-isomorphism
in Kom(A), then it has to be an isomorphism in D(A).This means that mor-
phisms C• → B• is same as morphisms A• → B•. This is the reason that a
morphism between A•→ B• in D(A) is given as diagram of the form :

C•

A• B•
qis

To makes sense of such morphisms, we need to de�ne the homotopy cate-
gory K(A).
De�nition 3.6. Two morphisms of complexes f ,g : A• → B• are said to
be homotopically equivalent f ∼ g , if there exists a collection of homomor-
phisms hi : Ai → Bi−1 ∀ i ∈ Z such that :

f i − g i = hi+1 ◦ d iA + d i−1B ◦ hi

The homotopy category of complexesK(A) has objects ob(K(A)) = ob(Kom(A))
and morphisms Homk(A)(A•,B•) = HomKom(A)(A•,B•)/ ∼.
Remark. We now can de�ne when two morphisms of A•→ B• are equiva-
lent. Suppose there are twomorphismsA andB given by the diagrams below:

C•1

A• B•
qis

C•2

A• B•
qis

Then they are said to be equivalent if there are dominated by a diagram of
same form in K(A). i.e there exists a diagram

C•

C•1 C•2

A• B•

qis

qis qis

which is commutative in K(A).
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That means we have C•→ C•1 → A and C•→ C•2 → A are homotopically
equivalent. Now the remaining problem is the composition. Given two mor-
phisms A•→ B• and B•→ C• given by the diagrams:

C•1

A• B•
qis and

C•2

B• C•
qis

We want the composition to be a diagram of the form

C•

C•1 C•2

A• B• B•

qis

qis qis

which is commutative in K(A).
The problem lies in existence of such a object C• and the commutativity of
the diagram in K(A). This is resolved by de�ne the cone of a morphism.

De�nition 3.7. Let f : A•→ B• be a complex morphism. Its mapping cone
is the complex C(f ) with :

C(f ) = Ai+1 ⊕Bi and d iC(f ) :=

[
−d i+1A 0

f i+1 d iB

]

We list the properties of the cone of the morphism:

Proposition 3.4. 1. Given f : A•→ B• a morphism of complexes. There

exists natural maps τ : B→ C(f ) and π : C(f )→ A•[1] which makes

the following sequence exact in Kom(A).

B•
τ−→ C(f )

π−→ A•[1].

2. The composition A• → B• → C(f ) is homotopically equivalent to the

trivial map. Thus we have the sequence

A•→ B•→ C(f )

exact in K(A).
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3. The commutative diagram given below can be completed as follows

A•1 B•1 C(f1) A•1[1]

A•2 B•2 C(f2) A•2[1]

f1

f2

4. Let f : A•→ B• be amorphism of complexes and letC(f ) be its mapping

cone which comes with natural morphism τ : B• → C(f ),π : C(f )→
A•[1]. Then we have a complex morphism g : A•[1]→ C(τ) which is

an isomorphism in K(A). This also makes the following diagram com-

mutative in K(A):

B• C(f ) A•[1] B•[1]

B• C(f ) C(τ) B•[1].

τ

= =

π −f

g

τ ττ πτ

Remark. The part of the proposition above helps us to prove thewell-de�nedness
of composition of morphisms in K(A). Thus we have constructed the De-
rived Category ofA.

Proposition 3.5. D(A) is an additive category.

D(A) is not essentially an abelian category unlike Kom(A). Notice that
parts 1,2,3 of the proposition 3.4 reminds of the axioms of the triangulated
category. In fact, we have the following proposition.

Proposition 3.6. Distinguished triangles given as in de�nition 3.1 and the

natural shift functor of complexes A• → A•[1] make the homotopy category

of complexes K(A) and the derived category D(A) of an abelian category into

a triangulated category.

Morever the natrual functor QA : K(A)→D(A) is an exact functor of trian-

gulated categories.

By de�nition, complexes in categoriesK(A),D(A) are unbounded, but
often it is more convenient to work with bounded ones.

De�nition 3.8. Let Kom∗(A)with ∗ =,+,−, b, be the category of complexes
A• with Ai = 0 for i << 0, i >> 0, repsectively |i | >> 0.

By dividing by homotopy equivalence and quasi isomorphism, one ob-
tains the categories K ∗(A) and D∗(A) with ∗ = +,−, b. Consider the natural
functors D∗(A)→D(A) by just forgetting the boundedness condition.
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Proposition 3.7. The natural functors D∗(A) → D(A) , where ∗ = +,− or

b, de�ne equivalence of D∗(A) with full triangulated subcategories of all com-

plexes A∗ ∈ D(A) with H i(A•) = 0 for i << 0, i >> 0, respectively |i | >> 0.

We noew focus on the main example that shall be dealt for the main part
of the thesis.

3.3 Derived Category of Coherent Sheaves.

Let X be a scheme. The category of coherent sheaves Coh(X) is an abelian
category. By Proposition 3.7, we get that Db(Coh(X)), the bounded derived
category of coherent sheaves on X is a triangulated category. We shall use
the notation :

Db(X) :=Db(Coh(X)).
The main functor we needed in this section is the cohomology functor. For
this we consider the category of quasi-coherent sheaves on a noetherian
scheme X over a �eld k, denoted by Qcoh(X). The category Qcoh(X) has
enough injectives. We considet the right derived functor of the global sec-
tion functor Γ(which is a left exact functor from Qcoh(X) to Vec(k)). It is
the map RΓ :D+(Qcoh(X))→D+(Vec(k)).
We de�ne H i(X,F •) = Ri(Γ(F •)). It can be seen that we actually get a
functor from Db(QCoh(X))→Db(Vec(k)).
For de�ning the cohomology of complex of coherent sheaves, we consider
the composition Db(X)→Db(QCoh(X))→Db(Vec(k)).
We start with this important proposition regarding the computation of Ext
of two objects in an abelian category having enough injectives.

Proposition 3.8. Let A be an abelian category having enough injectives. Let

D :=Db(A) be the bounded dervied category. Let A,B ∈ A considered as com-

plexes in degree 0. Then :

Exti(A,B) �Hom(A,B[i])

Let us consider the special case when X is a smooth projective curve C .
It turns out to be an interesting property that any object of Db(C) can be
studied in terms of its cohomologies.

Proposition 3.9. Let C be a smooth projective curve. Then any object in

Db(C) is isomorphic to a direct sum ⊕Ei[i] where Ei are coherent sheaves on
C .

Sketch of the proof. The proof is done by induction over the length of the
complex. Let E • be a complex of length k whose H i(E •) = 0 ∀i < i0. We
can �nd a distinguished triangle of the form :

H i0(E •)[−i0]→ E •→ E •1 →H i0(E •)[1− i0]
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with E •1 a complex of length k − 1 with H i(E •) = 0∀i ≤ i0. If this dis-
tinguished triangle splits, then we have E • = E •1 ⊕ H i0(E •)[−i0]. So we
are done. Now by property 4 of propostion 3.1, we just need to show that
Hom(E •1 ,H

i0(E •)[1− i0]) = 0. By induction, we have

E
•
1 � ⊕− i > i0H i(E •1 )[−i]

. Thus we have :

Hom(E •1 ,H
i0(E •)[1− i0]) = ⊕Ext1+i−i0(H i(E •1 ),H

i0(E •)) = 0

The last line uses that fact over a curve, the homological dimension is one
and also Proposition 3.8. So it is proved.

We end the section by proving a main property of exact sequence in
Db(C).

Lemma 3.1. Given a coherent sheaf E on C and a distingushed triangle A→
E→ B where A,B ∈Db(C) .If Ext≤0(A,B) = 0 =⇒ A,B ∈ Coh(C).

Proof. The main important fact that is that we are working over a curve. If
C is a curve , then we have :

A = ⊕Ai[−i];B := ⊕Bi[−i]

where Ai ,Bi ∈ Coh(C). This is by Proposition 3.9. Now taking cohomology
of the distinguished triangle we have the exact sequence :

0→ B−1→ A0→ E→ B0→ A1→ 0

and Ai � Bi−1( for i , 0,1)
Thus by the condition of Hom, if Ai , 0 we have

0 ,Hom(Ai[−i],Bi−1[−i])
� Ext−1(Ai[−i],Bi−1[−i +1])(by Lemma 3.8)

which is a contradiction.
Thus we have A := A0 ⊕ A1[−1],B := B−1[1] ⊕ B0. Note that uptil this C
being of positive genus is not used.
Now we need to prove that A1 � B−1 � 0
To show A1 � 0 we show that the map B0 → A1 is zero. As we are on
positive genus case, the canoncial bundle ωC := ω0

C which is the dualizing
sheaf has non trivial sections. Let f : B0→ A1 be the non-zero map. Then
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we have a non-zero map B0→ A1 ⊗ωC . Thus it follows that:

0 ,Hom(B0,A1 ⊗ω0
C)

� Ext1(A1,B0)

⊂ Ext1(A[1],B)

� Ext1(A,B[−1])
� Ext0(A,B).(by Lemma 3.8)

This it is a contradiction. Similarly, it is shown for B−1. So we have A,B ∈
Coh(X).

3.4 Derived Functors in Algebraic Geometry.

This section lists all the important properties of derived functors needed for
the technical aspects in the thesis. We have already dealt with the cohomol-
ogy functors. Let us look at other functors.

Direct Image: Let f : X → Y be a morphism of noetherian schemes.
The direct image functor : f∗ : QCoh(X)→QCoh(X) is a left exact functor.
Thus we have the corresponding right derived functor

Rf* :D+(QCoh(X))→D+(QCoh(Y )).

For a complex F • ∈ D+(QCoh(X)), we de�ne the higher direct images
Rif*(F

•) =H i(Rf*(F
•)).

Our main concern is to consider the functors on Db(X). We need more con-
dition on the morphism f . If f : X → Y is a projective(proper) map of
noetherian schemes, then the higher direct images are coherent. Thus we
get the induced functor

Rf∗ :Db(X)→Db(Y ).

Local Hom: LetF be a quasi-coherent sheaf on a noetherian schemeX .
The usual Hom functor Hom(F , ) : QCoh(X)→ QCoh(X) is a left exact
functor. We thus have the right derived functor RHom : D+(QCoh(X))→
D+(QCoh(X)). We de�ne E xti(F ,E ) = RiH om(F ,E ).
For coherent sheaves, we needX to be regular. If we are on a regular scheme
X , then we have the functor

RHom :Db(X)→Db(X).

25



Master Thesis. Derived and Triangulated Categories.

Tensor Product: Let F be a coherent sheaf on a smooth projective
scheme X . The functor F ⊗ ( ) : Coh(X)→ Coh(X) is a right exact functor.
As X is projective and smooth, the class of locally free sheaves is adapted
to the right exactness and hence we get a left functor F ⊗L ( ) : D−(X)→
D−(X). We de�ne Tori(F ,E ) =H−i(F ⊗L E ).
Also we get that any coherent sheaf E has a �nite length resolution of locally
free sheaves of length n. So Tori(F ,E ) = 0 ∀ i > n. Thus we get the functor
:

F ⊗L ( ) :Db(X)→Db(X)
Also it can be seen that for any complex F • ∈ Db(X), then we have the
derived functor

( )⊗L ( ) :Db(X)→Db(X)
which is induced from the functor

F
• × ( ) : K−(Coh(X))→ K−(Coh(X))

sending any complex E • to the total complex F • ⊗ E •. We also have the
generalized Tor as

Tori(F
•,E •) :=H−i(F • ⊗L E•).

Inverse Image: Let f : (X,OX ) → (Y,OY ) be a morphism of ringed
spaces. Then we have the functor f ∗ : ShOY (Y )→ ShOX (X) which is right
exact. We get the left derived functor

Lf ∗ :D−1(Y )→D−1(X)

If f is �at, we have Lf ∗ to be an exact functor.

Compatibilities. We list all the important properties which indicates
the compatibility of these functors wtih each other.

1. Let f : X → Y be a proper morphism of projective scheme over a
�eld k. Let F • ∈ Db(X),E • ∈ Db(Y ). Then there exists a natural
isomorphism (projection formula):

Rf∗(F
•)⊗L E • � Rf∗(F • ⊗L Lf∗(E •)).

2. Let f : X→ Y be a morphism of projective schemes and let F •,E • ∈
Db(Y ). Then there exists a natural isomorphism :

Lf ∗(F •)⊗L Lf ∗(E •) � Lf ∗(F • ⊗L E •).
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3. Let f : X → Y be a projective morphism. Then Lf ∗ and Rf∗ are ad-
joint to each other. In other words, it means we have the functorial
isomorphism

Hom(Lf ∗F •,E •) �Hom(F •,Rf∗E
•).

