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1 Introduction

Let G be a group and let d(G) be the minimum cardinality of a generating set for G (e.g. d(G) = 1
if and only if G is cyclic). Our question is: given a positive integer k, what is the probability of
generating G with k random elements of G?

If G is finite, this probability is defined in the trivial way: it is the ratio between the number of
k-tuples generating G and the number of all possible k-tuples of elements of G. For infinite groups, this
ratio does not make sense so in order to define a probability on G, we need to define a measure µ on
G with the suitable properties: µ(G) = 1, µ is countably additive and invariant under ”translations”
(i.e. multiplication of subsets of G by elements of G). We will use the Haar measure defined on
profinite groups, whose definition starts with the obvious property µ(H) = 1/|G : H| for H P G open
subgroup. The set of all k-tuples generating a profinite group G is measurable, so it is possible to
define our probability PG(k) for k ∈ N.

For any group G, it is obvious that PG(k) > 0 only if k ≥ d(G). But this condition may be not
sufficient. For example: Z is cyclic, so d(Z) = 1, but there are only two elements that generate Z,
namely 1 and −1. So we can think that the probability of generating Z with one element is PZ(1) = 0;
the first integer k such that PZ(k) > 0 is 2, as we can see from observing that asking if two random
integers generate Z is equivalent to asking if they are coprime. For any prime p, the probability that

the two integers are not both divisible by p is
(

1− 1
p2

)
; multiplying such expression over all primes p

we get PZ(2) =
∏
p

(
1− 1

p2

)
= ζ(2)−1 = 6

π2 > 0. Note that in this last argument we spoke about a

probability in an abstract intuitive sense, not about an effective probability measure on Z; to do it we
need to pass to the profinite completion Ẑ, as we will see below.

If we denote d∗(G) the minimum integer k such that PG(k) > 0, then as an example we have
d∗(Z) = 2; but in general case such an integer will not exist. For instance, if G is the d-generated free
profinite group, then PG(k) = 0 for any k. In this case we will say that G is not a PFG group, where
PFG = ”positively finitely generated”. Examples of PFG group are the prosolvable finitely generated
groups.

If N is an open normal subgroup of G, then the probability PG(k) can be factorized as PG(k) =
PG/N (k)PG,N (k), where PG,N (k) can be viewed as the probability that a k-tuple generates G given
that it generates G modulo N . So PG/N (k) can be computed easily since G/N is a finite group. This
suggests a possible infinite factorization of PG(k): suppose we have a chain of normal subgroups

Σ : G = N0 > N1 > · · · > Nµ = 1

indexed by countable ordinals such that for any limit ordinal λ we have
⋂
ν<λGν = Gλ. We expect

that the probability can be rewritten in the form PG(k) =
∏
i PG/Ni+1,Ni/Ni+1

(k), where each factor
is the probabilistic function of a finite group, so we can study the convergence of the given infinite
product. This is possible under some conditions and after some work.

For example ,there already exist estimations for d∗(G) if G is a free prosupersolvable group of rank
d ≥ 2 (the case where Ni/Ni+1 is abelian). For example, if d ≥ 2, and c3 = log9 48 + 1

3 log9 24 is the
Pálfy-Wolf constant, then d∗(G) = [c3(d−1)]+1 (see [4]). For particular prosolvable groups d∗(G) can
be closer to d. For instance, if G is the pronilpotent group of rank d (that is Ni/Ni+1 6 Z(G/Ni+1)),
then d∗(G) = d+1. A more general case is the case of metabelian groups: in (Theorem D, [13]) Weigel
shows that d∗(G) ≥ 2d+ 1.

In this thesis we ask ourselves what happens in the case where G is prosupersolvable (Ni/Ni+1

cyclic group). Supersolvability is a weaker property than nilpotency, but it is stronger than solvability,
so we expect that d∗(G) is less than [c3(d − 1)] + 1. Also, we will see that PG(k) = PG/FratG(k),
and since G/FratG is metabelian, we have d∗(G) ≤ 2d + 1; we want to see if we can improve this
estimantion and write an exact formula for PG(k). Moreover we study only the free prosupersolvable
group: in fact, any other prosupersolvable group is the epimorphic image of the free prosupersolvable
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group of same rank, so its formula involves just some of the factors in the formula for the free case,
and convergence in the free case ensures convergence in the general case.

