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Introduction

Let L be a field, and L5P its separable closure, one of the central goals of modern number theory is to
understand about the absolute Galois group G, := Gal(L*?/L). From the group theory point of view,
(1, is a profinite group, which is the inverse limit of all Galois groups of finite Galois extensions over
L. For some cases, G, is easy to describe, for example, L := R or L := [F,. For the case of local fields,
the problem is much more complicated, and although we can describle G, in terms of generators and
relations, the arithmetical information is not provided [FV02| (page 169).

Another approach is to understanding G';, via its representations. In the case L = Q,, we denote
Repr(GQp) the category of all finitely generated Z,-modules with continuous actions from Gq,. Jean-
Marc Fontaine [Fon90] developed a theory of (¢,I')-modules that allows us to pass from Repy (Gg,)
to another equivalent category, which is easier to understand.

More precisely, if we denote Qp° the field extension of Q) obtained by adjoining all p"-th roots of
unity, and I' := Gal(Qp°/Q,). Let

ay, = {ZaiXi]ai IS Zp,i_lzgloo a; = 0}
1€Z
the ring of infinite Laurent series, then the theorem of Fontaine yields Repr(GQp) is equivalent to
Mod®*(«, ), where Mod® (4, ) is the category of all finitely generated o/, -modules with some other
axioms related to the action of I'.  As a corollary of Lubin-Tate theory, we have I' = Z, which is a
procyclic group. Hence, the action of I" is easier to understand than the action of G, .

The theory of (¢, T')-modules was later generalized by M. Kisin and W. Ren [KR09| for arbitrarily
local field of characteristic 0 and in this case, cyclotomic extensions are replaced by Lubin-Tate ex-
tensions, under the assumption that the Frobenius series is a polynomial. P. Schneider |Sch17| then
dealt with the general Frobenius series under the new point of view, so called tilting correspondences,
developed by P. Scholze [Sch12|, and simplified by K.Kedlaya |[Ked15|. And the goal of this thesis is
to present the proof of the equivalence of categories in the later settings in details, and discuss about
some of its applications.

This text is organized as follows. In the first chapter, we will introduce the theory of formal group
law, and Lubin-Tate extensions, and the main goal of this chapter is to prove the isomorphism between
'y := Gal(Ls/L) and O*, for any local field L, where Ly is the Lubin-Tate extension of L with a
fixed Frobenius series, and O := Oy, is its ring of integers. In the second chapter, we will treat the
theory of ramified Witt vectors in details. The third chapter is devoted for the tilting correspondences
with the setting L/Q), is a finite extension, and that is a fundamental step to the theory of (¢,I')-
modules. The main result of this chapter is the (topological) isomorphism between the absolute Galois
group of Lo, and the absolute Galois group of Fy((X)), where Fy is the residue field of L. Together
with it, the close relations between characteristic 0 and characteristic p are reflected via other tilting
correspondences. In the fourth chapter, we will introduce the category of etale (p,I')-modules. And in
the last chapter, we will introduce the pair of functors 2 and ¥ between Repy (G ) and Mod® (7,
and then prove that they are quasi-inverse of each other. We should note that & and ¥ have some
nice properties, including they are exact and preserve elementary divisors. The main reference for the
whole thesis would be [Sch17].

The contribution of the thesis is minor among such big theories and results. The theory of ramified
Witt vectors treated in [Schl7| are defined under the assumptions of local fields of characteristic 0,
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but we realized that it also works for local fields of characteristic p. In the end of Chapter III, as an
application of the tilting correspondences, we proved that the p-cohomological dimension of Gg, is
not larger than 2. It is a result proved by Herr |[Her98| by using the theory of (¢,T')-modules. We
also used the machinery of (¢, T')-modules to deduce that in the setting of cyclotomic extension over
Qp, for the rank one case, Galois representations and (¢, I')-modules come from twists by characters.
And with the use of Galois cohomology, we replaced and simplified some parts of the proof in [Sch17]
about the equivalence of categories.



Chapter 1

Lubin-Tate extension

Class field theory studies abelian extensions of a local or global field. One can obtain the description
of the maximal abelian extension of a local field by Lubin-Tate theory |LT65]. And in this chapter, we
will introduce the theory of Lubin-Tate extension. The main references for this chapter are [Sch17],
and [Mill3].

1.1 Formal group law and homomorphisms

We always fix A a commutative ring, let us warm up with the useful statement for the ring of power
series of one variable A[[X]].

Lemma 1.1.1. Let f = a1 X + asX? + ... € A[[X]], then there exists g(X) € XA[[X]] such that
fog(X)=X iff ar € A*. Also, if such g exists, then it is unique, and fo g(X)=go f(X)=X.

Proof. Let g(X) = 01X + b2 X? + ... € A[[X]]. We then have

Fe(X) = a1 X + 02 X2 +..) +ag(by X + b X2+ )2 + ... =
= (albl)X + (a1b2 + agbl)X2 + ...

Then f(g(X)) = X iff a1by = 1,a1b2 + a2by = 0,.... Hence, fog(X) = X iff ay € A*. The
uniqueness of g(X) directly follows from this.

Assume that a; € A*, and g(X) is constructed as above. Because by = (a;)~! € A%, we can
construct h(X) € X A[[X]] such that g o h(X) = X, and hence

hX) = (feg)oh(X) = fol(goh)(X)=f(X)
Hence, fog(X)=go f(X)=X. O
Remark 1.1.2. From the lemma above, the set {a1 X + a2 X? + ... € A[[X]]|a; € A*} is a group.
We are now ready for the definition of formal group.

Definition. Let A[[X, Y]] be the ring of formal power series ring of two variables, F'(X,Y) € A[[X,Y]],
then F' is said to be a commutative formal group law if:

(i) F(X,Y) = X + Y+(terms of degree > 2).

(i) F(X,F(Y,2)) = F(F(X,Y), Z).

(iii) F(X,Y) = F(Y, X).

For convenience, we will often denote "terms of degree > n" as mod degn.
Proposition 1.1.3. Let F' be a commutative formal group law, then

(i) F(X,Y)=X+Y + 3, 5 aibj XY/
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(11) There exists a unique ip(X) € X A[[X]] such that F(X,ip(X)) = 0.
Proof.
(i) Denote f(X):= F(X,0) =X mod deg2, then by the definition, we have
F(0,F(X,0)) = F(F(X,0),0) = fo f(X)

And F(F(X,0),0) = F(X,F(0,0)) = F(X,0) = f(X), we obtain fo f = f. This follows from
Lemma that there exists a unique g € X A[[X]] such that fog=go f = X. Hence,

f(X)=fo(fog(X))=(fof)og(X)=(fog)(X)=X
And this yields F(X,0) = X. By symmetry, we also have F(0,Y) =Y. And this yields any

commutative formal group law is of the form

FX,Y)=X+Y+ ) aib;X'y?
1<4,j

(ii) Take Let ip(X) = b1 X 4+ bo X2 + ... € X A[[X]], we have
F(X,ip(X)) =X +ip(X) + a1 Xip(X) + (a12Xip(X)? + ann X2ip(X)) + ...
then F'(X,ip(X)) =0 iff
X+ (X +b0X2+ ) +an X)X +boX?+..) = (by + D)X + (by + a1 b)) X> + ...

Solving the system of equations for each coefficients in ip(X), we can see that ip(X) is uniquely
determined.

O

So, we can add the condition (iv) in the definition of commutative formal group law about the
existence of inverse as the remark above. But it turns out to be deduced from (i), (ii) and (iii).

Corollary 1.1.4. Let K be a non-archimedean complete field, with its ring of integer A := Ok and
its mazimal ideal mp, and F is a formal group law in A[[X,Y]], if we define x +py := F(x,y) for
any x,y € mg, then (mg,+p) forms an abelian group.

Proof. Due to the definition and Proposition [I.1.3] it is sufficient to check that z +p y is in mg. But
because F(z,y) =z +y+ Zij>1 azbjx'y’, for a;,b; € A, we can see that F(z,y) is in fact in mg, due
to the convergent criterion of series in non-archimedean complete field. O

Example 1.1.5. Let G,(X,Y) := X + Y, then it can be easily checked that F' defines a commutative
formal group law, which is called the additive formal group law. Similarly, G,,,(X,Y) := X +
Y+ XY =(1+X)(1+Y)—1) also defines a commutative formal group law, which is called the
multiplicative formal group law . Let K be a complete non-archimedean field, with O, mg is
defined as above, then it is easy to check that the group (mg, +¢,,) is isomorphic to the multiplictive
group 1 4+ mg via the map z +— 1+ z.

We are now ready to define homomorphisms between formal group laws.
Definition. Let F,G € A[[X, Y]] be two formal group laws, then a power series h(X) € A[[X]] is said

to be a homomorphism from F' to G (say, a homomorphism h : F — G) if

fF(X,Y)) = G(f(X), f(Y))

h is said to be an isomorphism if there exists a homomorphism b’ : G — F and ho h/(X) =
h'oh(X)=X.
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Based on Lemma there is a useful characterization of isomorphisms between formal group
laws.

Lemma 1.1.6. Let h : F — G be a homomorphism between formal group laws, then h is an isomor-
phism iff h(X) = a1 X mod deg?2, with a; € A*.

Proof. One can see by Lemma that there exists b’ € A[[X]] such that hoh' = h' o h = X iff

a1 € A*. And in this case, we have

W(G(X,Y)) = W(G(ho W(X),ho W(Y))) = (K o h) o F(H(X), K (Y)) = F(H(X), 1 (V)
This proves that h' : G — F is also a homomorphism. And this finishes our proof. O

Example 1.1.7. Let G,,,(X,Y) be the multiplicative formal group law, then for a prime number p,
we can define h(X) = (1 + X)P — 1, then
h(Gn(X,Y)=14+Gun(X,)Y)P-1=(1+X)P(1+Y)P -1
And

C(R(X),h(Y)) = Gm((14+X)P —1,(1+Y)P —1) = (1+ X)P(1+Y)P -1
This yields h : G, = Gy, is @ homomorphism.
We will conclude this section by the following about the endomorphism ring of formal group law

Proposition 1.1.8. Let F' be a commutative formal group law, then

End(F)={f:F — F|f is a homomorphism}
forms a ring, with addition +p, and addition op defined as f +p g := F(f,g), and fopg:= fog.

Proof. The proof of the proposition above is not difficult, but slightly long, with repetition steps.
Step 0. We easily see that id : F' — F defined as ido FF' = F, and 0 : F — F defined as 0o F =0
are certainly in End(F).
Step 1. Let f,g € End(F'), we have

fogoF(X,Y)=F(fog(X),[fog(Y))
This yields f o g € End(F), with foid = ido f = f.
Step 2. Let f,g,h € End(FE), or more generally, with f,g,h € X A[[X]], we can easily see that
(fog)oh=fo(goh).
Step 3. We first let Z := F(ip(X),ip(Y)), we have
F(Y,2) = F(Y, F(ip(X),ip(Y))) = F(F(Y,ir(Y)),ip(X)) = F(ip(X),0) = ir(X)
And from this,

Also, we have F(F(X,Y),ip(F(X,Y))) = 0. Because of the uniqueness of ip, we get

ir(F(X,Y)) = F(ir(X),ir(Y))

This follows that ip € End(F).
Step 4. Let f,g € End(F'), we can define h(X) := F(f(X),9(X)) = f +r g. Then,

hWE(X,Y)) = F(f(F(X,Y)),g(F(X,Y))) = F(F(f(X), f(Y)), F(9(X),9(Y)))
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Similar to Step 3, we can interchange terms and get

WE(X,Y)) = F(F(f(X),9(X)), F(f(Y),9(Y))) = F(h(X),h(Y))

And this yields h € End(F'), and it is easy to check that f+r0=0+pf = fand f+pg=g+rf.
Step 5. One can see, by Step 1 and Step 3, —f := ip o f € End(F). Also, similar to Step 4, we

can see f +p (—f) = (=f) +r [ =0.
Step 6. We have, for all f,g,h € End(F)

e(X) = folg+rh) = f(F(g(X),h(X))) = F(fog,foh)=(fog)+r (foh)

And similarly, (g +rh)o f = (go f)+r (ho f).
We can now conclude that End(F') is a ring with addition and multiplication laws defined as
above. O

1.2 Lubin-Tate formal group law

Let us first fix some notations: a local field K, with its residue field kg, and q := #kg, and p is
the characteristic of kg . Its ring of integers A := Ok is a D.V.R with its unique maximal ideal mg
generated by 7 1= 7.

Definition. Let f € A[[X]] be a formal power series, then f is said to be a Frobenius series if
(i) f(X)=7X mod deg?2.
(ii)) f(X) = X? mod 7.

Example 1.2.1. f(X) := 71X + X7 is a Frobenius series. Also, when K = Q,, and 7 = p, then
f(z):= (14 X)? — 1 is a Frobenius series.

Let us begin this section with the following

Lemma 1.2.2. Let f, g be two Frobenius series, and F(X) € F[[Xy, ..., X,]] be a formal power series
in n-variables, then fo F = F(g,...,g) mod 7.

Proof. We have f o F(X1,...,X,) = F(X1,...,X,)? mod 7, and F(g9(X1),...,9(X»)) = F(X{, ..., X?)
mod 7. And we can easily see that F/(X7,..., X,)! = F(X{,..., X;}) mod 7. O

Using this, we can prove the key lemma for this section

Lemma 1.2.3. Let f, g be two Frobenius series, and ¥(X1, ..., Xp) := a1 X1 + ... + an X, a linear form
in A[X1, ..., Xyn]. Then there exists a unique F € A[Xq, ..., X}] such that

(i) F =1 mod deg?2

(ii) foF = F(g,....,q9)

Proof. We will construct F' from polynomials in A[X7, ..., X,,] by reduction with these conditions for
allr >0

(1)F, € A[X;, ..., X,] is a polynomial of degree r.

(2) foF,.=F.g,....,g9) mod degr + 1.

(3) Fry1 = Fr + Er11, where E,1; is a homogeneous polynomial of degree r + 1 in A[X7, ..., X,,].

Assume that such F,. are constructed, we let F' := F,. + E;11 4+ E,42+ .... Then it can be seen for
all r

f(F(X1,...., X)) = f(F, + terms of degree > r+ 1) = f(F,) mod deg(r+ 1)

And because of condition (2) and (1), we have

foF =F.(g,..,g) mod deg(r+1)=F(g,....,q) mod deg(r+1)
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So, we get foF = F(g,...,g). Hence, it is sufficient for us to construct F,. First, one can see that
F} is exactly v, due to the condition (i), and the condition (ii) is also satisfied since
fW(Xq,.... X)) =m(a1 X1 + ... + apXy,) mod deg?2
And also

Y(g(X1)y .y 9(Xp)) = a19(X1) + ... + ang(Xy) = (a1 X1 + ... + @, X)) mod deg2

And this follows that F} = 1. Now, assume that we already constructed F., and we want to
construct F,41. Let Fr.1 1 = F. + E,+1. We have

f(Fr + ErJrl) = f(Fr) + 7k mod deg("" + 2)
And

Fri1(9,-9) = Fr(g,-9) + Erga(g, .. 9) =
=F.(9,.9) + Erp1(nXy,...,7X,) mod deg(r +2)
=Fu(g,...,g) + 7" E, 1(X1,..., X,) mod deg(r + 2)

The last equality follows since E,;; is homogeneous of degree r + 1. The condition (2) for F,
implies that f o F. = F.(g,...,g). And we want

foF. 1= Fr+1(g, ~--ag)
And this is equivalent to say
F.(g,....9) — fo F,
(1l —7")

But in Lemma we have prove that «|(F,(g,...,9) — fo F,), and (1 —7") € A*. So, we can
construct F,41 by this formula, and hence F,1;. Now, the uniqueness of F' follows easily from this
construction. O

ErJrl =

The latter development will be applications of Lemma [I.2.3] The first one is

Theorem 1.2.4. Let f be a Frobenius series, the there exists a unique commutative formal group law
Fy such that f € End(Fy).

Proof. Based on Lemma there exists a unique formal power series F' € A[[X, Y]] such that

HF(X,Y)=X+Y mod deg2.

(ii)f o F = F(f, f)

And we need to check that in fact F' is a commutative formal group law. So we just need to check
two things.

(1) F(X,Y) = F(Y,X). Let G; = F(X,Y),Gy = F(Y,X), then G; = X +Y mod deg2, and
also f o Gy = G;(f, f). So by the uniqueness in Lemma we get G1 = Ga.

(2) (Associativity) Let G1(X,Y,Z) = F(X,F(Y,Z2)),G2(X,Y,Z) = F(F(X,Y),Z), then G; =
X+Y +Z mod deg2, and foG; = Gi(f, f, f). So, by the uniqueness of Lemma [1.2.3] again, we get
G1 = Ga.

This follows directly that F' is commutative formal group law. O

Definition. Let f be a Frobenius series, then such a commutative formal group law Fy in Theorem
[[.24) is called a Lubin-Tate’s formal group law .

Example 1.2.5. Let K = Q,,m = p, f(X) = (1 4+ X)? — 1 is a Frobenius series, then G;,,(X,Y) =
(I1+X)(1+Y)—1is a Lubin-Tate formal group law of f, as in Example presented.
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With the help of Lemma [1.2.3] we can now easily construct homomorphisms between two Lubin-
Tate’s formal group laws. Let f, g be two Frobenius series, then by Lemma there exists a unique
lalg,r € A[[X]] such that [a]sf = aX mod deg2 and go[a], s = [algfo f.

Proposition 1.2.6. Such an [alg ¢ defined above is a homomorphism from Fy to Fy.

Proof. Let h := [a]y f = aX mod deg2, then we want to show h o Fy = Fy(h,h). Let Hy := ho Fy,
and Hy := Fy(h, h). Then one can see both Hy, Hy have linear term as aX + aY . Also,

goHy=gohoF;=hofoF;=hoF(f f)=H(f,f)

And

goHy=goFy(h,h)=Fy(goh,goh)=Fg(ho f,hof)=Ha(f,f)

So, by the uniqueness of Lemma we get Hy = Hy. This yields [a]g ¢ is a homomorphism
from Fy to F. O

Here is a nice corollary of the proposition above.
Corollary 1.2.7. Let f, g be two Frobenius series, then Fy = Fy.

Proof. One can see for a € A*, then [a]y f = aX mod deg2 defines an isomorphism between Fy and
Fy, as presented in Lemma [I.1.6] O

Proposition 1.2.8. Let f be a Frobenius series, a,b € A, then

[ably,y = [a]y,s[bl s = [baly,y = [b]slaly,y
and
la+b]rr=la]rs+[blss
And hence, the map

A— End(Ff)
a— [alsf

is an embedding of rings.

Proof. We can see that the four element above (in the ring End(Fy)) have the same linear term abX.
We have f o [abls ¢ = [ab]f o f, and

folalysolblyy=lalgpofolblys=Ilalpsolblsrof

Also, folbals s = [bals o f. So, by the uniqueness of Lemma 2.3, we have [ab]¢ ¢ = [a]7 ¢[b]r,r =
[bal¢ ¢ = [b]f.flals . The last equality follows by interchanging a,b in the first equality.

Similarly, we obtain [a 4 b]f s = [a]f,¢ + [b],f, since both have the same linear term (a + b)X.
Hence, the map from A to End(F}) is a ring homomorphism, and it is obviously injective. O

We are now ready for the Lubin-Tate theory. For convenience, from now on, we can denote
a5 = [aly-
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1.3 Lubin-Tate extension

We assume the notations in Section 2, with K the algebraic closure of K. Let M := {z € K|vk(z) > 0}
the maximal ideal of K. Recall that for any z1,...,2, € M, and any power series F(X1,...,X,) €
Al[X1,..., X4]], F(z1,...,2n) converges in K, since norms of terms go to 0, when the indexes go to
infinity.

Recall that if f is a Frobenius series, and F its corresponding Lubin-Tate’s formal group law, we
can equip M with the addition defined as a +r, b = Fy(a,b)(Va,b € M). This turns out (M, +r,)
is an abelian group. We can further equip M with an A-module structure as (a, z) := [a]¢(2) for all
z € M. This is well-defined, since

(i) [1](2) = =.
(i) [a]f(z1 + 22) = [al s (21, 22) = Fy(la]f(21), [a]f(22)) = laly(21) +r; [a]f(22).
(iii) [ab]f(z) = [a]s o [b]#(2). This follows from Proposition [1.2.8|
Let g be another Frobenius series, recall that for all @ € A, we can construct the map [alg ¢ : Fy —
F,. This induces a homomorphism of abelian group
[a]g,f : (M7 +Ff) — <M7 +Fg)

Remark 1.3.1. The homomorphism [a], ; defined above is also an A-module homomorphism.
Proof. 1t is sufficient to prove that [a]g o [b](2) = [b]4 © [a]g,r. The both power series have the same
linear term abX. Also,

golalgrolbly=lalgpo folbly=lalgsolblyof

And furthermore,
go[blgolalgs=1[blgogolalgs=[blgolalgysof
So, the statement now follows by the uniqueness of Lemma [1.2.3 O

Via this remark, one can see for any a € A,[a]y : (M,+F;) — (M, +p;) is an A-module ho-
momorphism. And hence ker[a]; is an A-submodule of (M, +r,). Let a := 7", we obtain .7, :=
ker[7"]; = {z € M|[n"];(2) = 0}. Using the uniqueness of Lemma again, we can see that
(7l =f.[7*g=fof,...[x"]f=fofo..of (nterms).

Remark 1.3.2. .%, has a structure of Ok /n"0k-module, and we have a increasing sequence of
A-modules

F1 C Fy C...C Iy,
And hence, the increasing of field extensions
KCK,:=K(%#)C..CK, =K(%#,) C..CKyx:=U>1K,
Such sequence of field extensions is called Lubin-Tate’s tower .
Proof. Assume that a = b+ cen™, for a,b,c € A, we have for all z € .,

[a]f(2) = [b+ en"]§(2) = [b]¢(2) +r; [en"]§(2) = [b]#(2) +F, [c]f o [7"]f(2) = [b] £ (2)

And this yields .%#, has a Ok /7" Ok-module structure. The increasing sequences are easily obtain
by the fact f € XA[[X]] and

7"y = fof...of (n terms)
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From now on, we will deduce properties of Lubin-Tate tower. One can see that .%, is obviously
dependent on the choice of f, but we will prove that it is not the case for K.

Lemma 1.3.3. Let g be another Frobenius series with %', = ker[n"],, then K(%,) = K(F'y).

Proof. Choose any u € A* with [u]y ;s : Ff = Fy is an isomorphism. This induces an isomorphism of
A-module (M, +;) = (M, +p,). And also, it induces an A/7™A-isomorphism .%, = .Z’,. Hence,
in particular, we get z € %, iff [u], ¢(2) € F',. But then, since z € M, [u], ¢(z) converges in K(z),
we obtain K(.#',) C K(.%,). By symmetry, we obtain K(.%,) = K(%',). O

Via this proof, we can see the explore the algebraic properties of the A/7"A-module .%,, it is
sufficient for us to choose a simple Frobenis series, f(X) := X + X9.

Lemma 1.3.4. With f is chosen as above, the map [r|f : Fp — Fn_1 sending z — [r|f(2) is a
surjective homomorphism of A-module, and its kernel is 7.

Proof. One can see easily that [r] is a well-defined homomorphism. Take any 2,1 € %#,_1, we want
to find z, € #,, such that [7]f(z,) = z,—1. One can see the equation 7X 4+ X? = z,_; always has
solutions in K, and since vk (z,—1) > 0, such a solution z, also lie in M. And we have [7|¢(2,) = 2n—1.
This yields [7"]¢(zn) =0, i.e. 2z, € F,. And hence, []f is a surjective homomorphism. The kernel of
[7] now directly follows. O

For the main results of this section, we need the following
Lemma 1.3.5. Let z € M, then the polynomial g(X) = z + X + X has distinct roots in K.

Proof. We have ¢'(X) = 7 +¢X9 !, which is 7 when char(K) = p. Hence, the statement is obviously
true when char(K) > 0. Assume for now char(K) = 0, and that there exists some z € K, with g(z) =
¢ () = 0, then 2771 = —7/q. This yields |z| > 1, because |7/q| > 1. From this, |rz| < |z| < |z|9,
which follows that |z| = |rz 4+ 29| > 1. It is a contradiction, since v,(z) > 0. O

We are now ready the for the an important result
Proposition 1.3.6. .7, is a free A/n"™ A-module of rank 1. This implies Aut g /zn o(Fn) = (A/T"A)*.

Proof. We will prove this fact the induction. When n = 1, the equation f(X) = 7X + X? =
X (74 X271 has g-distinct roots in K (Lemma , and .#; has a structure of A/mA-vector space
structure. This yields .#; is a 1-dimensional A/mA-vector space.

Assume that the statement holds to n — 1(n > 2), then there exists z,_1, the generator of %, _1,
and an isomorphism ¢, 1 : A/7" A = %, 1 defined as a [a](zn—1). By using Lemma
there exists z, € %, with [7]f(2,) = 2z,—1. Also, the map ¢, : A/7"A L, defined as a la] £ (zn)
making the following diagram commute:

0 — k= lA/s"A —— A4 —— A4 —— 0

| Jo Jon-

0—— F1 —  Z, L Fpep —0

where rows are exact, with the first and the last vertical arrows are isomorphisms. This yields the
arrow in the middle is an isomorphism, too. Hence, %, is a free A/n™A-module of rank 1. The later
statement is now clear. O

Because #A/7"A = ¢", we have #.%, = ¢". And hence [K,, : K] < 400. And we conclude this
section by the following



14 CHAPTER 1. LUBIN-TATE EXTENSION

Theorem 1.3.7. The Lubin-Tate’s tower

KCcKycCc..CcK,

is a tower of totally ramified Galois extension, with [K, : K] = ¢"~'(q — 1). Moreover, if z, is a
generator for %, as A/n" A-module, then z, is a uniformizer for K,. And that Gal(K~/K) = A*.

Proof. For any 0 € Gal(K/K), because o acts as identity map in K, o acts on (M,+p;) as an
A-module isomorphism, since for all z, 21,20 € M, o([a]f(2)) = [a]f(c(2)), and also 0 Ff(21,22) =
F¢(o(z1),0(22)). From this, ¢ induces an A/7n"™A-module automorphism on .%,. This yields by
Proposition for each o, there exists only one ¢, € Autg/mna(Fn), such that o(z) = ¢,(2), for
all z € #,. And hence, one obtain an embedding from Gal(K,/K) to Aut g/ s(Fn).

One can see that K = K(.%1), i.e. K; is obtained by adjoining roots of the polynomial f(X) =
7 X + X9 which is separable. Hence, K1 /K is Galois. If z; # 0 is a root of f(X), we can see that z;
is a root of g(X) := 7+ X971 which is an Eisentein polynomial. Hence, [K1 : K] > ¢—1 and 21 is a
uniformizer for K7. Due to our previous argument, we have [K; : K] = ¢ — 1.

For n > 2, assume that the statements hold for n — 1, we can see K(.%,) is an extension of
K(%,-1) by adjoining roots of the polynomial 7 X + X? = z,_4, for all z,_1: generator of %,
as A/m" 1 A-module. For such 2, 1, the polynomial g(X) := —z,1 + 7X + X? is Eisentein of
degree ¢ over K, (since z,_1 is a uniformizer for K,_;), and by Lemma g(X) is separable.
This implies K,,/K,,_1 is totally ramified Galois extension of degree at least q. Hence, one obtains
[Kn : K] > ¢"'(qg — 1). But then, due to our previous argument, #Gal(K,/K) < ¢ !(¢—1). It
follows directly that Gal(K,/K) = (A/7"A)*, and that [K,, : K] = ¢" '(¢—1), and that K,,/K,_1 is
totally ramified, and z, is a uniformizer of K, since the polynomial g(X) defined above is Eisentein.
With this result at hand, we obtain

Gal(Koo/K) = lim Gal(K, /K) = lim(A/r" A)* = A*
O

Remark 1.3.8. One can see that the Lubin-Tate construction above basically gives us the 1-dimensional
representation of the absolute Galois group. It is very similar to the 2-dimensional representation ob-
tained by using Tate modules on elliptic curves.

Example 1.3.9. Let K = Q,, 7 = p, with Frobenius series f(X) := (14 X)? —1, then the Lubin-Tate
formal group associated to f is Gy,. In this case, [p]; = f(X) = (1+X)P —1, and .%; consists of roots
of f(X). Hence, %1 = {z € Qp|(1 + 2)? = 1}, and Q,(.F1) = Q,({p), where (, is a primitive p-th
root of unity. Similarly, Q,(.%#,) = Qp({pn), where (yn is a primitive p"-th root of unity. And hence,
we obtain Ko = Qp°, which is the field extension of @), obtained by adjoining all p"-th root of unity.
And it follows from the proposition above that Gal(Qp°/Qy) = Z.



Chapter 2

Ramified Witt vectors

The theory of ramified Witt vectors is very important for our later applications about the un-tilting
process and the construction the Fontaine’s ring A in the next chapters. Our main reference for this
section is [Sch17]. We fix L a non-archimedean local field, with O its ring of integers with a uniformizer
7, k its residue field, and ¢ = #k, B an O-algebra. For any set R, we denote R0 := {(rg,71,...)|r; €
R}, and for any map p : Ry — Ra of sets, we denote

PR — Ry"

(ro, 71, ...) — (p(r0), p(r1), ...)