4. Lrt X be a smooth projective scheme over a �eld k. Let F •,E •,G • ∈
Db(X), then we have the following isomorphisms

RHom(F •,E • ⊗L G •) � RHom(F •,E • ⊗L G •).
RHom(F •,RHom(E •,G •)) � RHom(F • ⊗L E •,G •).
RHom(F •,E • ⊗L G •) � RHom(RHom(E •,F •),G •).

5. LetX be a smooth projective scheme over a �eld k.LetF • ∈ D−(X),E • ∈
Db(X). Then we have

Hp(X,E xt(F •,E •)) � Extp+q(F •,E •).

6. Let f : X → Y be a morphism of projective schemes. Let F • ∈
D−(Y ),E • ∈ Db(Y ). Then there exists a natural isomorphism

Lf ∗RHomY (F
•,E •) � RHomX(Lf

∗
F
•,Lf ∗E •).

7. Consider a �ber product diagram given

X ×Z Y Y

X Z

v

g f

u

with u : X → Z and f : Y → Z proper. Then we have the functorial
isomorphism :

u∗Rf∗F
•
� Rg∗v

∗
F
•

for any F ∈ Db(QCoh(Y )).

27



Master Thesis. Derived and Triangulated Categories.

28



Chapter 4
t-structures.

Aswe have seen in the previous chapter, for any projective schemeX ,Coh(X)
is an abelian subcategory of the bounded derived category. Now the ques-
tion arises, is it possible to get other abelian subcategories of Db(X)? This
question is answered in this section with the concept of t-strucutres.

De�nition 4.1. Let D be a triangulated category. Two full subcategories
(D≤0,D≥0) are called a t- structure on D if the following conditions are sat-
is�ed.

1. D≤−1 ⊂ D≤0 and D≥1 ⊂ D≥0 .

2. HomD(X,Y ) = 0 for all X ∈ D≤0,Y ∈ D≥1.

3. For any object X in D, there exists a distinguished triangle

X0→ X→ X1→ X0[1]

where X0 ∈ D≤0,X1 ∈ D≥1.

Remark. We will use the notation D≤n :=D≤0[−n] and D≥n :=D≥0[−n].

De�nition 4.2. The heart of a t-structure (D≤0,D≥0) is the full subcategory
A :=D≥0 ∩D≤0.

Example 4.1. The most common example is the standard t-structure on
the derived category of an abelian category A. On D = D(A) we de�ne
D≤0 := {E ∈ D|H i(E) = 0,∀i > 0}, D≥0 := {E ∈ D|H i(E) = 0,∀i < 0}. It can
be checked that this is a t structure.

The following proposition helps us to de�ne functors similar to the co-
homological functor on Db(X).
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Proposition 4.1. 1. The inclusion D≤n → D and D≥n → D admit right

adjoint functors τ≤n : D → D≤n and left adjoint functors τ≥n : D≥n→
D respectively .

2. There exists a unique morphism d : τ≥n+1(X)→ τ≤n(X)[1] and a dis-

tinguished triangle :

τ≤n(X)→ X→ τ≥n+1(X)→ τ≤n(X)[1]

Morever d de�nes a natural transformation.

Proof. We do the case for n = 0. For any n, we de�ne :

τ≤n(X) := τ≤0(X)[−n],τ≥n(X) := τ1(X)[−n+1].

Now given any object X ∈ D, by the de�nition of t structure we have

X0→ X→ X1→ X0[1],

a distinguished triangle such that X0 ∈ D≤0,X1 ∈ D≥1. De�ne :

τ≤0(X) := X0 and τ
≥1(X) := X1

Given f : X → Y a morphism in D, we need to de�ne f0 : X0 → Y0 where
Y0→ Y → Y1→ Y0[1] is the distinguished triangle for Y .
Apply Hom(X0,−) on the triangle above we have the exact sequence

Hom(X0,Y0)→Hom(X0,Y )→Hom(X0,Y1).

NowX0 ∈ D≤0,Y1 ∈ D≥1 =⇒ Hom(X0,Y1) = 0. Thuswe haveHom(X0,Y0)
� Hom(X0,Y ). So we have a map f0 : X0 → Y0 corresponding to the map
X0→ X→ Y . Thus we get the map f0 and it is evident that τ

≤0 is a functor.
Similarlywe get that τ≥1 is also a functor (by applying theHom(−,Y1)). Also
this conclusion shows that these functors are left and right adjoint functors.
This proves 1.
For 2, we know d exists. It is unique because of the following lemma:

Lemma4.1. LetD be a triangulated category and assumewe are given two dis-

tinguished triangles X
f−→ Y

g−→ Z
hi−−→ X[1] for i = 1,2. If HomD(X[1],Z) =

0, then h1 = h2.

Applying this lemma to the two morphisms d1,d2 : τ
>1(X)→ τ≤0(X)[1]

and note that there can’t exist morphisms on the reverse as there are no
morphisms from D≤0 → D≥1. So it is unique. The fact that it is a natural
transformation follow from the properties of triangulated categories.
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Corollary 4.1. X ∈ D≤n⇔ τ≥n+1(X) = 0 and X ∈ D≥n⇔ τ≤n−1(X) = 0.

Proof. Follows from the exact sequence given above in the proposition.

Proposition 4.2. Let X ′ → X → X ′′ → X ′[1] be a distinguished triangle in

D. If X ′ and X ′′ are in D≤0( resp D≥0), then so is X .

Proof. Suppose X ′,X ′′ ∈ D≤0. ApplyHom(τ≤−1(X),−) to the triangle. Note
that Hom(τ≤−1(X),X ′) = Hom(τ≤−1(X),τ≤−1(X ′)) = 0 as τ≤−1(X ′) = 0.
Similarly, we have Hom(τ≤−1(X),X ′′) = 0. Thus by applying Hom on the
triangle, we have that Hom(τ≤−1(X),X) = 0 =⇒ Hom(τ≤−1(X),τ≤−1(X))
= 0 =⇒ τ≤−1(X) = 0 =⇒ X ∈ D≤0. Similarly, we prove it for D≥0.

Proposition 4.3. The heart of the t structure A is an abelian category.

Proof. (Sketch of the proof)
At �rst, by the previous proposition we see that if 0→ X ′ → X → X ′′ → 0
is a distinguished triangle, then if X ′,X ′′ ∈ A =⇒ X ∈ A .
Direct products of elements of A exists in A. Let X,Y ∈ A. Consider the
triangles X → X → 0 → 0 and 0 → Y → Y → 0. We know the direct
product of these triangles exists in D and as X,Y ∈ A =⇒ X ⊕ Y ∈ A by
the previous remark.
Now we need to show every morphism inA has a kernel and cokernel inA.
Let f : X→ Y be a morphism in A. Complete the morphism to a triangle

X
f−→ Y → Z→ X[1].

First, we see that Z ∈ D≤0∩D≥−1. This is seen by using the previous propo-
sition on the two rotated triangles:

Y → Z→ X[1]→ Y [1]

and
Y [−1]→ Z[−1]→ X→ Y

And noticing that Y,X[1] ∈ D≤0;Y [−1],X ∈ D≥0.
Then we claim that

τ≥0(Z) = coker f ;τ≤0(Z[−1]) = ker f

The proof of it being kernel and cokernel are done by exact triangles and by
applyingHom functor on these triangles showing these satisfy the universal
property of cokernel and kernel. Note that τ≥0(Z) ∈ A. This is because by
de�nition it is in D≥0. Now we consider the rotated triangle :

Z→ τ≥0(Z)→ τ≤−1(Z)[1]
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and notice that τ≤−1(Z)[1] ∈ D≤0. Thus it is in A. Similarly for the other
one.
The last thing that remains to be proved is coim f � im f . This is done by
chasing triangles and the octahedral axiom.

Lemma 4.2. For any object X ∈ D . We have : τ≥0τ≤0(X) ∈ A

Proof. Already by de�nition it is inD≥0. Consider the distinguished triangle

τ≤−1(τ≤0(X))→ τ≤0(X)→ τ≥0(τ≤0X)→ τ≤−1(τ≤0(X))[1].

Now we see that τ≤−1(τ≤0X)[1] ∈ D≤−1[1]. This means D≤−2 ⊂ D≤0 and
τ≤0(X) ∈ D≤0 which means τ≥0(τ≤0X) ∈ D≤0. So it is in A.
Remark. More generally we have for any m,n : τ≥mτ≤n � τ≤nτ≥m ∈ D≤n ∩
D≥m .

De�nition 4.3. A t-structure (D≤0,D≥0) of D is bounded if there exists n ∈
N such that E ∈ D≤n ∩D≥−n for all E ∈ D.

De�nition 4.4. Given any t structure, we de�ne the cohomology functor :

H0 :D→A

by :
E→ τ≥0τ≤0(E)

Also we de�ne Hn(X) :=H0(X[n]). (Note Hk := (τ≥kτ≤k)[k])).

Remark. In a bounded t structure by the lemmas and by the de�nition, one
notes that only �nitely many cohomology functors are non-zero especially
Hk(E) = 0 ∀−n ≤ k ≤ n.This is because as E ∈ D≤n∩D≥−n =⇒ τ≥n+1(E) =
0 and τ≤−n−1(E) = 0 by the corollary 7.1.

Lemma 4.3. Let A ⊂ D be a full additive subcategory of a triangulated cate-

gory D. Then A is the heart of a bounded t-structure i�

1. ∀k1 > k2,HomD(A[k1],B[k2]) = 0

2. For every non-zero objectE ∈ D,∃k1 > k2... > kn integers and a collection
of triangles:

0 = E1 E2 · · · En−1 En = E

A1 · · · An

where Ai ∈ A[ki] for all 1 ≤ i ≤ n.
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Proof. =⇒ part

Given the t structure (D≤0,D≥0) with its heart A.
Then :
HomD(A[k1],B[k2]) := HomD(A,B[k2 − k1]). Now A ∈ A ⊂ D≤0,B[k2 −
k1] ∈ D≥0[k2−k1]D≥k1−k2 ⊆ D≥1. Thus by the property of t structure,this is
0.
The main task is to construct the sequence of objects for 2. Let E ∈ D.As it
is a bounded t structure we have only �nitely many cohomology functors
to be non zero. We list k1 < k2 < ..kn from minimum to maximum such that
τ≥kiτ≤ki (E) , 0∀i = 1, ..n . For each i we have the distingushied triangle:

τ≤ki−1(E)→ τ≤ki (E)→ τ≥kiτ≤ki (E)→ τ≤ki−1(E)[1]

Note that τ≥kiτ≤ ki(E) := Hki (E)[−ki] ∈ A[−ki]. This continues uptil the
highest one kn. Notice that as kn is the highest we shall have τ≤kn(E) = E
(this is by the de�nition of the sequence of ki ’s). Thus we have the diagram
where Ei := τ≤ki (E),Ai = τ≥kiτ≤ki (E) ∈ A[−ki]. So we also have −k1 >
−k2 > · · · − kn as required.
⇐= part

Given such properties of the additive category A, we de�ne the t structure
as follows:

D≤0(E) := {E|Ai = 0∀ki < 0};D≥0(E) := {E|Ai = 0∀ki > 0}
Now clearlyA =D≤0∩D≥0 as ki = 0 is only possible and that means E ∈ A
. We need to verify the properties of the t structure. The �rst property of
Hom being zero follows from contradiction . Indeed,let E ∈ D≤0,F ∈ D≥1.
Let E → F be a morphism. Now by the decomposition of object of E and
F , we shall get a map from A→ B where A ∈ A[k1] and B ∈ A[k2] where
k1 ≥ 0 and k2 < 0.By the �rst property of A this is zero. D≤−1 ⊂ D≤0 and
D≥1 ⊂ D≥0.
The last thing to prove is that given any object E in D there exists a distin-
guished triangle :

E0→ E→ E1→ E0[1]

such that E0 ∈ D≤0,E1 ∈ D≥1.
We use the second condition now. We have a �ltration of E. De�ne E0 = Ei
where ki is the least positive in the set{k1, k2, · · · , kn}. We have non-zero
morphism E0 = Ei → E. By property of triangulated category, we get a
distinguished triangle :

E0→ E→ Ei ∈ E0[1].
Then by using the decomposition of E1, we notice that E1 ∈ D≥1. Thus we
get the last property of it being a t sructure.
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Chapter 5
Bridgeland Stability Conditions.

