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Introduction

In this Master Thesis we study two remarkable formulas for the central values of the triple
product L−function, namely the Gross–Kudla formula in section (4) and the Ichino’s formula
in section (6). These two formulas have found fruitful applications and generalizations. Impor-
tant results have been achieved considering p−adic analogous formulas and L−functions, for
example, in the work of Bertolini and Darmon [BD07], which is strictly related to the Birch
and Swinnerton-Dyer conjecture, and that of Bertolini, Darmon and Prasanna [BDP13].

In section (1) we start reviewing some basic results about quaternion algebras, beginning
with the definition of quaternion algebras over local and global fields, studying the notion of
orders and then considering an adèlic formulation which will be fundamental in the following
sections. We try to give all the discussion a computational flavour as the two formulas are meant
for both a theoretic and a computational approach.

The second section (2) is devoted to the study of relations among algebraic groups, quater-
nion algebras and normalization of measures. As a consequence, we study how the group of
invertible elements of a quaternion algebra can be thought as an algebraic group and how it
is possible to equip its quotient on the center with a normalized Haar measure, the Tamagawa
measure.

Section (3) contains a brief overview of the ideas of Jacquet and Langlands in [JL70]. Again
we try to focus mostly on cases of our interest, having in mind the Gross–Kudla formula and a
mildly computational point of view. The first half of the section deals with the representation
theory on GL2 while the second one reproduces the analogous theory for quaternion algebras
and establishes the correspondence.

The hearth of the thesis is indeed section (4) in which we present the Gross–Kudla formula.
We define the notion of Brandt matrices and give a brief insight on the work of Gross [G87]. In
particular, we compute two examples of application of the formula, verifying two values of the
tables in the paper by Gross and Kudla [GK92]. Notably all the procedures can be automated
with the computation of such Brandt matrices, as noticed in Pizer’s paper [P80].

The next section (5) is divided into two parts, namely the one describing the notion of
triple product L−functions and the one dealing with the Jacquet conjecture. The former is a
naive introduction to the Langlands dual and the Langlands L−functions. This topic has a
remarkably deep description which is beyond our purposes. For this reason we just consider
examples arising from modular forms, characterized by a more explicit construction, although
the functorial and algebraic flavour has been therefore lightened. Mainly it allows us to consider
the triple product L−function in [GK92] in a more general setting. The latter part introduces
the so-called Jacquet conjecture, which is a well known theorem by Harris and Kudla, [HK91]
and [HK04].

Section (6), the last one, presents the result of Ichino, [I08]. He provided a formula relat-
ing the trilinear form in the Jacquet conjecture, with the central value of the triple product
L−function. The Ichino’s formula is certainly more abstract and general than that in section
(4). For a better comprehension of it and to show its generality, we describe how to recover the
Gross–Kudla formula starting with the Ichino’s formula.
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1 Quaternion algebras

1.1 Basic notions about quaternion algebras

1.1.1 Definitions

In this section we recall some basic definitions and properties about quaternion algebras over a
field.

Definition 1.1.1 Let K be a field. B is a (division) quaternion algebra over K if it is a central
simple (division) algebra over K of rank 4. Moreover, if K is a field of characteristic different
from 2, the above definition is equivalent to the following one. B is a quaternion algebra over
K if it is a K−algebra with basis {1, i, j, ij} for i, j ∈ B satisfying

i2 = a, j2 = b, ij = −ji

for certain a, b ∈ K×. In such case, sometimes we write {a, b}K instead of B.

Let K be a field of characteristic different from 2. Writing each element of B = {a, b}K as
b′ = x+ yi+ zj + tk, where k = ij, we have the K−endomorphism of conjugation

b′ 7−→ b′ = x− yi− zj − tk

satisfying, for α, β ∈ K, b′, b′′ ∈ B,

αb′ + βb′′ = αb′ + βb′′, b′ = b′, (b′b′′) = b′′ b′

We define also the reduced trace of b′

t(b′) = b′ + b′ = 2x,

the reduced norm of b′

n(b′) = b′b′ = x2 − ay2 − bz2 + abt2

and in the end, the minimal polynomial of b′ ∈ B–K over K, as

X2 − t(b′)X + n(b′).

Such maps give a first description of the structure of B, in particular it holds the

Lemma 1.1.2 (Lemme 1.1 [V80]) (i) The invertible elements of B are exactly the ele-
ments of B with non-zero reduced norm.

(ii) The reduced norm defines a multiplicative homomorphism from B× to K×.

(iii) The reduced trace is K−linear and the association (b, b′) 7−→ t(bb′) defines a non-degenerative
symmetric bilinear form on B.

Example 1.1.3 The first example of a quaternion division algebra is that of the Hamilton’s
quaternions, H, i.e. the quaternion algebra over R with {a, b} = {−1,−1}. It can be represented
as

H =

{(
z z′

−z′ z

)
, z, z′ ∈ C

}
with usual sum and product of matrices.

The second main example is that of 2×2 matrices with coefficients in some field K, M2(K).
The reduced trace is the usual trace of matrices and the reduced norm is the determinant. We
identify K in M2(K) as the space K ( 1 0

0 1 ). Explicitly we have

M =
(
a b
c d

)
⇒ M =

(
d −b
−c a

)
, t(M) = a+ d, n(M) = ad− bc.

6



Proposition 1.1.4 ([V80], Ch. 1, §1) If the field K is separabily closed the unique quater-
nion algebra over K, up to isomorphism, is the matrix algebra M2(K).

It is important noticing that taken K ↪→ F a field extension and B a quaternion algebra over
K, then the tensor product B ⊗K F is (still) a quaternion algebra, but with base field F .

Definition 1.1.5 We say that a quaternion algebra, B, over K is split if it is isomorphic to
the matrix algebra. Moreover we say that B is split over F , for K ↪→ F a field extension, if
B ⊗K F is split.

By the above proposition we deduce immediately that every quaternion algebra admits a field
on which it is split (e.g. the separable closure of the base field).

1.1.2 Orders

Fix now the following notation. Let R be a Dedekind ring, K its fraction field and take B a
quaternion algebra over K. We are interested in the case in which K is either a local or global
field and R is its ring of integers. Recall that a R−lattice L in a K−vector space V (e.g. in B),
is a finitely generated R−module contained in V and that the lattice is complete if moreover
L⊗R K ∼= V (or equivalently LK = V ).

Definition 1.1.6 An ideal in B is a complete R−lattice and an order in B is an ideal which is
also a ring. We say that an order is maximal if it is not properly contained in any other order.

Remark 1.1.7 Intersection of complete R-lattices in a finite-dimensional K−vector space is
indeed a complete R−lattice. First of all, notice that L is a complete R−lattice in V if and
only if it is a finitely generated R−module in V which contains a K−basis of V . Hence taken
L and M complete lattices, we have that N := L ∩M is a finitely generated R−module (as R
is Noetherian). Moreover, we can find a K−basis of V in N and so N contains the R−module
generated by this basis, which is a complete R-lattice in V . Since −⊗RK is exact (as localization
on R– {0}), thus N is a complete R−lattice.

Example 1.1.8 (of lattices) If L is a finitely generated free R−modules then it is a lattice
and if moreover rkR(L) = dimK(V ), it is a complete lattice. By the Structure Theorem for
modules over P.I.D. those are the unique lattices and complete lattices if R is a P.I.D. as the
condition of being contained in a vector space means that such modules are torsion free. For
example R = Z and K = Q or, more generally, K a non-archimedean local field and R = OK
its ring of integers.

Now it makes sense taking intersection of orders since intersection of subrings is a subring and
so we can consider the

Definition 1.1.9 With the notation as above, an Eichler order in B is an order which is
intersection of two maximal orders in B. In particular, a maximal order is a (maximal) Eichler
order.

We can associate (canonically) two order to each ideal I ⊂ B, i.e.

• Left order: Ol = Ol(I) := {b ∈ B | bI ⊂ I};

• Right order: Or = Or(I) := {b ∈ B | Ib ⊂ I}.

Note that they have the structure of R−module and of ring induced by I; the only thing to
check is the closure with respect the product, but if b, b′ ∈ Ol(I) then bb′I ⊂ bI ⊂ I and the
same holds for the right order. They are indeed orders as they are complete R−lattices: for each
b ∈ B, there exists k ∈ K such that kbI ⊂ I, as we can think b as a vector with coefficients in

7



K = Frac(R). Choose k, for example, as the product of all denominators of each entry in b.
Then take a basis of B as a K−vector space and notice that both Ol and Or contain a K−basis
of B.

Example 1.1.10 (Existence of ideals and orders) There always exists an ideal, namely
the R−module generated by a K−basis of B. Therefore there exist always two orders in B, i.e.
the left and right order associated with I.

Remark 1.1.11 By the usual argument we can apply the Zorn’s Lemma to chains of orders
and considering union of incapsulated orders we can notice that every order is contained in a
maximal one.

Definition 1.1.12 Let I be an ideal of B and take Ol and Or as defined above. We say that I
is:

• a left ideal for Ol;

• a right ideal for Or;

• a two-sided ideal if Ol = Or;

• normal if both Ol and Or are maximal;

• integral if I ⊂ Ol ∩Or;

• principal if there exists b ∈ B such that I = Olb = bOr.

We define the inverse of I, as I−1 = {b ∈ B | IhI ⊂ I} and, taken I and J two ideals, we
define the product IJ :=

{∑n
l=1 iljl

∣∣ il ∈ I, jl ∈ J, n ∈ N
}

.

We can characterize either I−1 and IJ .

Lemma 1.1.13 a) The product of two ideals is associative and defines an ideal;

b) The inverse of the ideal I is an ideal.

Proof: a): The associativity is just the associativity in B. Further the product is in-
deed an ideal: notice that IJ ⊂ I ∩ J and so by remark (1.1.7) and it is a finitely gen-
erated R−module (as R is Noetherian) and it contains a K−basis of B as both I, J do
it. b): notice that exists an element d ∈ R× such that dI ⊂ Ol ⊂ d−1I; the first inclu-
sion holds for each d ∈ R× and the second one is equivalent to dOl ⊂ I. Working with
the R−basis of both Ol and I we can found easily a d as required. Hence we have that
(as R× is in the centre of B) I dOl I = dI Ol I ⊂ OlOlI = OlI = I then dOl ⊂ I−1

and so, if I−1 is a lattice, it is complete as it contains a K−basis of B. Moreover we have
I−1 = II−1I = dII−1d−1I ⊂ d−1I I−1 d−1I = d−2I, i.e. I−1 ⊂ d−2I and hence we deduce that
I−1 is a finitely generated R−module. �

Remark 1.1.14 Let O be an order in B and take the principal ideal I = Ob. The left order of
I is indeed O and the right one is O′ = b−1Ob, so I = bO′. Now it holds that

I−1 = b−1O = O′b−1 and II−1 = O, I−1I = O′

8



1.1.3 Classes of ideals

Definition 1.1.15 Two ideals I and J are right-equivalent if I = Jb for a some b ∈ B×.
Such classes of ideals with left order O are called the left-classes for O. Analogously we define
left-equivalence and right-classes for an order.

Lemma 1.1.16 ([V80], Ch.1, Lemme 4.9) a) The application I 7−→ I−1 induces a bijec-
tion between the left-classes for O and its right-classes.

b) Let J be a fixed ideal. The association I 7−→ JI defines a bijection between the left-classes
of ideals on the left with respect to Ol(I) and those on the left with respect to Ol(J).

Definition 1.1.17 The class number on an order O is defined as the number of classes of
ideals related to O. The class number of the quaternion algebra B is defined as the class number
of any of its maximal order.

Note 1.1.18 The class number of B is well-defined as, taken O and O′ two maximal orders of
B, and defined I = Ob and I ′ = O′b′, for b, b′ ∈ B×, by Remark (1.1.14) and Lemma (1.1.16),
b) we obtain the equality of the two class numbers.

Definition 1.1.19 Two orders O and O′ are said to be of the same type if they are conjugate
by an inner automorphism of B, namely, O = b−1O′b for some b ∈ B×.

Obviously this definition gives an equivalence relation on the set of orders and we can consider
classes of types related to a given order O: we define the type number related to O as the number
of such classes. We define the type number of B as the type number of a maximal order. There
exists a relation between class number and type number, expressed by the

Proposition 1.1.20 Define h and t as the class number of B and the type number of B re-
spectively. If h is finite, then t ≤ h.

Proof: See Corollaire 4.11, Ch. 1 in [V80]. �

1.2 Quaternion algebras over local fields

1.2.1 Algebras

Throughout this section K will be a local field and we will use the above notation. There exists
a strong characterization of quaternion algebras over K as stated in the next theorem.

Theorem 1.2.1 Up to isomorphism, there exists a unique division quaternion algebra over any
local field K 6= C.

Proof: See Theoreme 1.1, Ch. 1 in [V80]. �

Note 1.2.2 As C is algebraically closed we know, by theorem (1.1.4), that the unique (up to
isomorphism) quaternion algebra is M2(C) which is not a division algebra.

Remark 1.2.3 (Hasse invariant) Denote with Quat(K) the set of quaternion algebras over
the local field K, up to isomorphism. We have hence defined a bijection between Quat(K) and
{±1},

ε : Quat(K) −→ {±1}

We say that B ∈ Quat(K) has Hasse invariant ε(B) = −1 if and only if B is a division algebra,
otherwise we say that it has Hasse invariant ε(B) = 1.

9



By the above considerations we can restate theorem (1.2.1) as

Theorem 1.2.4 If K is a local field we have two cases:

Qaut(K) ∼=

{
{1} if K = C
{±1} otherwise

Recall that the Hilbert symbol of (a, b) ∈ K2– {(0, 0)} is defined as

(a, b) =

{
1 if aX2 + bY 2 − Z2 = 0 admits a non-trivial solution in K3

−1 otherwise

The importance of such symbol in the quaternion algebra setting is that, in the case of Char(K) 6=
2, it determines completely the Hasse invariant.

Theorem 1.2.5 Let K be a local field of characteristic different from 2, then taken B = {a, b}K
it holds that ε(B) = (a, b).

For the definition and the basic properties of the Hilbert symbol we refer to [Se73]. In particular,
from such properties one can show that the equality in the above theorem is well-defined.

At this point we must introduce a definition that will be useful for the global case.

Definition 1.2.6 We say that a quaternion algebra B is ramified (over the local field K) if it
is a division algebra.

Just notice that to check if B is ramified over K with char(K) 6= 2, it is enough to check its
associated Hilbert symbol.

1.2.2 Maximal orders

Now we want to focus our attention on the study of the maximal orders in a division quaternion
algebra B over K.

Denote with v a discrete valuation on K and suppose that it is normalized (i.e. v(K×) = Z).
We have two maps: the reduced norm n : B× −→ K× and the valuation v : K× −→ Z then we
can consider the composition

w = v ◦ n : B× −→ Z s.t. b 7−→ v (n(b)) = v
(
bb
)

We can notice that

• w(bb′) = v(n(bb′)) = v(bb′bb′) = v(bb′b′ b) = v(n(b)n(b′)) = w(b) + w(b′);

• If b′ 6= 0, w(b+b′) = w((bb′−1+1)b′) = w(bb′−1+1)+w(b′) ≥ min{w(bb′−1), w(1)}+w(b′) =
min{w(b), w(b′)} as w is indeed a valuation when restricted to K(bb′−1) (as it is a finite
extension of K which is hence algebraic). Obviously the inequality holds (trivially) if
b′ = 0.

Then we proved that w defines a discrete valuation on B (up to setting w(0) = ∞). Moreover
we have

Lemma 1.2.7 The valuation ring of w, O := {b ∈ B | w(b) ≥ 0}, is the unique maximal order
of B.

Proof: See Lemme 1.4, Ch. 1 in [V80]. �
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1.2.3 Eichler orders for local fields

Let K denotes a non-archimedean local field, OK its ring of integers and take B = M2(K).
As in [V80], Ch. II, §2, one can identify the orders in B as endomorphisms of sublattices just
noticing that the identification M2(K) ∼= End(K2) is indeed natural. Hence, taken two maximal
orders O = End(L), O′ = End(M) for L and M complete lattices, we can notice that, for each
x, y ∈ K×, End(Lx) = O and End(My) = O′ as we are considering the K−endomorphisms.
This invariance under multiplication allows us to suppose that L ⊂M . Then, by the Elementary
divisor theorem, there exist two OK−basis (f1, f2) and (f1π

a, f2π
b), respectively of L and M ;

here f1 and f2 are elements in K, π is a uniformizer for K and we can take a, b ∈ N. One can
prove that the integer |a−b| is invariant under the multiplication by x and y, then we can define
a notion of distance between two maximal orders in B. We say that the distance between O
and O′ is hence |a− b|.

Example 1.2.8 The distance between M2(K) and
(

OK π−nOK
πnOK OK

)
is n as we have the two

basis (of the associated lattices) (1, 1) and (1, πn). Notice that we understand the elements of
K2 as column vectors.

Definition 1.2.9 Let O be an Eichler order in M2(K). We say that it has level πnOK = pn if
it is the intersection of two maximal orders of distance n. We denote

On = M2(K) ∩
(
OK π−nOK
πnOK OK

)
=

(
OK OK
πnOK OK

)
the canonical Eichler order of level n.

1.3 Quaternion algebras over global fields

1.3.1 Algebras

In this section fix K to be a global field. We usually refer to v as a place for K and consider Kv

the corresponding field. Set S∞ for the set of archimedean places of K and Sf for the set of the
non-archimedean ones. For each v ∈ Sf we define N(v) := NKv(pv) = #Ov/pv the cardinality of
the residue class field at v (for Ov and pv the ring of integers and its maximal ideal respectively).

Definition 1.3.1 A quaternion algebra B over K is ramified at the place v if Bv := B⊗K Kv

is a division algebra, i.e. Bv is ramified over Kv (as in 1.2.6). In particular, if K = Q, we say
that the quaternion algebra is definite if it is ramified at infinity.

Remark 1.3.2 If Char(K) 6= 2 and B = {a, b}K , by the characterization of quaternion algebra
over local fields, we have that K is ramified at the place v if and only if the Hilbert symbol over
Kv, (a, b)v = −1. This procedure gives an algorithmic way to compute the ramification places
of B.

We have the fundamental lemma:

Lemma 1.3.3 B is ramified at only finitely many places of K.

Proof: Lemme 3.1, Ch III, [V80]. �

Definition 1.3.4 The reduced discriminant of B, d(B), is the product of the finite places at
which B is ramified. If K is a number field, the reduced discriminant is an integral ideal in
OK . Usually, if K = Q, we identify d(B) with an integer (in the obvious way). Further denote
Ram(B) for the set of ramified places for B: it is the disjoint union of Ramf (B) = Ram(B)∩Sf
and Ram∞(B) = Ram(B) ∩ S∞.
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1.3.2 Classification of quaternion algebras over global fields

One can show, via the analytic construction of certain Zeta-functions (See [V80], Ch. III, §3
for details) the following theorem.

Theorem 1.3.5 (Existence and classification) Let B be a quaternion algebra over the global
field K, then:

i) the cardinality of Ram(B) is even;

ii) For each finite set S, of places of K, such that #S is even, then there exists one and only
one quaternion algebra B over K, up to isomorphism, such that Ram(B) = S.

Proof: See [V80], Ch. III, Theoreme 3.1. �

As a nice corollary of such powerful theorem we have the product formula for the Hilbert
symbol. More precisely, if char(K) 6= 2, ii) is equivalent to the

Corollary 1.3.6 (Hilbert reciprocity law) Let K be a global field of characteristic different
from 2. For a, b ∈ K×, denote (a, b)v their Hilbert symbol in Kv. Then∏

v∈S
(a, b)v = 1

Proof: It is an immediate conseguence of the characterization of the ramification with the
Hilbert symbol. �

1.3.3 Maximal and Eichler orders

Analogously to the case of local fields we are interested in the study of orders and (mainly)
Eichler orders.

Let S be a non empty finite set of places for K and suppose, if K is a number field, that S
contains S∞. Hence we can consider the ring of S−integers R = R(S) = ∩v 6∈S (Ov ∩K) which
is a Dedekind domain. For example, if K is a number field and S = S∞, hence R is the ring of
integers of K. Let L be a R−lattice for a quaternion algebra B over K. Define Lv = Ov ⊗R L
for each place v /∈ S and Lv = Bv for v ∈ S.

Definition 1.3.7 For each place v 6∈ S of K and for each complete R−lattice Y in B we call
Yv the localization of Y at the place v.
We say that a property is local if it holds for Y if and only if it holds for Yv, for each v 6∈ S.

Example 1.3.8 ([V80], Exemples de proprietes locales, Ch. IV, §5A) For a R−lattice
in B, to be

• an order,

• a maximal order,

• an Eichler order, which is the intersection of two maximal (R−)orders,

• an ideal,

• an integral ideal

is a local property.
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We are hence able to give the significant notion of level of an Eichler order, over a global
field.

Definition 1.3.9 The level of an (R−)Eichler order is the integral ideal, N , of R such that
Nv is the level of Ov for each v 6∈ S. As for the discriminant, if K = Q, we can think at N as
an integer.

Furthermore one can prove ([V80], Ch. II, corollaire 5.3) that an (R−)Eichler order is maximal
if and only if its level is R. In particular, if K = Q, in this case we say that the level is 1.

Remark 1.3.10 In the case of Q as base field, one can show (see [D03], Ch.4, §1) that the
level of an Eichler order O can be identified with the R−module index of O in one of the two
maximal orders which realize the definition of Eichler order.

Definition 1.3.11 (Eichler condition) We say that a non empty and finite set of places of
K verifies the Eichler condition for the quaternion algebra B (over K), if it contains at least
one place at which B is not ramified.

1.4 Topology on quaternion algebras

Suppose now that K is a topological field. Any quaternion algebra, B, over K, can be endowed
with a topology, namely that induced by the field K via the (4-dimensional) K−vector space
structure on B. In particular, we are interested in K being a finite extension of Qp, or K = R,C,
i.e. a local field of characteristic zero. In this case K is a locally compact Hausdorff space and
so is the quaternion algebra. As the sum, the subtraction and the product of two elements in B
are polynomial functions in the coordinates of the elements (viewing B ∼= K4 as a K module),
one can show that B is a locally compact topological ring and that B× is a locally compact
topological group with the subspace topology. For K = Qp one can prove a stronger result,
namely

Lemma 1.4.1 Let B be a quaternion algebra over Qp and R an order of B. Then R is compact
and R× ⊂ B× is a compact subgroup.

Proof: See [M89], Lemma 5.1.1, i). �

Let now B be a quaternion algebra over Q and denote with A the ring of adèles for Q. We
can consider the tensor product

BA = B ⊗Q A

and endow it with the topology induced by A via the identification of BA with A4. Again this
construction give rise to a topological ring which is locally compact (as A is locally compact)
and we can consider BA as a subset of the product

∏
v place of QBv, for Bv = B ⊗Q Qv (just

recall that B ⊗Q − is a right-adjoint functor and notice that, as Q is a field, it is exact). The
topological ring BA is called the adèlization of B. Considering the subspace topology on B×A ,
it becomes a locally compact topological group, called the adèlization of B×. Again we can
identify it as a subset of the product

∏
v place of QB

×
v .

Remark 1.4.2 One can notice that, with the induced topology, the norm map

n : B× −→ K×

is a continuous homomorphism as it is polynomial in the coordinates. We have the exact sequence
(of topological groups)

1 −→ B1 −→ B×
n−→ K×

for B1 = {b ∈ B× | n(b) = 1} with the subspace topology. With more generality, as recalled in
[JL70], pag. 7, it holds the
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Lemma 1.4.3 If B is a division algebra over a local field K, it happens that

[
K× : n(B×)

]
=

{
1 if K is non-archimedean

2 if K is R

Thus we deduce the exactness on the right of the above sequence if K is non-archimedean.
We can notice that B1 is closed in B× as preimage of {1}. Suppose that K is a local field of
characteristic zero and that B is a division algebra. In this case it can be proved that B1 is
compact as pointed out in [V80], pag. 81, and that B1 = SL(2,K) in the split case (and so it
is not compact).