2.1 The ring of ramified Witt vectors

We can consider the n-th Witt polynomial defined by
O (Xo, ., Xp) = X3 + 72X 4 47X 41X,
Inductively, we have
Dy(Xo) = Xo, @, (X0, .o, Xp) = @1 (X, ., X))+ 77X, = Xgn + 7P, 1 (X1, Xp)

In this section, we will prove that BNo with the multiplication and addition formulas defined related
to Witt polynomials is a ring, which is called the ring of ramified Witt’s vectors, denoted by W (B).
We will begin with a couple of lemmas

Lemma 2.1.1. Let b,c € B such that b= ¢ mod "B, then b9" = ¢?" mod 7™t"B

Proof. In the case charL = p, we have b9" — c?" = (b — ¢)?" = 0 mod 7" B. Otherwise, the
statement follows directly from induction. O

Lemma 2.1.2. Let by, ..., by, co, ..., c, be elements in B
1. Assume that b; = ¢; mod ™ B for all0 < i < n, then ®,(bg, ...,b,) = ®,(co, ..., cp) mod 7™ " B.

2. Iflp is not a zero divisor in B, and b; = ¢; mod 7™ B for all0 < i < n—1, then ®,(bo, ..., b,) =
®,(co, ..., cn) mod 7" B iff b, = ¢, mod 1™ B.

Proof. 1. We have ®y(by) = by = Po(co) = ¢ mod 7" B. Using induction, assume that the statement
holds for k pairs (b;,¢;). Because byi1 = cpr1 mod 7" B, then by Lemma and induction
hypothesis, we get

k k
(I)kJrl(bo,...,karl) :bg +7T(I)k(b1,...,bk) Ecg +7T<I>k(cl,...,ck) :(I)k+1(00,...,0k+1) mod ¢t B
2. Assume that ®, (b, ..., b,) = ®p(co,...,cn) mod 7B, one has

15
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(I)n(b(], ,bn) = q)nfl(bg, ) _1) + 7"b,
D (coyercn) = Ppi(cd, il ) + 7"y

And b; = ¢; mod 7" B for all 0 < i < n — 1 yields bg = cg mod 7™t B. And it follows from the

previous part that ®,_1(b,...,b% ;) = ®,_1(cl,...,cl_;) mod 71" B. Because wlp is not a zero

divisor, we then get b, = ¢, mod 7™B. O]

One can see that BN is a ring with multiplication and addition are induced from B. We can define
some maps

fp: BN — B
(bo,bl, ) — (bl,bg, )

vg : BNo — BNo
(bo,bl, ) — (O,ﬂ'bo,ﬂ'bl, )

®p: BN — BN
(b(), bl, ) — ((I)()(bo), (I)l(bo, bl), )

We have fg is an O-algebra endomorphism of BN, and the map vp is an @-module endomorphism
of B. We will focus no ®5.

Lemma 2.1.3.
1. If mlp is not a zero divisor, then ®p is injective.
2. If rlg € B>, then ®p is bijective.

Proof.

1. Assume that ®5((bo, b1, ...)) = ®5((co,c1,...)), then we have
bo = CI)[)(b()) = (I)()(CQ) = Cp

@y, 11(bos b1y ey bg1) = P (B3, . bL) + 7"y = @ (cd, oy ) + 7" ey

And because mlp is not a zero divisor, we get b,11 = cp+1 by induction, and this yields
(bo, bl, ) = (Co,cl, )

2. Take any (cg, c1, ...) € BN, we have to find (b, b1, ...) € BYo such that ®g(bg, b1, ...) = (co, c1, ...).
It is equivalent to have

bo = Co,ﬂ'bl =C1 — bg,Wng = C2 — ng — Wb({,
Because wlp is invertible, we ca always find such b;. And by the first part, ®p is bijective.
O

We denote Endp (B) the ring of all O-algebra endomorphism of B. In case Endp(B) has an element
look like Frobenius, we can describe the image of ®p via the following

Proposition 2.1.4. Assume that there exists 6 in Endo(B) such that (b) = b? mod wB, then

1. Let by,...,bp—1 be in B, we denote up—1 = ®p_1(bo,b1,....,0n—1), and u, € B, then u, =
®,,(bo, ..., by) for some by, € B iff 0(up—1) = u, mod 7" B.
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2. Denote B’ = im®p, then
B’ = {(bo,b1,...)|0(b;) = biy1 mod 71 B}
And fp(B') € B',vp(B') C B
Proof.
1. Assume that u, = @, (bo, ..., bn) = Pp_1(bd, ..., b7 _;) + 7"y, we then have
O(tpn—1) = 0(Pp_1(bo,b1,.es0n-1)) = Pp_1(0(bo), ..., O(bp—1))
Because (b;) = b! mod 7B, by Lemma we get
D1 (b, ..., 0% ) = @p_1(0(bo), ..., 0(bp—q)) mod 7" B (2.1)

So, this yields 6(u,—1) = u, mod 7" B. Conversely, because always holds, the assumption
O(un—1) = u, mod 7" B implies that u, = Pp_1(bd, ..., b._,), i.e. there exists some b, € B such
that w, = ®p_1 (b3, ..., bL_1) + 7by = @y (o, ..., by).

by
2. Let (bo, b1,...) € BN, we have
D p(bo, b1, -..) = (Po(bo), ®1(bo, b1), ...) = (bo, b + b1, ...)
And hence, (cg,c1,...) € im®p iff there exists some by, by, ... in B such that
co = b, c1 = bl + wby = ®1(bo, b1), ...
By the previous part, this occurs iff §(¢;) = ¢;41 mod 7**'B. And this yields

B/ = {(b07 bl, )‘H(bz) = bi+1 mod 7-[-’i+lB}
]

The proposition above is particularly important in this and later chapter. We will discuss about
its applications. First, denote A = O[Xy, X1, ..., Y0, Y1,...]. We define § € Endp(A) by 6(X;) =
X2,0(Y;) = Y.

Lemma 2.1.5. For any a € A, we have 6(a) = a? mod TA.

Proof. Consider A" := {a € Alf(a) = a? mod wA}. It is a O-subalgebra of A. Because ¢ = #k, for
all A\ € O, we have a? = a mod 7A, and because 0 fixes O, we have O C A’. This yields A’ = A. O

Let X := (X0, X1,...) € AN Y := (Y, Y7, ...) € ANo, we have
PAX) +Pa(Y) = (Xo + Yo, X+ Y +7X; +7Y7,...)
By Proposition 2.1.4] (1), we have
0(®,, (X0, ..., X)) = Prg1(Xos .., Xpg1) mod "B
And this yields
0(Pr (X0, ooy X)) + @ (Yo, s i) = 0(@r((0s -5 (0) X0y oy X)) 4+ 0(P (05 vy () Y0, - Ynr)) =

=®,11(X0, o0, Xng1) + @1 (Yo, Y1, ..., Yy1) mod "B
Hence, by Proposition (2), there exists S = (Sp, 51, ...) € ANo such that

PA(S) = Pa(X) 4+ Pa(Y)

And it is obvious that w14 is not a zero divisor, by Lemma [2.1.3] the existstence of S is unique.
Similarly, we obtain that, there exists a unique P, I, F' in ANo_ such that

Pu(P) = Pa(X) +Pa(Y),Pa(l) = —Pa(X), Pa(F) = fa(Pa(X))

Say another words, we obtain
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Proposition 2.1.6. There ezists S,, P, € O[Xo,..., Xn, Yo,..., Yn| and I, € O[Xo,...,Xy], Fn €
O[Xo, ..., Xn+1], such that

By (S0, ey Sn) = (X0, ooy Xp) + P (Yo, .., Vi)

B, (Py, ..., P) = ®n(Xo, .o, X0) 00 (Yo, ..., Yy) 22
&, (Io, ... )— —®,(Xo, .. Xn)

<I>n(F0, = ®p(Xo,s o, Xpt1)

Lemma 2.1.7. For alln >0, F,, = X, mod 7A.

Proof. Using when n = 0, we have Fy = X{J + 17X, and this yields Fy = X{ mod 7A. Assume
that the statement holds for all integer k¥ < n. We have

D41 (Fo, Fiy ooy Fpg1) = O (Fy ooy B + 7" Fy gy

And
Do (X0, X1, oy Xn2) = Pt (XG, oo X ) + 72X 00 =
= (XL, XT) 47X 472X,

By induction hypothesis, F; = X! mod 74, and F} = ng mod 72 A, for all 0 < i < n. From
Lemma [2.1.2] we get
2
&, (Fd,....,F9) = &,(XT .., XT) mod 724

And the identity in implies that when we reduce modulo 77+2, we will get

— q
Fup1 = X2,

O

We are now ready for the definition of the ring of(ramified) Witt’s vectors W (B). Let B be an O-
algebra, as sets, we identify W (B) := BN, and the multiplication and addition on W (B) are defined
to be

{(an)n B (bn)n = (Sn (a0, s @n, bos oy b)) 2.3

(an)n B (bp)n = (Pu(ag, ..., any boy ..y bp) I

Proposition 2.1.8. W(B), with the addition and multiplication in s a commutative ring, with
(0,0, ...) is the zero element, and (1,0,0,...) is the identity element, and the inverse of (ay), € W(B)
is (In(ag, ..., an))n. Moreover, ®p : W(B) — B is a ring homomorphism.

Proof. Let us denote By := O[X|b € B], with the map p : By — B defined by p( b = b as an
O-algebra homomorphism. Let us denote Bj := & BI(BNO). Note that by Proposition 6, for a
b,c e BY, ®p, (b) + ®p,(c) € im(Pp,) = Bj. Because B} is in bijection with B} by Lemma i:

we can introduce the new addition and multiplication in Bj via the bijective map BII\IO —> Bj. They
are defined as follows

b ci=Op (Pp, () + 5, (), b O ¢ := O (P, (b) + P, ()
Via this definition, we have
O, (bdc)=Pp, (b)) +Pp,(c), P, (bOc) =Pp, (b)Pp (c)
Via @, O, BlNO now becomes a ring, and it can be seen from the definition of ®p, that

®p,(1,0,...,0,...) = (1,1,...),®5,(0,0,...) = (0,0,...)
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And now, the ring law on B?O induces the ring law on BYo via po, by sending each coordinate X; of
BY° to the corresponding coordinate p(X;) in BNo. By and we can see that, on W (DB)

Pp((an)n B (bn)n) = Pa((an)n) + @B((0n)n), P((an)n B (bn)n) = P((an)n) s ((bn)n)

Hence, B, are exactly the addition and multiplication on W (B) induced from &,® on NONO. The
statements now follows. O

Definition. The ring W(B) above is called the ring of ramified Witt vectors with coefficients in
L. In some cases, to distinguish, we will write W (B), instead of W (B).

We next introduce the notion of Teichmuller lifts.
Definition. Let B be an O-algebra, we denote the map
7:B — W(B)
bp — (bo, 0, ...)
the Teichmuller lift.
Lemma 2.1.9. The map 7 above is multiplicative.

Proof. Due to the definition of the multiplication in W(B) in [2.4] and by we get Py(Xo,Yp) =
XoY0, and hence, it is sufficient to prove that P,(Xo,Y)) := P, (Xo,0,...,0,%5,0,...,0) = 0, for any
n > 1. In the case n = 1, we have

Pl 4+ 7P, = ®1(Py, P1) = ®,(X0,0)®,(Y5,0) = (XoYp)?

And since 714 is not a zero disivor, we get E =1. Forn > 1, 13; = 1 follows easily by induction, and
the same argument. O

2.2 Functorial properties of Witt vectors

With notations as in the first section, we will study the functorial properties of Witt’s vectors. Begin
with two O-algebras By, Bs, and p : By — By an O-algebra homomorphism. One can define

W (p) : W(B1) — W(By)
(bo, b1, ) — (p(bo), p(bl), )
Lemma 2.2.1.

1. The following diagram is commutative

No
B 2__, gl

CDBIT T(I)BQ

W (B1) o W(B2)

2. The map W (p) defined above is a ring homomorphism.
Proof.

1. We have
PN (®g, (bo, b, -..)) = p (o (bo), @1 (b, b1),-..) = (po (Do, v, b))

Note that since p is an O-algebra homomorphism, p and ®,, commute, and this yields

(p 0 @ (bo, s bn))n = (@n(p(b0), -, p(bn)))n = BB, (W (p))
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2. We have

W(p)((an)n B (bn)n) = W(p)(Sn(ao, ..., an, boy -y bn)n) = (p(Sn(ag, ..., anybo, oy b)) )n

Because S, € O[Xy, ..., Xy, Yo, ..., V3], p and S,, commute, and hence

(p(Sn(a()? ey Gy bOv teey bn)))n = (Sn(p(a(J)a L) p(an)7 p(bO), sty p(bn)))n = W(p)((an)n)EW(p)((bn)n)
The similar arguments can also be applied for [, and this yields W(p) is a ring homomorphism.
O

Consider the map

o: 0O — ONo
A— (A AL

Let us apply the second part of Proposition to B := 0,0 := id, this ensures the existence of
the map

00— W(0)
A — (Qo(N), Q1 (), ...)

such that the diagram
0 L, w(0)
\‘ l‘%
OMNo

is commutative. Let us denote O’ := im(®p), then the map ®p is a ring isomorphism between W (O)
and (', since 7 is not a zero divisor in @. And o : O — O is also a ring homomorphism. Hence, € is
also a ring homomorphism. This makes W () becomes an O-algebra.

Proposition 2.2.2. Let B be an O-algebra, then W(B) is an O-algebra. Furthermore, ®p, ®,, are
O-algebra homomorphisms, for all n.

Proof. Let p be the canonical map from O to B. From Lemma [2.2.1] and the diagram above, we
obtain the following commutative diagram

0 -2, wo) X2 w(p)

x l@o lch (2.4)

ONO BNO
p'o

And this makes W (B) an O-algebra, and for any A € O,b € W(B), we have
Ao = W(p)\) Db
And by [2:4) again, we obtain the following diagram

W (B) —£, BNo

N

W (B) 22 BNo
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This diagram is commutative, since ® g is a ring homomorphism and
®p(Ab) = Dp(W (p)2(N) B b) = @5(W (p)2(N)@5(D) = " (0(X)@5(D) = (A, A, ..)@5(b) = ADp(b)

where the third identity follows from Hence, one gets ®p is an O-algebra homomorphism.
Finally, let us denote p, : BNo — B the projection map to the n-th coordinate. It then follows
from the commutative diagram

W (B) —£5 BNo
L
B

that ®,, : W(B) — B is also an O-algebra homomorphism. ]
Using the commutative diagram in Lemma and the method of the proof above, we have
Proposition 2.2.3.

1. Let p: By — By be an O-algebra homomorphism of O-algebras, then W (p) : W(By) — W (Bs)
1s also an O-algebra homomorphism.

2. The functor

W : O-alg — O-alg
B +— W(B)

is a well-defined exact functor.
Proof.

1. Let p; : O — By and p2 : O — B3 be the canonical maps. Then p : B; — Bs is an O-algebra
homomorphism implies that p o p; = p2. And it follows that W (p2) = W(p) o W(p1). And for
all A € O,b € By, we have

W(p)(Ab) = W (p)(W (p1) (X)) T b) = W (p)(W (p1)(2(b))) LI W (b) =

= Wi(p2)(2(A) B W (p)(b) = AW (p)(b)

where the first and the last identity follows from the explicit description of the action from O
to W(B;)(i = 1,2) described in the proof of the proposition above, the second identity follows
from the fact that W(p) is a ring homomorphism, and the third identity is obtained since
Wi(p2) = W(p) o W(p1).

2. The fact that W(—) is a well-defined functor follows from Proposition and the above
argument. And the description of W(p) for p : By — Bs in O-alg yields W(—) is an exact
functor.

O

2.3 Frobenius and Verschiebung

We will now describe the Frobenius and Verschiebung maps on the ring Witt’s vectors. They turn out
to be very useful in practice when one wants to compute things related to Witt’s vectors, especially
in the case B is a k-algebra, which will be treated in the next section.

Recall that in the first section, we defined A := O[Xy, X1, ..., Y0, Y1, ...], and proved the existence
and uniqueness of F' = (Fp, F1,...) such that
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F, € O[Xo, ceny Xn+1].

BA(F) = fa(®a(X)), where X == (Xg, X1,...).

D,11(Xoyoory Xng1) = @ (Fo,y ooy F).
e F, =X mod mA.
Using this, one can define the Frobenius on W (B) as follows

Fg: W(B) — W(B)
(b(), bl, ) — (Fn(bg, ey bn—l—l))n

We will prove that

Proposition 2.3.1. Fp is an O-algebra endomorphism of W (B), and Fg(b) = b? mod nW (B) for
allb e W(B).

Proof. To prove the statement, we can use the technique in Proposition [2.1.8] Let us define By :=
O[Xy|b € B] and p : B — B sending X, to b, and B} := &y, (BY°). In the level of B;, we have this
diagram

W(B)) —21 W(By)

@B1l lq)Bl

Bf ———— Bj
fB/l

is commutative, where f5 (b, b1, ...) = (b1, b2, ...) because

Op, (Fp,(bo,b1,...)) = P, (Fn(boy .oy bnt1))n) = fB; o O, (boy ...y by, )

But we know that f]’g1 is an O-algebra endomorphism, and so is Fp,, since the two vertical arrows are
isomorphisms. We can now use the functorial properties via the O-algebra homomorphism p, and this
yields Fp is an O-algebra homomorphism.

To prove the second statement, we can also use the diagram above. Take any (bg, b1, ...) € W(By),
we have the commutative diagram

Fp,
(bo, bl, ) R (Fn(bO; ey bn—l—l))n

@Bll l@Bl

(bo, b2 + 7by, ...) —— (b8 + 7by, bl + b7 + m2by, ..)

fB/l
And via lel’ we have bf + wb; = b mod 7B, bgz + 7b{ + 72y = (b + wb1)? mod 7BY,.... And via
the ring isomorphism ®p,, we have Fp,(b) = b? mod 7By, for all b € B;. Again, using p, we have

Fp(b) = b1, for all b € W(B). O

We note that the technique using in the proof above is common when we want to prove identities
on the ring of Witt’s vectors. We next defined the Verschiebung map

Vi : W(B) — W(B)
(bo, bl, ) — (O, bo, bl, )

Proposition 2.3.2. Vp is an O-module endomorphism.
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Proof. By the same technique as above, we can see what happens in W (Bj). Look at the diagram

V]
(bo, by, ...) ————2——5 (0, bo, by, ...)

(b(),bg + b1, ) TB’> (O,ﬂ'bo,ﬂ'bg +7T2b1, )
1
where UBg(bo,bl, ...) = (0, wbg, wby, ...). We have
(I)Bl(VB1 (bo,bl, )) = q)Bl (O,bo,bl, ) = (O,ﬂ'bo,ﬂ'bg + 7T261, )

And
vp (P, (bo, b, -.)) = v (bo, b + b, ...) = (0, wbo, TbF + by, ...)

This yields the diagram above is commutative. And hence Vp, is an O-module endomorphism, since
s0 is vp; . And by the functorial properties again, one gets Vg is an O-module endomorphism. O

Here are some identities related to Frobenius and Verschiebung maps.
Proposition 2.3.3. We have

1. Fg(Vg(b)) = mb, for allb € W(B).

2. Vp(aED F(b)) = Vp(a) @b, for all a,b € W(B).
Proof.

1. Again, it is sufficient to see what happends in W (Bj). Look at the diagram

W(B1) —2 W(By) —2 W(By)

¢Bll ‘L@Bl iq)Bl

B » B » B

UB’1 fB’

1

It is commutative, by Proposition [2.3.1] and Proposition [2:3.2] Now

fBi o’UBi(b(),bl,...) = fBi(O,T('b(),ﬂ'bl, ) = W(bo,bl, )

Hence,
fBi O’UBi o (I>Bl(b07bla ) == 7T(I>Bl(b03b17---)

Because ®p, is an O-algebra isomorphism, we must have F, o Vg, (b) = mb.
2. For all a,b € W(Bj), we have
VB, (a Ll Fg, (b)> =Vp, (CL) b < @p, (VBI (a Ll Fp, (b))> =®p, (VBl (a) Lb) <

< vp (PB, (a)®p, (FB, (b)) = @5, (Vs (a)Pp, (b) < v (P, (a) f5;(P5, (b)) = vp (Pp, (a)) P (D)

And the last identity now follows, since if we let a = (ag, a1, ...),b = (bg, b1, ...), ®% := &, (ag, ..., a,), DL :=
®,,(bo, ..., by), then the left hand side of the last equality is

Upy ((I)%(I)I{’ (I)(llq)gv ) = (07 77(1)8<I>1{7 W(I)(fq)g, )
while the right hand side is
(0, 7®¢, 7®%, ..)(®Y, Y, ...) = (0, 7DEDY, ...)

We now obtain the statement.
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O

For simplicity, when B is given, we denote V := Vg, F' := F(B) on W(B). We can now study
further the properties of the Verschiebung map. This will lead to some conclusions about the m-adic
topology on W (B) for some important cases as the next section will point out. Let us denote

Vi (B) :=1im(V™) = {(bo, .., bm—1, bm, ...) € W(B)|bg = ... = byp—1 = 0}
We obviously have Vo(B) = W(B) 2 Vi(B) 2 Va(B) 2 ..., and [,,,5¢ Vin(B) = 0.
Lemma 2.3.4. V,,,(B) is an ideal of W(B) for all m.

(
Proof. Proposition implies that Vi, (
(

)
) is a subgroup of W (B) and Proposition implies that
b c e Vip(B), for all b € W(B),c € Viu(B).

B
B O]
Lemma 2.3.5. V1(B)™ = 7™ V4(B) for all m > 1.
Proof. The case m = 1 is trivial. When m = 2, by Proposition we have for all a,b € W(B),

V() BV(®D)=V(eBFWV(®))=V(@nrb) =7V (alDb)
Hence, V1(B)? = 7V4(B). When m = 3

Vi(B)® = (Vi(B))*Vi(B) = nVi(B)* = n*V1(B)

Using this inductively, we get the statement for all m > 1 O

We denote W, (B) := W (B)/Vpn(B), it is called the ring of Witt’s vectors of length m with
coefficients in B. We will now describe elements in W,,,(B).

Lemma 2.3.6.

1. Let (an)n, (bn)n € W(B), such that ayb, =0 for all n, then
(an)n B (bn)n = (an + bn)n

2. Let (bp), € W(B) and (0,...,0,¢m, Cmt1,...) € W(B), we can find (0,...,0, T, Tmt1,...) in
W (B) such that

(boy -y bn—1,0,0,..) B (0, ..., 0, sy Trnt15 --.) = (b)) B (0, ..., 0, iy Crrt1s ---)
8. There is a bijection
B™ — W,,(B)
(boy ooy bn—1) —> (boy -y byn—1,0,...) BV, (B)
Proof.

1. Turn things into W(By) again. Let p : By — B be the projection map, it is equivalent to prove
that

W(p)(Xan)n 8 (Xp,)n) = W(p)(Xa,)n + (Xp,)n)

It is equivalent to say

W(p)(®p, ((Xa, )nB(Xp,)n)) = W(p) (@B, (Xan)nt(Xp,)n)) & Pu((an)n)+P5((bn)n) = Pr((an+bn)n)

But the last identity follows directly from the condition a,b, = 0 for all n, since

@n(ao, ey an) + (I)n(b[], . bn) = (I)n(ao + bo, ..., an + bn)
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2. We have (bg, ..., byn—1,0,0,...) B (0,...,0, Ty, Tit1, -.) = (b0, +eey brn—1, T, Tm+1) by the previous
result. Also,

(bg, bl, ) H (0, ceny 0, Cm s Cm+1, ) = (bo, ceey bmfl, Sm(bo, ceny bm,O, ...,O,Cm), )

And we just need to choose ., = Sp(bo, .., bm, 0, ..., 0, ¢;,), and so on. From this, one can also
see that the existence of x,, is unique.

3. By the second part, for any (by,), € W(B) and (0, ...,0, ¢p, Cm1,...) € W(B), there exists a
unique element (0, ..., 0, Zy,, Tm41) in W(B) such that

(boy vey b, 0, .. ) B (0, ..., 0, Zpy, Tyt 1, ---) = (b)) B (0, ..., 0, ey €1,y )

So, in particular, (bg,...,bpn—-1,0,...) = (by), mod V;,B. And hence, the map defined above is
surjective. For the injectivity, assume that

(CL(), ey Qm—1, 0, ...) B Vm(B) = (boy.-ry b—1,0,...) + Vm(B)
then there exists (0, ...,0, ¢, ...), (0, ..., 0,dp, ...) in V;,,(B) such that
(a(), ...,am_l,O, ) H (0, ...,O,Cm, ) = (bo, ...,bm_l,O, ) H (O, ...,O, dm, )

Due to 1, we have the LHS is (ag, ..., Gm—1, ¢m, Cm+1, ---) and the RHS is (bo, ..., byn—1, Ay At 15 ---) -
Hence, a; = b; for all 0 <i <m — 1.

O]
As a corollary of the lemma above, we have
Corollary 2.3.7. W,,,(B) = {(bo, .., b;m—1,0, ...)|b; € B}. And the map
W(B) — I&HWm(B)
br— (bEBV(B))m

is an O-algebra isomorphism.

2.4 The main cases

Most of applications of Witt’s vectors focus on the case B is a k-algebra. In this case, due to the
commutative diagram

Ek=20/rO —— B

7

we can consider B as an O-algebra with the scalar product Ab := (A mod 7)b, for A € O,b € B. In
this case, as m = 0 in k, we get 7B = 0, and for any A € O, we have A? = XA mod «, and hence
(AD)2 = b, for all A € O,b € B. Let p be the characteristic of k. If char(L) = 0, we have un® = p,
for some u € O*, and e is the ramification index, and hence pB = 0. In case char(L) = p, the fact
that pB = 0 is trivial. So, in any case, we obtain the Frobenius map on B

B— B
z —

is an O-algebra endomorphism. We say that B is perfect if this map is an isomorphism. We begin
this section with the following
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Proposition 2.4.1. Let B be a k-algebra, then
F((bn)n) = (b7)n
and when B is perfect, F' is an automorphism of O-algebra.

Proof. The first statement follows directly from Lemmal[2.1.7] and the second statement follows directly
from definition that the Frobenius map on B is bijective, and F' is an O-algebra endomorphism. [

The Frobenius on W (B) is now in an easy form, and together with it, we also obtain some interesing
properties, including the filtration in W (B).

Proposition 2.4.2. Let B be a k-algebra, for all b = (bg,b1,...) € W(B), we have
1. 7b=F(V (b)) = V(F(b)) = (0,8, b9, ...).
2. Vy(B) BV, (B) C Vinin(B).
3. W (B) C Vi(B)™ = 7™~V (B) C 7™ W (B).
Proof.
1. The identity F(V (b)) = mb follows from Lemma and due to Proposition we have

F(V(bo,b1,...)) = F(0,bg, by, ...) = (0,68,%,...) = V(F(bo, by, ..))

2. For all a,b € W(B), using Lemma [2 we have

V@)D V(D) = V(V™ Ha) BV (a) = V(V™" Ha) B F(V™(b))) = ... = V™ (a D F™(V™(b))

And by the first part, F' and V are commutative, so

aD F™(V™(b)) =V FE™b) Da=V(V"HF™(b))) Da =
V(V'HF™(B) U F(a)) = ... = V(E™(b) B F"(a))

We finally get V™ (a)V"(b) = V™" (F™(b) [ F™(a)). This yields V,,(B) &V, (B) C V10 B.

3. By the first part, we obtain
W (B) = 7™ laW(B) C 7™ 'Vi(B)

And by Lemma we get 7™ 1V1(B) = V1(B)™. The last inclusion is trivial.