In this chapter, we introduce the notion of a stability condition on a triangu-
lated category. At �rst, we de�ne stability functions andHarder-Narasimhan
property of a stability function. Then we proceed with the de�nition of slic-
ing of a triangulated category which leads to de�ntiion of a stability condi-
tion. The chapter ends with stating a connection between stability condition
and t-structures.

5.1 Bridgeland Stability Functions andHarder-

Narasimhan �ltrations.

Let A be an abelian category. K(A) be its Grothendieck Group.

De�nition 5.1. A stability function on an abelian category A is a group
homomorphism Z : K(A)→ C such that forall 0 , E ∈ A, Z(E) lies in

{reiπφ ;r > 0,0 < φ ≤ 1} ⊂ C.

De�nition 5.2. Given a stability function Z : K(A)→ C . The phase of an
object E ∈ A is de�ned by φ(E) := 1

π arg(Z(E)).

De�nition 5.3. Let Z : K(A) → C be a stability function on an abelian
category. An object 0 , E ∈ A is said to be semistable if ∀A ⊂ E subobjects,
we have φ(A) ≤ φ(E).
Lemma5.1. IfA,B are semistable objects andφ(A) > φ(B), thenHomA(A,B) =
0.

Proof. Let f : A→ B , then A→ A/ ker f � im f ⊂ B which implies

φ(A) ≤ φ(A/ ker f ) = φ(im f ) ≤ φ(B).
Thus the if φ(A) > φ(B), then HomA(A,B) = 0.
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De�nition 5.4. LetZ : K(A)→ C be a stability function on anA. AHarder-

Narasimhan �ltration of an object E is a �nite chain of subobjects.

0 = E0 ⊂ E1 ⊂ E2 · · · · · · ⊂ En = E.

such that Fj :=
Ej
Ej−1

are semistable objects with :

φ(F1) > φ(F2) > · · · · · · > φ(Fn)

Z is said to have a Harder-Narasimhan property if every object of A has it.

Proposition 5.1. Suppose A is an abelian category and Z : K(A)→ C is a

stability function satisfying the chain conditions :

1. There doesn’t exist an in�nite sequence of subobjects in A of an object :

· · · · · · ⊂ Ej ⊂ · · · ⊂ E2 ⊂ E1 ⊂ E

such that φ(Ej+1) < φ(Ej ) for all j .

2. There doesn’t exist in�nite sequence of quotients in A :

E = E1→ E2→ E3 · · · · · ·

such that φ(Ej ) > φ(Ej+1) for all j .

Then Z has Harder-Narasimhan property.

Proof. First note that if E ∈ A, then either E is semistable or there is a sub-
object of E1 ⊂ E such that φ(E1) > φ(E). Continuing in this manner we get
a chain of subobjects satisfying the condition 1. Thus it should terminate.
So any object E has a semistable subobject A whose φ(A) > φ(E). Similar
argument works for the quotients.

We de�ne the maximal destabilizing quotient (mdq) of an object E is a
non-zero quotient E→ B such that E→ B′ is another quotient, thenφ(B′) ≥
φ(B). The equality holds if

E B′

B

commutes.

Lemma 5.2. If E→ B is an mdq for E, then B is semistable and φ(E) ≥ φ(B).
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Proof. If B is not semistable, then it has a quotient B′ with φ(B′) > φ(B).
Thus we have a quotient map E → B → B′ . By mdq condition, we have
φ(B′) ≥ φ(B) which is a contradiction. Hence it is semistable.
The inequality is from the mdq condition applied on the identity morphism
E→ E.

Lemma 5.3. The maximal destabilizing quotient of an object always exists.

Proof. Take any object E . If E is semistable, then E → E is an mdq. If not,
then there exist a subobjectA such that φ(A) > φ(E). Thus we have an exact
sequence

0→ A→ E→ E′→ 0.

At �rst, we show

Lemma 5.4. If E′→ B is an mdq for E′ , then E→ B the composition map is

also a mdq.

Proof. Suppose E → B′ is a quotient map. Let φ(B′) < φ(B). Thus by mdq
property, we have :

φ(B′) < φ(B) ≤ φ(E′) < φ(E) < φ(A)

So there doesn’t exist morphism between A → B′ . But the diagram below
shows there is a non-zero morphism f2 ◦ f .

0 A E E′ 0

B′ B

f g

f2

h

f1

Hence we have a contradiction. Therefore φ(B′) ≥ φ(B).

Suppose φ(B) = φ(B′). Then this morphism composition f2 ◦ f is zero.
Thus this implies ker f2 ⊃ im f = kerg . Hence there exists a map f3 : E

′ →
B′ which is a quotient such that f2 = f3 ◦ g . As E′ → B is a mdq, we have
f3 = g1 ◦ f1, where g1 : B → B′ . Thus f2 = f3 ◦ g = g1 ◦ f1 ◦ g . It factors
throught B and hence it is a mdq.

We replace E by E′ another quotient with φ(E) > φ(E′). Repeating this,
we have a chain of quotients and thus by 2 condition , we need this to ter-
minate to a semistable object and thus we get by composition the existence
of a mdq of E.
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Back to the main proof: Let E be an object. If it is semistable, 0 ⊂ E is the
�ltration. Otherwise there is an exact sequence :

0→ A→ E→ E′→ 0

with E→ E′ mdq. Let A→ B be a mdq. Thus we have the exact sequence

0→ K → A→ B→ 0.

We also get a map from K → E (from the map K → A → E) and thus we
have an exact sequence of

0→ K → E→Q→ 0.

We have the following diagram

0 0

0 K A B 0

0 K E Q 0

E′ E′ 0

0 0.

�

�

Thus by de�nition we have φ(Q) > φ(E′) as E → E′ is a mdq.So we have
φ(B) > φ(E′). Thus we get the same conditions in the exact sequence

0→ K → A→ B→ 0

where φ(B) > φ(E′) and B is semistable. Repeating this process we get a se-
quence of subobjects Ej ⊂ Ej−1.. · · ·E1 = E with φ(Ei /Ei−1) being semistable
objects and on decreasing order of phase value. This sequence shall termi-
nate by condition 1.So we have the �ltration.

For de�ning the stability condition, we need to de�ne slicing which is
discussed in the next section.

5.2 Slicing of a triangulated category.

We move to the de�nition of a new object called slicing which has similar
resemblance of conditions given in Lemma 4.3.
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De�nition 5.5. A slicing of a triangulated category D consists of full addi-
tive subcategories P (φ) ⊂ D for each φ ∈ R satisfying :

1. P (φ +1) := P (φ)[1].

2. If φ1 > φ2 and Aj ∈ P (φj ) =⇒ HomD(A1,A2) = 0.

3. For each non-zero object E ∈ D ,∃ a �nite sequence of real nummbers
:

φ1 > φ2 > · · · · · · > φn
and a collection of triangles

0 = E1 E2 · · · En−1 En = E

A1 · · · An

such that Aj ∈ P (φj ) forall j .

Remark. By condition 3, we can write any object E as a �nite sequence of
extensions by Aj ’s which is unique upto isomorphism. Thus we de�ne for
any object E ∈ D , φ+

P (E) := φ1 and φ−P (E) := φn. So we have φ+
P (E) ≥

φ−P (E) and the equality holds if E ∈ P (φj ) for some φj ∈ R.

De�nition 5.6. Forall I ⊂ R an interval, we have P (I ) to be the extension
closed subcategory of D generated by P (φ) for φ ∈ I .
Thus P ((a,b)) is the category consisting of zero objects of D together with
E ∈ D satisfying a < φ−P (E) ≤ φ+

P (E) < b.

Lemma 5.5. Let P be a slicing of a triangulated category. Let I ⊂ R be an

interval of length atmost one. Suppose

A E

B

is a triangle in D and A,E,B ∈ P (I ). Then φ+(A) ≤ φ+(E) and φ−(E) ≤
φ−(B).

Proof. We assume I = (t, t + 1). If φ = φ+(A). Then there exists an object
A+ ∈ P (φ) such that f : A+ → A exists. If φ > φ+(E). then A+ → E can’t
have any morphism.
For this, we consider the diagram ofE in the de�ntion of slicing( condition 3).
Let f : A+→ E be a non-zero map. Then we have a map A+→ E → An. If
this map is non -zero, we are done as φ+ > φ1 > φn. Assume the map is zero,
then this map factors through En−1. Repeating the same process, we have a
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non-zero map A+ → En−1 → An−1. Again we have two cases. Continuing
this process, eventually we have a map from A+→ A1 = E1 which has to be
non-zero. This can’t occur as we haveφ+ > φ1 = φ

+(E). Thus the morphism
doesn’t exist.
But in the diagram we have one. Thus the composition of them has to be
zero. By the property of distinguished triangles, the map f : A+ → A shall
factor through B[−1]. Thus we have map A+ → B[−1]. So φ+(B[−1]) ≤
φ+(A+) = φ. But as B ∈ P ((t, t + 1)) =⇒ B[−1] ∈ P (≤ t). Thus φ ≤ t. But
φ > t as A ∈ P ((t, t +1)). We arrive at a contradiction.

Remark. It is important to note that for any φ ∈ R, P (> φ) and P (≥ φ) are t-
structures on D.Their corresponding hearts are P ((φ,φ +1]) and P ([φ,φ +
1)).

5.3 Quasi-abelian Categories

The categories P (I ) desribed above not be abelian categories but slightly less
than that.
Recall that a morphism f : A→ B in a category is called "strict" if coim f �
im f

De�nition 5.7. A quasi-abelian category is an additive categoryAwith ker-
nels and cokernels such that the pullback of a strict epimorphism is a strict
epimorphism and the pushout of a strictmonomorphism is a strictmonomor-
phism.

De�nition 5.8. A strict short exact sequence in a quasi-abelian category is a
diagram:

0→ A
i−→ B

j−→ C→ 0

such that i is ker j and j is coker i .

Remark. All other properties of "strict" monomorphisms and "strict" epimor-
phisms make this quasi-abelian category along with the family of "short" ex-
act sequences an " exact" category.
Also we de�ne the Grothendieck Group on it to be the abelian group on the
objects with the relation: [B] = [A] + [C] if there exists a strict short exact
sequence 0→ A→ B→ C→ 0

Lemma 5.6. An additive category is quasi-abelian i� there exists abelian cat-

egories A# and Ab and fully faithful embeddings A ⊂ A#,A ⊂ Ab such that

if :

1. If A→ E is a monomorphism in A# with E ∈ A, then A ∈ A.
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2. If E→ B is a epimorphism in Ab with E ∈ A, then B ∈ A.

Example 5.1. The most common example of quasi-abelian category is the
category of torsion free sheaves over a projective variety.

Lemma5.7. LetP be a slicing of the triangulated categoryD . For any interval

I ofR of length atmost 1, the full subcategoryP (I ) is quasi-abelian. Every short
exact sequence in it corresponds to the tirangle whose vertice are in P (I ).

Proof. It follows from the fact P ((a,b)) ⊂ P ((a,a + 1]),P ((a,b)) ⊂ P ([b −
1, b)).

We move to the next section of stability conditions.

5.4 Stability Conditions.

De�nition 5.9. A stability condition σ = (Z,P ) on a triangulated category
D consists of a group homomorphism Z : K(D)→ C and a slicing P of the
category such that for all 0 , E ∈ P(φ) we have Z(E) :=m(E)eiπφ .
Z is called the central charge.

Lemma 5.8. If σ = (Z,P ) is a stability condition on a triangulated category

D, then P (φ) ⊂ D is abelian.

Proof. P (φ) is a full additive subcategory. To show it is abelian, we need
to show a morphism in P (φ) has the kernel and cokernel in P (φ). Given a
morphism f : E → F we have the kernel in an exact sequence in D. Using
lemma 5.5 and comparing φ+ , we get that it is in P (φ) . Similarly for the
cokernel.

De�nition 5.10. Given a stability condition σ , we have a decomposition
Aj ’s ofE .They are called the semistable factors ofE, We callm(E) :=

∑ |Z(Ai)|
the mass of E.

Remark. For any object E in K(D) where D is a triangulated category with
slicing, the argument of E is between φ−(E) and φ+(E).

We now prove the main theorem which the connects stability conditions
and t-structures. It is an important tool in constructing the stability condi-
tions.