Note 1.4.4 Let B be a quaternion algebra over the local field K. We can notice that

B× = B– {0} if B is a division algebra

B× ∼= GL2(K) if B is a split algebra

so we have

B×/K× = B– {0}/K× ∼=
(
K4– {0}

)
/K× ∼= P(K4) if B is a division algebra

B×/K× ∼= GL2(K)/K× = PGL2(K) if B is a split algebra

By [We73], Ch. 2, §1, Corollary 1, we know that B×/K× is compact if B is a division algebra.
On the other hand it is known that PGL2(K) is not compact. For example, it is not compact
as it is not closed in P4

K . Recall that GL2(K) admits an open immersion in K4+1 (see (2.1))
and since the projection to the quotient is an open map, PGL2(K) has to be an open subset
of P4. It is well known that the projective space P4 is Hausdorff, compact and connected, so we
deduce immediately that, if PGL2(K) is compact, it must be a (non-trivial) closed and open
subset in P4. We produced then a contradiction. The above observations lead to the

Lemma 1.4.5 Let K be a local field (with char(K) = 0) and B a quaternion algebra over K.
Hence B×/K× is compact if and only if B is a division algebra.

1.5 Adèlic point of view

Let AK be the adèles ring for K. Set XK as either K or a quaternion algebra over K, call it
B as above. Set XA = XK ⊗K A and for each place v, Xv = XK ⊗ Kv. For this paragraph,
just for ease of discussion, set S = S∞ and so R(S) = OK . The following theorem is the natural
generalization of the adèlic theory for global fields to quaternion algebras.

Theorem 1.5.1 1) Adèles: XK is discrete in XA and XA/XK is compact.

2) Approximation theorem: for each place v, XK +Xv is dense in XA.

3) Idèles: X×K is discrete in X×A .

4) For each place v (only the infinite ones if K is a number field) there exists a compact

subset C in XA such that X×A = X×KX
×
v C (i.e. the space is dense in XA).

Proof: [V80], Ch. III, §1, Theoreme 1.4. �

The adèlic setting allows us to prove a characterization of the ideal classes and the conju-
gation classes of an Eichler order.

Let R be an Eichler order of level N in B. Define RA =
∏
v R ⊗OK Ov with, as in (1.3.3),

R⊗OK Ov = Bv for v ∈ S and R×A its group of units.
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Theorem 1.5.2 (Adèlic dictionary) 1) The left-ideals with respect to R are in bijection
with the set R×A\B

×
A . The association is defined as (bv) ∈ B×A 7−→ I such that Iv = Rvbv

for each place v 6∈ S. Moreover the classes of left-ideals for R are in bijection with the
double coset R×A\B

×
A /B

×.

2) The Eichler orders of level N are in bijection with the coset N(RA)\B×A where N(RA) is
the normalizer of RA in B×A . The association is defined as (bv) ∈ B×A 7−→ R′ such that
R′v = b−1

v Rvbv for each v 6∈ S. Furthermore the types of Eichler orders of level N are in
bijection with the double coset B×K\B

×
A /N(RA).

Proof: See [V80], Ch. III, §5B. �

We have further the following

Theorem 1.5.3 The class number of an Eichler order of level N is finite. The number of types
of such order is finite too.

Proof: See [V80], Ch. III, § 5B, Theoreme 5.4 and Corollaire 5.5 for the first assertion. The
finiteness of the type number follows immediately from proposition (1.1.20). �

Proposition 1.5.4 If S satisfies the Eichler condition for B then any two Eichler R(S)−orders
of the same level are conjugate.

Proof: See [D03], Ch. 4, Prop. 4.4. �

Note 1.5.5 Before ending the paragraph we should mention an useful formulation of the above
notions in the case K = Q and S = {∞}. Following [D03] we can consider Ẑ the profinite
completion of Z and the ring of finite adèles for Q, Q̂ = Af = Ẑ ⊗ Q. Take R an Eichler

(Z−)order of level N and set R̂ := R ⊗ Ẑ, B̂ := B ⊗ Q̂. Then the set of conjugacy classes of
Eichler orders of level N is in natural bijection with the double coset B×\B̂×/R̂. In fact in this
case, by definition, RA = B∞×

∏
pR⊗ZZp ∼= B∞×R⊗Z Ẑ (as R⊗Z− is a right adjoint functor

and hence it preserves limits) and
∏
p Zp = Ẑ. Hence

R×A\B
×
A /B

× ∼= R̂×\B̂×/B×

since the place at infinity is a direct factor in A. In particular, as stated in [D03], every element
of the form

xR̂x−1 ∩B for x ∈ B̂×

is an Eichler (Z-)order of level N and any such order is of this form.

1.6 Computing methods and examples

Given B a quaternion algebra over the global field K of characteristic different from 2, we are
interested in computing its discriminant and so its ramifications. Just notice that in the case
of K = Q, which is the principal field we want to work with, the computation of the Hilbert
symbol amounts essentially to compute a Kronecker symbol.

Remark 1.6.1 ([V80], Ch. II, Calcul du symbole de Hilbert) If K = Qp with p 6= 2 and
a, b ∈ Z– {0}, hence it is possible showing that

(a, b)p = (a, b)Qp =

{
1 if p 6 |a, p 6 |b(
a
p

)
if p 6 |a and p||b.
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The remark does not involve the computation of (a, b)2 but this computation can be indeed
avoided using the product formula, in fact. By definition of the Hilbert symbol, (a, b)−1 = (a, b)
and so

(a, b)2 = (a, b)∞
∏
p6=2

(a, b)p

For sake of completeness we recall the properties of the Hilbert symbol and we refer to [Se73],
chapter III, for the straightforward proofs. Taken a, b ∈ K× (for K a field), we have

• (ax2, by2) = (a, b) (invariance under squares); • (a, b) = (b, a) (symmetry);

• (a, b)(a, c) = (a, bc) (bilinearity); • (a, 1− a) = 1

Focusing our attention to K = Q we can say a bit more, as stated in the following.

Note 1.6.2 ([V80], Ch. III, § 3, Exemple) Let {a, b} be a quaternion algebra over Q. By
definition of Hilbert symbol, it is ramified at infinity if and only if a and b are both negative.
Its reduced discriminant, d, is given by a product of an odd number of primes if a and b are
negative and even otherwise. For example

{a, b} {−1,−3} {−2,−5} {−1,−7} {−1,−11} {−2,−13} {−3,−119} {−3,−10}
d 3 5 7 11 13 17 30

A fast method to compute examples of such quaternion algebras is provided by using the parity
to avoid the study of (a, b)2 and by

if p ≡ −1 (mod 4) than {1, p} has reduced discriminant p

if p ≡ 5 (mod 8) than {1, p} has reduced discriminant p

It is also easy to give rise to quaternion algebras of fixed reduced discriminant: it amounts to
determine two integers a and b with given conditions on their local Hilbert symbols. For example

{−1, 3}, d = 6; {3, 5}, d = 15; {−1, 7}, d = 14;

Moreover, it holds that

if p ≡ −1 (mod 4) than {−1, p} has reduced discriminant 2p

if p ≡ 5 (mod 8) than {−2, p} has reduced discriminant 2p.

Furthermore it can be proved that

Proposition 1.6.3 The unique (up to isomorphism) definite quaternion algebra over Q of re-
duced discriminant p (i.e the unique one ramified exactly at infinity and p) is given by the
rule

p = 2 {a, b} = {−1,−1}
p ≡− 1 (mod 4) {a, b} = {−1,−p}
p ≡ 5 (mod 8) {a, b} = {−2,−p}
p ≡ 1 (mod 8) {a, b} = {−p,−q}

where q is a prime such that q ≡ −1 (mod 4).

Proof: See [P80], Proposition 5.1. �
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1.7 The Class Number and the Eichler mass formula

1.7.1 Dedekind Zeta functions: local case

Let X be either a non-archimedean local field K or a quaternion algebra B over K such that
B does not contain R. Let OK be the ring of integers for K and set k as its residue class field.
Take B an order in X containing Ok. The definition of order in K is analogous to the definition
(1.1.6) given for quaternion algebras where R = Ok and similarly, with the definition (1.1.12)
in mind, we can define the notion of ideal and integral ideal for the order B.

Taken hence I an integral ideal in B, we define its norm, as NX(I) := #B/I.

Definition 1.7.1 The Dedekind zeta function of X is the complex function of complex variable

ζX(s) =
∑
I⊂B

1

NX(I)s

where the sum is taken over the integral left (or right) ideal of a maximal order B in X.

Obviously one can show that the definition is well stated and moreover that it holds the following

Proposition 1.7.2 Let q = #k be the cardinality of the residue class field k = OK/pK . Hence,

ζK(s) =
1

1− 1
qs

ζB(s) =

{
ζK(2s) if B is a division algebra

ζK(2s)ζK(2s− 1) if B = M2(K)

Proof: See Proposition 4.2, Ch. II in [V80]. �

1.7.2 Dedekind Zeta functions: global case

Let now K be a global field and take X to be either K or a quaternion algebra over K. For a
place v, let Xv = X ⊗K Kv, hence we can state the

Definition 1.7.3 The zeta Dedekind function of X is the infinite product of all the zeta Dedekind
functions of Xv for all finite places v. The infinite product is absolutely convergent whenever
the complex variable s has real part greater than 1. Then

ζX(s) =
∏

v finite

ζXv(s) for Re(s) > 1

By the definition of ζX and proposition (1.7.2), we can obtain, just killing all the contributions
of the unramified places, the multiplication formula.

Proposition 1.7.4 (Multiplication formula) Let K be a global field and B be a quaternion
algebra over K. Then it holds the following equality:

ζB

(s
2

)
= ζK(s)ζK(s− 1)

∏
v∈Ramf (B)

(
1−N(v)1−s) .
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1.7.3 The Class Number and the Eichler mass formula

We want now to give a couple of useful results for computing the class number and the wi
(which are defined in the theorem below).

Theorem 1.7.5 Let B/K be a quaternion algebra over the number field K, ramified at each
archimedean place of K and R an Eichler order in B of level N. Let D be the reduced discrim-
inant of B and n the class number of R. Let {Ii}ni=1 a set of representative for the left ideal
classes of R, with Ri the correspondent right orders. Set wi = [R×i : O×K ], where OK is the ring
of integers for K. Define r1 as the number of real embeddings of K, hence we have

n∑
i=1

1

wi
= 21−r1 |ζK(−1)|hKN

∏
p|D

(N(p)− 1)
∏
p|N

(
1

N(p)
+ 1

)

where p are prime ideal of OK , hK is the class number of the number field K and ζK the zeta
function of K.

Proof: See [V80], Corollaire 2.3. �

We are interested in the case K = Q. Hence D and N can be thought as integers and so we refer
to them as D and N respectively. The classical results on values of the ζ−Riemann function,
provide ζ(−1) = − 1

12 and then the above formula is given by

n∑
i=1

1

wi
= |ζ(−1)|N

∏
p|D

(p− 1)
∏
p|N

(
1

p
+ 1

)
=
N

12

∏
p|D

(p− 1)
∏
p|N

(
1

p
+ 1

)

There exists a useful result for computing the class number of a given order; for proving it
we need to restrict our hypotheses such that the quaternion algebra over Q is ramified only at
one prime p and at infinity. Before we need to define the notion of reduced discriminant for an
Eichler order.

Definition 1.7.6 Let R be an Eichler order of level N in a quaternion algebra of reduced
discriminant D. The reduced discriminant of R is d = ND.

Theorem 1.7.7 Let p be a prime, M a positive integer prime to p, r a non-negative integer
and B the quaternion Q-algebra ramified exactly at p and infinity (so its reduced discriminant
D equals p). Let R be an Eichler order in B of reduced discriminant d = p2r+1M (i.e. of level
N = d/p). Then its class number, n, is given by

n =
d

12

(
1− 1

p

)∏
q|M

(
1 +

1

q

)
+

{
1
4

(
1−

(
−4
p

))∏
q|M

(
1 +

(
−4
q

))
if 4 6 |d

0 if 4|d

+

{
1
3

(
1−

(
−3
p

))∏
q|M

(
1 +

(
−3
q

))
if 9 6 |d

0 if 9|d

where
(
−
p

)
is the Kronecker symbol at the prime p.

Proof: See [P80], Theorem 1.12, observing that its definition of level is our definition of
reduced discriminant. �
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In the case of the quaternion algebras in the above theorem we can formulate again the
theorem (1.7.5) as the reduced discriminant is p. We can moreover consider the case of a maximal
Eichler order and so its level has to be 1. Hence

n∑
i=1

1

wi
=

1

12
(p− 1) =

p− 1

12

Note 1.7.8 With the above hypothesis, one can prove (See [G87], § 1) that W =
∏n
i=1wi is

equal to the denominator of the rational number (p − 1)/12 and that we have the following
table:

p W wi > 1 n

2 12 12 1
3 6 6 1
≡ 5 (mod 12) 3 3 (p+ 7)/12
≡ 7 (mod 12) 2 2 (p+ 5)/12
≡ 11 (mod 12) 6 3, 2 (p+ 13)/12
≡ 13 (mod 12) 1 (p− 1)/12

2 Algebraic groups and Tamagawa measures

2.1 Algebraic groups

2.1.1 Basic notions

Let k be an algebraically closed field.

Definition 2.1.1 An algebraic group defined over k is an algebraic variety G, over k, which
is a group object in the category of algebraic varieties over k. This means that there exist two
morphisms of k−varieties

• m : G×G −→ G such that (x, y) 7−→ xy and • ι : G −→ G such that x 7−→ x−1,

satisfying, together with e : G −→ Spec(k) = {∗}, the usual commutative diagrams encoding the
group structure. We say moreover that G is linear if it is an affine variety. Fix k[G] as the ring
of coordinates for G, i.e. the quotient of k[Xi,j , t] by the ideal I generated by all the polynomials
defining G as a variety.

Example 2.1.2 GLn(k) is a linear algebraic group as it can be identified with the affine variety
in kn

2+1 defined by

GLn(k) =
{

(xi,j , t) ∈ kn
2 × k

∣∣∣ det((xi,j)i,j

)
· t = 1

}
Obviously every closed subgroup of GLn(k) is a linear algebraic group (as closed subsets

define subvarieties) and it holds, as noticed in [K67], that every linear algebraic group over k is
a closed subgroup of GLn(k). One can notice (see [Bo66], §1.5) that a (linear) algebraic group
is irreducible if and only if it is connected.

Remark 2.1.3 (Abelian Varieties) A connected projective variety which is an algebraic
group is an abelian variety. Every abelian variety is an abelian algebraic group. The easy ex-
ample of an abelian variety (e.g. over C) is an elliptic curve (for details see [Sil09], Chapter
III).
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Definition 2.1.4 Let G be a linear algebraic group over k. Suppose that k is perfect. We say
that G is defined over K, for K a subfield of k, if the equations defining G have coefficients in
the field K. In this case we say that G is an algebraic group over K (by abuse of notation).
As in the case of an algebraically closed field, we can speak about the ring of coordinates, K[G]
which is indeed the quotient of K[Xi,j , t] by I ∩K[Xi,j , t].

We can talk about algebraic groups in a more convenient manner, namely thinking them as
functors. As in the above definition, suppose that G is an algebraic linear group over a field K.
For any K−algebra B, we can consider the set GB := G ∩GLn(B); it is indeed a group and it
can be identified with HomK (K[G], B) (with the usual machinery of the representability of the
maximal spectrum). We can see immediately that this construction preserves arrows, meaning
that a homomorphism of K−algebras ρ : A −→ B is mapped to a K−morphism ρ̄ : GA −→ GB.
Thus we may give the following, equivalent, definition.

Definition 2.1.5 An algebraic group over K is a functor from K−algebras to groups,

G : K −Alg −→ Grp

which is representable by a finitely generated K−algebra K[G], such that K ⊗K K[G] has no
nilpotent elements for K an algebraic closure of K.

We should notice that we required the absence of nilpotent element because we force G to be
induced by an algebraic group over an algebraically closed field.

Notation: Usually the affine algebraic groups associated with the general linear group and the
special linear group are denoted with GLn and SLn respectively, with the association on objects
as GLn(A) and SLn(A).

Example 2.1.6 (See [Mil15] Ch. 2, §a and [K67], §1)

• The multiplicative algebraic group Gm over K is the multiplicative group of K which we
can identify with GL1(K). The corresponding functor

K −Alg −→ Grp such that R; (R×, ·)

is representable (after being composed with the forgetful functor) by K[T, T−1]. In fact
HomK−Alg

(
K[T, T−1], R

) ∼= R× as T can be mapped only to an invertible element in R
and T determines uniquely the homomorphism. We can notice that, taken K an algebraic
closure of K, K ⊗K[T, T−1] ∼= K[T, T−1] which does not contain any nilpotent element
since it is an integral domain.

• The general linear group GLn is associated with the functor R ; (GLn(R), ·) and such

functor (composed with the forgetful functor) is representable byK
[
X11, . . . , Xnn,

1
det(Xij)

]
,

essentially by its realization as an algebraic variety. Again, tensoring with an algebraic
closure of K, we obtain an integral domain.

2.1.2 Lie algebra of an algebraic group

We can associate a Lie algebra to an affine algebraic group (over a field of characteristic zero).

Theorem 2.1.7 (Cartier) Every affine algebraic group over a field of characteristic zero is
smooth.
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Proof: See Theorem 3.38 in [Mil15], noticing that his definition of algebraic group is more
general than the one provided here. �

Let G be an affine algebraic group over k, algebraically closed field of characteristic 0. The
theorem allows us to consider the tangent space of G at the identity element, which can be
identified with the space of k−derivation on k[G], commuting with right-translation. Denote it
g := Derk(k[G]). With the bracket operation defined as [f, g] := f ◦g−g ◦f , the couple (g, [·, ·])
defines a Lie-algebra, called the Lie-algebra associated with the (affine) algebraic group G.

2.1.3 Quaternion algebras

Let now B be a quaternion algebra over a field K (of characteristic zero). We can think to B×

as an algebraic group over K, defined by the association R ; (B ⊗K R)× for a K−algebra
R. We can start noticing that HomK−Alg

(
K[T, T−1], B ⊗K −

) ∼= (B ⊗K −)× as functors from
K −Alg to Grp. It is possible proving that such functor, composed with the forgetful functor,
is indeed representable by a finitely generated K−algebra (see [Mil15], appendix A, §y, A.125)
but furthermore one can show that this is a particular case of a more general construction,
namely the Weil restriction of scalars. In particular, this procedure, applied to a linear group
G, yields to another linear group ResB/K(G) with a description analogous to that above where,
as a functor, ResB/K(G)(A) = G(B ⊗K A) (see e.g. [Mil15], Ch. 2 §h). Hence we can identify
B× with the functor

K −Alg −→ Grp such that R;
(
(B ⊗K R)× , ·

)
.

2.2 Tamagawa measure

Let G be a finite-dimensional affine algebraic group over a number field K. Suppose that G is
connected, dim(G) = n (as a variety) and take x ∈ G a point. By theorem (2.1.7) x is regular
and hence, let x1, . . . , xn be local coordinates for G at x (i.e. a system of parameters). We
can hence consider the Käler differentials of K[G] and take a n−differential form ω, on G; in
a neighbourhood of x, ω can be written as ω = f(X)dx1 · · · dxn for f(X) a rational function
which is defined at x. We say that ω is defined on K if f and the coordinate functions xi are
defined over K. Recall that given a morphism ψ : W −→ G of algebraic varieties, we have the
differential form ψ∗(ω), defined on W , via pull back of ω; it is obtained, locally, by composition
of ψ with f and the coordinate functions, with the usual rules for the changes of variables.

For each g ∈ G, the left-translation map λg : G 7−→ G such that x 7−→ gx, is a morphism
and so, we can pull back each differential form ω on G to another form λ∗g(ω). Thus we can
consider the space of left-invariant differential n−forms on G, which are also defined over K.

Proposition 2.2.1 There exists a left-invariant differential form ω, defined over K, such that
ω is non-zero. Further, ω is unique up to a constant in K×.

Proof: See [K67], §3 and [We82], §2.2, in particular Theorem 2.2.2 and its corollary. �

Example 2.2.2 • Take G = Ga the additive algebraic group, i.e. the group associated
with the additive group of K (namely the functor “representable” by K[T ]). In this case
λg(x) = g + x and hence λ∗g(dx) = d(λg(x)) = d(g + x) = dx as g ∈ G and where x is the
coordinate function. Since dim(G) = dim(K[T ]) = 1 we found indeed ω = dx.

• If G = Gm, we can notice that dim(G) = dim(K[T, T−1]) = 1. Also, λg(x) = gx and
hence taking ω = dx/x we are done.
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• If G = GLn, dim(G) = dim(K[Xij , det(Xij)
−1]) = n2. λg is the left multiplication with

the matrix g and so, taking ω =
∏
dxij/(det(xij)

n) we are done (as we have to choose an
order for the product and we can use the alternating property).

We would like to determine a measure associated with ω. As G is a connected linear group
(i.e. a subgroup of GLn), we can identify it as a closed subset of the affine m−dimensional
space, for m = n2 + 1. Let A = AK be the ring of adèles for K and consider the adèle group
GA, which is the group of points in Am satisfying the equations of G. GA is endowed with
the topology induced by the product topology of Am, thus GA is a locally compact topological
group. Furthermore the group GA can be realized as the restricted product of the groups GKv
with respect to their compact subgroups GOv for each finite place v in K (where GKv and GOv
have the obvious definition for Kv the local field with valuation ring Ov).

Remark 2.2.3 It can be shown that the definition of GA as restricted product ensures that
GA itself does not depend on the embedding in Am. The reason is that a change of embedding
corresponds to a change of GOv for only finitely many places v.

K ↪→ A is discrete and hence also GK ↪→ GA is a discrete subgroup. Since GA is a locally com-
pact topological group we can take a left-invariant Haar measure on it. By the product formula
we know that for each non-zero principal adèle a ∈ K×,

∏
v |a|v = 1 and that for almost all v,

|a|v = 1. Hence the right-multiplication by elements in GK does not affect the measure on GA,
then we have an induced left-invariant measure on the space GA/GK .

Now, we have to fix a choice of µv, Haar measures on the additive groups K+
v . There are

various possible normalizations, but all we require is that

• µv(Ov) = 1 for almost all finite places v;

• if µ =
∏
µv is the product measure on A, then (the induced measure) µ(A/K) = 1.

Example 2.2.4 (of normalization) One choice of normalization is that in which we take
µv(Ov) = 1 for all finite place and cv times the Lebesgue measure for the infinite places, such
that those positive real numbers cv satisfy∏

v∈∞
cv = 2r2 |discK/Q|−

1
2

for r2 the number of complex embeddings of K and discK/Q the discriminant of K. In particular,
if K = Q, we have r2 = 1, discQ = 1 and so c∞ = 1. This means that µ on AQ can be chosen
such that µp(Zp) = 1 for all p and µ∞ is the Lebesgue measure on R.

Let ω be the non-zero left-invariant form on G. Suppose that, in a neighbourhood of x0 ∈ G, it
can be written as ω = f(x)dx1 · · · dxn for f a rational function in x = (xi)i and xi the coordinate
functions at x0 (not necessarily zero at it). We can express f as a power series in ti = xi − x0

i ,
with coefficients in K ,

f(x) =
∑
(i)

a(i)(xi − x0
i )
i1 · · · (xn − x0

n)in .

