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Notation

• Let a, b P Z we write pa, bq for gcdta, bu.

• We denote by ζN with N a positive integer a primitive N -th root of one.

• The symbol \ denotes the disjoint union.

• Let K be a number field, then we denote with K` the maximal totally real subfield, namely,

the maximal subfield admitting only real embeddings. In addition we denote with OK its

ring of integers and with Oˆ
K the subset of invertible elements of OK .

• We denote by H the Poincaré upper half plane, namely:

H “ tz P C such that Impzq ą 0u .

Moreover, we denote by H˚ the set H\P1pQq, where P1pQq denotes the projective line over

Q.

• We denote by ζpsq the Riemann zeta function whose associated series on Repsq ą 1 is
ř

ně1 n
´s.

• Let L{K be a finite extension of number fields and α P L. We denote by NormL
Kpαq the

norm of α in K{L.
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Introduction

Let K be an abelian extension of Q and let GK be the Galois group of K{Q. We consider the

Dedekind zeta function associated to K:

ζKpsq “
ÿ

IĂOK

1

NormK
Q pIqs

,

where I runs over the ideals of OK and s is a complex number. As it is explained in the book of

Daniel A. Marcus [Mar77], this function can be exploited in the computation of the class number

of K. The formula relating the Dedekind zeta function with some invariants of the number field

K is:

lim
sÑ1
ps´ 1qζKpsq “

2r1 ¨ p2πqr2 ¨ RegK ¨hK

wK ¨
a

|DK |
,

where rK : Qs “ r1 ` 2r2 with r1 being the number of real embeddings and r2 of complex embed-

dings up to conjugation, RegK is the regulator of K, hK the class number, DK the discriminant

and wK the number of roots of unity contained in K. The formula appears to be rather explicit,

nevertheless it might be cumbersome to compute. First of all, it is still obscure how to handle

with the Dedekind zeta function and, for example, the computation of the class number (which

is also essential for the computation of the unit group) is usually feasible only for number rings

of small degree. Fortunately, we have another way to compute the class number involving the so

called L-functions. Naively, an L-function is a generating series for arithmetic data ([Dar11]) as

the following definition suggests:

Definition 0.0.1. Let χ be a Dirichlet character, the associate L-function is:

Lps, χq “
8
ÿ

n“1

χpnq

ns
,

defined where the series converges.

Remark. If χ ‰ 1 then Lps, χq converges for Repsq ą 0.
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To make a long story short, the Dedekind zeta function has also an expression as:

ζKpsq “
8
ÿ

n“1

Ipnq
ns

,

where Ipnq denotes the number of ideals in OK having norm n. This expression is flexible enough

to be divided into two parts:

ζKpsq “
8
ÿ

n“1

Ipnq ´ hK ¨ k
ns

` hK ¨ k ¨ ζpsq,

where k is given by 2r`sπsregpOKq
w
?
|discpOKq|

(see theorem 40 of [Mar77]), and ζpsq represents the well known

Riemann zeta function. Since ζK is holomorphic for s P C such that Repsq ą 1 ´ 1{rK : Qs (a

result of chapter 7 in [Mar77]) and ζpsq has a simple pole at s “ 1, we can isolate the class number

considering the following limit:

ρ “ lim
sÑ1

ζKpsq

ζpsq
“ hK ¨ k.

In other words, ρ{k “ hK and, as we know the value of k, it is enough to determine the value of ρ

in order to give an expression for hK . After some computations and complex analysis we discover

a new expression for the quotient of the two zeta functions, namely:

ζKpsq

ζpsq
“

ź

pfflN

ˆ

1´
1

ps

˙ˆ

1´
1

pfps

˙´rp
ź

χP pGK
χ‰1

Lps, χq.

Here pGK denotes the set of all the Dirichlet characters defined over GK while fp and rp are two

suitable integers. Theory about L-functions guarantees that for χ ‰ 1 the L-functions associated

to χ are holomorphic on Repsq ą 0. We are therefore allowed to compute ρ just by evaluating the

L-functions in 1. Our life is made even easier since we can rewrite the L-function associated to a

non-primitive character in terms of primitive characters inducing it (roughly speaking, primitive

characters are the fundamental bricks to construct all the other characters). Our problem is finally

reduced to compute the value in one of an L-function associated to a primitive Dirichlet character.

Classical theory shows that the formula is given by the following expression:

Lp1, χq “ ´
χp´1qgpχq

N

N´1
ÿ

a“1

χ´1paq logp1´ ζaNq, (1)

where gpχq “
řN´1
k“1 χpkqζ

k
N and it is called the Gauss sum attached to χ. We started looking for

a concrete way to compute the class number and we ended up with a very interesting formula.

First of all, the previous formula states that a specific value of an L-function gives information

about arithmetic objects to which the L-function is attached. In fact, the L-function is attached
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to a character χ P pGK and its evaluation at s “ 1 is a key ingredient for determining the class

number of K. In addition to this, the formula above outlines a relation between two objects of

a rather different nature. In fact, for N compose, the terms 1 ´ ζaN inside the logarithm are the

so-called cyclotomic (or circular) units of the number field QpζNq. Thus, on one side we have an

analytic object, the L-function evaluated at a special point, on the other side the circular units,

with a more arithmetic flavour, appear in the form of their logarithm. One may wonder whether

or not the connection between L-functions and logarithm of cyclotomic units might be extended

to the p-adic world. In other words, we can ask ourselves if we can relate the p-adic L-function

with the circular units in the form of their p-adic logarithm. It turns out that the answer is

positive and we have little to change in our classical formula (1). The result, discovered in 1964,

is due to two mathematicians: the Japanese Tomio Kubota and the German Heinrick-Wolfgang

Leopoldt. It is explained in their article “Eine p-adische Theorie der Zetawerte. I. Einführung

der p-adischen Dirichletschen L-Funktionen”. As the title suggests, they introduced the concept

of p-adic L-function.

Classical results, in fact, guarantee that for k ě 2 the holomorphic Eisenstein series of weight k

attached to a character χ has expression:

Ek,χpτq “ Nkgpχq´1
pk ´ 1q!

p2πiqk

ÿ

pm,nqPNZˆZ
pm,nq‰p0,0q

χpnq

pmτ ` nqk

“ Lp1´ k, χq ` 2
8
ÿ

n“1

σk´1,χpnqq
n, (2)

where q “ e2πiτ , σk´1,χpnq “
ř

d�n χpdqd
k´1 and χ denotes the complex conjugation of the character

χ. Clearly, the L-function appears as the constant term of the q-expansion of the Eisenstein series.

It seems we are already stuck. We want to consider the value at 1 of the L-function and thus we

need k “ 0 in the expression (2). Unfortunately, for k “ 0 the second equality of the previous

formula doesn’t hold any longer. On the other side, as we will formalize later, the p-adic world

allows the p-adic Eisenstein series of weight 0 to have a q-expansion similar to (2). Therefore, in

a totally rigorous setting we can interpret a p-adic analogue of Lp1, χq as the constant term of the

p-adic Eisenstein series of weight zero associated to the character χ. Eisenstein series constitute

the trait d’union with the theory of p-adic modular forms. In the complex context, a weight zero

modular form respect to the group Γ1pNq is a function on the modular curve X1pNq “ Γ1pNqzH˚,

i.e. on a Riemann surface. Analogously, a p-adic Eisenstein series of weight zero is defined over

the ordinary locus, a particular subset of the modular curve X1pNq over Cp (which we denote by

X1pNqpCpq). We will see that the p-adic Eisenstein series of weight zero associated to a certain
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character χ is in some sense holomorphic around the cusp 8 of X1pNqpCpq (the right notion

is to say it is rigid analytic). On the same disc the previous Eisenstein series admits also an

interpretation as another p-adic modular form which is still rigid analytic around the cusp 8.

This new expression of the Eisenstein series involves the p-adic logarithm of the p-adic Siegel

units. In the classical context, the Siegel units are invertible modular forms whose values at the

cusp 8 are, under certain conditions, cyclotomic units. All this characters will play a role in the

proof of the so called Leopoldt formula:

Lpp1, χq “ ´
p1´ χppqp´1q

gpχ´1q

N´1
ÿ

a“1

χ´1paq logpp1´ ζ
a
q,

which clearly has a non-trivial overlap with the classical formula (1).

In the first chapter we give the classical background, so we recap the notion of modular form and

modular curve and we present in detail the cyclotomic units. In the second chapter we give an

analytic definition of p-adic modular forms for the group SL2pZq and we outline the most important

results. In addition, we give a definition of p-adic modular forms attached to a character χ for

more general congruence subgroups. The third and last chapter concerns a modular proof of the

p-adic Leopoldt formula and we present there a result of Katz generalizing this discussion. Usually,

we introduce notations and definitions when they are needed. If the meaning of a symbol doesn’t

appear, refer to the section Notation just before this introduction.

I chose to present facts and arguments in the way I understood them trying to be clear and specific.

Moreover, I tried to introduce all the concepts which are not supposed to be the background of

any mathematician. Even though my references are wisely chosen and they present the material

in a rigorous and accurate setting, I might be superficial, sloppy or wrong. In that case, all the

mistakes are to be addressed to me.
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1

Preliminaries

1.1 Modular forms

The notion of modular form is a milestone in contemporary mathematics and it is extensively used

in arithmetic geometry and number theory. Endless is the number of books and notes about this

subject. One important classical text for finding exhaustive explanations about modular forms

is [DS05]. I report in this section the most common facts and my intention is essentially to fix

notation. Certainly, I am giving here an outline of the subject according to my taste. The mature

reader will pardon me when the point of view is too naive and primitive but I thought it would be

a better idea to present concepts in the way I understand and use them.

1.1.1 Complex tori and elliptic curves

Elliptic curves are one of the most studied objects in modern and contemporary mathematics.

They are a versatile object able to connect different fields of mathematics. Elliptic curves may

be defined over any field or even over rings but for treating complex modular forms the most

meaningful definition is that over the complex numbers.

Definition 1.1.1. An elliptic curve is a smooth projective curve of genus one over C.

Elliptic curves may be more concretely defined in terms of the projective Weierstrass equation:

Y 2Z ` a1XY Z ` a3Y Z
2
“ X3

` a2X
2Z ` a4XZ

2
` a6Z

3, (1.1)
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with ai P Q. We have also a third way to look at elliptic curves which will be predominant in this

text. First of all we need to introduce another object.

Definition 1.1.2. A torus over C is given by the quotient:

C{Λ,

where Λ is a full lattice in C, namely, is a subgroup of C of the shape:

Λ “ ω1Z‘ ω2Z, (1.2)

with ω1

ω2
P CzR.

Notation. We denote by L the set of all the lattices of C and with r0s P C{Λ the equivalence class

of 0 P C.

Complex tori admit an interpretation as Riemann surfaces as it is clearly explained in [For99].

The interesting fact is that understanding holomorphic functions among complex tori sending

r0s to r0s reduces to understand properties and relations among lattices defining them. So, any

holomorphic map φ between two complex tori E1 and E2 of lattices respectively Λ1 and Λ2 sending

the zero point r01s P E1 to the zero point r02s P E2 is given by multiplication by a complex scalar

α P Cˆ with the property that αΛ1 Ă Λ2. More explicitly,

φ : C{Λ1
¨α
ÝÑ C{Λ2

sends the point rP s P E1 to the point rα ¨ P s P E2. Straightforwardly, it follows that two complex

tori are isomorphic if there exists α P Cˆ such that αΛ1 “ Λ2. We can now group together complex

tori under the equivalence relation of being isomorphic. Equivalently, we can just divide L, the

set of all full lattices in C, in equivalence relation given by Λ1 „ Λ2 if there exists an α P Cˆ such

that αΛ1 “ Λ2. Thereby, we have the following bijection of sets:

L{ „ 1:1
ÐÑ

 

Isomorphism classes of
complex tori

(

.

In addition to this, common theory about elliptic curves (like chapter VI: “Elliptic curves over C” in

[Sil86]) states a bijection between algebraic isomorphisms classes of elliptic curves and isomorphism

classes of complex tori as we described before. The bijection

 

Isomorphism classes of
elliptic curves over C

( 1:1
ÐÑ

 

Isomorphism classes of
complex tori

(

is given in terms of the so called j-fucntion. From now on, speaking of elliptic curves and of complex

tori will be the same thing and therefore speaking of lattices and speaking of elliptic curves turns

2



out to be the same thing as well. In particular, we are now motivated to find a connection between

functions on lattices (in a sense which will be formalized later) and functions of elliptic curves.