Theorem 5.1. To give a stability condition on a triangulated category is equiv-

alent to give a bounded t-structure and a stability function on its heart with the
Harder-Narasimhan property.
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Proof. =⇒
Let σ := (Z,P ) be the stability condition. Let D≤0 := P (> 0) and D≥1 :=
P (≤ 0). Thus D≤0 ∩D≥0 := P ((0,1]) which is the heart. These two de�ne
t structures. The inclusions D≤−1 ⊂ D≤0 and D≥1 ⊂ D≥0 are obvious.Also
the condition of Hom of two objects being zero is just from the fact of de-
composition of slicing of the two given objects is equivalent to the condition
of Hom(P (φ1),P (φ2)) = 0∀φ1 > φ2. Now for the existence of the distin-
guished triangle is the same argument as in the proposition of proving the
condition of heart.

Also ifA = P ((0,1]), then K(A) � K(D) (this is a becauseA is the heart
of a bounded t-structure). So the central charge Z is the stability function
on its heart A.

Now we need to de�ne the semistable objects in A. The semistable ob-
jects in A are P (φ),∀0 < φ ≤ 1. We need to see that they are semistable
objects. This is because of the Lemma 5.5 and the fact that the exact se-
quences in A correspond to exact triangles in D whose vertices are in A.
Now the third condition of slicing shows that for any object E ∈ A, we have
a sequence of subobjects Ei and their quotients Ai which are semistable and
also the decreasing order of their phases. Thus this satis�es the Harder-
Narasimhan property.
⇐=
We have a t structure (D≤0,D≥0) and the stability function on the heart

A with HN property. As K(A) � K(D), we have a group homomorphism
from K(D)→ C . The main aim is to construct the slicing P . Let P (φ) be
the full additive subcategory of the semistable objects in phase φ. By the
�rst property of slicing, P (φ) is de�ned for all φ ∈ R .The second condition
of slicing comes from the property of morphism between semistable objects.
The third condition of slicing follows from the HN property of the stability
function and the property that exact sequences in A correspond to exact
triangles. Hence we get the pair σ := (Z,P ) which is a stability condition.
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Chapter 6
Elementary examples and
properties of stability conditions.

In the previous chapter, we saw what a stability condition is. This chapter
deals with the examples of stability conditions. At �rst, we deal the case
of a curve and show a nice property about the space of stability conditions
Stab(D(X)) over a curve X . The chapter ends with the case of construction
of stability conditions over projective schemes of dimension more than 1
with the standard heart Coh(X).

6.1 Stability Conditions on curves.

Let X be a non-singular projective curve. Let A be the category of coherent
sheaves onX . LetD(A) be the bounded derived category of coherent sheaves
on X . We need to de�ne a stability condition on D(A). By Theorem 5.1, we
de�ne the stability condition on its heart i.e A w.r.t the standard t-structure
which has the Harder-Narasimhan property.
The stability function Z on A is de�ned as :

Z(E) := −deg(E) + i rk(E)

Note that the degree of a sheaf E is de�ned by the formula:

deg(E) := α0(X)− rk(E)α0(OX )

where αi are coe�cients of the Hilbert polynomial of the projective curve.
Note that this is a stability function because both rk and deg can’t be zero. If
rk = 0 ,then by the above formula ,it will be α0(X) which is always positive.
Also by de�nition rk ≥ 0. So Z(E , 0) lies in the corresponding region for
it to be a stability function.
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Now we need to see the semistable objects of this function. Those are
such sheaves E ∈ A such that F ⊂ E a subsheaf , then φ(F) ≤ φ(E).

φ(F) ≤ φ(E)⇔ tan−1
(

1

−µ(F)
)
≤ tan−1

(
1

−µ(E)
)

which is same as .

1

−µ(F) ≤
1

−µ(E) ⇔−µ(E) ≤ −µ(F)⇔ µ(F) ≤ µ(E)

Thus this is same as µ-semistability condition of E.
Also notice that if a sheaf E is torsion, then dimE = 0 =⇒ Supp(E) has

only �nitely many points. Thus any subsheaf of E will also have dimension
zero. So E is semistable.

Now we need to have the Harder-Narasimhan Property on this φ func-
tion.
This is true by the theory of semistable sheaves. Every sheaf on X (as it
is of dimension one it is pure) has the Harder Narasimhan �ltration. The
semistable condition is the general semistable condition by the reducedHilbert
Polynomial p(E). Applying Theorem 2.4, we get the Harder Narasimhan
Property of φ function.
Hence by Theorem 5.1, we get a stability condition on D(A).

6.2 Action of groups on Stab(D).
Stab(D) is de�ned as the space of stability conditions. Later we shall de�ne
this explicitly with the support property. There are two important actions

on Stab(D), namelyAut(D), the group of automorphisms ofD and ˜GL+
2 (R),

the universal covering space of Gl+2 (R).

6.2.1 Action of Aut(D)
Let φ ∈ Aut(D). Let σ := (Z,P ) be a stability condition. Then the action is
de�ned as φ.(Z,P ) := (Z ′,P ′) where Z ′ := Z ◦φ−1 and P ′(t) := φ(P (t)).

6.2.2 Action of ˜GL+
2(R)

˜GL+
2 (R) is the universal covering space of GL+

2 (R).
It is de�ned as a pairs (T ,f ) where f : R→ R an increasing function with
the property f (φ + 1) = f (φ) + 1 and T : R2 → R2 is an orientation pre-
serving linear isomorphism with the property that when restricted to S1 =
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R∪∞ � R/Z is the same as f .

Now the action is de�ned as : (T ,f )◦(Z,P ) = (Z ′,P ′)where Z ′ := T −1◦
Z and P ′(φ) = P (f (φ))
Remark. The above action gains its importance when D is the bounded de-
rived category of coherent sheaves over a projective scheme, especially when
it is over a smooth projective curve of genus ≥ 1. For the proofs below, we
assume the assumpotions on Z given in Section 7.1. Notice that on the case
of a curve, the numerical Grothendieck groupN (C) �Z⊕Zwhere the map
is [E]→ (rk(E),deg(E)) is an isomorphism.

Let C be a smooth projective curve over C of genus ≥ 1.

Lemma 6.1. Given any stability condition on Db(C), the skyscraper sheaves
Oc( c ∈ C) and the line bundles L ∈ Pic(C) are stable .

Proof. Let us prove at �rst that the line bundles and skyscraper sheaves are
semistable.

Now let E be the skyscraper sheaf or the line bundle. Consider the �rst
semistable factor in its Harder Narasimhan Filtration of E. Let it be A. We
get the complete distinguished triangle :

A→ E→ B

Now we have φ(A) > φ(B).So we have Hom(A,B[i]) = 0 for all i ≤ 0. So
that meansExti(A,B) = 0 for all i ≤ 0 ( By Lemma 3.8) . Thus by the previous
lemma we have A,B ∈ Coh(C).
Thus we have :

0→ A→ E→ B→ 0

In the case of a skyscraper sheaf, as it is over a smooth curve we don’t have
proper subobjects . Thus A � E and B = 0. So Oc is semistable.
In the case of line bundle, as A is subobject, it has to be a line bundle .So B
is either zero or a torsion sheaf.If it is a torsion sheaf, then it is supported in
�nitely many points and thus we have Hom(A,B) , 0 which is not true. So
B = 0 and thus A � E is a line bundle.
So we have the skyscraper sheaf and the line bundle are semistable. Now we
prove that they are stable.
Consider the category P (φ(E)) the category of objects having the phase
φ(E). Assume E is not stable. Then there exist a stable subobject S ∈
P (φ(E)) of E such that Hom(S,E) , 0.
Now consider the classes of subobjects X ⊂ E whose Jordan �ltration has all
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stable factors isomorphic to S . Let A be the maximal of the collection . Then
we have the exact sequence :

0→ A→ E→ B→ 0

By construction of A, φ(A) = φ(E). Thus φ(B) = φ(A) (as Z(B) = Z(E) −
Z(A)). So then φ(A) > φ(B)− i for i < 0. So it implies that Hom(A,B[i]) =
0, i < 0 which means Ext<(A,B) = 0.
Also A is maximal and thus B has no proper subobject isomorphic to S . As
we know P (φ(E)) is abelian. So we have Hom(S,B) = 0. Now as A is just
made by extension of S so Hom(A,B) = 0. Combining with the conclusion
in the previous paragraph, we have Ext≤(A,B) = 0.Thus by Lemma 3.8, we
haveA,B ∈ Coh(X). By the same method of semistability proof in each case,
we have A � E.
Let A is made by n copies of S . In K(D) , then we have [E] = n[S].Now if E
is skyscraper sheaf, we have deg(E) = 1. So this implies n = 1. In the case
of line bundle we have rk(E) = 1 which again implies n = 1.
So both the skyscraper sheaves and the line bundle are stable in all the sta-
bility conditions.

Now we prove the main theorem:

Theorem 6.1. The action of ˜GL+
2 (R) on Stab(D) is free and transitive. This

means :

Stab(D) � ˜GL+
2 (R)

Proof. By the previous lemma, we showed that given any stability condition
σ := (Z,P ) the skyscraper sheaves Oc and the line bundles L are stable.
Now we have the obvious map L→ Oc. So we have Hom(L,Oc) , 0. This
means φ(L) < φ(Oc).
Now also we have the following:

Hom(Oc,L[1])
� Ext1(Oc,L)

� Ext0(L,Oc ⊗ωC)(Serre Duality)
�Hom(L,Oc) , 0

So we have φ(Oc) < φ(L) + 1
Thus we have φ(Oc)− 1 < φ(L) < φ(Oc)
Now we know that the numerical Grothendieck group is generated by the
skyscraper and the line bundles( as any coherent sheaf is) .Thus the genera-
tors are (0,1) and (1,deg(L)). Tensoring with R we haveN (C)⊗R � R2

�

C.So Z is an isomorphism.( as we have assumed Z factors throughN (C)).
Now the points (0,1) and (1.d)(d = degL) by Z is mapped to Z(Oc) and
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Z(L) with the arguments πφ(Oc) and πφ(L). Now the con�guration of the
diagram shows that the determinant of the map Z is positive and thus it is
orientation preserving.
The action is free is because if an element (T ,f ) �xes a stability condition
then f has to be identity and thus by the de�ntion of T it also has to be
identity. So it has to be free.
Now it remains to show that it is transitive.
The way to show this is that upto action of ˜GL+

2 (R) we can change the sta-
bility condition σ to the standard stability condition in terms of degree and
rank.So for this there are two things to be checked. First of all Z can be writ-
ten as of the standard form upto action of a matrixM ∈ GL+

2 (R) .Second of
all, the corresponding heart of the corresponding t structure is Coh(C)

The �rst part is just done as Z is orientation preserving thus by a ma-
trix M ∈ GL+

2 (R) we can assume that Z(E•) := −deg(E•) + i rk(E•) for
E• ∈Db(Coh(C))

For the second part let B = P (0,1] be the heart of t structure associated
to σ .At �rst we claim that all the skyscraper sheaves have same phase.
Let Oc1 ,Oc2 be two skyscraper sheaves.As we know Z maps both of them
to same value as they are same on N (C).Thus their arguments di�er by an
even multiple of 2π. This means that φ(Oc1) −φ(Oc2) ∈ 2Z. But we know
that :

φ(Oci )− 1 < φ(L) < φ(Oci ), i = 1,2

which implies that φ(Oc1) = φ(Oc2).
Now upto composition by a suitable element of ˜GL+

2 (R) we can assume that
φ(Oc) = 1. (Notice this composition is done after assuming the stability is
in the standrad degree and rank formula). Thus by the inequality, we have
φ(L) ∈ (0,1)∀L ∈ Pic(C).

As we are on a curve, every coherent sheaf is generated by line bun-
dles and skyscraper sheaves( torsion and torsion free part). Thus by the
property of phase function we have φ(E) ∈ (0,1)∀E ∈ Coh(C) So we have
Coh(C) ⊂ B. Now we have two hearts of corresponding bounded t struc-
tures and one is contained in the other.We need to show thet are the same.

Lets prove this. Let A ⊂ B be the two hearts. Let Z ∈ B ,then Z has a
�ltration whose quotients are in shifts of A . But we know that these quo-
tients will lie in shifts of B.But as Z ∈ B , the �ltration will have only one
object namely Z and by the �ltration done with respect to A , this means
Z ∈ A.Thus A = B.So we have proved that the action is transitive which
completes the proof.
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6.3 Stability conditions overdim > 1withheart

Coh(Y ).

The case of curves is clear. The next theorem is about what happens if we
try to construct a stability function on Coh(Y).