Remark 2.2.5 This can be proved, for example, with the Cohen Structure Theorem. In par-
ticular, we can consider the local ring at the regular point x0 and embed it in its completion.
Due to the Cohen structure theorem, the latter is indeed a power series ring with coefficient in
K.
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Let Kv be a completion of K and assume that each x0
j is in Kv. Hence f is a power series with

coefficients in Kv, which converges in some neighbourhood of the origin in Kn
v . There exists

hence a neighbourhood U of GKv such that the map ϕ : x 7−→ (t1, . . . , tn) is a homeomorphism of
U onto U ′. We can suppose that the above power series converges in the chosen neighbourhood
of the origin in Kn

v . We have the product measure µv × · · · × µv on Kn
v which we denote

by dt1 · · · dtn. Hence we have a positive measure on U ′, defined by |f(t)|vdt1 · · · dtn. Via the
homeomorphism ϕ we can pull this measure back to U obtaining a positive measure on U ,
namely ωv.

In particular, taken g to be a measurable (or continuous) real-valued function, compactly
supported on GKv , we have∫

U
g(x)dωv(x) =

∫
U ′
g
(
ϕ−1(t)

)
|f(t)|vdt1 · · · dtn

As in [We82], page 14, it can be proved that the measure ωv is independent of the choice of
the local coordinates xi.

Definition 2.2.6 (Tamagawa measure) If the infinite product∏
v 6∈∞

ωv (GOv)

converges (absolutely), we define the Tamagawa measure on GAK as the product measure

τ =
∏
v 6∈∞

ωv

Explicitly, if S is a finite set of places containing all the infinite ones, and if, for each v ∈ S,
Uv is an open set in GKv with compact closure, then τ is the unique Haar measure on GAK for
which

τ

∏
v∈S

Uv ×
∏
v 6∈S

GOv

 =
∏
v∈S

ωv (Uv)×
∏
v 6∈S

ωv (GOv)

In the case in which the above infinite product does not converge absolutely, some factors
have to be introduced to guarantee the convergence.

A family of {λv} of strictly positive real numbers, indexed by the places of K, is a set of
convergence-factors if the infinite product∏

v 6∈∞
λ−1
v ωv (GOv)

is absolutely convergent. Hence, the Tamagawa measure, relative to the family {λv}, is the
product

τ =
∏
v 6∈∞

λ−1
v ωv

Remark 2.2.7 • In both cases the measure τ is independent of the choice of the form ω.
In fact, as ω is unique up to constant, replacing ω with cω for a c ∈ K×, we have (by
construction)

(cω)v = |c|vωv =⇒ (e.g.) τ =
∏
v

|c|vωv =
∏
v

ωv

as
∏
v |c|v = 1 by the product formula.
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• The Tamagawa measure is, as noticed in the definition, a (canonical) normalization of the
Haar measure on GAK .

Taken v a place of K, we can consider the norm of v, Nv (recall that it is defined as
the cardinality of the quotient Ov/pv for pv the associated maximal ideal). One can prove the
following equalities (see [K67]).

• G = Ga: ωv(GOv) = 1;

• G = Gm: ωv(GOv) = 1− 1
Nv ;

• G = GLm: ωv(GOv) =
(
1− 1

Nv

)
· · ·
(

1− 1
(Nv)m

)
;

As we know that ζK(s)−1 =
∏
v

(
1− 1

(Nv)s

)
and it does not converge at s = 1, we can deduce

that in the case G = GLm we have to introduce a set of convergence-factors, for example

λv = 1− 1

Nv

Remark 2.2.8 We will consider the Tamagawa measure on the algebraic group B×/Z× over
the adèles, namely on B×(A)/A×.

3 Jacquet–Langlands correspondence

3.1 Representations of GL2(A)

3.1.1 Cusp forms in the adelic setting

3.1.1.1 Characters
Just fix the following convention: a character on a topological group X is a continuous ho-
momorphism ω : A −→ C×. We say that a character is unitary if its image is contained in
S1 ↪→ C×.

Definition 3.1.1 A Hecke character is a continuous homomorphism εA : A× −→ C× which is
trivial on Q×. We say that εA is of finite order if the image is a finite group.

Since Q has class number 1, we have that A× = Q×R×+Ẑ× and so, taken a Dirichlet character
modulo an integer N , we can define an associate Hecke character εA. Let a = αxu ∈ A× written
with the decomposition of A× and hence set (considering the natural projection Ẑ −→ Z/NZ)

εA(αxu) = ε(u−1 (mod N)).

One can show that every Hecke character of finite order is indeed induced by a Dirichlet character
and that every continuous character, ω, on A×/Q× is of the form ω(−) = εA(−)| · |s for a certain
s ∈ C, a Dirichlet character ε and where | · | represents the adelic absolute value. In the end
recall that a character µ : Q×p −→ C× is unramified if it is trivial on Z×p .

3.1.1.2 Cusps
Let G be the algebraic group over Q associated with GL2(Q) and denote GQ = GL2(Q),
GA = GL2(A), G∞ = GL2(R) and Gf = GL2(Af ) where Af is the ring of finite adèles.
Consider H± = C– R and consider the usual G∞−action via Moebius transformations on it.
Hence define K∞ = SO2(R)R× = StabG∞(i). As that action is transitive, we can identify H±

with the quotient G∞/K∞ and define j : G∞ × H± −→ C such that j(γ, z) = cz + d for
γ = ( ∗ ∗c d ).

Now consider a function ϕ : GQ\GA −→ C and k ∈ N, even. We can consider the following
conditions:
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(i) ϕ(gk) = ϕ(g) for all k in some open compact subgroup K of Gf .;

(ii) ϕ(gk∞) = j(k∞, i)
−kdet(k∞)ϕ(g) for k∞ ∈ K∞ and g ∈ GA;

(iii) for all g ∈ Gf , and τ = hi ∈ H± (for h ∈ G∞) the map

H± −→C
τ = hi 7−→ϕ(gh)j(h, i)kdet(h)−1

is holomorphic;

(iv) ϕ is slowly increasing, which means that for every c > 0 and every compact subset of GA,
call it K, there exist two constants A and B such that∣∣∣ϕ (( a 0

0 1 )h)
∣∣∣ ≤ A|a|B

for all h ∈ K and a ∈ A× with |a| > c (where |a| stands for the adèlic absolute value);

(v) ϕ is cuspidal, i.e. for (almost) all g ∈ GA∫
Q\A

ϕ

((
1 x
0 1

)
g

)
dx = 0

for a non trivial Haar measure dx.

We define hence the Gf−module

Sk :=
{
ϕ : GQ\GA −→ C

∣∣∣ ϕ satisfies (i),(ii),(iii),(iv),(v)
}

where the action is given by right translation. If O is an open compact subgroup of Gf , we
define

Sk(O) = (Sk)
O =

{
ϕ ∈ Sk

∣∣∣ ϕ(go) = ϕ(g), g ∈ GA, o ∈ O
}

hence Sk = ∪OSk(O) over all open compact subgroups. We can consider two special choices for
such O. Let N be a positive integer,

U0(N) =

{
γ ∈ GL2(Ẑ)

∣∣∣ γ ≡ (∗ ∗
0 ∗

)
(mod N Ẑ)

}
U1(N) =

{
γ ∈ GL2(Ẑ)

∣∣∣ γ ≡ (∗ ∗
0 1

)
(mod N Ẑ)

}
then it holds the following

Theorem 3.1.2 For an element ϕ ∈ Sk(U1(N)) we define a function fϕ : H −→ C such that

fϕ(hi) = ϕ(h)j(h, i)kdet(h)−1 for h ∈ GL2(R)+

Then fϕ is an element in Sk(Γ1(N)) and the association ϕ 7−→ fϕ defines an isomorphism

Sk(Γ1(N)) ∼= Sk(U1(N))

Furthermore, taken ε a Dirichlet character modulo N and εA the associated Hecke character,
we have that the above isomorphism restricts to

Sk(Γ0(N), ε) ∼= Sk(U0(N), εA) :=
{
ϕ ∈ Sk(U1(N))

∣∣∣ uϕ = εA(det(u))ϕ for all u ∈ U0(N)
}

in particular, Sk(Γ0(N)) ∼= Sk(U0(N)).
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Proof: See [Cas73]. �

More precisely, one can define Hecke operators on such spaces and so the above isomorphisms
become Hecke-equivariant. For details we refer to [DI95], §11. One can moreover prove that

Proposition 3.1.3 Each ϕ as above is a cuspidal automorphic form on GL2(A) in the sense
of the following section (3.1.6.2). In particular, we have determined a correspondence between
holomorphic cusp forms and cuspidal automorphic representation of GL2(A).

Proof: See [Bu98], §3.6. �

3.1.2 Representations over p−adic fields

Let p be a prime, Gp = GL2(Qp), Kp = GL2(Zp) the maximal compact opensubgroup of Gp
and Zp the center of Gp. Take π : Gp −→ Aut(V ) be a representation of Gp on a complex vector
space V .

Definition 3.1.4 A representation π : Gp −→ Aut(V ) is said to be admissible if

(i) every v ∈ V is fixed by some open subgroup of Gp (in this case we say that π is smooth);

(ii) for every open compact subgroup U of Gp, the subspace V U of vectors fixed by U is finite-
dimensional.

It holds the following

Proposition 3.1.5 ([JL70] Prop. 2.7) A finite-dimensional admissible representation is con-
tinuous and the only continuous irreducible finite-dimensional representations of Gp are of the
form g 7−→ ω(det(g)) for ω a character on Q×p .

In their book, Jacquet and Langlands classified all the irreducible infinite-dimensional admissible
representation of Gp. Let µ1 and µ2 two characters on Q×p and define

Cloc.(µ1, µ2) =

{
ϕ : Gp −→ C

∣∣∣∣∣ ϕ is locally constant and for each a1,a2∈Q×p

ϕ
((

a1 ∗
0 a2

)
g
)

=µ1(a1)µ2(a2)
∣∣a1
a2

∣∣1/2ϕ(g)

}

where | · | is the p−adic absolute value. We have an obvious action of Gp on Cloc.(µ1, µ2) via right
translation. Denote such representation with ρ(µ1, µ2). It is possible proving that ρ(µ1, µ2) is
reducible if and only if µ := µ1µ2 = | · |±1.

Definition 3.1.6 Whenever ρ(µ1, µ2) is irreducible it is called a principal series representation.

Suppose now that the representation is reducible, we have two cases, namely µ = | · | and
µ = | · |−1. If µ = | · |−1 then ρ(µ1, µ2) has a 1-dimensional subrepresentation and in particular,
setting ω = µ1| · |1/2 = µ2| · |−1/2 we have a function g 7−→ ω(det(g)) which is stable under the
action of Gp: such map spans hence a 1-dimensional invariant subspace. In the other case, i.e.
if µ = | · |, there exists a 1-dimensional quotient of ρ(µ1, µ2).

Definition 3.1.7 In both the above cases, the infinite-dimensional subquotient of ρ(µ1, µ2) is
called the special or Steinberg representation and it is denoted with sp(µ1, µ2).

Let π(µ1, µ2) be the unique irreducible infinite-dimensional subquotient of ρ(µ1, µ2) (i.e. π(µ1, µ2)
is either ρ(µ1, µ2) or sp(µ1, µ2)). One can characterize such representation with the

Proposition 3.1.8 ([Go70], §1, Thm. 4.7) π(µ1, µ2) is equivalent to π(µ′1, µ
′
2) if and only

if {µ1, µ2} = {µ′1, µ′2}.
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Definition 3.1.9 (i) Let V a complex vector space. We define the admissible dual of V as

V̌ =
{
ϕ : V −→ C

∣∣∣ ϕ is linear and exists U, open an compact
of Gp such that ϕ is invariant under U

}
(ii) Each admissible representation of Gp not of the form π(µ1, µ2), are called supercuspidal.
They are characterized by the property that for all v ∈ V and functional ψ ∈ V̌ , the functions
g 7−→ ψ (π(g)v), called matrix coefficients, have compact support modulo the center Zp.

Remark 3.1.10 Every irreducible admissible representation of Gp defines a character of the
centre Zp. In fact, Zp ∼= Q×p is a totally disconnected locally compact group and so by Schur’s
lemma (see [Bu98], proposition 4.2.4) Autπ(V ) ∼= C×, where Autπ(V ) is the space of all (in-
vertible) operators commuting with π. As the center Zp has to be mapped to Autπ(V ) (because
it is abelian), we obtain hence a character π|Zp : Zp ∼= Q×p −→ C×, called the central character
of π.

We are interested in considering particular admissible representation of Gp.

Definition 3.1.11 Let (π, V ) be an admissible representation of Gp on which there exists a
Gp−invariant positive-definite Hermitian form. We call unitarizible every representation of
this type.

One can classify completely the irreducible ones, namely they are

1) Continuous series: principal series π(µ1, µ2) with µ1 and µ2 unitary;

2) Complementary series: principal series π(µ, µ−1) with µµ = | · |σ for a real σ, 0 < |σ| < 1;

3) Discrete series: special or supercuspidal representations with unitary central character.

Proposition 3.1.12 ([JL70], Lemma 15.2) Unitarizible discrete series representations are
square integrable i.e. their matrix coefficients are square integrable modulo the centre, explicitly,
called π the (homomorphism of) representation,∫

Gp/Zp

∣∣∣ψ (π(g)v)
∣∣∣2dg <∞

for dg a non trivial Haar measure on Gp.

Example 3.1.13 ([DI95] Example 11.2.2) The unitarizible special representations are those
of the form sp(χ| · |1/2, χ| · |−1/2) for a unitary character χ.

We need a last definition concerning a condition on an invariant subspace of the representation.

Definition 3.1.14 An infinite-dimensional irreducible admissible representation π of Gp (on
V ) is said to be unramified if the subspace V K = {v ∈ V | π(Kp) · v = v} is 1-dimensional.

One can prove (see [DI95], §11.2) that the unramified representations are the principal series
representations π(µ1, µ2) for µ1µ

−1
2 6= | · |±1 and µ1, µ2 unramified characters. Further it can be

proved that V K is spanned by the function ϕ0 on Gp such that, for each k ∈ Kp,

ϕ0

((
a1 b
0 a2

)
k
)

= µ1(a1)µ2(a2)
∣∣∣a1

a2

∣∣∣1/2
thus the space V K is 1-dimensional.

27



3.1.3 Representation over archimedean local fields

3.1.3.1 A brief recall on Lie algebras

For this paragraph we refer mainly to [Bou89], I.1.2, I.3.1, I.3.4 and III.3.12.

Let V be a vector space. We have a structure of Lie algebra on gl(V ) = (End(V ), [·, ·]) with the
bracket given by the commutator, i.e. [f, g] = f ◦ g − g ◦ f . In particular, for each Lie algebra
(e.g. either real or complex) (g, [·, ·]), we can define a representation of g as the couple (ρ, V )
for ρ a homomorphism of Lie algebras and V a vector space such that

ρ : g −→ gl(V ).

We are interested in some Lie algebras associated with the algebraic groups GL2(R) and
O2(R) = {A ∈ GL2(R) | AAt = I} for R = R,C.

GL2(R): gl2(R) = (M2(R), [·, ·]) with [·, ·] the commutator;

O2(R): so2(R) =
{
M ∈ gl2(R) | M t = −M

}
with the induced bracket. Note that

so2(R), as a set, is the set of antisymmetrical matrices.

Remark 3.1.15 (Lie algebra of an algebraic group) In particular, we can associate a Lie
algebra to every (linear) algebraic group over the field K of characteristic zero. The procedure
amounts essentially to consider the tangent space at the unit element, identify it with the
space of K−derivation and equip it with the commutator bracket. We briefly discussed this
construction in 2.1.2 but for details we refer to [Mil13], II.3.

We should recall the so called adjoint representation of a Lie algebra. Take (g, [, ]) a Lie algebra
and consider

ad : g −→ gl(g) s.t. g 7−→ ad(g) := [h 7→ [g, h]] .

It defines a representation of g called the adjoint action. We have also another adjoint action,
this time of GL2 on gl2. It is defined as

Ad : GL2(R) −→ gl(gl2(R)) s.t. X 7−→ Ad(X) :=
[
h 7→ XhX−1

]
.

An other important object we must introduce is the universal enveloping algebra.

Definition 3.1.16 ([Bou89], Ch. 1, §2, Definition 1) Let g be a Lie algebra over a field
(or ring) k with bracket [ , ]. We can consider the tensor algebra T , which is defined as

T = k ⊕ g⊕ (g⊗ g)⊗ (g⊗ g⊗ g)⊕ · · ·

and the two-sided ideal
J =

〈
x⊗ y − y ⊗ x− [x, y]

∣∣ x, y ∈ g
〉
.

The associative algebra T/J is called the universal enveloping algebra of g.

Notably the representation Ad extends to a representation of the universal enveloping algebra
of GL2.
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3.1.3.2 Representations over R
Fix the notation: G∞ = GL2(R), K∞ = O2(R) the maximal compact subgroup of G∞. Let g
the complexification of the Lie algebra associated with G∞, i.e. g = gl2(C). We recall the

Definition 3.1.17 A representation (π,H) of a group G on an Hilbert space (H, 〈·, ·〉), is said
to be unitary if π(g) is unitary for each g ∈ G, i.e. 〈π(g)h, π(g)h′〉 = 〈h, h′〉.

Let π be a unitary representation of G∞ on a Hilbert space V such that the map G∞×V −→ V
is continuous. Denote V0 for the subspace of K∞-finite vectors in V i.e. the subspace of the
vectors v ∈ V such that π(K∞)v is finite-dimensional.

We want to associate to π a so called (g,K∞)−module.

Definition 3.1.18 A (g,K∞)−module is a complex vector space V0 with actions of g and K∞,
such that all vectors in V0 are K∞−finite and such that

1) the two actions are compatible, namely, for v ∈ V0, k ∈ K∞, X ∈ g,

k · (X · v) = (Ad(k)X) · (k · v);

2) for X ∈ so2(R) (i.e. in the Lie algebra associated with K∞), it holds that

d

dt
(exp(tX) · v)

∣∣∣
t=0

= X · v.

Taken π as above we can define a representation of the Lie algebra g. For X ∈ gl2(R) (i.e. in
the Lie algebra of G∞) and for v ∈ V0, it exists the derivative

(?dπ)
d

dt
π (exp(tX)) v

∣∣
t=0

= lim
t→0

π (exp(tX)) v − v
t

and it defines an element of V0. Such derivation defines, by linear extension to g, an homomor-
phism of Lie algebras,

dπ : g −→ gl2(V0) s.t. X −→
[
v 7→ d

dt
π (exp(tX)) v

∣∣
t=0

]
namely we have defined a representation of the Lie algebra g on V0. We have also a representation
(of groups) of K∞ on V0 induced by the restriction of π to that subgroup, i.e. π|K∞ . Denote
with π0 the couple of representations (dπ, π|K∞). Furthermore we can prove that such couple
satisfies the conditions of the above definition. In fact, for example, we can notice that the two
first conditions are true:

• every v ∈ V0 is K∞−finite, by definition;

• for each v ∈ V0, k ∈ K∞ and X ∈ g, it holds that

π(k) (dπ(X)v) = dπ (Ad(k)X) (π(k)v)

as

dπ (Ad(k)X) (π(k)v) =
d

dt
π (exp(t Ad(k)X)) (π(k)v)

∣∣
t=0

=
d

dt
π
(
exp(t kXk−1)

)
(π(k)v)

∣∣
t=0

=
d

dt
π
(
k exp(tX)k−1

)
(π(k)v)

∣∣
t=0

= π(k)
d

dt
π (exp(tX)) (v)

∣∣
t=0

=

= π(k) (dπ(X)v)

since d
dt

(
exp(tkXk−1)

) ∣∣
t=0

= d
dt

(
k exp(tX)k−1

) ∣∣
t=0

.

It can be indeed proved that also the condition 2) in the above definition holds and so (π0, V0) is
a (g,K∞)−module. We refer to [Bu98], chapter II, paragraphs §2.2, §2.3 and §2.4, for a proof
of it and for a way more general discussion of such theory.
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Definition 3.1.19 We say that a (g,K∞)−module V0 is admissible if HomK∞(W,V0) is finite-
dimensional, for each ρ : K∞ −→ GL(W ).

Definition 3.1.20 Taken an admissible (g,K∞)−module we say it is unitarizible if it is iso-
morphic to a V0.

The notion of irreducibility and homomorphism of (g,K∞)−modules are the natural ones.

Recall that each character ε : R× −→ C× is of the form ε(t) = sgn(t)m|t|s for m ∈ {0, 1}
and s ∈ C. We say that ε is the central character of a (g,K∞)−module, if {±1} = K∞ ∩ R×
acts via sgn(·)m (where the centre of G∞ is identified with R×) and the centre of g acts by
multiplication by s (and where Z(g) = C ( 1 0

0 1 ) is identified with C). It can be proved that

Proposition 3.1.21 Every irreducible (g,K∞)−module admits a central character.

Proof: In [Wal88], Lemma 3.3.2 provides a result analogous to the Schur’s Lemma for this
setting. With the same procedure as in remark (3.1.10) we conclude. �

Remark 3.1.22 If ε is the central character of a unitary representation of G∞, the induced
(g,K∞)−module, V0, has ε as central character.

Let now µ1 and µ2 be two characters of R× and consider the space

B(µ1, µ2) :=

{
ϕ : G∞ −→ C

∣∣∣∣∣ ϕ is right K∞-finite and for each a1,a2∈R×, g∈G∞

ϕ
((

a1 ∗
0 a2

)
g
)

=µ1(a1)µ2(a2)
∣∣a1
a2

∣∣1/2ϕ(g)

}

where right K∞-finite means that the space of functions Span{g 7→ ϕ(gk)}k∈K∞ is finite-
dimensional. The action of K∞ on B(µ1, µ2) is defined by right translation and that of g is
exactly the one defined above by equation (?dπ). With those two actions one can prove that
B(µ1, µ2) is a (g,K∞)−module with central character µ1µ2. Let now µ = µ1µ

−1
2 . We have the

following three cases:

• the (g,K∞)−module, B(µ1, µ2) is irreducible unless µ(t) = sgn(t)tn for some n ∈ Z– {0};

• if µ(t) = sgn(t)tn with n > 0, then B(µ1, µ2) contains exactly one proper (g,K∞)−submodule
B(µ1, µ2)s which is infinite-dimensional. Instead the quotient B(µ1, µ2)/B(µ1, µ2)s ha di-
mension exactly n.

• if µ(t) = sgn(t)tn with n < 0 then B(µ1, µ2) contains exactly one proper subgroup
B(µ1, µ2)f which dimension is |n|. The quotient B(µ1, µ2)/B(µ1, µ2)f is instead infinite-
dimensional.

Fix π(µ1, µ2) as B(µ1, µ2) if it is irreducible, B(µ1, µ2)f otherwise; in both those cases we call
π(µ1, µ2) a principal series for G∞ and we call it limit of discrete series if µ = sgn(t). In the
second case we fix (and only in this case) σ(µ1, µ2) = B(µ1, µ2)s and we call it a discrete series.
Furthermore every irreducible (g,K∞)−module is isomorphic to one of such module, for a couple
of character (µ1, µ2). It holds also that π(µ1, µ2) ∼= π(µ′1, µ

′
2) if and only if {µ1, µ2} = {µ′1, µ′2}

and σ(µ1, µ2) ∼= σ(µ′1, µ
′
2) if and only if {µ1, µ2} = {µ′1, µ′2} or {sgn(·)µ′1, sgn(·)µ′2}.

