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Introduction

The classification of varieties with respect to various criteria is a classical
problem of mathematics. The one we will cover in this thesis is the birational
classification of complex algebraic surfaces. Its analoguous in dimension 1,
the birational classification of curves, is a relatively easy problem as bira-
tional morphisms of curves are isomorphisms.
The classification of complex algebraic surfaces up to birational equivalence,
which is the subject of this thesis, is not a recent result. In fact, the birational
classification of complex algebraic surfaces was already completed early in the
20th century with results by Castelnuovo, Enriques and M. Noether among
other people. Since then, however, the notions of cohomology, sheaves and
schemes have been introduced, and with these tools we will be able to have
a different and more modern approach.
As a historical note, the classification of varieties of dimension 3 was given by
S. Mori with tools more refined than the ones we are going to use and earned
him a Fields medal in 1990. The classification of varieties of dimension 4
and all higher dimensions is an open problem which is being actively worked
upon.
The main characteristic we will use is the Kodaira dimension of a surface
which, as we will show, is a birational invariant, and work with it on a spe-
cific class of surfaces, called minimal surfaces, but to do all of this we will
first need to show some results.
In the first part, we will discuss divisors on a surface. In particular, we will
give the definition of Weil divisor and Cartier divisor, and show that on the
surfaces we are considering they coincide. We are also going to show that
invertible sheaves on a surface correspond to Cartier divisors, and we will
use this fact in the next section to define the intersection number of two
divisors by extending the usual intersection number of two distinct curves.
We will conclude the second section by introducing some tools to work with,
including Riemann-Roch’s theorem for surfaces.
In the next section, we will give the definition of birational maps and mor-
phisms, which we will follow up the definition of a particular birational mor-
phism, the blow-up, and with some results about their structure, and in
particular we will see how we can always lift a birational map to a birational
morphism. At the end of this section we will also state and give a proof for
Castelnuovo’s contractibility criterion.
After this last result, we will be able to define what a minimal surface is, and
we will define some characteristics associated to a surface that are invariants
under birational morphisms and we will get into the core of the classification
by observing how specific values for these invariants determine specific min-

2



imal surfaces. We will then close this section by giving the definition of the
Kodaira dimension of a variety.
After giving some more results about birational invariants and how they de-
termine specific minimal surfaces, we will finish by giving the classifcation of
complex algebraic surfaces up to birational equivalence with respect to their
Kodaira dimension.
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1 Divisors

1.1 Weil and Cartier divisors

Let X be a noetherian integral separated scheme such that every local ring
OX,x of dimension 1 is regular. We define a prime divisor on X to be a closed
subscheme of X of codimension 1.
We may define the free abelian group DivX whose generators are the prime
divisors and whose elements D ∈ DivX are called Weil divisors. Weil divisors
can be expressed as a formal sum ∑niDi, where the sum is taken over all
prime divisors Di and the ni are integer coefficients, only finitely many of
which are non zero. We will say a divisor is effective if all the ni are non
negative.
Furthermore, let f be a non-zero rational function on X. Let us define the
divisor associated to f to be (f) = ∑ vDi(f) ⋅Di, where the sum is over all
the prime divisors Di on X. We have that vDi ≥ 0 for all Di, but only a finite
amount of them are not zero. We will say that any divisor equal to a divisor
associated to a function is principal.
Consider two divisors D and D′ over X. We will say that D and D′ are
linearly equivalent if D−D′ is a principal divisor, and we will denote this by
D ∼ D′. This is an equivalence relation on DivX, and we denote the group
of classes of divisors under this equivalence as ClX.
Since this definition of divisors only works for schemes with specific traits, we
will now give a different definition of divisor which works for any arbitrary
scheme. Let X be a scheme and let us denote by OX the sheaf of rings of the
scheme X. For all affine open U , let S(U) be the set of elements in Γ(U,OX)

that are not divisors of zero in OX,x for all points x ∈ U . This way, we obtsin
a presheaf of rings, which is defined on the open U by S(U)−1Γ(U,OX), and
we may consider the associated sheaf, which we will denote KX .
A Cartier divisor on X is defined as a global section of the sheaf K∗/O∗. Let
(Ui)i∈I be an open cover of X and D a Cartier divisor. We may give a local
description of D by giving for every Ui some function fi ∈ Γ(Ui,K∗X), such
that the quotient functions fi/fj are in Γ(Ui ∩ Uj,O∗

X). A Cartier divisor
is said to be principal if it is in the image of the natural projection map
Γ(X,K∗X) → Γ(X,K∗X/O∗

X). Also, two Cartier divisors are said to be linearly
equivalent if their difference, which is obtained by taking the quotient of the
respective functions on every open Ui, is a principal divisor.
An invertible sheaf L on X is defined as a locally free OX-module of rank
1, and recall that for every such L there exists an invertible sheaf L−1 such
that L ⊗ L−1 = OX . Isomorphisms of invertible sheaves are an equivalence
relation, so we can consider the set of classes of invertible sheaves under this
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equivalence relation, which is a group under the ⊗ operation. We call this
group the Picard group of X, and we denote it by PicX.
If D = (Ui, fi)i∈I be a Cartier divisor on the scheme X, we may define the
sheaf associated to D, denoted OX(D), to be the OX-module defined locally
by f−1

i OUi . Notice that since fi/fj is an invertible function on Ui ∩ Uj, then
fi and fj define the same OX(Ui ∩ Uj)-module. Also OX(D) is actually an
invertible sheaf since every fi is in Γ(Ui,K∗x) and so the map OUi → OX(D)∣Ui
defined by 1 ↦ f−1

i is actually an isomorphism. These invertible sheaves
associated to divisors also have the following properties:

Proposition 1.1.1. Let D,D′ be Cartier divisors, then:

1. The map D ↦ OX(D) is a 1-1 correspondance between Cartier divisors
and invertible subsheaves of KX

2. OX(D −D′) = OX(D) ⊗Ox(D′)−1

3. D ∼D′ ⇐⇒ OX(D) ≅ OX(D′) as invertible sheaves.

Proof.

1. Let L be an invertible sheaf on X. We can obtain a divisor from L by
taking, for every open Ui, a local generator fi of L. Then, the family
(Ui, fi)i∈I describes a Cartier divisorD, and since they coincide on every
open Ui we have L = OX(D), and so we get the 1-1 correspondance

2. Let D,D′ be two divisors, locally given by fi and by gi respectively.
Then D−D′ is locally given by fig−1

i , and in turn OX(D−D′) is locally
generated by f−1

i gi. It follows OX(D −D′) = OX(D) ⋅OX(D′)−1, which
is canonically isomorphic to OX(D) ⊗OX(D′)−1

3. By the previous point, OX(D) = OX(D′)⊗OX(D−D′), so it is enough
to prove that D−D′ is principal if and only if OX(D−D′) ≅ OX . First,
let us assume D −D′ is principal. Then by definition there exists some
f ∈ Γ(X,K∗X) such that D is the image of f through the canonical
projection Γ(X,K∗X) → Γ(X,K∗X/O∗

X).
Using the above construction and the fact that f is globally defined,
we can define a map OX → OX(D − D′) by 1 ↦ f−1 and it is an
isomorphism. Conversely, if OX(D) ≅ OX(D′), the image of 1 through
the isomorphism gives some f−1 ∈ Γ(X,K∗X), whose inverse defines a
principal Cartier divisor that corresponds to D −D′.
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At this point we have a correspondance between invertible sheaves and
Cartier divisors, but we still have given no link between Weil divisors and
Cartier divisors. What we will now see is that under some conditions Weil
divisors and Cartier divisors are equivalent definitions.

Theorem 1.1.2. Let X be a noetherian integral separated scheme such that
every local ring is an UFD. Then DivX ≅ Γ(X,K∗X/O∗

X), that is the group
of Weil divisors is isomorphic to the group of Cartier divisors. Furthermore,
principal Weil divisors correspond to principal Cartier divisors.

Proof. First, we want to check we can actually define Weil divisors on X.
We already have that the scheme is noetherian, integral and separated, and
we just need for every local ring of dimension 1 to be regular. As every local
ring on our scheme is an UFD, then any of them which is of dimension 1 is
also a PID, and in particolar it is regular, so DivX is defined on X.
As the scheme X is integral, the sheaf KX is a constant sheaf and it corre-
sponds to the function field K of X. Let D = (Ui, fI)i∈I be a Cartier divisor,
where (Ui)i∈I is an open of X. For each prime divisor Y on X, we may
consider for every i ∈ I such that Ui ∩ Y ≠ ∅, the valuation vY (fi).
If there exist two indexes i, j such that Y ∩Ui and Y ∩Uj are both non-empty,
then the quotient function fi/fj is invertible on the intersection Ui∩Uj by the
definition of Cartier divisor, and so it is obviously also invertible on Ui∩Uj∩Y .
Then, vY (fi/fj) = 0, which in turn implies vY (fi) = vY (fj) = vY (D), and since
X is noetherian, only a finite amount of vY will be non-zero.
We may now define a Weil divisor D = ∑Y vY Y , which from the previous
discussion is well-defined and is induced canonically from the Cartier divisor
we considered.
Conversely, suppose we have a Weil divisor D and we want to obtain a
Cartier divisor. Let p ∈ X be a point, and consider the induced Weil divisor
Dp, which is on the local scheme SpecOX,p. Since OX,p is an UFD, it follows
that Dp is principal and in particular for some function fp we get Dp = (fp).
The principal divisor defined by (fp) on X has the same restriction to
SpecOX,p as D, and so they may only differ by prime divisors which do
not pass through p. Then we may take an open neighborhood Up of p where
D and (fp) have the same restriction.
Giving an open cover (Ui)i∈I of X, where the open subset are obtained like
Up, naturally results in giving a Cartier divisor (Ui, fi) which is well-defined
as if two funtions f and f ′ define the same Weil divisor in an open U , we
would have that f/f ′ ∈ Γ(U,O∗

X), that is they give the same Cartier divisor,
and so this map of divisors is well defined.
We now have a construction of a Cartier divisor starting from a Weil divisor
and one of a Weil divisor starting from a Cartier divisor, and we want to
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show one is the inverse of the other. If we take a Cartier divisor (Ui, fi)i∈I ,
we can consider the Weil divisor D it defines. As before, around every point
of Ui, the divisor Dp defined D on SpecOX,p is a principal divisor (f ′i). As
the map is well-defined and the valuation of f ′i has to coincide with the val-
uation of fi for every prime divisor by construction of D, we may actually
take f ′i = fi and so we get that the Cartier divisor we construct starting from
D is (Ui, fi)i∈I , and so the first map is the inverse of the second.

1.2 Divisors on a surface

Recall that a variety is an integral separated scheme of finite type over an
algebraically closed field k, and that varieties of dimension 1 are called curves
and varieties of dimension 2 are called surfaces.
Our intent is to work with complex algebraic varieties, and so whenever we
consider curve, surface or variety, if not specified we will always assume they
are over C and projective, unless specified. Furthermore, we will similarly
always assume a surface is smooth if not specified.
In a smooth variety every local ring is regular, and every regular local ring
is an UFD and so whenever we will work on smooth surfaces we will be in a
situation where Weil divisors correspond to Cartier divisors. In this case, we
will use the term divisor to indicate either structure.
In particular, closed subschemes of codimension 1 on a surface are actually
varieties of dimension 1, that is curves, so we have that the prime divisors on
a surface are irreducible curves and in general we may describe any divisor
on a surface as a formal sum of curves.
We may also state and prove a small result which we will use repeatedly later
on:

Lemma 1.2.1. Let X be a surface and C a smooth irreducible curve on X.
Let i ∶ C →X be the associated closed immersion. The sequence of sheaves

0→ OX(−C) → OX
i#

→ i∗OC → 0

is exact.

Proof. Let (Ui, fi) be a description of the curve C as cartier divisor. The
sheafOX(−C) is defined on every Ui to be the ideal fiOUi , and so we naturally
have a morphism of sheaves OX(−C) → OX . Also, as a sequence of sheaves is
exact if and only if it is exact at level of stalks, then we may check exactness
locally.
Let p be a point in X. If p /∈ C then (i∗OC)p = 0, and for any open Ui
containing p the function fi is locally invertible in Ui, so fiOX,p = OX,p and
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we have that the sequence is exact at p /∈ C.
Let now p ∈ C instead, and let fi be an equation defining C locally around
p. In this case, fiOX,p is a proper ideal of OX,p. Since fi defines C locally,
then the value of fi in all the points of C around p is 0, and so the image of
the ideal fiOX,p in (i∗OC)p is 0.
It remains to show that OX,p → (i∗OC)p is surjective, which is true since i is
a closed immersion. The given sequence is then exact.

For simplicity we will write OC instead of i∗OC when using this sequence.
Furthermore, it is useful to notice that, as invertible sheaves are locally free,
tensoring this sequence by an invertible sheaf L on X will still yield an exact
sequence.
It may also be sometimes useful to consider linear systems of divisors. Let D
be a divisor on a surface X. We denote by ∣D∣ the set of all effective divisors
linearly equivalent to D, and we will say it is the complete linear system of
D. Any linear subspace of ∣D∣ will be called a linear system on X. Let P be
such a linear subspace, the dimension of P is its dimension as a projective
space.
We may also see that every non-zero global section of the sheafOX(D) defines
an effective divisor linearly equivalent to D, that is an element of ∣D∣. Vicev-
ersa, we can associate a non-zero sglobal section of OX(D) to every element
of the linear system ∣D∣. This gives us an identification betweeen the linear
system ∣D∣ and the vector space H0(X,OX(D)). Furthermore, a generic lin-
ear system P on X is associated to a vector subspace of H0(X,OX(D)).
Let P be a linear system on the surface X. We will say that a curve, which
is a prime divisor on the surface, is a fixed component of the linear system if
for every divisor D ∈ P the index of C in D is not zero. The formal sum of
every fixed component defines the fixed part of a linear system, which really
is some divisor F . We may also define the complete linear system ∣D − F ∣

which from the previous discussion can see has no fixed part.
Similarly, a point p ∈X is said to be fixed in the linear system P if for every
D ∈ P we have p ∈ D. In this moment, we still can not give any information
on the number of fixed points of a linear system on a surface, but we are
going to discuss this later on.
We close this section by recalling that an invertible sheaf L on a projective
scheme X is said to be very ample if there exists an immersion i ∶ X → Pn
such that, if we denote by O(1) the bundle on Pn whose sections are homo-
geneous polynomials of degree 1, then OX(1) = i∗O(1) ≅ L. We call OX(1)
the tautological bundle on X. We will also say that a divisor H such that
OX(H) ≅ L is a very ample divisor, and if it effective we will say it is an
hyperplane section.

8



2 Riemann-Roch’s theorem for surfaces

2.1 Intersections on a surface

Let X be a surface, and let C,C ′ be two distinct irreducible curves on X
that intersect, and let p ∈ C ∩ C ′ be a point in the intersection. If we let f
and g be two local equations for C and C ′ respectively around p, we define
their intersection multiplicity at p to be mp(C ∩C ′) = dimCOX,p/(f, g).
We may also define the intersection number of C and C ′ as

(C.C ′) = ∑
p∈C∩C′

mp(C ∩C ′).

This definition only works for two distinct curves, but we want to extend this
definition so that it works for any two divisors, not necessarily distinct.
To do so, we are going to define a symmetric bilinear form PicX ×PicX → Z
such that (OX(C).OX(C ′)) = (C.C ′) for any two distinct curves C and C ′.
Let us recall the Euler-Poincaré characteristic of a sheaf L:

χ(L) = ∑
i≥0

(−1)ihi(X,L) (2.1.1)

where we use the notation hi(X,L) = dimC(H i(X,L)).
For C and C ′ two distinct irreducible curves we also define the skyscraper
sheaf OC∩C′ = OX/(OX(−C)+OX(−C ′)), which is a sheaf on X whose stalks
are OC∩C′,p = OX,p/(f, g). We may see that

(C.C ′) = dimH0(X,OC∩C′).

Also, since a skyscraper sheaf F has H i(X,F) = 0 for i ≥ 1, then we have
χ(F) = h0(X,F), which combined with what we just said implies that
(C.C ′) = χ(OC∩C′).
Now, we will give a definition of the extension of the intersection number
which works for every D,D′ ∈ DivX, by giving it as a bilinear form on the
Picard group.

Theorem 2.1.2. For L,L′ ∈ PicX, define

(L.L′) = χ(OX) − χ(L−1) − χ(L′−1) + χ(L−1 ⊗L′−1) (2.1.3)

This is a symmetric bilinear form PicX ×PicX → Z that for C ≠ C ′ satisfies
(C.C ′) = (OX(C).OX(C ′)).
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Proof. it is immediate to show that the form is symmetric, as the tensor
product is commutative.
First we are going to show that if C and C ′ are two distinct irreducible
curves on X, then (C.C ′) = (OX(C).OX(C ′)), and so our form is a consistent
definition of an extensions of the intersection number of two curves.
We claim that the sequence

0→ OX(−C −C ′) → OX(−C) ⊕OX(−C ′) → OX → O(C∩C′) → 0,

is exact.
Since a sequence of sheaves is exact if and only if it exact at level of stalks,
we can check everything locally around a point p ∈ S. So, let f and g be two
functions in OX,p define C and C ′ locally around p respectively.
We then get the sequence

0→ fgOX,p Ð→ fOX,p ⊕ gOX,p Ð→ OX,p → OX,p/(f, g) → 0

where the map fOX,p ⊕ gOX,p → OX,p is given by mapping the pair (s, s′) to
s − s′, and the other two maps are the standard inclusion and the standard
quotient.
Injectivity of the first map is trivial, and the image of this map is also obvi-
ously contained in the kernel of the second one. We may say that it actually
is the kernel as the curves are taken to be irreducible and distinct so are the
functions f and g defining it locally. We may also observe that the image of
fOX,p ⊕ gOX,p is the ideal (f, g) of OX,p and OX,p → OX,p/(f, g) is trivially
surjective, so the sequence to be exact.
If we apply the Euler-Poincaré characteristic and use the fact that it is ad-
ditive with respect to direct sum of sheaves, we get

χ(OX) − χ(OX(−C)) − χ(OX(−C ′)) + χ(OX(−C −C ′)) = χ(OC∩C′)

which by using the properties in 1.1.1 and that the only non-trivial cohomol-
ogy group is the one indexed 0 as stated before, this gives us

(OX(C).OX(C ′)) = χ(OC∩C′) = (C.C ′)

which means the form satisfies the condition on the intersection of curves we
asked for.
We claim that if we take an irreducible curve C, for every invertible sheaf L
we have that

(OX(C).L) = deg(L∣C)

where L∣C = L ⊗OC .
To prove this, we apply the Euler characteristic to the exact sequence of
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lemma 1.2.1 and the same sequence tensored by L−1. Explicitly we have that
the short exact sequences

0→ OX(−C) → OX → OC → 0

and
0→ L−1 ⊗OX(−C) → L−1 → L−1 ⊗OC → 0

give respectively
χ(OX) − χ(OX(−C)) = χ(OC)

and
χ(L−1) − χ(L−1 ⊗OX(−C)) = χ(L−1

∣C )

which substituted in the definition of the intersection form give in turn

(OX(C).L) = χ(OC) − χ(L
−1
∣C ) = −deg(L−1

∣C ) = deg(L∣C),

where the second equality is due from Riemann-Roch’s theorem on curves.
In particular, as deg((L ⊗ L′)∣C) = deg(L∣C) + deg(L′∣C), then

(OX(C).L⊗L′) = (OX(C).L) + (OX(C).L′−1).