Theorem 6.2. Let Y be a smooth projective variety over C of dimension ≥ 2.
There is no numerical stability condition σ ∈ Stab(Y ) with heart Coh(Y ).

Proof. Assume that σ := (Z,P ) a stability condition whose corresponding
heart is Coh(Y ).
By de�nItion of Z , it implies that is an element of dual ofN (Y )⊗C( here we
assume that Z factors through N (Y ) which is the lattice Λ de�ned in the
next chapter). By construction of numerical Grothendieck Group, we have
for any sheaf E ∈DbCoh(Y ):

Z(E) :=
d∑

i=0

(ui + ivi).chi(E)

where chi(E) is the ith chern character of E and ui , vi ∈H2d−2i(Y,R).
Now as it is of dimension d ≥ 2, there is a surface S → Y embedded in Y .
Thus we have the induced stability function on K(S)→ K(Y )→ C.
So we have reduced this to case of d = 2. Thus Y is a surface now. Let C ⊂ Y
be a curve. Let D be a divisor on C . Consider the sheaf OC(D). It has rank 0
on Y . So the zeroth chern character is 0. Let us consider the imaginary part
of it. We have :

I (Z(OC(D))) = v2(degD + ch2(OC)) + v1.[C] > 0

Now as the degree is arbitrary of any divisor, for it to be positive we should
have v2 = 0.
Then consider the sheaf OY (mC),m ∈Z.For this also then we have

I (OY (mC)) =mv1.[C] + v0.1 > 0.

As m also can be made su�ciently small, we have then v1.[C] = 0.
Thus we have I (Z(OC(D))) = 0.
Thus for it to be a stability condition we need to have

R (Z(OC(D))) := u2(degD + ch2(OC)) +u1.[C] ≤ 0.

By the same argument, we have u2 = 0.
We know that for any skyscraper sheaf Ox,x ∈ Y , ch(Ox) = (0,0,1) (point 3
of Chapter 1, Section 4.) Thus, we have

Z(Ox) := u2 + iv2 = 0
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But Ox is semistable with respect to the t structure (seen on a curve), thus
Z(Ox) , 0. So it is a contradiction.
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Chapter 7
Deformation Property of Stability
Conditions.

This chapter entirely focuses on proving Theorem 0.1. At �rst we setup
all the necessary de�nitions and tools required for proving the theorem.
This includes de�ning the topology of StabΛ(D) and the concept of Harder-
Narasimhan polygons. We prove the theorem under some assumptions. The
proof ends by showing that those assumptions can be made.

7.1 Important assumptions

Note: From now on,Dwill be a triangulated categorywith a surjective group
homomorphism

v : K(D)→Λ

where Λ �Zm for some m ∈N.
Also we have assumed that the stability condition Z : K(D) → C factors
through Λ via v.

7.2 Support Property

De�nition 7.1. Let Q :ΛR :=Λ⊗R→ R be a quadratic form. We say that
a stability condition (Z,P ) satis�es the support property with respect toQ if:

1. kerZ ⊂ΛR is negative de�nite with respect to Q.

2. For all semistable objects E i.e E ∈ P (φ), we have Q(v(E)) ≥ 0.
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7.3 The Statement of Deformation Property

The theorem assumes the construction of topological space StabΛ(D) with
a metric which is explained in the next section. Also we have the map Z :
StabΛ(D)→Hom(Λ,C) given by (Z,P )→ Z .

Theorem 7.1. Let Q be a quadratic form on Λ ⊗R and assume that the sta-

bility condition σ := (Z,P ) satis�es the support property with respect to Q.

Then

1. There is an open neighbourhood σ ∈Uσ ⊂ StabΛ(D) such that the map

Z : Uσ → Hom(Λ,C) is a local homeomorphism and Q is negative

de�nite on kerZ ′ for all (Z ′,P ′) ∈Uσ .

2. All σ ∈Uσ satis�es the support property with respect to Q.

Remark. At �rst, notice thatHom(Λ,C) �Hom(Zn,C) � ⊕mi=1Hom(Z,C) �
Cm. So the theorem states that locally we have that StabΛ(D) is homemor-
phic to Cm and thus it has a manifold structure. Also it states that any path
in Hom(Λ,C) can be lifted to a continuous path of stability conditions in
StabΛ(D). We shall see that by Lemma 7.5, we get that the collection of all
Z ∈ Hom(Λ,C) such that Q is negative de�nite on kerZ is an open subset
of Cm.

7.4 Topology on StabΛ(D)
Notice that StabΛ(D) ⊂ Slice(D)×Hom(Λ,C) where Slice(D) is the set of
slicings. Thus, at �rst, we de�ne the topology on Slice(D) and Hom(Λ,C).

Topology on Slice(D)
Given two slicings P ,Q we de�ne a distance function. We set :

d(P ,Q) := sup{|φ±P (E)−φ±Q(E)|,0 , E ∈ D}

This is a distance function. The following lemma is about that the calcula-
tion can be done just considering the semistable objects of P .

Lemma 7.1. De�ne:

d ′(P ,Q) := sup{ψ+(E)−φ,φ −ψ−(E),0 , E ∈ P (φ)}

Then we have d(P ,Q) = d ′(P ,Q). (Here ψ± are of Q. )
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Proof. Obviously d ′(P ,Q) ≤ d(P ,Q) by de�nition. We need to show the
converse.
Let E ∈ D. Let Ai be one of the HN factors of E wih respect to P . We have

ψ+(Ai) ≤ φ(Ai) + d ′(P ,Q) ≤ φ+(E) + d ′(P ,Q).

Thus every Ai satis�es this. Hence, we have ψ+(E) ≤ φ+(E) + d ′(P ,Q).
Similarly we can get the inequality for ψ−,φ− too. Hence d(P ,Q) ≤ d ′(P ,Q)
which completes the proof.

Remark. This metric d is a generalized metric with the additional poprerty
that the distance function attains the value in�nity. If d(P ,Q) =∞, then we
have P and Q are on di�erent connected components of Slice(D).

Topology on Hom(Λ,C)

Let σ = (Z,P ) be a stability condition.
Let U ∈Hom(Λ,C). De�ne

||U ||σ := sup
{
U(E)

Z(E)
,E is σ − semistable

}

Let us consider Vσ which is de�ned a:

Vσ := {U ∈Hom(Λ,C)|, ||U ||σ <∞}.

Now it is easy to see that || ||σ de�nes a �nite norm on Vσ . Morever the
following lemma tells us that we need not to worry about Vσ when we have
the support property.

Lemma 7.2. If σ satis�es the support property with respect to Q a quadratic

form on Λ ⊗R , then we have Vσ := Hom(Λ,C).

Proof. By assumption in 7.6, we see that E ∈ K⊥ where K = kerZ . So
Q(E) = |Z(E)|2. Now as ΛR is of �nite dimensional, the collection
{v(E);E semistable } is �nite dimensional. Let α1,α2 · · · ..αk span the space
as an orthogonal basis with respect to Q. Let [E] =

∑k
i=1 aiαi . Thus Q(E) =∑k

i=1 a
2
i . Let ||.|| be a norm on ΛR. Then

||E|| = ||
k∑

i=1

aiαi || ≤

√√√
k∑

i=1

a2i .||
k∑

i=1

αi || ≤
√
Q(E).||

k∑

i=1

αi ||

Thus we get a constant C such that

||[E]|| ≤ C |Z(E)|.
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Let U ∈Hom(Λ,C). Then we have a constant D such that |U(E)| ≤ D.|[E]|
.Combining this with above inequality, we have |U(E)| < C.D|Z(E)|. Thus
we have ||U ||σ <∞ .

We arrive at the de�nition of the topology on StabΛ(D).
Let σ = (Z,P ) be a stability condition, we de�ne the balls :

Bε(σ) = {τ = (W,Q) | ||W −Z ||σ < sin(πε), d(P ,Q) < ε}.

We have the following remarks.

Remark. 1. The conditions ||W −Z ||σ < sin(πε) and d(P ,Q) < ε are com-
patible in the sense that ||W −Z ||σ < sin(πε) =⇒ d(P ,Q) < ε. This is
evident from the diagram below.

0

A

B

P

|Z(E)| =m

|W (E)|

|W (E)−Z(E)|

msinθ

θ

90

2. These form the basis of the topology on StabΛ(D). The main idea
behind the proof of this statement is if τ ∈ Bε(σ), then ||.||σ ∼ ||.||τ .
This implies that in a connected component of StabΛ(D), the topology
is same as the subspace topology of the product topology Slice(D) ×
Hom(Λ,C).

We have an important lemmawhich proves that themapZ : StabΛ(D)→
Hom(Λ,C) given by (Z,P )→ Z is locally injective.

Lemma7.3. Ifσ := (Z,P ),τ := (Z,Q) are two stability conditions with d(P ,Q) <
1. Then σ = τ.

This gives us the immediate corollary.

Corollary 7.1. The map Z : StabΛ(D)→Hom(Λ,C) is locally injective.

7.5 Harder-Narasimhan polygons.

Let A be an abelian category and Z be a stability function on A.
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De�nition 7.2. The Harder-Narasimhan polygon HNZ(E) of an object E ∈
A is the convex hull of the central charges Z(A) of all the subobjects A ⊂ E
of E.

De�nition 7.3. We say that the Harder-Narasimhan polygon HNZ(E) of
an object E ∈ A is polyhedral on the left if the set has �nitely many ex-
tremal points 0 = z0, z1..zm = Z(E) such that HNZ(E) lies right to the path
z0, z1, · · · , zm. See the �gure below.

0z1

z2

z3

z4 = Z(E)

Figure 7.1: HN polygon polyhedral to the left

The following theorem relates the connections between HN polygons
and HN �ltrations.

Theorem 7.2. An object E has HN �ltration w.r.t Z i� the HN polygon of

Z(E) is polyhedral to the left.

This leads to the following important corollary which is important for
the main proof.

Corollary 7.2. Given E ∈ A, assume there are only �nitely many classes v(A)
of subobjects A ⊂ E with RZ(A) < max{0,RZ(E)}. Then E admits a HN
�ltration.

7.6 Main Proof

Important Assumption:

Assume that Q has signature (2,rkΛ − 2). It will be proved later that this
assumption can be made.

The proof at �rst includes two lemmas to reduce the Theorem 7.1 to a
special case.
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Lemma 7.4. Upto the action of G̃l+2 (R) on StabΛ(D), we may assume that we

are in the following situation:

There is a norm ||.|| on kerZ such that if p : ΛR→ kerZ denoted the orthog-

onal projection with respect to Q , then :

Q(v) := |Z(v)|2 − ||p(v)||2.

Proof. Let K⊥ denoted the orthogonal complement of K = kerZ w.r.tQ. We
know that kerZ is negative de�nite w.r.t Q.
Considering the map Z :ΛR→ C as a map of real vector space, we get that
dimK ≥ rkΛ − 2. So dimK⊥ ≤ 2. Now we use the assumption. The as-
sumption says that dimK⊥ ≥ 2. So dimK⊥ = 2.
AsZ |K⊥ : K⊥→ C is injective, by dimension argument this is an isomrphism

of real vector spaces. By action of G̃l+2 (R) we can assume that this map is an
isometry.
Let ||.||2 = −Q on K
So now we write Q in terms of signature:

Q(v) =Q ◦ (1− p)v +Q ◦ p(v) =⇒ |Z(v)|2 − ||p(v)||2

Consider the subset of central charges in Hom(Λ,C) whose kernel is
negative de�nite with respect to Q. Denote PZ(Q) be its connected compo-
nent starting from Z .

Lemma 7.5. Assuming that we are in the situation of the previous lemma.

Upto the action of G̃l+2 (R) ,we can assume that Z ′ ∈ PZ(Q) is of the form

Z ′ := Z +u ◦ p

where u : kerZ→ C with operator norm ||u|| < 1

Proof. We have the isomorphism Z ′ |K⊥ = Z |K⊥ where K = kerZ by the pre-
vious lemma.Thuswe have g ∈Gl2(R) such thatZ ′ |K⊥ = gZ |K⊥ . Now PZ(Q)
is connected, so we have g ∈ Gl+2 (R). Now we de�ne u : kerZ → C the re-
striction of Z ′ to kerZ . Now we see that the equation Z ′ = g ◦Z + u ◦ p is

valid in K and K⊥. Thus it is valid in ΛR. So up to the action of G̃l+2 (R),we
have :

Z ′ = Z +u ◦ p

The reduction is now as follows:
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Lemma 7.6. In order to prove Theorem 7.1, it is enough to show the following:

Given any stability condition σ0 = (Z0,P0) and a path of central charges t→
Zt = Z0 + t.u ◦ p for t ∈ [0,1] where u : kerZ → R a linear map to the real

numbers with ||u|| < 1, there exists a continuous life t → σt to the space of

stability conditions. Morever all σt satisfy the support property with respect to

the same quadratic form Q.