In order to obtain the formula for d∗(G), we will give definitions and properties of the Haar
measure, the probabilistic zeta function for groups G, and of the free prosupersolvable groups, and we
will introduce some tools such as cohomology of groups, that will be useful in the computation of the
formula. The formula will be first computed for the finite case and then generalized to the profinite
case. We will not deal with the convergence of the complex function PG(s), because we are interested
to the case where s = k is an integer greater than or equal to d = d(G). Once we have the formula we
will have obtained the information about d∗(G).
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2 Preliminaries

Let G be a countably based profinite group, B the smallest family of subsets of G which contains
all of the closed subsets, is closed under countable union and complementation. We want to define a
measure on G, i.e. a countably additive function µ : B → R≥0. µ is called Haar measure on G if:

• µ(G) = 1;

• for any B ∈ B, g ∈ G we have µ(gB) = µ(B) = µ(Bg).

The group G becomes a probability space (G,B, µ).
We can see by construction that the Haar measure exists and is unique. Firstly if H P G is open,

then |G : H| <∞. Writing G as finite union of disjoint cosets of H we have G = Ht1 ∪ · · · ∪Htr with
r = |G : H|, so 1 = µ(G) = µ(Ht1∪· · ·∪Htr) = µ(Ht1)+· · ·+µ(Htr) = rµ(H)⇒ µ(H) = 1

|G:H| . Now

we can determine the measure of any open subset A. If A is finite union of the kind A = H1g1∪· · ·∪Htgt
with Hi open normal subgroup and gi ∈ G, then A is disjoint union of cosets of H1∩ · · · ∩Ht and then
µ(A) = m

|G:H1∩···∩Ht| for a suitable integer m. If A is countable union of subsets (Higi)i∈N, then µ(A)

can be defined as

µ(A) = lim
j→∞

µ

⋃
i≤j

Higi

 ;

note that such limit is well-defined because the sequence into the limit is increasing.
Finally, if C is closed, it follows µ(C) = 1− µ(G \ C).
Another equivalent construction allows to give a definition of µ without passing through open

subsets. If N is the set of all open normal subgroups of G and (Ni)i∈N is a filtering descending
chain in N , then for any closed subgroup X of G, X =

⋂
N∈N XN =

⋂
i∈NXNi; hence µ(X) =

infi µ(XNi) ≥ infN∈N µ(XN) ≥ µ(X), so we have the equality everywhere. Now XN is union of

|XN/N | cosets of N , so µ(XN) = µ(N)|XN : N | = |XN :N |
|G:N | and then we can define

µ(X) := inf
N∈N

|XN : N |
|G : N |

.

Now come back to our probability PG(k). If G is a profinite group, k ∈ N, denote

Φ(G, k) = {(g1, . . . , gk) ∈ Gk : 〈g1, . . . , gk〉 = G}.

Observe that if (g1, . . . , gk) 6∈ Φ(G, k), then 〈g1, . . . , gk〉 is contained in a maximal subgroup M of G,
and this is possible if and only if (g1, . . . , gk) ∈Mk. Thus Φ(G, k) = Gk \

⋃
Mk, where the union runs

over all maximal subgroups of G. This shows that Φ(G, k) is closed in Gk, so it is measurable and we
can define PG(k) := µ(Φ(G, k)).

Lemma 1 Let G be a profinite group. Then

d(G) = inf
NPG open

d(G/N).

Proof: for every N P G we have d(G) ≤ d(G/N), because if some elements generate G, then they
generate also G modulo N . For every N , say ΩN = {(g1, . . . , gd) ∈ Gd : 〈g1, . . . , gd〉N = G} 6= ∅
(where d = d(G)). ΩN is closed since it is a union of cosets of Nd in Gd. If N 6M , then ΩN ⊆ ΩM ,
so ∅ 6= ΩN1∩N2

⊆ ΩN1
∩ ΩN2

. By compactness⋂
NPG open

ΩN 6= ∅,
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so it contains a certain (g1, . . . , gd). By definition 〈g1, . . . , gd〉N = G for every N , so 〈g1, . . . , gd〉 = G,
as we wished. �

Theorem 1 Let G be a profinite group. Then

PG(k) = inf
N
PG/N (k),

where N runs over all open normal subgroups of G. Moreover if {Ni} is a basis of open normal
subgroups for G, then PG(k) = infi PG/Ni

(k).