Furthermore, if L ≅ L′ then we also have deg(L∣C) = deg(L′∣C) which in

turn gives (OX(C).L) = (OX(C).L′). In particular if D and D′ are two
linearly equivalent divisors we may define two isomorphic invertible sheaves
OX(D) and OX(D′) to which we can apply this result. Similarly, if C and
C ′ are two smooth curves, and C ∼ C ′, then for any invertible sheaf L,
deg(L∣C) = deg(L∣C′).
Recall that by a theorem of Serre ([6]) for every divisor D on X and for
an hyperplane section H, there exists a large enough integer n ≥ 0 such that
there exist two smooth curves A and B which satisfy A ∼D+nH and B ∼ nH.
In particular we have D ∼ A −B.
So, let L,L′ be two invertible sheaves. We may write L = OX(D) for some
divisor D, and we may take A,B two smooth curves like above so that
D ∼ A −B.
We want to show that (L.L′) = (OX(A−B).L′) = (OX(A).L′)+(OX(−B).L′).
From the previous discussion we have

(OX(−B).L′) = (OX(−B).(L′ ⊗OX(A))) − (OX(−B).OX(A))

and so if we denote L′ ⊗OX(A) by (L′(A)) we have to prove

(L.L′) = (OX(A).L′) + (OX(−B).L′(A)) − (OX(−B).OX(A)).
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By the fact that OX(D)−1 = OX(−D) for any divisor D we have L−1 =

OX(−A +B) too, by applying the intersection form we get

(OX(A).L′) = χ(OX) − χ(OX(−A)) − χ(L′−1) + χ(L′(A)−1)

to which we will have to add

(OX(−B).L′(A)) = χ(OX) − χ(OX(B)) − χ(L′(A)−1) + χ(L−1 ⊗L′−1)

and then subtract

(OX(A).OX(−B)) = χ(OX) − χ(OX(−A)) − χ(OX(B)) + χ(L−1).

Then, we compute and obtain

(OX(A).L′) + (OX(−B).(L′ ⊗OX(A))) − (OX(−B).OX(A)) =

= χ(OX) − χ(L−1) − χ(L′−1) + χ(L−1 ⊗L′−1),

which is the definition of L.L′ so we have proven the statement.

Observe also that since for any divisor D we have OX(D)⊗OX(−D) = OX
and it follows from the definition thatOX .L = 0, thenOX(D).L+OX(−D).L =
OX .L = 0 for any invertible sheaf L, that is OX(D).L = −(OX(−D).L).
To go back to why we wanted to extend the intersection form, if we let
D and D′ be two divisors, we denote by D.D′ the intersection number
(OX(D).OX(D′)), and since D and D′ may be identical, we will denote
the intersection number D.D by D2.

Lemma 2.1.4. Let C be an irreducible curve on X such that C2 ≥ 0, and let
D be an effective divisor. Then D.C ≥ 0.

Proof. Let n ≥ 0 be the coefficient of C in D, and write D = D′ + nC. The
divisor D′ is also effective, and does not contain C as a component. Then,
this gives D′.C ≥ 0, and then D.C = (D′ + nC).C =D′.C + nC2 ≥ 0.

We are interested in seeing if there is any way in which intersection theory
is preserved in morphisms between surfaces. In a more general setting, let X
and Y be two smooth varieties, and let f ∶X → Y be a morphism of varieties.
From this morphism, we may induce an homomorphism f∗ ∶ PicY → PicX,
and if f is surjective we may use this homomorphism to define the inverse
image of a divisor.
Let D be a divisor, we take the inverse image of D through f , denoted
f∗D, to be the divisor associated to the invertible sheaf on X given by
f∗OY (D), that is OX(f∗D) = f∗OY (D). Since we have an identification
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between classes of linearly equivalent divisors on a scheme and the Picard
group of the scheme, then may notice that if D and D′ are two divisors and
D ∼D′, then f∗D ∼ f∗D′.
As we are interested in the particular case of morphisms of surfaces, let
f ∶ X → Y be a morphism of surfaces which is generally finite of degree d.
Let C be an irreducible curve on X, then we can define the direct image of
C, denoted f∗(C) to be 0 in the case f(C) is a point, or rΓ if f(C) is a
curve Γ on Y and the induced surjective morphism of curves f∣C ∶ C → Γ is
of degree r.
Furthermore, for every divisor D = ∑niCi on X we may define by linearity
f∗D = ∑nif∗Ci.
To give an application of this, let us consider a smooth curve C, and a
surjective morphism π ∶ X → C. Let F be a fibre of the morphism, that is
F = π−1(p) for some p ∈ C. We have that F 2 = F.F = 0. We may observe
there exists on C a divisor A, which is linearly equivalent to the divisor 1 ⋅ p
on C, such that p has multiplicity 0 in A. In particular, this means none of
the fibers which compose π∗(A) intersect F , and since the fibers are curves
and so π∗(A) is also a sum of curves, we may compute (F.π∗(A)) = 0 directly,
which gives F 2 = 0.
We may now also show that linear systems without fixed part have a finite
number of fixed points. Let P be a linear system without fixed part on a
surface X. Then, we may put a bound on the number of fixed points in P .
If we take two effective divisors D,D′ ∈ P then D2 is equal to D.D′ as they
define the same element in PicX. Since these are both effective divisors, and
we may assume they have no common component as P has no fixed part,
we may easily compute their intersection number D.D′ by linearity of the
intersection number.
Specifically, D and D′ can both be given as a finite formal sum of curves, and
we may assume that all curves appearing in D do not appear in D′. Then,
by taking the intersection number of every curve in D with every curve in
D′, and eventually considering multiplicites, we get D.D′ is a finite sum
of integers, so finite. Every fixed point of P has to be contained in D.D′

trivially, so we get that D2 is a bound for the number of fixed points in P .
We also have the following result regarding morphisms of surfaces.

Proposition 2.1.5. Let g ∶ X → Y be a morphism of surfaces of degree d,
and let D,D′ be two divisors on Y . Then (g∗(D).g∗(D′)) = d(D.D′)

Proof. As in the proof of 2.1.2, we may write the divisor D as difference of
two smooth curves on Y by taking an hyperplane section H and setting for
some n positive big enough A ∼D+nH and B ∼ nH, we have D ∼ A−B and
let us do the same for D′ with some other hyperplane section H ′, and write
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D′ = A′−B′. So, if we show the statement for D and D′ hyperplane sections,
we may extend it by linearity, and so it will follow for the general case.
Since there exists an open subset U of Y over which the morphism g is étale,
we may take H and B′ so that the divisors linearly equivalent to D and D′

they define are such that their intersection is normal and lies entirely in U .
We then have g∗(D)∩ g∗(D′) = g−1(D ∩D′) and, since g is étale over U , this
last term is composed of d copies of D∩D′, so (g∗(D).g∗(D′)) = d(D.D′).

2.2 Riemann-Roch’s theorem and related results

Let us recall that Serre duality tells us that if ωX is the sheaf of differentials
2-forms on X we have χ(L) = χ(L−1 ⊗ ωX) for any invertible sheaf L on X.
We now state and prove Riemann-Roch’s theorem for surfaces:

Theorem 2.2.1 (Riemann-Roch for Surfaces). Let X be a surface and let
L ∈ PicX. Then

χ(L) = χ(OX) +
1

2
(L2 − L.ωX) (2.2.2)

Proof. Let us consider the intersection number of L−1 and ω−1
X ⊗ L, and so

we have

(L−1.ω−1
X ⊗L) = χ(OX) − χ(L) − χ(ωX ⊗L−1) + χ(ωX)

and by Serre duality we have that χ(OX) = χ(ωX), so substituting this in
the right hand side gives

(L.ωX) = 2(χ(OX) − χ(L))

which by linearity of the intersection and rearranging terms gives (2.2.2),

Since we have a strong correspondance between invertible sheaves and
divisors, we may give a different formulation of this using divisors. Let D
be a divisor associated to L, and K be a divisor associated to the canonical
sheaf ωX . We will call any such K the canonical divisor of X, which we will
sometimes denote by KX if we are going to use many surfaces. For simplicity
of notation, by hi(D) we will indicate the number dimH i(X,OX(D)) as in
(2.1.1).
The surface X is a variety of dimension 2, so any cohomology group H i(X,L)
will be 0 if i ≥ 3 for any invertible sheaf L.
We may now rewtite Serre duality in terms of divisors, and so we get that
hi(D) = h2−i(K −D) for i = 0,1,2. By definition we also have that L2 = D2

and (L.ωX) = (D.K).
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Then, we have χ(L) = h0(D)+h1(D)+h2(D) and by the previous observations
we may write Riemann-Roch’s theorem for surfaces as

h0(D) + h0(K −D) − h1(D) = χ(OX) +
1

2
(D2 −D.K) (2.2.3)

and since sometimes we may not know much about h1(D) except that it is
trivially positive, we will write this as an inequality

h0(D) + h0(K −D) ≥ χ(OX) +
1

2
(D2 −D.K). (2.2.4)

Now, let us state a corollary of Riemann-Roch’s theorem on surfaces.

Corollary 2.2.5. Let C be a curve of arithmetic genus g(C) on the surface
X. Recall that g(C) = h1(C,OC). Then,

g(C) = 1 +
1

2
(C2 +C.K) (2.2.6)

Proof. The sequence 0 → OX(−C) → OX → OC → 0 is exact, and using the
Euler characteristic on it gives χ(OC) = χ(OX)−χ(OX(−C)) like in the proof
of 2.1.3.
By Riemann-Roch χ(OX(−C)) = χ(OX) + 1

2(OX(−C)2 − OX(−C).ωX) that
corresponds, in terms of divisors, to χ(OX(−C)) = χ(OX) + 1

2(C
2 −C.K).

We may also notice H i(C,OC) = 0 for i ≥ 2, as a curve has dimension 1.
Also, h1(C,OC) is g(C) by definition, and the global sections on a curve are
the constant functions, so h0(C,OC) = 1.
Then, we have

χ(OC) = 1 − g(C) = χ(OX) − χ(OX(−C)) = χ(OX) − χ(OX) −
1

2
(C2 +C.K),

from which we immediately get the desired formula.

The following result, which is in nature analytical, will be also useful. Let
hOX be the sheaf of holomorphic functions on the surface X considered as an
analytical manifold, and let e ∶ hOX → hO∗

X be the exponential map, which
is locally surjective. The kernel of this map is trivially the sheaf of locally
constant functions that take values in 2πiZ. Then, we get an exact sequence
of sheaves

0→ Z→ hOX
e
→ hO∗

X → 0.

As X is a compact surface, H0(X, hOX) = C and H0(X, hO∗
X) = C∗. So, if

we consider the long cohomology sequence associated to the exact sequence
above, we may start from H1(X,Z):

0→H1(X,Z) →H1(X, hOX) →H1(X, hO∗
X) →H2(X,Z) → ... (2.2.7)
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An important fact is that the analytic Picard group is canonically identified
with H1(X, hO∗

X), but from Serre’s GAGA theorem ([7]), this is the same as
the Pic we are considering here, H1(X,O∗

X).
Notice the above sequence also means we have a map c ∶ PicX → H2(X,Z).
We want to induce the intersection form we defined before on H2(X,Z).
Observe that by Poincaré duality we already have a pairing H2(X,Z) ×

H2(X,Z) → Z. If we consider an irreducible curve C on X, we may con-
sider the restriction H2(X,Z) → H2(C,Z) ≅ Z, which gives a linear form
on H2(X,Z) which by Poincaré duality means that it actually defines an
element c(C) ∈ H2(X,Z). We may now define c(D) for any divisor D by
linearity, and c(D).C(D′) =D.D′ as we wanted.
Before moving to the next part, we will state the following formula, valid for
any variety X, due to M. Noether, without giving proof:

χ(OX) =
1

12
(K2

X +∑(−1)ibi) (2.2.8)

where bi = dimRH i(X,R). Notice that ∑(−1)ibi is the topological Euler-
Poincaré characteristc, denoted χtop(OX).
When we are working on a surface, using Poincaré duality we have b0 = b4 = 1
and b3 = b1, so we get the following formula for the topological Euler-Poincaré
characteristic:

χtop(OX) = 2 − 2b1(X) + b2(X).
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3 Birational maps

3.1 Rational maps and the blow-up morphism

Let X and Y be two varieties, and let X be irreducible. A rational map φ
between X and Y , denoted φ ∶ X ⇢ Y , is defined as an equivalence class of
morphisms from an open subset U of X to Y , where the equivalence relation
is given by having two morphisms be equivalent if they are equal on the
intersection of the open subsets on which they are respectively defined.
If we glue all the morphisms in a class together, we may see a rational map
as a morphism φ from an open subset U of X such that for any open subset
V ⊆ X containing U , φ can not be extended to V . If p is a point in U , we
will say φ is defined at p.
The subset of X over which φ is not defined is trivially a closed subset, as
U is an open. The set of points over which a rational map is not defined in
a variety is a closed subset of codimension ≥ 2, so if X is a smooth surface
we have that the set of points over which φ is not defined X − U is a finite
subset F .
Let C be an irreducible curve on X. We have that φ is defined over the set
C−F , and we may obviously consider its image φ(C−F ). We may define the
image of C through φ, denoted with a slight abuse of notation φ(C), to be
the closure of φ(C −F ), and analogously, we define the image of X through

φ to be φ(X) = φ(X − F ).
We will now state and prove a result in a more general setting, which we will
then apply to surfaces.

Proposition 3.1.1. Let X be a noetherian integral separated scheme, let Z be
a proper closed subset of X and let U =X −Z. Then, there exists a surjective
morphism ClX → ClU , which is an isomorphism if Z has codimension in X
greater or equal than 2.

Proof. Consider the restriction map from X to U , and let Y be a prime
divisor on X. Then, Y ∩ U is either empty or a prime divisor on U . Let f
be a rational function on X, and (f) = ∑niYi the divisor associated to it.
If we consider the restriction f∣U as a rational function on U , we obrain a
divisor (f∣U) = ∑ni(YI ∩ U). Then we have an homomorphism ClX → ClU
defined by ∑niYi ↦ ∑ni(YI ∩ U), which is surjective because every prime
divisor on U is the restriction of some prime divisor on X. We may also
notice that if Z is of codimension ≥ 2 then since divisors only depend on
codimension 1 the homomorphism is actually an isomorphism.

While we will not use this immediately, we may also observe that if Z is
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of codimension 1 in X, there exists an exact sequence

0→ Z→ ClX → ClU → 0. (3.1.2)

This is because, due to how we defined the morphism ClX → ClU before,
the kernel is composed of all divisors in X contained in Z, but Z is a prime
divisor as it is of codimension 1 and so the only divisors on X satisfying this
property are the multiples of Z. In particular, the map Z → ClX in the
sequence is the one defined by n↦ n ⋅Z.
Returing to surfaces, since the set F is of codimension 2, we have an iso-
morphism Cl(X) → Cl(X − F ). In turn, this gives us another isomorphism
PicX → Pic(X − F ), so we may define the inverse image under the rational
map φ of divisors and invertible sheaves.
If we have two rational maps φ ∶X ⇢X ′ and ψ ∶X ′ ⇢X, such that ψ ○φ and
φ ○ψ are the identity on the respective sets of definition, we will say that X
and X ′ are birationally equivalent, and that the map φ is birational (and so is
ψ). If φ is a morphism, we will say that it is a birational morphism. Observe
that if we have two birational maps their composition is again a birational
map, so two surfaces being birationally equivalent is really an equivalence
relation.
Now, we will construct a particular morphism of surfaces that will be useful
to lift birational maps to birational morphisms. Let X be a surface, and
p ∈ X a point. Take an open neighborhood U of p, in which we can take
some local coordinates x and y centered at p such that the curves y = 0 and
x = 0 on U only intersect in the point p. Consider a variety U × P1, take the
subvariety defined by xA − yB = 0 in it, where x, y are the coordinates on U
and A,B the homogeneous coordinates on P1. Denote this subvariety Û .
Naturally, we have a projection morphism Û → U , which induces an isomor-
phism between U −p and its inverse image. The inverse image of p is instead
the curve (0,0) × P1. We may say there exists a surface X̂ and a morphism
ε ∶ X̂ → X which is an extension of the morphism Û → U described, such
that this morphism induces an isomorphism from X̂ − ε−1(p) to X − p. This
morphism is birational, and it is called the blow-up morphism of X at p,
while E = ε−1(p) is called the exceptional curve or the exceptional divisor of
the blow-up, and we observe that E ≅ P1.
We have that ε also induces a morphism ε∗ ∶ PicX → Pic X̂, which in turn
induces a morphism on divisors. We will now study the inverse image of a
curve through the blow-up of a surface. Trivially, if the curve does not pass
through p, then its inverse image is isomorphic to itself.
If instead, C passes through p with multiplicity m, then ε−1(C) contains E,
but ε−1(C − p) is a curve minus a point and we may take its closure, which
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is then a curve, and we will call this curve the strict transform of the curve
C, denoted Ĉ.

Proposition 3.1.3. Using the above notation, ε∗C = Ĉ +mE

Proof. First, we may notice that ε∗(Ĉ) = C, and that ε∗(E) = 0. This gives us
that, since away from p the blow-up is an isomorphism and so it is of degree
1 generally, and we will necessarily have ε∗C = Ĉ + kE for some integer k
that we have to determine.
Let f be a function defining the divisor C in an open neighborhood U of p.
Let x, y be the coordinates on U centered in p and without loss of generality
assume that p is the only solution for x = 0 in C ∩U , and that x = 0 is not a
tangent of C at p.
Then, since p is of multiplicity m in C, we can write the function f locally as
f(x, y) = fm(x, y)+g(x, y), where fm is a homogeneous polynomial of degree
m, and g is the sum of homogeneous polynomials of degree >m.
As in the construction of the blow-up morphism, consider the open subset
Û ⊆ U × P1, which is the subset given by the equation xY = yX, and let us
restrict to the affine subset of P1 defined by X ≠ 0. In this setting, y = Y x,
and so we can write

ε∗f = fm(x,Y x) + g(x,Y x) = xm(fm(1, Y ) + xg′(x,Y )).

Now, x = 0 is a local equation for E, and fm(1, Y ) only has a finite amount
of zeroes in E. Then, E occurs with multiplicity m in the equation defining
ε∗C locally, which means ε∗C = Ĉ +mE.

We will now give some properties on how the blow-up morphism deter-
mines some results of the intersection theory on X̂ by giving rise to the
intersection theory on X

Proposition 3.1.4. Let X be a surface, p ∈ X a point, ε ∶ X̂ → X the blow-
up of X at p and E = ε−1(p)
Then, Pic X̂ ≅ PicX ⊕ Z, and this isomorphism is given, with divisors, by
mapping (D,n) → ε∗(D) + nE where D ∈ DivX.
Furthermore, for D,D′ divisors on X, the intersection number form defined
on X̂ is such that (ε∗(D).ε∗(D′)) = (D.D′) and for D divisor on X and
D′ divisor on X ′ we have (ε∗D.D′) = (D.ε∗D′), which in particular gives
(ε∗(D).E) = 0. Also, E2 = −1.

Proof. From proposition 3.1.1, we have that Div(X − p) ≅ DivX. Also, from
the construction of the blow-up morphism we can say that X−p is isomorphic
to X̂ −E, and in particular Cl(X − p) ≅ Cl(X̂ −E). Then, since E is a curve
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on X̂ and so it is a closed subset of codimension 1, from (3.1.2) we get an
exact sequence

0→ Z→ Cl X̂ → ClX → 0,

and so Cl X̂ ≅ ClX ⊕ Z, where the isomorphism is the one in the statement
of the proposition.
Now we want to show (ε∗(D).ε∗(D′)) = (D.D′). We may see immediately
that if D and D′ do not contain p, then obviously the formula holds as the
blow-up is an isomorphism around the divisors. If either of them passes
through p instead, by the theorem of Serre used in the proof of 2.1.2 we may
take linearly equivalent divisors obtained as difference of curves which do not
pass through p.
To prove (ε∗D.D′) = (D.ε∗D′) we may use the same method, and so assume
that D does not pass through p, which means all the intersections between
ε∗D andD′ lie in X̂−E, and so the equation is quickly proven by isomorphism.
Note that for the particular case where D′ the exceptional curve E, the direct
image of E is 0, as the image of E through ε is a point, and so (ε∗(D).E) = 0.
Let C be a curve passing through p with multiplicity m. Then, by the
previous result ε∗C.E = 0, and we have that ε∗C = Ĉ +mE from 3.1.3. We
may observe that the equation of the curve Ĉ, which using the same notation
as in 3.1.3 we may write as (fm(1, Y )+xg′(x,Y )), has m solutions for x = 0,
which is an equation for the curve E, and so Ĉ.E = m, then by linearity we
get E2 = −1.