Now we turn to another way to look at the set L. In the definition we described a lattice as the

Z-span of two R-linearly independent complex vectors. It is easy to see that different choices of ω1

and ω2 may give birth to the same lattice. We want now to determine the relation linking bases

defining the same lattice. First of all, we begin by putting an order on the set of all the basis.

Definition 1.1.3. A basis of a lattice Λ is given by the couple pω1, ω2q of (1.2). A basis is called

ordered if

Im

ˆ

ω1

ω2

˙

ą 0.

Notation. We denote by B the set of ordered basis of the lattices of C.

Clearly, if two basis, let’s say pω1, ω2q and pω
1

1, ω
1

2q, generate the same lattice, we can find an

integral relation, like:

ω
1

1 “ aω1 ` b ω2,

ω
1

2 “ c ω1 ` dω2,

where a, b, c, d P Z. It is not hard to prove that

»

–

a b

c d

fi

fl has determinant one, i.e. it belongs to the

following group.

Definition 1.1.4. We call the special linear group of degree 2 over Z (SL2pZq) the group of 2ˆ 2

invertible matrices with coefficients in Z, namely;

SL2pZq “

$

&

%

»

–

a b

c d

fi

fl such that a, b, c, d P Z and ad´ bc “ 1

,

.

-

.

We can summarize the previous fact just by describing the following action of SL2pZq on the

set B. Let γ P SL2pZq, so γ “

»

–

a b

c d

fi

fl, and let pω1, ω2q P B, then:

γ ¨ pω1, ω2q “ paω1 ` b ω2, c ω1 ` dω2q. (1.3)

The right hand side of (1.3) is indeed an element of B since Im
´

aω1`b ω2

c ω1`dω2

¯

ą 0 and it describes

an ordered basis which spans the same lattice of pω1, ω2q. Actually, we have just found a way to

describe all the bases generating the same lattice: it is the set tγ¨pω1, ω1q P B such that γ P SL2pZqu

and therefore clearly we have the following correspondence:

SL2pZqzB “ L.

3



The condition Im
´

ω1

ω2

¯

ą 0 of all the elements of B prompts us to consider another action on B.

In fact, we have a map

B Ñ C

sending pω1, ω2q to ω1{ω2. A suitable inverse for this map is given by sending τ P H to the couple

pτ, 1q P B. From the definition of ordered basis, ω1{ω2 belongs to the upper part of C. It is

an obvious observation that pω1, ω2q and pα ¨ ω1, α ¨ ω2q are mapped to the same element by the

previous map. This means the previous map factors through the right action of Cˆ on B given by

α ¨ pω1, ω2q “ pα ¨ ω1, α ¨ ω2q. We shall give a name to the image of the previous map.

Definition 1.1.5. We define the (Poincaré) upper half plane to be the set:

H “ tz P C such that Impzq ą 0u .

Therefore the map

B{Cˆ 1:1
ÐÑ H

is a bijection and the inverse is given by sending τ P H to the couple pτ, 1q P B. So far we got two

actions on B, one left and the other a right action. It is easy to prove that these action commute

with each other and we have the following correspondences:

SL2pZqzB “ L and B{Cˆ “ H.

So, we can now describe the actions on these quotients. It is clear that Cˆ acts also on L by

multiplication of the lattice by the complex scalar. In addition, SL2pZq has a left action on H. In

fact, if we consider a matrix γ “

»

–

a b

c d

fi

fl P SL2pZq, then the action of γ on τ P H is given by:

γ ¨ τ “
aτ ` b

cτ ` d
.

Now it is clear that the following bijections hold:

L{Cˆ 1:1
ÐÑ SL2pZqzB{Cˆ

1:1
ÐÑ SL2pZqzH.

In the light of all this argument we may conjecture that giving a function on H with some properties

involving SL2pZq is equivalent to give a function on L taking care of the action of Cˆ. In case

of a positive answer, we would have found a function defined over H giving complex values to

isomorphism classes of elliptic curves. The next section shows how this is indeed possible.

4



1.1.2 Modular forms for SL2pZq

We start out with giving a proper definition of what we mean for a function of lattices.

Definition 1.1.6. A function of lattices of weight k is a function

F : LÑ C

such that for any λ P Cˆ we have that F pλΛq “ λ´kF pΛq.

Before proceeding further we just remark that if τ P H we can associate to it pτ, 1q P B. This

element gives birth to the lattice Λτ “ τZ‘ Z.

Let F be a function of lattices according to our Definition 1.1.6:

F : LÑ C.

We can then associate to F a function f on H:

f : HÑ C

given by fpτq “ F pΛτ q “ F pτZ ‘ Zq. We notice that this new function f satisfies the following

rule. For any matrix γ “

»

–

a b

c d

fi

fl P SL2pZq we have:

f

ˆ

aτ ` b

cτ ` d

˙

“ F

ˆ

aτ ` b

cτ ` d
Z‘ Z

˙

“ pcτ ` dqkF ppaτ ` bqZ‘ pcτ ` dqZq

“ pcτ ` dqkF pΛτ q

“ pcτ ` dqkfpτq.

As hoped, the converse also holds, namely, if we have a function on H satisfying the rule:

f

ˆ

aτ ` b

cτ ` d

˙

“ pcτ ` dqkfpτq (1.4)

for any γ “

»

–

a b

c d

fi

fl P SL2pZq then we can recover a function of lattices F just by letting F pω1Z‘

ω2Zq “ ω´k2 f
´

ω1

ω2

¯

. On account of the property (1.4) F is well defined, in fact:

F pω1Z‘ ω2Zq “ F ppaω1 ` bω2qZ‘ pcω1 ` dω2qZq .

Thus F is a function of lattices according to Definition 1.1.6. Having this mirror between functions

on lattices and functions on the upper half plane is rather a fundamental fact because we may now

5



look at functions of lattices from a complex point of view. When we were working with functions

on L we didn’t have any well known topology on it (except the trivial topologies). Now we just

discovered we can consider functions of lattices as functions on H on which we can apply all the

means of complex analysis. Not surprisingly, the next step is to select only the functions on the

upper half plane we are comfortable working with, i.e. the holomorphic functions. Indeed, these

functions will be sufficient for developing the theory and discovering new results.

Remark. It is a common exercise to show that all the holomorphic automorphisms of H are given by

SL2pRq, namely, any automorphism of H is given by sending τ P H to aτ`b
cτ`d

where

»

–

a b

c d

fi

fl P SL2pRq.

Notation. We denote by Dˆ the unit punctured disc namely: Dˆ “ ts P C such that 0 ă |s| ă 1u.

There exists a map

φ : HÑ Dˆ

sending τ to e2πiτ which actually maps the upper half plane on the punctured disc in a holomorphic

way. This observation allows us to consider growth condition at infinity for the map in the upper

half plane in a sense which will be made clear soon. We have now enough motivation for what

follows. Let’s consider a holomorphic function

f : HÑ C

such that fpγ ¨τq “ f
`

aτ`b
cτ`d

˘

“ pcτ`dqkfpτq for any γ P SL2pZq. This implies that fpτ`1q “ fpτq

and therefore we can define a map

f˚ : Dˆ Ñ C

sending φpτq “ rτ s P Dˆ to fpτq.

Definition 1.1.7. We say that the f above is a modular function of weight k with respect to the

group SL2pZq if f˚, as defined above, is meromorphic on the all unit disc, namely if f˚ might be

extended meromorphically also in the center of the disc. If the extension is also holomorphic we

call f a modular form. If, in addition, the value of f˚ is zero at the center of the disc, we call f a

cusp form.

We conclude this section by underlying that modular forms show up as a natural object when

we want to work on spaces of elliptic curves. In fact, we can rely on the bijections between points on

the upper half plane and lattices. The formalization of this process will end up with the definition

of modular curve.

6



1.1.3 Congruence subgroups

In the study of modular forms, there are other groups playing an important role. All these groups

are subgroups of SL2pZq. They appear naturally in the study of the structure of the so-called

modular curve X0p1q which is the quotient SL2pZqzH. Even though we are about to construct

this object, we just advise that the details of this construction may be found in rDS05s. For

our purposes it is enough to know these subgroups exist and are meaningful. We start out with

introducing some subgroups of SL2pZq:

(i) Γ0pNq “

$

&

%

»

–

a b

c d

fi

fl P Γp1q such that c ” 0 mod N

,

.

-

,

(ii) Γ1pNq “

$

&

%

»

–

a b

c d

fi

fl P Γp1q such that a, b ” 1 and c ” 0 mod N

,

.

-

,

(iii) ΓpNq “ tα P SL2pZq such that α ” 1 mod Nu.

Definition 1.1.8. We define a congruence subgroup to be a subgroup of SL2pZq which contains

ΓpNq for some N .

Remark. The subgroups (i), (ii), (iii) are level groups, moreover, notice that:

Γ0pNq Ą Γ1pNq Ą ΓpNq.

Our intention is to consider the quotient of H by any of these groups in order to get a wider

definition of modular curve. Then we would like to construct some functions suitable for these

smaller groups. We are not surprised that the definition of these functions will be just a wise

reformulation of the concept of modular functions. Let f : H Ñ C be a function, γ “

»

–

a b

c d

fi

fl P

SL2pZq and τ P H, then we define:

`

f|kγ
˘

pτq “ pcτ ` dq´kfpγ ¨ τq.

Definition 1.1.9. Let Γ Ă SL2pZq be a congruence subgroup and suppose that ΓpNq Ă Γ, then a

modular form of weight k ě 0 for Γ is a function f : HÑ C such that:

(1) f is holomorphic,

(2) f|kγ “ f , namely, fpγτq “ pcτ ` dqkfpτq for any γ P Γ,
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(3) for all σ P SL2pZq we have that:

pf|kγqpτq “
ÿ

kě0

aσnq
n
N ,

where qN “ e2πiτ{N and aσn P C for any n.

In the case aσ0 “ 0 for any σ P SL2pZq we say that f is a cusp form.

Remark. The property (3) is called holomorphicity of f at the cusps.

The following definition will play an important role in the proof of the p-adic Leopoldt formula.

We can in fact attach to a modular form also a so called Dirichlet character whose definition is

the following.

Definition 1.1.10. A Dirichlet character of conductor N is a group homomorphism:

χ : pZ{NZqˆ Ñ Cˆ.

Clearly, any character can be extended to a function over Z sending a P Z to χ prasq (where

ras denotes the class of a in Z{NZ) and by letting χ pr0sq “ 0. With an abuse of notation we will

denote with χ also this extension.

Remark. (i) We say that the character χ is even if χp´1q “ 1, odd otherwise.

(ii) Let χ and χ̃ be two Dirichlet characters of conductor N and M respectively such that N �M .

We say that χ induces χ̃ if χ̃paq “ χpaq for any a P Z coprime with M .

(iii) We say that a character is primitive if it is not induced by any other character.

Definition 1.1.11. Let χ be a Dirichlet character. A modular form of weight k, group level Γ1pNq

and nebentypus χ is a holomorphic function f defined on H with values in C such that:

f

ˆ

aτ ` b

cτ ` d

˙

“ χpdqpcτ ` dqkfpτq

for any τ P H and γ “

»

–

a b

c d

fi

fl P Γ1pNq.

1.1.4 Modular curves

So far we have spoken only about functions. In this section we want to turn our attention to the

construction of a curve which will be used to parametrize isomorphism classes of elliptic curves.

8



Naively, once we have a curve consisting in a quotient of H, then we have a way to treat general

properties of elliptic curves on account of the well known correspondence of between H and L. As

we will clarify later, modular curves are an example of moduli spaces. First of all, let P1pQq be the

projective line over the field Q; we denote its elements by pα : βq. Let Γ be one of the congruence

subgroups defined in Section 1.1.3. We consider the action of Γ over P1pQq given by:

»

–

a b

c d

fi

fl ¨ pα : βq “ paα ` bβ : cα ` dβq,

where

»

–

a b

c d

fi

fl P Γ.

Remark. Notice that the point at infinity p1 : 0q is sent to pa : cq.

Definition 1.1.12. We define a cusp to be an equivalence class of the quotient:

ΓzP1
pQq.

The whole set is called the set of the cusps with respect to Γ.

Remark. The set of cusps is always finite since the action of SL2pZq is transitive on P1pQq and any

subgroup Γ has, by definition, finite index in SL2pZq. In fact, it is enough to consider the sequence:

ΓpNq ãÑ SL2pNq
mod N
ÝÝÝÝÑ SL2pZ{NZq,

where the first map denotes the inclusion and the second map is given by reducing the coefficients

modulo N . ΓpNq is the kernel of the second map therefore it is normal in SL2pZq and since

SL2pZ{NZq is a finite group the index of ΓpNq in SL2pZq is finite as well. Finally, it is just enough

to notice that ΓpNq Ă Γ Ă SL2pZq.