Proof: G/N is finite, so PG/N (k) is simply the number of all k-tuples generating G/N over |G/N |k.
Clearly if a k-tuple in G generates G, then the respective k-tuple in G/N generates G/N , so PG(k) ≤
PG/N (K); it follows PG(k) ≤ inf PG/N (k). If such infimum is zero, then PG(k) = 0 too. Suppose
inf PG/N (k) > 0. Any factor G/N can be generated by k elements, therefore so can G by Lemma
1. G has only finitely many open normal subgroups N of a given index, so it has only countably
many open normal subgroups. So we can find a sequence {Mi} that is a basis for G, and WLOG
Mi > Mi+1 for every i. Let S be the set of all k-tuples generating G and Si the set of all k-tuples
generating G module Mi. S =

⋂
Si and Si ⊇ Si+1, so PG(k) = µ(S) = inf µ(Si) = inf limµ(Si). For

every N open normal subgroup, N contains some Mi (definition of basis), so PG/N (k) ≥ PG/Mi
(k), so

PG(k) = inf PG/N (k). Finally, if {Ni} is any subgroup basis, then every N P G open contains some
Ni, so PG/N (k) ≥ PG/Ni

(k) and then PG(k) = inf PG/Ni
(k). �

2.1 Probabilistic zeta functions

We want to compute the probability that two random integers are coprime, say it p. These two
numbers generates a subgroup nZ of Z, with n 6= 0 (this case has probability 0, so it can be omitted).
The probability that the two numbers belong to nZ is 1/n2 and in this case the probability that they
generate nZ is p, since nZ ∼= Z. Since they surely generate a subgroup nZ, we have p(

∑
1/n2) = 1⇒

p = ζ(2)−1 = 6/π2.
In another way, two integers are coprime if for every prime q they are not both divisible by q, and

this last probability is (1 − 1/q2). By Chinese Remainder Theorem the total probability is given by
the product over all primes q, that is p =

∏
(1− 1/q2) = ζ(2)−1.

We can do similar considerations for any integer k. In the case k = 1 the probability is 0 (the
probability that an integer is coprime with itself is the probability that it generates Z), and by 0 =∏

(1− 1/q), this says that there are infinitely many primes and
∑

1/q diverges.

The discussion can be extended to Ẑ and then to any free abelian group of finite rank. The result
we obtain is that the probability that k elements generate G is ζG(k)−1, where ζG is the subgroup zeta
function

ζG(k) =

∞∑
n=1

cG(n)

ns
,

where cG(n) is the number of subgroups of G of index n.
These examples suggest us to find, for every PFG group G, a function ζ(k) interpolating PG(k),

an analytic function defined in some right half-plane of the complex plane such that ζ(k) = 1/PG(k).
For example, if G is a pro-p-group of rank r, then ζ(k) = ζ(p)(k) · · · ζ(p)(k− r+ 1) for every k ≥ r+ 2,
with ζ(p)(k) = (1− 1/pk).
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Now come back to the formula PG(k). We saw that it can be written as

PG(k) =
∑
M

1

|M |k
−
∑
M,L

1

|M ∩ L|k
+
∑
M,N,L

1

|M ∩N ∩ L|k
− · · · , (1)

where every sum runs over all maximal subgroups of G. This expression makes sense only if each of
the infinitely many sums occurring in it converges, and in this case we rearrange the series as follows.
Choose a descending subgroup basis {Ni} of G. Let Xi be the set of all maximal subgroups containing
Ni, so that Xi ⊆ Xi+1 for every i. Then PG(k) is the limit for i → ∞ that a random k-tuple is
not contained in one of the maximal subgroups in Xi. This probability is a finite sum consisting in
all terms of (1) involving only maximal subgroups of Xn, and the limit of this sum can be formally
rearranged in the form

PG(k) =
∑
H

µ(H)

|G : H|k
, (2)

for some integer coefficients µ(H), where H runs over all subgroups of finite index of G, these being
ordered starting by the maximal subgroups of X1 and every their intersections, then the subgroups of
X2 and their intersections, and so on. The group G is included, with coefficient 1. Thus a candidate for
PG(s) is exactly the series (2), observed the first time by P. Hall, with the above insection of brackets
and k replaced by a complex variable s. Later we will not be interested to the brackets because in
the case of prosolvable groups the convergence is absolute (see [15]). We will refer to this series as the
series associated to {Ni}.