The Neron-Severi group of the surface X, denoted NS(X), is defined as
the quotient of classes of linearly equivalent divisors by the set of divisors of
degree zero.
Since Cl(X̂) ≅ Cl(X) ⊕ ZE, it follows that NS(X̂) ≅ NS(X) ⊕ ZE. In
particular, a blow-up morphism decreases the rank of the Neron-Severi group,
which is finite as a result of Severi’s theorem of the base.
Furthermore, as the canonical sheaves on X −p and X̂ −E are the same, then
we obviously have that KX̂ = ε∗KX+kE for some k ∈ Z. Furthermore, we may
use the genus formula, and the fact that g(E) = 0 to get −2 = E.(E +KX̂),
and so it follows from the results of the previous proposition that k = 1.
Before stating the next result, we give a bijection between the following two
sets:

� The set of rational maps φ ∶ X ⇢ Pm such that φ(X) is not contained
in an hyperplane.

� Linear systems on X without fixed part of dimension m.
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To be specific, let φ be a rational map X ⇢ Pm, and let ∣H ∣ be the complete
linear system of hyperplanes in Pm. Then, for every divisor D ∈ ∣H ∣, we
may consider the inverse image φ∗D, and so we define φ∗∣H ∣ to be the linear
system on X given by all the inverse images φ∗D. Observe that since φ(X)

is contained in no hyperplane, then ∣H ∣ has no fixed part, and so does φ∗∣H ∣.
Viceversa, let P be a linear system on X with no fixed part, and let P ∗ be
the projective space dual to P , which has a natural structure of projective
variety. We can then define a rational map X ⇢ P ∗ that is not defined at
the fixed points of P , and that elsewhere is defined by sending a point x ∈X
to the point in P ∗ corresponding to the hyperplane of divisors in P passing
through x.

3.2 Factorization of birational maps

Now, we are going to show how the blow-up morphism can be used to lift
rational maps from a surface to rational morphisms.

Theorem 3.2.1. Let φ ∶ X ⇢ Y be a rational map from a surface to a
projective variety. Then, there exists a surface X ′ and a birational morphism
of surfaces η ∶X ′ →X and a morphism f ∶X ′ → Y such that the diagram

X ′

X Y

η f

φ

is commutative. Also, η is up to an isomorphism the composition of a finite
number of blow-ups.

Proof. Since Y is a projective variety, in particular it lies in some projective
space Pm, we may just assume Y = Pm, and we may further assume that
φ(X) is not contained in any hyperplane of Pm.
Then, φ corresponds to some linear system P of dimension m on X, and P
has no fixed components. Then, we know that the linear system may only
have a finite amount of fixed points, and if this number is 0, then we may
just take X ′ = X as the linear system already defines a morphism X → Y .
We may then assume that P has at least one base point p.
We may consider the blow-up of X at p, which gives a surface X̂, then
consider the induced linear system ε∗P . As p is a fixed point for P , then ε∗P
has a fixed component, which is the exceptional curve E of the blow-up with
some multiplicity k. As the linear system remains unchanged away from E,
there are no other fixed components and so the fixed part of ε∗P is kE.
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Then we may construct the linear system whose elements are by D −kE, for
all divisors D ∈ ε∗P , which we will denote ε∗P − kE, and we may observe
it has no fixed part. Then, it corresponds to a rational map X̂ ⇢ Pn. This
rational map coincides with φ ○ ε. Recall that thThee amount of fixed points
in P is finite and bounded by D2, where D is a divisor in P , and observe
that (ε∗D−kE)−(ε∗D−kE) =D2−k2 otherwise their image through ε would
also have to be a base point in P this map is a morphism.
Then, we may construct inductively a chain of blow-ups using the above
procedure, and at each step the amount of base points in the linear system
gets smaller. We will eventually find a base point free linear system, and so
a rational morphism of surfaces X ′ → Y which makes the diagram commute.

Another result is that every birational morphism may be expressed as a
composition of blow-ups, but before showing this result we have to give a
couple of intermediate results.

Lemma 3.2.2. Let X be a possibly singular irreducible surface, X ′ a smooth
surface and let f ∶X →X ′ a birational morphism, where the inverse rational
map f ′ ∶X ′ ⇢X is not defined at some point p ∈X ′. Then f−1(p) is a curve
on X.

Proof. This question is local on X, and so we may suppose X to be affine.
So, there exists an embedding i ∶ X ↪ An. With these assumptions, we
may consider the rational map i ○ f ′ ∶ X ′ ⇢ An, which is defined by rational
functions g1, ..., gn in each coordinate, and at least one of which is not defined
at p, without loss of generality let one be g1. Then, we may write g1 = u/v,
for some u, v ∈ OX′,p coprime functions such that v(p) = 0.
Consider the curve D on X defined by f∗v = 0. We have that f∗u = x1f∗v,
where x1 is the function associated to the first coordinate on An. It follows
f∗u = f∗v = 0 on D. and so D is the inverse image of the subset of X ′ defined
by u = v = 0. Up to shrinking, since u and v are coprime, we way assume that
this set contains only one point, that is p and so f−1(p) is the curve D.

Lemma 3.2.3. Let φ ∶X ⇢X ′ be a rational map between surfaces, such that
φ−1 is not defined at some point p ∈X ′. Then, there exists some curve C on
X such that φ(C) = p.

Proof. Let U be the open on which the rational map is defined, and consider
the subset of X × X ′ defined as the closure of the set of points (x,φ(x))
∀x ∈ U , and let us denote this set X̃. The set X̃ can also be seen as an
irreducible surface, and we can consider the natural projections from X̃ to
X and to X ′, denoted π1 and π2 respectively.
We get the following commutative diagram:
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X̃

X X ′

π1 π2

φ

As the diagram is commutative, and φ−1 is not defined at p, then π−1
2 is

also not defined at p. By the previous lemma, there exists a curve C̃ on
X̃ such that π2(C̃) = p. This also implies that the projection of C̃ on the
other coordinate then has to be a curve, π1(C̃) = C. By commutativity, we
conclude that φ(C) = p.

Now, using these two lemmas, we can prove the following result

Proposition 3.2.4. Let f ∶ X → Y be a birational morphism of surfaces,
and suppose the rational map f−1 is not defined at some point p ∈ Y . Then,
if we take ε ∶ Ŷ → Y the blow-up of Y at p, we can factorize f as ε ○ g where
g is some birational morphism X → Ŷ .

Proof. We may consider the birational map g ∶X ⇢ Ŷ defined g = ε−1○f , and
assume that there exists a point q ∈ X at which it is not defined. Then, by
lemma 3.2.3, there exists a curve C on Y such that g−1(C) = q, and applying
f to both sides of this last equation we get ε(C) = f(q), and f(q) can only
be a point. Then, C is a curve contracted by the blowup, and so it is the
exceptional divisor E. This also means that f(q) = p.
Let mq be the maximal ideal of the local ring OX,q, and let (x, y) be some
local coordinate system around p on Y . Assume g∗y /∈ m2

q, which means that
g∗y defines a local equation for g−1(p) = C, as there it vanishes with multi-
plicity 1.
We may say that, for some u ∈ OX,q, we have g∗x = ug∗y. We may now
choose a local coordinate t by setting t = x − u(q)y, and this is such that
g∗t = (u − u(q))g∗t, which is in m2

q.
Let p′ ∈ E be a point at which the map g−1 is defined. We have that
(g−1)∗g∗t = ε∗t ∈ m2

p′ . This holds for all points in E, except the finite set
on which the rational function is not defined. But, by construction of the
blow-up morphism, ε∗t is a local coordinate for all points in E, except one,
which gives a contradiction.

We may now use this proposition to prove that, up to an isomorphism,
every birational morphism is given by composition of blow-ups.

Proposition 3.2.5. Let f ∶ X → Y be a birational morphism. Then, f =

ε1 ○ ...○ εn ○u, where u is an isomorphism, and the εi are blow-up morphisms.
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Proof. Assume there exists a point p ∈ Y in which f−1 is not defined, other-
wise f would already be an isomorphism, and so this case is trivially solved.
By the previous proposition, f factors through the blow-up of Y at p, which
we will denote ε1. as f = ε1 ○ f1.
Again, f1 is a birational morphism, and so once more we either have an iso-
morphism, or apply the previous proposition inductively. If this procedure
stops, then the statement is proven, and so we will show that we can not
have an infinite number of blowups.
Let n be the number of curves on X contracted by f , which is finite because
there are only finitely many points at which f−1 is not defined, and if we
let q be one of them, the inverse image f−1(q) is a closed subset in X with
a finite amount of irreducible components, that is the curves contracted to
that specific point.
Obviously, any curve contracted by f1 is also contracted by f , and the ex-
ceptional divisor of the blow-up is not contracted by f1 but it is contracted
by f , so if we denote n1 the number of curves contracted by f1, we can say
n1 < n. Then, we have that after a finite number of blow-ups, we will have
that the morphism fm will contract a negative number of curves, which is
absurd. Then, we have that the preocedure stops, and so a finite amount of
blow-ups.

Another result which we will now prove is that if on a surface there is
a divisor with the same properties as the exceptional divisor of a blow-up,
then it really is the exceptional divisor of a blow-up.

Theorem 3.2.6 (Castelnuovo). Let X be a surface, E a curve on X such
that E ≅ P1 and E2 = −1. Then, there exists a morphism, called contraction
morphism, µ ∶ X → Y , where Y is a non-singular projective surface, such
that µ(E) is a point p ∈ Y and µ(X −E) = Y − p.
This morphism is identical to the blow-up of Y at p.

Proof. Let H be a very ample divisor on X such that H1(X,OX(H)) = 0,
which we may obtain by taking a high enough multiple of an ample section
on X, and let k =H.E the intersection number. We may consider the divisor
H ′ = H + kE, observe H ′.E = 0, and denotethe invertible sheaf OX(H ′) by
L.
Let i be an integer such that 0 ≤ i ≤ k. First thing we will prove is that
H1(X,OX(H + iE)) = 0. This is true by hypotesis for i = 0, and we may
construct the exact sequence

0→ OX(H + (i − 1)E) → OX(H + iE) → OE ⊗OX(H + iE) → 0
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We may compute the intersection number (H + iE).E = k − i, and so we get
OE ⊗ OX(H + iE) ≅ OP1(k − i). If we take the associated long cohomology
sequence and using the fact that H1(P1,OP1(m)) = 0 for all m ≥ 0, we get

0→H0(X,OX(H + (i − 1)E)) →H0(X,OX(H + iE)) →H0(E,OE(k − i)) →

→H1(X,OX(H + (i − 1)E)) →H1(X,OX(H + iE)) → 0,

and taking i = 1 we get H1(X,OX(H +(k −1)E)) = 0, which in turn gives us
H1(X,OX(H + kE)) = 0, and by induction it gives the desired result for all
i ≥ 0.
Since H is very ample the linear system ∣H + kE∣, which corresponds to
the invertible sheaf L, has no base points away from E, and so there it is
generated by global sections. The previous discussion about cohomology also
tells us that the map H0(X,OX(H +KE)) → H0(E,OX(H + kE) ⊗ OE) is
surjective. We can check this by taking i = k, so we have the exact sequence

0→H0(X,H + (i − 1)E) →H0(X,H + iE) →H0(E,OE) → 0

and that (H + kE).E = 0.
It follows that L⊗OE = OX(H + kE) ⊗OE ≅ OP1 , which is generated by the
global section 1. Then, if we take a lift of the section 1 to H0(X,L) then,
since Nakayama’s lemma says that the lift of the generators of the quotient
will generate the module, L is also generated by global section on every point
of E, too. Then at every point in X, L is generated by global sections.
The invertible sheaf L is associated to a linear system of divisors, which
determines a morphism f ∶X → PN . Let X ′ be the image of X through this
morphism and we have that f∗(OPn(1)) ≅ L. Since the degree of L⊗OE is 0,
then f(E) has to be a point p, and since the linear system ∣H −kE∣ separates
points on E from points not on E, the map is an isomorphism between X−E
and X ′ − p.
Now, we have to show that the surface X ′ is non-singular at p. We will
now show that f∗OX = OX′ . Since the question is local on X ′, we may as
well assume it is affine X ′ = SpecA, and since f∗OX is a coherent sheaf
of OY -algebras, Γ(Y, f∗OX) is a finitely generated A-module. Now, A and
Γ(Y, f∗OX) are two integral domains with identical quotient field, and A is
integrally closed, therefore A = Γ(Y, f∗OX) and f∗OX = OX′ .
Let mp be the maximal ideal at p, and let Xn be the closed subscheme of
X defined by mn

pOX . By the theorem on formal functions, ([3], III.11.1) we

have ÔX′,p ≅ lim
←Ð

H0(Xn,OXn), where ÔX′,p is the completion of OX′,p. Note

that X1 = E, and H0(E,OE) = C. For every n ≥ 1 we also have an exact
sequence

0→ In/In+1 → OXn+1 → OXn → 0.
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Since E ≅ P1 and E2 = −1, then In/In+1 ≅ OP1(1), and for every n ≥ 2, we
have In/In+1 ≅ OP1(n). This gives a cohomology sequence

0→H0(P1,OP1(n)) →H0(Xn+1,OXn+1) →H0(Xn,OXn) → 0

Let x, y be a basis of the vector space H0(P1,OP1(1)). Then, H0(X2,OX2)

is isomorphic to the ring C[[x, y]]/(x, y)2.
We can also see that, lifting x and y, we can write a basis for H0(P1,OP1(n))
with the monomials of degree n in the variables x, y, and now we can say
that if H0(Xn−1,OXn−1) ≅ C[[x, y]]/(x, y)n−1, then by induction we also have
H0(Xn.OXn) ≅ C[[x, y]]/(x, y)n.
Now, we have that Ôp ≅ lim

←Ð
H0(Xn,OXn) ≅ C[[x, y]] which is a regular local

ring, and so OX′,p is regular, which means p is not singular.
It remains only to see that this morphism really is the blow-up of X ′ at p.
We have a rational morphism X → X ′ such that the inverse is not defined
at p, and so we can factor this morphism through the blow-up by p. But,
seeing as no other curves are contracted by construction, then the resulting
birational morphism X → X̂ ′ has to be an isomorphism.
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4 Minimal surfaces

4.1 Minimal surfaces and birational invariants

Let X,X ′ be two surfaces. We say that X dominates X ′ if there exists a
birational morphism X → X ′. A surface X is said to be minimal if every
birational morphism X → X ′, where X ′ is any other surface, is actually an
isomorphism. This is equivalent to saying that X only dominates surfaces
isomorphic to itself.

Theorem 4.1.1. Let X be a surface. There exists a minimal surface X ′

such that X dominates X ′.

Proof. If X is already minimal, there is nothing to prove in this case. So
assume that there exists a surface Y such that there exists a birational mor-
phism φ ∶ X → Y . By 3.2.5, this is the composition of an isomorphism and
some blow-ups. Again, if Y is minimal, the statement is proven, so let us
restrict to the case where Y is not minimal. We have to show that by iter-
ating this process a finite number of times, we will necessarily get a minimal
surface.
As up to isomorphism the rational map X → X ′ is the composition of a
finite number of blow-ups, and we have seen before that blow-ups decrease
the rank of the Neron-Severi group by 1, due to rank of the Neron-Severi
group NS(X) being finite, we can say that iterating we will eventually find
a minimal surface

So, for any surface X we consider, we may consider a minimal surface
Y birationally equivalent to it and we may also say that X is obtained by
blowing up Y some number of times. An important consequence, is that bi-
rational invariants associated to a surface have to take the same value for any
associate minimal surface, and we may use this to later give a classification
of surfaces.
We will principally consider the following values associated to the surface X:
the irregularity q(X), defined by q(X) = h1(X,OX), for all n ≥ 1 the pluri-
genuse Pn(X) = h0(X,OX(nK)) and the geometric genus which is defined
as pg(X) = h2(X,OX).
By Serre duality we have pg = h0(OX(K)) = h0(X,Ω2

X) = P1, and by Hodge
theory we have that q(X) = h0(X,Ω1

X) = 1
2b1(X), where b1 = dimRH0(X,R).

Theorem 4.1.2. The values q, pg and Pn for all n ≥ 0 are birational invari-
ants.

Proof. Let φ ∶X ′ ⇢X be a birational map, let F be the set of points of X ′ on
which φ is not defined, and let f ∶X ′ − F →X be the underlying morphism,
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and recall F is a finite set. Let ω ∈H0(X,Ω1
X) be a 1-form on X. Then, f∗ω

may be extended to a rational 1-form on X ′ which may only have poles in
the finite set F .
The poles of a differential form are the support of a divisor, which on a sur-
face may not be a finite set, we may say that the extension of f∗ω has no
poles on X ′ and so is holomorphic. Then, we may define an injective map
H0(X,Ω1

X) →H0(X ′,Ω1
X′).

Since φ is birational, then there exists some rational map φ−1, and so we may
also construct an inverse to this injective map with an analogous procedure,
which gives us H9(X,Ω1

X) ≅H0(X ′,Ω1
X′), and so q(X) = q(X ′).

We show that the plurigenuses are birational invariants using the same ar-
gument, and in particular so is the geometric genus.

If we consider χ(OX) and substitute the previous invariants in (2.1.1) we
may notice that for a surface X we have χ(OX) = 1 − q(X) + pg(X).
If we consider a blow-up morphism ε ∶ X̂ → X, where KX̂ = ε∗KX + E
as we have shown before. From this formula it follows immediately that
K2
X̂
=K2

X − 1, which means K2 is not a birational invariant. Also, as b1 and
χ are both birational invariants, it follows immediately from (2.2.8) that b2

is also not a birational invariant.

4.2 Minimal ruled surfaces

Let C be a smooth curve. We say that a surface X is geometrically ruled
over C if there exists a smooth morphism π ∶ X → C such that each fibre of
the morphism is isomorphic to P1.

Theorem 4.2.1. Let X be a surface, C a smooth curve, π ∶ X → C a
morphism. Suppose there exists a point p ∈ C such that π is smooth over p
and we have F = π−1(p) ≅ P1.
Then, there exists an open U ⊆ C of the Zariski topology such that p ∈ U and
an isomorphism φ ∶ π−1(U) → U × P1 such that, if we consider the projection
on the first coordinate π1 ∶ U × P1 → U , we obtain the following commutative
diagram

π−1(U) U × P1

U

π

φ

π1

Proof. First, as F is a fibre, we have that F 2 = 0, and by (2.2.6) we also get
F.K = −2. Asumme that there exists an effective divisor D in ∣K ∣. Then, we
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would have D.F = −2 by linear equivalence, and D.F ≥ 0 by 2.1.4 ando so
we have a contradiction. Therefore, by Serre duality we can conclude that
H2(X,OX) = 0.
From this we get that the map PicX → H2(X,Z) defined as in (2.2.7) is
surjective. Let f be the class of F in H2(X,Z). We know that the set
{(a.f)∣a ∈H2(X,Z)} is an ideal of Z, and so for some integer d ≥ 0 it is dZ.
We may then define a linear form on H2(X,Z) as a ↦ 1

d(a.f). By Poincaré
duality, we have that the product H2(X,Z) ⊗ H2(X,Z) → H4(X,Z) ≅ Z
is a duality, and so the associated map H2(X,Z) → Hom(H2(X,Z),Z) is
surjective. In particular, there exists an element f ′ ∈H2(X;Z) such that the
linear form on H2(X,Z) defined by (a.f ′) is equal to 1

d(a.f). As f 2 = 0 it
follows from this formula that f ′2 = 0.
We may observe that if we let k be the class of K and let c be the class of
any curve, then c2 + c.k is an even integer, and since this formula is additive
modulo 2, we have that it is even for the class of any divisor. Finally we get
f ′2 + f ′.k = f ′.k = (f.k)/d = −2/d, and so since it has to be an even integer
we have d = 1.
Then, there exists a divisor H on X such that if h is its class, then h.f = 1,
and so H.F = 1. By tensoring (1.2.1) with OX(H) and OX(F ), and using
the fact that OF ⊗OX(F ) ≅ C and that H.F = 1 by the previous point, we
obtain the exact sequence

0→ OX(H + (r − 1)F ) → OX(H + rF ) → OF (1) → 0

for any r ∈ Z, which induces a long exact cohomology sequence, where we
use the fact that F ≅ P1 and so H1(F,OF (m)) = 0 for m ≥ 0,

...→H0(X,OX(H + rF )
ar
→H0(F,OF (1)) →H1(H + (r − 1)F ) →

br
→H1(X,OX(H + rF )) → 0.