Definition 1.1.13. Let H˚ “ H \ P1
Q and Γ as before, namely, one among Γp1q Ą Γ0pNq Ą

Γ1pNq Ą ΓpNq. We call the modular curve associated to Γ the following quotient:

ΓzH˚
“ ΓzH \ ΓzP1

Q

We will call ΓzH the open (or affine) part of the modular curve.

Remark. The introduction of the cusps is motivated by the fact that we will interpret the modular

curve as a Riemann surface. In order to get an interpretation as a compact Riemann surface we

need to add to ΓzH the set of cusps.
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Remark. We use the following notations:

X0p1q “ Γp1qzH˚
“ Y0p1q \ t8u, X0pNq “ Γ0pNqzH˚

“ Y0pNq \ C0pNq,

X1pNq “ {Γ1pNqzH˚
“ Y1pNq \ C1pNq,

where Y´p´q and C´p´q denote, respectively, the open part and the set of cusp of the modular

curve. In case of X0p1q, we find only one cusp which correspond to 8. Moreover, notice that we

have the natural projection:

X1pNq Ñ X0pNq Ñ X0p1q.

Theorem 1.1.14. Any of the previous modular curves admits a structure of a compact Riemann

surface.

Proof. See Chapter 2: Modular curves as Riemann surfaces in [DS05].

Remark. X0p1q is isomorphic to P1pCq therefore it is a smooth projective curve of genus zero.

The open part of a modular curve classifies isomorphism classes of complex tori, namely, of el-

liptic curves. For a detailed approach we invite the reader to see in chapter VI: “Elliptic curves over

C” of [Sil86] proposition 3.6 part (b). As we said before, modular curves admit an interpretation

as moduli spaces which in a colloquial way might be defined as follows.

Definition 1.1.15. A moduli space is a geometric object, for example a topological space or a

curve (in our case a Riemann surface) which parametrizes a family of geometric objects (in our

case, elliptic curves).

As we have just seen, the open part of the affine curve admits an interpretation as an open

Riemann surface and the following proposition clarifies the exact correspondence with classes of

elliptic curves.

Proposition 1.1.16. We have the following bijections:

Y0p1q
1:1
ÐÑ

!

Isomorpism classes

of elliptic curves

)

,

Y0pNq
1:1
ÐÑ

!

Iso classes of couples pE,P q where E is an elliptic curve

and P P E is a point of exact order N

)

,

Y1pNq
1:1
ÐÑ

!

Iso classes of couples pE,Cq where E is an elliptic curve

and C Ă E is a cyclic subgroup of order N

)

.

We started by considering a quotient of the upper half plane and we got a curve which also

admits an interpretation as a Riemann surface. A natural question to pose is whether or not we

can extend these objects to different fields of definition. In other words, it would be nice to find
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a modular curve defined over different fields or rings able to parametrize isomorphism classes of

elliptic curves defined over different fields or rings. We will give an answer to this question in

Section 3.2. For now we just recall the results needed for developing the theory later.

Theorem 1.1.17. Any compact Riemann surface admits a structure of a smooth projective complex

algebraic variety over C of dimension one.

Proof. See in chapter VII: applications of Riemann-Roch of [Mir95] proposition 1.1.

Theorem 1.1.18. The modular curves X0pNq and X1pNq admit a model over Q, i.e. they are

given by equations with coefficients in Q.

Proof. See Theorem 7.7.1 in [DS05].

On account of these facts, we realize we can now define the previous modular curves over

any fields extension of Q. In fact, we can look for solutions of the equations guaranteed by

Theorem 1.1.18 in any other fields extension of Q, in particular we can consider solutions in Cp,

the completion of the algebraic closure of Qp. Anyway, this will concern us later in this text.

1.2 Circular units

In this section we introduce circular units, also called cyclotomic units. Our main reference is

[Was97]. Moreover, we looked also at [KL81] and [Lan90].

The determination of the group of units of a general algebraic number field is not easy. Nevertheless,

the cyclotomic fields admit a subgroup (the group of cyclotomic units) which has finite index in

the full group of unity. The index is strongly related to the class number and therefore with the

p-adic L-functions. In fact, this relation is essential to prove Leopoldt’s formula about the class

number as it is proved in [Was97].

1.2.1 Setting and definitions

We consider the number field Qζp where ζp denote a primitive p-th root of unity. Let ζ “ ζp.

Thanks to Theorem A.3.3, we know that the ring of integers for this field is Zrζs. We consider its

group of units and we denote it by Zrζsˆ. In order to have a better understanding of this group

we state and prove the following lemma:

Lemma 1.2.1. Let r, s P Z and ζ as before and assume that pp, rsq “ 1 then:

ζr ´ 1

ζs ´ 1
P Zrζsˆ.
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Proof. Since r and s are invertible in Z
pnZ we can find an integer t such that r “ st mod p so:

ζr ´ 1

ζs ´ 1
“
ζst ´ 1

ζs ´ 1
“ 1` ζs ` ¨ ¨ ¨ ` ζpt´1qs P Zrζs.

Analogously, we find that
´

ζr´1
ζs´1

¯´1

P Zrζs concluding that ζr´1
ζs´1

P Zrζsˆ.

We now consider the number field QζN where N is a positive integer. Again, the ring of integers

is Zrζs and we want to characterize some particular elements of Zrζsˆ. We first notice that when

N “ pn, ζpn ´ 1 is not a unit (it suffices to compute its norm). On the other hand, a reasoning

similar to that of the previous lemma shows that for any N ζa´1
ζb´1

with pab,Nq “ 1 are units. We

notice we have also the following fact.

Proposition 1.2.2. If N has at least two distinct prime factors then

1´ ζN P ZrζN sˆ,

and moreover:
ź

pj,Nq“1

p1´ ζjNq “ 1.

Proof. We recall we have xN ´ 1 “
śN´1

j“0 px´ ζ
j
Nq, therefore, dividing by x´ 1:

xN´1 ` xN´2 ` ¨ ¨ ¨ ` x` 1 “
N´1
ź

j“1

px´ ζjNq.

We now evaluate at x “ 1 getting N “
śN´1

j“1 p1´ ζ
j
Nq. Suppose now pa divides exactly N , namely,

pa � N but pa`1 ffl N . We assume pak “ N with k P Z. Thanks to the previous reasoning we can

write pa “
śpa´1

i“1 p1´ ζ
i
paq “

śpa´1
i“1 p1´ ζ

ki
N q. We can now quotient N by pa getting

k “
N´1
ź

j“1
kfflj

p1´ ζjNq.

With the same reasoning we now quotient the previous expression by another prime factor of N

dividing exactly N . Once we have done this process for all the primes dividing N we get:

1 “
ź

j

p1´ ζjNq,

where the j runs among the divisor of N which haven’t been considered in the process before. We

notice that p1´ ζNq is still a factor in this product implying that 1´ ζN P ZrζN sˆ. For the second

part of the proposition we consider the norm of 1´ ζN which is:

Norm
QpζN q
Q p1´ ζNq “

ź

pj,Nq“1

p1´ ζjNq “ ˘1.
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Since complex conjugation is an element of GalpQpζNq{Qq, the norm of any element may be written

as αα and therefore it is positive. We deduce that
ś

pj,Nq“1p1´ ζNq “ 1.

All the preceding units are called cyclotomic units. The name comes from the clear connection

they have with the cyclotomic fields.

We want now to give a more general definition of cyclotomic units. We consider the number field

QpζNq. Since QpζNq “ QpζN{2q when N “ 2 mod 4 (ζN “ ˘ζN{2), we can assume N to be a integer

different from 2 mod 4. We define VN to be the multiplicative group generated by:

t˘ζN , 1´ ζ
a
N such that 1 ă a ď N ´ 1u .

Let EN be the group of units of Qpζnq. Then we can state:

Definition 1.2.3. We define the group of cyclotomic units to be:

CN :“ VN X EN .

Remark. When the context is clear enough we write C instead of CN .

1.2.2 Properties of the cyclotomic units group

We recall that if K is a number field we then denote by K` the maximal totally real subfield of K.

In order to understand how the subgroup of cyclotomic units behaves in the full group of units of

Qpζq we start out with understanding which are the generators of these cyclotomic units. Before

proceeding further we just remark that for any N all the elements of the shape:

1´ ζaN
1´ ζN

,

with pa,Nq “ 1 can be written as a real unit times a root of one. In fact:

1´ ζaN
1´ ζN

“ ζ
a´1
2

N

ζaN ´ ζ
´a
N

ζ
1
2
N ´ ζ

´ 1
2

N

and clearly
ζaN´ζ

´a
N

ζ
1
2
N´ζ

´ 1
2

N

is a real unit. This remark is used in the proof of the following lemma. Notice

that we now specialize in the case N “ pm with m a positive integer.

Lemma 1.2.4. 1. The cyclotomic units of Qpζpmq` are generated by ´1 and by the units:

ξa “ ζ
1´a
2

pm
1´ ζapm

1´ ζpm
,

with 1 ă a ă 1
2
pm and pa, pq “ 1.
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2. The cyclotomic units of Qpζpmq are generated by ζpm and the cyclotomic units of Qpζpmq`.

Proof. We first start with understanding why the restrictions 1 ă a ă 1
2
pm and pa, pq “ 1 are

reasonable. We know, thanks to Lemma A.3.2, that for any positive integer k ă m the following

relation holds:

1´ xp
k

“

pk´1
ź

j“0

p1´ ζjp
m´k

pm xq.

Let b P Z be coprime with p, then:

1´ ζbp
k

pm “

pk´1
ź

j“0

p1´ ζb`jp
m´k

pm q.

Therefore we can reduce to look at 1 ´ ζapm only when a is prime to p. Moreover we notice that

p1 ´ ζaq “ ´ζap1 ´ ζ´aq and therefore we can reduce to consider only 1 ă a ă 1
2
pm. Now we

proceed with proving part 2 : we suppose that

ξ “ ζdpm
ź

a

p1´ ζaqca

with ca P Z is a unit in Qpζpmq.

Since p1´ ζaq and p1´ ζbq differ only by a unit (thanks to Lemma 1.2.1), all the factors generate

the same ideal and thus
ř

a ca “ 0. Eventually we can write:

ξ “ ζd
ź

a

ˆ

1´ ζapm

1´ ζpm

˙ca

“ ζe
ź

a

ξcaa ,

where e “ d `
ř

a capa ´ 1q{2. This proves part 2. Notice moreover that if ξ is real we have also

that ζepm is real since ξa are real. This concludes the proof of 1.

Remark. When N is not a power of a prime then not all the cyclotomic units are a product of

roots of one and
1´ ζaN
1´ ζN

,

with pa,Nq “ 1. In fact, in light of Proposition 1.2.2 we notice that 1 ´ ζN does not have this

shape.

We stick to the case N “ pm and our aim is to show that the group of cyclotomic units has

finite index in the full group of units. Before proceeding further we notice that the real units

multiplied by a root of one have index one or two in the full units group.
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Proposition 1.2.5. Let E be the full unit group of QpζNq, then the subgroup generated by the

roots of unity and the real units of QpζNq have index one or two in E.

Proof. See Theorem 4.12 in [Was97].

On account of this fact, it suffices to work only with real units.

Theorem 1.2.6. Let C`N and E`N be, respectively, the group of cyclotomic units and the full group

of units in QpζNq`, then C`pm Ă Qpζpmq` has finite index in E`pm and moreover:

h`pm “ rE
`
pm : C`pms,

where h`pm denotes the class number of Q`pm.

Proof. We prove this statement with a wise use of the regulator. We denote with σa the element

of GalpQpζpmq{Qq sending ζpm to ζapm . If pa, pq “ 1 and 1 ď a ă 1
2
pm then tσau generate G “

GalpQpζpmq`{Qq. We notice we can write:

ξa “
σa

´

ζ´
1
2 p1´ ζq

¯

ζ´
1
2 p1´ ζq

.

In order to be consistent with the notation of Lemma A.2.2, we define:

fpσaq “ log
ˇ

ˇ

ˇ
σa

´

ζ´
1
2 p1´ ζq

¯
ˇ

ˇ

ˇ
“ log |σa p1´ ζq| .

By computing the regulator we get:

Reg tξaua “
ˇ

ˇ

ˇ
det pnb log |σbpξaq|qa,b‰1

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

det
´

log |σbσapζ
´ 1

2 p1´ ζqq| ´ log |σbpζ
1
2 p1´ ζqq|

¯

a,b‰1

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
det

`

fpσbσ
´1
´aq ´ fpσbq

˘

a,b‰1

ˇ

ˇ

ˇ
.