O]
By the filtration in the last part, we get an important
Proposition 2.4.3. Let B be k-algebra, then the algebra homomorphisms
W(B) — wm W(B)/m™W (B)
(2.5)
b — (bEB"W(B))m
wB)  —  lm W(B)/V(B)"
(2.6)
b — OBV(B)™)m

are isomorphism.
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Proof. We have n™W (B) = {0, ..., 0, b%n, bf:“, ...}. Hence, it is clear that the first map is injective,
since (Ym > 0n™W(B) = 0. Assume for now (b(™ B 7"W (B));, € lim W(B)/x™W (B). Because
W (B) C V,n(B), and due to the isomorphism in Corollary [2.3.7] there exists b € W(B) such that
bBV,,,(B) = b™ B V,,(B) for any m. This yields for all j > m,

bBV;(B)B "W (B) = bY) BV;(B) B "W (B)
And because bY) B 7™W (B) = bY) + 7/ W(B) mod #W (B) = b"™ + x™W (B), we get
bBV;(B)B "W (B) = b™ B V;(B) Br"W(B)
And this yields
b ) (Vj(B) EmeW(B)) =smE N (Vj(B) Eﬂw“WV(B))
j>m j>m

We will prove that
() (Vi(B) Ba"W(B)) = n"W(B)
j=>m

If this hold, then the map is now surjective. To prove this, we note that

N (Vi(B) Bx"W (B ( M V(B ) B W (B) = n™W (B)

jz>m jzm

For the reverse inclusion, let us choose any ¢ = (co, ¢y, ...) € ﬂ]>m( 5(B) B 7™W(B)), then for any
J > m, there exists (0,...,0,a;,a;41,...) in V;(B) and (0, ...,0 b1 bl .) in 7™W (B), such that

m

' Ygmo ]m+1? .
_ " g™
(Co, C1, ) = (O, ceey 0, Aj,A54-1, ) H ( 0, b]m’ b] m+1s )
o _ o g™ . .
And as a consequence of Lemma weget cp=...=cm-1=0,cp, = bj,m’ ,Cj—1 = b” 1- Since j

is choosen arbitrary, we get ¢ € 7 W. And this yields the first map is bijective. For the second map,
due to Proposition we have 7™W(B) C Vi(B)™ C 7™ 'W(B), so the commutative diagram
below

lim W(B)/rm™ W (B)

(1) T(5)

W(B) — lm W(B)/Vi(B)™
m} T(4)
lim W (B) /=" W (B)

has (1), (3), (5) o (4) are bijective. And (4) and (5) are injective. This yields all of them are bijective.
And the isomorphism in is now obtained. O

As a corollary, we get

Corollary 2.4.4. Let B be a k-algebra, then W (B) is complete, Hausdorff with respect to the m-adic
topology. And the topology on B defined by the filtered system {V,,(B)} is identical to the m-adic
topology on B.

Let us now move to a special case when B is a perfect k-algebra.
Proposition 2.4.5. Let B be a perfect k-algebra, then

1. wly () is not a zero divisor in W (B).
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2. Let T : B — W(B) be the Teichmuller lift, then for all b = (bg,b1,...) in W(B)
b Vi (B) = 7(bo) B B ... Bam (b2 ) BV,(B)

3. Vin(B) = Vi(B)™ = W (B).
Proof.
1. For all 0 # ¢ = (co, ¢1,...) € W(B), we have
me=(0,¢3,cf,...)
Since B is perfect, the Frobenius on B is an automorphism. Hence ¢ # 0.

2. We have
T(bo) Bar(? ) B ... B Y BV, (B) =
= (bo,0,...) B (0,b1,0,...) B(0,...,0,bn_1,0,...) BV, (B)
= (boy ..y b;—1,0,...) BV,,(B) = b8 V,,(B)
where the last identity follows from Lemma [2.3.6

3. We have
W (B) = {(0,...,0,b%" b1 |, ...)|b; € B}

Because B is perfect, any element in B is a ¢g-th power. And we get 7 W (B) = V,,,(B). Also,
since 7W (B) = {(0,b1,b3,...)|b; € B}, Lemma yields V1(B)? = 7V1(B) = #?W(B). And
inductively, we obtain V;(B)™ = "W (B).

O

It is also natural to consider the case B is a field extension of k. This can lead to the construction
of Z,, from F,,.

Proposition 2.4.6. Let B be a field extension of k, then
1. W(B) is an integral domain, with a unique maximal ideal V1(B).
2. char(W(B)) = 0 if char(L) = 0.
3. If B is perfect, then W(B) is a DVR with the unique mazimal ideal V1 (B), and the residue field

B. Moreover, any b = (by)n in W(B) has a unique convergent expansion

b= Z (b4 ")
n>0
with respect to the m-adic topology on W(B) (cf. Corollary .
Proof.

1. For any O-algebra B, we can see from Lemma that W(B)/Vi(B) = B. Hence, in the case
B is a field extension of k, V1(B) is a maximal ideal of B. Take any b = (bg, b1, ...) in W(B) but
not belong to V;(B), we will prove that b is invertible. First, we can find a = (ag, a1, ...) € W(DB)
and ¢ = (0, ¢y, ...) € V1(B) such that

aldb=1Hc=(1,0,...)B(0,c1,...) = (1,¢1,¢2,...)

by taking ag = bal, and ¢; = Pj(ag,...,ai,by,...,b;). Because ¢ € Vi(B), ¢™ € Vi(B)™ =
7™ W (B), and ¢™ = +¢™ ! mod 7™ W (B). This yields the sum Zizo(fl)ici is defined in
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W (B) (cf. Corollary[2.4.4)). This yields b is invertible in W (B), and we get V1(B) is the unique
maximal ideal of W (B).

We now prove that W (B) is an integral domain. Take any 0 # a = (0, ..., 0, a;, @j+1,...),0 # b =
(0,...,0,b;,bj41,...) in W(B) with a; # 0,b; # 0,then F¥(a;, a1,...) = (al,ali,,...), Fi(b) =

(b?i,b?:_l, ...). And from this, F7(a;, aj+1,...)F'(bj, bjt1,...) = (a?jb?i, ...) #0. And

aBb=Vi(a)DVI(b) = VH (F(a) BF (b)) = (0, ..., 0,aig’b? , ...) # 0

where the second identity follows from the proof of Proposition [2.4.2(2), and this yields W (B)

is a local domain.

2. Let I # p be a prime number such that I1y, gy = 0, then since W(B)/ViW(B) = B is of
characteristic p, necessarily [ = p. Let e be the raimification index of L/Q,, we can write
p = un® for some u € O*. And

Pl () = ur®(1,0,...) = u(0,...,0,1,0,...) # 0
And this yields a contradiction. Hence, char(W(B)) = 0, in case char(L) = 0.

3. When B is perfect by Proposition we obtain

(VB =(]~"W(B)=0

m>1 m>1

And because Vi (B) = W (B) is the unique maximal ideal of W (B), it follows from a general
fact of commutative algebra that W (B) is a DVR. Let b € W (B), Proposition again implies

that we can represent ‘
b= wr(b! )

>0

And it is obvious to see that this expansion is unique and convergent due to Corollary
O

Example 2.4.7. In the case L := Q,, we have O = Z, and k = F,, and W(F,)q, = Z, via an
isomorphism defined by the Teichmuller representations (recall that we use a subscript to emphasize
W(IF,) is defined with coefficients in Q). We will prove later that this isomorphism holds for much
more general cases.

Remark 2.4.8. In the case L :=TF,((t)), 7 :==t, and B := F,. By the first part of Proposition m
W (B)y, is an integral domain, and 71y (p), is not zero, but prly gy, = (p7)ly (), = 0. And this
yields char(W(B)r) = p.

2.5 From residue fields to local fields

Our main applications will focus on the case @. And we can apply results of previous section to
k= O/nO. This will lead to an isomorphism O = W(k). In order to this, we begin with an
application of Proposition

Proposition 2.5.1. Let B be an O-algebra with lp is not a zero divisor, and o € Endo(B) such
that o(b) = b? mod 7B, then there exists a unique O-algebra s : B — W (B) such that ®,0sp = o™,
for all n. Moreover, sp is injective and is uniquely determined by the two conditions

Pygosp =idg,Fosg=sgoo

Proof. The existence of sg is equivalent to the commutativity of the following diagram for all n
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N

And it is equivalent to the commutativity of
B 225 W(B)
N
Bho

where X(b) := (b, o(b), 02(b), ...). Because 71p is not a zero divisor, @ is injective. And the statement
is now equivalent to

o X(b) € im(Pp), for all b € B.
e 3 is an O-algebra homomorphism.

The first condition is clear from the second part of Proposition [2.1.4] and the second condition follows
directly from the fact that o € Endp(B). Also, the injectivity of sp is clear, since 3 is clearly injective.

We have
Dyosp=c’ =idg

Consider the following diagram

AN
N

We will prove that it is commutative. Because ®p o sg = X, and they are all injective, it is sufficient
to check the commutativity of the following diagram

B % BMNo

Ul lf (2.8)

B —— B

But it is trivial, since Yoo (b) = (a(b),02(b),...), and foX(b) = f(b,o(b),a%(b),...) = (a(b),a?(b),...).
Conversely, assume that we have sp : B — W (B) an O-algebra homomorphism such that ®gosp =
idg and sp oo = F o sp. This yields the diagram [2.7] and [2.8] are commutative. Let us denote

sp(b) = (s0(b), 51(0),...) = (b, s1(b), ...)

then foX(b) = X oo(b), where ¥ := ®p o sp. Let 3(b) = (bg, b1, ...), then because ¥ = ®p o sp, we
have by = b. This yields X(b) = (b,...) for all b € B, and hence, (o (b)) = (o(b),...). Furthermore,
foX(b) = (by,be,...). And foX(b) = ¥ oo(b) implies that by = o(b), and the second coordinate of
Y (o (b)) is ba. If we replace b by o(b), we get

(ba,...) = fo B(o (b)) = Lo c?(b) = Ppospoa(b) = (a%(b),...)

And this yields by = 02(b), and so on. Therefore, by our previous argument, it is the characterization
of sp. O
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We are now ready for the main proposition

Proposition 2.5.2. Let B,sg be defined as in Proposition then for all m > 1, there exists a
unique map sg ., making the following diagram commute

B —% 5 w(B) X w(B/xB)

prJ |

B/m™B Wn(B/7B)

5B,m
Moreover, when B/nB is perfect, then sy is an isomorphism for all m > 1.
Proof. Take any b € n™ B, we can write
sp(b) = (bo, b1, ...)
and the conditions of sp yields that
®, 055(b) = &, (bg, ..., bp) = 0™(b) =b?  mod "B

We know that by = b, and ®1(by,b1) = bf + 7by = b} mod 72B. This yields by € 7B, and by
induction, we get all b; € 7B, and this yields pr o W(pr) o sp(b) = 0. So one can define a map sg
making the diagram above commute. Denote sg(b) = (so(b), s1(b), -..), we have W (pr)(sp (b)) = (so(b)
mod ,s1(b) mod 7,...) and pr o W(pr) o sg(b) = (so(b) mod 7, ..., 8, (b) mod 7,0,...). And it
follows from the commutativity of the diagram above that sp ,,, (b mod 7™) = (so(b) mod 7, ..., s (D)
mod 7,0, ...). And this yields the uniqueness of sp .

For the second statement, when m = 1, we have

so(b) = g 0 5(b) = b

So, sp,1(b mod 7B) = (b mod 7,0, ...), and it is an O-algebra isomorphism. For m > 1, we have
the following commutative diagram, where rows are exact

00— m™B/s™"'B —  B/f™"B—— 4 B/a™"B — 0

lsB,m-ﬁ»l lsB,m-Q—l lsB,m

0 —— Viu(B/7mB)/Vi+1(B/mB) —— Wyy1(B/mB) —— Wy, (B/mB) —— 0
The arrow in the LHS is well-defined since we have
sgm+1(7™b mod 7™ B) = pr o W(pr) o s(z™b) = n™pr o W (pr) o s(b)
=7a™(b mod 7B,b; mod 7B, ...,0,...) = (0,...,0,(b mod 7B)Y",(by mod 7B)I",..)
Therefore, by taking modulo V;,,11(B), we obtain a map

$pmt1: T B/m" B — V,,(B/7B) [V 1 (B /7 B)
7™b mod 7B+ (0,...,0,(b mod 7B)!",0,...)

Under the assumption that B/7B is perfect, the map above is an isomorphism. By induction, this
yields the map in the middle is an isomorphism, too. O

As a corollary, we get
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Corollary 2.5.3. Let B be an O-algebra, assume that
(i) B/mB is perfect.
(i) m1p is not a zero divisor of B.
(i1i) There exists 0 € Endo(B) such that ¥b € B, o(b) = b? mod 7B.
(iv) B = lim B/m™B
then

B=W(B/nB)
Proof. Due to the conditions, we obtain by the proposition above that
$gm : B/m"B = Wy, (B/7tB) = W(B/nB) /"W (B/7B)

where the last identity follows from Proposition [2.4.5] Taking the limit both sides, we get the state-
ment. O

Example 2.5.4. Let L/Q, be a finite extension, and B := O, then B satisfies the conditions of

Corollary with ¢ := idp. This yields W (F,);, = O. Note that we have to denote the subscript in
this case, since if we change the base ring, we will obtain another ring of Witt’s vectors as the example
below illustrates.

Example 2.5.5. Let L := [Fy((¢)), with uniformizer 7 := t and B := F[[t]] = Op, then again B
satisfies the conditions of Corollary with o := idp. It follows in this case that W (F,) = F,[[t]],
and this yields char(W (F,)r) = p.

2.6 Weak topology on Witt’s vectors

In this section, we will discuss about the topology on the ring of Witt’s vectors. Instead of using the
m-adic topology, we will make use of the product topology on W (B), where B is a perfect topological
k-algebra. It is weaker than the m-adic topology as we will see later, but it is easier to deal with, since
the operations among Witt’s vectors are complicated. For simplicity, we will denote the addition and
multiplication on W (B) as usual, instead of 8, [.

For any open ideal a of B, we define

W (pr)

Vo = ker(W(B) 25 W,,.(B) —— W,,(B/a)) =

= {(bo, ey b1, ) S W(B)|b0, vy b1 € a}
We can see that Vg p, is an ideal of W(B), and
V::ﬁb,max{m,n} - Va,m N ‘/b,n

For any open ideal b of B. And hence, there exists a unique topological structure on W (B) such that
W (B) is a topological ring and that such Vg ,, become a fundamental system of open neighborhoods
around 0. If we consider

W :i=7"W(B) ={(0,...,0,bp, ...) € W(B)|bm, bm+1,-.- € B}

then for any Vg, we always have W, C V4 ,,,. So, the topology on W (B) we have equipped is weaker
than the m-adic topology on W (B). We call it the weak topology on W (B).

Lemma 2.6.1. For any a = (ag, a1, ...) € W(B), we have
a+ Wa,m = {(bo,bl, ) S W(B)’bz =a; modal<i<m-— 1}

Hence, the weak topology on W (B) coincides with the product topology on B X B X ...
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Proof. Take any (co,c1,...) € Vam, i.€. co,...,cm—1 € a, we have
(ao, ai, ) + (Co,cl, ) = (ao + co, ) = (bo, b1, )

We can see that by = ag + ¢g = ag mod a. Assume that b; = a; mod a holds to n — 1 where
1 <n <m—1, we will prove that this holds for n. By the addition formula for Witt vectors, we have

D, (ag, -y apn) + Pr(co, vy cn) = Pr(bo, ..., by)

Assume that b; = a;+d; for d; € a,0 < i < n—1, we deduce from the definition of Witt polynomials
that
Dp_q(ad, ....al )+ Pp_1(cd, sl )+ 7" (an + cn) = Pp_1(bY, ..., b1 _)) + 7"y,

And this yields

@n,l(a(l),..., )—|—‘I>n 1(00,. . gz 1) (I)nfl(bg,...,bglil)

pr + an + cp = by (%)

And we know that

D1 (bG, -, b 1) = Pr1((ao + do)?, ..y (an—1 4 dn-1)?) =
= By (af +dfyal +dl) = (af + )T T @l dD)
= () + ot (] )

And from (x), we get
d+ap+c,=0b

for some d € a, and this yields b,, = a,, mod a, since ¢, is also in a. We then get
a+ Vam C {(bo,....bm—1,...)|bi =a; mod a,0 <i<m—1}

For the converse direction, with the same argument, we deduce that for b; = a; mod a, for all
0<i<m-—1,
(bo, veuy bm—l; ) — (a[), ceey A —1, ) = (Co, ey Cm—1, )

with ¢; € a, for 0 < ¢ < m — 1. For the second statement, we can see by the first statement that the
set

a+ Va,m = {(bo, ---abm—l) € W(B)|bl =a; modal<i<m-— 1}

forms a fundamental system of open neighborhoods around a. And this follows directly that the weak
topology on W (B) is the same as the product topology B x B X .... O

Via this lemma, we can prove
Proposition 2.6.2. If B is Hausdorff (complete), then W (B) is Hausdorff (complete, resp.).

Proof. Tt follows easily that if B is Hausdorff then the product topology B x B x ... is also Hausdorff.
Now, assume that B is complete. In this case, the canonical map

¢:B—limB/a
T
is surjective. Let ¢ be its kernel, we have B/¢ = @a B/a. And this yields

n(B0) 2 Won(lm B/a) & im Won (B/a) = [ W (B) Vain
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where the second isomorphism comes from the functorial properties of Witt vectors, and the last

isomorphism follows from the fact that the map W (DB) Ween), W (B/a) £ W,,(B/a) has kernel Vg .

Now, it follows from Corollary [2.3.7] that
W(B/c) 2 lim Wy, (B/c) = lim lim W (B) / Ve
a

m m

And so, we obtain the following surjective map
W (pr) ~ 1 s
W(B) ——= W(B/¢) = @@W(B)/me
m a

And this yields W (B) is complete. O

Proposition 2.6.3. In the case B is complete and Hausdorff, we can equip the induced topological
structure on the quotient ring Wy, (B), with m is fixed, such that W,,(B) is Hausdorff and complete.

Proof. In this case, the canonical map B — @a B/a is bijective, and this yields by the previous proof
that

I

W (B)/Vin(B) = Wy (B) = lim W,,(B/a) =

H
a

=~ i W (B) /Va,n = (W (B)/Vin (B))/ (Vo / Vin (B))
a a
From this, there exists a unique topological structure on W, (B), such that {V, ,,/V:(B)la C B :
open ideal } becomes a fundamental system of open neighborhood around 0. And W,,(B) is also
Hausdorff, and complete. ]

Example 2.6.4. When B is a perfect field extension of k, with discrete topology. Then it follows
directly that the weak topology on W(B) is exactly the m-adic topology on W(B). And if we apply
this to B := k, we will obtain W (k) = Of, topologically.

We will be mainly interested in the case B := Op, where F' is a complete, non-archimedean, perfect
field containing k. In this case, we get W (B) is Hausdorff, complete, and is a subring of W (F').

Lemma 2.6.5. Let O be as above, then an ideal a of O is open iff a is non-zero.

Proof. Assume that a is open, then it is obvious that a is non-zero. Now, let a C Op be any non-zero
ideal. Take 0 # x € a, it is sufficient to prove that (z)-the ideal generated by x is open in Op. We
can see that

(z) ={y € OFlly| < |z[)}

Let us take any z € Op, such that |y — z| < |z — y|. This yields |y — z| < max{z,y} < |z|. From
this, we have |z| < |z|, and z € (x). This yields (x) is open, and hence, a is open. O

We can define for any open ideal a of Op, and any m > 1 an Op-submodule
Ua,m = ‘/u,m + WmW(F) = {(bo, ey b1, ) € W(F)’bo, vy b1 € a}
We note that Uy, are not ideals of W (F'), and we again have

Uaﬁb,max{m,n} C Ua,m N Ub,n

This yields there exists a unique topology on W (F'), such that W (F') is a topological group, and
Ua,m forms a fundamental system of neighborhoods around 0. Also, one can see that the weak topology
on W(Op) is the subspace topology on W (F'). We recall from Proposition that since F' is an
perfect extension of k, W (F') is a D.V.R, with maximal ideal generated by 7. Again, the topology we
have equipped for W (F') is weaker that the m-adic topology. We can call it the weak topology on
W(F) . We actually want to prove that this topology actually defines a structure of topological ring
on W(F), and that when Op admits a filtered fundamental system, then W (F') is complete.

We will need the multiplicative property of Teichmuller’s representatives.



2.6. WEAK TOPOLOGY ON WITT’S VECTORS 35

Lemma 2.6.6.
1. Let ay,...,ar € W(F), then there exists 0 # o € O, such that

T(a)ar,...,T(@)ar € Uopm

2. Let a be an open ideal of Op, then for any 0 # o € O, and m > 1, we have

(o HU

aqula’m g UC‘,m
Proof.

1. By Proposition [2.4.6) we can represent

a; =y 7(aij)m

Jj=0

And from this

T(a)a; = ZT(aam)ﬂj = (aaip, a1, ...)
j=0

And we can choose « such that aa;; € Op, forall 1 <i<r,0<j<m—1.

-1
2. Take a = (ag,a1,...) € a?"  a, we can represent

Hence
>0 >0

And hence, a‘qiai € Usm, forall 0 <i<m — 1.

We are now ready for the main result of this section.
Proposition 2.6.7.
W (F) is a complete, Hausdorff topological ring.
Proof.
We will prove that the multiplication map

W(F) x W(F) — W(F)

is continuous. Take any a,b € W(F'), and an open neighborhood of ab+ Uy s, for some open ideal
a of Op, and m > 1. By Lemma one can find 0 # a € Op such that 7(a)a, ()b € Uo, m,
which is equivalent to a,b € 7(a" ") Uo, m. By Lemma again, we have

(a+ anmfla,m)(b + anm71a7m) Cab+UopmUam + Usm € ab+ Uq

And by Lemma W U, am=1,4,, 18 open. Hence, W (F) is a topological ring. Moreover, one get
easily that 7

ﬂ Ua,m = ﬂ{(bo, ey bin—1, ) S W(F)|bz S Cl} =0
a,m a,m
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since O is Hausdorff, and the intersection of all open ideals is just 0.

Now, to prove that W (F') is complete, t is sufficient to prove any Cauchy sequence in W (F')
converges in W (F"). The main ideal of the proof is that we will use Lemma to reduce the induced
Cauchy sequence to W,,,(OF), which is complete, by Proposition And then, by the completeness
of the m-adic topology on W (F'), we will prove that our sequence converges in W (F).

Take any (ay), is a Cauchy sequence in W (F'). Fix an integer m > 1, then for any a: open ideal
in Op, there exists an integer nq such that for all n,n’ > ng, a, — ayy € Ug . Then by Lemma m
we can choose 0 # a € O, such that

T(a)ay, ..., 7(@)an, € Uopm
And hence, for all n > ng, we have
T(a)(an — an,) € T(@)U0pm C Uopm
And hence (7(a)an)n € Uoy m, and for n,n’ > n,, we have
(@) (an = an) € 7(@)Vam € Uam
Take (by,)n, € W(OpF) such that 7(a) — b, € 7™ W (F). We then have
by — by € (T()(am — ap) + 7" W(F)) "W (OF) C (Ugm + 7" W(F)) N W(OF) = Vam

for all n,n’ > n,. This yields the sequence (b, mod V,,(OF)), is Cauchy, and hence, converges
to some b mod V,,(OF) in W,,,(OF). Hence, for any open ideal b C Op, there exists np such that for
all n > np, we have b — by, € V_ym-1, . Let us denote a(m) := 7(a~1)b, then

a(m) —ap =@ b —a, =7(a™ ) (b - 1(a)a,) = (a1 (b — b, + b, — 7(a)ay)
C (@ ) (Vygmty + T W(F)) C Upm + 7" W (F) C Ugm

ad

for all n > nye. Now, if we vary m, then we will get
a(m+1) —a(m) = (a(m+1) —ay,) — (a(m) — ayn) € Upm
for n is sufficiently large. That means
a(m+1) —a(m) € {(bo, ..., b;m—1) € W(B)lbo, ..., bj—1 € b,¥b C Op : open}

And this yields a(m + 1) —a(m) € #™W (F'). Now, this yields (a(m)), is a Cauchy sequence with
respect to the m-adic topology, and hence, a Cauchy sequence in the weak topology. Let a be the
convergent value of (a(m)),, in the m-adic topology, we will prove that a is also the convergent value
of (an)n. For any ideal a C Op: open, and any m, we have 7"W (F') C Ug,, and there exists some
n’ such that a — a(n') € #™W(F) and a(n’) — an, € Uqm, for some n > ng. Hence, (a — a,) € Uq .
This yields a is the convergent value of W (F'), and W (F') is complete. O



Chapter 3

Tilts and Field of Norms

Let us fix these notations, L/Q, a finite extension, with O := Op, its ring of integers, m := 7, a
uniformizer, with ¢ := #k, where k = ki, is the residue field of L. @, denotes an algebraic closure of
Qp, and C, the completion of @p. Let Loo/L be a Lubin-Tate extension associated to a given Frobenius
series. When L := Qp, and Lo := Qp° (cf. Example , a theorem of Fontaine-Winterberger
[FW79] yields Gal(Q,/Q>) is isomorphic (as topological groups) to Gal(F,((t))*®/F,((t))). In fact,
the theorem of Fontaine-Wintenberger holds for all arithmetically profinite field extension of L. It was
generalized by Peter Scholze [Sch12| by the notions of perfectoid fields and their tilts. The titlting
correspondences are then simplified by the work K. S. Kedlaya |[Ked15|, which is the main goal of
this chapter. At the end of this chapter, as an application, we will prove that the F,-cohomological
dimension of Gg,-the absolute Galois group of Q) is not larger than 2.

3.1 Perfectoid fields and tilts
Definition. Let K C C, be a field, then K is said to be a perfectoid field if
(i) K is complete.
(ii) |K|* is dense in RZ,,.
(iii) The map
()P : K/pOx — K/pOk
x — ab

is surjective.

The main goal of this section is to construct the tilt K” of a perfectoid field K. It turns out that K”
is a complete, perfect field of characteristic p. In this chapter, we are always interested in perfectoid
fields K such that Lo, € K C C,. As we will see, in this case, the first axiom of perfectoid fields
is automatically satisfied. When K C Q, is complete, K/Q, is a finite extension (since an infinite
algebraic extension of a local field is not complete). An example of perfectoid fields is C,. Another
example is the completion of Ly, as the lemma below points out.

Lemma 3.1.1. Let Lo C K C C, be an intermediate complete field, whose absolute value group
|K|* is dense in RZ,. Assume that there exists w is an element of K, such that 1 > |w| > |7|, and

(O JwOK)? = Ok /wOk, then K is perfectoid.

Proof. Due to the dense of the absolute value group, we can find w; € K, such that |w|'/? < |w;| < 1,
ie. wOk Cw{Ok. For any a € Ok, we can write a = af +wb,, where b, € Ok and |w| < |w]| implies
that one can write

37
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_ a q
a = ay + wiby

with ag, by € Ok, and inductively

b() = a‘f + wtlzbl

_ a4, a
b; = a; +wibit1

For all a;,b; € Og. And we can write a = af +wja] + w%qag + ..., and when n sufficient large, we
have |p| > |wy |21, And hence, a = (ag+way + ... + w"a,)? mod pOp. This yields K is perfectoid.

O
Corollary 3.1.2. The completion f; of Loo s perfectoid.
Proof. We recall that there exists a uniformizer z, of L, satisfying |z,| = ||/@ 7" ™" And this

yields easily that the absolute value group of | Lo |* is dense in RZ ). Also, since L,, are totally ramified
extension of L, for all n, we obtain O, /7Or_, = k. And because O~ /07~ = Oy /7Or,, we

obtain (O7—/mO;=)? = Or=/7Or—. And by Lemma3.1.1 Lo is perfectoid. O

We will now construct the tilt of a perfectoid field.
Lemma 3.1.3. . Let K be a perfectoid field and a € K*, then there exists b € K*, such that |a| = [bJP.

Proof. Because K* is dense in RZ, there exists some w € K* such that [p| < |w| < 1, and some
m € Z, such that |w|™*! < |a| < |w|™. From this, |w| < |aw™™| < 1, and hence [p| < |aw™™| < 1,
and |a| = |w™|law™"™|. And it is sufficient to prove that whenever |p| < |a| < 1, there exists b € K*,
such that |a| = |bP. The condition (iii) of the definition above yields there exists some b € K*, such
that |a — bP| < |p|. If |a|] # |bP|, then |a — bP| = max{|a|, |bP|} > |a|] > |p|, a contradiction. Hence,
jal = [Bl. 0

Let us fix some w € K*, where K is a perfectoid fields, such that 1 > |w| > |7| (so that WOk D
mOr D pOk. We consider the following projective limit
()1

O = lim(ee. L5 O fuwOK s 0 w0k L O f0OK) =

= {(...,ai,...,al,ao)\ai S OK/wOK,ag+1 = Ozz‘}
Lemma 3.1.4. . Oy is a perfect kr-algebra.

Proof. There is a map from (O mod 7O) to O, defined as

(¢ mod 70) — (...,a mod wOk,...,a mod wOk)

Because a? = a mod 7O for all a € O, we have a? = a mod wOg, this yields a well-defined map
from kg, to Og/wOk. It is easy to check that this map is a ring homomorphism. Hence, O is a
kr-algebra.

Let us consider the map Ogy — O defined as a + 4. Assume that o := (...,a, ...,af, ad) = 0.
The fact that agﬂ = q; yields a; = 0, for all ¢, and hence, a = 0. Also, it is easy to see that
(v @iy ooy 1, 0) = (oory 4y ooy 1)9. So, the map is also surjective. This yields Oy is perfect. O
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Now, for any a = (..., i, ..., a1, ), we can lift a; to a; € Ok, such that a; mod wOx = o, and
we have agH = a; mod wOg. And this yields

¢ttt _ ¢ it+1
a; . =a; modw Ok

so that the sequence (agl) converges in Og. It can be checked easily that the limit of this sequence
does not depend on the choice of a;. And we denote this limit as af.

Lemma 3.1.5. . The map
lim O 5 Oy,
()4

defined by

(...,ai,...,al,ao)»—>(...,ai mod w0k, ...,a; mod wOgk,ag modw(’)K)

and the map

O L 1im Ok

<lE

e
defined by o — (..., (al/qi)ﬁ, .., (D) b are multiplicative inverse of each other.