We may observe that since br is surjective, h1(H + (r − 1)F ) ≥ h1(H + rF )

naturally. But, since h1(D) is a finite dimensional vector space for all divisors
D, we will eventually get that h1(H + (r − 1)F ) ≥ h1(H + rF ) for all r large
enough, and so br is bijective for r large enough, and in particular injective,
so this implies ar is surjective.
Then, we may take a vector subspace V of H0(X,OX(H+rF )) of dimension 2
such that ar(V ) =H0(F,OF (1)), and let P be the linear system of dimension
1 on X associated to V .
All the fixed components of P must be contained in fibres Fx1 , ..., Fxq over
some points x1, ..., xq, and as P has no base points in F then all these fibres
are distinct from F .
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Similarly, any base point of P not in the fixed part is contained in fibres
Fxq+1 , ..., Fxl distinct from F . Also, denote by Fxl+1 , ..., Fxm all the reducible
fibres.of π.
Set U = C−{x1, ..., xm}. The restriction of P to π−1(U), which we will denote
P ′, is then base point free. Let t parametrize P ′, and let Ct be a curve in the
linear system, which contains a section of π and some fibres possibly. We may
also take another curve Ct′ with t ≠ t′and check that if C ∶ t contained any
fibre, then C ′

t would intersect Ct and since the linear system has dimension
1 it would have base points.
Also, since P ′ has no base points it defines a morphism g ∶ π−1(U) → P1,
whose fibres are g−1(t) = Ct. Then, we may also construct a morphism
h ∶ π1(U) → U × P1 by mapping x↦ (π(x), g(x)).
We now conclude observing that h−1((y, t)) = Fy ∩Ct is a point, and so h is
an isomorphism.

Let C be a smooth curve, and let X be a surface birationally equivalent
to C × P1. Then, we say that X is ruled over C. In particulat, we have that
a surface X satisfying the conditions of the previous theorem is ruled.
Recall that a variety Y of dimension n is said to be rational if there exists a
birational map Pm ⇢ Y . Then, we may observe that if the surface X is ruled
over P1, then it is rational as the map U ⊆ P2 → V ⊆ P1 × P1 defined on the
homogeneous coordinates as [s, t,1] ↦ [s,1] × [t,1] induces a birational map
between P2 and P1 × P1.

Lemma 4.2.2. Let π be a surjective morphism from a surface X to a smooth
curve C, and let π have connected fibres. Let F = ∑niCi be a reducible fibre
of π, where the sum is indexed over i ∈ I. Then, Ci < 0 for all i ∈ I.

Proof. Fix i ∈ I. We have Ci.niCi = Ci.(F −∑njCj), where this last sum is
taken over all j ∈ I such that j ≠ i. As we may substitute F with another
lineally equivalent fibre not including Ci, and Ci.Cj ≥ 0 for i ≠ j we get
nC2

i ≤ 0. We conclude by observing that, since F is connected, there exists
Cj such that Ci ∩Cj ≠ ∅, and so niC2

i < 0.

Lemma 4.2.3. Let X be a minimal surface and C be a smooth curve, and
let π ∶ X → C be a morphism with generic fibre isomorphic to P1, then X
is a geometrically ruled surface over C where the structure is given by the
morphism π.

Proof. Let F be a fibre of π. As in the proof of 4.2.1 we have that F 2 = 0
and F.K = −2, a.
Assume F is reducible, and so F = ∑niCi. By the previous lemma C2

i < 0,
and the genus formula tells us that we have that K.Ci = −2 + 2g(Ci) − C2

i ,
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and in particular we have K.Ci ≥ −1. In the previous inequality, equality is
satisfied if and only if g(C) = 0 and so C ≅ P1. This also implies C2

i = −1,
and so Ci is an exceptional curve on X, which contradicts the fact that X is
minimal, and so we may now restrict to K.Ci ≥ 0 for all Ci. In this case we
wpuld have K.F ≥ 0, which is another contradiction, and so F may not be
reducible.
Also, by recycling the argument used in the proof of 4.2.1, we may say that
F may not be the multiple of another fibre. We may then compute the genus
of F using (2.2.6), and we get g(F ) = 0, and so F ≅ P1 and p is smooth over
F so by 4.2.1 we conclude that X is ruled over C.

Theorem 4.2.4. Let X be a geometrically ruled surface over an irrational
curve C. Then X is a minimal surface.
In particular, any minimal model of the surface P1 × C is a geometrically
ruled surface over C.

Proof. Let π ∶ X → C be the morphism giving the ruling of the surface. To
show X is minimal, we have to show there is no exceptional curve E in it.
First, we may exclude that any fibre F of π is an exceptional curve as F 2 = 0,
and we require E2 = −1.
Then, as E is not a fibre we must have that π(E) = C. In particular, as a
morphism of curves decreases the genus by Riemann-Hurwitz and g(E) = 0,
then we also have g(C) = 0, and so C ≅ E ≅ P1. Then C is rational, which
contradicts the statement, and so there is no exceptional divisor on X, which
is minimal.
To show the second part of the theorem, assume Y is a minimal surface
associated to C × P1. Then, there exists a rational map φ ∶ Y ⇢ C × P1. Let
π1 ∶ C ×P1 → C be the standard projection onto C. Then, we have a rational
map of varieties π1 ○ φ ∶ Y ⇢ C, and by theorem 3.2.1 we obtain a morphism
of surfaces f ∶ Y ′ → C × P1 and a commutative diagram

Y ′

Y C

ε π○f

π1○φ

where ε is the composition of a finite amount of blow-ups, say n, which we
can assume to be minimal.
Assume n > 0, and let E be the exceptional curve on Y ′ contracted by the first
blow-up. Using the same argument as before, we have that have f(E) ≠ C
otherwise C would be rational. Then, there exists a point p in C such that
f(E) = p. Then, by 3.2.4, the morphism f would factor through the first
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blow-up, and so n would not be minimal.
We may now conclude that n = 0, and so f = π1 ○ φ, and the generic fibre is
isomorphic to P1. The previous lemma then lets us say that f ∶ Y → C gives
Y the structure of a geometrically ruled surface over C.

Proposition 4.2.5. Let C be a curve and X be a surface ruled over C. Then
q(X) = g(C) and Pn(X) = 0 for all n ≥ 1

Proof. Recall that by Hodge theory, q(X) = h0(X,Ω1
X). Since X is ruled

over C, we may assume X = C × P1. Let π1 ∶ X → C and π2 ∶ X → P1 be the
canonical projections.
If we denote by ωC and ωP1 the sheaves of differentials for the curves, we have
an isomorphism from π1∗(π∗1ωC ⊗ π

∗
2ωP1) to ωC ⊗ π1∗π∗2ωP1 by the projection

formula, which also gives that π1∗π∗2ωP1 = OC⊗CH0(P1, ωP1), so the canonical
morphism H9(C,ωC) ⊗H0(P1, ωP1) → H0(C × P1, π∗1ωC ⊗ π

∗
2ωP1) is actually

an isomorphism.
Then, let x be a local coordinate for C and y a local coordinate for P1. We
get a local system of coordinates x.y is a local system of coordinates for X,
and so we may say Ω1

X ≅ π∗1ωC ⊗ π
∗
2ωP1 .

We get q(X) = h0(X,Ω1
X) = h0(C,ωC) + h0(P1, ωP1) = g(C) + g(P1) = g(C).

Also, since Pn(X) = h0(X,OX(nK)) and OX(K) ≅ ωX , we may reformulate
this as Pn = h0(X,ω⊗nX ) = dimC(H0(C, ω⊗nC ) ⊗H0(P1, ωP1)⊗n) = 0.

Combining Noether’s formula (2.2.8) and that χ(OX) = 1− q + pg, we get
that if X is ruled over C, we have that 1 − g(C) = 1

12(K
2 + 2 − 2b1 + b2).

As 4.2.4 gives us no result about surfaces ruled over a rational curve C, that
is rational surfaces, we will now study them separately. First, we need to
give another characterization of geomtrically ruled surfaces.

4.3 Ruled surfaces as vector bundles

Let C be a curve, and let E be a locally free invertible sheaf of rank 2 over
C. Then, we may define the projective space bundle P(E) as a surface fibred
over C such that for each point p ∈ C the fibre over p is the projective space
associated to Ep. Since E is locally free, this fibre is isomorphic to P1 and
so P(E) is locally isomorphic to C × P1. Then, P(E) has the structure of a
surface ruled over C.
We now prove that we can characterize every geometrically ruled surface over
a curve C as P(E) for some locally free sheaf E of rank 2 over C..

Proposition 4.3.1. Let X be a geometrically ruled surface over a curve C
and π ∶ X → C the structural morphism. There exists a locally free sheaf E
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of rank 2 on C such that X ≅ P(E) over C.
Furthermore, two such sheaves E and E ′ define two isomorphic geometrially
ruled surfaces over C if and only if there exists L ∈ PicC such that E = E ′⊗L.

Proof. By 4.2.1, the fibration π is locally trivial and so there exists an open
cover (Ui)i∈I of C such that ti ∶ π−1(Ui)→̃Ui × P1.
We may define a sheaf of groups G on C. Set G(U) to be the group of
automorphisms of U × P1 that keep U fixed, that is AutU(U × P1). This
is compatible with glueing and uniqueness, and so it really defines a sheaf
G, and we may also identify every G(U) with the morphisms of U into the
projective linear group PGL2(C).
We may also identify the set of isomorphism classes of locally free sheaves of
rank 2 on C with the cohomology set H i(C,G) as composing a trivialization
ti and the inverse of a trivialization T −1

j on π−1(Ui ∩ Uj) gives us a Cech
cocycle (i, j) ↦ gij ∈ G(Ui ∩Uj), and so a class in H1(C,G).
Recall that if we consider the linear group GL2(C), by definition we have
GL2(C)/C∗ = PGL2(C), and so we have an exact sequence

1→ C∗ → GL2(C) → PGL2(C) → 1.

If we denote by PGL2(OC) the sheaf G, we then get an exact sequence of
sheaves

1→ O∗
C → GL2(OC) → PGL2(OC) → 1

which gives a long cohomology sequence

...→H1(C,O∗
C) →H1(C,GL2(OC)) →H1(C,PGL2(OC)) →H2(C,O∗

C) → ...

and we know H1(C,O∗
C) ≅ PicC. Furthermore, H1(C,GL2(OC)) is the set

of isomorphism classes of rank 2 locally free sheaves on C, and PicC acts by
tensoring on this set.
Also, as we are working over C which is algebraically closed and dimC = 1,
for all sheaves F on C we have H2(C,F) = 0 by Tsen’s theorem ([2], 6.2.8),
so the map H1(C,GL2(OC)) →H1(C,PGL2(OC)) is surjective, which means
that the isomorphism classes of locally free sheves of rank 2 on C map to all
of the isomorphism classes of geometrically ruled surfaces, and in particular
for any fibration π ∶ X → C there exists a locally free sheaf E of rank 2 such
that X ≅ PC(E)-

If C is a smooth curve, we may identify a locally free sheaf of rank 2 with
a vector bundle of rank 2, and we will use both definitions equivalently.
Let C be a curve and let E be a rank 2 locally free sheaf on C. We will
denote deg(E) = deg(∧2E) and by hi(E) we will mean dimCH i(C,E).
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Observe that if we consider the sheaf E ⊗L for some L ∈ PicC, we have that
deg(E ⊗ L) = deg(E) + 2 deg(L), and so the parity of deg(E) is invariant up
to tensoring by an invertible sheaf.

Proposition 4.3.2. Let C be a curve and let E be a rank 2 locally free sheaf
on C.Then, there exists L,M ∈ PicC such that there is an exact sequence

0→ L → E →M→ 0

Proof. Tne sheaf E is a coherent OC-module, and so up to replacing E by
E ⊗ OC(n) for n large enough, by a theorem of Serre we may assume there
exists a non-zero section s of E . From s we get a non-zero morphism from
E∗, the dual of E , to OC , whose image is an ideal of OC , and in particular
for some effective divisor D on C it is OC(−D). Then, the kernel of the
surjective morphism E∗ → OC(−D) is then an invertible sheaf, and so by
duality we conclude.

Recall χ(E) = χ(L) + χ(M). Applying Riemann-Roch’s theorem for
curves, which says that χ(L) = 1 − g(C) + deg(L), we get the equation
χ(E) = deg(L) + deg(M) + 2(1 − g(C)) and by additivty of degree we ob-
tain Riemann-Roch’s theorem for rank 2 vector bundles on a curve

χ(E) = deg(E) + 2 − 2g(C). (4.3.3)

Moreover, whenever we have such an exact sequence, we will say that E is an
extension ofM by L. Two such extensions are said to be isomorphic if there
exists an isomorphism of the relative exact sequences inducing the identity
on L and M.
Recall that the isomorphisms classes of extensions of M by L are identified
with the elements of the group Ext1

(M,L), where Ext(M, ⋅) is the right
derived functor of Hom(M, ⋅).
Observe that the exactness of the sequence 0 → L → E → M → 0 does not
imply that E ≅ L⊕M. When this will be the case, we will say the extension of
M by L is trivial. Notice that by the splitting lemma we may have E = L⊕M
if and only if the sequence splits.
If we tensor the sequence by M−1, we obtain another exact sequence

0→ L⊗M−1 → E ⊗M−1 → OC → 0

that splits if and only if 0→ L → E →M→ 0 splits, and we get a long exact
cohomology sequence

...→H0(C,E ⊗M−1) →H0(C,OC)
∂
→H1(C,L⊗M−1) → ...
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Recall there is an isomorphism H1(X,L⊗M−1) ≅ Ext1
(OX ,M−1⊗L), which

as M is locally free is in turn isomorphic to Ext1
(M,L), which is identified

with the group of isomorphism classes of extensions of M by L.
Observe that the sequence splits if and only if there exists a global section
of E ⊗M−1, that is an element of H0(C,E ⊗M−1), such that its image in
H0(C,OC) is the global section 1C . By the exactness of the sequence. we
necessarily have ∂(1C) = 0. Viceversa, ∂(1C) = 0 implies there is a global
section that is mapped to 1C and so the extension is trivial.
In general, ∂(1) is called the class of the extension L → E → M , and if two
extensions have the same class up to a non-zero multiplicative constant, then
they are isomorphic.

Proposition 4.3.4. Let E be rank 2 locally free sheaf on P1. then, E is
isomorphic to the direct sum of two invertible sheaves.

Proof. Up to tensoring the sequence by some E by E ⊗L for some L ∈ PicP1,
we may assume deg(E) = d is either 0 or −1. Then, by Riemann-Roch we
have h0(E) ≥ deg(E) + 2 ≥ 1, and so there exists a section in H0(C,E).
Then, there exists an exact sequence

0→ OP1(k) → E → OP1(d − k) → 0

where k ≥ 0. The class of this extension is in H1(P1,OP1(2k − d)), which is
always zero, hence the extension is trivial.

A consequence of this is that for some n ≥ 0 we obtain that tensoring the
sequence by OP1(d− k)−1 = OP1(k − d), we obtain E ≅ OP1 ⊕OP1(n) where we
set n = 2d − k, and we know n is non-negative. We will denote the surface
PP1(OP1 ⊕OP1(n)) by Fn.
If we let X be a geometrically ruled surface, π ∶X → C the fibration,we may
assume without loss of generality that for some vector bundle E of rank 2
over C we have PC(E) = X. We may canonically define a line bundle M as
a sub-bundle of π∗(E). Let x ∈ X be a point, and let D ⊂ Eπ(x) be the line
corresponding to x, we then define M by setting Mx =D.
Let OX(1) be the tautological bundle on X, that is the dual of the Serre
twisting sheaf. By the definition of M, we have an exact sequence

0→M→ π∗E
u
→ OX(1)→0.

If we let σ ∶ C → X be a section of π, we may obtain a line bundle on C by
L = σ∗OX(1). Then, we also have a surjective morphism σ∗u = E → L.
Viceversa, let v ∶ E → L be aurjective morphism of sheaves. Then, we may
define a morphism σ ∶ C → X by associating to a point p ∈ C the line
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ker(Ep → Lp). This construction gives a section, and we may also observe
that it is the inverse of the previous one, so we have that giving a section
of the structure morphism of a geometrically ruled surface π ∶ PC(E) → C is
equivalent to giving a quotient line bundle for the associate vector bundle E .
We may also give the following results about the Picard group of a geomet-
rically ruled surface.

Proposition 4.3.5. Let X be a geometrically ruled surface over a curve C
and let π ∶ X → C be the structure morphism. Denote by h the class of the
sheaf OX(1) in PicX. Then we have PicX ≅ π∗ PicC ⊕Zh.
Furthermore, H2(X,Z) ≅ Zh⊕Zf , and if we let E be a vector bundle gener-
ating X, we have that h2 = deg(E) and the class of the canonical divisor K
is [K] = −2h + (deg(E) + 2g(C) − 2)f .

Proof. Let F be a fibre of π, and let H be a divisor associated to h, which
has to be a section of π. Then, F.H = 1 as every section of π has to intersect
each fibre exactly once. This means that for every divisor in D′ ∈ DivX we
have D′.F =m for some m, and so D′ ∼D +mH for some divisor D ∈ DivX
which satisfies D.F = 0. To complete the first part, it is now enough to show
that any such D is the pullback of a divisor on C and so a fibre.
Set Dn = D + nF . It follows immediately that D2

n = D
2 and Dn.F = 0, and

since F.K = −2 we have Dn.K =D.K −2n. Thus, for n large enough we have
h0(K −Dn) = 0.
If we apply Riemann-Roch’s theorem toDn we then obtain that h0(Dn) ≥ n+c
for some constant c. Then, for n large enough the linear system ∣Dn∣ is non-
empty, and we may take an effective divisor E in it. Since E.F = Dn.F = 0,
then E is obtained a sum of fibres of π, and so E is the inverse image by π
of a divisor on C.
H2(X,Z) is a quotient of PicX, and two points of C have the same coho-
mology class in H2(C,Z) ≅ Z. So H2(X,Z) is generated by f and h, which
are linearly independent as f 2 = 0, f.h = 1.
Let E be a bundle generating X as a geometrically ruled surface over C. We
know there exists an exact sequence 0 → L → E → M → 0 of sheaves on
C by 4.3.2, and we may consider the pull-back of this sequence through π,
and compute the intersection number (π∗L.π∗M), which by the definition
of the intersection form in PicX and the fact that (L.M) = (L−1.M−1) is
χ(OX) − χ(L) − χ(M) + χ(L ⊗M). We also have χ(L) + χ(M) = χ(E) and
χ(L ⊗M) = χ(∧2E), and so (π∗L.π∗M) = χ(OX) − χ(E) + χ(∧2E).
This means that the number π∗L.π∗M does not depend on the choice of L
and M and so is a characteristic of π∗E .
The exactness of the sequence 0→ N → π∗E → OX(1) → 0 givesOX(1).N = 0.
We get an isomorphism N ⊗OX(1) ≅ π∗ ∧2 E . If we denote the class of ∧2E
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in PicC by e, then this last formula gives that the class of N in PicC is
[N ] − h + π∗e.
Then N .OX(1) = −h2 + h.π∗e = 0, and so h2 = deg(E).
Now, we know that there exist some a,b integers such that [K] = ah + bf in
H2(X,Z). As we have [K].f = −2 we get a = −2. We may take a section of
π, say s ∶ C → X, such that [s(C)] = h + rf in H2(X,Z) for some integer r.
The genus formula for s(C) may be written

2g(C) − 2 = (h + rf)2 + (h + rf).(−2h + bf)

which we can rewrite deg(E) + b, and so by rearranging we get the equation
in the statement.