We now apply Lemma A.2.2:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ź

χP pGztIu

ÿ

σaPG

fpσaqχpσaq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ź

χP pGztIu

ÿ

σaPG

χpσaq log |1´ ζa|

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ź ÿ

1ďaă 1
2
pm

χpaq log |1´ ζa|

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Since |1´ ζ´a| “ | ´ ζ´ap1´ ζaq| “ |1´ ζa|, and since χp´aq “ χpaq we can rewrite the previous

expression as follows:
ˇ

ˇ

ˇ

ˇ

ˇ

ź 1

2

pm
ÿ

a“1

χpaq log |1´ ζa|

ˇ

ˇ

ˇ

ˇ

ˇ

.
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Thank to Lemma A.3.2 we have for any 0 ă k ă m:

1´ ζbpk “
pm
ź

a“1
a”b mod pk

p1´ ζapmq.

Therefore if the conductor of χ is pk:

pm
ÿ

a

χpaq log |1´ ζapm | “
pk
ÿ

b“1

χpbq log |1´ ζbpk | “ ´
pk

τpχq
Lp1, χq “ ´τpχqLp1, χq.

In conclusion:

Regtξaua “
ź

χ‰1

´τpχqLp1, χq “ h`R`,

where R` is the regulator of Qpζpmq`. By Lemma A.3.1 we conclude:

rE`pm : C`pms “
Regtξau

R`
“ h`,

as we wanted to show.

In 1966 the Indian mathematician Kanakanahalli Ramarchandra determined in his article

[Ram66] the generating units for a general N and proved they are independent allowing us to

state:

Theorem 1.2.7. Let N ‰ 2 mod 4 and let N “
śs

i“1 p
ei
i be its prime factorization. Let I run

through all subsets of t1, ¨ ¨ ¨ , su except t1, ¨ ¨ ¨ , su and let NI “
ś

iPI p
ei
i . For 1 ă a ă 1

2
N ,

pa,Nq “ 1, define:

ξa “ ζdan
ź

I

1´ ζaNIN

1´ ζNIN
,

where, da “
1
2
p1´ aq

ř

I NI .

Then the set tξau forms a set of multiplicatively independent units for QpζNq`. If C
1

N denotes the

group generted by ´1 and the ξa’s, and E`N denotes the group of units of QpζNq`, then:

rE`N : C
1

N s “ hN
ź

χ‰1

ź

pifflfχ

pφppeiq ` 1´ χppiqq ‰ 0,

where h`N is the class number of QpζNq` and χ runs through the nontrivial even characters of
` Z
NZ

˘ˆ
.

Proof. See Theorem 8.3 in [Was97].

Remark. The proof is more technical than the proof of Theorem 1.2.6 but it follows the same line.
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In addition, [Was97] reports that Sinnott also showed that there exist a b P Z coprime with p

such that:

rE`N : C`N s “ 2bh`N .

As an immediate consequence of Theorem 1.2.7 we have the following result:

Corollary 1.2.8. Let C
2

N be the group generated by ´1 and

ζ
1´a
2

N

1´ ζaN
1´ ζN

with 1 ă a ă
1

2
N and pa,Nq “ 1,

then:

rE`N : C
2

N s “ h`N
ź

χ‰1

ź

p�N

p1´ χppqq.

Proof. See Corollary 8.8 in [Was97].

We end this section by pointing out that if N is compose then the subgroup of cyclotomic units

might not have finite index.

1.3 Siegel units

In this section we introduce a particular modular function whose specialization at certain points

will produce units in the ring of integers of QpζNq. We are particularly interested in the q-expansion

of this modular function. We follow closely [KL81] and [Lan87] (which appears to be a summary

of [KL81]) omitting the most technical parts and aiming to present the q-expansion as soon as

possible. Moreover, as a remark, we point out that [KL81] relies on chapters 18 and 19 of [Lan87].

1.3.1 Siegel functions and Siegel units

For an complete exposition of this paragraph, see Chapter 18 and 19 of [Lan87]. We report in

a telegraphic way the essential steps for defining the Siegel functions. As before H denotes the

Poincaré upper half plane and let τ P H so that τZ‘ Z is a full lattice in C. Then for any z P C

we can write:

z “ a1τ ` a2 with ai P R for i “ 1, 2.

Moreover, we denote by qτ the value e2πiτ .

Definition 1.3.1. We define the Dedekind eta function to be:

ηpτq “ q1{24τ

8
ź

n“1

p1´ qnτ q.
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Definition 1.3.2. We define the sigma Weierstrass function to be:

σpz, τq “ z
ź

pa1,a2qPZ2zp0,0q

ˆ

1´
1

a1τ ` a2
e
z{pa1τ`a2q`

1
2
¨

´

z
pa1τ`a2q

¯2
˙

.

Remark. We report as a fact that the sigma function admits a qτ -expansion.

Definition 1.3.3. We define the zeta Weierstrass function to be:

ζpz, τq “
σ
1

σ
pz, τq.

Definition 1.3.4. We define a Klein form to be:

Ipz, τq “ e
´ηpz,τqz

2 σpz, τq.

Remark. If a P R2 denotes the couple pa1, a2q where a1τ ` a2 “ z then we write Iapτq for Ipz, τq.

Definition 1.3.5. We define a Siegel function to be:

gapτq “ Iapτq∆pτq
1
12 ,

where ∆pτq denotes the square of the Dedekind eta function.

Following [Lan87] this function admits qτ -expansion:

gapτq “ ´q
1
2
B2pa1q

τ e
2πia2pa1q´1

2 p1´ qzq
8
ź

n“1

p1´ qnqzτ qp1´ qnτ {qzq,

where B2pxq “ x2´x` 1
6

denotes the second Bernoulli polynomial and qz “ e2πiz{N . Moreover the

following theorem holds:

Theorem 1.3.6. Assume that a P Q2 has a denominator dividing N , then the Siegel functions are

modular functions and they have no zeroes or poles on H.

Proof. See Theorem 2 of Chapter 19 in [Lan87]. It is a consequence of the formalism of the Klein

forms which we didn’t investigate.

Now, if we specialize this function for z “ a with 1 ă a ď N ´ 1 we call these special Siegel

functions Siegel units. They have qτ -expansion:

gapτq “ q
1
12
τ p1´ ζ

a
q
ź

ną0

p1´ qnτ ζ
a
qp1´ qnτ ζ

´a
q.

Remark. Needless to say, in the case of X0p1q, these are cusps forms.

Remark. Let S be a Riemann surface, we denote by OS the ring of holomorphic functions. In light

of Theorem 1.3.6 we notice that the Siegel function ga belongs to Oˆ

Y1pNq
.

It is clear that Siegel units are units in the ring of holomorphic functions of H, i.e. they are in

Oˆ
H. Moreover, they deserve the name “units” because when we evaluate these functions we get

units for certain rings as the following paragraph will show.
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1.3.2 Cyclotomic units revisited

Now we simply write q for qτ and we consider the quotient of Siegel units:

ga
gb
“
p1´ ζaq

ś

ną0p1´ q
nζaqp1´ qnζ´aq

p1´ ζbq
ś

ną0p1´ q
nζbqp1´ qnζ´bq

.

By evaluating the previous expression at q “ 0, namely at one of the cusps, we get p1´ζaq
p1´ζbq

which on

account of Lemma 1.2.1 is a unit in Zrζs. By considering gap0q we get 1´ ζa which, in case of N

compose (Proposition 1.2.2), is still a unit in Zrζs. As defined in Section 1.2, those are cyclotomic

units. Notice that since the Siegel units are modular functions the previous fact means that their

evaluation at the cusp 8 of X1pNq gives units in the ring of integer of the cyclotomic field QpζNq.

Remark. Siegel units don’t just give birth to cyclotomic units but they are fundamental in the

definition of elliptic units as we will see in Section 3.6.1.
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2

Review of p-adic modular forms

2.1 Serre’s theory

We now introduce what needed from the theory of the French mathematician Jean-Pierre Serre

about p-adic modular forms. A full, crystalline and beautiful explanation can be found in his

article ([Ser72]). We also stole a lot of inspiration from the oral lectures of M. Bertolini about

“Modular Forms”. The main idea is to see p-adic modular forms as limits (in a suitable sense) of

classical modular forms with respect to the group SL2pZq. All these modular forms may be written

as power series in Crrqss with q “ e2πiτ for τ P H. Since we are working with p-adic valuation we

restrict our interest to modular forms admitting a representation in power series in Qrrqss. We

will be working only with modular forms for the group SL2pZq. An idea about how to extend the

concept of p-adic modular forms to different congruence subgroups will be given at the end of this

section.

Definition 2.1.1. We denote with Mk the Q-vector space of modular forms for the group SL2pZq

of weigh k admitting power series in Qrrqss.

Notation. From now on p denotes a positive prime integer even when not specified.
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2.1.1 p-adic valuation of classical modular forms

As we said, we want to give a meaning to the notion of limit of classical modular forms, therefore

we need to find an appropriate definition of distance between classical modular forms. We quickly

recap the general meaning of p-adic valuation. Any rational number α P Q may be written as pnα
1

with p not appearing in the prime factorization of neither the numerator nor the denominator of

α
1

.

Definition 2.1.2. In the previous setting we define the order at p of α as:

vppαq “ n.

Definition 2.1.3. In the previous setting we define the valuation at p of α as:

|α|p “ p´vppαq.

Example. Let α1 “
1
2
, α2 “

2
9
, α3 “

36
7

and p “ 3 then:

v3pα1q “ 0, v3pα2q “ ´2, v3pα3q “ 2,

and therefore:

|α1|3 “ 1, |α2|3 “ 32, |α3|3 “
1

32
.

Proposition 2.1.4. Let p P Z be a prime number, then | ¨ |p is a norm on Q.

Remark. For the pleasure of the reader, we recall that a norm on Q (and more generally on any

field K) is a function

| ¨ | : QÑ Rě0

satisfying:

1. |α| ě 0 @α P Q and it is zero if and only if α “ 0,

2. |α ¨ β| “ |α||β| @α, β P Q,

3. |α ` β| ď |α| ` |β| @α, β P Q.

Definition 2.1.5. In the case a norm on K satisfies the stronger condition |α`β| ď maxt|α|, |β|u

@α, β P K the norm is called non-Archimedean.

Remark. If we consider two numbers and we say that their p-adic distance is “small”, we are saying

that a “big” power of p is dividing their difference.
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We wish to work in Q with the p-adic norm, unfortunately Q is not complete with respect to

this norm. In fact, the sequence tαnun with αn “ 1` p` ¨ ¨ ¨ ` pn´1 ` pn is Cauchy but it doesn’t

admit a limit in Q.

Definition 2.1.6. We denote by Qp the completion of Q with respect to | ¨ |p.

It can be proven that Qp is not algebraically closed. One may think that analogously to the

Archimedean case, once we consider the algebraic closure of Qp (which we denote by Qp), then we

end up with a complete and algebraically closed field. Alas! The trap is just around the corner:

this won’t be the case since Qp is not complete. Fortunately, this is not a infinite loop and we will

land to well known shores when we consider the completion of Qp. The new born Cp is complete

and algebraically closed. A full explanation of all this p-adic business is outside the purpose of this

text and we redirect the reader to the very instructive and constructive book of Koblitz ([Kob84]).

Now it is time to turn again our attention to modular forms. Let’s pick f P Mk. We recall that

by definition we can write:

fpτq “
8
ÿ

n“0

anq
n an P Q and where q “ e2πiτ . (2.1)

In order to define a distance we look at the coefficients of the series defined in (2.1) one by one

and consider their p-adic norm. Then, two power series will be close if the n-th coefficient of the

power series are p-adically close for any n.

Definition 2.1.7. We define the order of f with respect to p to be:

vppfq “ infntvppanqu.

Definition 2.1.8. We define the valuation at p of f to be:

|f |p “ p´vppfq “ supnt|an|pu.

Remark. If g PMk and gpτq “
ř8

n“0 bnq
n the fact that |f´g|p is ”small” means that the coefficients

are p-adically close, namely, a ”big” power of p divides f ´ g.

We would like to be sure that if f P Mk then vppfq P Z. This is indeed guaranteed by a

result on the structure of the space of modular forms which we will not investigate. This result

claims that any modular form is a finite C-linear combination of two specific modular forms whose

q-expansions have coefficients in Z after the multiplication by a sufficiently big integer.
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2.1.2 p-adic modular forms

We start out with giving the following definition of p-adic modular form due to Serre.