We can hence characterize the unitary irreducible representations of G∞, π via the induced
unitarizible (g,K∞)−module. Explicitly we have

1) Continuous series: π(µ1, µ2) principal series with µ1 and µ2 unitary;

2) Complementary series: π(µ, µ−1) principal series with µµ = | · |σ for some real number σ
such that 0 < |σ| < 1;
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3) Discrete series: σ(µ1, µ2) with unitary central character.

In particular, such representation is uniquely determined up to isomorphism and has µ1µ2 as
central character. Analogously to the non-archimedean case we can define the matrix coefficients
and talk about square-integrable representations π; those ones are indeed the representations
associated with unitarizible discrete series.

3.1.3.3 Representation over C
Taken again two characters µ1 and µ2 one can give, analogously to the real case, the notion of
principal series representation, ρ(µ1, µ2). The main difference in this case is that there are no
discrete series in the complex case. In particular, ρ(µ1, µ2) is irreducible except when µ1µ

−1
2 (x) =

xpxq for p, q ∈ Z such that pq > 0 and if it happens, the corresponding infinite-dimensional
quotient is again of the form ρ(µ′1, µ

′
2) for appropriate characters µ′1 and µ′2.

For a complete discussion we refer to [Ge75], Remark 4.8.

3.1.4 The global case

Once developed the local theory we can consider the global one. The main tool is the restricted
tensor product of representations.

For each prime p, suppose exists an irreducible admissible representation πp : Gp → GL(Vp).
One can notice that Vp is either one or infinite-dimensional as discussed in (3.1.2). Suppose
additionally that πp is unramified for all p not in a finite set of places S. For each p 6∈ S, choose

a non-zero vector ep in the 1-dimensional V
Kp
p for Kp = GL2(Zp). Define the space

W = Span

{⊗
p

vp

∣∣∣∣∣ vp = ep for all but finitely many p

}

which is a Gf module equipped with the componentwise action on each generators and hence
extending it linearly on W .

Proposition 3.1.23 W defines an irreducible representation of Gf

Gf −→ Aut(W )

which is called the restricted tensor product of the πp and it is denoted
⊗

p πp. Such representa-
tion is independent (up to isomorphism) of the choice of the ep. Moreover the Gf−module W
is admissible, meaning that both the following conditions hold:

(a) every vector in W is fixed by some open subgroup of Gf ;

(b) for every compact open subgroup, U , of Gf , the subspace of U−fixed vectors if finite-
dimensional.

Proof: See [Fl79], §2, mainly Example 2 which let us apply the general theory developed
in the article, to our particular case. �

We have now to deal also with the archimedean part. Suppose that there exists an irreducible
admissible (g,K∞)−module, V∞, for g = gl2(C) and K∞ = O2(R). We can consider

V = V∞ ⊗W

which is endowed with a structure of (g,K∞)×Gf−module, i.e. the two actions are compatible
(as the two actions act, roughly speaking, “componentwise”). We can notice that V is irreducible,
meaning that it has no proper (g,K∞) × Gf−submodules. It can be proved further that V is
admissible in the sense that the two conditions
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(A) every vector in V is fixed by some open subgroup of Gf ;

(B) for every compact open subgroup U of Gf , the subspace of U−fixed vectors in V defines
an admissible (g,K∞)−module;

hold. But we can give a stronger result.

Theorem 3.1.24 Every irreducible and admissible (g,K∞) × Gf−module can be written as a
restricted tensor product and the local factors Vp and V∞ are unique up to isomorphism.

Proof: See [JL70], Ch. 9 and [Fl79], Theorem 3. �

If moreover we suppose that each πp is unitarizible, then we are able to choose ep to be a
unitary vector for each p 6∈ S. Repeating the above procedure it is possible showing that the ob-
tained Gf−module is equipped with an invariant positive-definite Hermitian form. Considering

the completion with respect the induced measure we obtain a Ŵ , which defines a unitary rep-
resentation of Gf . Further, if also V∞ is unitarizible, the construction determines an admissible
unitary representation of GA.

Remark 3.1.25 Suppose that π is an irreducible admissible representation π : Gf −→ Aut(W ).
Then, by the above theorem, it is isomorphic to the tensor product

⊗
p πp for a collection of local

representations πp : Gp −→ Aut(Vp). One can deduce that π admits a central character which
is defined as the one induced by the local central characters. In particular, almost all the local
representations are unramified.

3.1.5 Note on the arbitrary number field case

Suppose now that F is an arbitrary number field and take G = GL2 as an algebraic group over
F . As above we denote Gv = GL2(Fv) for each place of F and for the non-archimedean ones
Kv = GL2(Ov). Again we can construct G(AF ) (e.g.) as the restricted product of the Gv with
respect to the Kv. We define

K =
∏

v finite

Kv

and it is an open and compact subgroup of G(AF,f ) and again G(F ) ↪→ G(AF ) is discrete and
cocompact. In particular, we have that

• In the non-archimedean case the theory is indeed the same as in the case of the p−adic
fields. The definitions are the obvious generalization to the case of Fv and the results
are exactly the same; see for example [Ge75], Ch. 4, § B.The p−adic Theory, mainly
definition 4.9, theorems 4.18 and 4.21;

• In the archimedean case, again, the theory is analogous to that on Q, with the following
modifications (see [Ku04]):

G∞ =
∏

v arch.

G(Fv) ∼= GL2(R)× · · ·GL2(R)︸ ︷︷ ︸
r1

×GL2(C)× · · ·GL2(C)︸ ︷︷ ︸
r2

K∞ =
∏

v arch.

Kv
∼= O2(R)× · · ·O2(R)︸ ︷︷ ︸

r1

× U2(C)× · · ·U2(C)︸ ︷︷ ︸
r2

for r1 and r2 the number of, respectively, real and complex (conjugated pairs of) embed-
dings of F and U2(C) = {A ∈M2(C) | A∗A = AA∗ = 1} for A∗ the adjoint matrix. Again,
one can associate a Lie algebra to G∞ which center is identified with Z(g) ∼= ⊗vZ(gv).
Hence one can speak about (g,K∞)−modules in a similar fashion.

• The global case is carried out in an analogous manner considering (g,K∞)×G(AF,f )−modules
with the same definitions: see e.g. definition 2.4 in [Ku04].
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3.1.6 Cuspidal Automorphic representations of GL2

3.1.6.1 Some analysis
Just start with a brief recall about L2−spaces; for details we refer to [Ru87]. Let (X,µ) be a
measurable space with positive measure µ. We can define, for each complex-valued measurable

function on X, f , and for p ∈ Z, the usual p−norm, ||f ||p =
(∫
X |f |

pdµ
) 1
p , and hence define

Lp(X,µ) =
{
f : X −→ C

∣∣∣ f µ-measurable, ||f ||p < +∞
}

Taken f, g ∈ Lp(X,µ), denote d(f, g) = ||f − g||p for the induced metric on Lp(X,µ). Notice
that d(f, g) = 0 if and only if the functions f and g coincide for almost all x ∈ X. We can hence
define an equivalence relation on Lp(X,µ) such that f ∼ g if and only if d(f, g) = 0. Taken now
F and G two equivalence classes we define d(F,G) = d(f, g) for any f ∈ F and g ∈ G. We can
regard Lp(X,µ) not only as a space of functions but also as a space of these equivalence classes
of functions. One can prove easily that d defines a metric and moreover that (Lp(X,µ), d) is a
C−vector space which is a Banach space with respect this metric. Further, defining

〈f, g〉 =

∫
X
f(x)g(x)dµ(x)

it defines an inner product on L2(X,µ) which is then endowed with a structure of Hilbert space
(just notice that 〈f, f〉 = ||f || 2

2 ).

Before specializing to our case we have to provide a definition of sum of Hilbert spaces.

Let (En)n be a sequence of Hilbert spaces, endowed with the scalar product 〈·, ·〉n. Let E be
the space

E =

x = (x1, x2, . . . , xn, . . .) ∈
∏
n≥1

En

∣∣∣∣∣ ∑
n≥1

||xn||2n < +∞


We can define a structure of vector space on E considering the product by a scalar λ ∈ C as

λ · x = (λx1, λx2, . . . , λxn, . . .) =⇒
∑
n≥1

||λxn||2n = |λ|2
∑
n≥1

||xn||2n < +∞

We can notice that, for all n ≥ 1,

||xn + yn||2n = 2
(
||xn||2n + ||yn||2n

)
since, by direct computation, it can be proved that

||x+ y||2 + ||x− y||2 = 2
(
||x||2 + ||y||2

)
for all x and y in a normed space with norm induced by a (complex) scalar product. Thus the
series ∑

n≥1

||xn + yn||2n ≤ 2

∑
n≥1

||xn||2n +
∑
n≥1

||yn||2n

 < +∞

and so we can define the sum on E as the componentwise sum. By straightforward computations
it is possible showing that those operations define a structure of vector space on E. Further we
can notice that, by the well-known Chauchy-Schwarz inequality,

|〈xn, yn〉n| ≤ ||xn||n · ||yn||n ≤
1

2

(
||x||2 + ||y||2

)
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hence, if (xn) and (yn) are in E, we can set

〈x, y〉 =
∑
n≥1

〈xn, yn〉n

since the sum is absolutely convergent. In particular, such map 〈·, ·〉 : E × E −→ C defines a
Hermitian form on E. Moreover it is a positive definite and nondegenerate form as 〈x, x〉 =∑

n≥1 ||xn||2. It remains to show that the space is complete. This is indeed a classical and easy
computation with Cauchy sequences and for its proof we refer to [Diu60], Ch. V I, §4.

Definition 3.1.26 The space (E, 〈·, ·〉) is a Hilbert space called the Hilbert sum of the Hilbert
spaces (En, 〈·, ·〉n). Sometimes we refer to it as(

E =
⊕̂

n
En, 〈·, ·〉

)
to highlight the underlying components.

Remark 3.1.27 (Finite sum) If the sequence (En)n is finite all the constructions become
trivial and with the analogous definition of Hermitian form we construct the Hilbert sum of a
finite number of Hilbert spaces.

3.1.6.2 Definition of Cuspidal Automorphic representation
Let K be a number field and let µ be an invariant measure on GA := GL2(AK); recall that
K ↪→ AK is discrete and so is GK := GL2(K) ↪→ GA. Consider the Hilbert space L2(GK\GA)
with respect the measure µ; e.g. we can take a (right) Haar measure on GL2(A) (which is a
locally compact topological group) and consider the induced quotient measure which, by abuse
of notation, we denote with µ. Define ZK = K× ( 1 0

0 1 ) and ZAK = A×K ( 1 0
0 1 ) for the center of GK

and GA. As GA acts unitarily on L2(GK\GA) via right translation, we can define the obvious
representation of GA,

ρ : GA −→ Aut
(
L2(GK\GA)

)
such that g 7−→ [ϕ(x) 7→ ϕ(xg)] .

The right translation via matrices in ZA commutes with the representation ρ (by definition of
center) and so it can be proved (see [Go70] §3.3) that L2(GK\GA) decomposes into the sum of
the Hilbert spaces. Each of these spaces is of the form L2(GK\GA, ω), for each unitary character
ω of ZA/ZK ∼= A×/K×,

L2(GK\GA, ω) =
{
ϕ ∈ L2(GK\GA/ZA)

∣∣∣ ϕ(γgz) = ω(z)ϕ(g) for γ ∈ GK , g ∈ GA, z ∈ ZA

}
for the induced quotient measure on GK\GA/ZA = ZAGK\GA. For every ϕ ∈ L2(GK\GA, ω)
and g ∈ GA we can define the function

A 3 x 7−→ ϕ

((
1 x
0 1

)
g

)
∈ C

which is a K−invariant function on A as for k ∈ K,
(

1 k
0 1

)
∈ GK and ( 1 a

0 1 )
(

1 k
0 1

)
=
(

1 a+k
0 1

)
for k ∈ K and a ∈ A–K. By definition of the space L2(GK\GA) and that of integrability, for
almost all g ∈ GA, the above function is also absolutely square-integrable over A/K, where
A/K is endowed with a non trivial Haar measure. We would like at this point to encode some
cuspidality condition. Let

L2
0(GK\GA, ω) :=

{
ϕ ∈ L2((GK\GA, ω))

∣∣∣∣∣ GA3 g 7−→
∫
A/K ϕ

((
1 y
0 1

)
g
)
dy

vanishes almost everywhere on GA

}
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the set of parabolic functions. It is possible noticing that L2
0(GK\GA, ω) is a closed subspace of

L2(GK\GA, ω) and that it is stable under the action of GA; in fact, taken g′ ∈ GA,∫
Q\A

ϕ
((

1 y
0 1

)
g
)
dy =

∫
Q\A

ϕ
((

1 y
0 1

) (
gg′−1

)
g′
)
dy

and denoted with D the set of measure zero on which the function does not vanish, after
the action it remains of zero-measure (by definition of Haar mesure) and it is indeed Dg′−1.
As L2

0(GK\GA, ω) satisfies those properties, it makes sense considering its decomposition into
direct sum of Hilbert spaces. In particular, it is possible showing that such decomposition exists
(See [Go70], §3.5, Theorem 1 and its corollary) and that

L2
0(GK\GA, ω) =

⊕̂
Hα

where the sum is taken over a countable set of minimal closed irreducible subspaces, stable under
the action of GA. Hence we can consider unitary representations ρ : GA −→ GL(Hα) = Aut(Hα)
such that g 7−→ [ϕ 7→ ϕ · g].

Definition 3.1.28 The isomorphism classes of those unitary representations are called cuspi-
dal unitary automorphic representation of GL2(A) with central character ω.

Theorem 3.1.29 (Multiplicity one) Each isomorphism class in the above decomposition oc-
curs with only finite multiplicity. More precisely such multiplicity is one, meaning that if Hα

∼=
Hβ =⇒ Hα = Hβ.

Proof: See [JL70], §10 and §11. �

We can restrict our attention to a subspace of L2
0(GK\GA, ω).

Definition 3.1.30 With the notation used in this section, let A0(ω) be the subspace of L2
0(GK\GA, ω)

of function ϕ satisfying

(i) ϕ(g) is right K−finite, for K = K∞GL2(Ẑ) the maximal compact;

(ii) ϕ is right z-finite, for z the center of the enveloping algebra g;

(iii) ϕ is smooth as a function on G∞;

(iv) ϕ is slowly increasing as in (3.1.1.2).

Each element of A0(ω) is called a cuspidal automorphic form on GL2(A) with central character
ω.

Theorem 3.1.31 (i) A0(ω) is an admissible (g,K∞)×Gf−module;

(ii) A0(ω) is a dense subset in L2
0(GK\GA, ω);

(iii) A0(ω) decomposes as algebraic direct sum of irreducible admissible (g,K∞)×Gf−module
(which are still unitary representations)

A0(ω) =
⊕

Vα

with each Vα dense in the correspondent Hα.

Proof: See [Ge75], §5 mainly theorem 5.1. �
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Theorem 3.1.32 (Strong multiplicity one) Let Vα and Vβ be two constituents of the de-
composition at point (iii) of the previous definition. Denote the Gp−modules associated with
those constituents with Vα,p and Vβ,p, and suppose that Vα,p ∼= Vβ,p for all but finitely many
primes p. Then Vα = Vβ.

Proof: See [Ge75], §6 and theorem 5.14 which is proved in it. �

Remark 3.1.33 We can focus on a particular quotient, namely X = R×+GQ\GA, where R×+ is
identified with the centre Z∞ of GL2(R)+. X is endowed with a GA−invariant measure as the
above spaces and the same constructions can be applied to X. We obtain hence, L2(X) and
its closed invariant (with respect to the action of GA as above) subset L2

0(X). Again, L2
0(X)

decomposes as a sum of Hilbert spaces Rα, where the Rα are closed irreducible subspaces, stable
under the action of GA. We can consider also cuspidal automorphic forms in the same manner
as above.

3.2 Jacquet–Langlands correspondence

3.2.1 Representations of quaternion algebras

Let B be a quaternion algebra over a number field F and consider the group of invertible
elements of B as an algebraic group over F . For each place of F set Bv = (B ⊗F Fv) and denote
the algebraic group of the invertible elements of B as

G′ := B× =⇒ G′v = G′(Fv) = (B ⊗F Fv)×

for each place v of F .
For each unramified place of F , v, we know that there exists an isomorphism

θv : Bv −→M2(Fv)

and we want to fix such isomorphism. Let hence B be a maximal order in B and denote by Bv
the induced module in Bv. We can choose θv as that isomorphism such that θv(Bv) = M2(Ov)
(if v is a finite place). Thus we can identify G′v with GL2(Fv). We define moreover K ′v as the
maximal compact subgroup of G′v such that θv(K

′
v) = Kv := GL2(Ov) and the correspondent

maximal compact for the infinite places. We can hence restate all the theory developed in the
matrix case obtaining analogous notions and definitions, up to composing with θv.

On the other hand, if v is ramified we know that there exists only one maximal order Bv inBv,
namely {x ∈ Bv | |n(x)|v ≤ 1} and then K ′v = {x ∈ G′v | |n(x)|v = 1} is the maximal compact
subgroup of G′v. As in the matrix case, one can establish a relation between representations of G′v
and that of a group algebra (more precisely an algebra of compactly supported locally constant
functions or subspaces of smooth functions). In this way one can give an analogous definition
of admissibility and repeat all the procedure in the matrix case and obtain a classification of
the representations of G′v.

Theorem 3.2.1 (Peter–Weyl) Let K be a compact group. Then

(i) The matrix coefficients (see below (5.1.1.2)) of finite-dimensional unitary representations
of K are dense in the continuous functions C(K) and hence in Lp(K) for each 1 ≤ p <∞;

(ii) Any irreducible unitary representation of K is finite-dimensional;

(iii) Any unitary representation of K decomposes as Hilbert sum of irreducible unitary repre-
sentations.
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Proof: See theorem 2.4.1 in [Bu98] and §4, Part I, in [Bu13]. �

Remark 3.2.2 For v ramified, as G′v is compact modulo its center (see (1.4.5)), we have that
every irreducible unitary admissible representation of G′v is finite-dimensional.

Moreover any irreducible continuous representation of G′v, which is finite-dimensional, is admis-
sible (in the usual sense).

With the technique of the tensor product representation, we can think about irreducible
representations of G′AF = B×(AF ), namely of the form

π′ =
⊗
v

π′v

for local representations π′v of G′v.

3.2.1.1 Cuspidal forms on quaternion algebras
We should start this section defining what is a cusp form on a quaternion algebra. Let

X ′ = Z ′∞G
′
F \G′AF

for Z ′∞ the centre of G′∞ (with a description analogous to (3.1.5)). As in the GL2 case, this
quotient is equipped with a G′AF−invariant measure.

Definition 3.2.3 A cusp form on G′AF is an irreducible unitary representation of G′AF which

occurs in the natural representation R′ of G′AF on L2(X ′). For natural representation we mean
the one determined by right-multiplication by elements of G′AF .

Considering the natural representation of G′AF we can give the following definition, where K ′

is a maximal compact in G′AF and z′ is the centre of the universal enveloping algebra of the
complexified Lie algebra of G′∞, where the universal enveloping algebra is defined as in (3.1.16).

Definition 3.2.4 An automorphic form on G′AF (or for the quaternion algebra B) is an element

of the space of K ′−finite and z′−finite function in L2(X ′). Those elements can be, equivalently,
defined as the functions ϕ on G′AF satisfying

(i) ϕ(γg) = ϕ(g) for all γ ∈ G′F ;

(ii) ϕ(zg) = ϕ(g) for all z ∈ Z ′∞;

(iii) ϕ(g) is right K ′−finite;

(iv) as a function on G′∞, ϕ is right z′−finite.

Remark 3.2.5 We do not have to require the “slowly increasing” condition as the underlying
space is compact.

In particular, following [Ge75], we give the

Definition 3.2.6 Let π′ be a unitary representation of G′A, with central character ψ. Then π′

is a cuspidal form of G′A if it is an irreducible unitary representation of G′A which occurs in
the decomposition of the natural representation (i.e. that induced via right translation) of G′A
on L2(X ′, ψ) which is defined as the space of L2−functions, ϕ, such that ϕ(zb) = ψ(z)ϕ(b) for
z ∈ Z(G′A).
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3.2.2 Fourier transform and measures

3.2.2.1 Schwartz-Bruhat functions and Characters
Before talking about representation we need the definition of the Schwartz-Bruhat functions
and some remarks on additive characters. Let X be either a local field, K, or a quaternion
algebra over K, B, such that B 6⊃ R.

Definition 3.2.7 The space of the Schwartz-Bruhat functions on X is

S(X) :=


{
f : X −→ C

∣∣∣ f is smooth and rapidly decreasing function
}

if X ⊃ R

{
f : X −→ C

∣∣∣ f is locally constant and with compact support
}

otherwise

Remark 3.2.8 It is possible to endow S(X) with a topology and we will refer to it as the
standard topology. As the technical definition is not relevant to our purpose, we refer to [We64],
Ch. 1, paragraph 11, for a precise construction.

Let G be a locally compact group and take dg a Haar measure on it. For each isomorphism
a of G, we call d(ag) the Haar measure defined on G by

∫
G f(ag)d(ag) :=

∫
G f(g)dg for each

measurable function f on G. The proportionality factor of those two measures is ||a|| = d(ag)/dg
is called the module of the isomorphism a. We have, for each isomorphisms a and b and each
measurable subset C,

vol(aC) =

∫
G
χaC (g)dg =:

∫
G
χaC (ag)d(ag) =

∫
G
χC (g)d(ag) = ||a||

∫
G
χC (g)dg = ||a||vol(C);

||ab||vol(C) = vol(abC) = ||a||vol(bC) = ||a|| · ||b||vol(c) =⇒ ||a|| · ||b|| = ||ab||

for χC the characteristic (or indicator) function of C. We have then

Definition 3.2.9 The module of an element x ∈ X×, denoted with ||x||X is the module of two
isomorphisms of multiplication on the left (or on the right) in X. The norm of x is N(x) =
NX(x) := ||x||−1

X .

In particular, one can show by direct computation that, if |x| is the usual module of a real or
complex number, we have for x ∈ X

||x||R = |x|; ||x||C = |x|2; ||x||X = N(x)−1 = NX(Bx)−1 = (#B/Bx)−1 if X 6⊃ R

for B a maximal order of X (containing OK).

Remark 3.2.10 (Characters) The association x 7−→ N(x)s defines a character on X and it is
unitary if and only if s ∈ C is purely imaginary. Furthermore every character on the quaternion
algebra B is of the form χB = χK ◦ n for n the reduced norm on B and χK a character on K.

Example 3.2.11 K = Qp, x 7−→ exp(2πi〈x〉) with 〈x〉 = ap−m the unique rational number
in [0, 1] ∩ Q, such that x − 〈x〉 ∈ Zp (as Qp 3 x =

∑+∞
i=n app

i for n ∈ Z and so take ap−m =(∑−1
i=n aip

i+m
)
p−m with m = inf {m | 0 < m ≤ −n : a−m 6= 0}).
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3.2.2.2 Self-dual measure
Let K be a local field of characteristic zero and denote K+ for the additive abelian group of K.
Let ψ be a non-trivial additive character of K+.

Lemma 3.2.12 Taken the topological dual character group Homcts(K
+,C×), we have a topo-

logical and algebraic isomorphism

K+ −→ Homcts(K
+,C×) s.t. η 7−→ ψη

for ψη(ξ) = ψ(ηξ).

Proof: See [Ta67] lemma 2.2.1. �

We can hence give the

Definition 3.2.13 (Fourier transform) For each f ∈ L1(K+) we can define the Fourier
transform of f as

f̂(η) =

∫
K+

f(ξ)ψ(−ηξ)dξ

for dξ a non-trivial Haar measure on K+.