4.4 Minimal rational surfaces

Proposition 4.4.1. The surfaees Fn are minimal if n ≠ 1, and Fn is not
isomorphic to Fm unless n =m.

Proof. From 4.3.5, we have that if f and h are the classes in PicFn of a fibre
and of the tautological bundle respectively, then PicFn ≅ Zf ⊕ Zh, f.h = 1
and h2 = n.
Consider the section s of the projection π ∶ Fn → P1 which corresponds to
OP1 ⊕OP1(n) → OP1 , and denote by B the curve s(C), and by b the class of
B in PicFn, which we may express as h + rf for some r ∈ Z.
As we have that s∗OFn(1) = OP1 , then we also have h.b = 0 which in turn
implies r = −n. In particular, we get b2 = −n.
Let C be another curve on Fn such that C2 < 0, and set c = αh+βf to be its
class in PicFn. We have c.f ≥ 0, which means we must have α ≥ 0, and since
c.b ≥ 0 as it is the intersection of two curves, and h.b = 1 from before, we have
β ≥ 0 too. Thus, c2 = α2n+ 2αβ ≥ 0, which means that B is the unique curve
with negative self-intersection on Fn.
Then we have found that if n ≠ 1 there is no curve on Fn that may be
contracted, and so Fn is minimal. Also, if we have any rational surface, we
may determine uniquely n by searching for the unique curve with negative
self-intersection.
To show that F1 is not minimal, consider the surface S obtained by blowing
up P2 at a point p.
We may construct a map P2 ⇢ P1 by taking for any point q ≠ p ∈ P2 the
line passing through q and p. As the set of lines through a point in P2

can be identified with P1 this is a good definition. This map is not defined
at p, obiously, but then by 3.2.5 we may extend it to a morphism S →
P1, which then gives S the structure of a surface geometrically ruled over
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P1. We may conclude by saying that every surface geometrically ruled over
P1 is isomorphic to one of the Fn by 4.3.4 and we saw before that n is
determined uniquely on such a surface, we then have S ≅ F1 which is then
not minimal.

Lemma 4.4.2. Let X be a minimal surface such that K2 < 0. Then, for all
n > 0 there exists an effective divisor D ∈ DivX such that K.D ≤ −n and
∣K +D∣ = ∅.

Proof. If there exists an effective divisor D that satisfies K.D < 0, then one
of its components C is such that K.C < 0 necessarily.
By 2.2.5 we have, C2 ≥ −1, and notice that C2 = −1 may only happen if
the curve C is actually an exceptional divisor, which is not possible as X is
minimal, so C2 ≥ 0.
For m large enough, we have that (nC +mK).C < 0, then it follows there is
no effective divisor linearly equivalent to (nC +mK), that is ∣nc +mK ∣ = ∅,
by lemma 2.1.4.
Let m be the largest integer such that the linear system ∣nC +mK ∣ is not
empty, and let D′ ∈ ∣nC +mK ∣.
We may compute that K.D′ =K.(nC +mK) ≤ −n and by linear equivalence
we also obtain ∣K +D′∣ = ∣nC +(m+1)K ∣ = ∅. It is now sufficient to find that
there exists an effective divisor D such that K.D < 0.
Let H be an hyperplane section of X. Obviously, if K.H < 0, we may take
D = H, and if K.H = 0 for some integer m large enough the linear system
∣K +mH ∣ will be non-empty, and so we may take D as an element of this
linear system.
Assume now K.H > 0. Then, the rational number K.H

−(K2) = q is positive. Then,

(H + qK).K = 0, and so it follows

(H + qK)2 =H2 + q2K2 + 2qK.H =H2 + qK.H > 0.

Then, we may find a rational number r = a/b > q such that (H + rK).K < 0,
(H + rK)2 > 0. Then D′ = b(H + rK) is a divisor with integer coefficients,
such that D′2 > 0 and D′.K < 0. We may now observe that if we apply (2.2.4)
to mD′ for m ∈ Z, we have that for m→ +∞, h0(mD′)+h0(H −mD′) → +∞.
Now, for m large enough we have that (K −mD′).H < 0 and so ∣mD′∣ is
non-empty, and we may just take in it the divisor D we are looking for.

Proposition 4.4.3. Let X be a minimal surface such that q(X) = 0 and
P2(X) = 0. Then there exists on X a smooth rational curve C such that
C2 ≥ 0.
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Proof. It is sufficient to show that there exists an effective divisor D on X
such that K.D < 0 and ∣K +D∣ = ∅, as then for a component C of D we will
necessarily haveK.C < 0 and ∣K+C ∣ = ∅. We then have h0(X,OX(K+C)) = 0
and from applying (2.2.4) to ∣K +C ∣ we get

0 ≥ 1 +
1

2
(C2 −C.K) = g(C),

so C has genus 0 and is therefore a smooth rational curve. It follows by the
genus formula C2 ≥ −1. We may als notice that if C2 = −1, then by 3.2.6 C is
an exceptional curve on X which contradicts minimality of X, and so C2 ≥ 0.
Now, we are to find that such an effective divisor D exists. We divide the
problem in three cases, corresponding to the value of K2 with respect to 0.
If K2 < 0, the previous lemma tells us that the effective divisor we are looking
for exists.
Assume now K2 = 0. As P2 = 0, applying (2.2.4) to −K we get

h0(−K) + h0(2K) = h0(−K) ≥ 1 +K2,

and so there exists an effective divisor D ∈ ∣ −K ∣.
Let H be an hyperplane section of X, and let n be the maximum integer
such that ∣H + nK ∣ ≠ ∅. If we take a divisor D in this linear system, then
∣K +D∣ = ∅ necessarily, and D.K = (H + nK).K =H.K < 0 since H ∈ ∣ −K ∣.
Then, only the case K2 > 0 remains. Using the same formula as before, we
get h0(−K) ≥ 2. So, let us take a divisor D ∈ ∣−K ∣ and assume it is reducible
as D = A + B. As D ∼ −K, we get D.K < 0, which implies that A.K < 0
or B.K < 0. We may now without loss of generality let A.K < 0. It follows
∣K +A∣ = ∣ −B∣ = ∅. We msy then assume that there we only take irreducible
divisors in ∣ −K ∣, and let D ∈ ∣ −K ∣.
So let H be an effective divisor, and let n be the largest integer such that
the linear system ∣H +nK ∣ is not empty, and we may take D′ ∈ ∣H +nK ∣ such
that D′ = ∑niCi /∼ 0.
Since D ∈ ∣ −K ∣, we have that K.D′ = −D.D′ ≤ 0, as by 2.1.4 we may say
D.D′ ≥ 0 as D is irreducible. It now follows that for some component C of
D′, we have K.C ≤ 0.
From the first part of the proof we get ∣K +C ∣ = ∅ and that C is a smooth
rational curve, that is g(C) = 0.
We also get C2 = −2−K.C, and so if K.C ≤ −2 we have C2 ≥ 0, which proves
the statement. Also, if K.C = −1 then C2 = −1 and so it is the exceptional
divisor of a blow-up, which is an absurd as X is a minimal surface.
The only case remaining is K.C = 0, where we have C2 = −2. As we have
that h0(K +C) = 0 then h0(2K +C) ≤ 0, and so by Riemann-Roch and the
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intersection numbers we found before we get

h0(−K −C) ≥ 1 +
1

2
((K +C)2 +K.(K +C)) = 1 +

1

2
(C2 + 3K.C + 2K2) =K2.

In particular, h0(−K −C) ≥ 1. As C2 = −2, then C /∈ ∣ −K ∣- Then there exists
some non-zero effective divisor A ∈ ∣−K−C ∣, and then A+C ∈ ∣−K ∣. We now
found a reducible divisor in ∣ −K ∣, which contradicts our previosu hypotesis.
Now, consider the case where ∣H + nK ∣ = 0. Then, every effective divisor is
linearly equivlent to a multiple of K, and so ClX ≅ Z. If we consider the
exact sequence in (2.2.7), we may observe that H2(X,Z) ≅ Z, and so b2 = 1.
By Poincaré duality, we get K2 = 1, and so by Noether’s formula (2.2.8)

χ(OX) =
1

12
(K2 + 2 − 2b1 + b2),

which gives us b1 = −4, which is impossible. Then, this last case is an absurd
as by definition we have q = 1

2bi = 0.

As a corollary of this last statement, we get Castelnuovo’s rationality
criterion.

Theorem 4.4.4. Let X be a surface with q(X) = 0 and P2 = 0. Then X is
a rational surface.

Proof. Assume X is minimal. By the previous proposition, we have a smooth
rational curve C on X such that C2 ≥ 0. Then, we may consider the following
exact sequence

0→ OX → OX(C) → OC(C) → 0

and the associated long cohomology sequence. As H1(X,OX) = q = 0, we get
that

0→H0(X,OX) →H0(X,OX(C)) →H0(C,OC(C)) → 0

is an exact sequence, and so h0(X,OX(C)) = h0(X,OX) + h0(C,OC(C)).
Observe that h0(X,OX) = 1 and that by Riemann-Roch’s theorem on curves

h0(C,OC) = 1 − g(C) + deg(OC(C)) + h1(C,OC(C)) = 1 +C2

and h1(C,OC(C)) = h0(OC(K) ⊗ OC(−C)) = 0 as C ≅ P1 and the sheaf
OC(K) ⊗OC(−C) has negative degree on C.
Then, h0(X,OX(C)) = 2 + C2, which is ≥ 2 as C2 ≥ 0 and we may take a
divisor D ∈ ∣C ∣ such that D ≠ mC for any m ≥ 0. Then, the linear system
P generated by C and D has no fixed component, and determines a rational
map X ⇢ P1, which we msy extend to a rational morphism X ′ → P1, where
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X ′ is obtained by blowing up X at all the base points of P . One of the fibers
of the morphism is then isomorphic to C, and so by 4.2.1 the surface X ′ is
rational, and so is X.
If we remove the assumption of minimality, by 4.1.1 there is a birational
morphism from X to a minimal surface Y , and the birational invariants are
preserved. So we may find a birational map Pm ⇢ X by composing Pm ⇢ Y
and Y ⇢X.

Proposition 4.4.5. Let X be a minimal rational surface. Then, we either
have X ≅ P2 or X ≅ Fn, where n ≠ 1

Proof. Let H be an hyperplane section of X, and let A be the set of smooth
rational curves C on X such that C2 ≥ 0. By 4.4.3, there exists at least one
such curve C.
Let us consider all the curves C ∈ A such that C2 = m is minimal, and fix a
curve C among these such that C.H is minimal. Let D = ∑niCi ∈ ∣C ∣ be a
generic effective divisor in the linear system.
Observe that then C.Ci ≥ 0 for all i, as if Ci = C we have fixed C2 ≥ 0, and
if Ci is distinct from C this is the intersection of two distinct curves. From
2.1.4 we have ∣K+D∣ = ∅, and so h0(X,OX(K+D)) = h0(X,OX(K+C)) = 0,
and then for every Ci we get h0(K +Ci) = 0, which means all the curves Ci
are rational, as in the proof of 4.4.3.
As we have K.D = K.C < 0, we can find a Ci such that K.Ci < 0, which we
can assume to be C0 without loss of generality. Then, since X is assumed to
be minimal, we necessarily have C2

i ≥ 0.
Observe we may write D = n0C0 +D′ where D′ is the remainder of the sum,
which is still effective, and C0.D′ ≥ 0. Also, C.D′ ≥ 0 follows from C.Ci ≥ 0
for all i.
Since C ∼ D = n0C0 + D′, we have C2 = D2, and we may rewrite D2 as
(n0C0+D′).D, and so we get n0C0.(n0C0+D′)+D.D′ = C2. Then, using the
fact D.D′ = C.D′ ≥ 0 as they are linearly equivalent, this equation gives us
an inequality n2

0C
2
0 ≤ (n0C0 +D′)2 = C2 =m.

We chose C so that m was minimal thus as to not have a contradiction we
have that n0 = 1 and C2

0 =m.
Furthermore, H.C = H.C0 + H.D′ and since H.C was supposed to also be
minimal among all curves with C2 = m and H.D′ ≥ 0 as it is intersection of
very ample divisor and an effective divisor, we get H.D′ = 0 and so D′ = 0,
that is C0 = C and so we conclude all the divisors in ∣C ∣ are smooth rational
curves.
Let p ∈ X be a point, and let mp be the maximal ideal of OX,p. We observe
that since dim(OX,p/m2

p) ≥ 3 then the linear system of curves passing through
p with multiplicity at least 2 has codimension ≤ 3 in ∣C ∣. Since by what we
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said before all the curves in ∣C ∣ are rational, then this has to be empty, and
so dim ∣C ∣ ≤ 2.
So let C0 ∈ ∣C ∣ be a curve distinct from C, which is smooth and rational and
has C0.C = m. We obtain from the usual exact sequence in 1.2.1 an exact
sequence

0→ OX → OX(C) → OC0(m) → 0

and since we know H1(X,OX) = 0, then from the cohomology we obtain
h0(C) = m + 2, and ∣C ∣ has no base points on C0. It follows that ∣C ∣ has no
fixed point and so it defines a morphism. Recall that ∣C ∣ ≤ 3, and m ≥ 0, so
we only have two cases ro check, m = 0 and m = 1.
If m = 0, the morphism X → P1 defined by ∣C ∣ has fibres which are smooth
rational curves, and so X is ruled over P1, and so is one of the Fn, where
n ≠ 1 as F1 is not minimal.
If instead m = 1, then we have a morphism X → P2, and for every point in
p ∈ P2 the fibre over p is the intersection over two rational curves in ∣C ∣, and
so it is a point. Then, this map is actually an isomorphism.

4.5 The Albanese map

Recall that if V is a complex vector space, V ∗ its dual, Γ is a lattice in V
and T = V /Γ is a torus, there is an isomorphism δ ∶ V ∗ → H0(T,Ω1

T ) since
for x∗ ∈ V ∗ we have x∗(v + γ) = x∗(v) + c for all v ∈ V, γ ∈ Γ and where c is a
constant, then the differential dx∗ induces a form δx∗ on the torus.
We also have an identification Γ = H1(T,Z) as V → T is an universal cover
pf T , and we can an isomorphism h ∶ Γ → H1(T,Z) by γ ↦ cγ, where cγ is
the path t↦ tγ.
Observe that we have ∫hγ δx

∗ = ∫
1

0 d⟨x
∗, tγ⟩ = ⟨x∗γ⟩ using the same notation

as before, and recall any morphism of complex tori u ∶ T1 = V1/Γ1 → T2 = V2/Γ2

is the composition of a translation and a group morphism a ∶ T1 → T2. There
also exists a linear map ã ∶ V1 → V2 that induces a, and such that ã(Γ1) ⊆ Γ2.
With the identification δ given above, V! ≅H0(T1,Ω1

T1
) and V2 ≅H0(T2,Ω1

T2
)

so we may identify the form a∗ with the transpose of ã. In particular we may
determine a by u∗ ∶H0(T2,Ω1

T2
) →H0(T1,Ω1

T1
)

Proposition 4.5.1. Let X be a smooth projective variety. Then there exists
an Abelian variety A and a morphism α ∶X → A with the universal property
that for any complex torus T and any morphism f ∶ X → T , there exists an
unique morphism f̂ ∶ A→ T such that f̂ ○ α = F .
Furthermore, α induces an isomorphism α∗ ∶H0(A,Ω1

A) →H0(X,Ω1
X).

Proof. Let i ∶ H1(X,Z) → H0(X,Ω1
X)∗ be the map defined by ⟨i(γ), ω⟩ =

∫γ ω.
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By Hodge theory, the image of i in H0(X,Ω1
X) is a lattice, and the quotient

is an Abelian variety. Let us denote this lattice by H, and let us set A =

H0(X,Ω1
X)∗/H, with the canonical projection π ∶H0(X,Ω1

X)∗ → A.
Fix now a point p ∈X, and let cx be a path connecting p with another point
x ∈X. We may define a linear form a(cx) on H0(X,Ω1

X) by ω ↦ ∫cx ω. If we
take another path from p to x, denoted c′x, we may observe ∫cx ω − ∫c′x ω ∈H.

Then, by continuity a(cx) and a(c′x) only differ by an element of H and
therefore have the same class in A, which we denote by α(x).
We want to show α is analytic in a neighborhood of a point q ∈ X. We
may choose a path c from p to q and a neighborhood U of q such that U is
isomorphic to a ball in Cn.
We now define for all points x ∈ U a path cx by composing c and the segment
from q to u, and define a by setting a(x) = a(cx). Now, α∣U = π ○ a, and
α(p) = 0, and if we change p then α is altered by translation in A.
We may define an identification δ as above from H0(X,Ω1

X) to H0(A,Ω1
A).

and take ω ∈ H0(X,Ω1
X). Let ω ∈ H0(X,Ω1

X), and as locally we can write
α = π ○ a we obtain α∗(δω) = α∗π∗(δω) = a∗d(⟨ω, ⋅⟩).
If we take a point x ∈ X, we have d(⟨ω, a(x)⟩) = d(∫

x

p ω) = ω(x), and so we
have a∗(δω) = ω. Then since δ is an isomorphism we have that α∗ is then an
isomorphism H0(A,Ω1

A) →H0(X,Ω1
X) as required.

Let V be a complex vector space, Γ a lattice in V and let T = V /Γ be a
complex torus. Let f ∶X → T be a morphism, and construct the commutative
diagram

H0(T,Ω1
T ) H0(A,Ω1

A)

H0(X,Ω1
X)

f̃∗

f∗
α∗

where f̃∗ is determined by the isomorphism α∗. Then, f̃ is determined up
to translation, and as we require f̃(0) = f(p), then such an f is unique.
Consider the composition homomorphism u = f∗ ○ δ satisfies tu(H) ⊂ T and
let γ ∈H1(X,Z) and v ∈ V ∗. Then

⟨tu(i(γ)), v∗⟩ = ⟨i(γ), u(v∗)⟩ = ∫
γ
f∗(δv∗) = ∫

f∗γ
δv∗

and ∫f∗γ δv
∗ = ⟨h−1(f∗γ), v∗⟩. So t(u(i(γ))) = h−1(f∗γ) ∈ H, from which

follows tu(H) ⊂ T and so the proposition is proven.
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We have that dim Alb(X) = h0(X,Ω1
X) = q(X), and so if q = 0 then every

morphism from X to a complex torus is trivial. Furthermore, the Albanese
map is functorial n nature. Let X,Y be two varieties, and f ∶ X → Y a
morphism between them. Then, by universal property there exists an unique
morphism F ∶ Alb(X) → Alb(Y ) making the diagram

X Y

Alb(X) Alb(Y )

f

αX αY

F

commutative.
The following results is a corollary of Zariski’s main theorem ([3], III.11.4)

Theorem 4.5.2 (Stein factorization). Let f ∶ X → Y be a proper morphism

of projective schemes. Then f factorizes as f ∶ X
p
→ Ỹ

g
→ Y where g is a

finite morphism and p is a surjective morphism with connected fibres.

We will use this result to prove the next one.

Lemma 4.5.3. Let X,Y be smooth projective varieties and α ∶X → Alb(X)

the Albanese map of X. Suppose there exists two morphisms f ∶ X → Y and
g ∶ Y → Alb(X) such that g ○ f = α. Then, the map g̃ ∶ Alb(Y ) → Alb(X) is
an isomorphism.

Proof. The Albanese map is functorial, and so it provides a morphism F ∶

Alb(X) → Alb(Y ), and we have a diagram

X Y

Alb(X) Alb(Y ) Alb(X)

f

αS
g

αT

F g̃

From this diagram, we can get that g̃○F is the identity by universal property,
and since F is surjective both F and g̃ are isomorphisms.