Definition 2.1.9. A formal power series f “
ř8

n“0 anq
n P Qprrqss is called a p-adic modular form

if there exist a sequence tfiui of classical modular forms with fi P Mki (ki P Z for i “ 1, 2, ¨ ¨ ¨ )

such that:

lim
i
|f ´ fi|p “ 0.

Remark. We are requiring that the coefficients of fi’s tend uniformly to the coefficients of f .

Arguably, the previous is a problematic definition since we are left with the problem to associate

weights to the new-born p-adic modular forms. In fact, we don’t pose any condition on the behavior

of the weights of the classical modular forms involved in the limit and therefore they might behave

wildly. In the definition we just required the n-th coefficient of the classical sequence to tend p-

adically to an for any n. Thus, first of all, we need to define a good space where the p-adic weights

can live and afterwards we need also to check whether or not Definition 2.1.9 is well posed. In fact,

two different sequences of classical modular forms may tend to the same p-adic modular form but

the limits of their weights may differ one from the other. Thanks to a theorem of Swinnerton-Dyer

about the structure of the algebra of modular forms mod p we can solve the problem of associating

a weight to a p-adic modular form. We just report the result and a property of classical modular

forms. For all the details, refer to [Ser72].

Theorem 2.1.10 (Swinnerton-Dyer). Assume p ě 5 then the following equality holds:

ĂM8 “
à

αPZ{pp´1qZ

ĂMα.

Instead, if p “ 2, 3 we have:

ĂM8 “ ĂM0,

where ĂM8 “
Ř

kě0
ĂMk and ĂMα “

Ť

kě0
k”α

mod pp´1q

ĂMk and ĂMk is the Fp-vector space of modular forms

modulo p (when this makes sense).

Proof. See the original article in [SD72].

Remark. In the previous proof it is essential to work with modular forms for the group SL2pZq and

on account of this it is not straightforward how to extend this theory to more general congruence

subgroups.
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Theorem 2.1.11. Let m P Zě1 and let f and g be two classical modular forms belonging to Mk

and Ml respectively. Suppose f ‰ 0 and assume that:

vppf ´ gq ě vppfq `m,

then:

(i) k ” l mod pp´ 1qpm´1 if p ě 3,

(ii) k ” l mod 2m´2 if p “ 2.

Proof. See Théorème 1 in [Ser72].

On account of these facts we are suggested that the right set where to consider weights won’t

be Z any longer but it is defined as follows.

Definition 2.1.12. Let p be a prime integer and let n be a positive non-zero integer if p ‰ 2 or

n P Zě2 if p “ 2, then we define:

Wn “

$

’

&

’

%

Z
pp´1qpnZ “

Z
pp´1qZ ˆ

Z
pnZ if p ‰ 2

Z
pn´2Z if p “ 2

.

We denote by W the space of weights for p-adic modular forms. W is defined to be the projective

limit of Wn, namely:

W “ lim
ÐÝ

Wn “

$

’

&

’

%

Z
pp´1qZ ˆ Zp if p ‰ 2

Z2 if p “ 2
.

Once we found the right place of definition of weights, we are given peace with the following

result.

Theorem 2.1.13. Let f be a non zero p-adic modular form and tfiui a sequence of modular forms

with rational coefficients having f as limit. Let ki be the weight of fi for any i. Then, the sequence

tkiui has a limit k in W which depends on f but not on the sequence tfiui chosen.

Proof. See Théorème 2 in [Ser72].

Definition 2.1.14. In the setting of the previous theorem we define k P W to be the weight of f .

Notation. We denote by M
ppq
k the space of p-adic modular forms of weight k for the group SL2pZq.
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2.1.3 Properties of p-adic modular forms

We introduce here the necessary tools for handling with a good definition of p-adic Eisenstein

series which will be studied in the next paragraph. We start out with noticing some analogues of

the classical results about modular forms.

Theorem 2.1.15. Let fk PM
ppq
k and fl PM

ppq
l with k, l P W . Assume moreover that:

(i) fk ‰ 0,

(ii) vppfk ´ flq ě vppfkq `m for m P Zě0,

then the images of k and l in W are the same.

Proof. First of all, we reduce ourselves to the case of classical modular forms and then exploit

Theorem 2.1.11. We notice that (ii) implies fl ‰ 0. Then we consider two sequences of classical

modular forms tfki ui and tf liui of weights respectively ki and li, tending respectively to fk and fl.

For i big enough we have that:

vppfkq “ vppf
k
i q and vppflq “ vppf

l
i q and vppfk ´ flq “ vppf

i
k ´ f

i
l q,

with fki and f li both non-zero. Then (ii) can be rephrased as:

vppf
k
i ´ f

l
i q ě vppfkq `m,

and thanks to Theorem 2.1.11 we conclude ki and li have the same image in Wi and the result

follows.

Corollary 2.1.16. Let f “
ř8

n“0 anq
n P M

ppq
k and assume that there exists a positive integer m

such that k is non zero in Wm`1, then we have:

vppa0q `m ě infně1vppanq.

Proof. See Corollaire 1 in [Ser72].

Remark. Suppose that k is not divisible by p´1 then it is not zero in W1 and m “ 0. This implies

that:

vppa0q ě infně1pvppanqq.

If moreover vppanq ě 0 for any n ě 1 we infer vppa0q P Zp. In the nutshell, we derived an integral

property of the constant term from integral properties of all the other coefficients.
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The following corollary will play a central role in the definition of p-adic Eisenstein series.

Corollary 2.1.17. Let

f piq “
8
ÿ

n“0

apiqn q
n

be a sequence of p-adic modular forms of weights kpiq. Assume that:

(i) a
piq
n Ñ an P Qp uniformly in n ě 1,

(ii) kpiq Ñ k ‰ 0 in W ,

then the a
piq
0 admit a limit a0 P Qp and the series f “

ř8

n“0 anq
n is a p-adic modular form of weight

k.

Proof. See Corollaire 2 in [Ser72].

2.1.4 Example of p-adic modular forms: p-adic Eisenstein series

We start out with recalling the classical definition of Eisenstein series and few facts connected to

it. Consider k P 2Z bigger than 4 and τ P H.

Definition 2.1.18. We define the weight k Eisenstein series to be:

Ekpτq “
ÿ

pm,nqPZ2zp0,0q

1

pmτ ` nqk
.

We want to underline that k “ 2 is not admissible since the series in the previous definition

doesn’t converge. Moreover, we notice that if k is odd then the Eisenstein series would be zero.

The restriction to k P 2Zě4 is now clear. Eisenstein series are the most easy example of modular

forms and at least in the classical context, the only one. In fact, common theory on modular forms

([DS05]) states that the space of all modular forms is spanned only by two Eisenstein series. More

explicitly, the space of modular forms coincides with:

CrE4, E6s. (2.2)

In other words a modular form of any weight is a C-linear combination of powers and products of

the Eisenstein series E4 and E6 of weights, respectively, 4 and 6. From the computations below

we see that, up to a multiplicative factor, both E4 and E6 admit a q-expansion in Zrrqss. These

are the modular forms we addressed at the end of section 2.1.1. Classical theory also shows that

Ekpτq is a weight k modular form for the group SL2pZq whose q-expansion is:

Ekpτq “ 2ζpkq ` 2
p2πiqk

pk ´ 1q!

8
ÿ

n“1

σk´1pnqq
n where σk´1pnq “

ÿ

d�n

dk´1.
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We underline the fact that the value of the previous Eisenstein series at 0 (i.e. at the cusp 8 of

the modular curve X0p1q) is connected with the zeta function. The zeta function admits moreover

an expression in terms of the so called Bernoulli numbers:

ζpkq “
8
ÿ

n“1

n´k “ p´1q
k
2
´1πk

2k´1

k!
Bk,

where Bk denotes the k-th Bernoulli number defined as the k-coefficient of the Tailor expansion of

1
1´et

, namely:

1

1´ et
“

8
ÿ

k“0

Bk

k!
tk.

One can moreover show that these numbers are rational so it might seem a good idea to isolate

the rational part of the previous formula getting:

Ekpτq “
p´1q

k
2πk2k`1

pk ´ 1q!

˜

´
Bk

2k
`

8
ÿ

n“1

σk´1pnqq
n

¸

.

The part in the parenthesis is a power series in q with rational coefficients which we will denote by

Gkpτq “ ´
Bk

2k
`

8
ÿ

n“1

σk´1pnqq
n.

The idea behind the definition of a p-adic Eisenstein series is to use Corollary 2.1.17 for an ap-

propriate sequence of classical Eisenstein series whose limit will genuinely give birth to a p-adic

modular form. The appropriate sequence is given by choosing wisely the weights, as the following

lemma suggests.

Lemma 2.1.19. Pose σ
ppq
k´1pnq “

ř

pffld�n d
k´1 and consider k P 2W and tkiu

8
i“1 a sequence with

terms in 2N satisfying:

(i) ki ě 4 for any i “ 1, ¨ ¨ ¨ ,8,

(ii) ki Ñ 8 in the archimedian metric on R,

(iii) ki Ñ k P W p-adically,

then limiÑ8 σki´1pnq “ σ
ppq
k´1pnq uniformly in n ě 1.

Proof. This lemma easily follows from the continuity of the p-adic exponential. It is possible to

find more details about this function in chapter IV: p-adic power series of [Kob84] looking at the

proposition at page 81.

Remark. We can actually find such a sequence, for example:
!

ki “ 2
ři
n“1 p

i
)8

i“1
.
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Theorem 2.1.20. The following expression:

G
ppq
k “ a0 `

8
ÿ

n“1

σ
ppq
k´1pnqq

n where a0 “ lim
iÑ8

´
Bki

2ki
,

is a p-adic modular form for any sequence tkiu
8
i“1 satisfying the hypothesis of Lemma 2.1.19.

Moreover, a0 is independent of the choice of such a sequence.

Proof. We consider the Eisenstein series Gki of weight ki as defined above. Using Lemma 2.1.19

and Corollary 2.1.17 we get that

G
ppq
k “ lim

iÑ8
Gki

is a p-adic modular form of weight k, i.e. G
ppq
k P M

ppq
k . One can check that it is independent from

the sequence chosen.

Definition 2.1.21. G
ppq
k is called the p-adic Eisenstein series of weight k.

Remark. As we were previously pointing out, due to a convergence problem the classical Eisen-

stein series E2pτq is not a modular form. On the other hand, we see that by taking a sequence
!

ki “ 2
ři
n“0 p

i
)8

i“1
for p ě 3 the p-adic Eisenstein series G

ppq
2 is a p-adic modular form of weight

2.

2.2 p-adic modular forms for more general congruence sub-

groups

The p-adic theory of Serre relies heavily on the theorem of Swinnerton-Dyer about the structure

algebra of the space of modular forms modulo p whose proof counts on the fact that only modular

forms for the group SL2pZq are considered. The American mathematician Nicholas Michael Katz

developed a geometric theory of p-adic modular forms which generalizes the theory of Serre and

enables us to construct p-adic modular forms à la Serre, namely as p-adic limits, for more general

congruence subgroups. We won’t investigate this theory and we just need the following definition.

It is a good definition in light of theorem 4.5.1 of [Kat72].

Definition 2.2.1. A p-adic modular form of weight k and level group Γ1pNq with nebentypus χ,

a Dirichlet character of conductor N , is a p-adic limit of certain classical modular forms tfkiu of

weight ki converging p-adically to k, of level group Γ1pNq and nebentypus χ.
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3

About the p-adic Leopoldt formula

The aim of this chapter is to give a modular proof of the p-adic Leopoldt formula. We will here

combine all the tools we introduced so far. First of all, we state properly the result we are after.

Theorem 3.0.1 (Leopoldt). Let χ be a non trivial even primitive Dirichlet character of conductor

N , then:

Lpp1, χq “ ´
p1´ χppqp´1q

gpχ´1q

N´1
ÿ

a“1

χ´1paq logpp1´ ζ
a
q.

Remark. It is also possible to prove this result in a more computational way. For details see

theorem 5.18 in [Was97].

Before starting let’s have a quick overview at the hypotheses of this theorem. We know that

we can rewrite a classical L-function associated to a non-primitive character as a product of L-

functions associated to primitive characters inducing it. Therefore, it makes sense to restrict our

interest to the case of primitive characters. Moreover, the character is assumed to be even because

the p-adic L-function associated to a odd character is always zero as it is clarified in the Appendix

A.1.

In this chapter we follow the approach of [BCD`14] and we also took some material from [Iwa72].