Proof. We know that before the map is locally injective by corollary 7.1. So
it is enough to prove the existence of lift of any given path. Also we can
replace the path in PZ(Q) by a homotopic one.

Suppose that this holds. By G̃l+2 (R) action, this shall hold for u to be purely
imaginary. Now for our case write u = R (u) + iI (u), as ||u|| < 1 =⇒
||Ru||, ||I (u)|| < 1. So by our assumption at �rst we can construct the path
fromZ toZ+Ru◦p = Z ′ . Then fromZ ′ we can lift it toZ1 = Z

′+iI u◦p =
Z ′ +u ◦ p. Composing these two paths, we get the required path.

LetZ0 be the stability condition initially givenwith the heartA = P (0,1].
We need to show that Zt is also a stability condition with the same heart A.
It is enough to show that Z1 = Z + u ◦ p is a stability condition as for other
ones, it is just the same.
The �rst part is regarding the proof of it being the stability function.

Lemma 7.7. Let Z,u as before, then Z1 = Z + u ◦ p is a stability function on

A.
Proof. . Let E ∈ A. If I (Z(E)) = I (Z1(E)) > 0, then it is �ne. Otherwise
we have then Z(E) ∈ R < 0. We can see that E has to be semistable. We
know that Q(v(E)) ≥ 0. This implies :

|Z(E)|2 − ||p(E)||2 ≥ 0 =⇒ (Z(E)− ||p(E)||)(Z(E) + ||p(E)||) ≥ 0.

Now the �rst term is already negative. This implies that ||p(E)|| ≤ −Z(E).
Thus we have

Z1(E) ≤ Z(E) + ||u||.||p(E)|| < Z(E)−Z(E) = 0.

Hence it is a stability function.

Now we need to show that it satis�es the Harder-Narasimhan Property.
At �rst we de�ne mass of an object E.

De�nition 7.4. The mass mZ(E) of an object E with respect to Z is the
length of the boundary HNZ(E) from 0 to Z(E).

The Harder-Narsimhan property shall now be proved by using several
lemmas and the main corollary at the end of HN polygon section.
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Lemma 7.8. For all E ∈ A we have ||p(E)|| ≤mZ(E).

Proof. If E is semistable, then |Z(E)| = mZ(E). Thus we have (mZ(E))2 −
||p(E)||2 =Q(v(E)) ≥ 0 which proves the inequality.
Now if E is not semistable, write E as semistable factors Ei with respect to
Z . So we have :

||p(E)|| ≤
∑
||p(Ei /Ei−1)|| ≤

∑
|Z(Ei /Ei−1)| ≤ |Z(Ei)−Z(Ei−1)| = Z(E).

.The last equality follows from the plotting of the Harder-Narasimhan poly-
gon.

Lemma 7.9. If A ⊂ E, then HNZ(A) ⊂HNZ(E).

Proof. The proof is obvious as subobjects of A are subobjects of E and thus
convex hull of A will be inside of convex hull of E.

Lemma 7.10. Given a subobject A ⊂ E, we have

mZ(A) −R (Z(A)) ≤mZ(E)−R (Z(E)).

Proof. We see the picture below. We choose x > RZ(A),RZ(E). Let a =
x + iI Z(A) and e = x + iZ (E). The paths γA,γE are de�ned in the �gure.
Now we see that :

|γA| =mZ(A) + x −RZ(A) |γE | =mZ(E) + x −RZ(E)

It follows from the picture that ;

|γA| ≤ |γI | ≤ |γE |

and hence the result follows.

Z(E)
e

Z(A)
a

γE

γA

γI

Figure 7.2: Proof of Lemma 7.10

Lemma 7.11. Given C ∈ R, there are only �nitely many subobjects A ⊂ E
such thatR (Z +u ◦ p)(A) < C .
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Proof. We have

C >R (Z +u ◦ p)(A) ≥R (Z(A))− ||u||.||p(A)|| ≥R (Z(A))− ||u||mZ(A).

We rewrite the last expression as

(1− ||u||)R (Z(A))− ||u||(mZ(A)−RZ(A)).

Using Lemma 7.10, we have it is greater than equal to

(1− ||u||)R (Z(A))− ||u||(mZ(E)−R (Z(E))).

As ||u|| < 1, we have the bound ofR (Z(A)). Now if the real part of Z(A) is
bounded and asZ(A) ∈HNZ(E), then we have thatZ(A) lies in the compact
region of C. So |Z(A)| is bounded .
By Lemma 7.10, we have mZ(A) is bounded. By Lemma 7.8, we have that
||p(A)|| is bounded.
Thus then Q(v(A)) is bounded by |Z(A)|2 and |Z(A)|2 − ||p(A)||2. So in the

topology onΛR which is Rm, the norm is de�ned by |v| :=
√
|Q(v)|. Accord-

ing to this topology and by the previous arguments, the class v(A) of all such
A satisfying the required conditions is closed and bounded in Rm. This is in
Λ ⊂ Rm which is discrete topology. Hence we have a compact subset in Λ

and thus it is �nite.

So byCorollary 7.2, we have that (Z1,A) satis�es theHarder-Narasimhan
property.

We need to show that the lift of any path is a continuous map in the
space of stability conditions. This shall show that the inverse map is still
continuous.

Lemma 7.12. The map t→ σt = (Zt ,A) is a continuous path in the space of

stability conditions.

Proof. By de�nition of the topology on StabΛ(D), If t is small, we shall show
that d(P0,Pt) is small where Pt is the assciated slicing of Zt .
Let E be a semistable object of A. We need to show that

ψ+(E)−φ(E)

is su�ciently small.( where ψ,φ are the phases of Zt ,Z0).The same can be
shown for ψ−

To compute ψ+(E), let A be the leading semistable factor of E with respect
to Zt . We have ψ+(E) = ψ(A) .
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Write Z0(A) = a+ x. where a ∈ C has same phase as Z0(E) and x ≥ 0.
Now mZ0(A) ≤ |a|+ x (Figure below).

x
a

Zt(A)

Z0(E)

Z0(A)

HNZ0(A)

Therefore we have :
R (Zt(A)) ≥R (Z0(A))− t||u||.||p(A)|| ≥R (Z0(A))− tmZ

0 (A) ≥R (Z0(A))−
tx − t|a| ≥R (a)− t|a|.
Note that :

π.(ψ+(E)−φ(E)) = arg
Zt(A)

a
.

Now let us prove a small lemma at �rst :

Lemma 7.13. If z1 = a+ ib,z2 = c + id , then

arg
(
z1
z2

)
≤ sin−1

|z1 − z2|
|z2|

.

Proof. By elementary calculations, we have :

arg
(
z1
z2

)
= sin−1

bc − ad
|z1||z2|

So we need to show that

bc − ad ≤ |z1||z1 − z2| =
√
a2 + b2

√
(b − d)2 + (c − a)2.

This is true by the Cauchy-Schwarz inequality.

Now we apply this to z1 = Zt(A), z2 = a. We get

π.(ψ+(E)−φ(E)) ≤ sin−1
|Zt(A)− a|
|a|

NownoteI (Zt(A)) = I (Z0(A)) = I (a). Thus |Zt(A)−a| =Ra−R (Zt(A)) ≤
t|a|.
Hence the argument is less than sin−1(t).

Similarly we do this for ψ−.

Thus we then have d(P0,Pt) ≤ 1
π t.

So we have a continuous map in StabΛ(D).
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7.6.1 Preservation of Quadratic Reciprocity

By the previous subsection, we have the local homeomorphim by lemma 7.12.
Its remains to show that all the stability conditions in the speci�c above path
satisfy the support property.
That is we need to show that :

∀t ∈ [0,1] Q(v(E)) ≥ 0 where E is semistable object of Zt

We show that the stability condition Z1 satis�es this. For all other t, the
proof remains the same. The main idea of the proof is to proceed by con-
tradiction. If E doesn’t satisfy the required condition, then it has to be Z0

unstble. The main idea is to get a t such that E is strictly Zt semistable.

Assumption

We are assuming the notion of Jordan-Holder Filtration of a semistable ob-
ject with respect to a stability condition. It is similar as of the �ltration in
case of sheaves.

Main proof

Before the main proof we have three lemmas and de�nition about truncated
HN polygons.

Lemma 7.14. Let σ = (Z,P ) be a stability condition. Assume that Q is non-

degenerate quadratic form onΛR of signature (2,rkΛ−2) such thatQ is nega-

tive de�nite on kerZ . If E is strictly σ− semistable and admits a Jordan Holder

Filtration with factors E1,E2, ...Em and if Q(v(Ei)) ≥ 0 for i = 1,2 · · ·m then

Q(v(E)) ≥ 0.

Proof. We apply Q(v) = |Z(v)|2− ||p(v)||2 from lemma 7.4. So Q(v) ≥ 0 =⇒
Z(v) ≥ ||p(v)|| . We obtain :

|Z(E)| =
∑
|Z(Ei)| ≥

∑
||p(v(Ei))||

∑
||p(v(Ei))|| = ||p(v(E)||).

Thus we have Q(v(E)) ≥ 0.

Lemma 7.15. Given two objects A,E ∈ A denote their phases with respect to

Zt by φt(A),φt(E) . If the set of t ∈ [0,1] with φt(A) ≥ φt(E) is non-empty.

Then it is a closed subinterval of [0,1] containing one of its endpoints.

61



Master Thesis. Deformation Property of Stability Conditions.

Proof.

φt(A) ≥ φt(E)

=⇒ I (Zt(A))

R (Z(tA))
≥ I (Zt(E))

R (Zt(E))

=⇒ I (Z(A))

R (Z(A)) + tu ◦ p(A) ≥
I (Z(E))

R (Z(E)) + tu ◦ p(E)

which is a linear inequality in t and thus it shall have one of the endpoints.

Remark. This lemma is called the wall crossing. We get a wall such that the
condition holds.

We de�ne the truncated HN polygons.

De�nition 7.5. Let Z0 be a stability condition and E ∈ A. The polygon
formed by the extermal points ofHNZ0(E) on the left is called the truncated
HN polygon.(7.3)

0z1

z2

z3

z4 = Z(E)

Figure 7.3: A truncated HN polygon

Remark. 1. If A ⊂ E with φ0(A) ≥ φ0(E) i� Z0(A) in the truncated HN
polygon of E. This is evident from the diagram. See 7.4.

2. Now if Z0(A) is in the truncatedHN polygon of E, then we know that
R (Z0(A)) and Z(A) are bounded. Thus by the Lemma 7.10, we have

mZ0(A) ≤R (Z0(A)) +m
Z0(E)−R (Z0(E))

Also then ||p(v(A))|| ≤mZ(A) (Lemma 7.8)is also bounded. Thus in the
topology of ΛR the classes v(A) form a compact set in Z. Thus there
are �nitely many such classes of objects.

Now we prove the main result.
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0z1

z2

z3

z4 = Z0(E)

Z0(A)

Figure 7.4: Remark 1

Lemma 7.16. Every Z1 semistable object E ∈ A satis�es Q(v(E)) ≥ 0.

Proof. Suppose it is not, then by assumption of the support property of Z0

we have E is Z0 unstable. By the remark 2, we get that for any t ∈ [0,1] there
are only �nitely many subobjects v(A) which destabilise E with respect to
Zt .
Let A1, ..Am are destabilizing objects of Z0. For each those of Ai ’s, by apply-
ing Lemma 7.15, we get pi ∈ [0,1] such in [0,pi] the destabilizing inequality
is satis�ed with respect to Zpi ’s. Take 1 > t1 >max{p1,p2, · · ·pm} .
The claim is E is stricitly semistable with respect to Zt1 . Suppose it is not.
Then we have a subobject A ⊂ E such that φt1(A) > φt1(E). By Lemma 7.15
we get a range where this occurs. Note that the endpoint considered in this
inequality can’t be 1 as E is semistable with respect to Z1. So it implies by
the inequality that E has to be Z0 unstable. ThusA = Ai for some i and thats
a contradiction by the construction of t1.

So E is strictly semistable w.r.t Zt1 and thus admits a Jordan-Holder �l-
tration. By Lemma 7.14, we have then asQ(v(E)) < 0 =⇒ Q(v(F1/G1)) < 0
where G1→ F1→ E are subobjects E of the same phase such that F1/G1 is
stable.