Proposition 4.5.4. Let X be a surface, and α ∶ X → Alb(X) the Albanese
map. Suppose α(X) is a curve C. Then C is smooth, g(C) = q(X) and the
fibres of α are connected.

Proof. Let N be the normalization of the curve C. As X is normal, there
exists morphism f ∶ X → N and g ∶ N → Alb(X) such that α = g ○ f , and by
the previous lemma we have that g̃ ∶ Alb(N) → Alb(X) is an isomorphism.
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The map N → Alb(N) is an embedding, and then so is g. Then, N = C,
that is C is already normal and so it is smooth, and has arithmetic genus
g(C) = q(X).
It remains to prove the fibres are connected. By Stein factorization, which
we stated before, a proper morphism of schemes f ∶ X → Y factorizes as
a surjective morphism with connected fibres followed by a finite morphism,
and so we may take C̃ such that we have a finite morphism φ ∶ C̃ → C and a
surjective morphism p ∶X → C̃ with connected fibres such that φ ○ p = α
We may now assume without loss of generality C̃ is smooth as we can replace
it with its normalization.
Then, φ induces an isomorphism η ∶ Alb(C̃) → Alb(C) such that the diagram

C̃ C

Alb(C̃) Alb(C)

φ

αC̃ αC

η

is commutative, so φ is an isomorphism and from this we get the fibres of α
are connected.

Lemma 4.5.5. Let X be a surface with pg = 0 and q ≥ 1, and consider the
Albanese map α ∶X → Alb(X). Then α(X) is a curve.

Proof. Let uis denote Alb(X) by A. If α(X) is a surface, then we have that
the induced morphism α ∶X → α(X) is generally finite, and so we may take
an open U ⊆ α(X) over which α is étale.
Take a point p ∈ U , and let x1, ..., xn be local coordinates for A centered at
p, and choose them so that α(X) is defined by xi = 0 for 3 ≤ i ≤ n.
As A is an abelian variety,its tangent bundle is trivial, and so there exists
a 2-form ω ∈ H0(A,Ω2

A) such that ω and dx1 ∧ dx2 have the same value at
p. Then, α∗ω is a global 2-form on X and it is non-zero above p. This
contradicts that pg = h0(X,Ω2

X) = 0, and so

Notice that if we combine this result with the previous one, we obtain
that the curve α(X) has genus ≥ 1.

4.6 Minimal non-ruled surfaces

Theorem 4.6.1. Let φ ∶ X ⇢ X ′ be a birational map between two minimal
non-ruled surfaces. Then, φ is an isomorphism

Proof. By 3.2.1, there exists a surface Y such that we get a commutative
diagram
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Y

X ′ X

ε f

φ

where f is a birational morphism and ε is the composition of a finite amount
of blow-ups, say ε = ε1 ○ ... ○ εn. If n = 0, then we have f = φ and so the case
is trivially solved. Assume then that n ≥ 1.
Let E be the curve on Y which is the exceptional divisor of the blow-up εn.
As n is minimal by construction, we have that f(E) has to be a curve C on
X, otherwise by 3.2.4 we could factorize f through εn, so n would not be
minimal and we would get a contradiction.
Also, 3.2.5 tell us that the morphism f is the composition of a finite number
of blow-ups too. Let ε ∶ V → X be the blow-up at a point p, and E′ the
exceptional divisor of this blow-up, and let m be the multiplicity of the
curve C in p. As ε∗KX =KV +E, we have that

KV .E = (ε∗K.E).(ε∗C +mE) =KX .C −m.

In particular, if m = 0, and so C does not pass through the blow-up point we
have KV .E =KX .C.
Inductively, we get that KY .E ≥ KX .C, and as KY .E = −1 we get an upper
bound for KX .C. Observe that the relation is satisfied with equality if and
only if C does not pass through any blown up point, which means the re-
striction of f to E is an isomorphism. But, C would now be a rational curve
such that KX .C = −1, and so it would be contractible through a rational
morphism, which would contradict that X is a minimal surface.
We now necessarily have KX .C ≤ −2, and so C2 ≥ 0 by (2.2.6). We may also
notice that ∣nKX ∣ = ∅ for all n ≥ 1, as otherwise by lemma 2.1.4 we would
have that KX .C =D.C/n ≥ 0, where D ∈ ∣nKX ∣.
If q(X) = 0, the surface X would then be rational, and so we may assume
q ≥ 1. In this case, the Albanese map gives a surjective morphism φ ∶X → B
which has connected fibres, where B is a smooth curve of genus q. Since C
is rational, then it is contained in a fibre F of φ.
As we already have C2 ≥ 0 from before, 4.2.2 gives us F can not be a reducible
fibre, and so has to be an integer multiple of C, say rC. So, 0 = F 2 = r2C2,
which implies C2 = 0, hence C.K = −2. We may observe that by the genus
formula we get r = 1 and g(F ) = 0, and so by 4.2.1 we have X is ruled, which
gives a contradiction.

From this last result, we obtain that, up to isomorphism, the minimal
surface associated to any non-ruled surface is unique up to isomorphism. We
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have now described the minimal surfaces associated to ruled and rational
surfaces, and observed that there is an unique one in the remaining cases,
and we may begin the process of classifying minimal surfaces.

Definition 4.6.2. Let X be any smooth projective variety over a field k
and K the canonical divisor of X. The Kodaira dimension of the surface X,
denoted κ(X), is defined as the maximum of the dimension of the image of
X through the morphism associated to the linear system ∣nK ∣, which we will
denote as φ∣nK∣, for n ≥ 1.

We can easily see that the Kodaira dimension of a variety is bounded by
the dimension of the variety. In particular, for a surface X we may only have
κ(X) = −∞,0,1,2, where by κ(X) = −∞ we denote the case φ∣nK∣ = ∅ ∀n ≥ 1.
Recall that there is an identification between H0(X,OX(D)) and the linear
system ∣D∣, so we the plurigenus Pn can be seen as the dimension of the linear
system ∣nK ∣.
Observe also that the morphism associated to a linear system is well defined,
so φ∣nK∣(X) = ∅ if and only if the linear system ∣nK! is composed only of
fixed points, that is dim ∣nK ∣ = Pn = 0, and so κ(X) = −∞ implies Pn(X) = 0
for all n ≥ 0.
By this reasoning, we can also see that if κ(X) ≥ 0, then there must exist
an n such that Pn(X) ≥ 1. In particular, if κ(X) = 0 this means that for a
given n such that Pn ≥ 1 that there exists only 1 divisor passing through a
non-fixed point of the linear system, and so ∣nK ∣ = 1, and so Pn = 1.
It also follows that if Pn ≤ 1 for all n then κ(x) ≤ 0, and so κ(X) = 1 requires
that for some n we have Pn ≥ 2 but φ∣nK∣(X) is at most a curve for all n.
Finally, we are not able to say much about κ(X) = 2, but we have that for
some n we have φ∣nK∣(X) is a surface.

Let us consider a blow-up morphism X̂ → X. Notice that by 3.1.4 we have
KX̂ = ε∗KX + E and that E is not linearly equivalent to any other curve.
Thus, the linear system ∣nKX̂ ∣ has a fixed component nE. If we consider the
associated morphism, we may then remove the fixed part and obtain that it
is the morphism defined by the linear system ∣ε∗(nKX)∣, which by linearity
is ε∗∣nKX ∣. Thus, we obtain that the image of the linear maps that define
the Kodaira dimension are invariant for blow-up morphisms and so is the
Kodaira dimension, which is then a birational invariant.
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5 Surfaces with κ = −∞

5.1 Minimal surfaces with pg = 0 and q ≥ 1

We have seen that the Kodaira dimension of a variety is a birational invariant,
and so we want to classify the surfaces over C by the Kodaira dimension of the
minimal surface (or surfaces) they are birationally equivalent to. We will now
work towards giving a complete classification of the first case, κ(X) = −∞.
So, let X be a surface with κ(X) = −∞. We know Pn(X) = 0 for all n ≥ 1,
and so P2 = 0 in particular. Then, if the surface has q = 0 we may just
apply 4.4.4 and say the surface X is rational, so we may restrict ourselves to
consider surfaces where q ≥ 1.
In particular, we have the following characterization:

Lemma 5.1.1. Let X be a minimal surface with K2 < 0. Then pg(X) = 0
and q(X) ≥ 1.

Proof. Suppose pg ≠ 0. Then, as by Serre duality pg = P1, we may choose
a non-zero D ∈ ∣K ∣ and we can write D = ∑niCi, where all ni > 0 as D is
effective.-
By the statement we have K.D = K2 < 0, and so one of the components Ci
satifies K.Ci < 0. Since K.Ci = D.Ci, and Ci.Cj > 0 for any i ≠ j, as it is the
intersection of distinct curves, then by the same reasoning we have that Ci
must also satisfy C2

i < 0. In particular Ci would be an exceptional curve, and
so X would not be minimal. It follows that pg = 0.
Repeating the argument for Pn with n ≥ 2 shows that there is no divisor in
any ∣nK ∣, and so Pn = 0 for all n. Then, the Kodaira dimension of X is
κ(X) = −∞.
We conclude observing that, since q = 0 and P2 = 0 mean that X is a rational
surface by 4.4.4 and rational surfaces have q(X) = g(P1) = 0 which implies
K2 = 8 or K2 = 9 depending on b2. Then we are forced to have q ≥ 1.

While the converse of this last statement is not true, a surface having
q ≥ 1 and pg = 0 still proves to give a strong condition on the canonical
divisor

Proposition 5.1.2. Let X be a surface with q ≥ 1 and pg = 0. Then, K2 ≤ 0.

Proof. By (2.2.8) and (2.1.1) we have 12 − 12q = K2 + 2 − 2b1 + b2, and by
Hodge theory b1 = 2q. Then, we obtain the equation K2 = 10 − 8q − b2.
Since both q and b2 are non-negative, it is immediate that if q ≥ 2 then
K2 < 0. Let now q = 1 and consider the Albanese map α ∶ X → Alb(X).
Observe that α(X) is an elliptic curve, and let f be the class of a fibre of α

48



in H2(X,Z) and let h be the class of an hyperplane section in H2(X,Z).
We have that f 2 = 0 and that f.h > 0, and so they are linearly independent
in H2(X,Z). Then, b2(X) ≥ 2, and from K2 = 10 − 8q − b2 fwe finally obtain
K2 ≤ 0.-

Notice that if we assume q ≥ 1, then K2 = 0 in the previous proposition
may only occur if q = 1 and b2 = 2. If we exclude this case, we have that a
minimal surface with pg = 0 and q ≥ 1 has K2 < 0 and viceversa.

Lemma 5.1.3. Let π ∶ X ′ → X be an étale map of surfaces of degree n.
Then, χtop(X ′) = nχtop(X), K2

X′ = nK2
X and χ(OX′) = nχ(OX).

Proof. The first equation is proved by using a topological argument. Take
a triangulation of X ′, and let fi(X) be the number of faces of dimension
i. Then, χtop(X) = ∑(−1)ifi(X), and since the faces are simply connected
their inverse image through π gives a triangulation of X ′, and since π is étale
fi(X ′) = nfi(X).
The second equation is immediate from the fact that KX′ ≅ π∗KX , as then
we may apply 2.1.5 to get K2

X′ = nK2
X . Finally, χ(OX′) = nχ(OX) follows

immediately from (2.2.8) and the previous two equations.

We may use the above lemma to prove the following result, which gives
some more information about part of the surfaces with pg = 0 and q ≥ 1.

Proposition 5.1.4. Let X be a minimal surface with K2 < 0. Then X is
ruled.

Proof. From 4.5.5 The Albanese map α ∶ X → Alb(X) has connected fibres
and α(X) = B is a smooth curve.
Assume there exists an irreducible curve C such that K.C < 0 and ∣K+C ∣ = ∅,
so we have h0(K +C) = 0. If we apply Riemann-Roch to K +C, we get

0 = h0(K +C) ≥ χ(OX) +
1

2
(C2 +C.K).

As we have pg(X) = 0, we get that this is equal to 1 − q(X) + g(C) − 1, and
so 0 ≥ g(C) − q(X).
We have X is minimal, so C2 ≥ 0 necessarily. If we assume C2 = 0, then C
can not be contained in a reducible fibre by lemma 4.2.2, and if C were a
fibre, we would have C2 = 0, C.K = −2 and g(C) = 0. Then, using 4.2.1, we
may say that the surface X is ruled, and so q(X) = 0 = g(C).
Now assume α(C) = Alb(X), and let N be the normalization of C. The
morphism α induces a ramified cover of N → Alb(X) of a certain degree d
and let r be the number of branch points of the cover. By Riemann-Hurwitz’s
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theorem, we get g(N) = 1 + d(g(B) − 1) + r
2 .

Normalizing a curve may not increase its genus, so we get the following chain
of inequalities

q(X) ≥ g(C) ≥ g(N) ≥ 1 + (q(X) − 1)d

which can only be satisfied if q = 1 and C is already normal, or d = 1, and
again we have g(C) = q(X).
Assume that X is not ruled. Then, if such a C existed, the restriction of α
to C would then be an étale morphism of curves. Also, if q ≥ 2, then d = 1
necessarily and so we get C is a section of α.
By 4.4.2 there is an effective divisor D = ∑niCi such that ∣D +K ∣ = ∅ and
D.K < −1.
Take Ci in the components such that Ci.K < 0, and assume its coefficient
ni which is positive as D is effective, is ≥ 2. Then, ∣K + 2Ci∣ = ∅, and so
by Riemann-Roch, we get 0 ≥ 1 − q + 2C2

i + Ci.K, which we can rewrite as
1 − q + 4g(C) − 4 + Ci.K, and since g(C) = q(X) we have 0 > 3q − 4, and so
q < 1 which is a contradiction.
Now, assume that there are at least two different components in C, and let
them be C1 and C2. We would then have ∣K + C1 + C2∣ = ∅. So, by using
once again Riemann-Roch, we get

h0(K +C1 +C2) = h
1(K +C1 +C2) + 1 − q +

1

2
((C1 +C2)

2 + (C1 +C2).K)

which we can rewrite as

h1(K +C1 +C2) + 1 − q +
1

2
(C2

1 +C1.K) +
1

2
(C2

2 +C2.K) +C1.C2

and as C1 and C2 are irreducible curves, g(C1) = g(C2) = q, and from this we
obtain (q − 1) +C1.C2 + h1(K +C1 +C2) = 0.
The three terms in this last equation are all non-negative, so they must all
be 0a and in particular we must have C1 ∩C2 = ∅, and so we have an exact
sequence

O → OX(−C1 −C2) → OX → OC!
⊕OC2 → 0.

If we consider the associated long cohomology sequence H1(X;OX(−C1−C2))

has to be non-trivial, and so h1(X,OX(K +C1 +C2)) has to be positive too,
which gives a contradiction. From this discussion we deduce that D is an
irreducible curve on X.
Assume D is a section of α. By Riemann-Roch, we have h0(D) ≥ 1 − q +
1
2(D

2 −D.K) = −K.D ≥ 2, so D moves in its linear equivalence class. If we
let F be a generic fibre of α, then D ∩ F is a point and it moves linearly on
F , and so F is rational, then by 4.2.1 the surface X is ruled. Then, assume
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q = 1. and so α∣D is étale. The inclusion i ∶ D ↪ X defines a section in the
fibred product e ∶D ↪X ×B D.
Then, e(D) =D′ is contained in a connected component of the fibred product
which we will denote X ′. If we consider the projection π of X ′ onto X, which
is étale, we see that Ω1

X′ ≅ π∗Ω1
X .and KX′ = π∗KX .

Now the following chain of equalities holds:

KX′ .D′ = deg(ε∗KX′∣D′) = deg(i∗K∣D) =K.D

and K.D < −1. We also have the morphism of surfaces π has finite degree,
say n. Then, by the previous lemma, we get χ(OX′) = 0 and so we then have
that h0(D′) ≥ 2 and like before F now has to be rational, which is impossible
and so the surface is ruled.

After this result, only the case where K2 = 0, that is q = 1 and b2 = 2,
remains. To study this case, we are going to need some more results.

Lemma 5.1.5. Let X be a surface, B a smooth curve and π ∶ X → B a
surjective morphism. Denote by S the subset of B composed of all points
where π is not smooth, and let η ∈ B be a point over which π is smooth.
Then

χtop(X) = χtop(B)χtopFη + ∑
x∈S

(χtop(Fx) − χtop(Fη)),

where Fp denotes the fibre above the point p.

Proof. For any topological space Y and F ⊂ Y closed, there exists a long
exact cohomology sequence

...→H i
c(Y − F,Z) →H i(Y,Z) →H i(F,Z) →H i+1

c (Y − F,Z) → ...

where H i
c is the cohomology with compact support, from which we obtain

χtop(Y ) = χtop(F ) + χtop,c(Y − F ).
Then, we may apply this to the closed subset Z = ∪p∈SFp of X, and we
may observe that χtop(Z) = ∑χtop(Fp). Then, if we set U = X − Z we get
χtop(X) = ∑χtop(Fs) + χtop,c(U).
Also, S is a closed subset of B, so again we may apply this to B and S, from
which we get

χtop(B) = χtop,c(B − S) + χtop(S)

and since S is finite χtop(S) = #(S).
Also, the restriction of π to U gives a fibre bundle U → (B − S), from which
we get χtop,c(U) = χtop,c(B − S)χtop(Fη). By combining all these results, and
expanding χtop(S)χtop(Fη) as ∑x∈S χtop(Fη), we obtain the equation in the
statement.
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If C is a smooth curve, by Hodge theory we have H0(C,C) ≅H0(C,OC),
H1(C,C) ≅H0(C,OC)⊕H0(C,ωC) and H2(C,C) ≅H0(C,ωC), and by Serre
duality we have H i(C,OC) ≅ H1−i(C,ωC) for i = 0,1. Then, for a smooth
curve C we obtain that 2χ(OC) = χtop(C).
We can give a weaker version of this statement that is true for any curve.

Lemma 5.1.6. Let C be a curve, then χtop(C) ≥ 2χ(OC).

Proof. Consider the normalization N of C and the corresponding morphism
f ∶ N → C. We have a diagram

0 CC f∗CN ε 0

0 OC f∗ON δ 0

φ

where CC is the constant sheaf with values in C on C, and ε and δ are
skyscraper sheaves concentrated at the singular points of C which are defined
so to make the respective sequences exact. In particular, if they are 0 then
we have N = C
We have that any local section of f∗ON that sits in both the images of the
morphisms f∗CN → f∗ON and OC → f∗ON is more generally in the image
of the composition CC → f∗ON . By diagram chasing, this is equivalent to
saying that the morphism of skyscraper sheaves φ ∶ ε → δ is injective and so
we have h0(δ) ≥ h0(ε).
Applying χtop and χ in the above diagram we get χtop(N) = χtop(C) + h0(ε)
and χ(ON) = χ(OC) + h0(δ). We also have χtop(ON) = 2χ(ON), and so by
linear combination of the equations we get

χtop(C) = 2χ(OC) + 2h0(δ) − h0(ε) = 2χ(OC) + h
0(δ) + (h0(δ) − h0(ε))

and h0(δ) and (h0(δ)−h0(ε)) are both positive, so we get χtop(C) ≥ 2χ(OC)
as desired.

We may observe that the above proof gives us χtop(C) = 2χ(OC) if and
only if h0(δ) = h0(ε) = 0, that is C = N .

Proposition 5.1.7. Let X be a minimal surface with pg = 0, K2 = 0 and
q = 1. Let α ∶ X → Alb(X) be the Albanese map and let g be the genus of a
generic fibre of α. Then, if g ≥ 2, α is smooth. Instead if g = 1, the fibres of
α are of the form nC, where C is a smooth elliptic curve.