We are looking for a p-adic equivalent of the class number formula and we are about to work with

functions defined on Cp. We then need a theory to handle with these new functions. First of all, in

the next paragraph we give some intuition about the right approach to cope with this new setting.
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3.1 Rigid geometry

The so called rigid geometry is a natural way to work in this new environment. For a complete

overview on this subject we redirect the reader to the formal and exhaustive book of Bosch: [Bos14].

We accept to work with as little rigid geometry as possible and we just try to motivate why it is

possible to treat rigid analytic functions as we would do with holomorphic complex functions. At

the beginning, one might be tempted to introduce the following notion of “Cp-holomorphiticity”

considering on Cp the topology induced by the p-adic metric.

Definition 3.1.1 (first attempt: locally rigid analytic functions). Let U be a subset of Cp. We

say that the function f is rigid analytic in x P U if there is a open neighbourhood of x inside U

where f can be expressed as a power series, namely:

fpqq “
8
ÿ

n“1

anq
n,

where an are coefficients in Cp. A function is rigid analytic on U if it is rigid analytic at all the

points of U .

This definition is inspired from the complex theory but, unfortunately, has to be revised because

of the different topological properties connected to a non-Archimedean distance. Firstly, we notice

that the analogous of this definition for the complex case works properly because C is connected.

Suppose we are considering a function defined on a connected area of C, and suppose we have an

expression in power series of f on each open set of our covering. The condition about connection

guarantees all the opens will overlap and therefore we can extend the power series on the whole

connected area. This is not the case for Cp when we consider on it the topology induced by a

non-Archimedean distance. It will turn out that Cp is totally disconnected, i.e. any subset of Cp

consisting in more than one point is not connected. Since the topology of Cp we are working with

is induced by the p-adic distance a basis for the open sets is given by the open balls:

Bpx, rq “ ts P Cp such that |x´ s|p ă ru. (3.1)

Analogously, a basis of closed sets is given by the closed balls:

Bpx, rq “ ts P Cp such that |x´ s|p ď ru. (3.2)

Eventually, both these kinds of balls are open and close. This is a direct consequence of the non-

Archimedean nature of the p-adic norm. In fact, in a p-adic setting we need to take care of the

following different behaviour of the norm.
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Proposition 3.1.2. Let a, b be two numbers in Cp such that |a|p ă |b|p then:

|a´ b|p “ maxt|a|p, |b|pu.

This proposition implies that if we consider any triangle in Cp then it is always isosceles.

Moreover, when we consider a ball in Cp, any of its points might be taken as the center of it. As

we were saying, another important consequence for the topology is that Bpx, rq and Bpx, rq are

both open and closed. In fact we easily see that Bpx, rq “
Ť

yPBpx,rqBpy, rq and if we consider an

accumulation point of Bpx, rq then it belongs to Bpx, rq. The most critical side effect of Proposition

3.1.2 is the following result.

Proposition 3.1.3. Cp is totally disconnected, i.e. any subset with more than two points is not

connected.

Proof. Let A Ă Cp be a set with more than two elements, and assume x, y P A and x ‰ y. We

then define r “ 1
2
|x ´ y|p and we consider A1 “ A X Bpx, rq and A2 “ AzA1. Then A1 \ A2 “ A

(namely, A is a disjoint union) and both A1 and A2 are open and closed.

This proposition is rather astonishing. Just to give an idea we notice that we cannot now

define any longer a function from the connected interval r0, 1s to Cp wishing it is non constant

(the image, in fact, should be connected). In particular, a theory of integration in a classical sense

is not feasible any longer. This means we cannot directly p-adically rephrase a Cauchy theory

relating functions defined by differentiation and functions defined in terms of power series. The

problem related to Definition 3.1.1 is now clear: we consider the open disc Bp0, 1q and we extract

a partition in disjoint discs of Bp0, 1q from the following union where r P p0, 1q Ă R:

Bp0, 1q “
ď

xPBp0,1q
rPp0,1q

Bpx, rq.

We call the disc of the disjoint partition Di. Then we define on each Di a constant function getting

the value fi P Cp. We take care that fi ‰ fj if i ‰ j. Eventually we consider the function f on

Bp0, 1q such that f|Di “ fi. This function is locally rigid analytic according to Definition 3.1.1 but

its behavior is totally wild; in fact, it doesn’t admit an expression in power series on the whole

Bp0, 1q. This unpredictable behavior is due to the fact that the open of the covering we considered

do not overlap. One way to avoid this issue is to consider the following definition.

Definition 3.1.4. A function f is said to be p-adic analytic on Bp0, rq if it is represented by a

power series converging on Bp0, rq.
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This definition is indeed a good p-adic equivalent of the complex one. The downside is that

we are working with only an open and therefore no much flexibility is allowed in this context.

Nevertheless, definition 3.1.4 will be sufficient for our purposes since it is enough to work just in

a neighbourhood of the cusp 8 as we will see later. Therefore, in this text, being rigid analytic

means to be p-adic analytic.

Anyway, we think we have enough motivated the need of a different theory in the investigation

of spaces with non-Archimedean norm. As we were saying before the right setting to study these

objects is rigid geometry, a theory so wide and charming that even a quick overview of the main

concepts would require some pages. Again, we redirect the reader to [Bos14], and, as we said, we

handle with rigid analytic functions as function admitting an expression in power series just in

some areas and such that they behave as holomorphic functions. The domain of definition of these

rigid analytic function won’t be Cp with the topology induced by the p-adic norm as in our first

attempt but rigid spaces (whose invention is due to Tate) equipped with the so-called Grothendieck

topology.

3.2 The ordinary locus

The rigid analytic space we will be working with is the so called ordinary locus. It is a subset of the

modular curve X1pNq over Cp as we defined it in Section 1.1.4. We denote this curve X1pNqpCpq.

We didn’t clarify at that time if any type of correspondence of isomorphism classes of elliptic

curves is still reasonable in this p-adic context. The following theorem gives some lights about this

question at least for some N but, before stating it, we need to give a meaning to the concept of

an elliptic curve defined over any Q-algebra R.

Definition 3.2.1. An elliptic curve over R is a smooth projective curve of genus one over R.

In the case R is a field we can consider the Weierstrass equation (1.1) we gave in the first

chapter:

Y 2Z ` a1XY Z ` a3Y Z
2
“ X3

` a2X
2Z ` a4XZ

2
` a6Z

3,

with coefficients in Q and we just consider its solutions in the chosen Q-algebra R.

Theorem 3.2.2. Let N ě 5, then the functor:

Q-Alg ÝÑ Set
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between Q-algebras and sets, sending R to the set given by isomorphism classes of elliptic curves

over R together with a point of exact order N , is a representable functor and it is represented by

the algebraic variety Y1pNq{Q.

This allow us to attach to any point of our affine curve Y1pNqpCpq an isomorphism class

of elliptic curves defined over Cp and a point of exact order N . In addition, we notice that

X1pNqpCpq “ X1pNqpOCpq where OCp “ ts P Cp such that |s|p ď 1u. In fact, the curve is

projective and therefore we can multiply by a non-zero factor the coordinates of the points. Now

we consider the following reduction map:

X1pNqpCpq “ X1pNqpOCpq ÝÑ X1pNqpFpq,

where X1pNqpFpq has the obvious meaning. The map is given by reducing suitable coordinates of

points by the maximal ideal M “ ts P Cp such that |s|p ă 1u of OCp . Now any point of X1pNqpFpq

is associated to an elliptic curve over Fp which is just the reduction of an elliptic curve over Cp. Now

we pull back the points corresponding to supersingular elliptic curves defined as those elliptic curve

with zero pn-torsion for all the n. The number of these points is finite since up to isomorphism the

number of supersingular elliptic curves is finite as showed in chapter V: elliptic curves over finite

fields of [Sil86], theorem 4.1. The preimage is made of residue discs (namely, discs of radius one)

since M is the residue disc. We baptize these discs Di with i “ 1, ¨ ¨ ¨ ,m where m is the number

of isomorphism classes of supersingular elliptic curves.

Definition 3.2.3 (ordinary locus). The ordinary locus A is the subset of X1pNqpCpq given by

erasing Di for all i, more explicitly:

A “ X1pNqpCpqz

n
ď

i“1

Di.

Remark. We state without proving that A is an example of an affinoid subspace of X1pNqpCpq

with a good reduction, i.e. it is a rigid space.

Therefore we will use the following unofficial definition of rigid analytic function.

Definition 3.2.4 (second attempt: rigid analytic function). A rigid analytic function is a func-

tion defined over a neighbourhood of the cusp 8 of the ordinary locus A and there it admits a

representation as a q-expansion, namely, it can be represented in by:

fpqq “
8
ÿ

n“0

anq
n

For some an P Cp and |q|p ă 1.
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3.3 Eisenstein series associated to a Dirichlet character

In this section we elaborate a way to look at Eisenstein series defined together with a Dirichlet

character. We will see we can find a p-adic equivalent even in this case and eventually it turns

out that p-adic cousins of these functions are rigid analytic. First of all we recall the definition of

Dirichlet character we gave in Section 1.1.3 and we clear the setting up.

Definition 3.3.1. A Dirichlet character of conductor N is a group homomorphism:

χ : pZ{NZqˆ Ñ Cˆ.

Clearly, any character can be extended to a function over Z sending a P Z to χ prasq (where

ras denotes the class of a in Z{NZ) and by letting χ pr0sq “ 0. With an abuse of notation we will

denote with χ also this extension.

Remark. (i) We say that the character χ is even if χp´1q “ 1, odd otherwise.

(ii) Let χ and χ̃ be two Dirichlet characters of conductor N and M respectively such that N �M .

We say that χ induces χ̃ if χ̃paq “ χpaq for any a P Z coprime with M .

(iii) We say that a character is primitive if it is not induced by any other character.

Now we consider χ : pZ{NZqˆ Ñ Cˆ a primitive, non-trivial and even Dirichlet character of

conductor N . Then we can associate to it the following Eisenstein series.

Definition 3.3.2. We define the Eisenstein series attached to the Dirichlet character χ to be the

following holomorphic Eisenstein series:

Eχ,kpτq :“ Nkg´1pχq
pk ´ 1q!

p2πiqk

ÿ

pm,nqPNZˆZ
pm,nq‰p0,0q

χpnq

pmτ ` nqk
,

where χ denotes the complex conjugation of the character χ.

This Eisenstein series is a classical modular form of weight k, group level Γ1pNq and nebentype

χ according to our Definition 1.1.11. As it happens for the trivial character, if we define q “ e2πiτ ,

common analytic theory states we can rewrite this Eisenstein series as the following q-expansion:

Ek,χpqq “ Lp1´ k, χq ` 2
8
ÿ

n“1

σk´1,χpnqq
n,

where σk´1,χpnq “
ř

d�n d
k´1 and Lp1´ k, χq “

ř8

n“1
χpnq
n1´k .
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Remark. The constant term of the previous series inherits the rationality properties of the coef-

ficients σk´1,χpnq which belong to Qχ defined as the extension of Q generated by the values of

χ.

Remark. We will need the q-expansion only in a neighbourhood of 8 therefore, throughout this

chapter we always assume |q|p ă 1.

Now we are after a good definition for the p-adic equivalent of these Eisenstein series. We saw

how to approach this issue for the special case when χ is the trivial character. Leaded by that, we

consider the following strict analogous of the trivial case.

Definition 3.3.3. For any prime p, possibly dividing N , we define the ordinary p-stabilisation:

E
ppq
k,χpqq “ Ek,χpqq ´ χppqp

k´1Ek,χpq
p
q.

In this case we decided to directly define the p-adic analogue since the procedure in this case is

the same of what we described in Section 2.1.4, namely we can see it as the p-adic limit of classical

Eisenstein series Eki,χ for an appropriate sequence of weight tkiu. Now we have a p-adic modular

form and we want to rewrite it in a working way.

Proposition 3.3.4. The ordinary p-stabilization has the following Fourier expansion:

E
ppq
k,χ “ Lp p1´ k, χq ` 2

8
ÿ

n“1

σ
ppq
k´1,χpnqq

n,

where Lpp1´ k, χq “ p1´ χppqp
k´1qLp1´ k, χq and σ

ppq
k´1,χpnq “

ř

pffld�n χpdqd
k´1.

Proof. Here it suffices to write down the expressions for Ek,χpqq and Ek,χpq
pq. The only part to

focus on is:
8
ÿ

n“1

σk´1,χpnqq
n
´

8
ÿ

n“1

χppqpk´1σk´1,χpnqq
pn.