Applying the same logic above to F1/G1 instead of E in the interval
[0, t1], we get t2 ∈ (0, t1) such that F1/G1 is stricitly semistable w.r.t Zt2
and corespondingly subobjects G1 ⊂ G2 ⊂ F2 ⊂ F1 and Q(v(F2/G2)) < 0
andG2/G1,F2/G1,F1/G1 are of the same phase. Continuing like this, we get
an in�nite chain of subobjects of E :

G1 ⊂ G2 ⊂ G3 · · · · · ·F3 ⊂ F2 ⊂ F1 ⊂ E

and a sequence t1 > t2 > t3 · · · · · ·
Now we know φt1(F1) = φt1(E) =⇒ the set of t such that φt(F1) ≥

φt(E) is non empty and by Lemma 7.15 it is a closed subinterval of the
form[0,x] (if it contains 1 as endpoint, then it shall contradict the fact that E
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is semitable w.r.tZ1). Thusφ
t2(F1) ≥ φt2(E) and similarlyφt2(G1) ≥ φt2(E).

Now we know that :

φt2(F1/G1) = φ
t2(F2/G1)

We perform the following manipulation:

φt2(F1/G1) = φ
t2(F2/G1)

=⇒ Zt2(F1/G1)

I (Zt2(F1/G1))
=

Zt2(F2/G1)

I (Zt2(F2/G1))

=⇒ Zt2(F1)−Zt2(G1)

I (Zt2(F1/G1))
=
Zt2(F2)−Zt2(G1)

I (Zt2(F2/G1))

=⇒ I (Zt2(F2/G1))Zt2(F1)−I (Zt2(F2/G1))Zt2(G1)

I (Zt2(F1/G1))
+Zt2(G1) = Zt2(F2)

=⇒ Zt2(F2) =
I (Zt2(F2)−Zt2(G1))Zt2(F1) +I (Zt2(F1)−Zt2(F2))Zt2(G1)

I (Zt2(F1)−Zt2(G1))

This expression shows that Z(F2) is in the line segment joining Z(F1)
and Z(G1) and thus similarly for G2. Thus we get that φ

t2(F2) ≥ φt2(E) and
∀t ∈ [0, t2], we have φt(F2) ≥ φt(E) and similarly for G2. Continuing with
t3 and so on with the same argument we get

φ0(Fi) ≥ φ0(E);φ0(Gi) ≥ φ0(E)

for all i .
Remark 1 of TruncatedHN polygon says thatZ0(Fi),Z0(Gi) are in truncated
HN polygon of Z0(E). But there are �nitely many classes of such objects
and thus the process should terminate.(Remark 2 of truncatedHN polygon).

Thus this ends ourwhole proof under theAssumption 7.6 of the quadratic
form. The next section will be on proving that the assumption can be made.

7.7 Reduction to the Assumption

This proof is done into two parts. First we show that we can assume that the
quadratic form to be non-degenerate. Secondly, we show that the signature
can be assumed to be (2,rkΛ − 2) .
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Lemma 7.17. Assume that the quadratic form Q on ΛR is degnerate. Then

there exists an injection ΛR → Λ of real vector spaces and a non-degenerate

quadratic form Q on Λ extendingQ such that the central charge Z :ΛR→ C

whose kernel is negative de�nite with respect toQ extends to Z :Λ→ C whose

kernel is negative de�nite with respect to Q.

Proof. Let N ↪→ ΛR be the null space of Q. By iterating the process, we
assume that dimRN = 1.
We write :ΛR = N ⊕ C . Now we de�ne Λ = N v ⊕N ⊕ C . Let B be the
corresponding billinear form of Q. We de�ne the quadratic form Q on Z as
Q = q ⊕Q|C where q is the quadratic form on N ⊕N∨ as q(x + y) = 2xy
where x ∈ N,y ∈ N∨ It is easily seen that this is a quadratic form. The cor-
responding billinear form on N ⊕N∨ is b(x1 + x2, y1 + y2) = x1y2 + x2y1
wherex1, y1 ∈N,x2, y2 ∈N∨.
Now we show that the Q is non-degenerate. Let B be the corresponding
billinear form .Let v = x1 + x2 + x3;x1 ∈N,x2 ∈N∨,x3 ∈ C be the degener-
acy vector of B .
We have B(x1+x2+x3,x1) = b(x1+x2,x1)+B(x3,x1) = x1x2 So either x1 = 0
or x2 = 0. If x1 = 0. Let w ∈ C , we have B(x2+x3,w) = B(x2,0)+B(x3,w) =
B(x3,w). Thus x3 = 0 as it is true for any w ∈ C.
If x2 = 0 ,then w′ ∈ ΛR. Then B(x1 + x3,w

′) = B(x1,w
′) + B(x3,w′) =

B(x3,w
′). Thus this implies x3 = 0.

Now in either case we reduce to v = x1 or v = x2. Then by de�nition of b we
can have x ∈N ⊕N v such that b(x1,x) , 0 or b(x2,x) , 0. So v = 0. Thus B
is non-degenerate.
Now we de�ne Z .
As kerZ is negative de�nite with respect to Q, this means Z |N is injective.
So we can assume Z mapsN to the real line.( as the image is of dimension is
1). Let n ∈ N such that Z(n) = 1. Let n∨ be the dual vector of n in N∨. We
de�ne Z(n∨) = α and α >> 0 such that it satis�es the desired property.
Let K = kerZ . The kernel of Z is contained in N ⊕N∨ ⊕ K (Notice that
K ⊂ C). It is given by vectors of the form a.n− a

αn
∨ + k where n ∈N,k ∈ K .

Now the main condition is that these vectors are negative de�nite with re-
spect to Q.
Now

Q
(
a.n− a

α
n∨ + k

)
= B

(
a.n− a

α
n∨ + k,a.n− a

α
n∨ + k

)

= b
(
a.n− a

α
n∨, a.n− a

α
n∨

)
+B(k,k) + 2B

(
a.n− a

α
n∨, k

)

= −2a
2

α
− 2a(n∨, k)

α
+Q(k).

This is quadratic function in a with a negative constant term. Thus for the
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function to be negative, we need the discriminant to be negative, i.e

4(n∨, k)2

α2
+
2Q(k)

α
< 0 =⇒ α >

(n∨, k)2

−Q(k)

for all k ∈ K . Now we need to choose the α the maximum of all such quan-
tities. We need to show that it is possible. Let k1, ..km be an orthogonal basis
of K with respect to B.
Let k =

∑m
i=1 aiki . Now we see that :

(n∨, k)2

−Q(k)

=
(n∨,

∑m
i=1 aiki)

2

−Q(
∑m
i=1 aiki)

=

(∑m
i=1 ai

√
−Q(ki)

(n∨,ki )
−
√
−Q(ki )

)2

∑m
i=1−a2iQ(ki)

≤
(
∑m
i=1−a2iQ(ki))

(∑m
i=1

(n∨,ki )2

−Q(ki )

)

∑m
i=1−a2iQ(ki)

=

m∑

i=1

(n∨, ki)2

−Q(ki)
.

where the inequality used is Cauchy-Schwarz. We choose α >
∑m
i=1

(n∨,ki )2

−Q(ki )

and it shall work.
Thuswe de�neα such that it satis�es the condition of negative de�nite prop-
erty.

Now thus we can assume the quadratic form to be non-degenerate. Now
we need to prove the assumption of signature to be (2,rkΛ − 2).
Now as kerZ is negative de�nite, we have the signature ofQ to be (p,rkΛ−
p) where p ∈ {0,1,2}. We have the following lemma.

Lemma 7.18. Assume thatQ is non-degenerate and of signature (p,rkΛ−p)
for p ∈ {0,1}. LetΛ =ΛR⊕R. We de�neQ(v,α) =Q(v)+α2 for v ∈ΛR,α ∈
R. Then any central charge on Z whose kernel is negative de�nite with respect

to Q extends to Z onΛR whose kernel is negative de�nite with respect to Q .

Proof. LetK ⊂ΛR be the kernel ofZ . LetK⊥ be the orthogonal complement
with respect to Q. We know Z |K⊥ is injective. Thus from signature of Q,
rank of K⊥ is of one or of signature (1,−1). So we have a one dimensional
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basis of K⊥ where Q is negative de�nite. This means we have v′ ∈ K⊥ such
that Q(v′) < −1. Let Z(v′) = z.Now notice that if v ∈ ΛR exists such that
Z(v) = z. This implies v = w+v′ wherew ∈ kerZ . ThusQ(v) < Q(v′) < −1.
We de�ne Z(v,α) = Z(v) + αz .If (v,α) ∈ kerZ , then Z(v) = −αz.By the

statement regarding Z , we get that Q
(
v
−α

)
< −1 =⇒ Q(v) < −α2. Thus

Q(v,α) < 0. This completes our proof.

Now with Lemma 7.18, notice that the signature of Q on Λ changes to
(p + 1,rkΛ − p − 1). Thus we reach to the stage of p = 2 which is our as-
sumption.
This ends the whole proof of Theorem 7.1 along with the proof of Assump-
tion 7.6. Hence we get the deformation property of stability conditions.
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Chapter 8
Stability condition on surfaces.

For de�ning stability conditions on surfaces as we have seen before, the stan-
dard t structure doesn’t work. So we need to de�ne another heart from the
previous heart. The method that we do is called tilting. The chapter starts
with the de�nition of tilting which helps us to construct stability function on
a surface. At last, we prove the Harder-Narasimhan property of the stability
function, thus proving Theorem 0.2.

8.1 Tilting of Abelian Categories.

At �rst we de�ne torsion pairs. Let A be an abelian category.

De�nition 8.1. Let (T ,F ) be a pair of full subcategories in A. This is said
to be a torsion pair in A if the following conditions are satis�ed.

1. Hom(T ,F ) = 0 for all T ∈ T and F ∈ F .

2. For all X ∈ A, there exists a short exact sequence
0→ t(X)→ X→ X/t(X)→ 0

where t(X) ∈ T and X/t(X) ∈ F .

Example 8.1. Let A = Coh(X) where X is a smooth projective scheme.
Then if T is the category of torsion sheaves andF is the category of torsion-
free sheaves, we have (T ,F ) to be a torsion pair.

The following proposition relates the concept of t-structures and torsion
pairs.

Proposition 8.1. Let (T ,F ) be a torsion pair in an abelian category A.
Let D≤0 = {X•|H i(X•) = 0; i > 0,H0(X•) ∈ T }
and D≥0 = {X•|H i(X•) = 0; i < −1,H−1(X•) ∈ F } .
Then (D≤0,D≥0) is a t structure on Db(A).
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Sketch of the proof. We verify the conditions of the t structure one by one
(De�nition 4.1).
Condition 1: Hom(X•,Y •) = 0 for all X• ∈ D≤0,Y • ∈ D≥1 .
Let f ∈ Hom(X,Y ) , 0. Then in Db(A), we have f = (f •, s•) and we have
the diagram

Z•

X• Y •

f •

s•

where s• is a quasi isomorphism.
ThusZ ∈ D≥1. Thenwe use the functors τ≤0,τ≥1 onX andZ (by Proposition
4.1) and we get the following diagram.

τ≤0(X•) X• τ≥1X• τ≤0X•[1]

τ≤0(Z•) Z• τ≥1Z• τ≤0Z•[1]

τ≤0f • f • h•

With the help of this diagram, we get that τ≤0f • , 0. But by further diagram
chasing, we also get that τ≤0f • = 0 and arrive at a contradiction. Thus f = 0.
Condition 2: D≤0 ⊂ D≤1 and D≥1 ⊂D≥0.
This is evident from the de�nition of ∗(D≤0,D≥0) .
Condition 3 : For X• ∈ Db(A) we have a distinguished triangle :

X•0 → X•→ X•1 → X•0[1]

where X•0 ∈ D≤0,X•1 ∈ D≥1.
For this, we start from the objectH0(X•) and use the de�nition of the torsion
pair and get an exact sequence

0→ t(H0(X•))
µ−→H0(X•)→ H0(X•)

t(H0(X•)
→ 0.