Proof. Observe first that by 4.5.5 α(X) is an elliptic curve, which we will
denote by B.
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Suppose there exists a fibre which is not irreducible, and so assume it is such
that it has two different irreducible components F1 and F2, and as they are
contained in a fibre F1.F and F2.F = 0 for any fibre F . Let H be a hyperplane
section of X. We know that hyperplane sections and fibres of a morphism
are linearly independent in H2(X,Z). Assume H,F1 and F2 are linearly
dependent, and let h, f1 and f2 be their respective classes in H2(X,Z). Let
a, b, c be some coefficients such that ah + bf1 + cf2 = 0. Let f be the class
of a generic fibre. Assume a ≠ 0, then 0 = (ah + bf1 + cf2).f = ah.f and so
h.f = 0, which is a contradiction. Then, a = 0, and so for some number r
we have f1 = rf2. It follows 0 < f1.h = rf2.h and since f2.h > 0 we get r > 0.
But, by 4.2.2 we have f 2

i < 0, and so rf2.f1 < 0, but since f2.f1 > 0 as it is
intersection of effective divisors, we have r < 0 and so we have now obtained
a contradiction.
We msy now say that h, f1 and f2 are linearly independent in H2(X,Z).
From 5.1.2 we know that b2(X) = 2, and in the case described above we
would have b2 ≥ 3, which gives a contradiction. Then, we have that no fibre
may be reducible. This however does not exclude that a fibre F is a multiple,
say F = nC for some curve C and n ≥ 1. Also, let F ′ be a smooth fibre.
In this case, we would have C2 = 0 and χtop(F ) = χtop(C), but we have
χtop(C) ≥ 2χ(OC) by the previous lemma. Furthermore,

2χ(OC) = −C
2 −C.K = −

1

n
F.K = −

1

n
F ′.K =

2

n
χ(OF ),

which is 1
Nχtop(F ) as the fibre is smooth.

Since g ≥ 1, we have χtop(F ) ≥ χtop(F ′), where equality holds if and only
if 2χ(OC) = χtop(C) and 1

nχtop(F
′) = χtop(F ′), which means either n = 1 or

g(C) = 1.
So χtop(F ) − χtop(F ′) ≥ 0, and in case F is a singular fibre equality golds if
and only if C is a smooth elliptic curve, and g(F ′) = 1 too.
Then, applying 5.1.5 we get χtop(X) = 2 − 2b1 + b2 = 0, and χtop(B) = 0, and
we also get that for every singular fibre Fs we have χtop(Fs) − χtop(F ′) = 0.
We may now conclude that Fs = nCs where Cs is an elliptic curve.

Proposition 5.1.8. Let π ∶ X → B be a smooth morphism from a surface
to a curve, and F a fibre of π- Assume either g(F ) = 1 or g(B) = 1 and
g(F ) ≥ 1. Then, there exists an étale cover B′ → B such that the fibration
π′ ∶X ×B B′ → B′ is trivial.
Furthermore, we may take B′ → B to be a Galois cover with Galois group G,
so that X ≅ (B′ × F )/G.

The proof for this proposition uses results on moduli spaces which are
out of the scope of this work, so we are only going to give an idea of proof.
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If we take a smooth morphism from a surface to a curve X → B with fibres
of genus g, then we may find an étale cover B′ of B and a surface X ′ =
X ×B B′ such that the fundamental group of B′ at the point p acts trivially
on H1(X ′

p, (Z/nZ)X′
p
), where n ≥ 3 is fixed. One can show that, for every g

and n, there exists a morphism of varieties Ug,n → Tg,n, where Ug,n and Tg,n
are unique up to isomorphism, that satisfies the previous condition and such
that we get a commutative diagram

X ′ Ug,n

B′ Tg,n

which means that every such X ′ can be expressed as the pull-back of Ug,n →
Tg,n. It can also be shown that if we assume g = 1 every analytical morphism
X ′ → T1,n has to be constant and if g ≥ 2 then all the analytical morphisms
C → Tg,n are also constant, and C is an universal cover of B′, and so the
statement follows from this argument.

Lemma 5.1.9. Let X be a surface, B a curve and α ∶ X → B a smooth
morphism between them whose fibres are either smooth or multiples of smooth
curves. Then, there exists a ramified Galois cover q ∶ B′ → B with Galois
group G, a surface X ′ and a commutative diagram

X ′ X

B′ B

q′

α′ α

q

such that the action of G on B′ lifts to X ′, q′ induces an isomorphism
X ′/G→̃X and α′ is smooth.

Proof. if α has no multiple fibres, then the problem is trivially solved. Also, if
we can eliminate every multiple fibre successive branched covers, the problem
is solved. To do so, we may consider a local description of the problem, and
use the following argument.
Let ∆ ⊂ C be the unit disk, and U a smooth analytic surface, and so not
necessarily compact, and let φ ∶ U → ∆ be a morphism which is smooth
everywhere except over 0, and such that φ∗0 = nC for a smooth curve C and a
positive integer n. Let ψ ∶ ∆→∆ be the morphism defined by z ↦ zn, and let
Û = U×∆∆ obtained by the morphisms φ and ψ. Let U ′ be the normalization
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of Û , and π1 and π2 the projections of U ′ on ∆ and U respectively.
The group of n-th roots of unity G acts on ∆, and this action induces an
action on Û , which induces an action on U ′.
Since we are in a local setting, we may assume there exists coordinates x, y
on U such that φ(x, y) = xn, and C is defined by x = 0.
Then, if we let (x, y, z) be coordinates for Û , (x, y) ∈ U , z ∈ ∆, we obtain
that Û = {(x, y, z)∣xn = zn}. Then, we may express U as union of (Ug)g∈G,
where Ug = {(x, y, gx}∣(x, y) ∈ U}.
The Ug are isomorphic to U and we can see that Û is their glueing along
the line C. Then, U ′ is the disjoint union of the Ug and G acts on U ′ by
switching the Ug around. We have that on each Ug, the restriction of π1 is
defined as (x, y) ↦ gx. Now we have that π2 ∶ U ′/G → U is an isomorphism,
and the fibres of π1 ∶ U ′/G → ∆ are smooth and π2 induces an isomorphism
U ′/G→ U .
We have that the cover q ∶ B′ → B exists and the map q′ ∶X ′ →X is étale by
the previous result, and this lets us conclude the proof.

Let X be a non-ruled minimal surface with pg = 0, q = 1 and K2 = 0.
Then by these last results, there are two curves B and F which have positive
genus, and a group G of automorphisms of B that induces an action of B×F
compatible with the action on B, and X ≅ (B × F )/G.
Moreover, if g(F ) ≥ 2, then g(B) = 1 and so B is elliptic and G is a group of
translations of B.
We want to find a characterization for this type of surfaces in terms of its
Kodaira dimension.

Lemma 5.1.10. Let B,F be curves of genus ≥ 1, and G a group of auto-
morphisms of B acting on B × F compatibly with its action on B. Then:
● If g(F ) = 1 there is an étale cover B′ of B a group H acting on B′ and F
such that B′/H ≅ B/G and (B′ × F )/H ≅ (B × F )/G.
● If g(F ) ≥ 2, then G acts on F and g(b, f) = (gb, gf) for g ∈ G, b ∈ B and
f ∈ F .

Proof. For g ∈ G and b ∈ B we necessarily have that g(b, f) = (gb, φg(b)f)
where φg(b) is an automorphism of F depending continuously on B. In the
case g(F ) ≥ 2, its group of automorphisms is finite and so φg(b) does not
actually depend on b, which is enough to finish the proof of this case.
We may now assume g(F ) = 1, that is F is elliptic, and fix a point F to
be the 0 of the group structure on the points of F . Then, φg(b) ∶ f ↦
ag(b)f + tg(b) where ag(b) is an automorphism of F that keeps 0 fixed and
tg(b) is a translation. The group of automorphisms of F that keep 0 fixed is
finite, so ag(b) does not depend on B, and for g, h ∈ G we have agah = agh.
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Then, we may give a group homomorphism a ∶ G → Aut0(F ) such that
a(g) = ag.
Denote by Div0(F ),the group of divisors of degree 0 on F , and recall that if
we consider the group the group structure on the elliptic curve F we have a
canonical group isomorphism F → Div0(F ) defined by p ↦ [p] − [0], where
[p] is the divisor on F associated to point p.
Then, if we have r points on F , say p1, ..., pr, we have∑[pi] = (r−1)[0]+[∑pi],
where the sum of points is defined by the group structure on F .
Let u ∈ Aut(F ) and write it as u(p) = a(p)+ t for a ∈ Aut0(F ) and t ∈ F , and
let D = (n − 1)[0] + [p]. Then,

u∗D = (n − 1)u∗[0] + u∗[p] = (n − 1)[a−1(t)] + [a−1p − a−1t]

which we may rewrite as (n − 1)[0] + [a−1p − na−1t] by the previous formula.
Let H be a hyperplane section of B × F . We may define a line bundle
L = OB×F (∑g∈G g∗H) that is invariant under the action of G. We also denote
Lb = L ⊗ O{b}×F for all points b ∈ B.and observe it is a line bundle on F of
positive degree.
As L is invariant under the action of G, then we may use the equivalent
definition Lb = (g∗L) ⊗O{b}×F = φg(b)∗Lgb.
Lb corresponds to some divisor on F , and so we say Lb = OF ((n−1)[0]+ρ(b))
for some ρ. This way, we define a morphism ρ;B → F such that for some
integer n we have ρ(gb) − agρ(b) = ntg(b) for g ∈ G.
We may now define u ∈ Aut(B×F ) by u(b, f) = (b, f −ρ(b)). Then, assuming
n = 1, we have

ugu−1(b, f) = (gb, agf)

and so we have that u induces an isomorphism B×F /G→ (B×F )/H, where
H = uGu−1 acts on B × F by acting on the two factors separately. Then, if
we impose n = 1 the remaining case is proven.
In the general case, we have an étale cover π ∶ B′ → B induced by the pullback

B′ F

B F

ρ′

π n

ρ

Notice that B′ may be not connected. B′ is stable under the action of G, and
the group Fn of points of order n on F also acts on B′ by ε(b, f) = (b, f + ε),
so we may define a subgroup H of Aut(B′) by H = ⟨G,Fn⟩, and gεg−1 = agε.

Then, there exists a split exact sequence 1→ Fn →H
v
→ G→ 1.

Then, we may define an action of H on B′ ×F by g(b′, f) = (hb′, φvh(πb′).f).
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Since B′/Fn ≅ B, we have B′/H ≅ B/G and (B′ × F )/H ≅ (B × F )/G.
We may take u ∈ Aut(B′ × F ) defined by u(b′, f) = (b′, f − ρ′(b′)). Then,

uhu−1(b′, f) = (hb′, avhf + θh(b′))

where θh(b′) = avh.ρ′(b′) − ρ′(hb′) + tvh(πb).
We now get n.θh(b′) = 0 and so θh(b′) ∈ Fn and is thus independent of b, and
the action of H on B′ × F is of the required form.
If B′ is not connected,we may consider a connected component B0 and the
subgroup of H preserving B0 which we denote H0. Then, we have a canonical
isomorphism (B′ × F )/H ≅ (B0 × F )/H0.

Lemma 5.1.11. Let X be a smooth variety and G a finite subgroup of AutX,
Let π ∶X →X/G be the natural projection, and assume Y =X/G is smooth.
Then, the G-invariant k-fold p-forms in H0(X, (Ωp

X)⊗k) are the pullback of
the k-fold rational p-form on Y such that π∗ω is regular on X.

Proof. We will prove the lemma for 1-forms, and the general case will follow
immediately.
Let (dy1, ..., dyn) be a basis for the the space of rational 1-forms MΩ1

Y on Y as
a KY -vector space, where KY the function field of Y . Then, (π∗dy1, ...π∗dyn)
is a basis for MΩ1

X as a KX-vector space.
Let α be a rational 1-form on X, and write α = ∑Aiπ∗dyi for Ai ∈ KX . The
form is G-invariant if and only if the Ai are, that is for all i, Ai = π∗Bi for
some Bi ∈ KY . We then get α = π∗ω, where ω = ∑BIdyi.
We now have π∗ is an isomorphism between MΩ1

Y and (MΩ1
X)G, which

proves the lemma.

If π is étale, that is G acts freely, this lemma tells us π∗ is an isomorphism
between H0(Y, (Ωp

Y )
⊗k) and H0(X, (Ωp

X)⊗k)G.
In a more general case, let p ∈ Y be a branch point of π. Then G acts
transitively on π−1(p), and denote the points in π−1(p) by q1, ..., qs. The order
of the stabilizer of the qi, which are conjugate, is the ramification index ep,
and in particular s ⋅ep = #(G) = degπ. Then, we may give a local coordinate
y on Y and xi on X around qi such that π∗y = xepi ina neighborhood qi.
Around p we may then write α = Ay−r(dy)⊗k for some integer r and function
A such that A(p) ≠ 0.

At qi we then get π∗α = Aix
−rep+k(ep−1)
i (dxi)⊗k for some Ai that is not 0 at

qi. we then obtain π∗α is regular if and only if −rep + k(ep − 1) ≥ 0 and so we
get an isomorphism

π∗ ∶H0(Y,ω⊗kY (∑
p∈Y

[k(1 −
1

ep
)])) →H0(X,ω⊗kX )G,
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where [n] is the integral part of n.
Observe that even if we take the previous sum over all points p ∈ Y , the
contribution to the sum of all the points where the cover does not ramify is
0.

Proposition 5.1.12. Let X be a minimal non-ruled surface with pg = 0 and
q ≥ 1. Then, X is isomorphic to (B × F )/G, where B and F are smooth
irrational curves, G is a finite group which acts faithfully on both B and F ,
B/G is elliptic and F /G is rational. Furthermore, either of the following
conditions has to hold:
● B is elliptic and G is a group of translations of B
● F is elliptic and G acts freely on B × F
Conversely, any such surface (B×F )/G is minimal, has pg = 0, q = 1, K2 = 0
and is non-ruled.

Proof. Let X be a minimal non-ruled surface with pg = 0 and q ≥ 1. Then, by
5.1.4 we have that K2 ≥ 0, and by 5.1.2 we actually get X must have K2 = 0
and q = 1-
By the previous lemma we have that X ≅ (F × B)/G where G is a group
acting on the curves B and F , and B/G is elliptic. Moreover, either B or F
is elliptic, and the projection π ∶ B × F → X is étale, and this gives us our
two cases.
Now we want to prove the converse. First, observe that if there exists a
rational curve C on X, then π−1(C) ⊂ B × F would be a union of rational
curves, each of which would map surjectively to either B or F , meaning that
either B or F is rational, giving an absurd. Then, X is minimal and non-
ruled.
Set X ′ = B × F , then H0(X ′,Ω1

X′) ≅ H0(B,ωB) ⊕ H0(F,ωF ), which gives
q(X ′) = g(B) + g(F ).
Furthermore, we also have H0(X ′,Ω2

X′) ≅ H0(B,ωB) ⊗ H0(F,ωF ), which
gives us pg(X ′) = g(B)g(F ). We then also get χ(OX′) = χ(OB)χ(OF ), and
since either B or F is elliptic χ(OX′) = 0.
Also, if B is elliptic, then Ω2

X′ ≅ π∗2(ωF ) where π2 ∶ X ′ → F is the canonical
projection on the second coordinate. Similarly if F is elliptic, we obtain
an isomorphism Ω2

X′ ≅ π∗1(ωB).Then K2
X′ = 0, and by 5.1.3 we obtain that

K2
X = 0 and χ(OX) = 0.

Since π is étale, there exists an isomorphism H0(X,Ω1
X) → H0(X ′,Ω1

X′)G ≅

H0(B,ωB)G ⊕H0(F,ωF )G =H0(B/G,ωB/G) ⊕H0(F /G,ωF /G)-
We know B/G is elliptic and F /G is rational, so q(X) = 1. Then, pg(X) = 0
since χ(OX) = 0.

Before stating the next result, let us recall without giving proof the fol-
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lowing fact about automorphisms of elliptic curves.

Proposition 5.1.13. Let C be an elliptic curve on which we fixed a group
structure. Every automorphism of C is the composition of a translation amd
an automorphism of the group structure. Furthermore, for a general elliptic
curve the only non-trivial group automorphisms is the symmetry x ↦ −x.
There are more non-trivial automorphisms only in the following cases:
● If C ≅ C/(Z⊕Zi) there are automorphisms x↦ ±ix.
● Let ρ denote a primitive 3rd root of unity. If C ≅ C/(Z ⊕ Zρ) there are
automorphisms x↦ ±ρx and x↦ ±ρ2x.

Proposition 5.1.14. Let X = B×F /G be a surface satisfying the conditions
of proposition 5.1.12. Then:
● P4 ≠ 0 or P6 ≠ 0 (which implies P12 ≠ 0).
● If B or F is not elliptic, then there exists an increasing sequence of integers
ni such that Pni → +∞. for i→ +∞

● If B and F are both elliptic, 4KX ∼ 0 or 6KX ∼ 0. In particular, 12K ≅ 0.

Proof. First, we may observe that the third property comes naturally from
the first one, as if B and F are both elliptic, KB×F is trivial, so if D ∈ ∣KX ∣

then π∗D = 0, and so D = 0.
Denote Y = B×F . Let us consider the case where G acts on B by translations
first. Then, we have that

H0(X,Ω2
X)⊗k ≅ (H0(Y,Ω2

Y )
⊗k)G ≅ [H0(B,ω⊗kB ) ⊗H0(F,ω⊗kF )]G

and H0(B,ω⊗kB ) is G-invariant as G acts on B by translation and regular
1-forms on B are invariant by translation.
We denote by Lk the sheaf ω⊗k

F /G(∑p∈F /G[k(1 −
1
ep
)]p), and we have

Pk(S) = dimH0(F,ω⊗kf )G = dimH0(F /G,Lk).

Since F /G ≅ P1, then Lk is determined by its degree, which is

degLk = −2k +∑
p

[k(1 −
1

ep
)].

From Riemann-Hurwitz’s formula, we get

2g(F ) − 2 = −2n +∑
p

n(1 −
1

ep
). (5.1.15)

If we denote the number of ramification points by r, we get that

degLk ≥ −2k +∑
p

(k(1 −
1

ep
) − 1) = k

2g(F ) − 2

n
− r.
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Then, if we assume that g(F ) ≥ 2 we have Pk →∞ as k grows, so the second
property is proven in this case.
We now want to prove the first one, which as said before implies the first one.
Write the ramification indexes ei in increasing order. By Riemann-Hurwitz’s
formula we obtain ∑(1 − 1

ei
) ≥ 2. If we can show that degLk ≥ 0 for some k

dividing 12, the statement is proven.
By (5.1.15) we must have at least 3 ramification points for 2g(f)−2 ≥ 0, so we
may assume r ≥ 3. Also, if we let r ≥ 4, as we know e1 ≥ 2 and so 2(1− 1

ei
) ≥ 1

for all i, then degL2 ≥ 0. Assume then r = 3, and so 1/e1 + 1/e2 + 1/e3 ≤ 1. If
e1 ≥ 3, then the condition is satisfied as the ramification indexes are taken to
be ascending, so degL3 ≥ 0. Assume then e1 = 2 and 1/e2 + 1/e3 ≤

1
2 . Using

similar reasoning, we may see that e2 ≥ 4 gives degL4 ≥ 0, and so assume
e2 = 3. We now have the condition is satisfied if and only if e3 ≥ 6, and so
degL6 ≥ 0. This finishes all the possible cases, and proves the first property.
We now assume instead F is an elliptic curve and G acts freely on B × F .
We may observe that

H0(X,Ω2
X
⊗k

) ≅ [H0(B,ω⊗kB ) ⊗H0(F,ω⊗kF )]G.

If we let ω be a regular 1-form on F , then ω⊗m, where m is the order of
the group of automorphisms which by 5.1.13 is 2, 4 or 6, is invariant under
AutF . Let k be a multiple of m, then we have

Pk(X) = dimH0(B,ω⊗kB )G = h0(B/G,OB/G(∑
p

[k(1 −
1

ep
)]p))

as B/G is an elliptic curve. This expression is non-zero, and so tends to ∞ as
k →∞ if g(B) ≥ 2, so the properties also hold in this case and the statement
of the proposition is proven.