If f̂ ∈ L1(K+) we can consider the Fourier transform of f̂ and moreover we have the so-called
inversion formula

Theorem 3.2.14 (Inversion formula) For those f ∈ L1(K+) such that f̂ ∈ L1(K+) there
exists a constant c such that

ˆ̂
f(−ξ) =

∫
K+

f̂(ξ)ψ(ηξ)dξ = c · f(ξ)

Proof: See the proof of theorem 2.2.2 in [Ta67]. �

Remark 3.2.15 As recalled in [Ku04-1] one property of the Schwartz-Bruhat functions is that
the Fourier transform defines an automorphism of the Schwartz-Bruhat space.

By definition of Haar measure combined with the above theorem, we can normalize the measure
such that c = 1.

Definition 3.2.16 (Dual and self-dual measure) We define the dual measure d∗ξ (of dξ
with respect to ψ) as the Haar measure on K+ such that it holds the inversion formula

f(ξ) =

∫
K+

f̂(ξ)ψ(ηξ)d∗ξ

for f ∈ L1(K+). We say that the Haar measure on K+ is self-dual with respect to ψ if

ˆ̂
f(−ξ) = f(ξ)

for each f ∈ L1(K+) such that f̂ ∈ L1(K+), i.e dξ coincides with its dual measure.
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3.2.2.3 Self-dual measure on quaternion algebras
We can generalize the notion of self-dual measure in the setting of quaternion algebras. Let B
be a division quaternion algebra over the local field K. Attached to such quaternion algebra
we have a natural form which is the reduced norm, n : B 7−→ K such that n(b) = bb (see
section (1) for details and notations). Recall that we have the reduced trace on B, denoted with
t : B −→ K such that t(b) = b+ b.

Let τ be an additive character on K, τ : K −→ C× and suppose that it is non-trivial; by
paragraph (3.2.2.1) we know that a such τ exists. By Lemma (1.1.2) we know that (b, b′) 7−→
〈b, b′〉 := t(bb′) is a non-degenerate bilinear form on B and we can consider the pairing

〈 , 〉 : B ×B −→ K

It is non-degenerative (as t is so) and so we can identify B with its dual, B∗ = HomK(B,K),
via B 3 x 7−→ [〈x,−〉 : B → K]. Via this identification we can define the Fourier transform of
a Schwartz-Bruhat function, explicitly, taken φ ∈ S(B), we have

φ̂(x) :=

∫
B
φ(y)〈x, y〉dy

for dy an Haar measure on B such that it is normalized with
ˆ̂
φ(x) = φ(−x); it is called the

self-dual Haar measure with respect to 〈 , 〉.

Note 3.2.17 In the case of a quaternion algebra B which does not contain R, we know that
S(B) is the space of locally constant function on B with compact support. We can notice
immediately that the Fourier transform of a Schwartz-Bruhat function is then a Schwartz-
Bruhat function, as predicted by the remark in the previous paragraph.

Let now τ as chosen above and set f(b) = τ (n(b)).

Lemma 3.2.18 There exists a constant γ, which depends on 〈 , 〉 and K, such that, for each
φ ∈ S(B),

(̂φ ∗ f)(x) = γ f−1(x)φ̂(x)

for φ ∗ f the convolution of φ and f . Furthermore γ is an explicit factor, namely γ = −1.

Proof: See [JL70], Ch. 1, Lemma 1.1 and Lemma 1.2. �

3.2.3 Weil representations

3.2.3.1 Representations associated with bilinear forms
Let K be a local field and G = GL2(K). In this paragraph we are going to highlight the notion
of Weil representation; this object is a representation of G which is associated canonically to
a quadratic form defined over K. For this purpose, let B be the “unique” division quaternion
algebra defined over K. Let f , τ and 〈·, ·〉 as in paragraph (3.2.2.3) and set |a|B := 〈a, a〉2.

We can now consider the representation of SL2(K) in S(B) such that

r : SL2(K) −→ Aut (S(B))
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it is defined by

(?Weil)



r

((
1 u

0 1

))
φ(x) = τ (u · n(x))φ(x);

r

((
a 0

0 a−1

))
φ(x) = |a|

1
2
Bφ(ax);

r

((
0 1

−1 0

))
φ(x) = −φ̂(x);

for u ∈ K, a ∈ K× and φ ∈ S(B).

Proposition 3.2.19 The matrices

α(u) :=

(
1 u
0 1

)
, β(a) :=

(
a 0
0 a−1

)
and s :=

(
0 1
−1 0

)
for a ∈ K× and u ∈ K, generate the group SL2(K) with the following relations

(a): s ·β(a) = β(a−1) ·s; (b): s2 = − ( 1 0
0 1 ); (c): s ·α(a) ·s = −β(a−1) ·α(−a) ·s ·α(−a−1);

together with the condition α(0) = β(1).

Proof: See [JL70], Ch.1, pag. 7 and [We64]. �

The above proposition guarantees that, if it exists, such representation r is unique. In partic-
ular, Shalika and Tanaka proved in [ST69] that this representation indeed exists. We have hence
associated a representation of SL2(K) to the couple (B,n). During the construction of r we
have however choose a character τ and so it is correct to consider the association (B,n, τ) 7−→ r.
Nevertheless, taken a ∈ K×, the representation ra obtained via (B,n, τ(ax)) is related to r with

(?a) ra(x) = r

((
a 0
0 1

)
x

(
a−1 0
0 1

))
The above equation is easily verified checking that both sides satisfy the conditions (?Weil).
Taken b ∈ B×, we can define two operators on S(B) by

λ(b)φ(x) := φ(b−1x) and ρ(b)φ(x) := φ(xb)

hence, if a = n(b), by the definition of the above operators and the relation between ra and r,
it holds that

ra(x)λ(b−1) = λ(b−1)r(x) and ra(x)ρ(b) = ρ(b)r(x)

In particular, r and ra are equivalent if a ∈ n(B×) and this happens if K 6= R as in this case
n(B×) = K× (see section (1.4)). Then the association (B,n) 7−→ r is indeed well-defined (up to
equivalence). Moreover, if n(b) = 1, by the above conditions, obviously ρ(b) and λ(b) commute
with r(x).

Proposition 3.2.20 If the space S(B) is endowed with the standard topology (see 3.2.8) then
the representation r : S2(K) −→ Aut(S(B)) is continuous. Moreover, as S(B) ⊂ L2(B), r
extends to a unitary representation r : SL2(K) −→ Aut(L2(B)).
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Proof: See [Ge75] Ch. 7, Remark 7.1 and [ST69]. �

We have determined, in a unique way, a representation (more precisely a class of representa-
tions) of SL2(K) associated with the quaternion algebra B. Using r we have hence to construct
a representation of GL2(K). For this purpose, define G+ = {A ∈ GL2(K) | det(A) ∈ n(B×)}:
by what we have already seen we can deduce that, in our case, G+ = GL2(K).

Lemma 3.2.21 The representation r of SL2(K) on S(V ) extends to a representation of GL2(K),
which, by abuse of notation we denote again with r, characterized by

r : GL2(K) −→ Aut (S(V )) such that r

((
a 0
0 1

))
φ(x) = φ(xh)

with a = n(h).

Proof: See [Ge75], Ch.7, Lemma 7.3. �

Definition 3.2.22 The above representation r, of GL2(K), is called the Weil representation
associated with the quaternion algebra B.

The main feature of this type of representations is the strict bound between them and
representations on the multiplicative group B×. Let π′ be a finite-dimensional representation
of G′ := B× on a complex vector space H. We can consider the tensor product of r with the
trivial representation of SL2(K) on H obtaining a representation, which we call again r, on
S(B)⊗C H.

Remark 3.2.23 We can think at S(B) ⊗C H as the space of functions from B to H whose
coordinate entries, for a fixed basis of H, are Schwartz-Bruhat functions on B.

The observation allows us to consider the subspace of S(B)⊗C H defined by the condition

φ(xh) = π′(h−1)φ(x) for all h ∈ G′ with n(h) = 1.

By the equations (?a) we can notice that this subspace is invariant under r as

π′(h−1)r(y)φ(x) = ρ(h)r(y)φ(x) = r(y)ρ(h)φ(x) = r(y)φ(xh).

This invariance gives rise to a subrepresentation called rπ′ .

Remark 3.2.24 The restriction to the centre Z(B×) = K× of the representation π′ is such that
π′(1) = 1d the identity matrix with d = dimC(H) and π′(k) = χ(a)1d for χ a homomorphism
of groups from K× to C×. This happens as image of an abelian group is an abelian group and
so π′(Z(B×)) is contained in Z(Aut(H)) ∼= Z(GLd(C)) = C×1d. Such χ is called the central
character of π′.

Proposition 3.2.25 rπ′ extends to a representation of GL2(K) satisfying

rπ′

((
a 0
0 1

))
φ(x) = |h|

1
2
Bπ
′(h)φ(xh)

for a = n(h). Moreover, taken χ′
π

the central character of π′, for each a ∈ K×,

rπ′

((
a 0
0 a

))
= χ′

π
(a)1d

Further, if H is an Hilbert space and π′ is unitary, rπ′ can be extended to a unitary representation
of GL2(K) in L2(B, π′). Here L2(B, π′) is the closure of S(B, π′) = S(B) ⊗C (π′, H) in the
Hilbert space of L2−functions from B to H.
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Proof: See [Ge75], Ch. 7. �

By abuse of notation let rπ′ be the representation of GL2(K) in the above proposition. We
have the following two fundamental theorems.

Theorem 3.2.26 Let K be a non-archimedean local field and take B, the unique (up to iso-
morphism) quaternion division algebra on K. Then, for each irreducible unitary representation
π′ of B×,

(I) The representation rπ′ decomposes as the direct sum of d = dim(π′) mutually equivalent
irreducible representations π(π′) of GL2(K);

(II) Each π(π′) is supercuspidal if d > 1 and special if d = 1.

Furthermore,

(III) All the supercuspidal and special representation of GL2(K) are obtained via this construc-
tion. Explicitly, the association

π′ 7−→ π(π′)

gives a bijection between the set of equivalence classes of finite-dimensional representation
of B× and the set of equivalence classes of special and supercuspidal representations of
GL2(K).

If K = R and B is the quaternion algebra isomorphic to the Hamilton’s quaternions, the asso-
ciation

π′ 7−→ π(π′)

defines a bijection between the set of equivalence classes of finite-dimensional representation of
B× and the set of equivalence classes of discrete series representations of GL2(K).

Proof: See theorem 7.6 in [Ge75], remark 7.7 and following. �

3.2.4 The correspondence

We are now prepared to state the most important correspondence between representations on
GL2 and representations on a division quaternion algebra. The notions in section (3.1) generalize
to the case of number fields (as noticed in section (3.1.5)) and hence we have the

Theorem 3.2.27 (Jacquet-Langlands Correspondence) Let B be a division quaternion
algebra over the number field K, S the set of ramified places in B and G′ := D× (thought as an
algebraic group). To each admissible irreducible unitary representation π′ =

⊗
v π
′
v of G′AK , let

π be the representation of GAK = GL2(AK) such that

πv ∼=

{
π′v if v 6∈ S
πv(π

′
v) if v ∈ S

where πv(π
′
v) denotes, as in section (3.2.3.1), the irreducible component of the Weil represen-

tation r(Bv) induced by πv. Then we have

(I) π = ⊗vπv is a cusp form for GAK if π′ is a d−dimensional cusp forms for G′AK , for d > 1;

(II) the association
π′ 7−→ π

restricted to the collection of d−dimensional, with d > 1, cusp forms on G′AK is a bijection
onto the collection of (all equivalence classes of) cusp form

⊗
v πv on GAK , such that πv

is square-integrable for each place v ∈ S.

Proof: See [Ge75], Theorem 10.5. �
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3.3 Modular forms on quaternion algebras

Considering all the correspondences expressed in the previous sections one can restate the
Jacquet–Langlands conjecture in the special case of modular forms on quaternion algebras. We
refer to [BD07] for this section in which we introduce the basic notions about modular forms
on quaternion algebras.

Let N be a positive integer and suppose that such N can be written as the product
N = pN+N−, where p is a prime, N− is a square-free product of an odd number of primes
and p, N+ and N− are relatively prime integers. As stated in the previous sections there exist
a unique (up to isomorphism) quaternion algebra over Q, definite and ramified exactly at the
primes dividing N−. Call such quaternion algebra B and recall that B∞ := B ⊗Q R ∼= H,
Bl := B ⊗Q Ql

∼= M2(Ql) for each prime l which does not divide N− and Bl is isomorphic to
the (unique up to isomorphism) quaternion division algebra over Ql if the prime l divides N−.

Let Ẑ = lim←−
N

Z/NZ ∼=
∏
l prime Zl be the profinite completion of Z and define, for any (commu-

tative unitary) ring A,
Â = A⊗Z Ẑ.

With this notation we have Q̂ = Af the ring of finite adèles of Q. We can think to B× as an
algebraic group over Q (see section (2.1)) defining

B×(L) = (B ⊗Q L)×

for any Q−algebra L. Once for all fix the following notation:

B̂× = B×(Q̂) = B×(Af ) ⊂
∏
l

B×l

for the group of adèlic points of B× and, taken b ∈ B̂×, denote its p-component with bp ∈ B×p .
For each p which does not divide N− we have an isomorphism of Qp−algebras

ιp : Bp = B ⊗Q Qp −→M2(Qp)

which restricts to an isomorphism, which we call again ιp by abuse of notation, between

ιp : B×p = (B ⊗Q Qp)
× −→ GL2(Qp)

Analogously to the arguments showed in section 1.4, we can endow B̂× with the topology
induced by Q̂, still obtaining a locally compact topological group. Let Σ =

∏
l Σl be a compact

open subgroup of B̂×. Let A be a Qp−vector space (or sometimes a Zp−module) such that the
semigroup of matrices in M2(Zp) with non-zero determinant acts on the left, linearly, on A.

Definition 3.3.1 An A−valued modular form on B× of level Σ is a function

φ : B̂× −→ A

satisfying
φ(gbσ) = ιp(σ

−1
p ) · φ(b),

for all g ∈ B×, b ∈ B̂× and σ ∈ Σ. Let S(Σ;A) be the space of such modular forms.

Remark 3.3.2 First of all, we should notice that the space XΣ is finite. In fact, it is compact
as B×\B̂× is compact. By continuity, the image of Σ, as a subgroup of B×\B̂×, is still open
and so it has finite index as the quotient is compact. Hence XΣ has to be finite.
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The second remark is the following. Giving an element of S(Σ;A) is equivalent to give the
set of its values on a set of representative of the finite double coset space

XΣ := B×\B̂×/Σ.

Obviously if A is finite-dimensional so must be S(Σ;A).

We consider two cases for the module A, namely

• A = Zp with the trivial action of the semigroup. The Zp−valued modular forms of level
Σ are said to be of weight 2 and the Zp−module of such modular forms denoted by

S2(Σ) := S(Σ;Zp).

• Let Pk(Qp) denote the space of homogeneous polynomials in two variables of degree k− 2
with coefficients in Qp. It is equipped with a right action of GL2(Qp) with the usual rule

(P |γ)(x, y) := P (ax+ by, cx+ dy), for γ =

(
a b
c d

)
.

We take
Vk(Qp) := Hom (Pk(qp),Qp)

with induced left-action
(γv)(P ) = v(P |γ).

The Vk(Qp)−valued modular forms of level Σ are said to be of weight k and the Qp−module
of such modular forms is denoted as

Sk(Σ) := S(Σ;Vk(Qp)).

We should fix the open compact subgroup Σ. For this purpose let R be a maximal order of B
such that

ιp(R⊗Z Zp) = M2(Zp).

Remark 3.3.3 As the quaternion algebra is definite it does not satisfy the Eichler condition
and so one can notice, as done in [BD07], §2, that the order R is not unique, even up to
conjugation.

For each prime l not dividingN−, R⊗Zp is isomorphic toM2(Zp) and we can fix the isomorphism
ιl as defined above, such that ιl(R⊗ Zl) = M2(Zl). We define hence

Σ0(N+, N−) =
∏
l

Σl such that Σl =

{
(R⊗ Zp)× if l|N−

ι−1
l (Γ0(N+Zl)) otherwise

where

Γ0(nZp) =

{
γ ∈ GL2(Zp)

∣∣ γ ≡ (∗ ∗
0 ∗

)
mod nZp

}
.

We can consider the spaces
S
(
Σ0(pN+, N−);A

)
which are endowed with an action of Hecke operators Tl for l not dividing N (e.g. via Brandt
matrices as in [G87]; see also (4.2.3)). We can give explicit formulas in the case of weight
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k. In particular, the Hecke operator Tl on Sk (Σ0(N+, N−)) is defined via the double coset
decomposition

GL2(Zl)
(
l 0
0 1

)
GL2(Zl) =

l∐
n=0

σn(l)GL2(Zl)

as

(Tlφ)(b)(P ) =

l∑
n=0

φ(bσn(l))(P |σn(l)).

We can also define the Hecke operator Up characterized by the double coset decomposition

Γ0(pZp)
(

1 0
0 p

)
Γ0(pZp) =

p−1∐
n=0

σnΓ0(pZp)

and so, on Sk (Σ0(N+, N−)), we have

(Upφ)(b)(P ) =

p−1∑
n=0

φ(bσn)(P |σn).

We are now able to state a new Jacquet–Langlands correspondence. We refer to [BD07],
§2.3 for the necessary references.

Take Sk(Γ0(N)) = Sk(Γ0(N),Qp) the space of classical modular form of weight k, level
Γ0(N) and coefficient in Qp (i.e. Sk(Γ0(N)) = Sk(Γ0(N),Q) ⊗ Qp). Suppose, as above that N
can be written as the product N = pN+N− with p prime, N− is a square-free product of an odd
number of primes and p, N+ and N− are coprime. Recall that a modular form in Sk(Γ0(N)) is
old at N− if it can be written as sum of g(dz) for g(z) ∈ Sk(Γ0(M)) for M not divisible by N−

and d ∈ Z– {0}. We have hence a subspace SN
−−old

k (Γ0(N)) of the N−−old forms and we define
the orthogonal complement of this space as the space of N−−new form on Γ0(N); denote this

latter space with SN
−−new

k (Γ0(N)). With the above notation we have the

Theorem 3.3.4 (Jacquet–Langlands: modular forms) There exist Hecke–equivariant iso-
morphisms

Sk(Σ0(N+, N−))
∼−→ SN

−−new
k (Γ0(N+N−)),

Sk(Σ0(pN+, N−))
∼−→ SN

−−new
k (Γ0(N)).

4 The Gross–Kudla formula

4.1 The Atkin–Lehner involution

Let N be a positive integer and consider the congruence group Γ0(N).

Definition 4.1.1 We denote by wQ any matrices in GL2(Z)+ such that

wQ =

(
Qx y
Nz Qw

)
and det(wQ) = Q

for each Q|N and (Q,N/Q) = 1 (i.e. Q||N). If q is a prime dividing N , by abuse of notation
we write wq for wqα for qα||N (α ≥ 1).

Remark 4.1.2 • The condition (Q,N/Q) = 1 is redundant as if (Q,N/Q) = d > 1, then
Qd|Q2xw −Nzy = det(wQ) = Q, which is impossible.
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• One can prove that the product of two matrices wQ1 and wQ2 is a matrix of the form wQ3

with Q3 the least common multiple of Q1 and Q2.

Lemma 4.1.3 (Lemma 17 [AL87]) With the notation as in the above definition. Let f ∈
Sk(Γ0(N)), then f |wq ∈ Sk(Γ0(N)), i.e. the k−slash operator with wq defines an endomorphism
of Sk(Γ0(N)). Moreover the operator is independent of the choice of x, y, z and w in the definition
of the matrix wq.

Combining the remark and the lemma we deduce that |wq give rise to an involution on the
space of cusp forms.

Definition 4.1.4 We define the Atkin–Lehner involution as the operator |wp (or simply wp)
for p dividing N .

Furthermore the following theorem holds:

Theorem 4.1.5 Let f(τ) be a newform on Γ0(N) of weight k, p a prime dividing N and wp
the corresponding matrix. If f(τ) = q +

∑+∞
n=2 anq

n, then

f |wp = εp(f) · f, where εp(f) = ±1.

Further, if p exactly divides N then εp(f) = −p1− k
2 ap

Proof: See [AL87], Theorem 3, (iii) (remembering that their weight k is half of our defini-
tion of weight). �

Remark 4.1.6 If k = 2 then we have that, for each prime p||N , ap = ±1.

We can hence notice that the operator |wp determines a decomposition of Sk(Γ0(N))new in the
two eigenspaces corresponding to λp = ±1.

4.2 The main formula

4.2.1 The hypotheses

Let N ∈ N≥1 be a square-free integer and f , g and h three cusps forms of weight 2 on Γ0(N).
We suppose that f , g and h are all normalized eigenforms for the Hecke algebra, and are all
newforms of level N. The function F (z1, z2, z3) = f(z1)g(z2)h(z3) is then a newform of weight
(2, 2, 2) for Γ0(N)3. Assume also that the Fourier expansions of these newforms are given by

f(τ) =
+∞∑
n=1

anq
n g(τ) =

+∞∑
n=1

bnq
n h(τ) =

+∞∑
n=1

cnq
n

with a1 = b1 = c1 = 1 and, as usual, q = exp(2πiτ). For a prime p dividing N we define
εp = −apbpcp and we have an involution up = wp × wp × wp on the space of forms of weight
(2, 2, 2) where wp is the Atkin–Lehner involution on the space of forms on Γ0(N). By theorem
(4.1.5) we know that F |up = εp·F holds, for all p|N , as it holds that f |wp = −ap·f , g|wp = −bp·g
and h|wp = −cp · h. Moreover, since N is square-free, the coefficients ap, bp and cp are equal
to ±1. So each εp equals ±1 as well as ε, which is defined as ε = −

∏
p|N εp. For each prime l

which does not divide N , we can factor the polynomials

1− alX + lX2 = (1− αlX)
(
1− α′lX

)
1− blX + lX2 = (1− βlX)

(
1− β′lX

)
1− clX + lX2 = (1− γlX)

(
1− γ′lX

)
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Definition 4.2.1 The triple product L-function

L (f ⊗ g ⊗ h, s) = L (F, s)

is the function defined by the convergent Euler product

L (F, s) =
∏
l 6 | N

Ll (F, s) ·
∏
p|N

Lp (F, s)

where

Ll (F, s) =
(
1− αlβlγl · l−s

)−1 ·
(
1− αlβlγ′l · l−s

)−1 · · ·
(
1− α′lβ′lγ′l · l−s

)−1

Lp (F, s) =
(
1− apbpcp · p−s

)−2 ·
(
1− apbpcp · p1−s)−2

Remark 4.2.2 Each Ll (F, s) has degree 8 with respect to l−s and each bad Euler factor
Lp (F, s) has degree 3 with respect to p−s. Then, by comparison with the ζ

(
s− 3

2

)
(with the

usual techniques of analytic number theory) it is possible deducing that the Euler product
converges absolutely for Re(s) > 5

2 i.e. the triple product L-function is defined in the half plane
Re(s) > 5

2 .

We can define as well the archimedean L−factor as (See [GK92])

L∞(F, s) = (2π)3−4s Γ(s)Γ(s− 1)3

and hence define, for Re(s) > 5/2, the function

Λ(F, s) = L∞(F, s)L(F, s)

Proposition 4.2.3 The function Λ(F, s) has an analytic continuation to the whole s−plane
and satisfies the functional equation

Λ(F, s) = ε ·N10−5s · Λ(F, s− 4)

Proof: See [GK92], Prop. 1.1 and § 7. �

From now on we assume that the sign in the functional equation is +1 i.e
∏
p|N εp = −1 which

is equivalent to say that #{p | p divides N, εp = −1} is odd.