Proof. We can see that 1 is well-defined. Also, if we denote a := (..., ..., a1, ap), then it can be
seen that al/? = (.o, @iy1,04), and

when we change variables k = i + j, and q; are lifts of o;. And this yields 6 is also well-defined. Now,

if we begin with (..., a;, ..., a1, ...,a0) € T&l(')q Ok, then

0U(...,ai,...,a1,a9) = 6(...,a; mod wOk,...,ap mod wOg) =

= 0( ey iy oy 1, 000) = (o (@M TYE (@12 o)
where a; = a; mod wOg, and a = (...,04,...,ap). We have (al/7)t = limjéoo(agij). Because

aj,, = aj, we have af " = a;. And hence (a/4')! = a;. And hence, 6 o 1) is just the identity map.

Now, if we begin with o = (..., o, ..., a1, a0) € O, then we first note that af = ap mod wOk,
hence

Yo b(a)=v(.., ("), . (&) of) = a
So, this yields 1 and 6 are inverse of each other. The multiplicative properties are easy to check. [

Our net goal is to prove that in fact O, is an integral domain of characteristic p, and that it is
complete. We first introduce the following map on O

llp : Opr = R
defined as |al, := |af|.
Proposition 3.1.6.
(i) |.|, is non-archimedean norm on Oy.
(i) 1040 = 10k
(i1i) For o, B € O, aOp» C BOks iff ], < |5y
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(iv) O is a local domain of char. p, with the unique mazimal ideal my, = {a € Oy |||, < 1}.
(v) OK»/me = Ok /mg.

(vi) Let w* € Oy, such that |, = |w|, then the map O /W’ Oy — O JwOk defined as a — o
mod wQOg is an isomorphism of rings.

Proof. We first fix o := (..., i, ..., a1,0), 8 := (.oy Biy -, B1, B0) in Ok, and a; = (al/qi)ﬁ,bi =
(B9t we know that bl =bi,al = ai
(i) We have

o+ Bl, = (o + B)] = | Jim (a; +b;)"'| = lim |(a; + b:)"
< lim max{|a”[, [p"'[} = lim {|aol, |bol} = max{|af’|, 5[} = max{lal,, |5}

Also, assume that ||, = 0, this yields of = ag = 0, and & = 0. The multiplicative property of |.|,
is easy to check. So, it is a non-archimedean norm on O .

(ii) From the definition, we have |Op»|, C |Ok|. Take any a € Ok, we know that there exists
some b, such that |w| < [b| < 1, and |a| = |b]?". We can find a € Oy such that ag = b mod wOk-.
This yields of = b mod wOf, and |8* — b| < |w|. It follows that |3*| = |b]. So, we get ||, = |b|, and
|CL| = |ﬂqm||,. So OKb = OK

(iii) Assume that aOp, C BOks». Then there exists some v € Oy, such that a = v, and
this yields |a], < [B],. Conversely, assume |a|, < |B],, which yields |(a!/7 ) < |(8'/9")¥|, because
\al/qllb < |ﬁ1/ql|b. And this yields |a;| < |b;|, and there exists some ¢; € Ok, such that c;a; = b;. It
follows directly that cgﬂ = ¢;. And hence, 7 := (...,¢; mod wOk,...,c; mod wOk,cy mod wOk)
defines an element in Ops,. And it is clear that ay = 8, and aOp, C BOgs.

(iv) Now, if we take any element v € O \ mys, then we can see by our recent argument that
YOg» = Ogs, i.e. 7y is invertible. This yields O is local with maximal ideal my,. Assume for now,
aff = 0, this yields |af|, = |apbp| = 0, and hence, ag = 0 or by = 0. From this & = 0 or 5 = 0. This
implies O is a domain.

(v) Let us consider the map v : Oy, — Ok /my defined by ¥(a) = of mod mg. We can see
easily that ¢ (af) = ¥ (a)(B). Also,

Y(a+B)=(a+pB) =ag+by modwOg =ag+by mod mg

So, v is a ring homomorphism. Take any ap € Ok, we can find a1 € Ok such that af = q
mod pOk. It follows af = ap mod mg and a! = ap mod wOk. Continuing this process, we get
a:= (..,a; mod wOk,...,ap mod wOg) € O, and af = ap mod wOk = ap mod mg. And ¢ is
surjective. From (iii), we have

kery) = {a € Ojs]af € mi} = {a € O|[af| < 1} = {a € Opsllal, < 1} =mye
And this yields O /myy = O /mg.
(vi) It follows from (v) that the map 6 : Oy — Ok /wOk is surjective, with

kerf = {a € O] < ]} = {a € Opallal, < o]} = WO

SO, OKb/waKb gC)[(/OUC)[( OJ
With this kind of topology, we can prove

Proposition 3.1.7. Oy is complete with respect to the norm |.|,.
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Proof. We have Oy = l'&l( Ja Ok /wOg, and we can equip each O /wOf the discrete topology, and

[y Ok /wOk the product topology, and O is a topological subgroup of [[ Ok /wOk, which has a
fundamental system of open neighborhoods around 0 defined as

U = {(ece, ams1, 0, ., 0) Y (m > 1)

and Uy D U D ... forms a filtration. We will prove that with this topology, O+ is complete, and it
coincides with the topology defined by |.|,. For the first statement, it is sufficient to prove any Cauchy
sequence converges in Oy .

Let (z5)n be a Cauchy sequence in O,. We can represent each z, as (..., Tn, ..., Tn,1, Tn,0), With
wg,iﬂ = 2p4. And for all £ > 0, there exists some my, such that Ym,n > my, x,, — x, € Ug41, and
Mp41 > my. This yields @y, ; — xp; = 0(V0 <@ < k+ 1;m,n > my).

Let = := (..., Tmyis -or Ty, 1, Tmg,0). We can see that zp,, ;41 = Zm, 41, and hence xfni7i+1 =
Tmyi = :):‘ZniH’iH. So, z € Os. Now, for any k > 0, n > my, we have v —xp, = (T — T, ) — (T, — T, )-
It can be seen that for any 0 < 7 < k + 1, we have zp,, ; — T, = 0, 50 £ — 24y, € Up41, and
Ty, — T, € Ugy1. And this yields (xy,), converges to z. Hence, with this topology, Oy, is complete.
On the other hand, we have

Un = {a € O (@/1")} € 0OK} = {a € Opo[|a!/T"], < )y} = ()" O

And hence {Up, }mm>1 also forms a fundamental system of open neighborhoods around 0 with the
topology induced by |.|,. It follows that the two topology coincide. And this yields O is complete. [

For now, it makes sense to talk about K’ the fraction field of O - It is a field of characteristic
p. By extending the norm |[.|, to K > it is complete and non-archimedean. Also, the inverse map of P
in [3.1.5| can be extended to a multiplicative bijection

defined by a s (..., (/9 . (al/1)E, of).
Definition. . K is called the tilt of K.
An important observation is that

Proposition 3.1.8. (CZ 1s algebraically closed.

Proof. See [Sch17|(Lemma 1.4.10). O

3.2 Galois actions and field of norms

In this section, we will construct the field of norm Ej of L, and discuss about the actions of Galois
groups on Ep. We first explain how Gal(Q,/Q,) acts on C,. We know that any element in a € C,
is actually a Cauchy sequence (ay,), in Q,. Let 0 € Gal(Q,/Q,), we then have |a,| = |o(ay)|, for all
n, and |ap, — ap| = |o(am) — o(ay)|. From this, we can see that o acts on C, as a continuous field
automorphism.

Lemma 3.2.1. Let a € Cp, then for any integer m, there exists b € Q,, such that a —b € p"Oc, -

Proof. The statement is equivalent to find b € Q,, such that |a — b| < 1/p™. Because Q, is dense in
C,, we can easily find such a b. O

Lemma 3.2.2. Let 0 € Gal(Q,/Q,), then o preserves p"Oc,, for all integer m.
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Proof. Take any a € p"Oc,, i.e. |a| <1/p™, we have to prove that |o(a)| < 1/p™. One can represent
a = (an)n, where (ay), is a Cauchy sequence in Q,, then

la] = lim_an| = lim |o(a,)| = |o(a)|
Hence, o(a) € p™Oc, -
As a corollary, we get

Corollary 3.2.3. The action Gal(Q,/Q,) x C, — C,, is continuous.

Proof. For any a € C,, a fundamental system of open neighborhoods around a is of the form {a +
p"Oc,|m > 1}. Take W := o(a) + p"Oc, as an open neighborhood of o(a) € C,. By Lemma
there exists b € Qp, such that a + p™O¢, = b+ p™Oc,. We then take F' a finite Galois extension of
Qp containing b, and U := Gal(Q,/F), then U is an open neighborhood of id in Gal(Q,/Qy), and U
fixes b. By using Lemma [3.2.2] we have

oU x (a+p"Oc,) = oU x (b+p"Oc,) = o(b) +p"Oc, = o(a) +p™ O,
And this yields the action above is continuous. O

Let Lo be the Lubin-Tate extension of L, and Lo its completion. We can see G, := Gal(Q,/L)

preserves 7Oc,, and it acts on Oc,/mOc, as ring automorphisms. They induce an action
GL X Oc;bo — OC%

(o,(...,a; mod 7Oc,,...,a0 mod 70¢,)) — (...,0(a;) mod 7O¢,,...,0(ap) mod 7O¢,)
as ring automorphisms.

Let a := (...,a; mod 7O¢,,...,ap mod 7O¢,), we have of = limy_yoo aq , and o(a) = (...,0(a;)
mod 7O¢,, ..., (ag) mod 7O, ), and o(a)* = lim; o0 0(2)4 = o (limi_se ag ) = o(af). Also, from
this |a|, = |of| and |o(a)|, = |o(a)f| = |o(af)| = |af]|. So, o preserves |.,.

Lemma 3.2.4. The action G, X OC; — (’)C; 18 continuous.

Proof. We first note that Oc,/7Oc¢, = (9 /7r(9Q , because O, is the completion of (9 From this,
Oc» L ()a Oq. / WOQ , with Og~ / 7r(’)Q is equipped with discrete topology (Propomtlon . But

then it follows easﬂy that G, acts continuously on the product HNO (’) o / 7r(9 T In partlcular Gr,
acts continuously on O . O
P

And we can now extend the action from Gy, to (C;’D.

Proposition 3.2.5. The action G, X CE, — (C;’D 18 continuous.

Proof. Due to the previous lemma, for any b € O, the map
p

QJZ)b:GL—>OC;

o+— o(b)

is continuous. Now, let b € CII’, \ (9@, ie. |bl, >1,s0[1/b], <1,and 1/b € (9@1,). So the map )y is the

1/b
composition of ¢y, : G — (’)@ and C’)@ % (C;,, and both are continuous. So, for all b € (CZ, the

map ) is continuous.
Let us take U := Uy, = {...amm+1,0, ...,0} as in Proposition which forms a fundamental system
of open neighborhoods around 0, then because ¥ is continuous, for any fixed o € G, there exists V:
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open neighborhood of ¢ such that (V') C o(b) + Up,. This yields for any 6 € V,0(b) € o(b) + Up,. It
also follows easily that any § € G, preserves U,,. So, we get

Vx(b+Uy,) Cob)+Up
And hence, the action from G, to (CZ is continuous. O
_ — —b
Let us denote Hy, := Gal(Qp/L ), then by continuity, Hy, fixes Lo, and it also fixes Lo, . Hence,

— —b
the actions from G, to Lo, can be reduced to the continuous actions from I'y, := Gal(Ls /L) to Lo -

And the action from & € ', to f;b is induced from the action of o € Gal(Q,/L), where ol =7.

Our next goal is to construct the field of norm Ep, of L, and see how 'y, acts on it. We first fix ¢ a
Frobenius series on O[[X]] as in Chapter I. We recall from our first chapter about Lubin-Tate theory
that there exists an isomorphism of topological group

XL : FL — OX
o— xr(o)

Let us define the Tate module

(. ey g Ioy oy 2y

T:= 1&1
Take any o € I', then for any y := (y,)n € T, we can define the action from G to Tate module
as follows

o ((yn)n) = (0 (Yn))n

It is well-defined since [7]4(0(Yn+1)) = o([7]¢(Yn+1)) = 0(yn). Also, T is a free O-module of rank
1, and the action from a € O on T is give by

a((yn)n) = (lalo(yn))n

This is again well-defined since [7]4 o [a]g = [a]4 o [7]4. Hence, for any o € I'r,, we have

o(y) = [xr(o)]s(y) (3.1)

We will next construct Ep, as follows. Let y € T, then because 7], = ¢ and ¢(X) = X4
mod 7O[[X]], we have

Un = O(Yns1) = nyH mod 7Op,

and ¢(y1) = 0=y mod 7Oy, so that the map

v: T — O—,
L

e}

(Yn)n — (..yyi mod 7Or_,...,yn mod 7Or__,0)

is well-defined. Let us fix a generator (of O-module) t of T, where t = (..., zp,...,21), and 2, is a
generator for O/n"O-module. Let w := «(t) = (..., 2, mod 7Or_,...,z1 mod 7Or_,0). We have

Lemma 3.2.6. |w|, = ’77|q/qfl

i—1

Proof. We have |w|, = lim_,~ | 2|7, and we know that |z;| = |7|/@ 7" so that |w|, = |7|?7/4~!. O
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Because of this |w|, < 1, and since Oz\b is complete, the map

oo

KIX]] — O,

oo

f(@) — fw)

is well-defined. And it is extended to the field embedding k((X)) < Loo. The image is denoted E,
and it is called the field of norms of L.
We now see how I'z, acts on Ep. First, let o € ', we have for any y := (yn)n € T

Uo(y)) = tl(o(yn))n) = (o(yn) mod 7OL )n = ((yn mod 7OL,)n) = o (1(y))
So, we get
Loo =001 (3.2)
And we are now ready to prove the main results of this section
Proposition 3.2.7.

(i) For a € O, let us define [a](X) = [a]4(X) mod 7 € k[[X]], then Yo € I'r,, we have o(w) =
xe(o)](w).

(ii) The action from I'f, preserves Ef.

(i11) Er, does not depend on the choice of the generatort € T.
Proof.

(i) By , and respectively, we have

o(w) =a(ut)) = ua(t)) = e(lxr(@)lp(t)) = (-, [xLls(2n) mod 7OL, ...,0) =

= [xz(0)](...,zn, mod 7Or__,...,0) = [x1(0)](w)

(ii) This follows easily since Ey, = k((x)) is complete, and |w|, < 1, this yields by (i) that o(w) =

[xL(o))(w) € EL.

(iii) If we replace t by at, where a € O, then there exists o € 'z, such that x1(o) = a, and by

at = [xr(0)]s(t) = o(t)

And by

at) = u(a(t)) = o(u(t)) = o(w)

And due to (i), o(w) € Er, and so is «¢(at). This yileds the field obtained by at is a subfield of
Er. By symmetry, they are the same.

O

We can briefly explain why Ep, is called the field of norms. Let us denote I'), := Gal(L,,/L), we
can define the ramification subfroups of I';,
Tpii= {0 €Tylo(z) =2, mod 210}

where z, € .%, is a generator for .%, as Or/n"Or-module. And it can be computed without
difficulty [...] that for 1 <m < n,¢™ ! <i < ¢™, Ty = Gal(L,/Ly). And in particular,
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Gal(Lny1/Ln) = Tyq1,gn—1 = {0 € Tny1l|o(2nt1) = 2p41 mod qu:i-loLnﬂ} =
={o eli|lo(zns1) = 2ng1 mod 20y, }

And this yields for any y € O, ,, we have

Normy, /)= [[ o =y* mod=z0y,,, (33)
o€Gal(Lns1/Ln)

Let us consider the map
Or, — Or,1/210L,,

ar—a mod 20, ,

This map has kernel 210y, , so we have an embedding ¥ : O, /210, — OLnH/ZloL
yields for any b € Oy, b mod 210y,

w41+ And this

is in ¢¥(Op, /210y, ) iff there exists some a € Or,, such that

n+1 n+1

b mod 10y,

It follows that the map Or,,. ., /210¢,.., 0N Or,../210r

by [3:3] Let us consider the map

=a mod z10p,

n+1 n+1

n+1

@ OLn/ZloLn — T&HOLw/ZloLm
Norm ()9

(yn mod 210y,), + (yn mod 2101 )n

Take any yn+1, we have y, = Normyp, . /1, (Ynt1) = yzﬂ mod 210, . ,. So the map above is
well-defined. Furthermore, we have for any n the injectivity Or, /210, — Or_ /210L. . So the map
above is injective. Also, because |z1| = |7|Y/4~1 > |n|, we have @1( Ja OLo/210L,, = Of\m and so,

we obtain an embedding

@ OLn/ZloLn — Of\b

Norm

And it is showed by Wintenberger [Win83| that @Norm Or/z10r = Op, . And that is why Ep, is
called field of norms.

3.3 Un-tilting

We have seen that from a perfectoid field, we can construct its tilt, which is a perfect, complete subfield
of (C;,. In this section, we will prove that there is a bijective map (note that we are always interested
perfectoid fields containing L).
—b
{perfectoid fields} <> {complete, perfect field Loo € F C C}}

Let us begin with a perfectoid field K. We know that O is complete and perfect by Proposition

[B.1.7 We will construct a surjective O-algebra homomorphism
Ok : W(OKb) — Ogk

via several steps.
Step 1. Consider the following diagram of O-algebra

has the image contained in ¢(Or,, /2101,)
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W1 (Og) —22s O —2— Ok /7"Ox
I
W, (Ok) e L w0k /70K)
we have

D, (ag, ..., an) = agn + o+ Tr”_la;i_l + 7"ay,
From this, if a; = wb;(1 = 0,...,n — 1), then

®,(ag,...,an) =0 mod 7"Ox

And the map W(pr) o pr : W,41(Ok) — Wy, (Ok/mOk) has the kernel {(wby, ..., 7bn_1,0a,)}, so
there exists only one O-algebra homomorphism 6, : W,,(Ok /7Ok) — Ok /7" Ok making the diagram

above commute. And it follows that

0n(ap mod 7Ok, ...,an—1 mod 71Ok) = agn + o7l | mod Ok
From this, we obtain the following diagram
Wit (Ox /70k) 27 O fan 1O
I
(3.4)

Wi (Ok /7Ok) pr

5

This diagram is commutative since

q"t

Ont+1(ap mod 70k, ...,a, mod 10k) = q

n+1 _ 2
=af +..+7" 1a;11_1 mod 7Ok

1
+ ..+ 7"l mod n" MOk =

Also,

0, 0 Fopr(ag mod 70k, ...,a, mod m1O0k) = Op(al mod ¢Ok,...,al | mod 7Ok) =

n+1 _ 2
= ag + .. 4" 1a;1171 mod 7" Ok

Step 2. Let us consider the projection map
pr; : OKb = @OK/WOK — OK/TFOK
()e
(...,ai,...,al,ao) —

It can be lifted to the map
W(pr;) : W(Op») — W(Ok /7Ok)
(a(o), o, o) > (al(-o), - agn))

where a(™ = (... ,az(.n), . ,agn), oz(()")) € Og». And this yields the map
Wn(prn) : Wn<OKb) — Wn(OK/TrOK)

@@, . o) — (a0 alnD)

And for each n, we can also form the map
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Pn: W(Op») —2— Wy(Op) —— Wy (Ok /70k)
(@@, ...a®,.) (af”,af™)
And for each n, we have this diagram
Win+1(Ok /T0k)
b
W(Ox) OKWOK) (3.5)
(OK/WOK)
The diagram above is commutative since
(@@ o)y = (a0 alnD)
And
Foprobyi(a®, . .o )=Fo pr(aﬁ?_?_h s 045;21) = F(agg)_l, ...agj__ll)) =

= (@) (@ZD)1) = (0, afY)

n

Via [3.4] and we obtain the following commutative digram

n+1 OK/TFOK) L) 0K7Tn+1OK

V lpr

W(OKb OK/WOK) pr

\ ¥

(OK/TFOK) 0—> (’)K/W"OK

And hence, we actually obtain a map of O-algebra

@K : W(OKb) — l'&l(’)[{/ﬁn(’)[{ = OK

such that O mod 7Ok = ¢y, 0p,. Now, because K is a perfect extension field of &, and W (Opg») is
a subring of W (K?”), we have for any o € W(Og), it can be uniquely represented as > ;- (o)t =

(@O . (a(i))qi, ...), where a( ¢ Og», and 7 is the Teichmuler map. And for any integer n, we have

%

Ok (@®, ..., (@) ) mod 7Ok = Oopn(a?, ..., (@), ...) = 6,0W, (pr, )opr(a'®, ... (o), ) =

= 0, oWn (pr,) (@@, .., (@™ D)) = 0,00, (oY = (0O) (D) =

(N L (M) 4+ 47" ") mod 7Ok
And hence, this yields O can be defined as

@K<ZT(a(i))7ri) = Zwi(a() t

i>0 i>0
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Proposition 3.3.1. Let K be a perfectoid field, then the map
Ok : W(OC%) — Ok
ZT(ai)ﬂ'i — Z ot
i>0 i>0
is a surjective O-algebra.

Proof. It is sufficient to prove that O is surjective. Take any a € Ok, because K is perfectoid, we

can find ag € Oy, such that ap = (...,a mod 7Of), and hence, ag = a mod 7Ok, and we can
f

write a — apff = maq, for some a1 € Ok. Again, we can write a; — o] = mas. And inducetively, we get

a—ag—kwal—ﬂr as = Za 7t

>0
And we have
Ok (T(a) + 77(a1) + Zomr:a
>0
Hence, O is surjective. O

We can characterize the kernel of O in a particular important case.

Proposition 3.3.2. Let K be a perfectoid field, and O is defined as above. If there exists some
c € ker Ok, such that ¢ = (y0,71,-..) and |yl, = ||, then ker O = cW (O ).

Proof. First, we will prove that ker O C ¢W (O )+7W (O ). Takeany a = Y.~ 7(a;) 7" € ker O,
we have -
0= @K(ZT(%)H) = Z ot
i>0 i>0

It then follows that |ag\ <|ml, i.e. |agl, < || = |70lp- So, there exists b € Oy such that ag = Yob,
then
a—T1(b)c=1(0,...) € W (O»)

And hence, ker O C cW (O )+7W (O ). Take any « € ker O, we can represent a = cbg+may, and
this yields ma; € ker Ok, and Ok (ma1) = 1Ok (a1) = 0. That means a; € ker O, and inductively,
a1 = cby + mag, ..., and we get
a = chy + may = cby + weby + Tag = c(bg + b1 + ...)
Because W(Op») is complete w.r.t the m-adic topology, we get ker O C c¢W (O»). Therefore,

kerOg = cW(Og»). O
Important Convention. From now on, we will assume that there exists ¢ = (v9,71,...) €
ker©7—, and |y, = |7|. The existence of ¢ will be proved later in the chapter about (¢r,T')-

module. And this yields by the previous lemma that for all perfectoid field K, ker © g is generated by
c.

By the commutative diagram for all perfectoid field K

W(Og) —5 O

gl Tg
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We have ker O = cW (O ). We also obtain the map

O : W(O) @we , O~ — O
Loo

a®b— O(a)b

Lemma 3.3.3. The map é}; defined above is an isomorphism.

Proof. We have

W(OKD;) ®WOLAb Of; = W(OKb) ®WOLAb OE;/CW(OE;b) = W(OKDJ)/CW(OKD;) = Ok

¢S]

O]

And now, due to these isomorphisms, we can construct the un-tilt of a given complete, perfect

—
field Lo, C F C (C;. We will first construct its ring of integers. It can be seen that the following
commutative diagram is commutative

©
W(Og,)/eW (Og;) —— O,

I

W(OF)/cW (OF)

I

WO )/ W (0 ) 5— O

%

N

—~
@
D

=

Let us define

O = Oc, (W(OF)/eW (OF)) = Oc,(W(OF) ®w(o_,) Or) (3.7)
F#:=O¢,(W(0F) @wo__,) Lac) = 0% 80 Low = Oc,(W(OF) WO ) L) |

Note that if we extend é}; in Lemma [3.3.3 then W(Oy») OWo _, fo\o =~ K. And this yields
Loo

Corollary 3.3.4. (K’)f = K.

Our goal is to prove that F* is a perfectoid field, with Ops = Og: and (F*)” = F. Note that the
diagram [3.6] comes from the diagram

oc,
W(O¢) — O,

I

W(OF)

I

W(Of;b) HGL?O OL/;

N

—
&
[0g)

=

Lemma 3.3.5. (9111p is m-adically complete.
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Proof. We can se immediately that the following short exact sequence

0— W(Op) S W(Or) = W(OF)/cW(Op) =0

yields the short exact sequence
0 — W(Or)/m™W(Or) 5 W(Op)/n™"W(OF) = We/m" W, — 0
where W, := W(Op)/cW (OF), and it is compatible with the inverse system

0 —— L W(Op) /7" W(Op) —< lm W (Op)/x"™W (Op) —— lim W,/n" W, —— 0

I I |

0 —— W(OF) < > W(Op) > We > 0

where the two first vertical arrows are isomorphisms. This yields W, = @WC /7™ W, and this

yields Olﬁm is m-adically complete. O
Lemma 3.3.6. Let z € O%, then |z| < x| iff x € WO%,.

Proof. One can see that Oc,(W.) € Oc, = {y € Oc,, ly| < 1}. So in particular, Vz € O |z < 1,
and if z € WO%;, we obviously have |z| < |r|.
Conversely, assume that |z| < |7|. Because x € Og, we can find a =}, 7(a;)m € W(OF), such

that @CP(Z ) ZO”_ .

>0 120

And it follows that |ag\ < |7| = |0ly- So, there exists some 5 € Op such that ag = B9, and we
have a — c7(8) € 7W(OF). Also, because Oc, is a ring homomorphism and ¢ € ker O¢,, we get

Oc,(a — c7(B)) = Oc, (a) — Oc, (e7(8)) = Oc, (a) € Oc, (W (OF)) = 7O¢,(W(Op)) = 0%,
O

By Lemma and Lemma we can see that any Cauchy sequence in (’)F converges. In

fact, let (x,,), be a Cauchy sequence in OF, then for all € > 0, there exists some N, such that for
all m,n > N, we have |z, — x| < e. We can find some integer [ such that € < |r|', and this yields
by Lemma that z,, — z, € ﬂl(’)%,. Due to Lemma |3.3.5 (’)iﬂ is m-adically complete, so we can
find some xy € (’)§J such that Vm, there exists n,, such that for all n > n,,, z, — x¢ € wm(’)g?, ie.
|z, — 20| < |7|™. So zg is the limit of (x,,), w.r.t the usual metric on C,,.

Corollary 3.3.7. Oiﬂ 1s a complete metric space.
We can a further step to prove that F* is complete. We first have that
Lemma 3.3.8. Og; ={z e F! |z <1}

Proof. Note that (’)jj C Ft by., and so it is obvious that (9ti C {z € F¥, \:L‘| < 1}. Conversely, take
any x € F* such that |z| < 1. Because OA c O 7, and Ft = (9ji R0~ Loo, we can find 3y’ € (’)

Z' € O;—, and an integer m > 0, such that x =y ™ = y/m™, where y = y'2’. And this ylelds
ly| < |7™|. Applying Lemma , we get y € me%, and hence x € O%. O

We are now ready to prove

Corollary 3.3.9. F*? is complete.
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Proof. Let us take a Cauchy sequence (z,), in F*. We can fix any integer [ > 0 and n; such that for

all n,m > ny, we have |z, — x| < |7, ie. 2, — 20 € 7rl(’)§,. That means, there exists some integer
k such that (7*z,), is a Cauchy sequence in Og by Lemma m Due to Corollary , (7% )
converges to some xg € ot , and hence (z,,), converges to zq/7"* € FF. O

Next, we will prove F* is a perfectoid field by using

Lemma 3.3.10.

#
(i) The image of O under the map O g (C]bj 18 contained in Og,.
P

()

(ii) The composition Op —— (’)iﬂ 2, (’)iﬂ/ﬂ(’)iﬂ is surjective.

(iii) (Of/7Of)1 = (0%, /70%).

(iv) For any o # 0 in Op, of is a multiplicative unit in F*.

Proof.

(i)
(i)

Let o € O, we have 7(a) € W(Op) and Oc, (7()) = o € Oiﬂ.
Because (9§T =W, :=W(Op)/cW(OF), we have
O /70 = We/xW, = W(OF) /(W (OF) +7W (Or))
Consider the composition of maps
W(OF) =% O 5 p/700F

Its kernel is {(yo0, 1, ...) € W(Op)}, and we have (yoao, a1, ...) —c(ag, ...) = (0,...) € TW (OF)
So, the kernel of the surjective map above is ¢ctW(Op) + 7W (OF), and we get

W(OF)/(cW(OF) + 7W(OF)) = Op/%OF

And we obtain the following commutative diagram with the first row arrows are isomorphisms

©
O /7O, 2 W /aW, —2 Op/v00r

] o]

(9% P W(Or) % Or (3.9)
()t TT ido,,
Or

:
And this diagram yields the composition O L C’)g7 — C’)fp / WO% is surjective.
We have (9?;/77(9ti = Or/v%OF, because OF is perfect, we get (Oi—‘/ﬂ'(/)i—‘)q = O%/ﬂ@%.