We can just say something about the coefficients µ(H). Since the series (2) is a rearrangement of
(1), then we can say that:

1. a subgroup H can occours in (2) with nonzero coefficient µ(H) if and only if H can be written
as intersection of maximal subgroups of G;

2. in such case µ(H) is the difference between the number of way to write H as intersection of
evenly many maximal subgroups of G and the number of way to write H as intersection of oddly
many maximal subgroups of G.

Now recall the Möbius function for groups µG, defined as follows: µG(G) = 1 and for every proper
subgroup H 6 G of finite index we have

∑
K>H µG(K) = 0. This defines µG uniquely by recursion.

Notice that for G = Z, we have ζZ(k) =
∑
n
µ(n)
nk = ζ(k)−1.

First, let G be a finite group and N a minimal normal subgroup of G. If N 6 Frat(G), then PG(k) =
PG/N (k) for every k. Indeed if M < G maximal, then M/N is maximal in G/N and |G/N : M/N | =
|G : M |; moreover for any M1, . . . ,Mr maximal subgroups M1/N ∩ · · · ∩Mr/N = (M1 ∩ · · · ∩Mr)/N ,
so the formula (1) remains unchanged. Conversely, if N 66 Frat(G), then PG(k) = PG/N (k)PG,N (k),
where

PG,N (k) = 1 +
∑
r

(−1)r
∑

i1<···<ir

εi1,...,ir |G : Mi1 ∩ · · · ∩Mir |−k, (3)

where the Mi are the maximal subgroups of G and εi1,...,ir is 1 or 0 according to whether N(Mi1 ∩· · ·∩
Mir ) = G or not. Note that by the expression PG,N (k) = PG(k)/PG/N (k), PG,N (k) can be seen as the
probability that a random k-tuple generates G given that it generates G (modulo N). By taking a chief
series of G and iterating the above formula we obtain an expression of PG(k) as a product, indexed on
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the non-Frattini factors of G. Now let G be a profinite group, take {Ni} a descending subgroup basis
and refine it to a chief series. For each factor N = R/S in the chief series, express PG/S(k) as above.
In the expression for PG/S,N (k) we can, without changing its value, replace maximal subgroups of G/S
by the corresponding maximal subgroups of G. Since PG(k) = limPG/S(k), this expresses PG(k) as
an infinite product, indexed by the set of non-Frattini factors in our chief series (recall that R/S is a
Frattini factor if R/S 6 Frat(G/S)). The candidate for our probabilistic zeta function is PG(s), with
the complex variable s instead of k. The subgroups H that occur inside the factors of the product
are the maximal intersections H such that HR = G, where R/S is a factor in the chief series and S
is the first term of the chief series that is contained in H. The factor R/S is determined by H, but
H may occur more than one in the corresponding factor of the product, because it may be expressed
in more ways as a maximal intersection. So H occurs with coefficient µ(H), described in the same
way as above, the Möbius function of the group G. All the factors in the product are probabilities,
so they lie between 0 and 1, and writing the product as

∏
(1 + xn) its convergence is equivalent to

the convergence of the sum
∑
xn. We see that the convergence of our product is equivalent to the

convergence of a sum that looks like (1), but in which just some of the maximal intersections occur.

Proposition 1 Given a descending normal subgroup basis, the associated series and the product have
the same domain of convergence, and in this domain they define the same function.

Proof: we compare the partial sum Si of the series consisting of the intersections of maximal subgroups
from Xi, and the partial product Pi of the factors corresponding to the chief factors above Ni. For an
integer k we have Si(k) = Pi(k) = PG/Ni

(k). Developing the product Pi, we have that both Pi and
Si are Dirichlet polynomials

∑
unn

−s, which have the same value at all large integers, therefore they
have the same coefficients un, so Si(s) = Pi(s) for all s. Since the infinite series and product are the
limits of Si and Pi, the proposition follows. �

Now let’s see the solvable and prosolvable cases.
A subgroup H occurs in the formula for PG,N (k) only if it is a maximal subgroup complementing N ,
so PG,N (k) = 1− c(N)/|N |k, where c(N) is the number of complements of N . Therefore, the infinite
product associated to a chief series of a prosolvable group is

PG(k) =
∏
N

(
1− c(N)

|N |k

)
, (4)

where the product running over all complemented chief factors in the chief series.