We look a the qm-th coefficient which can be:

1. σk´1,χpmq if p doesn’t divide m

2. σk´1,χpmq ´ χppqp
k´1σk´1,χpm

1

q if p divides m (let m “ pm
1

).

Writing down the second case explicitly we get that:

ÿ

d�m

χpdqdk´1 ´
ÿ

d1�m1

χppd
1

qppd
1

q
k´1

“
ÿ

pffld�m

χpdqdk´1.
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Therefore we conclude:
8
ÿ

n“1

σk´1,χpnqq
n
´

8
ÿ

n“1

χppqpk´1σk´1,χpnqq
pn
“

8
ÿ

n“1

σ
ppq
k´1,χpnqq

n,

and the formula holds.

Remark. According to our Definition 3.2.4 the ordinary p-stabilization is rigid analytic.

As we said, Definition 3.3.3 presents a family of functions which have still an interpretation of

p-adic modular forms of weight k and level N0 the prime to p part of N . Now, if we consider the

special case k “ 0, thanks to the existence of the power series we can say they are rigid analytic

functions. In total analogue with the non p-adic case, this point of view allows us to interpret

Lpp1, χq as the value at the cusp 8 of the weight 0 Eisenstein series:

E
ppq
0,χpqq “ Lpp1, χq ` 2

8
ÿ

n“1

˜

ÿ

pffld�n

χpdqd´1

¸

qn. (3.3)

Our strategy now proceeds as follows: we have a rigid analytic function and in its q-series expression

the constant term corresponds to the left hand side of the formula 3.0.1. We want to describe the

same function in a different way, namely, with a different q-expression and different constant term

which corresponds to the right hand side of formula in Theorem 3.0.1.

3.4 Another way to look at E
ppq
0,χpqq

We can find an independent expression for E
ppq
0,χ in term of Siegel units, described in Section 1.3.

We recall that the Siegel units admit q-expansion:

gapqq “ q
1
12 p1´ qnζaq

ź

ną0

p1´ qnζaqp1´ qnζ´aq, (3.4)

where ζ denotes a N -th root of unity. We won’t go through the details and we just define the

p-adic analogue of the Siegel units to be:

gppqa “ gpapq
p
qgapqq

´p.

The expression (3.4) admits a representation in power series in q, therefore so do gpapq
pq and gapqq.

Since gapqq is never zero except at q “ 0 and since gpapq
pq is also zero for q “ 0 with the same order

of gapqq
p, we state without proof that g

ppq
a admits a q-expansion and therefore it is rigid analytic.

In the classical formula about the class number, Siegel units appear in the form of their logarithm.

On account of that, we try to understand if there is any hope that the p-adic logarithm of the

Siegel units keeps making sense.
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Proposition 3.4.1. The p-adic logarithm of g
ppq
a , logppg

ppq
a q, admits the following q-expansion:

logp g
ppq
a “ logp

ˆ

1´ ζap

p1´ ζaqp

˙

` p
8
ÿ

n“1

˜

ÿ

pffld�n

ζad ` ζ´ad

d

¸

qn,

and therefore it is rigid analytic.

Proof. We begin with proving that the q-expansion holds. Writing down explicitly the expression

we obtain:

logp g
ppq
a “ logp

ˆ

q
p
12 p1´ ζpaq

ś

ną0p1´ q
pnζpaqp1´ qpnζ´paq

q
p
12 p1´ ζaqp

ś

ną0p1´ q
nζaqpp1´ qnζ´aqp

˙

.

Since n ą 0 and by the additivity of the p-adic logarithm we can rewrite the previous expression

as follows:

logp

ˆ

p1´ ζpaq

p1´ ζaqp

˙

`

8
ÿ

n“1

logpp1´ q
pnζpaq ` logpp1´ q

pnζ´paq ´ p logpp1´ q
nζaq ´ p logpp1´ q

nζ´aq.

We recall that even though p-adic logarithm admits an extension to Cˆp we can express it in power

series only on Dp1 ` sq :“ t1 ` s P Cp : |s|p ă 1u. Since we assumed that the p-adic norm of q is

less than one we can write the summand in the following way:

8
ÿ

n“1

˜

´

8
ÿ

m“1

qpnmζpam

m
´

8
ÿ

m“1

qpnmζ´pam

m
` p

8
ÿ

m“1

qnmζam

m
` p

8
ÿ

m“1

qnmζ´am

m

¸

.

Now, we want to rewrite the previous expression in the shape:

8
ÿ

k“1

akq
k.

It is convenient to consider two cases:

• If p ffl k then we have ak “ p
ř

d�k
ζad´ζ´ad

d

• If p � k, write k “ pk1 then ak “ ´
ř

m�k1
ζpam`ζ´pam

m
`p

ř

d�k
ζad`ζ´ad

d
. We notice that if p � d

there exist unique m such that pm “ d, so m “ d
p
. Thanks to the minus sign we get:

ak “ p
ÿ

pffld�k

ζad ` ζ´ad

d
.

Therefore, we conclude that we have:

8
ÿ

n“1

˜

´

8
ÿ

m“1

qpnmζpam

m
´

8
ÿ

m“1

qpnmζ´pam

m
` p

8
ÿ

m“1

qnmζam

m
` p

8
ÿ

m“1

qnmζ´am

m

¸

“

p
8
ÿ

n“1

˜

ÿ

pffld�n

ζad ` ζ´ad

d

¸

qn,

and the formula holds.
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The previous proposition gave a meaning to the p-adic logarithm of Siegel units paving the way

to the definition of the following function:

hppqχ :“
1

pgpχ´1q
ˆ

N´1
ÿ

a“1

χ´1paq logp g
ppq
a ,

where gpχq :“
řN´1
a“1 χpaqζ

a.

Playing in anticipation, we constructed a function inspired by the classical class number formula

result. Our first hope is that it is rigid analytic.

Proposition 3.4.2. h
ppq
χ admits the following q-expansion:

hppqχ “ ´
p1´ χppqp´1q

gpχ´1q

N´1
ÿ

a“1

χ´1paq logpp1´ ζ
a
q ` 2

8
ÿ

n“1

˜

ÿ

pffld�n

χpdqd´1

¸

qn. (3.5)

Proof. We start out with writing down h
ppq
χ and with substituting the expression for logp g

ppq
a :

1

pgpχ´1q
ˆ

N´1
ÿ

a“1

χ´1paq

˜

logp

ˆ

1´ ζap

p1´ ζaqp

˙

` p
8
ÿ

n“1

˜

ÿ

pffld�n

ζad ` ζ´ad

d

¸

qn

¸

.

We divide the computation in two pieces. The first is:

1

pgpχ´1q

˜

N´1
ÿ

a“1

χ´1paq logpp1´ ζ
pa
q ´ p

N´1
ÿ

a“1

χ´1paq logpp1´ ζ
a
q

¸

, (3.6)

and we want to prove it is equal to:

´
p1´ χppqp´1q

gpχ´1q

N´1
ÿ

a“1

χ´1paq logpp1´ ζ
a
q.

Assume that p ffl N so that χppq ‰ 0 and ζp is still a primitive N -th root of unity. Then we can

rewrite the expression (3.6) as follows:

1

pgpχ´1q

˜

χppq
N´1
ÿ

a“1

χ´1papq logpp1´ ζ
pa
q ´ p

N´1
ÿ

a“1

χ´1paq logpp1´ ζ
a
q

¸

,

and therefore, by putting pa “ a (we can do this because p and N are coprime) and by gluing

together we get:

´
p1´ χppqp´1q

gpχ´1q

N´1
ÿ

a“1

χ´1paq logpp1´ ζ
a
q.

Now assume p � N so that χppq “ 0. We want to show that:

N´1
ÿ

a“1

χ´1paq logpp1´ ζ
ap
q “ 0.
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We expand the logp as a power series and we notice we can exchange the two summands since one

is finite, namely:

´

N´1
ÿ

a“1

χ´1paq
8
ÿ

n“1

ζapn

n
“

8
ÿ

n“1

1

n

N´1
ÿ

a“1

χ´1paqζapn.

Now we just want to prove that:
N´1
ÿ

a“1

χ´1paqζapn “ 0.

This is indeed a general fact as Lemma A.2.1 shows.

For the second part, we analyze:

1

pgpχ´1q

N´1
ÿ

a“1

χ´1paqp
8
ÿ

n“1

˜

ÿ

pffld�n

ζad ` ζ´ad

d

¸

qn.

Again, since the first summand is finite we exchanges order of summation getting:

1

gpχ´1q

8
ÿ

n“1

˜

ÿ

pffld�n

N´1
ÿ

a“1

χ´1paq
ζad ` ζ´ad

d

¸

qn.

If pd,Nq ‰ 1 we can apply Lemma A.2.1 which implies:

N´1
ÿ

a“1

χ´1paqζad “ 0.

Therefore we can consider only cases when d is coprime with N getting:

8
ÿ

n“1

˜

ÿ

pffld�n

χpdqd´1
1

gpχ´1q

N´1
ÿ

a“1

χ´1padqpζad ` ζ´adq

¸

qn.

Under the assumption pd,Nq “ 1 and thanks to the fact that χ is even (so χ´1paqζ´a “ χ´1p´aqζ´a)

we have

N´1
ÿ

a“1

χ´1padqpζad ` ζ´adq “
N´1
ÿ

a“1

χ´1paqpζa ` ζ´aq “ 2
N´1
ÿ

a“1

χ´1paqζa “ 2gpχ´1q,

and finally we obtain:

1

pgpχ´1q

N´1
ÿ

a“1

χ´1paqp
8
ÿ

n“1

˜

ÿ

pffld�n

ζad ` ζ´ad

d

¸

qn “ 2
8
ÿ

n“1

˜

ÿ

pffld�n

χpdqd´1

¸

qn,

as we wanted to show.

Remark. We just proved h
ppq
χ admits a q-expansion around the cusp 8, therefore it is rigid analytic.

We finally have all the ingredients to face the last step and to give a modular proof of the

Leopoldt formula.
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3.5 The Leopoldt formula

In this section we prove the Leopoldt formula as it is stated in Theorem 3.0.1. We defined two

p-adic modular forms of weight 0, group level Γ1pN0q and nebentype χ: E
ppq
0,χ and h

ppq
χ . We proved

they are rigid analytic on the residue disc of the cusp 8, namely, they admit a q-expansion for

|q|p ă 1. The q-expansion of (3.3) and (3.5) are rather similar: the only difference is in the constant

term. So, let’s denote g “ E
ppq
0,χ ´ h

ppq
χ which is constant at the residue disc of the cusp 8. As

both h
ppq
χ and E

ppq
0,χ are p-adic modular forms of nebentypus character χ ‰ 1 we infer that also their

difference g must have nebentype character χ ‰ 1. Since g is constant this clearly implies that

g “ 0 and therefore:

E
ppq
0,χ “ hppqχ .

By equating the constant term of (3.3) and (3.5) we find:

Lpp1, χq “ ´
p1´ χppqp´1q

gpχ´1q

N´1
ÿ

a“1

χ´1paq logpp1´ ζ
a
q,

and Theorem 3.0.1 is proved.

3.6 Conclusion

As we pointed out this formula has a strict relationship with the classical one. The most

interesting phenomenon is the relation between the p-adic logarithm of certain units and the

L-functions. The question raising naturally is whether or not we can reach an even more general

level of generality and in which contest. The answer turns out to be positive and the next aspect

to investigate is an analogous of this formula due to Katz. This new path starts with a different

and more general definition of p-adic modular forms respect to the approach of Serre and it

induces also a different definition of p-adic L-function. We won’t introduce this new theory but

we have a quick overview of the result of Katz. We first need to introduce an analogous of the

cyclotomic units.

3.6.1 Elliptic units

It is easy to see that the ring of the endomorphisms of an elliptic curve can be either isomorphic

to Z or to an order in the ring of integers of a quadratic imaginary field. This fact suggests the

following definition.
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Definition 3.6.1. We say that an elliptic curve has complex multiplication when its

endomorphisms ring is isomorphic to an order in the ring of integers of an imaginary quadratic

field. Moreover, we say that an elliptic curve E has complex multiplication by O with O an order

in the ring of integers of an imaginary quadratic field if EndpEq – O.

Example. Let’s consider the elliptic curves:

C{pZ‘ iZq and C{pZ‘ 3
?
´3Zq,

then the endomorphism group of the first elliptic curve is Zris which corresponds to the ring of

integers of Qpiq while it is easy to check that the endomorphisms ring of the second elliptic curve

is Z. Therefore, the first is an elliptic curve with complex multiplication by Zris while the second

is an elliptic curve without complex multiplication.