For any a # 0 in Op, we can choose v € O7—, such that v # 0, and |a| > |y|, since the
valuation group of O;— is dense in R>g. And this yields there exists some 8 € O, such that
—b
af3 = v. By multiplicative property of (.)¥, we have (a3)! = of3f =% € Lo, , and +* # 0, since
—b
7| = 7, # 0. And hence, a*% = +f € (Lo )* C (F¥)*.
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As a corollary, we get

Corollary 3.3.11. F* is a perfectoid field with Op; = O%,.

Proof. We will prove first that F? is a field. Because F? = O% Q0 ~ Z;, we have 1/7 € Ft. Also,

we know from Lemma that (’)51[7 = {x € F* |z| < 1}, and hence, it is sufficient to prove that any
element in Og, \ 7TO§;1 is invertible in F¥. Take any x € (’)gﬁ \ WO%, ie. |r| < |z| < 1. Due to Lemma
3.3.10| (ii), we can find y € Op such that z — y* € 77(953, i.e. |z —y* < |r|. And this yields |z| = |y
And due to Lemma (iv), we have 1/y* € (F#)*, and hence, |z/y¢| = 1. This yields z/y* € O%,
by Lemma Also, since

X
11— mllyﬁl = |z — ¥ < |n|

And |y¥| = |z| > |7|, we get \1—%\ <l,and1-7% € (’)i,. And this follows that X := ano(l—ﬁ)"

converges in [0} , because it is complete. And

(Ca-p)(-a-2)=1

n>0

and it yields X is the inverse of 2/yf. From this, we obtain F* is a complete field. By Lemma m

we have O Fn(’)g,. And because F* contains L, the value group of (F*)* is dense in R~g. And Lemma
3.3.10| (iii) implies that F* is perfectoid. O

For the last step, we will prove that (F¥)” = F. We begin with

Lemma 3.3.12. Let F' be a complete non-archimedean field of characteristic p w.r.t the norm |.|, then
for any v € Op with |y| < 1, the map

]'&HOF — @OF/’)/OF
()2 ()e
(.. ..o, a0) — (o, mod YO, ...,cp  mod yOF)

is an isomorphism of rings.

Proof. Assume that there exists (..., q;,...,a1,q0) € Y&l( Ja Opr, such that (...,a; mod vOF,...,ap
mod YOp) = 0. That means, o; € yOp for all i. This yields |ag| < |y|9'. Hence, a = 0. From this,
a; = 0, for all 7, and we obtain the map above is injective.

Now, let (...,a; mod yYOp,...,ap mod vOp) € @n(.)q Op/nOF, we have O‘?—H = «; mod yOp.

. . J . . .
Let us consider for any fixed ¢ a sequence (o o+ j) j» which is Cauchy in O, and hence, converges to some

1 R
a; € Op. We can see that a; = oy mod vOp, and that ag_H = lim;_, a?ilﬂ- = limy_, o Oéqurk = a;,
when we change 1+ j <> k. Therefore, (..., a;,...,a1,ap) defines an element in @( v Op that maps
to (...,a; mod YOp,...,ap mod vOp). Hence, the map above is also surjective. O

We are now ready to prove
Proposition 3.3.13. (F#)’ = F.

Proof. We will first prove that Op C (’)( Fiyp- Take any a € O C OC?) , We can represent

a=(...,a; mod nOc,,...,ap mod 7O0¢,) = (..., (041/(11')ti mod 7O¢,, ..,a! mod 70c,) € I&l@(cp/ﬂ(/)(cp
()2
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Due to Lemma|3.3.10 the later element is (..., (o/4')* mod 77(9&,, ..,a® mod FO%;) € 1'&1(‘)(1 (951;7/%(’)ﬁ

Opsy-

The converse is a bit more difficult. Take any a € (9( Py = @1 . (9?F / 77(9%, we can represent

()
a=(..,b; mod 7r(’)§7, ...,bop mod WO%,)

And by Lemma [3.3.10| (ii), there exists, for all 7, 5; € Op, such that /Bf = b, mod 7r(9§,, and

we obtain (Bfﬂ)q = f; mod WO%;'. Via the top row isomorphism in there exists some £ € Op,
such that &; is mapped to (; via the top row of and from this, 5—1—1 = & mod yOp. That

means, §§ = b; mod 7r(’)§;. And this yields a = (...,{f mod 7r(’)§;, ...,fg mod WO%), with & € Op,
and & = & mod 4Op. So, (...,&,...,&1,&) defines an element in &iLn(.)q Or/vOF. By using
the isomorphism in Lemma , we obtain there exists some «o; € Op such that af 41 = @, and
a; =& mod 70(9%. Via the isomorphism in again, we get ag =b; mod 71'(95; and this also yields
a = (..,a; mod 7r(’)§7, .,p mod 770%,), and a; € Op, with af | = a;.

Because Op C Oc,, we can represent

aj = (...,aj; mod 7O0c,,...,ajo mod 7Oc,)
¢ . _ q
And Wil = QG = a5 mod 70c,, and then
_ i 4 g _
a= (.., lim aj,, .., lim a5, mod 7O¢,) =
71— 00 1—00

= (...,a50 mod 70Oc¢,,...,a00 mod 70c,) = ag € Of
So, we have Opsy» € Op. And we obtain Op = O psy,. It follows that (F8> = F. O
For now, we can deduce the first tilting correspondence

Theorem 3.3.14. There exists a bijection between the two sets

— —
{Lec €K CC,, K : perfectoid} <> {Loc CF C (CII’,,F: complete, perfect}

defined by K — K° and the inverse F' — F*.

Proof. By what we have discussed so far, the two maps between the two sets above are well-defined
. And by Proposition 3.3.13|, we know that (Fﬁ)b = F. Also, if we have K is a perfectoid field,
(K*)* = K follows from Corollary [3.3.4] O

We conclude this section by a following useful observation.

—b
Proposition 3.3.15. Let L, C F C (C?D be an itmmediate, complete, perfect field. If F' is algebraically
closed, then F* is algebraically closed, and hence, F = (C;.

Proof. See [Sch17|(Remark 1.4.25). O

3.4 Applications to field of norms

—b

We recall that k((z)) < Lo by sending z to w = (,...,2; mod 71O;—,...,21 mod 7O;—,0), with z,

is a generator of .%,. The image is denoted Ey,, the field of norm. In this section, we will give some
—

relations between Ep, and Lo, and Czb,. These results will be used again in next section about the

second and the third tilting correspondence. We first recall something about perfect hulls.
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Remark 3.4.1. Let E be a field of char. p > 0, E its algebraic closure. The perfect hull of E is
defined as
Eret .= {4 € E,a?" € E, for some m > 0}

then

(i) EPfis the largest immediate field between E and E that is purely inseparable.

(ii) EPefis a smallest immediate field between E and E that is pefect, and hence E/EP®f is Galois.
(iii) EPeN E%P = £, and E = EP P and Gal(E/EP*™) = Gal(E**P/E).

Using this remark, we obtain

—

Proposition 3.4.2. Ezerf: Lo .

Proof. We can see easily that Ezerf - Z;, since E C 62, = (C;,, FEr, C Z;, and E; is also perfect and

complete. For the reverse direction, it is enough to prove that Of\b C EEerf. Take any o = (..., a}

mod 7Oz, ...,a5 mod 1O—) € @(.)q O7—/mOr—. Because O%/ﬂ'@f; ~ O /7Or, we can
find (a;); € Of, such that

a=(.,a; modnOr_,....,ap mod 7Or_)
And for any n, there exists some [ > n, such that a,, € Or,, and we can represent
(=Dt
am= > B
j=0
where 3; € k. And we have

8= Zﬁjwj/ql‘" = Zﬁj(...,zlj mod 7Op__, ...,zlj_n mod WOE;) =
J J

= (...,Zﬁjzlj mod 70p,__, ...,Zﬁjzl{n mod 7O0r_)

J J

And we have a, — ), ﬁjzlj =0 mod 7O, and

a1 =al = QB =Y fel .y mod 7Oy,
j .

J

And inductively, we get the same equality for a,_o,.... Hence, we get a — 8 € U,,, that means

a — < |w ", Because n is chosen arbitrari , an € , we get a € , and hence
, < |wl". B h bitrarily, and Eper get EP™ and h

- —

EY =T . 0

We also recall about Krasner’s lemma and its corollary.

Remark 3.4.3. Let E be a complete, non-archimedean field, and E*P its algebraic closure. Let
a, 8 € E*P such that |5 — a| < |o/ — a, for any Galois conjugate o’ of «, then E(a) C E(f).

Remark 3.4.4. Let E, E*P be defined as above. For any f(X) =agp + ... + ¢, X" € E[X], we define
[|f]| := maxo<i<n |ai|. Assume further that f(X) is monic, irreducible, separable with distinct roots
ai, ..., 0 in E5°P then for any g(X): monic, separable of degree n in E[X], if || f — g|| is small enough,
then g(X) is also irreducible, and we can number roots /31, ..., 8, of g in such a way that F(«;) = E(5;).
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Using this remark, we can prove easily that

Corollary 3.4.5. Ey, is separably closed.

—

Proof. Take any a: algebraic, separable over E, with its minimal f(X), which is monic, irreducible,

separable in Ep. Because Ey, is dense in Er, we can find g(X): monic, separable of degree equal to
deg f in Er[X], such that ||f — g|| is arbitrarily small, then g(X) is irreducible over E[X], but we

then have degg = 1 = deg f. So EJ, is separably closed. O
We need the following lemma to deduce the main result of this section.

Lemma 3.4.6. Let E be a field of char. p > 0, and E is separably closed, non-archimedean then E is
dense in E.

Proof. Because F is separably closed, E/E is purely inseparable. Take any a € E, then the minimal
polynomial of « over E is of the form X?" — a, for some a € E. If m = 0, then it is clear that a € E,
so we may assume that m > 1. Note that for any € > 0, there exists a; € F such that 0 < |a1| < e.
Consider the following polynomial

m

. P
f(X): =X 4+ a1 X —a where a; € F and 0 < |a;| < E‘—|
o
for some € > 0. Then f(X) is clear separable over E, and we can write f(X) = f:l (X — i), and
hence f(a) = f:l(oz — Bi) = aja. Therefore, there exists some 4, such that
la — Bi| < (a10)Y7" < €
Because F is separably closed, all 3; are in E, and hence, F is dense in E. ]

Corollary 3.4.7. Es\;p = CZ

—

Proof. We first have by Lemma [3.4.6{ and Proposition [3.4.2| that E} = Ej, D Egerf = Lo, so it is

— —b
clear that E}™ is a complete subfield of Clb) containing L., . On the other hand, the automorphism

E, — Ep,
o —s al/?

—

= |a!/?},, so it can be extended to an automorphism E; — Er. And this

: : . 1
is continuous, since |O‘|b/ b

— —b —
yvields Ep, is a perfect, complete, immediate field between L., and (Cz,. Corollary [3.4.5| yields Ey, is

separably closed, and Lemma and it is dense in its algebraic closure. But Ej, is complete, we
conclude that Ey, is algebraically closed. By Proposition [3.1.8 and [3.3.15, we have Ej, = (C;,. O

3.5 Tilting correspondences

We are now ready for further results on tilting correspondence. The first result is about the (topolog-
ical) isomorphism between the absolute Galois group of L, and the absolute Galois group of Er. We
note that it is a fundamental step to establish the equivalence of categories later. Let K1 C Ky be two
complete non-archimedean fields, we denote Aut®"*(K5/K;) the group of continuos automorphism of
K, fixing K;. We also denote throughout this section ¢ € W(Of\b), such that ©7—(c) = 0.

Lemma 3.5.1. Gal(Q,/Ls) = AUtcont(Cp/fo\o)
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Proof. Take any o € Gal(Q,/Lwo), then we can extend o to an automorphism, that is continuous on
Cp, as described in Section 2 of this chapter about Galois action. By continuity, o fixes f; This
defines a map from Gal(Q,/Ls) to Aut®™(C,/ fo\o) The injectivity of this map is clear. For the
surjective part, take any o € Aut®"(C,/ Z;), we have al@ € Gal(Q,/Lw), and again, we can extend

U|@ to 0 € Autcom((Cp/fo\o). By continuity, we get § = o. O
Similarly, we get

—b
Lemma 3.5.2. Awfc‘mt((CZ/Loo ) = Gal(E;™/EL)

—b

Proof. By Corollary [3.4.7) we have CE, = Er, and by Proposition [3.4.2) Lo = EPef. So, by similar
argument, we obtain

— —
Autcont(clb)/Loo ) & Gal(EL/EEeff) o Gal(ESLep/EL>
O

Our first goal in this section is to prove Hy, := Gal(Q,/Ls) & Hp, := Gal(E}/EL) as topological

— —b
groups via the isomorphism Aut®"(C,/Le) & Autcont((C]bj /Loo ). We recall that the action from G,
on (C?D is defined as

GL X OC;Z — OC?’

(o,(...,a; mod 7Oc,,...,a0 mod 70¢,)) = (...,0(a;) mod 7O¢,,...,0(ap) mod 7O¢,)

This action is continuous, and preserves |.|,. Take any o € Hp, then o fixes Lo, and hence, also

— —
fixes Lo, and Ly, . We obtain from this the map

— —b
Aut®(Cp/Log) — Aut®(C) /Lo )

O'|—>O'b

where o”(...,a; mod 7O0c,,...,ap mod 70¢,) := (...,0(a;) mod 7Oc,,...,0(ag) mod 7Oc,). We
also have actions on W((’)(C% ) described as follows.

—b
Lemma 3.5.3. Autc‘mt((C;/Loo) acts as automorphisms of O-algebras on W(OC;), and it fizes
W(Of\b).

—b —b
Proof. Because k — k((X)) < Lo , we have o fixes k, for a € Autcont((C]bD/LOo ). Because the ring
operations in W (Og ) is given by Witt polynomials with coefficients in O/7O = k, we have o acts as
p

ring automorphism on W(OC; )

Also, the action from O to W(ch ) factors through k (Section 2 about Witt vectors), we have
g(Ab) = Ao (b) for all A € O,b € W(ch, ). And this yields o acts as automorphism of O-algebra on
W((’)@; ).

—b
The fact that o fixes W((’)Z\b) is obvious, since o fixes Lo - O

Lemma 3.5.4. With the action from Lemma cseﬁned above, the Teichmuler map T : OCZ —
W(O(c;) and P, : W(ch) — ch are Aut“”“‘t(([ikl’)/LoO )-equivariant.
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—b
Proof. Take any o € Gad((C;’)/LOo ), we have

for all o € O(C;. And

n

D, (0(ap),...,o(ap)) =c(a)? =o(Py(ag,...,an))

[
—b
Lemma 3.5.5. The action from Hg, = Aut’:‘mt((C;/Loo ) to (C]bD is continuous.
Proof. We can proceed this similarly to the proof of Corollary O

To deduce the action fron Hg, is also continuous on W(Oq ) w.r.t the weak topology, we need
the following general lemma

Lemma 3.5.6. Let B be a perfect topological kr-algebra, and G a profinite group acts continuously
on B as O-algebra automorphism, then the action

G x W(B) — W(B)
(O’, (bo,bl, )) — (O’(bo),()’(bl), )

defines an O-algebra automorphism, which is continuous w.r.t the weak topology on W(B).

Proof. Take any o € G, and b € W(B), where b = (bg, by, ..), we recall that a fundamental system of
open neighborhood around b is of the form

b+ Vam = {(ao,....,am-1,...),a;, =b; mod a,0 <i<m—1}

where a is an open ideal of B. For each b;(0 <i < m —1), we can find U; C G: an open subgroup and
b;: open ideals of B such that
oU; x (bZ + bz) - O’(bl) +a

Take U := (' Ui, b = N5 bi, we have
oU X Vom C a(b) + Vam
Hence, the action from G to W(B) is continuous. O
Using this, we obtain
Corollary 3.5.7. Hg, acts continuously on W(OCZ) w.r.t the weak topology.

Proof. This follows easily from Lemma and Lemma O

b —
To establish the bijective map between Autcont((CIb) /Loo ) and Aut®™(C,/Ls) we need the main
lemma

Lemma 3.5.8.

(i) The map Oc, : W(OC; — Oc,) is Hp-equivariant, in the sense that Vo € Hy, all o € W(OC;),
we have
(¢, (a)) = B¢, (0 (a))

(ii) The map Oc, is open and continuous.

(111) If we equip W(O(Cz)/cW(OC;) the quotient topology, then Oc, induces a topologicali somorphism
, Hy, equivariant, between W(Ocz)/CW(Ong) and Oc,,.
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Proof.
(i) We have
Oc, ( Z o’ (ﬂ”r(an))> = O, ( Z W"ab(T(an))> = 0O, ( Z FnT(Ub(an))) =
n>0 n>0 n20
_goﬁ o ﬁ_goﬁ o(af) = (Zn )—a<@@p(;}r(an)ﬂ">>

where the first identity follows from Lemma [3.5.3] the second is from Lemma [3.5:4] the third is
from the fact that Oc, (T(0”(an))) = (0"(an))! = o(an)?, and the fourth identity follows from

o(a)f = o(at).

(ii) Consider a,, :={a € O(C;, laf, < 7"}, We have

Oc, (Van,m) 2 Oc, (1" W(Og ) = 7"O¢, (W (O ) = 7" Oc

P P

And because Oc, is surjective O¢,(V4,, m) is an ideal of Oc, containing 7™ Oc¢,. This yields for
any a € Oc,(Va,,,m), a +71"Oc, C Oc,(Va,,,m). Hence, Oc,(V4,, m) is open in C,. Since such
Va,,,m forms a fundamental system of open neighborhood around 0 in W(ch ) w.r.t the weak
topology. And this yields the map ©¢, is open.

n

On the other hand, for any a = (ap, a1, ..) € Va,,,m, we have a =3 T(Oé»}l/q )", and

Oc, ( Z W"T(a,ll/qn)> = Z(a}/qn)ﬁwn = mz: (/7Y™ mod " Oc,

n>0 n>0 n=0

And . )
(/T = | |7 < |mr|?" " < |t

for all 0 < n < m — 1. It turns out that O¢,(a) € 7" 'O¢,. Hence, Oc,(Va,m
ﬂmflOcp. This yields @(E; (7rm*1(’)<cp) D Va,..m, and for each o € @(E: (wmflOcp), a+Va, m
(’)(E;(ﬂmfl(’)@p), and this yields @a (7™~ 1O¢,) is open in W(Oqﬂ). Because {7 Oc, }m>1 forms

a fundamental system of open neighborhood around 0 in C,, this yields ©¢, is continuous.

) €

(iii) It follows from (ii) that the induced map ©c, from W(ch )/ cW((’)q,) ) to Oc, is continuous,
open, and bijective. Hence, we obtain W(O‘CZ )/ CW(O(CZ ) = Oc, topologically.

O

We are now ready to prove

Proposition 3.5.9. The map Autc‘mt((Cp/L ) —— s — Au tCO”t((Cb/L ) is bijective.

Proof. For the injectivity, assume that o + id in Aut® ((C;/fo\o ), we then apply Lemma |3.5.8|(i) to
see that

7(O¢, (@) = O, (0°(a)) = O¢, (@)
And by the surjectivity of O¢,, we get o = id.

—
We now take any o € Aut®" ((Cb /Lo ), by Lemma|3.5.3| and Corollary |3.5.7, ¢ acts continuously
on W((’)@, ) as an automorphism of (’) algebra, that fixes W(OAb) And hence, o preserves cW((’)Ab)

and it mduces a continuous action on the quotient topology ((9@) / CW(O@;) Oc,, which ﬁxes

W(OAb)/cW((’)Ab) = Or—. And by Lemma |3.5.8) (iii), we obtain of € Autcont((Cp/Loo), which is
deﬁned by
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o*(Oc,(-)) := Oc, (o(-))

Now, it is sufficient to prove that (ab)b = ¢. We note that from the construction of ¢f, the pair
(0,0%) satisfies for all o € (Czb7

Oc, (r(0(a))) = o*(O¢, (1()))
by Lemmam Take any a = (...,a; mod 7O¢,,...,ap mod 7O¢,), we have
a; = (ozl/qi)jj mod 7O¢, = Oc, (T(al/qi))

And we have a = (..., Oc, (7(a'/7")) mod 7Oc,, ...), which yields

o(@) = (..., Oc, (T(a(a)/7))  mod 70¢,, ...) = (..., a*(Oc, (T(a'/q")) mod 70, ,...) = (¢*)’()

—b —
And hence, Au‘ccont(C?)/LoO ) = Aut®™(Cp/Loo). O
To get the second result for the tilting correspondences, we need this

Lemma 3.5.10. Let E be a complete, perfect, non-archimedean field of characteristic p > 0, then any
finite extension F/E is also complete and perfect.

Proof. The fact that F' is complete follows from the general fact in the theory of extension of norms.
We now prove F is perfect. Let f(X) = XP? —a = (X — )P, for some a € F and a € E, we have
« is separable over E, since E is perfect, and hence, separable over F', and this yields the minimal
polynomial of a over F' is of degree 1, i.e. a € F. O

Proposition 3.5.11. Let K1 C Ky be perfectoid fields. If Kg s a finite extension of K'{, then
(K3 : K% = [Ky : Ki]. Moreover, if K3/K} is finite, Galois, then so is Ko/Ky, and Gal(K5/K?) =
Gal(K9/K7).

Proof. We first note that since K *{ is perfect, Kg /K E is separable. Let K’ be a finite Galois extension of

K ? containing Kg Then by Lemma|3.5.10, K’ is complete, perfect and intermediate between fo\ob and
(C;,, it then follows by Theorem [3.3.14] that there exists some perfectoid field K, such that K* = K.

Let us denote G := Gal(K”/K}) = Aut®™(K°/K?) = Aut(K’/K?) = Aut(K /K1), via the similar
proof to Proposition [3:5.9] We then have the commutative diagram

(W(Ox) /W (Op))E —— OF

T T (3.10)

W(O1)/eW(Oy)® —— O,
From the short exact sequence
0— W(Oks) S W(Op) = W(Os) /W (Opes) — 0
of G-modules, and since W (O»)% = W (O K§)> we obtain the following exact sequence
0= W(O) 5 W(Ops) = (W(Ogs)[eW (O )¢ = HY(G, W (Opy)
And this yields the following exact sequence

0= W(O) /W (Os) = (W(Op) [eW (Or))¥ = HY(G, W(Os)
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And one obtains from this that O%/Og, = coker(i) C HI(G,W(OK?)), which is killed by |G].
On the other hand, this first cohomology group is also an O-module, where a number prime to p is
invertible. Hence, H'(G, W(OK*;)) is killed by p" for some integer n. This yields O% /O, is killed

by p", which means that for any a € (’)g, p"z € Ok, . Because p is invertible in K, we get K¢ =K.
And it follows from Artin’s lemma in Galois theory that K/K; is Galois, with Gal(K/K;) = G. If we
replace K7 by Ko, we obtain easily that

(K} K} = [K: K})/[K”: K3) = [K : K1]/[K : Ka] = [Ko : K]

From the above argument, when K3/K} is finite Galois, then so is Ko/Ki, and Gal(K3/K})
Gal(K2/K7).

0 e

To deduce the main theorem, we need a further

Lemma 3.5.12. For any finite extension E/Er, in E;", we have
(i) ELo = Ererf
(i))ETw N Ei* — E.
(iii) If E/Ey is Galois, then so is E’fo\ob/fo\ob and Gal(E/EL) = Gal(Efo\ob/fo\ob).

Proof. (i) We can see easily that Efo\ob = EFEret ¢ E/P\el”f . Also, since Efo\ob / fo\ob is finite, and f;b is
perfect, by Lemma , we have Ef;b is complete, and perfect, hence Ef;b 2 Jﬁ)e\rf. This yields
EL = Ever.

(ii) Due to (i) and the fact that E/Ey is finite, separable, it is sufficient to prove that there is
no proper finite field extension F'/FE, which is separable, contained in Efo\ob = E/’F-’e\rf. Assume that

there exists F' C ﬁ’\erf and F'/FE is finite, separable of degree d > 1. Then there exists d embedding
0; : F/E — FE>P/E. By defining o;(a'/?™) = ;(a)'/?™ | we can extend o; to embeddings FP*f — E.
Note that for any o € E, we have o;(a*/?™) = 0;(a)/P" = a/?™. So, these embeddings can be seen
as Frerf/ppert 24 B/ Eperf And because o; preserves norms, we can further extend it to

Foert) prert 7 i/ Bpert — ¢/ et

. Pl —b . .. . .. £ . .
But since Ererf = EL . is perfect, and containing F', it also containing FP®". And since EPref is

complete, we have EPerf O Fperf . The reverse inclusion is clear, since E C F. So, we have Fperf = pperf,
and hence, o; is just the identity map. And this yields F' = E.

b —
(iii) When E/Eyp is finite, Galois, so is FLs /Lo . We have, by similar argument to (ii), if
— b —b
o € Gal(E/EL), then o can be extended to an element in Aut(EPerf/EEerf) = Gal(FLx /Lo ). So,

—b —b
the induced map between the two Galois groups is injection. Take any o € Gal(EFLs /L ), we can
see that o is completely determined by its action on F, i.e. o is determined by o|g, which is obvious

in Gal(E/Ey). Hence, Gal(E/Ey) = Gal(Elu /To). O

We are now ready to deduce a fundamental fact, which can be considered as the second tilting
correspondence.

Theorem 3.5.13. The isomorphism Gal(Qp/Loo) = Gal(E;? /EL) is a topological isomorphism.

Proof. We recall that both groups above are profinite, and they have fundamental system of open
neighborhoods of id contains all open normal subgroups of finite index. Also, they are Hausdorff
and complete, and a bijection between them is the combination of Lemma [3.5.1] Lemma and
Proposition 3.5.9] So, it is sufficient for us to prove the induced map between them are continuous.
Let us take U C Hp, an open, normal subgroup of finite index, and E = (E}P)Y, then E/Ey is

—p —
Galois of degree [Hg, : U]. Using Lemma [3.5.12) we can pass it to Galois extension FLy, /Lo of
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degree [Autcont((C; /f;b) : U], where U by abusing of notation, is a normal subgroup of finite index
of Auteont(C5 /L),

Using Propositionm we can again pass U to V: anormal subgroup of finite index in Aut®"*(C,/ Z;)
By Proposition |3.5.11} there is a perfectoid field K containing Z;" such that K/ Z; is finite, Galois
and Gal(K/Iw) = Gal(ELw /T ), and Gal(K /L) & Aut®™(C,/L)/V. R

We now use the AX—Sen—Taie_z\theorem to see that if Ko := K NQp, then K = K. Via the
isomorphism Hy, & Aut®™(C, /L), we can pass V to a normal subgroup W in Hy, which is exactly

Gal(Q,/Ky), by continuity. And this yields W is both of finite index and closed in Hy. That means
W is open in Hy,. We therefore obtain Hy, = Hg, . ]

We can also look closer into the tilting correspondences, as an application of method in character-
istic p.

Lemma 3.5.14. Let K be a perfectoid field, and K1 /K is a finite extension in C,, then there exists
a Galois extension of finite degree F/Kb such that K; C F*.

Proof. Let us denote KP°" the union of all Galois extensions of K coming from F*, where F/K’ is

finite, Galgs\ as in Proposition 1] pointed out. It can be seen that KPeT is a perfect01d field inside
Cp, and (KPer)’> = Ksep = (Cb Wthh means KPT = = C,, and hence, KP" is dense in C,. We also

have K /KP® is a Galois extension. Take any o € Gal(K /KP®), this is in fact a continuous  map fr from
K / KPer to K/KP®, because it preserves absolute values. Hence, it can be extended to K/ KPe to

K / Kper per which is the identity map on C,. And hence, K = KP°".
From this, we have K; C KPP, and hence, there exists some F/K >. finite, Galois such that
F* = K. O

Via this lemma, we obtain the third tilting correspondence
Theorem 3.5.15.
1. If K1 /K is a finite extension, where K is a perfectoid field, then so is K;.
2. If K1/K is an extension of perfectoid fields, then K1/K is finite iff K3/ K’ is finite, and in this
case, [Ky : K] = [K} : K”].
3. Let K1, K be defined as in (i), then K1/K is finite Galois iff K3 /K’ is finite Galois, and in this
case, Gal(K1/K) = Gal(K}/K").
Proof.

1. As in the the proof of Lemma |3.5.14) we can find FQ/Kb: finite, Galois, such that Fg =:

Ky D K;. And due to Proposition [3.5.11, we have Gal(Fy/K") = Gal(K,/K). Because any
intermediate field between K” and Fj is complete, perfect, its un-tilt is perfectoid. And due to
the isomorphism, we conclude that any immediate field between K and K> is perfectoid, and in
particular, K is perfectoid.

2. Assume that K;/K is finite, then by Lemma3.5.14} there exists F/K®: finite, Galois, such that
F* D K, and hence, (Fti)b ) K'{, ile. FFD K'{ And this yields K?/Kb is finite.

Conversely, if K'/K" is finite, we can find F D K?, such that F/K" is finite, Galois, and by
Proposition [3.5.11} [F : K’] = [F*: K], and F* D K;. This yields K;/K is finite.