Theorem 2 Let G be a finitely generated prosolvable group. For any chief series of G, the associated
product converges absolutely in some half plane, and all the functions PG(s) obtained in this way have
the same domain of absolute convergence and define the same function in this domain. This function
is also defined by the associated series.

Proof: the product (4) (with s replacing k) converges if and only if the series
∑
c(N)/|N |s does. Since

the coefficients are positive, any rearrangement has no influence on the absolutely convergence, so we
can collect terms with the same denominator. The coefficient of 1/ns is

∑
|N |=n c(N). If a given chief

series, different factors are complemented by different maximal subgroups, and each maximal subgroup
complements some chief factor, therefore

∑
|N |=n c(N) = mn(G), so our series if

∑
nmn(G)/ns (where

mn(G) is the number of maximal subgroups of G of index n). This series does not depend by the choice
of the subgroup basis and of the chief series, so all products (4) have the same domain of absolute
convergence, which is a right half plane. Let s(G) = lim sup ((logmn(G))/ log n) = inf{s : mn(G) ≤
Cns, for some C} (for all subgroups for which it makes sense). If s > s′ > s(G), then mn(G) ≤ Cns′

for some C, so the series
∑
mn(G)/ns+1 converges. On the other hand, if s < s(G), then for infinitely
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many n’s we have mn(G) ≥ ns and the series
∑
mn(G)/ns does not converge. Thus the abscissa of

absolute convergence lies between s(G) and s(G) + 1.
If we have two chief series corresponding to the same subgroup basis, then the argument of Propo-

sition 1 shows that the associated products are equal whenever they both converge. Next, if we replace
a subgroup basis by a subsequence of it, we can use the same chief series for both bases, so we get
the same product and the same function. Finally, if we have two subgroup bases, say {Ni} and {Mj},
then by passing in both to subsequences we may assume that Ni+1 6 Mi 6 Ni for every i, and then
we can combine them to one basis such that both are subsequences of it. This shows that all products
(4) define the same function in the domain of common convergence of all of them, and in particular in
the half plane of absolute convergence. Proposition 1 shows that the associated series also defines the
same function in this domain. �
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3 Prosupersolvable groups

If G is a group, denote with Ĝ its profinite completion

Ĝ = lim←−G/N,

where N runs over all the normal subgroups of finite index of G. More in general, if C is a class
of groups that is closed under intersection, factor groups and products, the pro-C-completion of G is
lim←−G/N , where N runs over all normal subgroups of G such that G/N ∈ C.

Recall that the Frattini subgroup of a profinite group G, denoted by FratG is defined as the intersec-
tion of all closed maximal subgroups of G, and it is easy to see that if ϕ : G1 → G2 is an epimorphism,
then Frat(ϕ(G1)) ⊆ FratG2.

Proposition 2 Let {Gi, i ∈ I} be an inverse system of profinite groups for a direct set (I,≤). Suppose
that the canonical maps ϕij : Gi → Gj are epimorphisms. Then

Frat(lim←−Gi) = lim←−FratGi.

Proof: put G = lim←−Gi and πi : G → Gi the canonical epimorphism. Since πi(FratG) ⊆ FratGi and

FratGi = lim←−πi(Frat(G)) we get Frat(G) ⊆ lim←−FratGi. Conversely, let x = (xi)i ∈ lim←−FratGi and
suppose x 6∈ FratG. Then there is a maximal open subgroup M of G with x 6∈ M . Hence there is
some i ∈ I with xi 6∈ πi(M). Since π(M) is maximal in Gi, one has xi 6∈ FratGi, contradiction. Thus
x ∈ FratG, i.e. lim←−FratGi ⊆ FratG. �

Recall that a finite group is supersolvable if there exists a chief series

1 = Nl / Nl−1 / · · · / N1 / N0 = G

such that Ni is normal in G and Ni/Ni+1 is cyclic for every i. Clearly supersolvable groups are solvable,
and it’s easy to check that subgroups and factor groups of supersolvable groups are supersolvable. The
factor groups Ni/Ni+1 are called chief factors of G. Another characterization of supersolvable groups
is given by the following:

Proposition 3 Let G be a finite supersolvable group. Then:

(a) if N is a minimal normal subgroup of G, then |N | = p for some prime p (in particular N is
abelian);

(b) if M is a maximal subgroup of G, then |G : M | = p for some prime p.