It is also clear that having complex multiplication is invariant under isomorphism of elliptic

curves. Even more: the endomorphism ring is the same. In fact, two elliptic curves of lattices

respectively Λ1 and Λ2 are isomorphic if there exists a α P Cˆ such that αΛ1 “ Λ2. Suppose O1

and O2 are the corresponding homomorphism rings and let β P O1, then

βΛ2 “ βαΛ1 “ αβΛ1 Ă αΛ1 “ Λ2, therefore, β P O2. We infer that O1 Ă O2. An analogous

reasoning shows that O2 Ă O1 implying that O1 “ O2.

Modular curves have another type of special points besides the cusps: the CM-points. Those

points correspond under the maps defined in the Introduction to elliptic curves having complex

multiplication (from which the name CM comes). The surprising fact is that by computing

special modular functions (in our case we will consider modular units) at these points we get

units (elliptic units) for the ray class field of K as we will soon see. These units play the same

role of the circular units for cyclotomic fields.

Definition 3.6.2. We define the Eisenstein series attached to a character χ of conductor N to

be:

Eχ,kpτq :“ Nkg´1pχq
pk ´ 1q!

p2πiqk

ÿ

pm,nqPNZˆZ
pm,nq‰p0,0q

χpnq

pmτ ` nqk
,

where τ P H the Poincaré upper half plane. Notice that in the sum we are not taking the zero

element.

Moreover, we define q “ e2πiτ .

We then assume:

• K has class number one.
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• O˚
K “ ˘1.

• ∆K :“ D, the discriminant of the field K, is odd and negative.

• There exists an integral ideal n Ă OK such that:

OK

n
“

Z
NZ

.

In addition we baptize:

• τn :“ b`
?
D

2N
,

• n :“ ZN ` Z b`
?
D

2
.

Suppose we have a Dirichlet character, we can then define from an even character χ a character

of finite order χn over the ideals of K (which are all principal since its class number is one) out of

the rule:

χnpαq :“ χpα mod nq,

where α P K and notice that pα mod nq P Z
NZ . Moreover, we notice that, thanks to the shape of

n, we infer:

OK “ Z` Z
b`

?
D

2
.

Definition 3.6.3. We define a CM-point to be:

τn :“
b`

?
D

2N
.

Remark. We notice that the element τn in H corresponds to the isomorphism class of the elliptic

curve E “ C{Z‘ b`
?
D

2N
Z. The endomorphism ring of E is not Z since, for instance,

2N
?
D P EndpEq, and therefore, according to our Definition 3.6.1, it is an elliptic curve with

complex multiplication. We also infer that any element of the class
”

C{Z‘ b`
?
D

2N
Z
ı

has complex

multiplication.

In order to get some confidence with these new objects we are working with we prove the

following result.

Proposition 3.6.4. The following equality holds:

Ek,χpτnq “ Nkg´1pχq
pk ´ 1q!

p2πiqk
LpK,χn, k, 0q,

where LpK,χn, k1, k2q :“
ř

0‰αPOK
χnpαqα

´k1α´k2.
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Proof. In order to get the formula we need to prove that:

ÿ

0‰αPOK

χnpαqα
´k
“

ÿ

pm,nqPNZˆZ
pm,nq‰p0,0q

χpnq

pmτn ` nqk
.

We notice that mτn ` n P OK @pm,nq P NZˆ Z and mτn ` n mod n “ n mod n, so:

ÿ

pm,nqPNZˆZ
pm,nq‰p0,0q

χpnq

pmτn ` nqk
“

ÿ

pm,nqPNZˆZ
pm,nq‰p0,0q

χnpmτn ` nq

pmτn ` nqk
“

ÿ

0‰αPOK

χnpαqα
´k,

where the last equality is due to the fact that, by definition we have:

OK “ Z` Z
b`

?
D

2
.

We now proceed to the definition of elliptic units.

Definition 3.6.5. We define the elliptic units to be the evaluation of the Siegel functions ga at

the CM points, namely:

ua,n “ gapτnq

Remark. The name unit in the previous definition is not meaningless in fact the elliptic units lie

in Oˆ

KnpµN q
where Kn denotes the ray class field of K.

3.6.2 Katz formula

We have already seen the Katz p-adic L-function in the context of Section 3.6.1, precisely in

Proposition 3.6.4. It is:

LpK,χn, k1, k2q “
ÿ

αPOK
α‰0

χnpαqα
´k1α´k2 .

The fundamental article where this theory is shaped is due to Katz ([Kat72]). We just state the

result which relates the values of the p-adic L-function with the p-adic logarithm of elliptic units.

The setting of the theorem is outlined in Section 3.6.1.

Theorem 3.6.6 (Katz). Let χ be a non-trivial even primitive Dirichlet character of conductor N

and let K be a quadratic imaginary field equipped with an ideal n satisfying OK{n “ Z{NZ. Let

χn be the ideal character of K associated to the pair pχ, nq, then

LppK,χn, 0q “ ´
p1´ χnppqp

´1q

gpχq´1
ˆ

N´1
ÿ

a“1

χ´1paq logppua,nq.

The important fact is that the techniques required in the proof of this theorem are analogous and

a generalization of the techniques used in the proof of the Leopoldt formula.
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A

Some results

A.1 About the p-adic L-function

Here we refer to the definition of analyticity in Cp as stated in Definition 3.1.4. Our way to

define the p-adic L- function is to interpolate the classical L-function at the values it assumes on

the integers. The following result realizes this idea of p-adic L-function.

Theorem A.1.1. Let χ be a primitive Dirichlet character of conductor f ě 1 then there exists a

p-adic analytic function Lppχ, sq on BpRq “ ts P Cp such that |s|p ă Ru with R ą 1 except for a

simple pole at s “ 1 with residue 1´ 1
p

when the character is trivial, satisfying:

Lppχ, nq “ ´p1´ χω
´n
ppqpn´1q

Bn,χω´n

n
.

Here the Bn,χω´n denotes the generalized Bernoulli numbers and the character χω´n is defined as

the primitive character associated to:
ˆ

Z
lcmpconductor of χ, conductor of ω´nqZ

˙ˆ

Ñ Cˆ,

sending a to χpaqω´npaq (here ω denotes the Teichmüller character). We want to show that in

case χ is an odd character the p-adic L-function as defined above is equally zero. One can

compute that the generalized Bernoulli numbers are zero for χ odd therefore Lp is zero on Z and,

since Z is dense in Zp we infer by continuity that Lp is zero Zp as well. From our definition of

analyticity, the power series representing Lp must be equally zero in Bp1q and therefore on the all

BpRq.
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A.2 Characters theory

Lemma A.2.1. Define τpb, χq :“
řN´1
a“1 χpaqζ

ab with χ a Dirichlet primitive character of

conductor N and ζ a N-th root of unity. If pb,Nq ‰ 1 and χ is primitive, then τpb, χq “ 0.

Proof. First of all we claim that if χ is primitive than for any N
1

� N there exists a c P Z such

that c ” 1 mod N
1

, pc,Nq “ 1 and χpcq ‰ 1. In fact, if we consider the sequence tcnu with

cn :“ 1` nN
1

then cn ” 1 mod N
1

. Moreover, we notice that there exists a ci which is coprime

with N , for instance we can consider cd with d :“ pb,Nq. Now, suppose that for any c such that

c ” 1 mod N
1

and pc,Nq “ 1 we have χpcq “ 1, this implies that χ is induced by a character

modulo N
1

against the assumption that χ is primitive. In fact, if we consider a, b P Z such that

a ” b mod N
1

but a ı b mod N then we can infer that χpab´1q “ 1 since ab´1 ” 1 mod N
1

. Thus

χpaq “ χpbq. So χ is induced by that character χ
1

of conductor N
1

defined as χ
1

paq :“ χpaq. As

this is against the hypothesis that χ is primitive, we conclude that there exists a c P Z satisfying:

• c ” 1 mod N
1

• pc,Nq “ 1

• χpcq ‰ 1

Now we notice that if ζ P Cp is a primitive N -th root of one, N “ dN
1

and b “ db
1

(where

d “ pb,Nq), then ζb is a primitive N
1

-th root of one. In fact, clearly it is a N
1

-th root of one and

it is primitive because if ζbs “ 1 with s ď N
1

then N � bs so s ě N
1

and we conclude s “ N
1

.

Under the assumption that c ” 1 mod N
1

then ζbc “ ζp1`kN
1
qb “ ζb with k P Z.

So:

τpb, χq “ χ´1pcq
N´1
ÿ

a“1

χpacqζab “ χ´1pcq
N´1
ÿ

a“1

χpacqζacb “ χ´1pcqτpb, χq

Implying τpb, χq “ 0 since χ´1pcq ‰ 1.

Lemma A.2.2. Let G be a finite abelian group and f a function from G to any field of

characteristic zero, then the following holds:

detpfpστ´1q ´ fpσqqσ,τ‰1 “
ź

χP pGzt1u

ÿ

σPG

fpσqχpσq.

Proof. See Lemma 5.26 part (b) in [Was97].
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A.3 Algebraic number theory

Lemma A.3.1. We consider a field K. Let A be a subgroup generated by tε1, ¨ ¨ ¨ , εsu with εi

independent elements of the units group of K and by the roots of unity in K. Let B be a subgroup

generated by tη1, ¨ ¨ ¨ , ηsu with ηj independent and in the group of unity of K. Suppose A Ă B has

finite index then:

rB : As “
Regptεiu

s
i“1q

Regptηjusj“1q
.

Proof. We choose tσku
s
k“1 a complete set of endomorphism of K into C distinct and pairwise not

conjugate. Then by definition we have:

Regptεiu
s
i“1q “ |detpnk log |σkpεiq|q

s
i,k“1|.

We notice that we can write:

εi “

˜

s
ź

j“1

η
ai,j
j

¸

¨ proot of unityq .

Therefore:

nk log |σkpεiq| “
s
ÿ

j“1

nkai,j log |σkpηjq|,

and:

pnk log |σkpεiq|q
s
i,k“1 “ pai,jq

s
i,j“1 pnk log |σkpηjq|q

s
j,k“1 .

So we conclude:
Regtεiu

s
i“1

Regtηjusj“1
“ |detpai,jq

s
i,j“1|.

From the theory of elementary divisor we know we can find two integral matrices M,N such that

Mpai,jqN “ diagpd1, ¨ ¨ ¨ , dsq such that their determinant is ˘1. These matrices correspond to the

change basis of A and B so there exist basis tx1, ¨ ¨ ¨ , xsu for A and ty1, ¨ ¨ ¨ , ysu for B such that

xi “ diyi. Thus B{A –
À

i Z{diZ and rB : As “ |
ś

i di| proving the lemma.

Lemma A.3.2. Let m, k be positive integers such that k ă m and p an odd prime, then following

formula holds:

1´ xp
k

“

pk´1
ź

j“0

p1´ xζjp
m´k

pm q.

Proof. We have the following expressions:

xp
k

´ 1 “
pk´1
ź

j“0

px´ ζj
pk
q “

pk´1
ź

j“0

ζj
pk
pxζ´j

pk
´ 1q.
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So:

1´ xp
k

“

pk´1
ź

j“0

p1´ ζj
pk
xq “

pk´1
ź

j“0

p1´ ζjp
m´k

pm xq.

Remark. We just notice that for p a prime integer and k ă m two positive integers this lemma

implies:

1´ ζbpk “ 1´ ζbp
k

pm “

pk´1
ź

j“0

p1´ ζb`jp
m´k

pm q “

pm
ź

j“1
j”b mod pk

p1´ ζjpmq.

In this section we relied on [Was97] and [Ste17].

Theorem A.3.3. ZrζN s is the ring of integers of QpζNq.

Proof. See Theorem 2.6 in [Was97].

Definition A.3.4. Let K be a number field which has degree r ` 2s over Q with r real and 2s

complex embeddings into C. We consider a set tσiu
r`s
i“1 of distinct, pairwise non-conjugate

embeddings of K into C. We define the regulator of the set tε1, ¨ ¨ ¨ , εr`s´1u where εi P K
ˆ are

elements of norm ˘1 as follows:

Regpε1, ¨ ¨ ¨ , εr`s´1q “ |pni logpσipεjqqq
r`s´1
i,j“1 |.

Where ni “ 1 if σi is a real embedding and ni “ 2 otherwise. If tε1, ¨ ¨ ¨ , εr`s´1u is a set of

fundamental unit for the ring of integer of K, then its regulator is called the regulator of K. In

case the ring of integers has finite unit group we pose the regulator of K to be 1.
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