4.2.2 Curves and orders in quaternion algebras

Let B the unique (up to isomorphism) quaternion algebra over Q, ramified at the even set

S = {p | p divides N, εp = −1} ∪ {∞}

and let R be an Eichler order in B with reduced discriminant N and level L = N/D where D is
the discriminant of B i.e. D =

∏
p∈S– {∞} p. Such Eichler order is unique up to local conjugation.

In particular, for p ∈ S, Rp = R⊗ Zp is the unique maximal order in the local division algebra
Bp = B ⊗Qp. Instead, for p /∈ S, Rp is conjugate to{(

a b
c d

)
∈M2 (Zp)

∣∣∣∣ c ≡ 0 (mod NZp)
}
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in the matrix algebra Bp ∼= M2 (Qp). Let hence R̂ = R ⊗ Ẑ and B̂ = B ⊗ Ẑ = B ⊗Q Af , where
Af is the ring of finite Adèles over Q. Let n be the class number of R and let {I1, . . . , In} be
a set of ideal representing the ideal group, with I1 = R. For 0 ≤ i ≤ n let Ri the right order
of the ideal Ii and define (the setting is that of theorem (1.7.2) with base field Q) the groups
Γi = R×i /Z× = R×i /(±1). It can be proved (See [G87], §1) that each Γi is finite and hence
we can define wi = #Γi. Recall that these integers are independent of the choice of R as is
the choice of the set of representative {Ii}. Gross proved (See [G87], § 3) that to a quaternion
algebra B and an Eichler order R of B, as above, can be associated a curve Y over Q of genus
zero, endowed with a right action of the group B×/Q×. Moreover he showed that exist a curve
X defined as the double coset space

X =
((
R̂×
∖
B̂×
)
× Y

)/
B×

which is the disjoint union of n curves of genus zero over Q. Indeed (See [G87], § 3) X can be
written as

X ∼=
n∐
i=1

Y/Γi.

Let Pic(X) be the free abelian group of rank n of isomorphism classes of divisors on X. This
has, as basis, the elements {e1, . . . , en} where ei has degree 1 on the component Xi = Y/Γi and
degree 0 on Xj for j 6= i. We define P = Pic(X)⊗Z Q =

⊕n
i=1 Qei.

4.2.3 Brandt matrices and the height pairing

Let 1 ≤ l, j ≤ n fixed. With the notation as above, we define the product Ml,j = I−1
j Il =

{
∑
akbk | ak ∈ I−1

j , bk ∈ Il} which is a left ideal in Rj with right order Rl (see lemma (1.1.16)).
We set n(b) as the reduced norm of b ∈Ml,j and n(Ml,j) as the unique positive rational number
such that the quotients n(b)/n(Ml,j) are integers without common factors (recall that an ideal
is a lattice). Define the theta series θl,j as

θl,j =
1

2wj

∑
b∈Ml,j

e2πi(n(b)/n(Ml,j))τ =
∑
m≥0

Bl,j(m)qm where q = e2πiτ

These functions (on the upper half plane) are modular forms of weight 2 for Γ0(N) (e.g. those
are theta functions associated with a lattice). Their Fourier coefficients are given by the entries
of the Brandt matrices of degree m i.e.

B(m) = (Bi,j(m))1≤i,j≤n

We can notice that

B(0) =
1

2


1
w1

1
w2
· · · 1

wn
...

...
. . .

...
1
w1

1
w2
· · · 1

wn

 B(1) =

1
. . .

1


and for m ≥ 1, it can be proved that B(m) has non-negative integer entries.

Note 4.2.4 Pizer showed that the Brandt matrices depend only on the level and not on the
choice of the order (See [P80], Prop. 2.17).

Proposition 4.2.5 For all m ≥ 1 and i = 1, . . . , n we define on Pic(X) the Hecke correspon-
dence

tm(ei) =

n∑
j=1

Bi,j(m)ej

i.e. on the basis {ei}ni=1 of Pic(X) we define the action of tm by multiplication with the transpose
B(m)t of the m− th Brandt matrix.
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Proof: See [G87], Proposition 4.4. �

It’s possible defining a height pairing 〈 , 〉 on Pic(X), with values in Z, as follows:

〈ei, ej〉 = 0 if i 6= j and 〈ei, ei〉 = wi

and then extended bi-additively, namely, if e =
∑
aiei and e′ =

∑
biei are two divisor classes ,

then 〈e, e′〉 =
∑n

i=1 aibiwi. This pairing is positive definite and moreover the next proposition
holds.

Proposition 4.2.6 For all classes e and e′ in Pic(X),

〈tm(e), e′〉 = 〈e, tm(e′)〉
Proof: See [G87], Proposition 4.6. �

We can extend all these results to Pic(X)⊗Q and it can be proved (See [GK92], §10 and [G87],
§4) that, for each prime l which doesn’t divide N , the operators tl commute with each other
and are self-adjoint with respect to the height pairing. They may therefore be simultaneously
diagonalized on PR = Pic(X)⊗ R. Further we have the following

Proposition 4.2.7 If f =
∑
an(f)qn is a cusp form of weight 2 for Γ0(N), there exists a

unique line 〈af 〉 in PR such that

tl(af ) = al(f) · af for all primes l 6 |N
Proof: See [GK92], Proposition 10.2. �

Remark 4.2.8 This proposition establishes a correspondence between cusp forms and line in
PR, preserving the set of eigenvalues.

In terms of our choice for a basis for Pic(X) we can write af =
∑n

i=1 λi(f)ei where λi(f) ∈ Q(f)
are algebraic and uniquely determined up to a scalar.

4.2.4 The formula

In [GK92], Gross and Kudla showed that there exists a precise relation between the special
value of the L−function at the critical point s = 2 and all the object we have introduced. More
precisely they proved the following

Theorem 4.2.9 (Corollary 11.3, [GK92]) With the notation as above, it holds that

L (f ⊗ g ⊗ h, 2) =
||ωf ||2||ωg||2||ωh||2

2πN2t

(∑n
i=1w

2
i λi(f)λi(g)λi(h)

)2∑n
i=1wiλi(f)2 ·

∑n
i=1wiλi(g)2 ·

∑n
i=1wiλi(h)2

where t = #{p : p|N} and ωf = 2πif(z1)dz1 (with ωg and ωh having a similar definition). More
precisely we can normalize the Petersson inner product as

〈f1, f2〉Pet = 23π2

∫
Γ0(N)\H

f1(z)f2(z)dxdy with z = x+ iy

and so

||ωf ||2 = 23π2

∫
Γ0(N)\H

|f(z)|2dxdy

with analogous expressions for ||ωg||2 and ||ωh||2.

Proof: See [GK92]. �
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4.3 Examples

We want now discuss the case g = f , h = f . Let f , as before, be a new cuspidal eigenform for
Γ0(N) and suppose moreover that f =

∑
anq

n has integral Fourier coefficients with a1(f) = 1.
With the notations introduced in this section we can compute the algebraic part

A(F ) =

(∑n
i=1w

2
i λi(f)3

)2
(
∑n

i=1wiλi(f)2)3

of the special value of the L−function. We focused on the case of conductor N = 37 and N = 15.

4.3.1 Case N = 37

In this case the conductor N = 37 is prime so ε = −ε37 and t = #{p | p divides N} = #{37} =
1. Since we require that ε = +1, follows that ε37 = −1. By definition of ε the quaternion algebra
over Q, B, is ramified at S = {∞}∪{p|εp = −1} = {∞, 37} i.e. its discriminant is D = 37. Since
37 ≡ 1 (mod 4) and 37 ≡ 5 (mod 8), by Proposition (1.6.3), up to isomorphism, B is defined as
the quaternion algebra given by {a, b} = {−2,−37}. Let R be an Eichler order in B of reduced
discriminant N and so level L = N/D = 37/37 = 1 (and hence a maximal one). As 37 ≡ 1
(mod 12), by Note (1.7.8), we deduce that the class number n = 37−1

12 = 3. From Note (1.7.8)
we also have that W = w1w2w3 = 1 (as N−1

12 ∈ Z) hence we deduce that w1 = w2 = w3 = 1.

Remark 4.3.1 One can deduce (in an algorithmic way) the value of each wi via the structure
of B(0) as in §(4.2.3). From [P80] we know that

B(0) =
1

2

1/w1 1/w2 1/w3

1/w1 1/w2 1/w3

1/w1 1/w2 1/w3

 =
1

2

1 1 1
1 1 1
1 1 1


and so we deduce that each wi = 1.

Note 4.3.2 Without using B(0) to determine the wi we have to associate each wi to the
correspondent element of the basis of Pic(X) and hence to the correspondent λi(f). We can do
it using the linear relations between the wi given by Prop. (4.2.6), i.e. from the fact that each
operator tm is self-adjoint with respect to the height pairing. Anyway in this case, since all the
wi are equal to 1, there is nothing to do.

At this point we can compute a basis of eigenforms for the space S2 (Γ0(37))new. Moreover we
are looking for forms with integer coefficients of their Fourier q−expansion. By [Ste12] we know
that

f1 = q − 2q2 − 3q3 + 2q4 − 2q5 + 6q6 − q7 + 6q9 + 4q10 − 5q11 + · · · − q37 +O(q38)

f2 = q + q3 − 2q4 − q7 − 2q9 + 3q11 + · · ·+ q37 +O(q38)

define a basis of eigenforms for S2 (Γ0(37))new. Since 1 = −ε37 = a37(f) we deduce that f =∑
an(f)qn = f2. We have now to compute the eigenfunction af ∈ Pic(X) ⊗Z R. By Prop.

(4.2.5) and Prop. (4.2.7) we know that it suffices compute the eigenvectors and eigenvalues
of the transpose matrix of the Brandt matrix at p, where p is prime and does not divide N ,
associated with a maximal Eichler order (and so of level 1). In [P80] have been computed the
Brandt matrices for an Eichler order of level 1 which are

B(2) =

1 1 1
1 0 2
1 2 0

 B(3) =

2 1 1
1 0 3
1 3 0

 B(5) =

2 2 2
2 1 3
2 3 1

 B(7) =

2 3 3
3 2 3
3 3 2


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Computing the diagonalization of B(2)t = B(2) and B(3)t = B(3) we obtain

P2 =

1 1 1
1 −1/2 1
1 −1/2 −1

 D2 =

3
0
−2

 = P−1
2 ·B(2) · P2

P3 =

1 1 0
1 −1/2 1
1 −1/2 −1

 D3 =

4
1
−3

 = P−1
3 ·B(3) · P3

We can notice that a2(f) = 0 = D2(2, 2) and a3(f) = 1 = D3(2, 2). Then, since af is, up
to scalar, the unique vector (written with respect to the standard basis) such that B(m)t ·
af = am(f) · af , we can take af with integer coefficients. Moreover we can choose af as
an indivisible element in Pic(X) ⊗ Q, i.e., if af = (λ1(f), λ2(f), λ3(f))t, this means that
gcd (λ1(f), λ2(f), λ3(f)) = 1. From the uniqueness follows that

〈af 〉 = 〈

 1
−1/2
−1/2

〉 and, up to scalar, we choose af =

 2
−1
−1


hence λ1(f) = 2, λ2(f) = −1 and λ3(f) = −1.

All the information we have found are collected in the following table.

N εp n = rkZ (Pic(X)) λi(f) wi
37 ε37 = −1 3 2, 1, 1 1, 1, 1

Hence we have

M3 =

(
3∑
i=1

w2
i λi(f)3

)
= 23 − 1− 1 = 6 M2 =

(
3∑
i=1

wiλi(f)2

)
= 22 + 1 + 1 = 6

and so

A(F ) =
M2

3

M3
2

=
62

63
=

1

6
.

4.3.2 Case N = 15

We have now the case of conductor N = 15 which is not a prime number. Hence ε = −ε3ε5

and t = #{p | p divides N} = 2. As ε = +1, it follows that either ε3 or ε5 can equal −1 and
so the quaternion algebra over Q, B, is ramified at S = {∞} ∪ {p|εp = −1} with #S = 2. For
determining such p we have to look at a basis of eigenfunctions for S2(Γ0(15))new, which, by
[Ste12], is given by

f1 = q − q2 − q3 − q4 + q5 + q6 + 3q8 + q9 − q10 − 4q11 + q12 − 2q13 − q15 +O(q16)

then, as the space has dimension one, f = f1. Moreover

ε3 = −a3(f) = 1 and ε5 = −a5(f) = −1

It follows that B is ramified at S = {∞, 5} with discriminant D = 5. Since 5 ≡ 1 (mod 4)
and 5 ≡ 5 (mod 8), by Prop. (1.6.3), then, up to isomorphism, B is defined as the quaternion
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algebra given by {a, b} = {−2,−5}. Let R be an Eichler order in B, of reduced discriminant N
and so level L = N/D = 15/5 = 3. By Theorem (1.7.7) holds that the class number is

n =
15

12

(
1− 1

5

)(
1 +

1

3

)
+

1

4

(
1−

(
−4

5

))
=0

(
1 +

(
−4

3

))
+

1

3

(
1−

(
−3

5

))
=2

=1(
1 +

(
−3

3

))
=

=
15

12
· 4

5
· 4

3
+

2

3
=

6

3
= 2

where
(
−
q

)
is the Kronecker symbol at the prime q. By Theorem (1.7.5) we deduce that

2∑
i=1

1

wi
= |ζ(−1)| · 3(5− 1)

(
1 +

1

3

)
=

1

12
· 3 · 4 · 4

3
=

4

3

Since each wi is a positive integer we deduce that, considering w1 ≥ w2 and putting M = 4
3 ,

w1 + w2 = M · w1w2 =⇒ w1 =
w2

Mw2 − 1

We notice that f(x) = x
Mx−1 , with M > 1, is strictly decreasing for x ≥ 1 and has image

contained in
[

1
M ,

1
M−1

]
, therefore it is uniquely determined the couple (w1, w2) ∈ N2

≥1 with

w1 ≥ w2, such that
∑ 1

wi
= 4

3 ; moreover w1 belongs to the set
[

3
4 , 3
]
∩ N. It follows that either

w1 = 3 and w2 = 1 or w1 = 1 and w2 = 3.

Remark 4.3.3 Using the structure of B(0), and since in [P80] we have

B(0) =
1

2

(
1/w1 1/w2

1/w1 1/w2

)
=

1

6

(
3 1
3 1

)
=

1

2

(
1 1/3
1 1/3

)
,

we can deduce, with a mere computational approach, that w1 = 1 and w2 = 3.

We can now compute the Brandt matrix at p, where p is prime and does not divide 15, associated
with an Eichler order of level 3. In [P80] the matrix at p = 2 has already been computed and
it is

B(2) =

(
2 1
3 0

)
.

We have now to compute the characteristic polynomial of B(2)t

P (λ) =

∣∣∣∣2− λ 3
1 0− λ

∣∣∣∣ = λ2 − 2λ− 3 = (λ+ 1)(λ− 3)

and, as a2(f) = −1, we need the eigenvector associated with the eigenvalue −1, i.e. v = (x, y)t

such that (
2 3
1 0

)
·
(
x
y

)
= −

(
x
y

)
=⇒

{
2x+ 3y = −x
x = −y

hence, by the uniqueness of the eigenfunction af follows that

〈af 〉 = 〈
(

1
−1

)
〉 = 〈v〉 and, up to scalar, we choose af =

(
1
−1

)
so λ1(f) = 1 and λ2(f) = −1.
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Note 4.3.4 Differently from the previous example, without using B(0) to determine the wi,
we have to associate each wi to the correspondent λi(f). We can compute directly

〈B(2)t ·
(

1
0

)
,

(
0
1

)
〉 = 〈

(
2 3
1 0

)
·
(

1
0

)
,

(
0
1

)
〉 = 〈

(
2
1

)
,

(
0
1

)
〉 = w2

〈
(

1
0

)
, B(2)t ·

(
0
1

)
〉 = 〈

(
1
0

)
,

(
2 3
1 0

)
·
(

0
1

)
〉 = 〈

(
1
0

)
,

(
3
0

)
〉 = 3w1

and notice that the two rows are equal by proposition (4.2.6). Therefore it holds that 3w1 = w2

and so w1 and w2 have to be w1 = 1 and w2 = 3.

We can fill in the following table with all the information we have found until this point.
Hence we have

N εp n = rkZ (Pic(X)) λi(f) wi
15 ε3 = +1, ε5 = −1 2 1, −1 1, 3

M3 =

(
2∑
i=1

w2
i λi(f)3

)
= 1− 32 = −8 M2 =

(
2∑
i=1

wiλi(f)2

)
= 1 + 3 = 4

and so

A(F ) =
M2

3

M3
2

=
(−8)2

43
=

26

26
= 1.

5 Jacquet’s conjecture

5.1 Representations

5.1.1 Matrix coefficients and contragredient representations

We must recall definition (3.1.9) and develop the notions of admissible dual and matrix coeffi-
cient in a more general setting.

5.1.1.1 Contragredient representations

Definition 5.1.1 Let F be a non-archimedean local field. If (π, V ) is an admissible represen-
tation of GL2(F ), the contragredient representation of GL2(F ) is (π̂, V̂ ) with V̂ is the smooth
dual of V , which is defined as

V̂ =
{

Λ : V −→ C
∣∣∣ Λ is linear and exists U, open subgroup

of GL2(F ) such that Λ is invariant under U

}
where for the invariance property we mean that Λ(π(u)v) = Λ(v) for all u ∈ U and v ∈ V . Its
elements are called smooth linear functionals on V . The action is defined by

π̂(g)Λ(v) := Λ(π(g−1)v)

for all g ∈ GL2(F ), v ∈ V and Λ ∈ V̂ .

In the setting of the definition, one can prove that the contragredient representation is equiva-
lent, in the irreducible case, to the representation (π∗, V ) such that π∗(g) = π(tg−1). Moreover
if ω is the central character of π, we can define the representation ω−1 ⊗ π of GL2(F ) on V
defined by ω−1 ⊗ π(g) = ω (det(g))−1 π(g). This representation is equivalent to π̂.
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Remark 5.1.2 (Twists) Let (π, V ) be an admissible representation of GL2(F ) and χ a char-
acter of F×. We can define the twist of π as the representation of GL2(F ) on V defined by

(χ⊗ π) (g) = χ (det(g))π(g)

and it is another representation of GL2(F ) on the same space V .

Proposition 5.1.3 ([Bu98], 4.6.1) Let (π, V ) be an unramified representation of GL2(F ),
then the contragredient representation is also unramified.

Proof: By the equivalence with π∗ we can notice that, if it exists a v ∈ V such that
π(K)v = v (K = GL2(OF )) hence, as tK−1 = K, we are done. �

Let F = R or C and take K ⊂ GL2(F ) the maximal compact subgroup.

Definition 5.1.4 Let (π, V ) be a representation of K (e.g. the restriction of a representation
of GL2(F )). For each (ρ, Vρ) irreducible finite-dimensional representation of K, we can define
the ρ−isotypic part of (π, V ) as

V (ρ) =
⊕
W

W

for W varying among all the K−submodules of V , which are isomorphic to Vρ.

Definition 5.1.5 Let F = R or C and (with the usual notation) consider (π, V ) a (g,K∞)−module
for K ⊂ GL2(F ) the maximal compact subgroup. Let

V̂ =
{

Λ : V −→ C
∣∣∣ Λ is linear and it is zero on V (ρ) for

almost all irreducible representations ρ of K∞

}
The action π̂ of K∞ is given by

π̂(k)Λ (v) = Λ
(
π(k−1)v

)
and that of g is given by

π̂(X)Λ (v) = −Λ (π(X)v) .

This (g,K∞)−module is called the contragredient (g,K∞)−module of (π, V ).

Analogously to the non-archimedean case we have the equivalence between the contragredient
(g,K∞)−module and the (g,K∞)−module defined as (π∗, V ) with π∗(g) = π(tg−1).

Definition 5.1.6 Let (π, V ) be an irreducible admissible representation of GL2(A) and write
π = ⊗vπv. We define the contragredient representation as π̂ = ⊗π̂v.

We would like to work with cuspidal representation in particular it holds that

Proposition 5.1.7 Let (π, V ) be an automorphic (unitary) cuspidal representation of GL2(A),
then the controgredient representation (π̂, V̂ ) is an automorphic (unitary) cuspidal representa-
tion of GL2(A).

Proof: See proposition 8.9.6 (and proposition 9.5.8) in [GH11]. �

Furthermore we can give two stronger results about unitary representations.

Proposition 5.1.8 Let p be a prime and let (π, V ) be an irreducible smooth representation of
GL2(Qp). If (π, V ) is unitary hence the contragredient representation is unitarizible.

Proof: See proposition 9.1.4 in [GH11]. �
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Proposition 5.1.9 Let (π, V ) be an irreducible admissible (g,K∞)−module. If it is unitary
hence the contragredient module is unitarizible.

Proof: See proposition 9.4.2 in [GH11]. �

Definition 5.1.10 The complex conjugated representation of (π, V ) (complex representation)
is the representation (π, V ), for V the complex conjugated space and π the representation acting
as π(g)φ := π(g)φ.

Proposition 5.1.11 Let (π, V ) be an (irreducible admissible) unitary cuspidal automorphic
representation of GL2(AQ) and write it as π = π(g,K∞) ⊗

⊗
p πp. Then:

(a) the contragredient representation is a unitarizible cuspidal automorphic representation;

(b) the complex conjugate representation (π(g,K∞) ⊗
⊗

p πp, V ) is equivalent to the contragre-
dient representation.

Proof: (a) is obtained by the above propositions and by proposition 9.5.2 in [GH11]. (b)
is a particular case of proposition 8.9.6 in [GH11]. �

Note 5.1.12 Similarly to that pointed out in (3.2.1) we can extend the definition of controgre-
dient representation to representation of quaternion algebras. In particular, we are interested
in the generalization of the above proposition having in mind the Ichino’s formula (6.1).

5.1.1.2 Matrix coefficients

Theorem 5.1.13 (Riesz–Fréchet representation theorem) Let H be a Hilbert space with
Hermitian product 〈·, ·〉. We define the continuous dual of H as

H∗ =
{

Λ : H −→ C
∣∣∣ Λ linear and continuous functional

}
Then Λ is an element of H∗ if and only if there exists a unique y ∈ H such that

Λ(x) = 〈x, y〉

for all x ∈ H.

Proof: See [Ha51], §17, theorems 1, 2 and 3. �

Let (π, V ) be a representation of a topological group G. We can consider the space of
continuous functionals on V and consider maps of the form

g 7−→ Λ (π(g)v)

for g ∈ G, Λ continuous linear operator on V and v ∈ V . We can define the matrix coefficients
for a representation (π, V ) of GL2(F ) (F non-archimedean) as maps of the (above) form

g 7−→ Λ (π(g)v)

for g ∈ GL2(F ), Λ ∈ V̂ , v ∈ V . Analogously we define matrix coefficients for (g,K∞)−modules
with the contragredient module and, in particular, we can give a global definition in the same
manner.

Note 5.1.14 The Riesz-Fréchet representation theorem assures that, in the unitary case, all
the matrix coefficients are of the form

g 7−→ Λ (π(g)v) = 〈π(g)v, w〉

for a certain w ∈ V and for 〈·, ·〉 the Hermitian product.
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5.2 Triple product L−functions

5.2.1 On the representations of GL2 ×GL2 ×GL2

Let G be the algebraic group GL2 ×GL2 ×GL2 over the number field F . We consider the rep-
resentations of G (as a group) as tensor products of three representations of GL2. In particular,
the notion of automorphicity and cuspidality are the same introduced in (3.1.6.2), ensuring
that all the three components satisfy the conditions. For this reason we usually denote by
Π = π1 ⊗ π2 ⊗ π3 a representation of G for πi a representation of GL2 for i = 1, 2, 3. Since
each πi defines a central character, we can speak about the product of the central characters
associated with the πi.