Proof: (a) for every i we have N ∩ Ni P G, so by minimality of N , necessarly N ∩ Ni = 1 or
N ∩ Ni = N ⇒ N ⊆ Ni. Let i be the maximal integer such that N ⊆ Ni, so N ∩ Ni+1 = 1. The
homomorphism N ↪→ Ni−1 � Ni−1/Ni has kernel N ∩ Ni = N , so N embeds into Ni−1/Ni, that is
a finite cyclic group. Then N is also a finite cyclic group, and its order is necessarly p, otherwise it
would have a characteristic nontrivial subgroup, against the minimality of N in G.

(b) Work by induction on |G|. Let N be a minimal normal subgroup of G. If N ⊆ N , then M/N
is maximal in G/N , whose order is less than |G|, so by induction |G : M | = |G/N : M/N | = p prime.
Suppose N 6⊆M . Then M < NM and by maximality MN = G. N ∩M is normal in M and in N too
(because N is abelian by point (a)), so M ∩N is normal in MN = G and by minimality of N we have
M ∩N = N (so N 6M as in the previous case) or M ∩N = 1, and in this case |G : M | = |N | = p by
point (a). �
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A prosupersolvable group is a projective limit of finite supersolvable groups. In this case G is su-
persolvable if and only if every maximal closed subgroup of G has prime index.

Let’s fix the notations. Let π be a set of prime numbers and π′ the set of all prime numbers not
contained in π. We say that a supernatural number α is a π-number if the prime numbers dividing
α are in π. A closed subgroup H of G is a π-subgroup if the order of H is a π-number. Any maxi-
mal π-subgroup H is called Syolw π-subgroup of G and it is called a Hall π-subgroup if it is a Sylow
π-subgroup of G and |G : H| is a π′-number. If G is prosupersolvable (and hence prosolvable), every
Sylow π-subgroup is a Hall π-subgroup, and any two of them are conjugate.

Proposition 4 Let π be a set of all prime numbers greater than a fixed natural number n and G a
prosupersolvable group. Then

1. there is a unique normal Sylow π-subgroup K of G;

2. there is a split exact sequence of prosupersolvable groups

1 −→ K −→ G
ϕ−→ H −→ 1,

where ϕ is an open map (and then G is the topological direct semiproduct of K and H) and H
is a Sylow π′-subgroup of G.

Proof: for each U open normal subgroup of G, let KU be the normal Sylow π-subgroup of G/U . Set
K = lim←−KU . Then K is a normal Sylow π-subgroup of G. Now let H be a Syolw π′-subgroup such
that G = KH. Then G is, as abstract group, the semidirect product of K and H. Since all the groups
involved are compact, G is also the topological semidirect product of K and H. In particular G/K
and H are topologically isomorphic and ϕ is open. �

For example: if {p1, p2, . . . } is the set of primes dividing |G|, then we can choose a chief series
G = N0 .N1 . · · · such that the orders of the chief factors are orderred: |N0 : N1| = p1, |N1 : N2| = p2,
etc.

Proposition 5 Let G be a profinite group, H a normal Hall π-subgroup of G. Then FratH = H ∩
FratG.

Proof: by Proposition 2 we may assume G finite. Since FratH ⊆ FratG, we have FratH ⊆ H∩FratG =
N P G. We may assume FratH = 1 (otherwise we reason with G/FratH), so that we have to show
N = 1. Since N is a normal nilpotent subgroup of H, it is contained in the Fitting subgroup of H.
But FitH is abelian because FratH = 1. So N is abelian, and since FratH = 1, H splits over N .
Thus G splits over N . Say G = NL with N ∩ L = 1. If L 6= G, then L ⊆M for a maximal subgroup
M < G. Then G = NM = M , that is impossible (N ⊆ FratG). Hence L = G and N = 1. �

In particular, if G is prosupersolvable whose order is divisible by finitely many primes and p is the
largest of these, then by Proposition 4, G has a unique Sylow p-subgroup P and by the last proposition
FratP = P ∩ FratG.