We have in both cases, by Proposition [3.5.11}

(K} K] = [Gal(F/K") : Gal(F/K})] = [Gal(F*/K) : Gal(F*/K})] = K] : K]
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3. Assume that K;/K is finite, Galois, then by (ii) K}/K” is finite. By Lemma , there ex-
ists F//K’: finite, Galois, such that F¥ O K;. By Proposition , we have Gal(F!/K;) =
Cal(F/K®), and Gal(F*/K) = Gal(F/K”). Because K;/K is Galois, we have Cal(F%/K;)
is a normal subgroup of Gal(F/K”), and this yields K?/K” is Galois, and it follows that
Cal(K;/K) = Gal(K}/K"). By Proposition , we easily obtain the isomorphism between
the two absoute Galois groups.

O]

3.6 Application I: p-cohomological dimension of G,

Let us fix p an odd prime. We will restrict ourselves into the case L := Q,, we denote Q)° := Lo
the field extension of @, obtained by adjoining all p"-th roots of unity. In this case, k;, = F,, £, =
F,((X)) =t B, Tg, = Gal(Q3*/Q,) and Gg, = Gal(Q,/Qy), Ho, = Gal(Q,/Q) = Gal(E*?/E) =:
GE by Theorem We will prove that the p-cohomological dimension of Gg, is less than or equal
to 2, i.e. for any finite dimensional F)-vector space V, with a continuous action from Gg, w.r.t the
discrete topology on V, H"(Gq,,V) =0, for n > 2.

For the case V' has the trivial action from Gg,, because H"(Gq,,V) = ®H"(Gq,,F,), where F,
is equipped with the trivial action from Gg,. Thus, it is sufficient to prove the statement for the case
.

From the short exact sequence

0—F, — E5P Ny 5 N

of Gg-modules, by Hilbert’s theorem 90, we have H"(Gg, E*P) = 0 for all » > 1, and this yields
H*(GE,Fp) =0, for all s > 2. It means that the F,-cohomological dimension of G is less than or
equal to 1, and it is exactly 1 since H(Gg,F,) = E/(¢, — 1)E # 0.

Since Gg,/Hg, = Tg,, it is sufficient to prove that the Fj-cohomological dimension of ', is
smaller than or equal to 1, where I'g, acts trivially on F,. We note that I'q, = (Z/pZ)* x Z, and
HY((Z/pZ)*,Fp) = Fp/Nmz 7% (Fp) = 0, and Hp.((Z/pZ)*,Fp) = Hom((Z/pZ)*,Fp,) = 0, where
HY. denotes the r-th Tate cohomology group. And this yields by the periodicity of cohomology of
finite cyclic groups [Mill3|(Proposition 11.3.4) that H"((Z/pZ)*,F,) = 0 for all » > 1. Hence, one can
apply the inflation-restriction sequence |Mill3|(Proposition 11.1.34) to get

HT(Zme) = Hr(r@pan)(vr > 1)

But since, Z, is a torsion-free procyclic group, it follows from [NSWO0O0|(Proposition 1.6.13) that
H"(Zyp,Fy) = 0 for all r > 2. Hence, this yields H"(Gq,,F,) = 0, for n > 3.

To proceed the case of general V', let us denote G := Gg,, we first note that ¢,(G) = ¢,(G), where
¢p(@G) is the p-cohomological dimension of G, and G, is the Sylow p-group of G. So, it is sufficient to
prove that H"(Gp, V) =0, for n > 3. It can be seen that

Lemma 3.6.1. VC» £ 0.

Proof. Because |V| is finite, we can represent |V| = [VC?| + Y |, |Orb(z)|, where Orb(z) denotes
the orbit of x € V under the action of G, and the sum runs over all non-trivial equivalence classes of
orbits. Because G, is a pro-p group, Orb(z) is a power of p. And hence, p divides |VG»|. This yields
|VGr| 0. O

Now, from the short exact sequence of I, vector space
0=V 5V V/Ve -0

where VCr satisfies the statement, and |V/V | < |V| by the previous lemma, we can use induction
on |V|. And the statement now follows.



Chapter 4

The category Mod®' (.7} )

We first fix notations as in the previous chapter. We recall that the main goal of the thesis is to
prove the equivalence between Repy,(Gr) and Mod®* (7). And this chapter is devoted to describe
the category Mod® (7,), where .27, is the ring of infinite Laurent series over O, as introduced in the
first section. One can define the action from I'y, to &7, as follows

FL X ML — ML
(7, f(X)) — F(Ixe(7)]e (X))

where yr, : I’ = 0% as proved in the first chapter, and ¢ is a Frobenius series used to define Lo,. And
pr, is defined to be

QYr - JZ{L — JZ%L
F(X) — f([me (X))

With respect to the weak topology on @77, the actions of I';, and ¢y, is continuous, and one can
embed o7}, (topologically) into W (Ep), and the actions of I';, and ¢, on @77, are compatible with the
actions of 'y, and Frobenius on W(EL). Note that it is a fundamental step to construct the Fontaine
ring A defined in the next chapter. To construct this embedding, we will need to lift the Teichmuller
map 7 and ¢ : T" — mpg, in a specific way, where 7" is the Tate module. Via these liftings, we can
point out the existence of ¢ € W((’)f\b) such that c satisfies the conditions of Proposition and

this completes the proof of tilting Cof);espondences.
In the last section, we will introduce objects and morphisms in Mod®* (.27, ), and give some examples
for etale (pr,'r)-modules.

4.1 A two dimensional local field

In this section, we will describe the coefficients ring over which (¢, I'r)-modules are defined.
We first introduce the ring

oy, = im O((X)) /a™O((X)) = lm(O/x™O) (X))

We will point out that 77, is exactly the ring of inifinte Laurent series, where coefficients go to 0
when the indicies go to —oo. First, let f(X) := >, a; X", where a; € O, and lim;_,_o a; = 0, and
A = ez(a; mod 7 O)X". Because lim;, o a; = 0, when 4 is sufficient small, we have a; = 0
mod 7O, and this yields, in fact A,, € (O/7™O)((X)), and it is clear that A,,+; = A,, mod 7O,
hence (Am)m € 9.

Conversely, let (Ap)m € 77, where Ap, = 3.7 (am; mod 7™O) X", where for some i(m), and all
i < i(m), we have a,,; =0 mod 7. Because (Ay,)m € &1, we have @41 = apm,; mod 7. And
this yields, there exists a; € O, such that a; = lim,;,—so0 @4, and it follows that a; = a,,; mod 7.

63
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Let us denote f(X) := > ,.; a; X;, then for any m, and i < i(m), we have a,,; =0 mod 7™. And
hence, for such 7, a; =0 mod 7. And this follows that lim; , ., a; = 0.

We can see from this that the identification is not just a bijection of sets, it is an (O-algebra
isomorphism, with the usual Cauchy product on the ring of infinite Laurent series with coefficients

in O. And because o7, = l'&lm(’)((X))/me((X)), nafy, is a maximal ideal of @77, and @7 /maf], =
(O/mO)((X)) = k((X))-

Lemma 4.1.1. Any element in </, \ n/;, is a unit

Proof. Let f =3 ., a; X' € o/, \ mely, since lim;_, o, a; = 0, we can find a smallest integer ig, such
that a;, # 0 mod 7, we can see that

FO0) =3 aX 4 X0 ( 3 aiXi*iO) — g(X) + XPu(X)
1<ig i>10

where g(X) = >, ;. a; X! € oy, u(X) = Y i a; X~% which is invertible in O[[X]] C /. And
hence, B

9(X) »
X) = (7 1) Xiou(X
where %X()X) € wa/;,. But then, 1+ wa, for any a € o7}, is invertible, since <7}, is m-adically complete,
and hence, 1 + (—7a) + (—7a)? + ... € &, and it is the invert of 1 + wa. This then yields f is
invertible. O

By this, 77, is a local ring with the unique maximal ideal m.47;,. We can further define the norm
of f =Y ,cpaiX' € @ as |f| = max;ez |a;|. One can see that it is in fact well-defined, since the
valuation in L is discrete. And it is obvious to see that |f| = 0 iff f =0, and |f + g| < max{|f|,|g]}.

Lemma 4.1.2. For any f,g € <1, we have |fg| = |f].|g|, and it follows that <77, is an integral domain.

Proof. We can write |f| = |7"™]|a;|, for some f € o1, m > 0 and |a;| = 1. So it is sufficient for us to
deal with the case |f| = |g| = 1. In this case f,g € @7 \ 7«7}, and hence, fg € @71 \ 7.9/}, since T},
is a maximal ideal of o7, and this yields |fg| = |f||g| = 1. The second statement is immediate. [

Now, via this proof, we can see easily that @7}, is a local domain. Its field of fractions is denoted
ABr. By Lemma {4.1.1] we can write

By, = U m e, ={f = ZaiXi,ai € L,sup |a;| < oo, lim |a;| =0}
m>0 i€l e

And it can be seen that o/f, = {f € AL, |f| < 1}, and f € n™a7, iff |f| < |7|™. Hence, with this
kind of norm, 77, is a complete metric space, since this is identical with the m-adic topology.

We are going to explore the action from I', := Gal(Ls/L) to <7;,. First, for any g € O[[X]], we
can define

g - O/m"O[[X]] — O/ O[[X]]
f+— f(g mod 7n™O)

In order to extend this to (O/7™O)((X)), we need g(X) to be invertible in (O/7™O)((X)). In
particular, if we take g(X) € XO[[X]], and g(X) € @7, \ 77, then we can extend

g 2y /n" e, = O)n"O((X)) — w/n" ety = (0O/7"O)((X))
fr— f(g mod n™O)
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This is a homomorphism of O-algebra, and it is compatible with the inverse system defined <.
Therefore, we obtain the map
wg : JZfL — T
[ flg(X))
And this also extends to the same map from By — %r. And in particular, it is injective. We now
apply this to the action from Lubin-Tate theory.
Let ¢ be a Frobenius series defining L, for any a € O, we have [a]4(X) = ax mod deg2, hence
la]y is invertible in 277, and we then obtain an action
0" x JZ%L — ] T,
(a, f) — folals(X)

And because x : I';, = O*, we obtain an action

FL X JZ/L — JZ/L
(0, f) — f(Ix(0)]s(X))

Because 7]y = ¢ = X? mod wO[[X]], it is invertible in &7, we also have the map

chZJZ{L—>£ZfL
fr—1Ffo¢

And because for any a € O, we have [a]g o [7]s = [7]g 0 [a]y, so the map ¢y, is I'p-equivariant.
Also ¢y is an injective map. We can deduce some facts about <7, as ¢ (<7 )-module.

Lemma 4.1.3. <7}, is a free pr,(21)-module with basis 1, X, ..., X971,

Proof. See |Sch17|(Proposition 1.7.3). O

We can see that 77, has a natural m-adic topology, but since k((X)) and its subrings O[[X]] also

has their own topology, so called X-adic topology, we want to equip a topology on &7, with relation
to both m and X. We define

Ui = X'O[[X]] + 7™/, (1 > 0,m > 1)

They are O[[X]]-submodules of 7, and it can be checked easily that there exists a unique topology
on 7, such that such U ,,, forms a fundamental system of open neighborhoods around 0 in 7. This
topology is weaker than the 7-adic topology, and it is said to be the weak topology on o7, . If we
denote U, := Uy, m, then we always have

Ul,m 2 Umax{l,m}

That means if we choose {U,,} as a fundamental system of open neighborhoods around 0 in <7,
then the topology on 7 is the same as above. Because {U,,} is a filtered fundamental system, o7, is
complete w.r.t the weak topology iff all Cauchy sequences in @77, w.r.t the weak topology converges in
/7, Using this, we prove that

Lemma 4.1.4. With the weak topology defined as above, <71, is Hausdorff and complete.

Proof. Take f # 0, f € /1, and m = max{m,n™g = f,g € </}, then it can be seen that f ¢ Up p41.
That means, .7, is Hausdorff.

Let (fy)n be a Cauchy sequence in 77, w.r.t the weak topology, we then have Vm > 1, there exists
Ny such that npy, 11 > ngy,, and for all n,n' > ny,, f, — fr € X™O[[X]] + 7«7, We then form a
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subsequence Yy, := Tp,, of (x,)n, then it can be seen that ym+1 — ym = X" gm + 7" hy, for some
gm € O[[X]], hm € <71. This yields

Ym+1 = Xmgm + Wmhm + Ym

Inductively, we have

Ymi1 = (X"Gm + X" g1+ oo+ Xg1) + (T, + 7" 1+ ohy)

where g; € O[[X]], h; € #7],. Because O[[X]] is X-adic complete, Xig; is well-defined, and 77, is
m-adically complete, Zizl 7th; is also well-defined. Let

yi=> X'gi+y 7'h;

i>1 i>1

then y is an element in «7,. And it can be seen easily that y is a convergent value of (y,),, and hence,
of (zy)n. This yields 77, is complete w.r.t the weak topology. O

Proposition 4.1.5. Restricting the weak topology on <71, to O[[X]], we obtain the product topology on
ONo

Proof. The fundamental system around 0 in O[[X]] by the induced topology from <7, is
Vi = X"O[[X]] + 7™ O[[X]]
If we represent f € O[[X]] as a sequence (ag, a1, ...) by grading, then it is easy to see that
[+ Vi ={(bo, b1, ... b1, ...) € ON|b; = a; mod 7™,0 < i <m —1}
And this yields the topology on O[[X]] is the product topology on ONo. O
With the weak topology, we can prove that
Lemma 4.1.6. <7}, is a topological ring w.r.t the weak topology.

Proof. 1t is sufficient for us to prove that the multiplication map is continuous. Let f,g € &1, and
m > 1; then because the coefficients of f and g go to 0 when the indices go to —oo, we can find some
I such that X'f, X'g € O[[X]] + 7", = Uym. And we have

(f + Ul—i—m,m)(g + Ul—i—m,m) = fg + fUl—l—m,m + gUl+m,m + Ul+m,mUl+m,m
C fg + XﬁlUO,mUl—l-m,m + Um c fg + UO,mUm + Um c fg + Um
]

We conclude this section by proving that the action from ¢, and I'g, is continuous w.r.t the weak
topology.

Proposition 4.1.7. The action from ¢y, and 'y, is continuous w.r.t the weak topology on <77,

Proof. Because 1]y = ¢(X) € XO[[X]], we have ¢(X™) € X™O|[[X]], and for any f € o7, we have
er(f +Un) = or(f + X"O[X]| + 7"aL) C oL(f) + Unm

So, ¢y, acts continuously on «77,. For the action from I';, we will sketch the proof, since 'y, & O,
it is sufficient to prove that the action O* x @/, — &7}, is continuous. It then follows, by computing
the degree, that for al a € O, f € 47, and there exists some m(f) such that for all b € 1 + N,
we have (ab, f) € (a, f + Up,), and since (a, Uy,) C Uy, this yields

abx (f +Up) = (ab, f) + (ab,Upn) C (a, f + Un) + Un C (a, f) + (a,Un) + Un C (a, f) + Un,

Hence, the action from I'j, to &, is also continuous. O
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4.2 The kernel of @LA

This section has two aims. First, we will prove that there exists ¢ € W(OAb) such that ©7—(c) =0

and |®o(c)| = |r|. Note that this implies ker K = ¢W(O»), for all perfectmd field K, as proved
in Proposition [3.3.2l Via doing this, we will introduce the two important maps, so called lifts of
Teichmuller map, and ¢ as introduced in the introduction of this chapter.

We will first begin with the construction of ker ©¢,, and see how we can reduce to the case
Of\b. Let us begin with a sequence my = T, 7T;]+1 = m;, where m; € Oc,. It can be seen that (...,m;

mod 7Oc¢,,...,mo mod mOc,) defines an element in O, . Let us denote this element as 7. We have
D
Oc, (r(7)) = () = lim 77 =7
1—00
Hence, one has 7(7) — 7ly o Oc) is in the kernel of ©¢,. By abusing of notation, we often denote

Tl o ) 35 mly for a perfectoid field K. We have

7(7) — mlw = (7,0, ...,0) — (0, 1,...) = (7, ...)

And |7|, = |#*| = |7|. And this yields by Proposition that 7(7) — w1y generates the kernel
of O¢,.

To reduce this construction to @fo\o, we first note that fo\ob = EEerf, but Ey, itself is not perfect. So,
if our construction begins from Ey, we will need to extend Ef, to El/qj ={ac€ Er, a? € EL} We can
see that E 1/’ is an extension of F,, with maximal ideal of O 1/(13 ism l/qg ={a€O 1/q] ,a? € mg, },
where mg, is the maximal ideal of O, . Note that the Frobenlus x r—> 7 denote as F’I“ O g/t —
O /e is now bijective, and the Frobenius on Witt vectors F'r : W(O I/QJH) — W(O 1/qu) is also

bljeLctlve To find such an element generating ker ©—, we will also need the Lubin-Tate formal group,
applying to the maximal ideal Mg, of W(Og, ). To do this, we need to study further the topology on
W(O(C?, ).

Lemma 4.2.1. Let K be a perfectoid field, o € Op, 0 # 0, and |af, < 1, then (7(a), w1y )™ forms
a fundamental system of open neighborhoods in W(Oq,)) w.r.t the weak topology.

Proof. Because (7(a), 71y )*™ C (7()™, (xlw)™) C (7(a),7ly)™, it is sufficient to prove that

7(a)™, w17) forms such a fundamental system. Take any («q, aq,..) € W(Or), we have
w K

r(a™)(ag, a1, ..) + T"W(O) = (@)™ (r(a0) + 7r(a’?) + .+ 7@ 4 Vi (O) =

m—1

=7(a™ap) + 7(a™) + ... + T(aquAQm_l) + Vi (Ope)
And this yields

(T(Oém), <7T1W)m) = amOKb X aquKb X ... X amqmiloKb X OKI; X OKb...

From this, we obtain
Vomam—1 . C (T(@)™, (rlw)™) C Vam m

«

where Vg, is defined as in Section 6 of Chapter II. And it follows that (7(a™),n1j},) forms such a
fundamental system. O

Via this lemma, we have

Lemma 4.2.2. Let K be as above, and o € W(Opy»), such that 0 < |®g(cr)| < 1, then (o, wly)™
forms a fundamenal system of open neighborhoods around 0 in W (O ), w.r.t the weak topology
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Proof. We assume that a = ®g(«), then it follows from the previous lemma that (7(a), w1y )™ forms
such a fundamental system. But then

a—71(a)=(0,..) € Tl (Oks)
So, (o, mlw) = (7(a), 71y ), and the conclusion now follows. O

We next consider the map @y : W(Opg,) — Opg,, it is a homomorphism of ring, and Mg, =
o, (mp,) = {(ag,a1,...) € W(Og,)|ap € mpg, } is a maximal ideal of W (Og, ). And one of our main
goals is to consider the topology on Mg, . First, we can equip W(Og, ) the product topology on each
factor Op, , and this yields W(Og, ) C W(ch ) is Hausdorff, and complete (Proposition . Due
to the characterization of Mg, , it is also closed in W(Op, ), and hence, complete, w.r.t the weak
topology.

Corollary 4.2.3. With respect to the weak topology, any o € Mg, is topological nilpotent, i.e.
lim; ;oo @™ =0

Proof. If a = 0, then the conclusion is trivial. Otherwise, by Lemma we have (a, wly )™ forms
a fundamental system around 0 in W(Og ), and hence, (a"),, forms a Cauchy sequence in W(Og; ).
P P

It is obvious to see that 0 is a convergent value for («"),. But then, since W (O ) is Hausdorff, the
P
convergent value is unique, and we conclude that lim; ., o™ = 0. ]

Now, let F':= F; the Lubin-Tate formal group law w.r.t ¢. Because Mg, is Hausdorff, complete,
and any o € Mp, is topological nilpotent, we have (Mg, , +r) is an abelian group. We can then define
the action

O x MEL — MEL
(@, @) — [a]y(a)

—b

And this turns Mg, into an O-module. Because Ej C E}J/ @ C Lo , we can immitate these

constructions above for Eé/ ? In particular, we define

M

_p-1 ) — ) .
E]}J/QJ - q)() (mEi/qJ) - {(OZ[),Oll, ) € YV(OEi/qJ)’OéO eAmEIll/qJ} (41>
={(a,11,...),af emp, } = (Fr'y~Y(Mg,)
Also, (MEl/qj ,+r) is an O-module. And we have
L
WJ'W(OEW) = {(ao,a1,...),a¥ € Op,} ={(0,...,0,a¥ ,al ...} = V;(Op,) (4.2)

Lemma 4.2.4. The map [y : M 1/q — Mg, is well-defined, and [r]y is a homomorphism of O-
L

modules.

Proof. Take any o € MEi/q’ we have of € Mg, , and ma = (0,af,...) € Vi(Op,) C Mg, . Hence,

[T]p(a) = a? + G (a) = a? + 78 € Mg,
where [r]y = X9+ 7G(X) € O[[X]], and 8 = G(a) € M1/ O

By the previous lemma, and we obtain

[m]poFr—t
L

Mg Mpg

L

is well-defined. We will show that it is in fact an O-module homomorphism.
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Lemma 4.2.5. The maps Fr : ME1/q — Mg, , and Fr—1 . Mg, — MEl/q are isomorphism of
L L

O-modules.

Proof. We will prove for Fr~!, and because Fr and Fr~! are inverse of each other, this automatically
turns out that F'r is an isomorphism, too. Assume that F(X,Y) = Fy(X,Y) = Zr,s Cr s XTY?, we
have

F(Fr~Y(a),F ZCHFT )" FrY( ZCMFT B%)

=" Fr e 0’8 (zcma §) = Frt(Fa. 9))

where the third identity follows from the fact that Fr—! : W(O 1/4) = W(0Og,) is an O-algebra
homomorphism, and the fourth identity follows from the fact that the map Fr : O(C?, — (’)C; is an
homeomorphism, and so is the map W (Fr) = Fr : W(OC%) — W(O(C;), and in particular, Fr is
continuous.

Also, if we assume [a]y = a1 X + a2X? + ..., then

Fr_l([a]¢(a)) = Fr_l(aloz + aga? + o) = alFr_l(oz) + agFr_l(a)2 +..= [a]¢(FT_1(a))

And this yields Fr~! is an O-module homomorphism. Because Fr~! is also bijective, it is an
O-module isomorphism. O

By combining Lemma [£.2.4] and Lemma [£.2.5] we get
[7]po Fr=t: Mg, — Mg,

is an O-module homomorphism. We denote this map as {.};. Here are some facts about {.};.
Lemma 4.2.6. For all o, 8 € Mg, , we have

(i) {a}1 =a mod Vi(Og,).

(it) If o = f mod V;(OF, ), then {a}1 = {f}1 mod Vit1(OFg, ).
(i) (11 (0) = {}i(@) mod Viy1(Op,).
Proof.

(i) We can represent [r]s(X) = X? 4 7G(X) for some G(X) € XO[[X]], and this yields

o = s © Fr~ (@) = [rlg(a/®) = (@/9)7 + 7G(a/) = @ mod Vi(Os,)
(ii) Due to E we have V;(Op,) = ﬂ'iW(OEi/qi). From the assumption « = 8 mod V;(Og, ), we
have « = f mod WiW(OEl/qi), and that Fr—1(a) = Fr=(8) mod WiW(OEl/qi+1). And hence,
L L

it is sufficient to prove for any «,f € W(OEl/q¢+1), if @ =8 mod 7, then [r]y(a) = [7r}¢(ﬂ)
L

mod 7. But it is clear, since [7]4(X) = X9+ 7G(X), and we easily get a? = 87 mod 7"
and 7(G(a) — G(B)) =0 mod 7+

(iii) By (i), we have {a}1 = a mod Vi(Og, ), and by (ii), {{a}1} = {a}1 mod V2(Op,). So by
induction, we get {}1"1(a) = {}i(a) mod Vis1(Os, ).

O
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Due to (iii) of the lemma above, for any a € Mg, , we have ({}}(a)), forms a Cauchy sequence in
the m-adic topology of W(O@; ), and hence it is also a Cauchy sequence in the weak topology on Mp, ,
which is Hausdorff and complete. Hence, we can define

{a} = lim {}{(a) € Mp,
71— 00
There is an useful characterization of {.}.
Lemma 4.2.7.
(i) {.}: Mg, — Mg, is an O-module homomorphism.

(ii) For o € Mg, , {a} is the unique element such that {a} = o mod Vi(Ofg,) and [r]s({a}) =
Fr({a})

Proof.

1. Let o, B € Mg, , we have
{otrB) = lim (J(atrf) = lim () +r(1(8) = lim (}{(0)+r lim (}1(8) = {a}+r(8)
Also, for any a € O, we have

{lalo(a)} = lim ([r]goFr)o...o([mlsoFr) (als(a)) = lim [alg{}T(@) = [als lm {}}(a) = [als{a}

n—o0 n—o0

where the second identity follows from the fact that [a], commutes with [r], and Fr~! (Lemma

4.2.5). And hence {.} is a homomorphism of O-module.
2. It can be seen by Lemma that

{a} ={a}1 =a mod V1(OF,)

Also, we have

Fro{}{(a) = Fro([ngo Fr 1) o..o([a]so Frt)(a) = [rls({}1 ()

And because F'r and [r]4 commute with the limit, we have

lim Fr({}i(a)) = Fr( lim {}7(a)) = Fr({a})

n—o0

And

Tim [mo({}i (@) = [l lim {}1(a) = [<lo({a})
This implies [7]s({a}) = Fr({a}). For the uniqueness, assume that there exists 81, 82 € Mg,
such that 81 = B2 mod V41(Og,), and [r]4(8;) = Fr(3;). This yields [r]s o Fr=1(8;) = B,
ie. {Bj}1 = Bj. Because 51 = 2 mod Vi(OF,), we have {$1}1 = {f2}1 mod Vo(OF,), ie.
B1 = P2 mod V2(OF, ), and so on. We finally get 81 = 2 mod V;(Op, ), for all i, and hence,
p1 = PBa.

O

Via this lemma, we get that if 3 € Mg, , such that § = o mod Vi(Og,), and [7]4(8) = Fr(B),
then 8 = {a}, say another words, {.} is completely determined by modulo Vi(Og, ). As a corollary,
we get
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Corollary 4.2.8. For all « € Mg, , we have {a} = {7(®o(x))}

Proof. We have {7(®¢(a))} = 7(Po(a)) = @ mod Vi(Of,). And because 3 := {7(Pg(«))} satisfies
[7]¢(8) = Fr(B), we obtain the statement by Lemma [4.2.7] (ii). O

We now introduce the two important maps
. T {3
Te - ME;, — MEL — MEL

L T
L¢:T—)mEL —)MEL

The map 7 is obviously well-defined, since Mg, = ® 1(mEL). And since T is mapped to mg, via
t, the second map is also well-defined. And the connections between 74,14 and O¢, are reflected via
the following

Lemma 4.2.9. For any o € mpg,, we have

Oc, (75(a)) = lim [7'],(a:)
where a = (...,a; mod 7Oc,,...,a0 mod 7O¢,). In particular, Oc,(14(t)) = Oc,(74(w)) where t =
(zn)n is the generator for the Tate module, and w = t((zn)n)

Proof. Because Oc, is continuous (Lemma [3.5.8)), we have

Oc, (75(a)) = O¢,({r(a)}) = Oc, (lim [7']sFr~*(7(a))) = lim O, ([7']¢Fr~"(1(a)))

1—00 1—00

And we have

[7ri]¢ o Fr_i(T(a)) = [7ri]¢((...,ai+1 mod 70Oc,,a; mod WOCP),O,O, o) = [7ri]¢(7(a1/qi))

And because Oc, is also an O-algebra homomorphism, we have

Oc, ([7']s(r(a"7))) = [x']4(Oc, (T(a'/1))) = [x7]4((a"/7)?)

We have (a'/4')! = q; mod 7nOc,, and hence [W](b((al/qi)ﬁ) = [r]4(a;) mod 72Oc,. Inductively,
we get in general [77]4((a¥/9')¥) = [r']4(a;) mod 71O¢,. And this yields

Oc, (rs(a)) = lim O, ([w']s(r(a"/"))) = lim [r']y((a/")") = Jim [x],(a;)

Because for all ¢, we have [']4(%;) = 0, and 14(t) = 74(w). And this follows from the previous
computation that

Oc, (16(0)) = O, (75(w)) = lim [r1]y(=i) = 0
O

b
We note that 74(w) € Loo , so we have actually found an element 74(w) such that ©7—(74(w)) = 0.

Furthermore, 74(w) = {r(w)} = 7(w) mod Vi(OF,), so both 74(w) and 7(w) has the same 0-th
coordinate, which is w. And it follows from Lemma that

jwly = lim |z|?" = 79/971
71— 00

And we want to adjust this absolute value. So it is natural to consider T¢(w1/ 7). We have

Lemma 4.2.10.



72 CHAPTER 4. THE CATEGORY MOD®™(a7)

(i) [l (0"/0)) = To(0).
(i) 79(e) 7o(0'/) € O 1.
Proof.
(i) We have [x](rs(w!/9)) = [l {r(!/1)} = {[x]o(r(w"/7))}, and
{[ms(r (@)} = [Ws(r(@") = 79! = 7(w) mod Vi(Og,)

Since {7(w)} = 74(w), by Lemma we get the conclusion.
(ii) This follows directly from (i), since [7]4(X) € XO[[X]].