5.2.2 The holomorphic case

Following Harris and Kudla, we can write explicitly the L−function associated with three irre-
ducible cuspidal automorphic representations of GL2(AQ), i.e. in the particular case F = Q. In
the above hypothesis let π1, π2 and π3 be three irreducible cuspidal automorphic representa-
tions. We can associate to them three holomorphic cusp forms f1, f2 and f3 of weight k1, k2 and
k3 respectively (as consequence of the Jacquet-Langlands correspondence). We can moreover
suppose that those forms are normalized newforms of level N1, N2 and N3 respectively and with
nebentypus (i.e. character) εi, for i = 1, 2, 3.

Denoted by ai(n) the n−th coefficient of the Fourier q−expansion of fi we have, for each i,
the classical Hecke L−series

L(s, fi) =
+∞∑
n=1

ai(n)

ns
=
∏
p

L(s, πi,p)

where, for each prime p 6 |Ni,

L(s, πi,p) =
1

(1− ai(p)p−s + εi(p)pki−1−2s)
=

1(
1− α1

i (p)p
−s
) (

1− α2
i (p)p

−s
)

Let Sf be the set of primes dividing the product N1N2N3 and let S = Sf ∪ {∞}. Hence we can
define the local factor

L
(
s, (π1 ⊗ π2 ⊗ π3)p

)
=

∏
η:{1,2,3}→{1,2}

1

1− αη(1)
1 (p)α

η(2)
2 (p)α

η(3)
3 (p)p−s

then we have the

Definition 5.2.1 The restricted L−function LS (s, π1 ⊗ π2 ⊗ π3) is defined as

LS (s, π1 ⊗ π2 ⊗ π3) =
∏
p6∈S

L
(
s, (π1 ⊗ π2 ⊗ π3)p

)
Example 5.2.2 (Gross–Kudla L−function) The L−function which appears in the Gross–
Kudla formula is indeed the product of the restricted L-function with the non-archimedean
factors when p|N1N2N3 (which is N3 in the notation of the section (4.2) ). In particular,
with the notations in (4.2) and denoted πf , πg and πh the corresponding irreducible cuspidal
automorphic representations, we have that

L(s, f ⊗ g ⊗ h) =

∏
l|N

1

(1− alblcl · l−s) · (1− alblcl · l1−s)2

LS(s, πf ⊗ πg ⊗ πh)
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We can give an explicit description of this extra factor, which we call κ(s) = κ(s,N, f, g, h). In
fact, as notice in (4.2), we have

εl = −alblcl ∈ {±1}
Hence, denoted by D the discriminant of the quaternion algebra as in (4.2) we have

κ(s) =
∏
l|N

1

(1− alblcl · l−s) · (1− alblcl · l1−s)2 =

=

∏
p|D

1

(1− l−s) · (1− l1−s)2

 ·
∏
p|N
D

1

(1 + l−s) · (1 + l1−s)2


Example 5.2.3 (Garrett’s triple product L−function) Let f, ϕ and ψ three normalized
holomorphic eigen-cuspforms of weight k, for the full congruence group SL2(Z). Then we are
in the above case, with trivial characters εi and such that Sf is empty. Namely the Garrett’s
L−function is

Lf,ϕ,ψ(s) = L{∞}(s, f ⊗ ϕ⊗ ψ)

Garrett provided an integral representation of this L−function in [Ga87]. For its functional
equation and its properties we refer to [Ga87] and [PSR87].

Set ξi : A× −→ C× as the central character of πi, for each i, and consider the product ω(x) =
ξ1(x)ξ2(x)ξ3(x). Define further the weight of the L−function LS(s, π1 ⊗ π2 ⊗ π3),

w = k1 + k2 + k3 − 3.

Theorem 5.2.4 There exists a meromorphic extension of the L−function. Moreover, if the
product ω(x) = ||x||wA and ω is odd (for || · ||A the adèlic norm), then there exist

• Euler factors for each p ∈ Sf ,

L̃(s, (π1 ⊗ π2 ⊗ π3)p) =
1

P (p−s)

for P (t) ∈ C[t] and P (0) = 1;

• Archimedean factor Ψ(s, π1⊗π2⊗π3) (in the holomorphic case as above it can be identified
with a product of Γ−functions and ζ−functions;

• ε−factors, ε̃(s, (π1 ⊗ π2 ⊗ π3)p);

such that, defined

L̃fin(s, π1 ⊗ π2 ⊗ π3) =LS(s, π1 ⊗ π2 ⊗ π3) ·
∏
p∈Sf

L̃(s, (π1 ⊗ π2 ⊗ π3)p)

ε̃(s, π1 ⊗ π2 ⊗ π3) =
∏
p∈Sf

ε̃(s, (π1 ⊗ π2 ⊗ π3)p)

it holds that

(a) there exists a functional equation

L̃fin(s, π1 ⊗ π2 ⊗ π3) = ε̃(s, π1 ⊗ π2 ⊗ π3)Ψ(s, π1 ⊗ π2 ⊗ π3)L̃fin(w + 1− s, π1 ⊗ π2 ⊗ π3)

(b) L̃fin(s, π1 ⊗ π2 ⊗ π3) has no poles at the center s = w+1
2 of the critical strip.

Proof: This theorem sums up (as noticed in [HK91], §1) the main results in the article of
Piatetski-Shapiro and Rallis, [PSR87], namely Theorems 5.2 and 5.3. �
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5.2.3 Langlands L−functions

The above theorem can be reformulated in order to deal with more general L−functions asso-
ciated with automorphic forms.

At this point we should introduce the so-called Langlands dual of an algebraic group. Since the
construction and the properties are not of so easy description we will develop exactly what we
need and only in two particular cases. For a complete discussion of the Langlands dual we refer
to [Bo79] and to [AG91], §2.

Let F be a number field. The Langland dual, LG, of the linear algebraic group G (over F ) is a
semi-direct product

LG := Ĝo Γ

where Γ := Gal(F/F ) is the absolute Galois group and Ĝ is a complex linear algebraic group.
We have to define a topology on the Langlands dual. In particular, the topology is that on the
underlying space as proved by proposition 27 in [Bou07], which states that

Proposition 5.2.5 Let L and N two topological groups with an action of L on N . Consider
the map

N × L 3 (n, l) 7−→ l · n ∈ N

where · is the action of l on n. Taken the product topology on the product, suppose that the
above map is continuous. Therefore the product topology on the underlying space of N o L is
compatible with the structure of group, making the direct product a topological group.

Proof: See proposition 27 in [Bou07], TG III.18, §2, N◦10. �

Definition 5.2.6 The topology described by the above proposition is usually referred to as the
semi-direct product topology.

Since Ĝ is a complex algebraic group we have a natural topology on it and the Galois group
Γ is a profinite group, so it is endowed with the profinite topology. With a precise study of the
construction of the Langlands dual, as presented in [Bo79], and with proposition (5.2.5) it can
be proved that the map

Ĝ× Γ 3 (g, γ) 7−→ γ · g ∈ Ĝ

is continuous, and then, that the Langlands dual is a topological group with the semi-direct
product topology.

Definition 5.2.7 ([Bo79], §2.6, §8) A representation of the Langland dual is a continuous
homomorphism r : LG −→ GLm(C) whose restriction to Ĝ is a morphism of complex Lie
groups.

An element of an algebraic linear group G, is semi-simple if it is diagonalizable (as a matrix).
An element x = (u, γ) ∈ LG is semi-simple if its image under any representation r is so.

Proposition 5.2.8 (Proposition 2.2, §2.1.2, [Hi00]) Let G be a profinite group and con-
sider a continuous group representation of it on a finite-dimensional complex space, endowed
with the euclidean topology. Hence the representation has finite image.

Remark 5.2.9 (§2.6, [Bo79]) Let r be a representation of LG. By proposition (5.2.8), ker(r)
contains an open subgroup of Γ, hence it can be proved that r factors through ĜoGal(L/F ) for
L a particular finite Galois extension of F . Moreover, by proposition (5.2.5) and since Gal(L/F )
is finite (and so endowed with the discrete topology), ĜoGal(L/F ) has a natural structure of
complex algebraic group.
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One can hence associate to an automorphic representation of G(AF ) (with the usual defini-
tion), say π = ⊗vπv, the set

σ(π) =
{
σv(π) = σ(πv)

∣∣ v 6∈ S}
for S the finite set of places, S ⊃ S∞ at which πv is ramified. Here, σv(π) = σ(πv) is a conju-
gacy class of a semi-simple element in LG, such that the projection on the Galois group is the
Frobenius class at v (for a recall on decomposition groups and Frobenius at a prime see [SD01],
§5).

Moreover one can prove that such set determines uniquely the representation π.

We can hence define an automorphic L−function associated with an automorphic represen-
tation, π, of G(AF ) and to a (finite-dimensional) representation of LG,

r : LG −→ GLm(C)

We associate to this couple of representations the family{
r(σv(π))

∣∣ v 6∈ S}
of semi-simple conjugation classes in GLm(C), where S is as above. Then we can finally give
the

Definition 5.2.10 The general (restricted) automorphic L−function is defined as the product

LS(s, π, r) =
∏
v 6∈S

det

(
1− r(σv(π))

(Nv)s

)−1

for Nv the norm of the prime associated with the (finite) place v and s ∈ C.

5.2.3.1 Rankin–Selberg L−functions
Let F = Q. We can define the so-called Rankin–Selberg L−functions.

Definition 5.2.11 Let π1 and π2 be two automorphic cuspidal representations of GL2(A) with
unitary central characters and let S ⊃ S∞ the set of places at which at least one of the two is
ramified. Let f1 and f2 two cusps forms (with characters εi, weight ki) corresponding to π1 and
π2 via the Jacquet–Langlands correspondence. For each p 6∈ S take αi(p) and βi(p) such that
(for ai(n) the Fourier coefficients)(

1− ai(p)p−s + εi(p)p
ki−1−2s

)
=
(
1− αi(p)p−s

) (
1− βi(p)p−s

)
The Rankin–Selberg L−function of π1⊗π2 (with π1⊗π2 viewed as a representation of GL2(A)×
GL2(A)) is the Euler product

LS(s, π1 ⊗ π2) :=
∏
p/∈S

Lp(s, π1,p ⊗ π2,p)

for

Lp(s, π1,p ⊗ π2,p) :=

2∏
i=1

2∏
j=1

1

1− αi(p)βj(p)p−s
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We can realize (and generalize) this function as a Langlands L−function. Suppose that F is
a generic number field and take G = GL2 ×GL2 as an algebraic group over AF . The Langland
dual, LG, of G is the semi-direct product

LG := (GL2(C)×GL2(C)) o Γ

where the absolute Galois group Γ := Gal(F/F ) acts trivially on Ĝ := GL2(C)×GL2(C). Let
π1 and π2 be two automorphic (cuspidal unitary) representations of GL2(AF ) thus π1 ⊗ π2 is
an automorphic (cuspidal unitary) representation of G. Take r a representation of LG such that
the restriction to Ĝ is the natural

r : GL2(C)×GL2(C) −→ GL2(C)

induced by the tensor product. Thus one can prove that the Rankin–Selberg L−function is

LS(s, π1 ⊗ π̂2) = LS(s, π1 ⊗ π2, r).

Proposition 5.2.12 The Rankin–Selberg L−function admits a meromorphic continuation to
the whole complex plane. Further, it has a pole at s = 1 if and only if π2

∼= π̂1.

Proof: See [Bu98], Prop. 3.8.4, Prop. 3.8.5 and following. �

5.2.3.2 Adjoint L−functions

Let F = Q. Suppose that the Rankin–Selberg L−function admits a pole at s = 1. Hence, we
are in the case

LS(s, π ⊗ π̂)

for π automorphic cuspidal (unitary) representation of GL2(A). In particular, we can factor it
as

LS(s, π ⊗ π̂) = ζF,S(s) · LS(s, π,Adj)

for ζF,S(s)the partial Dedekind zeta-function of F as in (1.7.2) up to the factors in S, i.e.

ζF,S(s) = ζF (s) ·
∏

p∈S∩Sf

(
1− 1

(N(p)s)

)

and LS(s, π,Adj) the adjoint L−function.

In the case F = Q the decomposition is obvious by the definition of LS(s, π⊗ π̂); in fact one
can prove that the Hecke coefficients associated with the contragredient representation are, with
the notations as in the above paragraph, α(p) := α2(p) = β1(p)−1 and β(p) := β2(p) = α1(p)−1.
Thus we have an explicit expression

LS(s, π,Adj) =
∏
p/∈S

(
1− α(p)β(p)−1

ps

)−1(
1− 1

ps

)−1(
1− α(p)−1β(p)

ps

)−1

In [GJ76] (denoted by L2(s, σ, χ)) and in [Shi75] (denoted by D(s) ) it is possible to find a
proof that such function is entire.
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Let now G = GL2 thought as an algebraic group over AF for F a number field. The Langland
dual, LG, of G is the semi-direct product

LG := GL2(C) o Γ

where the absolute Galois group Γ := Gal(F/F ) acts trivially on Ĝ := GL2(C). Let π be
an automorphic (cuspidal unitary) representation of GL2(AF ) and π̂ its contagredient. Hence
π ⊗ π̂ defines an automorphic representation on GL2(AF ) × GL2(AF ). We can consider the
representation of LG, r = Ad, the adjoint representation of GL2(C) on its Lie algebra Lie(Ĝ) =
gl2. Notice that considering the representation on the quotient Lie(Ĝ)/Lie(Z(Ĝ)) is the same, in
fact the scalar matrices define the trivial automorphism. Recall that it is defined as Ad(g)(X) =
gXg−1 for X ∈ gl2 and g ∈ GL2(C). Hence, the associated Langlands L−function is

LS(s, π,Ad) = LS(s, π × π̂) = ζF,S(s) · LS(s, π,Adj)

Proposition 5.2.13 Let f be a normalized new eigen-cuspform of level Γ1(N), weight 2 and
character ε. Let πf be the automorphic cuspidal representation associated by the Jacquet–
Langlands correspondence. Let Cε the conductor of the character, then

L(1, πf , Adj) =
22π2

δ(N) ·N · Cε · ϕ(N/Cε)
· < f, f >Pet,Γ1(N)

for ϕ the Euler function and δ(N) =

{
2 if N ≤ 2

1 otherwise
.

Proof: See Theorem 5.1 in [Hi81] keeping in mind that the notion of weight is half of our
weight. Notice also that the definition of L(s, f, ω) coincides with the one of L(s, πf , Adj) if f
is as in the statement and observing that (with the notation in the article) αpβp = ε(p) implies
ε(p)α2

p = αpβ
−1
p as in our definition. �

5.2.3.3 L−functions for ResE/F (GL2)

Let E be an étale cubic algebra over the number field F , i.e. an algebra of degree 3 over F such
that E ⊗F F ∼= F × F × F for F an algebraic closure of F . In particular, such algebra can be
only of one of the following types:

E ∼=


F × F × F
F × F ′ for F ′ a field extension of F of degree 2,

field extension of F of degree 3.

In particular, we write AE , by abuse of notation, for AE = AF ⊗F E and we can consider GL2

as an algebraic group over F . As in (2.1.3), we can take the Weil restriction ResE/F (GL2). For
example, if E is split, so that E = F × F × F , we have that

ResE/F (GL2)(F ) = GL2(AE) = GL2(AF ⊗F E) ∼= GL2(F )×GL2(F )×GL2(F ).

The Langland dual, LG, of G is the semi-direct product

LG := (GL2(C)×GL2(C)×GL2(C)) o Γ
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where the absolute Galois group Γ := Gal(F/F ) acts on Ĝ := GL2(C)×GL2(C)×GL2(C) via
the homomorphism

ρ : Γ −→ S3

for S3 the permutations group over 3 elements. We define ρ as a homomorphism associated with
E/F e.g.

• if E is a field, then ρ associates to a homomorphism in Γ the permutation of the roots of
the minimal polynomial of E over F ;

• if E ∼= F × F ′ (with the above notation), then ρ associates to a homomorphism in Γ the
permutation of the roots of the minimal polynomial of F ′ over F ;

• if E ∼= F × F × F , then ρ is the trivial homomorphism.

Example 5.2.14 (Rankin triple L−function)
(See Case II examples: Rankin triple L−function in Part II, §1 in [AG91])

Let G = ResE/F (GL2,E) for E the split cubic étale algebra over F (i.e. E = F ×F ×F ). Let
π1, π2 and π3 a triple of cuspidal automorphic (unitary) representations of GL2(F ) and consider
Π = π1 ⊗ π2 ⊗ π3 as a representation of G(F ). Since the absolute Galois group acts trivially on
Ĝ = GL2(C)×GL2(C)×GL2(C), we can consider the natural (induced by the tensor product)
8−dimensional representation

r : LG −→ GL(C2 ⊗ C2 ⊗ C2) ∼= GL8(C)

The associated L−function is the Rankin triple product L−function. In particular, if F = Q
and f , ϕ, ψ are the associated cusp forms, then

L(s,Π, r) = LSf,ϕ,ψ(s)

with the notation as in the previous paragraph. We will usually refer to the complete L−function
with the notation

L(s, π1 ⊗ π2 ⊗ π3) := LS(s,Π, r)
.
= L{∞}(s,Π, r)

i.e., up to some local factors, the L−function studied in [Ga87] and [PSR87].

Remark 5.2.15 (Representations of LG on C2 ⊗ C2 ⊗ C2) One can determine a represen-
tation of LG on C2 ⊗ C2 ⊗ C2 in a quite “canonical” manner. We can choose

r : LG = (GL2(C)×GL2(C)×GL2(C)) o Γ −→ GL(C2 ⊗ C2 ⊗ C2) ∼= GL8(C)

such that the restriction to GL2(C) × GL2(C) × GL2(C) is the natural 8−dimensional repre-
sentation i.e. that induced by the tensor product, and such that Γ acts on C2⊗C2⊗C2 via the
morphism ρ.

5.3 The conjecture

The name conjecture is misleading, in fact, it is indeed a well-known theorem, proved by M.
Harris and S. Kudla in [HK91] and [HK04].

Let F be a number field and let π1, π2 and π3 be cuspidal automorphic representations of
GL2(AF ). Let L(s, π1 ⊗ π2 ⊗ π3) be the triple product L−function associated with this triple
of automorphic representations. Suppose that the product of the central characters of the πi is
trivial. Let {B×α | α ∈ A} (for A a certain set of indexes) denote the set of all multiplicative
group of quaternion algebras (up to isomorphism) which are ramified only at places where
the representations π1, π2 and π3 are all discrete series. For each B×α we denote by πBαi , for
i = 1, 2, 3, the automorphic representations of B×α which are associated with each πi via the
Jacquet–Langlands correspondence. Then
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Theorem 5.3.1 (Harris and Kudla) L(s, π1 ⊗ π2 ⊗ π3) vanishes at the center of symmetry
of its functional equation if and only if, for all α ∈ A and all fi,α ∈ πBαi , the integral

I (f1,α, f2,α, f3,α) =

∫
A×FBα(F )×\Bα(AF )×

f1,α(x)f2,α(x)f3,α(x)d×x

vanishes, where d×x is the Tamagawa measure on Bα(F )×\Bα(AF )×.

6 Ichino’s formula

6.1 The formula

We are now able to state the so-called Ichino’s formula. It is strictly related to the Jacquet’s
conjecture as it relates the central value of the triple product L−function with the global trilinear
forms

I(φ1, φ2, φ3) =

∫
A×FB×(F )\B×(AF )

φ1(x)φ2(x)φ3(x) d×x

defined as above.

Let F be a number field, E an étale cubic algebra over F and B a quaternion algebra
over F . Let Π be an irreducible cuspidal unitary automorphic representation of GL2(AE) =
GL2(AF ⊗F E) such that the central character of Π is trivial on A×F . By the definition of AE
and the nature of E, we can work on each factor and suppose that there exists a Jacquet–
Langlands lift for Π to ΠB, irreducible unitary cuspidal automorphic representation of B×(AE).
We can take an element

I ∈ HomB×(AF )×B×(AF )

(
ΠB ⊗ Π̂B,C

)
for Π̂B the contragredient representation of ΠB, defined as the double integral

I
(
φ⊗ φ′

)
=

∫
A×FB×(F )\B×(AF )

∫
A×FB×(F )\B×(AF )

φ(x)φ′(x′) d×x d×x′

where φ ∈ ΠB, φ′ ∈ Π̂B, and d×x and d×x′ are the Tamagawa measures on A×F \B×(AF ) (and
then thought as measures on the quotient). Notice that it makes sense considering the above
integral as we have shown in paragraph (5.1.1.1).

Note 6.1.1 We denoted both the trilinear form in the Jacquet conjecture and the bilinear
form on ΠB × Π̂B with the letter I. We must mention that this choice should not produce any
confusion as those two objects are strictly related. Especially, we have already seen that we can
consider representation Π induced by a triplet of representations and we will see in (6.2.1) that
the bilinear form is a product of two trilinear forms, every time we consider elementary tensors
in ΠB.

Remark 6.1.2 (see [I08], Remark 1.2) Prasad proved that, if F is a local non-archimedean
field and E is a cubic étale algebra over F , hence

dimC
(
HomB×(AF )

(
ΠB,C

))
≤ 1

in [Pr90] (see theorems 1.1, 1.2, 1.3 and 1.4) for E the split algebra and in [Pr92] (see theorems
A, B and C) for the other two cases. An analogous result has been proved by Loke in [Lo01]
in the case of an archimedean local field. Thus, by definition of restricted tensor product repre-
sentations, we can deduce that it holds also in the global case. By definition of tensor product
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(i.e. considering the equivalence between bilinear maps on the product and linear maps on the
tensor) we deduce that

dimC

(
HomB×(AF )×B×(AF )

(
ΠB ⊗ Π̂B,C

))
≤ 1.

We define at this point the B×(AE)−invariant pairing between ΠB and Π̂B defined by

〈φ, φ′〉 =

∫
A×EB×(E)\B×(AE)

φ(h) φ′(h) dh

for φ ∈ ΠB, φ′ ∈ Π̂B and dh is the Tamagawa measure on A×E\B×(AE). Similarly, for each place
v, we can choose

(i) a B×(Ev)−invariant pairing 〈·, ·〉v between ΠB
v and Π̂B

v such that 〈φv, φ′v〉 = 1 for almost
all v and for φ = ⊗vφv ∈ ΠB and φ′ = ⊗vφ′v ∈ Π̂B

v ;

(ii) a Haar measure d×xv on F×v \B×(Fv) such that vol (O×v \GL2(Ov), d
×xv) = 1 for almost

all v. By definition of the Tamagawa measure (2.2.6) there exists hence a constant C such
that

d×x = C
∏
v

d×xv

is the Tamagawa measure on A×F \B×(AF ).

With (i) and (ii), for all v we define an element

Iv ∈ HomB×(Fv)×B×(Fv)

(
ΠB
v ⊗ Π̂B

v ,C
)

as

Iv
(
φv ⊗ φ′v

)
=
ζFv(2)

ζEv(2)
· Lv(1,Πv, Adj)

Lv(1/2,Πv, r)

∫
F×v \B×(Fv)

〈ΠB
v (xv)φv, φ

′
v〉v d×xv

for φv ∈ ΠB
v , φ′v ∈ Π̂B

v . Here Lv(s,Πv, r) is the local factor of the Rankin triple product
L−function as in section (5.2.3.3) and Lv(1,Πv, Adj) is the local factor of the adjoint L−function.