Theorem 3 Let G be a supersolvable group whose order is divisible by only finitely many primes
p1, . . . , pr. Then G is topologically finitely generated if and only if FratG is open.
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Proof: every maximal subgroup of G has prime index, and in particular it is open. Suppose that G is
topologically finitely generated; then for each prime p dividing the order of G, there are only finitely
many open subgroups of index p. Therefore FratG is an intersection of finitely many open subgroups,
and thus it is open. The converse is obvious: if FratG is open, then G/Frat(G) is finite and then
G = 〈X · FratG〉 for a finite subset X. �

Corollary 1 Let G be a topologically finitely generated prosupersolvable group. Then for each prime
number p, every Sylow p-subgroup of G is topologically finitely generated.

Proof: let p be a prime number and let π be the set of all prime number greater than p. With the
notation of Proposition 4, π′ is a finite set, so FratH is open in H by Theorem 3. Let Sp be the unique
Sylow p-subgroup of H. By Proposition 5 FratSp = Sp ∩ FratH, so FratSp is open in Sp, and hence
Sp is topologically finitely generated. Finally Sp is also a Sylow p-subgroup of G. �
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4 Free pro-C-groups

Denote with C a class of finite groups which is closed under subgroups and direct products. We will
be interested to the case C = { supersolvable groups }.

The free pro-C-group of rank n is a pro-C-group F together a map j : X = {1, . . . , n} → F satisfying
the following universal property: for any other profinite group G and map α : X → G there exists a
unique (continuous) homomorphism α : F → G such that α = αj.

It’s easy to see that the free pro-C-group, if it exists, is unique up to isomorphisms. Indeed if F1

and F2 are two pro-C-groups on X with the respective maps j1 and j2, then the universal property
for F yields a homomorphism α : F1 → F2 such that j2 = αj1; analogously there is a homomorphism
β : F2 → F1 such that j1 = βj2. Thus j1 = βj2 = β(αj1) = (βα)j1 and by injectivity of j1 it follows
βα = idF1 . Analogously αβ = idF2 and then F1 and F2 are isomorphic.

The following proposition gives a proof of the existence of free pro-C-groups based on free abstract
group:

Proposition 6 Let E be the free abstract group on X. Then the free pro-C-group F is the profinite
completion of E together with the map j : x 7→ (Ui(x))U∈I , where I = {N P E closed : E/N ∈ C}
and i : X → E is the inclusion map.

Proof: if ε is the canonical map from E to its completion F , then j = εi. Let ξ : X → H be a map into
a C-group H. By the universal property of the free abstract group, there is a unique homomorphism
µ : E → F such that ξ = µi, and since X is finite, then kerµ ∈ I and µ is continuous with respect to
the topology on E having I as a base of open neighborhoods of 1. By the universal property of the
pro-C-completion there is a map ξ : F → X such that µ = ξε. Then ξ = µi = ξεi = ξj.

X
i //

ξ   

E
ε //

µ

��

F

ξ~~
H

Now if ξ1 : F → H is another homomorphism such that ξ1j = ξ, then (ξ1ε)i = ξ, so by the universal
property of E we have ξ1ε = µ. But µ = ξε, so by the universal property of the completion F we have
ξ1 = ξ. �

In particular, any d-generated profinite C-group G is epimorphic image of the free pro-C-group of
rank d: indeed if G = 〈g1, . . . , gd〉 we take X = {1, . . . , d} and ξ : X → G defined by ξ(i) = gi.
Then if F is the free pro-C-group of rank d there exists a unique homomorphism ξ : F → G such that
ξ = ξj. In particular ξ(j(i)) = ξ(i) = gi for any 1 ≤ i ≤ d, so {g1, . . . , gd} ⊆ im ξ and then ξ is an
epimorphism. This property will be useful when we compute the formula PG(s): if G is a d-generated
profinite group, then it is epimorphic image of F , so the factors comparing in the product of PG(s) will
be some of the factors comparing in the product of PF (s) and then we can just study the convergence
of PG(s) for G free pro-C-group of rank d.
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5 The formula for PG(k)

Now we will find the formula for PG(k) with G free prosupersolvable group of rank d. This formula
derives from the finite case.
There are several approaches to the problem: in this context we pass from the eulerian function φG(k),
that is simply the cardinality of the set of k-tuples which generate G (by definition PG(k) = φG(k)/|G|k
for any k) and before we need to introduce some tools of cohomology of groups.