We will say that a surface X = (B × F )/G where B,F are both elliptic
curves and G is a finite group of translations of B whose action on F is such
that F /G ≅ P1 is a bielliptic surface.
The following theorem, by Enriques, completes the classification of surfaces
with κ(X) = −∞.

5.2 Classification of surfaces with κ = −∞

Theorem 5.2.1 (Enriques). Let X be a surface with P4 = 0 and P6 = 0.
Then, X is ruled.

Proof. If q = 0, we may apply 4.4.4 since P2 is 0. If, instead q ≥ 1, then
assume X is not ruled, and so the surface satisfies the conditions of 5.1.12.
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Then we may apply 5.1.14 which would give P4 ≠ 0 or P6 ≠ 0 if X were to be
not ruled, which is a contradiction.

if κ(X) = −∞ as we observed previously Pn(X) = 0 for n ≥ 1, and so we
may use this theorem to say that any such surface X has to be ruled.
We may actually give a slightly stronger version of this statement

Proposition 5.2.2. Let X be a surface. The following are equivalent:

1. X is ruled

2. There exists a curve C on X that is not exceptional and such that
K.C < 0.

3. For every D ∈ DivX, ∣D + nK ∣ = ∅ for n large enough.

4. Pn = 0 ∀n ≥ 1.

5. P12 = 0.

Proof. 1 Ô⇒ 2: Since X is ruled, there exists a minimal surface Y and a
rational morphism f ∶ X → Y . We know minimal models for ruled surfaces
are either geometrically ruled surfaces by 4.2.4 or P2. Then, let F be a fibre of
Y is ruled, or any line on Y if Y = P2, over which f is an isomorphism. Then,
intersection theory gives f∗F.KX = F.KM , which is = −2 if Y is geometrically
ruled and = −3 if Y is P2.
2 Ô⇒ 3: C is not exceptional, then C2 ≥ 0. As K.C < 0, we also may find
for any divisor D an integer n large enough that D + nK.C < 0, and we may
conclude by using Lemma 2.1.4.
3 Ô⇒ 4: if we can take D = 0 and observe that if ∣nK ∣ = ∅ for n large
enough say n ≥ m, then ∣nK ∣ = ∅ for all positive n, otherwise we could
just take D′ ∈ ∣lK ∣ for some l, and for n large enough we have ln ≥ m and
lD′ ∈ ∣lmK ∣ which is a contradiction.
4 Ô⇒ 5 is trivial, and 5 Ô⇒ 1 also is, as it is equivalent to Enriques’s
theorem. The proposition is then proven.

From this result, we actually get that every ruled surface has κ = −∞,
and observe that this last result also gives that if κ(X) ≠ −∞, then for every
divisor D on X we have D.K ≥ 0.
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6 Surfaces with κ = 0, 1, 2

6.1 Classification of surfaces with κ = 0

At this point, giving basic classification results for the remaining cases does
not require much work. Observe that all non-ruled surfaecs are equivalent
up to isomorphism to an unique minimal surface. We will start with κ = 0.

Proposition 6.1.1. Let X be a minimal surface with κ(X) = 0. Then,
K2 = 0, χ(OX) ≥ 0 and if the plurigenuses Pn and Pm are both 1 for some
integers n,m, then P(n,m) = 1.

Proof. We know that for κ(X) to not be −∞, at least one of the linear
systems ∣nK ∣ has to be non-empty. Let D ∈ ∣nK ∣ be an effective divisor. We
also have that D.K ≥ 0 otherwise by 5.2.2 we would have κ(X) = −∞, and it
follows K2 = 0. Also, we apply (2.2.4) to the divisor nK, and we obtain

h0(nK) + h0((1 − n)K) ≥ χ(OX) +
n(n − 1)

2
K2.

Assume K2 > 0 and observe that for n ≥ 2 we have ∣(1 − n)K ∣ = ∅ otherwise
there would exist an effective divisor D′ ∼ (1−n)K such that D′.K < 0, which

is again a contradiction, so we have Pn = h0(nK) ≥ χ(OX) +
n(n−1)

2 K2. At
this point, we may observe that the right hand side grows to ∞ as n → ∞,
so we get another contradiction as Pn ≤ 1, so K2 = 0.
We may now see that by (2.2.8) we get 12χ(OX) = χtop(X) = 2 − 4q + b2,
which we may rewrite as 8χ(OX) = −2 − 4pg + b2 ≥ −2 − 4pg ≥ −6, where the
last inequality follows from that we necessarily have pg ≤ 1. We observe that
χ(OX) has to be an integer, so this formula actually gives χ(OX) ≥ 0, as
desired.
To prove the last part of the statement, let d = (n,m), so that n = dn′,
m = dm′ and let D ∈ ∣nK ∣ and D′ ∈ ∣mK ∣.
We notice that ∣dn′m′K ∣ contains both m′D and n′E, and since Pdn′m′ ≤ 1
this linear system has dimension 0, so m′D = n′E. This means, we can find
an effective divisor D′′ such that D = n′D′′ and D′ =m′D′′.
We now get that n′(D′′−dK) ∼ 0 and m′(D′′−dk) ∼ 0 and since (n′,m′) = 1,
then we have D′′ − dK ∼ 0, so D′′ ∈ ∣dK ∣, and so Pd = 1.

In the following results, we will encounter divisors with coefficients in
Q instead of Z. These divisors may be defined simply by extending the
definition of divisor with coefficient in Z.

Proposition 6.1.2. Let X be a surface, Ci irreducible curves on X and mi

positive integers. Set F = ∑miCi and suppose for each i we have F.Ci ≤ 0.
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Let also D = ∑ riCi with ri ∈ Z be a non-zero divisor. Then D2 ≤ 0 and if F
is connected and D2 = 0, D = rF for some r ∈ Q, and F.Ci = 0 for all i

Proof. Let Gi = miCi and si = ri/mi, so that we may write F = ∑Gi and
D = ∑ siGi. Observe that G2

i = Gi.(F −∑i≠jGj). Then, we have

D2 = ∑
i

s2
iG

2
i + 2∑

i<j
sisjGiGj = ∑

i

s2
iGi.F −∑

i<j
(si − sj)

2Gi.Gj

Notice now that all the (si − sj)2Gi.Gj are positive and that by definition
F.Ci ≤ 0, so F.Gi ≤ 0 too and so we have D2 ≤ 0.
Assume now D2 = 0, and F connected. If two curves Ci and Cj intersect, we
have to have si = sj for the above formula to be 0. As F is connected, we
can always connect two curves with a chain of curves, so by transitivity all
the si are the same. Moreover, we also get F.Ci = 0 for all Ci by setting the
remaining part of the formula equal to 0.

The following result follows from the previous one

Proposition 6.1.3. Let X be a surface and g ∶ X → X ′ a surjective mor-
phism to a possibly singular surface X ′. Let Ci be irreducible curves of X
such that g(Ci) = p ∈X ′. Then, for any D = ∑ riCi one has D2 < 0.

Proof. We may assume that ∪Ci is connected, as we may just apply the proof
to every connected component otherwise.
We may also replace g by its Stein factorization, and so assume without loss
of generality it has connected fibres. We then have g−1(p) = ∪C ′

i , where the
C ′
i include the curves Ci.

Let H be a hyperplane section of X ′ passing through p. We may write
g∗H = H̃ + F , where all the components C ′

i are connected in F . Then,
g∗H.C ′

i = 0 for all i, as we can move H away from p by the theorem of Serre.
and s F.C ′

i = −H̃.C
′
i ≤ 0, with at least one i satisfying F,C ′

i < 0 as H intersects
the fibre g−1(p).

Proposition 6.1.4. Let X be a minimal surface with κ(X) = 0.Then X
belongs to one of the following cases:
● pg = 0, q = 0. Then 2K ∼ 0. This type of surface is called Enriques surface
● pg = 0, q = 1. Then X is a bielliptic surface.
● pg = 1, q = 0. Then K ∼ 0. This type of surface is called K3 surface
● pg = 1, q = 2. Then X is an Abelian surface.

Proof. By the relation between Kodaira dimension and plurigenuses, we nec-
essarily have pg = P1 ≤ 1.
Suppose first pg = 0. Then, if q = 0, for X to not be a rational surface by
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4.4.4, P2 ≥ 1, which really means P2 = 1 as κ(X) = 0, so ∣2K ∣ ≠ ∅.
By the previous result, we have K2 = 0, and so applying Riemann-Roch to
3K we get h0(3K) + h0(−2K) ≥ 1.
Since P1 = pg = 0 and P2 = 1, if we assumed P3 = 1 we would get a con-
tradiction in that P(2,3) = P1 = 1, and so P3 = h0(3K) = 0. Then we have
h0(−2K) ≥ 1 and as h0(2K) ≥ 1 too we have 2K ∼ 0.
If, instead q ≥ 1, by proposition 5.1.12 it follows that κ(X) = 0 implies q = 1
and the surface X has to be bielliptic.
We may now assume pg = 1. First, we know χ(OX) ≥ 0, so checking
χ(OX) = 1 − q + pg gets us q ≤ 2.
Setting q = 0 and computing Riemann-Roch for 2K gives us h0(2K) +

h0(−K) ≥ 2, hence h0(−K) ≥ 1, which means K ∼ 0.
Now suppose q = 1. Then, there is a divisor D ∈ DivX such that D /∼ 0,
but 2D ∼ 0. In particular, D.D′ = 0 for all divisors D′ on X, and we have
h0(D) = h0(−D) = 0, so Riemann-Roch gives h0(K −D) ≥ 1.
Take two divisors D1 and D2 in ∣K − D∣ and ∣K ∣ respectively. Then, 2D1

and 2D2 both are in ∣2K ∣, giving 2D1 ∼ 2D2 as P2 ≤ 1. This really means
D1 ∼D2, which contradicts, D /∼ 0, so there is no surface in this case.
What is left now is the case pg = 1, κ = 0, q = 2. Let K be an effective divisor
linearly equivalent to the canonical divisor, which exists as pg = 1, If K ≠ 0,
we may write K = ∑niCi for some Ci irreducible curves and ni positive inte-
gers. For every Ci we also have K.Ci ≥ 0, but since K2 = 0 we get K.Ci = 0,
Computing K.Ci gives niC2

i + ∑j≠i njCiCj = 0, so we have C2
i ≤ 0. If C2

i = 0
then Ci.Cj = 0 for all j ≠ i, and so Ci is a smooth elliptic curve. Else, if
C2
i < 0, C2

i = −2 and Ci ≅ P1 is a rational curve with a double point, and is a
connected component of ∪Ci.
Consider the image of X through the Albanese map B = α(X). We will
check different cases based on whether or not K ∼ 0 and B is a curve.
Assume B is a curve and K /∼ 0. From 4.5.4, B is smooth, has genus 2, and
α ∶X → B has connected fibres. No curve of genus < 2 may map surjectively
to B, so every connected component D of K is contained in a fibre Fb, for
some b ∈ B, of α and so D2 = 0. It follows from 6.1.2 that D = rFb for some
r ∈ Q. Then nD = rnFb = p∗(rn[b]) where rn ∈ Z. Therefore, h0(nD) → ∞

for n → ∞, and so does h0(nK), which contradicts κ = 0, so this case is
excluded.
Let now K ∼ 0, and let B still be a curve. Take an étale cover B′ of B of de-
gree ≥ 2, and consider X ′ =X ×B B′. Since the Albanese map has connected
fibres, X ′ is also connected. Also, 5.1.3 gives K ′

X ≡ π∗KX ≡ 0 and χ(O′
X) = 0.

Then q(X ′) = 2, but q(X ′) ≥ g(B′) ≥ 3, where the last inequality comes from
the HurwiTz formula, and so this case is also impossible.
So, α(X) is a surface, and α ∶ X → Alb(X) is surjective. If K /∼ 0, take a
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connected component D of K, and D2 = 0 as before, then by 6.1.3 D is not
contracted to a point by α, and so it is not union of rational curves. Then,
from the previous discussion D = nE for some smooth elliptic curve E. De-
note α(E) by E′, and notice it is a smooth elliptic curve in Alb(X), and
assume without loss of generality that it is an abelian subvariety of Alb(X).
Also, let us denote Alb(X) by B.
Let F be the quotient curve Alb(X)/E′, and let f ∶ X → F be the compo-
sition of α and the standard projection Alb(X) → F . Consider the Stein

factorization of f , S
g
→ B → F , and observe that E is contained in a fibre

Fb of g which by 6.1.2 means it is 1
mFb for some integer m. We may observe

now that as before, we may observe tat h0(nD) → ∞ as n does, so we get a
contradiction.
We now have to study the case where α is surjective and K ∼ 0, which is
the last one remaining. Let η1 and η2 be two forms which give a basis of
H0(A,Ω1

A), and set ω1 = α∗η1 and ω2 = α∗η2. We have that α is étale at a
point p ∈X if and only if the form ω1 ∧ω2 does not vanish at p. Since we are
in characteristic zero and α is étale almost everywhere, then we may assume
that ω1∧ω2 is not identically 0, and since K ∼ 0 it actually never takes value
0, and so α is an étale cover of an Abelian variety, which is again an Abelian
variety, so X is an Abelian surface.

6.2 Classification of surfaces with κ = 1

We now move on to surfaces with κ = 1.

Lemma 6.2.1. Let X be a minimal non-ruled surface. If K2 > 0, there exists
an integer m such that φnK is a birational map from X to its image for all
n ≥m.
If K2 = 0 and Pr ≥ 2, if we write rK = F +M where F is the fixed part of
∣rK ∣. Then, K.F =K.M = F 2 = F.M =M2 = 0.

Proof. Let H be a hyperplane section of X. Since K2 < 0, Riemann-Roch
gives us h0(nK−H)+h0(H+(1−n)K) → ∞ as n→∞. Since X is non-ruled,
we have H.K > 0 and so for n large enough (H + (1 − n)K).H < 0, which
means that h0(H + (1 − n)K) = 0. Then, we may fix an integer m such that
h0(nk −H) ≥ 1 for all n ≥ m. Take an effective divisor D ∈ ∣nK −H ∣, and
observe that ∣nK ∣ = ∣H +E∣, and that ∣H +E∣ separates points and tangents
to points of S −E, and so the restriction of φnK to S −E is an embedding,
and so induces a birational map from X to its image.
We also have rK2 =K.F +K.M = 0, and both K.F and K.M are to be non-
negative, and so are forced to be zero. Furthermore, sinceM is not fixed, both
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M2 and F.M are non negative, and by checking rK.M = F.M +M2 = 0 we
get they are also zero. We conclude by observing that F 2 = (rK.M)2 = 0.

Proposition 6.2.2. Let X be a minimal surface with κ(X) = 1. Then, K2 =

0 and there exists a smooth curve B and a surjective morphism p ∶ X → B
whose generic fibre is an elliptic curve.

Proof. By the previous lemma, we have K2 ≤ 0 otherwise we would have
κ = 2, and since K2 < 0 implies X is a ruled surface by 5.1.1 we get K2 = 0.
Since κ(X) = 1, there is an integer m such that Pm ≥ 2. Let Z be the fixed
part of the linear system ∣mK ∣, so that rK = Z +M . By the previous lemma
we get M2 =M.K = 0, so ∣M ∣ has no fixed part trivially and no fixed point
either, so it defines a morphism f ∶ X → Pn whose image is a curve C. By
Stein factorization f factors f ∶X → B → C, through a morphism p ∶X → B,
which has connected fibres. Let F be a fibre of p. Since M is a sum of fibres
and K.M = 0, then K.F is also 0. It follows that g(F ) = 1 so the smooth
fibres of p are elliptic curves.

A surface X such that there exists a smooth curve B and a surjective
morphism X → B whose fibres are elliptic curves is called an elliptic surface.
All surfaces with κ = 1 are elliptic, but the converse is not true. A trivial
example of this is the ruled surface E × P1 where E is an elliptic curve.
Despite this, we may actually give a result that separates elliptic surfaces
with κ = 1 and ones with different κ.

Proposition 6.2.3. Let X be a minimal elliptic surface, p ∶ X → B the el-
liptic fibration. For a point b ∈ B denote Fb = p∗[b]. Then, K2

X = 0.
X is either ruled over an elliptic curve, has κ = 0 or has κ = 1. In particular,
if κ = 1 there exists a positive integer d such that dK ∼ ∑niFbi and for a
large enough integer r the linear system ∣rdK ∣ is base points free.
The morphism X → PN defined by ∣rdK ∣ factorizes through p and an embed-
ding of B in PN .

Proof. Observe that if X is ruled over a curve C then the fibres must map
surjectively onto C, so C is either rational or elliptic, and so K2 ≥ 0. In
particular, we then have that K2 ≥ 0 for all minimal elliptic surfaces.
Suppose there exists an integer n such that ∣nK ∣ is not empty, and take a
divisor D in it. Since for all b we have K.Fb =D.Fb the components of D are
contained in the fibres of p, and since K2 ≥ 0 we have D = ∑ riFbi for some
(non-negative) ri ∈ Q. thus, D2 = 0 and K2 = 0 too.
Let now K2 > 0, then ∣nK ∣ = ∅ for all n < 0 and Riemann-Roch gives a
contradiction in h0(nK) + h0((1 − n)K) → ∞ as n→∞, so K2 = 0.
Also, since K.Fb = 0, the images of the maps φnK have dimension ≤ 1 as they
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contract the fibres Fb, and so κ = −∞,0 or 1.
Assume X has κ = 1. Then, we may choose an integer n such that Pn ≥ 1,
and let D ∈ ∣nK ∣, which as before is a finite sum or fibres with rational
coefficients. Then, we may find a multiple of D where all the coefficients are
integers, and so we may write dK ∼ p∗A for some effective divisor A on B.
Furthermore, for a large enough integer r, the system ∣rA∣ has no base points
and so defines an embedding of B in PN , and so the linear system ∣rdK ∣ =

p∗∣rA∣ is also without base points and defines a morphism X → PN which
factorizes through p.

6.3 Classification of surfaces with κ = 2

Finally, we may easily assume that all remaining surfaces have κ = 2. A
surface with κ = 2 is called a surface of general type, and again as every
surface not included in the previous cases is of general type, we will not give
a strong characterization. We may, however, give some equivalent conditions.

Proposition 6.3.1. Let X be a minimal surface. The following are equiva-
lent:

1. κ(X) = 2

2. K2
X > 0 and X is irrational

3. There exists an integer n0 such that φ∣nK∣ is a birational map of X to
its image for all n ≥ n0.

Proof. 2 Ô⇒ 3 is true by 6.2.1 as an irrational surface with K2 > 0 is non-
ruled, and 3 Ô⇒ 1 by definition of Kodaira dimension.
1 Ô⇒ 2: If K2 = 0, by 6.2.1 if we denote the mobile part of ∣nK ∣ by M ,
we have M2 = 0 and so dimφnK(X) ≤ 1. This is true for any n, and so this
concludes the proof.

Surfaces with κ = 2 are quite diverse, so let us conclude with an example
of one.
Let C andD be two curves with genus ≥ 2, and consider the surfaceX = C×D.
Let π1 ∶ X → C and π2 ∶ X → D be the canonical projections, then we may
express Ω2

X = π∗1ωC ⊗ π
∗
2ωD. Then

H0(X, (Ω2
X)⊗n) =H0(C,ω⊗nC ) ⊗ h0(D,ω⊗nD )

which we can rewrite using canonical divisors as

H0(X,OX(nKX)) =H0(C,OC(nKC)) ⊗H
0(D,OD(nKD)),
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and so we may factor the map φnKX through

X = C ×D
(φnKC ,φnKD )
ÐÐÐÐÐ→ Pn1 × Pn2 .

and the Segre embedding Pn1 × Pn2 ↪ PN and that a curve has genus ≥ 2 if
and only if the image of its canonical morphism is a curve, and so we have
that for all n ≥ 1 the image of X through φnK is the cartesian product of two
curves, that is a surface, and so κ(X) = 2.
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