Note 6.1.3 (Dedekind zeta functions for étale cubic algebras) We have already defined
the notion of Dedekind zeta function for a number field and for a quaternion algebra in section
(1.7.2) and we can define the zeta function for a cubic étale algebra over a number field. In
particular, it is consistent with the decomposition of the algebra as product of number fields,
as it is defined as

ζE =


ζ3
F if E = F × F × F
ζF · ζF ′ if E = F × F ′, for F ′/F quadratic

the usual Dedekind zeta function if E is a cubic extension of F

We denote ζEv for the local component at v.

Combining all the introduced objects, Ichino managed to state the following remarkable
result.

Theorem 6.1.4 (Ichino’s formula) Under the hypotheses

〈φ, φ′〉 =
∏
v

〈φv, φ′v〉v and d×x =
∏
v

d×xv

65



we have the equality, as elements in HomB×(AF )×B×(AF )

(
ΠB ⊗ Π̂B,C

)
,

I =
1

2c
· ζE(2)

ζF (2)
· L(1/2,Π, r)

L(1,Π, Adj)
·
∏
v

Iv

for

c =


3 if E = F × F × F,
2 if E = F × F ′, for F ′ a quadratic extension of F ,

1 if E is a cubic extension of F .

Proposition 6.1.5 (Remark 1.3 in [I08]) With the above notations and without the hypothe-
ses in the previous theorem we have

I(φ⊗ φ′)
〈φ, φ′〉

=
1

2c
· ζE(2)

ζF (2)
· L(1/2,Π, r)

L(1,Π, Adj)
·
∏
v

Iv(φv ⊗ φ′v)
〈φv, φ′v〉v

for φ = ⊗vφv ∈ ΠB and φ′ = ⊗vφ′v ∈ Π̂B
v such that 〈φ, φ′〉 6= 0.

6.2 The split case over Q

We restrict now our attention to the case F = Q and E = Q × Q × Q and we will consider
Π formed of three cuspidal automorphic unitary irreducible representations of GL2(AQ) with
trivial product of the central characters. Notice that this is equivalent to the condition imposed
by Ichino that the central character of Π, as a representation of GL2(AE), is trivial on A×F . Again,
B is a quaternion algebra over Q with reduced discriminant D and we denote S := Ram(B).

6.2.1 Global trilinear forms

We start considering the two objects

(A) I
(
φ⊗ φ′

)
=

∫
A×QB×(Q)\B×(AQ)

∫
A×QB×(Q)\B×(AQ)

φ(x)φ′(x′) d×x d×x′

(B) 〈φ, φ′〉 =

∫
A×EB×(E)\B×(AE)

φ(h) φ′(h) dh

We begin considering the object (A) and we can notice immediately that I is absolutely con-
vergent (since the underlying space is compact) so, by Fubini–Tonelli theorem we can write

I
(
φ⊗ φ′

)
=

∫
A×QB×(Q)\B×(AQ)

φ(x) d×x ·
∫
A×QB×(Q)\B×(AQ)

φ′(x′) d×x′

Now on suppose that the quaternion algebra B is definite and take R to be an Eichler order
of level N in B, with level prime to the reduced discriminant of B. Let B̂× = B×(Q̂) for Q̂ the
finite adèles of Q and denote R̂ := R⊗ Ẑ. Consider d×x the Tamagawa measure on A×\B×(A)
hence the Tamagawa number of A×\B×(A), i.e. its volume, is

vol
(
A×\B×(A), d×x

)
= 2

(see for example [V80], page 71, Theoreme 2.3).

Proposition 6.2.1 (§4.1, [Hs17]) There exists a (positive rational) number, vol(R̂×), such

that, for every f ∈ L1
(
B×\B×(A)/B×∞R̂

×
)

, it holds∫
A×B×\B×(A)

f(x) d×x = vol(R̂×)
∑

x̄∈B×\B̂×/R̂×
f(x) · (#Γx)−1

for x̄ the double coset x̄ = B×xR̂×, and Γx :=
(
B× ∩ xR̂×x−1

)
Q×/Q×.
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Proof: Firs of all just notice that B×\B×(A)/B×∞R̂
× ∼= B×\B̂×/R̂× as the place at infinity

is in direct product with the finite adèles. As Q has class number 1, we have the decomposition
A× = R×Q×Ẑ× so A×B×\B×(A) = B×\B×(A)/R×Q×Ẑ×. As R̂ contains a copy of Ẑ and B×∞
contains R×Q×, we can realize B×\B×(A)/B×∞R̂

× as a quotient of A×B×\B×(A). Now it is
obvious that the integration of f gives a sum of values of f times the volume of each coset
of B×\B×(A)/B×∞R̂

×. The existence of the constant is now true since the number of cosets is
finite by (1.5.5). �

Note 6.2.2 (§4.1, [Hs17]) We can determine the constant in the above proposition. The first
step is noticing that

B× ∩ xR̂×x−1 =
(
B ∩ xR̂x−1

)×
as
(
xR̂x−1

)×
= xR̂×x−1. Hence, by Note (1.5.5) we know that B× ∩ xR̂×x−1 are the Eichler

orders of level N in B and n = #
(
B×\B̂×/R̂×

)
is the class number of R. With the notation as

in theorem (1.7.5) we have that (chosen a set of representatives) #Γxi = 2wi. We can consider
f(x) = 1 constant function (it is a L1−function as it is continuous on a compact space) hence

2 = vol
(
A×B×\B×(A), d×x

)
=

∫
A×B×\B×(A)

d×x =

= vol(R̂×)
∑

x̄∈B×\B̂×/R̂×

1

#Γx
=

vol(R̂×)

2

n∑
i=1

1

wi

thus, by the Eichler mass formula (1.7.5), we have

vol(R̂×) = 4

(
n∑
i=1

1

wi

)−1

= 4

N

12

∏
p|D

(p− 1)
∏
p|N

(
1

p
+ 1

)−1

=

=
48

N

∏
p|D

1

(p− 1)

∏
p|N

(
p

p+ 1

)

for D the reduced discriminant of B.

Consider now (B). We are in the split case, so the Tamagawa measure dh is the product of
the three Tamagawa measures, one on each component of

A×EB
×(E)\B×(AE) =

(
A×B×\B×(A)

)
×
(
A×B×\B×(A)

)
×
(
A×B×\B×(A)

)
.

The Fubini–Tonelli theorem guarantees the truth of the expression

〈φ, φ′〉 =

∫
A×B×\B×(A)

φ1(x) φ′1(x) d×x

∫
A×B×\B×(A)

φ2(y) φ′2(y) d×y

∫
A×B×\B×(A)

φ3(z) φ′3(z) d×z

for φ = φ1 ⊗ φ2 ⊗ φ3 ∈ ΠB = πB1 ⊗ πB2 ⊗ πB3 and φ′ = φ′1 ⊗ φ′2 ⊗ φ′3 ∈ Π̂B = π̂B1 ⊗ π̂B2 ⊗ π̂B3 .
With proposition (6.2.1) we can express those integrals as a product of finite sums, under the

restriction of choosing elements in L1
(
B×\B×(A)/B×∞R̂

×
)

.
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6.2.2 Local trilinear forms

After having considered the global trilinear forms we have to deal with the local trilinear forms.
In the split case, they are of the form

Iv
(
φv ⊗ φ′v

)
=

1

ζ2
Fv

(2)
· Lv(1,Πv, Adj)

Lv(1/2,Πv, r)

∫
F×v \B×(Fv)

〈ΠB
v (xv)φv, φ

′
v〉v d×xv

with the notations as in section (6.1). By lemma (1.4.5) we deduce that:

(a) if v ∈ Ram(B) then F×v \B×(Fv) is compact;

(b) if v /∈ Ram(B) then F×v \B×(Fv) is not compact.

Thus, in the case (a) the integral∫
F×v \B×(Fv)

〈ΠB
v (xv)φv, φ

′
v〉v d×xv

is absolutely convergent. In particular, Ichino recall that, under our hypotheses, i.e. that Π is
an irreducible unitary cuspidal automorphic representation, one can apply the result of Shalika
and Kim [KS02], combined with lemma 2.1 in [I08], to show the absolute convergence. We
have thus sketched the proof of the following lemma.

Lemma 6.2.3 If Π is an irreducible unitary cuspidal automorphic representation of GL2(AE),
the integral ∫

F×v \B×(Fv)
〈ΠB

v (xv)φv, φ
′
v〉v d×xv

is absolutely convergent for each place v, in both cases (a) and (b).

This result allows us to compute the above local integral in the unramified cases (and so in
almost all cases) if applied with a second lemma, namely

Lemma 6.2.4 Let Fv be non-archimedean, B split at v and assume that Πv = ΠB
v is unramified.

Let Φ be the matrix coefficient of Π (cfr. §(5.1.1.2)) such that

• Φ(1) = 1;

• Φ(k1gk2) = Φ(g) for k2, k2 ∈ GL2(OE) and g ∈ GL2(E).

Take d×xv the Haar measure on F×v \B×(Fv) such that vol (O×v \GL2(Ov), d
×xv) = 1. Then the

integral ∫
F×v \GL2(Fv)

Φ(xv) d×xv = ζ2
Fv ·

Lv(1/2,Πv, r)

Lv(1,Πv, Adj)

if it is absolutely integrable.

Proof: See [I08], Lemma 2.2. �

The only step left consist in proving that Φ(xv) = 〈ΠB
v (xv)φv, φ

′
v〉v satisfies the hypotheses

of the lemma, but we have

• Φ(1) = 〈ΠB
v (1)φv, φ

′
v〉v = 〈φv, φ′v〉v = 1 for a suitable choice of the pairing 〈·, ·〉v;

• by the invariance of the pairing and since φ and φ′ are GL2(OE)−invariant (see section
(3.1.4)),

Φ(k1gk2) = 〈ΠB
v (k1gk2)φv, φ

′
v〉v = 〈ΠB

v (g)ΠB
v (k2)φv,Π

B
v (k−1

1 )φ′v〉v =

= 〈ΠB
v (g)φv, φ

′
v〉v = Φ(g).
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Note 6.2.5 We can always suppose that 〈φv, φ′v〉v = 1 exactly at those places v at which B is
split and, at the same time, Πv is unramified. Hence we have that

Iv(φv ⊗ φ′v)
〈φv, φ′v〉v

= 1

and so the infinite product in the Ichino’s formula becomes indeed a finite product∏
v

Iv(φv ⊗ φ′v)
〈φv, φ′v〉v

=
∏

v∈Ram(B)

Iv(φv ⊗ φ′v)
〈φv, φ′v〉v

.

6.2.3 Normalization of the measure

The Ichino’s formula comes with the constant C and to make it explicit we have to fix such
constant. We consider the normalization chosen by Ichino in [I08], §5.

Let F be a number field and let ψ = ⊗vψv be a non-trivial additive character of AF /F . For
each place v we choose the Haar measure on F×v

d×zv = ζFv(1)|zv|−1
Fv
dzv

for dzv the self-dual (additive) Haar measure on Fv with respect to ψv. We take hence the Haar
measure on B×(Fv) as

d×xv = ζFv(1)ζFv(2)|n(xv)|−2
Fv
dxv

for n the reduced norm of B(Fv) and dxv is the self-dual Haar measure on B(Fv) with respect
to the pairing ψv(t(xȳ)) (for t the reduced trace of B(Fv)). We need also the measure on the
quotient space, namely the Haar measure on F×v \B×(Fv) defined as the quotient of d×xv by
d×zv and we follow Ichino denoting it again with d×xv (by abuse of notation). With this choice
of measures we have that, considered d×x the Tamagawa measure on A×F \B×(AF ), as stated in
[I08],

d×x = C ·
∏
v

d×xv with C = ζF (2)−1.

6.3 Back to the Gross–Kudla formula

We are almost ready to deduce how the Gross–Kudla formula is hidden behind the Ichino’s
formula. We are in the case F = Q, E = Q × Q × Q and Π = πf ⊗ πg ⊗ πh for f , g and h
normalized new eigenforms of level Γ0(N) (N square-free) and weight 2. Furthermore we take
B the definite quaternion algebra over Q, ramified at {p : εp = −1}, with the notation as in
section (4.2). Put S = Ram(B) and suppose that Π is unramified outside S.

We can start with three observations:

• In our case the adjoint L−function factors (see [Co16], §3.1) as the product

L(s,Π, Adj) = L(s, πf , Adj)L(s, πg, Adj)L(s, πh, Adj);

• The Gross-Kudla L−function is a slight modification of the one in Ichino’s formula. In
particular, the variable s has been shifted by a factor +3

2 with respect that of Ichino and,
as noticed in example (5.2.2), it differs by a multiplicative factor. For ease of writing we
denote κ(s) = κ(s,N, f, g, h) the factor, so it holds

L

(
s+

3

2
, f ⊗ g ⊗ h

)
︸ ︷︷ ︸

Gross–Kudla

== κ

(
s+

3

2

)
L(s,Π, r)︸ ︷︷ ︸

Ichino

;
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• As S contains {∞} we have to deal with the local integral at infinity and hence we need
the factors of ζ, L(s,Π, Adj) and L(s,Π, r) at infinity. The former two objects are defined
as

ζ∞(s) := π−
s
2 Γ(s) = π−

s
2

∫ ∞
0

e−tts
dt

t

and, as in [Co16], §3.1, for πf cuspidal irreducible unitary representation of GL2(AQ)
associated with f ∈ Sk(Γ0(N)),

L∞(s, πf , Adj) := 2 (2π)−(s+k−1) Γ(s+ k − 1)π−
s+1
2 Γ

(
s+ 1

2

)
.

Plugging in the needed values of s in the above formulas and taking k = 2 we obtain

ζ∞(2) =
1

π
and L∞(1, πf , Adj) =

Γ(k)Γ(1)

2k−1πk+1
=

1

2π3
.

In the end, we must define L∞(s,Π, r) and so we put, following [GK92],

L∞(s,Π, r) = L∞

(
s+

3

2
, f ⊗ g ⊗ h

)
= (2π)−3−4s Γ

(
s+

3

2

)
Γ

(
s+

1

2

)3

.

In particular, at the critical value we have

L∞ (1/2,Π, r) = L∞ (2, f ⊗ g ⊗ h) = (2π)−5 Γ (2) Γ (1)3 =
1

25π5
.

We are now able to recover great part of the Gross–Kudla formula.

6.3.0.1 Global integrals: We must choose the two functions φ ∈ ΠB and φ′ ∈ Π̂B. Let
R be an Eichler order in B with reduced discriminant N and level L = N/D where D is the
discriminant of B. By proposition (4.2.7) we know there exist (essentially) unique vectors af ,
ag and ah in Pic (X) ⊗Z R (where X is defined in section (4.2.2)), with the usual notation we
write af =

∑n
i=1 λi(f)ei, ag =

∑n
i=1 λi(g)ei and ah =

∑n
i=1 λi(h)ei, with n the class number of

R and {ei} the standard basis of Pic(X)⊗Z R. Define, for f and analogously for g and h,

Φf : B×\B×(A)/B×∞R̂
× ∼= B×\B̂×/R̂× =

n∐
i=1

B×xiR̂
× −→ C

x̄i 7−→ Φf (x̄i) =
wi√

vol(R̂×)
λi(f) ∈ R

as in proposition (6.2.1) and the following observation. We can thus take φf as the map induced
by Φf to A×B×\B×(A) and hence define φ = φf ⊗ φg ⊗ φh. By the characterization of the
contragredient representation, in the unitary case, as the complex conjugate representation,
we take φ′ = φ. With this choice of φ and φ′, and considering both proposition (6.2.1) and
paragraph (6.2.1), we have

I(φ⊗ φ)

〈φ, φ〉
=

=

∫
A×B×\B×(A) φf (x)φg(x)φh(x) d×x ·

∫
A×B×\B×(A) φf (y)φg(y)φh(y) d×y∫

A×B×\B×(A) |φf (x) |2 d×x
∫
A×B×\B×(A) |φg(y) |2 d×y

∫
A×B×\B×(A) |φh(z) |2 d×z

=

=

(
vol(R̂×)

∑n
i=1

1
wi

wi3

vol(R̂×)3/2
λi(f)λi(g)λi(h)

)2

(
∑n

i=1wiλi(f)2) (
∑n

i=1wiλi(g)2) (
∑n

i=1wiλi(h)2)
=

=
1

vol(R̂×)
·

(∑n
i=1w

2
i λi(f)λi(g)λi(h)

)2
(
∑n

i=1wiλi(f)2) (
∑n

i=1wiλi(g)2) (
∑n

i=1wiλi(h)2)
.
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We deduce that, called A(F ) the algebraic part of the Gross–Kudla formula,

I(φ⊗ φ)

〈φ, φ〉
=

A(F )

vol(R̂×)
=

N

D · 24 · 3
∏
p|D

(p− 1)
∏
p|N
D

(
1 +

1

p

)
·A(F )

Remark 6.3.1 As B×\B×(A)/B×∞R̂
× and A×B×\B×(A) are compact we can notice that step

functions, like φf , are indeed absolutely integrable and also square integrable.

6.3.0.2 Adjoint L−factors: By proposition (5.2.13) we know that it holds, as f has trivial
character,

L(1, πf , Adj) =
22π2

δ(N) ·N · ϕ(N)
· 〈f, f〉Pet,Γ1(N)

for ϕ the Euler function, δ(N) = 2 if N ≤ 2 and δ(N) = 1 otherwise. By definition of Petersson
inner product we know that

〈f, f〉Pet,Γ1(N) = [Γ1(N) : Γ0(N)]︸ ︷︷ ︸
=ϕ(n)

〈f, f〉Pet,Γ0(N)

thus, recalling that do not exist modular new eigenforms of weight 2 and level Γ0(N) for N ≤ 10
(see, for example, [Ste12] or [M89], §2.5 for a way more theoretical approach),

L(1, πf , Adj) =
22π2

N
· 〈f, f〉Pet,Γ0(N).

By the decomposition of the triple adjoint L−function we have

L(1,Π, Adj) = L(1, πf , Adj)L(1, πg, Adj)L(1, πh, Adj) =

=
26π6

N3
· 〈f, f〉Pet,Γ0(N)〈g, g〉Pet,Γ0(N)〈h, h〉Pet,Γ0(N) =

=
1

23N3
· 〈f, f〉Pet〈g, g〉Pet〈h, h〉Pet

where the last equality comes from the choice of normalization in (4.2).

6.3.0.3 A first formula: We can put together the above formulas obtaining

L (2, f ⊗ g ⊗ h) ·
∏

v∈Ram(B)

Iv(φv ⊗ φ′v)
〈φv, φ′v〉v

=

= κ(2)
23

ζ(2)

N

D · 24 · 3
∏
p|D

(p− 1)
∏
p|N
D

(
1 +

1

p

)
·A(F )

〈f, f〉Pet〈g, g〉Pet〈h, h〉Pet
23N3

=

= κ(2)
∏
p|D

(p− 1)
∏
p|N
D

(
1 +

1

p

)
·A(F )

〈f, f〉Pet〈g, g〉Pet〈h, h〉Pet
Dπ223N2

.

Thus, as in (5.2.2) we have

κ(2) =
∏
p|D

p2

(p− 1)2

p2

p2 − 1

∏
p|N
D

p2

(p+ 1)2

p2

p2 + 1
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so

κ(2)
∏
p|D

(p− 1)
∏
p|N
D

(
1 +

1

p

)
1

D
=

=
∏
p|D

p2

(p− 1)2

p2

p2 − 1

(p− 1)

p

∏
p|N
D

p2

(p+ 1)2

p2

p2 + 1

p+ 1

p
=

=
∏
p|D

p

p− 1

p2

p2 − 1

∏
p|N
D

p

p+ 1

p2

p2 + 1
.

6.3.0.4 The local integrals (at infinity): We must now deal with the factor at infinity.
For this purpose we should investigate the nature of the local component of our φ as chosen
in (6.3.0.1). By definition we can immediately notice that φ∞ is the constant function (as the
global function is left B×∞−invariant) and it is non-zero (again by definition). Hence, we can
follow the argument in section 4.9 in [Hs17] for determining the value of the local integral.
In [Hs17] the component at infinity is indeed chosen to be φ∞ = 1 (with the notation of the
paper, it holds in fact, that κi = 0 for i = 1, 2, 3) but the normalization of the local factor by
the division on the pairing, guarantees that the computations can be carried on in the same
manner. Moreover it is possible noticing that the representation space is 1-dimensional in that
case. Also our choice of the “contragredient” component is consistent with that of Hsieh and
nevertheless we can take a pairing analogous to that considered in §4 of [Hs17]. Then we have

I∞(φ∞ ⊗ φ∞)

〈φ∞, φ∞〉∞
=

L∞(1,ΠB
∞, Adj)

ζ∞(2)2L∞(1/2,Π∞, r)

∫
R×\B×(R)

〈ΠB
∞(x∞)φ∞, φ∞〉∞
〈φ∞, φ∞〉∞

dx∞ =
1

22π2

for dx∞ the Lebesgue measure induced on the quotient. Hsieh managed to obtain such re-
sult considering some polynomial representations. In particular, he combined the values of the
L−functions and of the ζ−function at infinity with his lemma 4.11 in which it is computed
explicitly the main part of the above integral. In our case the lemma becomes way more easy
as the values κi and κ∗i in [Hs17] are all zero.

6.3.0.5 The local integrals (at the bad primes): It remains to compute the local factor
at the bad primes, namely those indexed by (rational) primes dividing the level of the modular
forms. First of all, we must provide the following structure lemma.

Lemma 6.3.2 Let f be a cuspidal holomorphic modular form of level Γ1(N), with N square-
free. Hence the cuspidal automorphic representation of GL2(A) associated with f is such that
the local components πp are special representations for each p dividing N .

Proof (Sketch): One can prove the lemma characterizing the local representations with
the notion of conductor. In particular, we refer to [DI95], §11.2 and [Ge75], Remark 4.25, for
definitions and a complete list of conductors. It can be proved that in the square-free case,
the conductor forces the above local components to be special representations. We refer also to
[DI95], Examples 11.5.3 and 11.5.4. �

Theorem (3.2.26) assures that the local representations ΠB
p , for p|N , are one-dimensional. Hence

the local component φp is unique up to a scalar multiple then we can repeat all the observations
made in the above paragraph. The definitions of the two L−functions are given (as we have
already noticed) up to local bad factors. In particular, we can complete them with

Lp(s, πp, Adj) := ζp(s+ 1) and Lp(s,Πp, r) := ζp

(
s+

1

2

)2

ζp

(
s+

3

2

)
.
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As noticed in [Hs17], §4, we can suppose that the central character of ΠB
p is trivial whenever

evaluated at p and so, following Hsieh, we can prove that

Ip(φp ⊗ φp)
〈φp, φp〉p

=
2

ζp(1)2
=

2p2

(p− 1)2

for each p dividing N and which is in the set of ramification for B (otherwise the above factor
equals 1 by our previous computations).

6.3.0.6 Conclusion: We are almost done and it remains only to give some conclusive re-
marks.

First of all, combining all the information of the above paragraphs we can recover the Gross–
Kudla formula, in particular, the local integrals at the bad primes provide the factor 2t in the
formula. In fact t = #{p : εp = −1} = #{p : p|D} for D the discriminant of B.

Secondly, we must emphasize that the constructions and procedures in [Hs17] are more
general as they are meant to deal with families of modular forms with varying weights and
levels.

In the end, we should mention that the Gross–Kudla formula has been recovered up to some
explicit factors and that this is due to the choice of the measures in [Hs17]. A deeper analysis
of that measures should guarantee our claim.
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