And it is easy for now to prove that
Corollary 4.2.11. ¢ := 74(w)/74(w'/?) satisfies ©7=(c) =0, and |Po(c)|, = |7].
Proof. We have Oc,(c).Oc, (To(w!/?)) = 0, by Lemmam but then

Oc, (rs(w"/) = lim [y z41) = 1

i—00
And z1 # 0, we so obtain Oc,(c) = Oz=(c) = 0. On the other hand, {r(w'/)} = 7(w9)

mod V1(Og, ), so they have the same 0-th coordinate, which is (...., z1 mod 7Oc,). And that w9, =
|z1] = |7]/971. So, we get |®o(c)], = |7. O

Via this proof, we now obtain the complete proof for our tilting correspondences in the previous
chapter.

4.3 The coefficient ring

We can now describe a topological embedding from 77, to W(EL). We first prove that
Lemma 4.3.1.

(i) The diagam below is commutative.

(ii) For alla € O, and y € T, we have

[a]y(tp(y)) = te(lals(y)) and Fr(ts(y)) = [7ls(e(y))
Proof.

(i) The commutativity of the diagram above is equivalent to say that the O-th coordinate of t4(y)
is 1(y). We have 14(y) = 75(e()) = {r(:(y)} = 7((y)) mod VA(Op, ), and this yields the 0-th
coordinate of t4(y) and 7(¢(y)) is the same. But then 7(¢(y)) = (¢(y),0,...), and hence, the 0-th
coordinate of 14(y) is exactly ¢(y).
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(ii) For the first equality, we have

[a]g(e4(y)) = [als({T(u(y))}) = {lale(T((¥)))}

where the last identity follows from the proof of Lemma [£.2.7] (i). And

And it is sufficient to prove that the two elements in {.} above has the same 0-th coordinate.
For the first element, we have its O-th coordinate is the O-the coordinate of [a]s(7(:(y))) =
la]4(¢(y),0,0,...). And for the second element, its 0-th coordinate is the 0-th coordinate of
7(¢([a]g(y))), which is ¢([a]s(y)). But then, since things we are considering are in the maximal
ideal M, , where series converge, so ¢([als(y)) = [alst(y). And this also follows easily that the
0-th coordinate of the first element is also [a]st(y).

For the second identity, we have

Frw(y)) = Fri{r(u(y))}) = [ms({T((v)}) = [7ls(es(y))
where the second identity follows from Lemma (ii).
O

Let us denote wg := 14(t), where ¢ is a generator for the Tate module. We can extend ¢4 to the
map

O[[X]] — W(Og,)
f(X) — flws)

Because wy € Mg, , which is topological nilpotent, the map above is a well-defined O-algebra
homomorphism, and it makes the diagram

O[[X]] —— W(Og,)

lpr l@o
K[X]] ——— Og,
commute by Lemma [4.3.1(i). Because W (EL) is a local domain, since Ey, is a field extension of

k, with the unique maximal ideal Vi(EL) = ker ¢, and X is mapped to wg = 14(t), that satisfies
Po(wy) = w # 0. So wy is invertible in W (EL). And hence, the diagram above can be extended to

O((X)) —— W(EL)

lpr l‘bo

k(X)) —— Ep,
And that 7 f(X) in O((X)) is mapped to 7™ f(wg) in W(EL). So the induced map

O((X))/7"O((X)) = W(EL)/m" W (EL)

is well-defined, and compatible with the inverse system. So, we obtain the map
j @y =limO((X)) /7" O((X)) — UmW(EL)/m"W (EL) = W(EL)

Xl—)W¢
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We recall that o7, is a D.V.R with the the unique maximal ideal generated by 7, so the kernel
of j is either 0 of 7™a7,. If the latter case occurs, we have j(n) = 0 = 71y, which is absurd.
Hence j is an embedding. Actually, j is a topological embedding w.r.t the weak topology on both .7,
and W (EL) [Sch17|(Proposition 2.1.16(i)). We denote the image of j as Ar. We will conclude this
section by proving the compatibility between (¢r,I'1) action on <77, and (Fr,I'z) actions on Ar. At

_ — _

this point, we recall that any o € G, = Gal(Q,/L) acts continuously on Lo, and Hy = Gal(Qp/Loo)
—

fixes Lo, and hence, fixes Lo, . So, this action is reduced to I'r,. And the induced action from I'j,

—b
to W (L ) is defined on each coordinate, which turns out to be continuous as the following lemma
points out.

—b
Lemma 4.3.2. The action from T', to W (L ) is also continuous.
—b
Proof. Note that I'y, is a profinite group, that acts on Lo, as automorphisms of O-algebra, and this
action is continuous. This then follows by Lemma |3.5.6{ that I';, acts continuously on W((’)Z\b). We

also recall that due to the notions of Section 6, Chapter II about topology on Witt vectors

—b

Ua,m = Va,m + 7TmVV(LOO )

—
where a is an open ideal of Of\b, forms a fundamental system in W (Lo, ), and that for any o € T'f,,
- b

—b —b —
we have o ("W (Ls )) = m"W (Lo ). Hence, I'f, acts continuously on W (L ). O

Proposition 4.3.3. For all f € o1, v € T'1, we have
(i) 3(er(f)) = Fr(j(f))
(1) §(v(f)) =~ (f))

Proof. Assume that f = f =}, a; X" with lim; ,_o = 0, then for all m > 1, there exists some
Ny, such that for all n < n,,, a, = 0 mod 7. We can define f,, := Eﬁ;iﬂ Then it can be seen
that f — fm = Yicn, 6iXi + Y5 @, X7 € Up, where we recall that Un, = X™O[[X]] + 7™
Because 77, is Hausdorff, we have limmf,, = 0, where f,, € O[[X,X1]]. Also, since all maps we
are considering are continuous, it is sufficient to prove both statements for f € O[X, X~!]. But then,
because all the maps are also O-algebre homomorphism, it is sufficient to check for f = X. And the
statements are now reduced to

(i) j(er(X)) = Fr(i(X)).

(i) 5 (7(X)) = 4((X)).

For (i), we have j(X) = wy = 14(t) and ¢1,(X) = [7]4(X), so it is equivalent to say

(76 (tp(t)) = Frr(ip(X))

which holds due to Lemma [4.3.1] (i). It is a little more difficult to prove (ii). We have

F(v(X)) = 3 (Ix(M]e(X)) = x(M]s(3(X)) = Dx(M]s(16(8)) = s (X(V)]6(1)) = 16((1))

where the fourth identity follows from the action from 'y, to T'. So it is now sufficient to prove that
Lp(7(t)) = v(1e(t)). Because iy is the composition of 7,¢ and {.}, it is sufficient to check that the three
maps is I'z-equivariant. For both 7, ¢, this follows directly from the definitions of the actions. For {.},
by Lemma [4.3.2, 'z, acts continously, hence, it is sufficient to check that [n]s : M El/a — Mg, and

Fr=t: Mg, - M pi/a are I'p-equivariant. But this is also clear, since I';, acts continuously, we then
L

deduce the statement for [r]s. And for Fr~1, it follows from the fact that Fr : W(O(C;) — W(O(C;)
is I'r-equivariant. ]
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4.4 (¢, 'r)-modules

Because @71, 2 Ap as topological rings, we can study the topology on Ay via o7,. We recall that a
fundamental system of open neighborhoods around 0 in 77, is given by

Upm = X'O[[X]] + 7™ e,(1 > 0,m > 1)
There is another characterization of Uy,
Lemma 4.4.1. Uy, = {f = > icz a; X" € op,a; =0 mod ™, Vi < I}.
Proof. Assume that f = f =5, a; X* satisfies a; =0 mod 7™, for all i < [, we can write
f= ZaiXi + Zanj S Ul,m
i<l §>1
Conversely, let f=f=3>"., a; X e Ul,m, we can represent
f=X'g(X) +7"h(X)

for g € O[[X]], h € 7. And this yields the part of degree smaller than [ of f is the part of degree
<l of #™h(X), and this implies a; =0 mod «™ for all i < [. We therefore obtain the statement. [

Via this characterization, we can see

Lemma 4.4.2. Let f = f = > ,a, X', g = >0, b: X" in o, then f = g mod Uy, iff a; = b;
mod 7™, for all i < m.

Proof. It is obvious from the previous lemma. O

Lemma 4.4.3. Let R be a commutative ring, we have

R((X)) = lim R((X))/X'R[[X]]
l
as R[[X]]-modules.

Proof. We can see that the map
) — L m R((X))/X'R[[X]]
fr—(f mod X'R[[X]]);

is a well-defined R[[X]]-module homomorphism. So f € R((X)) maps to 0 in the limit iff f € X! R[[X]]
for all [ > 0. And this yields f = 0.

For the surjectivity, take any (f;); € lim, R((X))/X'R[[X]], then fi11 = f; mod X'R[[X]], for all
l,ie. f; and fj11 has the same part of deree less than [. Hence, for any [, we can define F; := f; — fo.
It can be seen that F; € R[[X]], and Fi4; — F; € X'R[[X]]. Hence lim; ., Fj exists in R[[X]], which
is denoted F. Let f := F + fp, we can see easily that the image of f via the map above is (f;);. O

Remark 4.4.4. We can now deduce another proof for the fact that 7 is Hausdorff and complete
w.r.t the weak topology.

Proof. We have

i Ui = i (/" O) (X))/X'(©/x" O)[X]]) = in(©/ " O) (X)) =

where the second identity follows from Lemma O
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Because @77, is a D.V.R, any finitely generated «/7-module has a free part and a torsion part, where
the torsion part is of the form o7} /7™ o7] @ ... B o7 /7" o/;,. We can equip any free finitely generated
-module M the product on each factor o7, via the isomorphism <7» = M. And for any finitely
generated 2/7-module, there is a surjective map 27" — M, and we can equip M the quotient topology.
This kind of topology is said to be the weak topology on M. We will prove that, in fact, the topology
on finitely generated «7;-modules behaves in a nice way.

Lemma 4.4.5. U, is also closed in a7r,.

Proof. 1t is clear, since Up,, is a O[[X]]-submodule of 47, so if we take any f ¢ Uj,,, we have
(f +Um) N (Upm) =0. So a1, \ Uy, is open, and U, is closed. O

We are now ready for the following important

Proposition 4.4.6. Let M be a finitely generated </1-module, then M is also Hausdorff, and complete.
Let N C M be a submodule, then N is closed in M, and the weak topology on N is the same as the
subspace topology on N induced from M.

Proof. Step 1. We will check the proposition for @7, itself. The first statement is already proved. Let
N C 7}, is an &/ -submodule, then IV is of the form 7™.7;,. We can see first that 7™, = N> Ul m,
which is closed in @77, by the previous lemma.

The map

JZfL — meQfL

a+— 7"a

is an isomorphism of </ -modules, and it turns out that 7™U;, = 7" X'O[[X]] + 7™+, forms a
fundamental system around 0 in 7./, by the definition. In the subspace topology, we have the
fundamental system around 0 in #".¢7}, is of the form

(X'O[X]] + 7" ™ap) N (7™aty) = 7 XIO[[X]] + 7™ ety) = 7 XL O[[X]] + 7y,

This yields the weak topology on 7™.¢7}, is the same as the subspace topology.

Step 2. Let M be a free generated 2/7-module, then we have </} = M for some n, and this
yields by the definition that the weak topology on M is the same as the product topology on <7/
From this M is complete and Hausdorff. Let N be any submodule of M, then N is of the form
Ml @ ... &/ (k < m), which is closed in M by Step 1, and the weak topology on N is also the
subspace topology on M, by Step 1 again.

Step 3. For the case M = o7}, /n/.o7;, where M is equipped with the quotient topology from via
the projection from .27;. Let us denote .o/} := ay, |7, Oj = O/ O, then the fundamental system
in 277, is of the form

Vim = X'O,[[X]) + 7™/

By the same arguments as in Remark [£.4.4] we obtain M is Hausdorff and complete. Note that any
submodule N of M is of the form n™.7, /n/.a7;(m < j), which is isomorphic to <7 /7 ~".o7} as /-
modules, which is complete, and Hausdorff since we can replace M by .7, /7™, in the beginning
of Step 3. And proceeding similarly to Step 1, the weak topology on N is the same as the subspace
topology induced from M.

Step 4. Now, if M is an arbitrary finitely generated /7 -module, then M is of the form M =
" D A /n"M e, @ ... B A /m" /. And by combining all previous steps, we get M satisfies the
statement. O

As a corollary, we obtain
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Corollary 4.4.7. Let M, N be two finitely generated <1, -modules, then any <71 -module homomorphism
a: M — N is continuous w.r.t the weak topology.

Using this, we can deduce

Lemma 4.4.8. Let o : @, — /7, be a continuous ring homomorphism, and M, N are two finitely
generated </1,-module, and B : M — N an a-linear homomorphism, i.e. B(my + mz) = f(mq) +
B(ma), B(fm) = a(f)B(m), for all f € o1, m1,ma € M, then B is continuous.

Proof. Because 3 is a-linear, we want to linearize this map, so that we can use Corollary [L.4.7 We
denote @7, ®y, o M the tensor product with the base ring 277, and 7], on the left is considered as
g/r-module via the map . We note that, for this a ® b.m = b.a ® m = a(b)a ® m. We can define

ﬁlin : A, ®90L7»‘07L M — N
f@mr— fB(m)

. The map " is now .7 -linear. And there exists an @7 -linear map 3 making the following diagram
commute

APy A =y Dy, gy AL P

\L)\]W lid(g)\m \LAN

m—1®m plin

B

We note that for term in the middle, if we consider « : 27;, — 71, and denote B := o7}, on the left,
then o7, has the structure of a bi-module ., (.27,) p and <7/" has structure of a bi-module p(2,"™), .
And hence, o, (#1)p @B B(HL™), has the structure of o7 -module, this yields the map

o, (1) B @B B(ZL™ ) e, — o, AT
a® (ay,...,am) — (aay, ..., aay)

is hence, an isomorphism of .@7;-module.

This yields by Corollary that all maps in the diagram above, except 8 and m — 1 ®@ m is
continuous. But due to the universal property of quotient topology, we get 8 must be continuous as
well. O

We are now turning to the definition of (¢, 'z)-modules.

Definition. Let M be a finitely generated @77-module, then M is said to be a (¢r,'r)-module if
(i) Tz acts on M as semilinear continuous automorphism, where semilinear means that for all
v €TlL, f €, mma,me € M, we have v(fm) = ~v(f)y(m), and v(my1 + ma) = v(m1) + v(ma2).
(ii) There exists a ¢r-linear endomorphism ¢ : M — M which commutes with the action of I'z.
A (pr,T'r)-module M is said to be etale if the linearized map cpﬁ‘j L ARy oy, M — M is bijective.

Due to Lemma [1.4.8] we know that the map ¢p is continuous, since ¢r, is a continuous ring
homomorphism of 7.

Definition. Let M, N be two etale (¢r,['r)-modules, then a morphism between M and N is an
a/r-linear map, such that

aopy =pnvoaand aoy=vyoa(VyeTly)
We denote Mod®(.e77,) the category of etale (¢, 'r)-modules. It can be proved that

Proposition 4.4.9. Mod® (<) is an abelian category.
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Proof. Let a : M — N be a morphism between two etale (¢, 'r)-modules. By the definition, it is
easy to see that ker a and cokera are (¢, '1)-modules. Note that since 77 is a D.V.R and it is a free
or(,)-module by Lemma {4.1.3 we have &7, ®,, «, — is an exact functor. From the exact sequence

0— keraa - M — N — cokeraw — 0
we have
0 — AL Qpp .y ke — A, Ry oy M — A Qpy oy N — AL Ry o, cOkera — 0

is also exact, and it can be seen that the diagram below

00— Ry o kera —— ], oy, M —— o, Qoo N —— o, Ry, cokeraa —— 0

lin lin lin lin
lwker @ iapl\/l iSON l‘pcokera

0 ——— kera > M N cokere ——— 0

is commutative, which rows are exact, and the two middle vertical arrows are isomorphism. This yields
that the left and right arrows are isomorphisms, too. Hence both ker o, cokera are etale (¢, I'f)-
modules. And hence, Mod®*(.27},) is an abelian category. O

Important Remark. The axiom for the continuous action from I'y to etale (¢, T'r)-modules
can be deduced from other axioms [Sch17|(Theorem 2.2.8).
We finish this chapter by some examples about (¢, ' )-modules.

Example 4.4.10. M := o/} is an etale (¢, 'r)-modules, with ¢y := pr.

Example 4.4.11. Let M be an object in Mod®*(27;,), and v : ', — O is any homomorphism of
groups, then we can defined the twists of M, denoted M (1), whose underlying o7;-module structure
is the same as M, and py(y) = @ar. But the action from T'f is defined to be

I'p x M(y) — M(¢)
(v, m) —> 9(7) - y(m)
where ¥(T') acts on M through x;': 0% — T'L.

Later, by using the equivalence of categories, we will prove that for the case of rank one module
M in Mod®(7,), M is isomorphic to <7, twisted by a character ¢ : 'y, — O,

Example 4.4.12. We will use an explicit method to construct M a free etale (¢, I')-module of rank
1. For v € I'r, we can assume that vy(e1) = Cyeq, with Cy € & \ 7.7, then y(fe1) =7 fCye;. For

o M — M
61'—>D61

it is ¢, linear, i.e. pr(fe1) = pr(f)enm(er) = orn(f)De;.
The condition ¢5; commutes with I';, actions means @y o v = v 0 s, where

env(v(fer)) = ou (T fCrer) = (" fCy)er = or(" fpr(Cy)Dey

Yem(fer)) =v(er(f)Der) ="oL(f)("D)Cyer

And the commutativity implies that ¢r(C,)D = (YD)C,, because ¢y, is I -equivariant. If we
choose further D € o7} \ a7, then it is obvious that 4,01]{21 is an isomorphism. We can reduce the last
condition to
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It is equivalent to say C([n]4(X))D(X) = D([x(7]¢(X))C(X). There is a possible solution for
this. We note that

[mlo (x(M]s (X)) = x(M]e([7](X))

Taking the derivative both sides, we have

[, ()

And this yields an obvious solution C' = [x(7)]3,(X), D = . Note that we need to divide 7
in D, since [7]4(X) = 7X + X9+ ..., and we need to choose D € &7, \ me/,. This example shows in
fact that the global differential form «/7dX = Q}%L is an etale (¢, I'r)-module, with the action

y(fer) = F(Ix(Mls (X)) x(N]e(X)dX

7l (X
our(er) = £(rlo0) 2 ax

It is proved in [SV16| that @77, (x1) = Q}?{L in Mod®*(.7;).



Chapter 5

An equivalence of categories

In this chapter, we will prove that the categories of Galois representation Reppy(Gp) is equivalent to
the categories of etale (¢r,, ', )-modules. For the first step, we will construct the ring A, which contains
both O and Ay as subrings. Later, we will describe functors between the two categories, and begin
the proof from the case m-torsion modules, and by devissage, deduce the equivalence of categories for
the case m"-torsion modules, and finally, move to the general case by a simple limit argument. We
finish this chapter by two applications of the equivalence of categories

e The classification of rank one Galois representations and rank one etale (¢r, ', )-modules.

e The p-cohomological dimension of Gg,.

5.1 The ring A

Because Ay, & o7 as topological ring, and F'r on the left is compatible with ¢y on the right, we have
for all f € o1 ¢r(f) = f? mod mef, implies that Fr(a) = a? mod wAy, for all a € Ap. Let us
denote By, the fraction field of A;. We can see that By, is a complete, non-archimedean field with its
ring of integer Ay, and its residue field E7,.

Let C be an unramified extension of By, of degree d with its ring of integer O¢ we want to construct
the extension o of Fr on O¢ such that o is an O-algebra and o(c) = ¢? mod 7O¢, for all ¢ € O¢. If
such extension exists, then we can use Proposition m to embed O¢ into W (ET™).

Let b € O¢, so that Oc = A, @ Arb @ ... @ Arb* ', and b has its minimal polynomial P(X) over
By, such that P(X) := P(X) mod EL[X] is separable. Hence, to determine o, we have o(ag + a1b +
otag_1ba_1) = or(ag)+er(ag)o(d)+...+pp(aq_1)o(b?1). So, it is sufficient to determine o (b). But
then, since O¢ = o71,[X|/ P2/ [X], where b is sent to X, we need a compatible condition between b and
o(b), so that ¢ is a ring homomorphism. Say another words, if P(X) = ag+a1 X +...4+aq_1 X1+ X4,
then o(b) is a root of Q(X) 1= ¢r(ag) + ¢r(a1)X + ... + ¢r(as_1) X4t + X9 Because ¢y (a) = a?
mod wA, we have Q(X9) = Q(X) mod 7 = P(X). This yields if « is a root of P(X), then o is a
root of Q(X). So, in particular, Q(X) has d distinct roots, and it is separable, since P(X) is. Now,
b? is a root of Q(X), and by Hensel’s lifting lemma, we can lift b to a unique ¢ € O, such that
Q(c) =0, and ¢ = b? mod 7O¢. So, due to the uniqueness of root lifting, we need to have o(b) = c.
From this, we obtain the existence and the uniqueness of the extension of Fr on O¢.

We can now embed O¢ into W(E}P) as follows. If we begin with F/E, a finite extension in E}P
then there exists a unique C/By, a finite unramified extension such that O¢/m7O¢ = F. And by the
existence of o in O¢, by Proposition[2.5.1] there exists an O-algebra homomorphism s : Oc — W (O¢)
such that s is uniquely determined by the two commutative diagrams below.

OcHWOC

\ lq,o (5.1)

80
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OC *S> W(Oc)

lo lFr (5.2)

OC — W(Oc)
From we obtain the following comutative diagram.

Oc —2 W(0c) YL W(00/n00) — W(F) —— W(EP)

N o Jo “ |

OC —r> Oc/ﬂ'OC = y F > Ezep

The composition map Oc — W(FE Sep) is hence, injective, since otherwise, 7™ + 0 for some m,

but it is absurd, since 7 is not a zero divisor in W (E}) (Proposition . We denote this image
as A(F'), then A(F) = O¢ via an O-algebra isomorphism. This follows that

(1”) A(F) is a D.V.R with prime element 7. This is clear via the isomorphism.

(27) A(F)/mA(F) = F via ®¢. It is also clear from the commutative diagram

OC — A(F)

lpr l%

P —— F

We prove that such A(F) satisfying A;, C A(F) C W(E}?), and (17), (2”) as above is unique, for
fixed F'/E: finite, separable extension. In fact, if we fix an algebraic closure of the fraction field of
W (ETP), then it contains a algebaic closure By, of By, and because of conditions (17) and (2”), the
fraction field of A(F) is the unique finite unramified extension of By, in By, with residue field F. We
can also see that the field A(F') satisfies

(3”) The fraction field of A(F) is a finite unramified extension of By. This is clear.

(4”) The Frobenius Fr on W (E}™) preserves A(F).

For (47), it follows from that the diagram

Oc —2 W(0c) YL W(0p/m00) —= W(F) —— W(ESP)

l" lF lF JFT | (5.3)
Oc — W(0c) Y4 W(Oc/700) — W(F) —— W(EP)

is commutative. Hence, we get the diagram

OCL>AL

& |Fr (5.4)

OCL)AL

is also commutative, so that F'r fixes A(F'). We now denote

Am= ) A
F/E:fin. sep.
then it can be seen that
(1') A™ is a D.V.R with prime element 7, and A™ /mA™ = ET*P.
(27) Frobenius on W (E}®) preserves A™.
(3’) The action from G, to W(O(C; ) preserves A™.
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For (3’), we recall that the action from I'; and hence, G preserves Er, because Hy fixes f;

and hence f;b, and E; C Z;b. This yields Gp, preserves E}”. Also, the isomorphism @7, = Ay,
is I'p-equivariant Proposition so (G also preserves Ap. Hence, for any v € G, we have
A CTA(F) C W(EFP). And it is clear that TA(F) also satisfies the conditions (1”) and (27), because
v acts as O-algebra automorphism. Due to the uniqueness of A(F'), we have YTA(F) = A(F). This
yields G, perserves A™.

We denote A the completion of A™, w.r.t the r-adic topology. We will prove that A C W (E}™P).
But this follows easily, since W (E}?) is m-adically complete by Corollary and 7MW (E}P)NA™ =
™A™, so the m-adic topology on A™ is induced from the m-adic topology on W (E}™). So we get

(1) A is complete D.V.R with prime element 7, and A/7A = E}™.

Also, any O-algebra homomorphism W(C;) — W(CZ,) is continuous w.r.t the m-adic topology,
because OCZ is perfect extension of k, and hence W((C;) is a D.V.R with prime element 7. And in
particular, Fr and the action from G, is continuous on W (E}®) w.r.t the m-adic topology. So by
continuity and (2’), (3’), we get

(2) Frobenius F'r preserves A.

—b
(3) G, preserves A, with Hy, fixes Ap. This is because Hy, fixes W (Lo ) 2 W(EL).

5.2 A description for the functors

Definition. We denote Repy(Gr) the category consisting of finitely generated O-module V', where
G acts continuously as O-linear endomorphisms, with respect to the m-adic topology on V.

In this section, we will describe the functors between Repy,(Gr) and Mod® (7). For the first
functg, we have to use the second tilting correspondence for absolute Galois groups. Recall that
Gal(Qp/Ls) = Hi, = Hp, = Gal(E}"/Ey).

Lemma 5.2.1. AL = A;.

Proof. We have (A/rA)t = (Ef?)Ht = B = Ay /7 AL. Consider the following diagram, where rows
are exact
0 —— AL/T(mAL e AL/7Tm+1AL e AL/ﬂ'AL — 0

| | 1 o0

0 —— (A/7m A —— (A/pm A (A/m A —— 0.

By induction, the left and right arrows are isomorphism. This yields the middle arrow is an
isomorphism, too. And we get (A/7™mA)HL = Ay /7™ AL for all m. From this, we get

AL = (lim A/7™ A)HE = lim(A/x™ A)E = lim(Ap /7™ AL) = A
O

Now, let V be any object in Repp(Gr), we have A®p V is an A-module, with the action from G,

GLx(A®oV) — AoV
(0,a®v) — o(a) ® o(v)
Let us denote ¢ := Fr®id: A®oV — A®oV alinear map of A-module, and 2(V) := (A®e V)L,
As in Lemma because A7t = A we have Z(V) is an .27 -module. The action from I';, on 2(V)

is induced from the action from Gy on A ®p V defined above, which is semi-linear, since if we take
any 0 € Gr,a € Ar, then

olab®v) =o(a)o(b) ® o(v) = o(a)o(b®v)
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Furthermore, let us define ¢g(y) = |y ), then it can be seen that yg () is ¢r-linear, where
pr = Frin Ap, since

Yoy (ab®@v) = Fr(ab) ® v = Fr(a)Fr(b) ® v = pr(a)(Fr(b) @v) = vr(a)pyr)(b®v)

Also, since F'r acts on W(Eiep) is just bt taking g-th power of coordinates, it is obvious commutative
with the action from Gj. Hence, we have a candidate for our first functor

P : Repp(Gr) — Mod® ()
Vi— 92(V) = (Ae V)t

Later, we will show that Z is actually well-defined. To do this, we will prove two things:
(D1) 2(V) is a finitely generated O-module.

(D2) The action from I';, to Z(V) is continuous.

We also obtain a map

ady : A®a, 2(V) — ARpV
a® (a @v)—ad @v

. And it is easy to check that ady o (Fr ® @g(v)) = o ady, and ady is G-equivariant.

And we obtain an additional property (that we will need to check)

(D3) ady is bijective.

And it can be deduced that (D1) and (D3) imply (D2) [Sch17|(Proposition 3.1.12 (i)). Furthermore,
we have

Proposition 5.2.2. Let V € Repy(GL) such that (D1) and (D3) holds for V, then V' and 2(V') have
the same elementary divisors.

Proof. Because A, O, A, are DVRs, as O-module, we can write V = @;_, O/7™O. And as Ap-
module, due to (D1), we can 2(V) = @;_, Ar/n™ Ar. We can write

AwoV = Ao (PO/m0) =@ a/mA
=1 =1

And similarly
S
A®a, 2(V)=EPA/rmA
i=1
Due to (D3), we then r = s, and n; = m; up to some permutation. ]
We now come to the second cadidate.
Lemma 5.2.3. (W(E;?)f™=! =W(k) = 0.

Proof. We have (W (E}P))fm=! = {(ag, a1, ...) € W(E}?),a! = a;,Vi}. And this yields a; € k for all
i. O

Now, let M be an object in Mod® (), we have A ®4, M is an A-module. We can define
pi=Fre@oy: A®a, M — A®a, M, and the action from G, is defined as

G xA®a, M — ARy, M

(0,a®@m) +— o(a) ® o(m)
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where o acts on M by the reduction from G to I',. We can see, by Lemma that ¥ (M) =
(A®a, M)#=!is actually an O-module. And the action from G, is obvious O-linear, since G, fixes
L. And we then obtain a candidate for the second functor

¥ : Mod®(e71,) — Repp(GL)
Mr— (A®a, M)?=!

To prove that ¥ (M) is well-defined, we have to prove that
(V1) 7 (M) is finitely generated.