Let X• = (X i ,d i) Now we consider the diagram :
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0 0

0 Imd−1 E t(H0(X•)) 0

0 Imd−1 kerd0 H0(X•) 0

H0(X•)/t(H0(X•)) H0(X•)/t(H0(X•))

0 0

ρ µ′

µ

With the help of this diagram, we de�ne the complex X•0 of X as X i0 = 0

for all i > 0,X0
0 = E and X i0 = X i for all i ≤ −1. We de�ne d

′i
X•0

= d i for all

i < −1 and d
′−1
X•0

= ρ ◦ d−1 and d ′iX•0 = 0 for all i ≥ 0. It is seen easily that that

X•0 ∈ D≤0. Then we de�ne X•1 = X•/X•0 to be the quotient complex. Finally,
we show that X•1 ∈ D≥1.

Now we get the following important corollary as follows.

Corollary 8.1. Let A be an abelian category and (T ,F ) be a torsion pair in

A. Then the following hold:

1. B = {X• ∈ Db(A),H i(X•) = 0 ∀i , 0,−1 and H0(X•) ∈ T ,H−1(X•) ∈
F } is an abelian category.

2. The pair (X ,Y ) of full subcategories of X = F [1] and Y = T is a torsion

pair in B .
Sketch of the proof. :

1. This part is evident from Proposition 8.1 and from Proposition 4.3.

2. We verify the two conditions of the torsion pair. Firstly, we see that
HomDb(A)(F [1],T ) = Ext−1A (F,T ) = 0. Thus we got the �rst part.
Now we come to the second part. At �rst, we show that Z• ∈ B is
isomorphic to Z ′• ∈ Db(A) where Z ′i = 0 for all i , 0,−1.
Then if we can write Z like that by the commutative diagram below,
we get our condition:

· · ·0 0 H−1(Z•) 0 0 · · ·

· · ·0 0 Z−1 Z0 0 · · ·

· · ·0 0 0 H0(Z•) 0 · · ·

d−1
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where the �rst row is in F [1] and the third row is in T .

This corollary shall help us construct the stability function for surface.

8.2 Construction of stability function on a sur-

face.

Let D,F be R divisors on a smooth projective surface S with F ample. We
know F- slope of a torsion free coherent sheaf E is de�ned by

µF(E) :=
c1(E).F

rkE
.

Here we use . means the intersection cycle of subvarieties.
We also known that such coherent sheaves have a Harder Narasimhan �l-
tration ( refer to Chapter 2, Section 2 )

E0 ⊂ E1 ⊂ ...En = E

where we de�ne µi = µF(Ei /Ei−1). Also, we have

µF−max(E) = µ1 > µ2 > · · · > µn(E) = µF−min(E).

Remember that each semistable sheaf has a �ltration of stable sheaves of the
same slope. We want to apply Corllary 8.1, so at �rst we need to de�ne the
torsion pairs on the standard heart Coh(S).

De�nition 8.2. Let A = Coh(S). We de�ne :

T = {Torsion Sheaves} ∪
E| µF−min(E) > D.F



and

F =

E| µF−max(E) ≤D.F


Remark. The pair (T ,F ) is a torsion pair as this is beacuse it is just the trun-
cation of the HN �ltration of E in two parts. For example, the �rst condition
of torsion pair of theHom group to be zero is because of the fact that if A,B
are F− semistable, then µF(A) > µF(B) =⇒ Hom(A,B) = 0.
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Now by 8.1, we get that

A#
(D,F) = {E• ∈Db(S)|H i(E•) = 0,∀i , 0,1,H−1(E•) ∈ F ,H0(E•) ∈ T }

is an abelian category and thus the heart of a bounded t structure(by ??).
Now we need to de�ne Z(D,F), the central charge on A#

(D,F).

De�nition 8.3. For a sheaf E ∈ Coh(S), we de�ne:
Z(D,F)(E) = −(e−(D+iF).ch(E))

Now for extending it to A#
(D,F), we de�ne :

Z(D,F)(E
•) = Z(D,F)(H

0(E•))−Z(D,F)(H
−1(E•))

Explicitly, the de�nition of Z(D,F)(E) where E ∈ Coh(S) is :

Z(D,F)(E) = −(e−D−iF .ch(E))
= (−1,D + iF,−(D2/2−F2/2+ iD.F)).(rkE,c1(E),ch2(E))
= −ch2(E)− rk(E).(D2/2−F2/2+ iD.F) + (D + iF).c1(E)

= −ch2(E)− rk(E)(D2/2−F2/2) +D.c1(E) + iF.(c1(E)− rk(E).D).

Our main aim is to show that this is a stability function.
Before the start of the proof, let us recall the statements of Hodge-Index The-
orem and Bogomolov-Gieseker Inequality.

Theorem 8.1. (Hodge-Index Theorem) If D is an R divisor on S and F is an

ample R divisor, then :

D.F = 0 =⇒ D2 ≤ 0.

Theorem 8.2. (Bogomolov-Gieseker Inequality) If E is a F-stable torsion-free
sheaf, then we have :

ch2(E) ≤
c21(E)

2.rk(E)
.

Now we prove the main aim.

Corollary 8.2. Z(D,F) is a Bridgeland stability function on A#
(D,F).

Proof. We need to prove for all E ∈ A#
(D,F), we need to show that Z(E) ∈H

where H is the strict upper half plane plus the negative semiline.
Now notice that by 2, we have the exact sequence :

0→H−1(E)[1]→ E→H0(E)→ 0

Thus if we prove the condition satis�es for H−1(E)[1] ∈ F [1] and H0(E) ∈
T , it shall satisfy for E as Z is additive on exact sequences (the map is from
K(A#

(D,F))). Thus it boils down to the following choice of E:
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1. E = T , where T is torsion sheaf on S .

2. E where E is F stable torsion-free sheaf with µF(E) > D.F .

3. E[1] where E is F stable torsion-free sheaf with µF(E) ≤D.F.
Note 2 and 3 follow from the fact of �ltration of sheaf in semistable and then
into stable factors.

We deal with each case separately. We use the explicit formula of Z(D,F)

in the proof.

1. We have T a torsion sheaf supported on a curve, so rk(E) = 0. Thus
I (Z(D,F)(T )) = D.c1(T ) > 0 as c1(T ) is an e�ective divisor. Now if
this is zero, then we have c1(T ) = 0 =⇒ T is supported in dimension
0. Thus in that case

R (Z(D,F)(T ) = −ch2(T ) < 0

as ch2(T ) just counts number of points in the support of T . Thus
Z(D,F)(T ) ∈H .

2. Now in this case we rewrite the imaginary part of Z(D,F)(E) . We write
as :

I (Z(D,F)(E)) = (c1(E).F − rk(E)D.F) = rk(E)(µF(E)−D.F) > 0

by de�nition of E in this case. Thus Z(D,F)(E) ∈H .

3. Using the same formula above, we have if µF(E) < D.F, then we have
I (Z(D,F)(E)) < 0. Now ,by de�nition ofZ(D,F), we haveZ(D,F)(E[1]) =
−Z(D,F)(E). Thus I (Z(E[1])) > 0.
Now it is just left to deal when µF(E) = D.F. In that case, the imagi-
nary part is zero. We use the Bogomolov Inequality in the real part of
Z(D,F):

R (Z(D,F)(E)) = −ch2(E)− rk(E)(D2/2−F2/2) +D.c1(E)

≥ −c
2
1(E)

2rk(E)
− rk(E)(D2/2−F2/2) +D.c1(E)

= −c
2
1(E)− 2rk(E)D.c1(E) + (rk(E)D)2

2.rk(E)
+ rk(E)F2/2

= −(c1(E)− rk(E)D)2

2rk(E)
+ rk(E)F2/2.
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Thus now µF(E) = D.F gives us from the imaginary part of Z(D,F)(E)
that F.(c1(E)−rk(E)D) = 0. Apply Hodge-Index Thoerem to this con-
dition. We get that (c1(E)− rk(E)D)2 ≤ 0. Thus we have

R (Z(D,F)(E)) > 0 =⇒ R (Z(D,F)(E[1])) < 0

So in this case also, we have Z(D,F)(E) ∈H .

This completes the whole proof of the function being a stability function.

8.2.1 Harder Narsimhan Property of Z(D,F)

In this part, we prove the HN property of the stability function. We give a
sketch of the proof.

Theorem 8.3. IfD,F ∈NS(S)⊗Q and F ample, then Z(D,F) satis�es theHN
property.

Sketch of the proof. As D,F are Q divisors, the image of Z = Z(D,F) turns to
be a discrete subgroup of C. The idea of this proof is to prove the conditions
of Proposition 5.1.
At �rst we let we have an in�nite chain of subobjects of an object E ∈ A#

(D,F)
:

· · ·Ei+1 ⊂ Ei ⊂ · · ·Ei ⊂ E0 = E.
with φ(Ei+1) > φ(Ei).
Thus we have the exact sequences

0→ Ei+1→ Ei → Fi → 0.

So we have I (Z(Ei+1)) ≤ I (Z(Ei)) as we are in A#
(D,F).

As the image of Z is discrete, we get that I (Z(Ei)) is constant after some
stage. Thus in that stage we get Im(Z(Fi)) = 0 =⇒ R (Z(Fi)) < 0 =⇒
R (Z(Ei)) < R (Z(Ei+1)). But for such i , as the imaginary parts are same,
we have φ(Ei+1) < φ(Ei) which contradicts the assumption.
Thus the �rst part is proved.
Now we prove the second condition of Proposition 5.1, interestingly, if we
follow the same argument as before, we don’t get a contradiction. For this
part, we need to do a lot more work.
Let

E = E0� Ei � E2 · · ·Ei � Ei+1 · · · .
be a sequence of quotients of E where φ(Ei+1) < φ(Ei).
We consider the sequence in cohomology :

H0(E)→H0(E1)→ ·· · ..H i(E) · · · ..

75



Master Thesis. Stability condition on surfaces.

We know that the category of sheaves is noetherian. Thus this sequence
terminates. After eliminating �nitely many terms, we assume : H0(E) �
H0(Ei) for all i .
We consider the exact sequences

0→ Li → E0→ Ei → 0

where I (Z(Li)) = 0( This is because we are using the previous argument
of the �rst part of the proof).
We get a sequence of Li ’s and prove that that Li = Li+1.
One has the following exact sequences :

0→ Li−1→ Li → Bi → 0 · · · (1).

We then have the sequence of objects :

· · ·H−1(Li−1) ⊂H−1(Li) ⊂ · · ·H−1(E).

Now this chain terminates, so we can assume(after eliminating �nitely many
terms) that H−1(Li−1) �H−1(Li) for all i .
Now every Li �ts into an exact sequence :

0→H−1(Li)[1]→ Li →H0(Li)→ 0.

As I (Z(Li)) = 0 which implies I (H0(Z(Li))) = 0. By the de�nition of Z ,
we have that H0(Li) is torsion and supported in dimension 0.
Taking cohomology of the sequence (1), we get the sequence

0→H−1(Bi)→H0(Li−1)→H0(Li)→H0(Bi)→ 0.

Now by de�nition of Z , we have that H−1(A) is torsion-free for any object
A in the abelian category. Thus we have a non-zero map between a torsion-
free object H−1(Bi) and a torsion object H0(Li−1) which is impossible. So
we have H−1(Bi) = 0.
Now if we show that H0(Bi) = 0, then we shall have Bi = 0 =⇒ Li−1 = Li .
Now showing H0(Bi) = 0 is equivalent to showing that H0(Li−1) =H0(Li).
In otherwords, we should give a bound to the �nite length sheavesH0(Li)(Note
that these sheaves are torsion supported on dimension 0).
Let us go back to the original exact sequence :

0→ Li → E→ Ei → 0.

Remember that we have H0(E) �H0(Ei) for all i . Thus taking cohomology,
we have

0→H−1(Li)
g−→H−1(E)

f−→H−1(Ei)→H0(Li)→ 0.
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Let Q be the image of the map f . At �rst, notice that Q is independent of
i as Q = im f = kerg where g : H−1(Li) � H−1(Li+1)→ H−1(E). Then we
have the exact sequence :

0→Q→H−1(E)→H0(Li)→ 0.

We know that H−1(E) is torsion-free, thus we have that Q is torsion-free.
By diagram chasing, we have that H0(Li) is a subsheaf of the �nite length
sheaf Q∗∗/Q. Thus the length of H0(Li) is bounded. So we have H0(Bi) = 0
and thus we have Li−1 = Li . Thus all the conditions of Proposition 5.1 are
satis�ed.
Hence, we have the HN property of Z(D,F).

Thus overall we get (A#
(D,F),Z(D,F)) to be the stability condition on a

smooth projective surface S which proves the following theorem.

Theorem 8.4. If S is a smooth projective surface and D = Db(S), then the

space of stability conditions Stab(D) is non-empty.
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