(V2) G, acts continuously on ¥ (M).

And we also have a map

adM2A®@7/(M)—>A®ALM
d®Ra@m+— da®@m

It is easy to check that adys is Gr-equivariant, and (F'r ® ¢ar) o adyr = adps o (Fr ® id). We have
an additional property of adjs, that we need to check

(V3) adj; is bijective.

Similarly, (V1) and (V3) imply (V2) [Sch17](Proposition 3.1.13 (i)), and similar to Propositi-
tio we obtain

Proposition 5.2.4. If M in Mod® (<71, satisfying (D1) and (D3), then M and ¥ (M) has the same

elementary divisors.
We also have

Lemma 5.2.5. Under the assumptions (D1), (D3), (V1) and (V3), we have 2 and ¥ are quasi-inverse
of each other.

Proof. First, under the assuptions of (D1), (D3) and (V1), V(3), 2,7 are well-defined. We have
V(D(V)) = (A@a, D(V))FrEeom=1 2 (A e V)Froid=l = gFr=lg, v =y
where the second isomorphism follows from (D3). And similarly,
PV (M) = (Ao ¥ (M)"r = (Awa, M)Tr = A"t @, M =M

where the second isomorphism follows from (V3), and the third identity is obtained from the fact that
M 1 fixed under the action of Hy,. O

We are now ready to state the main theorem

Theorem 5.2.6. The functors 9 and ¥ are well-defined functors between Repp(Gr) and Mod® (<),
and are quasi-inverse of each other.

Via our above arguments, it is now sufficient to check the conditions (D1), (D3) for 2, and (V1),
(V3) for #. In the next section, we will first begin with the case of 7-torsion modules.

5.3 The equivalence of categories in the case m-torsion modules

If V in Repp(GL), and 7V = 0, we can consider V' as a finite dimensional k-vector space, and the
action of G, is continuous w.r.t the discrete topology on V. And in this case, 2(V) = (E}? @4 V)L,
And for M in Mod®(«7;,), with 7M = 0, we can regard M as a finite dimensional E-vector space.
And in this case ¥ (M) = (E} ®p, M)?=1. We will prove first that 2 is well-defined.
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Lemma 5.3.1. Let F/E be finite Galois extension of fields with Galois group G, and V a finite
dimensional E-vector space, with a linear action from G, then there exists an F-basis of F Qg V such
that this basis is fized by G.

Proof. We recall that if F'/E is a finite Galois extension with Galois group G, then there exists b € F,
such that (g(b))gec forms an E-basis for F. Let us denote d := dimg V, and V™ be V as E-vector
space, with the trivial action from G. We can define a map

a: FopVW S FepV

(X ag0®) © v (3 aga(®)) @ glo)

geG geG

where a, € E for all g € G. It can be seen that « is an isomorphism of E-vector spaces, and G-modules.
Hence,
(F ®E V) o (F ®E Vtrl)G — Vtrl

Hence, there exists (uq,...,uq) in F ®p V such that ug, ..., uq is linearly independent over E, and
they are fixed under the action of G. We will prove that they are linearly independent over F'. Assume
that there exists ci,...,cq € F such that ), c;u; = 0, with ¢; # 0. By multiplying ¢; with cflb, we
can assume that ¢; = b. Taking the action for all g € G to the sum above, and summing them up, we

obtain
(Zg(b))ul +..+ (Zg(cd))ud =0

geG geG

But it is a contradiction, since }° . g(c;) € E, and >~ 5 g(b) # 0. Hence (ui, ..., uq) is an F-basis
for F Qg V. ]

Lemma 5.3.2. Let E be a field, and E*P a seperable closure of E with Galois group H, and V a
finite dimensional E-vector space, and an H-module, with dimgV = d. Assume that (uq,...,uq) in
E*? @V is E-linearly independent, and they are fized by the action of H, then (u1,...,uq) is an
E*°P-basis for E*P Qg V.

Proof. Assume that there exists ¢; € E*P, such that ), ¢;u; = 0, with ¢; # 0. Let F' be the normal
closure of E(cy, ..., ¢q), then F'/F is a finite Galois extension with Galois group G, where G is a quotient
of H. And H fixes u; implies that G fixes u;, and hence, if we take actions of all g € GG, and sum them
up, we can apply the same trick as in the proof of the previous lemma, and obtain a contradiction. [

Lemma 5.3.3. Let V be in Repp(Gr), with 7V = 0, there exists an E}"-basis of B} @3, V that is
fixed by Hy,.

Proof. Because G, acts continuously on V', so does Hy,, and because the topology on V' is discrete,
any {v;} C V is open, and hence, there exists an open normal subgroup N of H such that N fixes V.
Because Hy, = Gal(E} " /EL) topologically, we have N is an open normal subgroup of Gal(E}"/Ey),
and therefore, is of finite index. Let F := (E7P)N, then F/Ey is a finite Galois extension with Galois
group G := H/N. And we have

(EP er V)N = Fep Vv

And hence,
(ELP @, V)Tt = (F @ V)© (5.6)

Let W7 := Ep, ®; V, then the action of G on Wy is E-linear, and by Lemma there exists an
F-basis (u1,...,uq) of F ®@p, W1 = F ®; V that is fixed by G. And due to (uq,...,uq) is fixed by
Hy,. Let Wy := F ®;, V, then (uq, ..., uq) are F-linearly independent in Ef* ®p Wy = ETP @4 V fixed
by Hp. Therefore, by Lemma , (ut,...uq) is an E}P-basis of B} @p Wy = E7P @, V. O

We are now ready for one of the main results of this section
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Proposition 5.3.4. For any V in Repp(GL), with V' =0, then 2(V) satisfies (D1) and (D3).

Proof. We recall that we can write 2(V) = (E7F @5 V)HL. Let (u1, ..., uq) be a basis in Lemma
above, where d := dimy V', then

(ESP @y, V)HL =(EfPu@..o EsLepud)HL =Fru1 @©...® Erug

Hence, Z(V) is a finite dimensional E-vector space, and it satisfies (D1). And
Eiep QE; (V) = Ezep KE;L (ELul D..D EL“d) = Ezep RV

And this yields 2(V) also satisfies (D3). O

Now, via Proposition we can see that the functor Z is well-defined. We now turn to the case
of the functor 7.

Let F' be any separable closed field over k, and W is a finite dimensional F-vector space, with a
map f: W — W, such that f is ¢4-endomorphism, where ¢, is the Frobenius map, and the map

@y, r W — W
a®@wr— af(w)

is bijective. We will prove that dimy, W/=! = dimp W, via several steps.
Note that since F?=! = k. for any w € W¥=! and a € k, we have

flaw) = a?f(w) = af(w) = aw
So, aw € W= and W= is a k-vector space. In the latter, we assume that W # 0.
Lemma 5.3.5. W/=1 £ 0.

Proof. Let us choose wg # 0in W, and r > 1 be the smallest integer such that wg, wy = f(wp), ..., w, =
f(wy_1) are linearly dependent. And there exists cy, ..., ¢, in F' such that cowg + ... + ¢,w, = 0, where

cr # 0.
Assume that there exists dy, ...,d, in F' such that dywy + ... + d,w, = 0, then since w; = f(w;_1),

we have dy f(wg) + ... +d, f(w,_1) = 0. Since f" is bijective, f"(d; @ wg + ... +d, ®w,_1) = 0 implies
that di ® wg + ... + d, ® w,—1 = 0, but this yields d; = ... = d, = 0, since wy, ..., w,_1 are linearly
independent over F'. Hence wq, ..., w, are also linearly independent. And we get ¢y # 0.

We consider now a linear combination w = zowg + ... + 2,_1w" ', then flw) = xgwl +... —i—x?_lwr.
We will find z; such that f(w) = w. This happen iff f(w) —w = 0, or equivalently

q q q q _
rowo + (2 —xH)wi + ... + (zp—1 — &) _H)wp—1 — ) _jw, =0
And this occurs iff there exists = € F', such that
Ty = Cox
21— g9 — _ 4.4
1— Ty =C1T <& T1 = X" + 1T
q gt gt
Tpo] —Tp_9g =Cr_1T = Tpr—1 =Cy + ...+
T r
! teagr=0& cg 4.+ 2t =0

i.e. x is a root of the last equation. Because ¢y, ¢, # 0, the polynomial in the last equation is separable,
and hence, it has a root  in F. And have constructed w # 0 such that w € W#=1, O

Lemma 5.3.6. dim; Wi < dimp W, where W1 := wr=t,
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Proof. Assume that dimy W7 > dimg W, then since W # 0, we have dimg W7 > 2. And we can choose
a smallest integer > 2 such that uq, ..., u, in Wy, linearly independent over k, but linearly dependent
over F'. Assume that w := cyuq + ... + ¢,ur = 0, where ¢; € F, ¢, # 0, then we must have ¢; € F*,
since otherwise, it will contradict to the minimality of ». We can assume that ¢, = 1, and

fw)=u +cfug + ... + du, =0

And this yields (¢f — c2)ug + ... + (¢! — ¢;)ur = 0, and this yields all ¢] — ¢; = 0, i.e. ¢; € k. and this
leads to a contradiction. ]

Lemma 5.3.7. We have
1. dimg Wy = dim; W.
2. The F-linear map

FepW, — W
a®@w— aw

1s bijective.
3. The k-linear map f —id : W — W is surjective.

Proof. We will prove that there exists a k-basis of W such that it is also an F-basis of W by induction
on d := dimp W. Assume that d = 1, then by Lemma Wi # 0, and dimg W7 > 1. By Lemma
(.36, dimg W7 = 1, and hence, there exists wy € Wy such that w; is both k-basis for W and F-basis
for W. .
Now, let d > 2, we can choose w; € Wj such that w; # 0. Let W := W/Fw;, and
fW—W
w~+ Fwy — f(w)+Fw1

This map is well-defined since f(w;) = w;. And the map fin ig bijective. In fact, the surjectivity
follows directly from the surjectivity of f. Moreover

fhn|Fw1 : F®¢Q,F Fw; — Fuw;
a ® bwy, — ablwy

is well-defined, and hence bijective, since they have both dimension 1 over F. From this, we have
fla®w) € Fwy iff w e Fw;. And this yields i is also injective.

We next have the pair (W/Fuwy, f) satisfies the same condition as (W, f). Hence, by induction,
there exists wh, ..., w); a k-basis of (W/Fw;)/=! such that w),...,w} is also an F-basis of W/Fuwy.
And we have f(w;) = w), implies that f(w)) = w} + a;w;, for some a; € F, and 2 < i < d. Take
w; = w; + xywy, we will find x; such that f(w;) = w;, i.e.

w; + zywy = w; = f(w;) = f(w; + zaw1) = fw;) + o] f(wr) = w; + azwr + xfw

And it is sufficient to have x; is a root of f;(z) := 29— x4 a;. These polynomiasl are clearly separable,
so they have roots in F'. And via the construction, we obtain (wy, ..., wg) € W7 is a desired basis.
From this construction, we easily obtain the second statement. For the third statement, it can be
seen that the map f — id on W corresponds to the map (¢ — id) ® id on F ®; W;. But for any c € F,
the equation % — x = c is seperable and hence, has solutions in F. This yields f — id is surjective. [

We are now going to apply the first two parts of this lemma to the functor ¥, where F :=
EFP W = Ef* ®p, M, and [ := ¢q ® @ar, then we will get

(V1) # (M) is a finite dimensional k-vector space.

(V3) Ezep Qk V(M) = Ezep ®p, M.

Hence, we obtain
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Proposition 5.3.8. Let M be in Mod® (7)), such that TM = 0, then ¥ (M) satisfies (V1) and (V3).

Via Proposition Proposition [5.3.4] and Lemma [5.2.5] we obtain in the case of 7-torsion
modules, , ¥ are well-defined functors, and they are quasi-inverse of each other.

5.4 The case of 7™-torsion modules

We will begin this section with applications of Hilbert’s 90 theorem.

Lemma 5.4.1. Let F/E be a finite Galois extension of fields, with Galois group G, and V/E is a
finite dimensional E-vector space, with a linear action from G, then H' (G, F @ V) = 0.

Proof. We recall the result of Lemma that there exists an F-basis (u,...,uq) of F ®g V such
that it is fixed by G. Let ¢: G — F ®g V be a 1-st cocycle, we can represent

o) = Yoy

=1

where ¢;(g) : G — F. Because u; is fixed under the action of G, due to Hilbert’s 90 theorem, we can
represent ¢;(g) = g(z;) — x; where x; € F. Then

So, if we denote x := Z?:l z;u;, then ¢(g) = g(x) — z, i.e. HY(G,F®p V) =0. O

We now come back to the case E7* ®; V, where V is in Repp(GL), such that 7V = 0. One can
see that Hy, := Gal(E}"/Ep) and hence, for any a € E}™, there exists an open subgroup U of Hy,
that fixes f. Because the topology on V is discrete, for any v € V, there exists an open subgroup U’
of Hy, that fixes v. And this yields Ef® ®; V is a discrete Hy-module, since U N U’ fixes a ® v. And
one obtains from this that

H'(Hp, Ef* @3, V) = lim H'(Hp /N, (E;® @ V)V)

where N runs over all open normal subgroup of Hy. Again, due to V is discrete, for any open normal
subgroup U of Hy, there exists an open normal subgroup N C Hy, such that N C U. And with such
N, we have

(Ezep %k V)N — (Eiep)N QrV

Let F := (E}?)Y, and G = Gal(F/E) = HL,/N, we have
HY(HL/N,(E;* @, V)N) = H(G,F @4 V) = H'(G,F ®g, (B, @, V)) = H'(G,F ®p, W) =0

where W := (EL ®; V) is a finite dimensional E7-vector space with a linear action from G, and the
last equality follows from the lemma above. We obtain from this that

Proposition 5.4.2. Let V be in Repp(Gyr), such that 7V =0, then H'(Hp, E;* @5, V) = 0.

Let V' be in Repp(Gp), such that 7V = 0. We note that the topology on V is discrete. If we
begin with a short exact sequence in Repy(Gp,)

0=V =V -=>V—=0
then since 7 is not a zero divisor in A, we have

0> AQ V) 2 AR0V - ARp Vi — 0
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is still exact. And one can see that both Vj, Vi are also n™-torsion, and the topology on them are
also discrete. In the case 7V = 0, we have A ®p Vp = E7P ®j, Vj, and by Proposition , we have
H 1(H L, A®o Vp) = 0, and this yields by a long exact sequence of Hy-modules induced from the short
exact sequence above that

0— (A®o VO)HL - (A®o V)HL - (A®o Vl)HL —0

is exact.

One can choose Vp := 7"V, and V; = V/Vh = V/ﬂm_lV, we can see that V[ is w-torsion, and
Vi is 7™ -torsion. By Proposition we have 2(V}) is finitely generated .7;-module, and by
induction, so is Z(V1). This yields (V) is also a finitely generated </z-module. And hence, Z(V')
satisfies (D1). For (D3), we begin from the commutative diagram

0—— A®AL @(Vo) E— A®AL @(V) E— A®AL @(Vl) — 0
J’advo ladv ladvl (57)

0 —— AQp Vg ———— ARV ——— ARV} ——— 0

where rows are exact. Again, by induction, we obtain that the arrows on the left and the right are
isomorphisms, so is the middle arrows. Hence, Z(V') satisfies (D3). This yields

Proposition 5.4.3. For any V in Repy(Gpr) such that #™V, for m > 1, then V satisfies (D1) and
(D3). Moreover, in the sub-category of m™-torsion modules, & is an exact functor.

Proof. 1Tt is sufficient to prove the second statement. If we begin with a short exact sequence

0=V —=>V->Vi—=>0

where ™ = 0, then we have short exact sequences
0—=7"" Wy =V = V/e™ Wy -0

0— 7™ 2V /m™ Wy = V/a™ Wy — V/e™m 2V — 0

0= Vo/mVo = V/aVo = V/Vi =V -0

So we get
(Ao V)t — (A@e V/e™ W) — . —» (A®e V/7Vo)HL — (A®e V1)t
where all surjective maps obtained from Proposition [5.4.2] Now, this yields
0—=292V) - 2(V)—2(V1) =0
is also exact. O
We now move to the functor 7. Let
0—>My— M — M —0

be an exact sequence in Mod® (.7}, ), we then have the commutative diagram

0 — A®a, My —— A®a, M —— A®y, My —— 0

= Je-1 = (58)

0 — A®a, My —— A®@a, M —— A®y, M1 —— 0

where rows are exact. We will prove that
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Lemma 5.4.4. If 7™M =0, then ¢ — 1 is surjective, and
0— ¥ (My) = V(M) — V(M) — 0
1S ezxact.

Proof. For the first statement, when m = 1, this follows from Lemma So by we can use
induction with My := 7™ !M. For the second statement, we can see that 7 (M) is a kernel of the
map ¢ — 1, and hence, the exact sequence follows from the snake lemma. O

Proposition 5.4.5. If 7™M = 0, then ¥ (M) satisfies (V1) and (V3), and the functor ¥ restricted
on the sub-category of w"-torsion modules are exact.

Proof. The exactness of ¥ follows directly from the lemma above. For (V1), we can apply the previous
lemma with My := 7™M, and induction. For (V3), from the exact sequence

0— ¥ (My) = V(M) — ¥ (M) =0
and the following commutative diagram

0 — AR ¥V (My) — AR V(M) —— ARp V(M) —— 0
iadMO ladM J/adMl (5'9)

0 —— A®a, Mg ———— A®q, M ——— A®a, M1 —— 0

where rows are exact. If we again apply this to the case My := 7™ 1M, then by induction, the arrows
on the left and the right are exact, and so is the arrow in the middle. O

Via Proposition Proposition [5.4.3| Proposition and Proposition we obtain that if
we restrict on the case of m™-torsion modules, then the two sub-categories of Repy (G1) and Mod®(.«7,)
are equivalent, and the functors 2 and ¥ are exact and quasi-inverse of each other.

5.5 The general case

In order to pass to the general case, we will use the inverse limit argument, and apply the result of
the previous section, for 7"-torsion modules. In order to do this, we need the following

Lemma 5.5.1. Let Dy C D be DVRs with the same prime element 7, and D is complete. If N is a
finitely generated Dy-module, then

D ®p, N = lim D ®p, (N/7"N)
m

Proof. Since we can write N = @ 1 Do/m" Dy, and both ® and lim ~are additive, it is sufficient
to prove for the case N = Dy/n"Dy. If n # oo, then for m > n, TN = 0, and this yields directly
that the statement holds. When n = oo, i.e. N = Dy as Dp-modules, we have D ®p, N = D, and
im D ®p, (N/m™N) = m D/m™D. Since D is complete, we have D = lim D/m™D. O

Using this, we can now deduce facts about the functor Z.
Lemma 5.5.2. For any V in Repn(GL), we have

1. 2(V) =lim 2(V/x"V)

2. The natural map 2(V/7m" V) to 2(V/7™V) is surjective,

3. If0— Vo -V — Vi — 0 is exact, then 0 - 2(Vo) = 2(V) — 2(V1) — 0 is also exact.
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Proof. 1. We have

2(V) = (A V)"t = (lim A e V/x"V)t = lim(A e V/x"V)" = lim 2(V/7"V)

m

where the second identity follows from Lemma @ the third identity follows from the fact that lim
is commutative with (.)7r.

2. This follows from the short exact sequence
0 — 7™V/a™ TV = V2™V S V/emV =0

and the case of 7"-torsion modules.
3. By 1, the statement is equivalent to prove that
0— @@(%/wm%) — yin.@(V/an) — yLn.@(Vl/rrmVl) —0
m

m m

is exact. But it follows from the fact that
0= 2(Vo/n"Vp) = 2(V/x™V) = 2(Vy/7"V1) = 0
is exact, for any m, due to the case 7#"*-torsion modules. O

With this lemma at hand, we have

Proposition 5.5.3. For all V in Repy(GL), then Z(V') satisfies (D1) and (D3) and Z is an exact
functor.

Proof. For (D1), there exists an exact sequence
0=V 5V 5 V/V 50

in Repp(GL), where V" is the torsion part of V. We can see that V" is 7™-torsion, for some m > 1.
Hence, (V") is a finitely generated Aj-module, due to the case 7™-torsion. And V/V'" is free
finitely generated O-module. And since Z is exact by the lemma above, it is sufficient to have (D1)
for the case V is free, finitely generated O-module.

One has 2(V) = Hm 2(V/7™V), and from the exact sequence 7™V — V — V/7™V — 0, we
have 2(V/m™V) = 2(V)/7" (V). Let ey, ...,eq be an Ep-basis for 2(V)/m2(V) = 2(V/=nV). By
Nakayama’s lemma, eq, ..., e4 is also a basis for the free Ay /7™ Ar-module 2(V) /7™ 2(V) (note that
the freeness follows since for Z(V/n™V'), & preserves elementary divisors). And this yields ey, ..., eq
is also a basis for the free Ap-module (V) = Jim 2(V) /7™ 2(V). And this yields Z(V') satisfies
(D1).

From the finite generation of Z(V'), we can now apply Lemma to obtain

A®a, 2(V) = I'&HA ®a, (V)" D(V)) = l‘LmA ®a, 2(V/m™V) = h&lA@o V/m"™"V = AoV

where the third identity follows from (D3) for the case of 7™-torsion modules, and the last equality
follows from Lemma [5.5.1] again.
The exactness of Z follows from Lemma [5.5.2] above. O]

By the similar argument, we also obtain that ¥ satifies (V1) and (V3), and it is also an exact
functor. We conclude this section by the main theorem

Theorem 5.5.4. The functors 9 : Repp(Gr) — Mod® (1) and ¥V : Mod® (/) — Repo(GrL)
are well-defined exact functors and quasi-inverse of each other. Moreover, they preserve elementary
divisors.

Proof. By the arguments above, Z satifies (D1), and (D3), and hence Z is well-defined, and is exact.
Similarly, ¥ satisfies (V1), (V3) and 7 is also well-defined, and exact. Applying Lemma that

they are inverse of each other. O
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5.6 Application II: The case of rank 1 representations

We are now interested in the case of free modules of rank 1. Due to Lemma [5.2.5] & and ¥ preserve
elementary divisors, and hence, they send free modules of rank 1 to free modules of rank 1. We will
prove in this section that all rank 1 Galois representations and rank 1 (¢r,I'r)-modules come from
the twist of characters.

Let V in Repp(Gp) be such a module, then because V = O as O-modules, so to understand the
action from Gp, to V, it is sufficient to look at how G, acts on O. Let us denote () := 7(1), for
v € G, then it can be seen that (1) € O*, and this yields a continuous homomorphism ¢ : G, — O*.

Conversely, let 1 : G, — O be any continuous character, then there exists an open subset N, of
G, such that ¢¥(N,,) € 1+p™O. We can then twist O as follows. Let O(1)) be an O-module, identical
with O as O-module, but the action from G, is defined as

Gr xOW) — O)
(7€) — P(y)e

then
Lemma 5.6.1. O(¢) with the G, actions defined as above is in Repon(GL).

Proof. We can see easily that G, acts linearly on O(v). It is sufficient to prove that the action from
G is continuous on O(). Let ¥(y)c + p™O be an open neighborhood of 1(y)c in O. By using Ny,
defined as above, we have

(YN, ¢ +p™O) S (7)1 +p™O)(c+p™O) C h(y)c+p™O
It then follows that the action is continuous. O

Lemma 5.6.2. If ¢ : G — O is not a trivial character, then O is not isomorphic to O(¢) in
Repp(Gp).

Proof. Assume that

a: 00— O)
fr—Tfe

is an isomorphism between the two modules in Repy(Gp), where e € O is a generator of O(v) as
O-module. Then for all f € O,y € G, we have

a(f) = fe="a(f)="(fe) = fTe
It then follows that e = ¥ (y)e, and hence () = 1, i.e. 7y is the trivial character. O
And this yields

Proposition 5.6.3. Any free module of rank 1 in Repy(GL) comes from twist of O by a continuous
character.

We can now take a look what happens in the side of etale (¢, 1 )-modules of rank 1. It can be
seen from the definition that 277, is an etale module of rank 1. Then for any character x : I'y, — O,
we can define the twist module 77, () with the .77, module structure is identical with 277, and the
action from I'y, is defined as

Tfi=x(xey) - f = o)) - f

Then 7 (x) also an etale free module of rank 1.
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Lemma 5.6.4. If x is not a trivial character, then @71, is not isomorphic to <71 (x) in Mod® (7).

Proof. Assume that

OzZJZfL —)JZ%L(X)
fr— fe

is an isomorphism between two etale modules, then for all f € o1, € ', we have
a("f) ="a(f) ="(fe)

We have a(7f) = (xr(7) - f)e, and 7(fe) = (xxr)(7) - (fe). Then (xr(v)- fle = (xxr)(v) - (fe) if
and only if

FOXE () €)= x() - (fe) = (x(7) - Hix () - €) (5.10)

If e is a constant, we have le -e = x(7) - e = e, and this yields by 1) that f = x(v) - f for all
f e a1,y € I'r, and hence y is the trivial character.
If e is not a constant, then for any a # b in O, we have

e(lalp(X)) # e([bls(X))
since [a]4(X) = aX + ..., and when f =1, by , we have

XL () e=x(y)-e

for all v € 'z, and this follows that y = le. And from |i again, we have for all f € &, v €'

f=xg'tn-f

And this yields le is the trivial character, a contradiction. O

We are now able to see that all free etale modules of rank one, in the case L := @, with cyclotomic
extension, come from twist, too. If we begin with ¢ : G, — O is any continuous character, then for
any N C O*: an open subgroup, then 1»~!(N) is also an open normal subgroup of G, of finite index
(since N is of finite in O*), and G /¢~ 1(N) is a finite abelian group, which is a Galois group of an
abelian extension of L. It means that this quotient group is a quotient group of G2 = Gal(L**/L).
Moreover, via ¥, Gr/9~'(N) maps to O*/N. Taking the limit when N runs through all open
subgroups of O, we obtain a map from H := &iLnGL/q/J_l(N) to @OX/N = O*. It can be seen
that H is a quotient group of G%b >~ T xGal(L"™/L). And by using the embedding map I'y, < G‘}Jb, we
then obtain an induced character x : I', — O*. Since for the case L = Q,, we can factor ¢ = x%y,
for some a € Z, and v is an unramified character. And in this case, via the functors of the two
categories, we can see that 2(O(v)) = 77, (x).

Conversely, if we begin with y : I';, — O* is any character, then because O* is a profinite group,
and so is ', by the universal property of profinite group, we can lift x to x¢: 't — O*, where x° is
continuous. And we then obtain from this a continuous character ¢ : G, — O as the composition of
the two continuous maps

GL — FL X—C> ox
And via the functors again, we obtain ¥ (271,(x)) = O(¢)). We hence obtain

Proposition 5.6.5. In the case L = Q, with cyclotomic extension, all free rank one modules in
Mod®(a71) comes from a twist of <77, by a character from T'p, to O*.
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5.7 Application III: Another proof for the p-cohomological dimension
of GQp

In this section, we will sketch another the proof about p-cohomological dimension of G, is not larger
than 2, by |Her98|. We restrict ourselves to the case L := Q,, 7 := p, and L in this case is Q,°, the
field obtained from Q, by adjoining all p™-th root of unity. We denote F,((X)) = E, =: E,I' :=T"p =
Zy,G = Gg,. Note that in this case I' is a procyclic group with a (topological) generator . We also
denote Rep,,_,,,(Gg,) the subcategory of Repy, (Gg,) containing p-torsion modules, and similarly for
ModS! ;. (#/,). By results from Section 3 of this chapter, Rep, 4,.(Gg,) and Mods' ,, () are
equivalent via functors 2 and 7.

We recall a theorem of Grothendieck: Assume that €, 2 are abelian categories such that € has
enough injectives, and (T,)n>0 is a d-functor from € to 2. If (T,,)n>0 is effaceable, then TV is left
exact and T™ is isomorphic to the n-th derived functors R"T7.

Let us consider the category € := h_ngModIe)t_tor (@, ), whose objects are injective limits of objects
in Mods' ;. (4,), then ¢ is abelian with enough injectives. And Mod$' .
% is an obvious way.

For any object M in ¥, we define the Herr’s complex

(e/,) is a subcategory of

CMY: 0 MSMaME M 050 ..
where a(x) = ((epr — 1)z, (y— 1)), and B(y, z) = (v — 1)y — (¢ar — 1)z. And one can define a functor

N € — Ab

And the key result of Herr [Her98]| is that h™ is effaceable for n > 0, and hence, h™ is just the n-th
right derived functors of h°, where h°(M) = M¥M=17=1 Using this, we can prove that

Theorem 5.7.1. Let V be an object in Rep,_,.(Gq,), then H"(G,V) =0, for alln > 3.

Proof. The functor

(')G : Repp—tor<GQp) — Ab

Vi VC
has its n-th derived functor H"(G, —). And
VO =9 (2(V)Y = (E*P @ 2(V))®P201)=1C = (E5P @ 9(V))F)r@21)=1) =

= P(V)Pr == 2 p( (V)

This yields the derived functors H"(G, —) and h"(Z(—)) are just the same. And it follows easily from
the Herr’s complex that H"(G,V) =0, for n > 3. O
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