The passage from the finite case to the profinite one requires the crown theory. The result won’t
give a function in general (because the infinite product does not converge in general), but we will
focus on the prosolvable group, and in this case the product converges for any integer t sufficiently
large. From this we can obtain the formula for free prosupersolvable groups, that is particularly simple
because the modules A comparing in the product are cyclic of prime order, and make considerations
about convergence.

5.1 The formula in finite case

5.1.1 Preliminaries on group cohomology

In this section we will give some results on group cohomology that will serve in next sections. For a
more complete introduction about the cohomology group, see for example [8].

Let G be a finite group, A a G-module with the action of G (a, g) 7→ ag ∈ A for a ∈ A and g ∈ G.
We use the additive notation for the abelian group A. Define the following G-submodules of A:

• FG(A) = {a ∈ A : ag = a for all g ∈ G};

• TG(A) = {TG(a) : a ∈ A}, where TG(a) =
∑
g∈G ag is the trace of a.

Below we will write F (A) = FG(A) and T (A) = TG(A). If A is any abelian group and A∗ is the set
of all functions (not necessarly homomorphism) of G in A, then A∗ can be made an abelian group
defining

(φ1 + φ2)(g) = φ1(g) + φ2(g), g ∈ G, φ1, φ2 ∈ A∗.

Moreover A∗ is a G-module with the action:

φg : x 7→ φ(xg−1).

If A is a G-module, define the position ◦ : A → A∗ defined by a 7→ a◦ : g 7→ ag−1 for a ∈ A
and g ∈ G. Then ◦ : A → A∗ is a G-monomorphism. In fact for every a ∈ A and g, x ∈ G,
(ag)◦(x) = agx−1 = a◦(xg−1) = (a◦g)x. The injectivity follows by ker ◦ = 0, because a◦(x) = 0 for
every x ∈ G if and only if a = 0. Moreover if B = {φ ∈ A∗ : φ(1) = 0}, then A∗ = A◦ ⊕ B (this is a
direct sum of groups, not of G-modules: B is not a G-module in general).

Now let’s say separable resolution of A the following sequence

X0 = A
i0 // X1

i1 // X2
i2 // X3

i3 // · · ·

defined as follows: X0 = A, X1 = A∗ and i0 = ◦; now for recurrence An = Xn/Im in−1, Xn+1 = A∗n
and in = ◦ on An. It is not difficult to see that Im in−1 = ker in for every n. Finally let A be a
G-module. Put H0(G,A) = F (A)/T (A). For every n ∈ N, say

Hn(G,A) = H0(G,An).
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The groups Hn(G,A) are the cohomology groups of A.

Example: let’s describe the group H1(G,A). By definition H1(G,A) = F (A∗/A◦)/T (A∗/T ◦). Write
for convenience F (A∗/A◦) = D/A◦, T (A∗/A◦) = E/A◦ and F = {φ ∈ A∗ : 1φ = 0}. We have the
following scheme

A◦ E F A∗

0 B = E ∩ F Z = D ∩ F F

and then H1(G,A) ∼= Z/B. Explicitely we have

A◦ = {φ ∈ A∗ : φ(x) = ax−1} = {φ ∈ A∗ : φ(x)x = φ(1)};
D = {φ ∈ A∗ : φ− φg ∈ A◦ for every g ∈ G}

= {φ ∈ A∗ : φ(x)x− (φg)(x)x = φ(1) + (φg)(1) for every g ∈ G}
= {φ ∈ A∗ : φ(x)− φ(xg−1) = φ(1)x−1 + φ(g−1)x−1 for every g ∈ G};

D ∩ F = {φ ∈ A∗ : φ(x)− φ(xg−1) = φ(g−1)x−1}

and replacing φ(x) with φ(x−1) we can write Z = D ∩ F = {φ : A∗ : φ(xy) = φ(x)y + φ(y)} =
Der(G,A).
Let’s check that H1(G,A∗) = 0. If φ ∈ F (A∗), then (φg)(x) = φ(xg−1) = φ(x) for any g, x ∈ G,
i.e. φ = φ0 is constant. So if we take ψ ∈ A∗ defined by φ(1) = φ0 and ψ(x) = 0 for x 6= 1, then
T (ψ) = φ0 = φ, so φ ∈ T (A∗). Then T (A∗) = F (A∗).
It follows that E = A◦ + T (A∗) = A◦ + F (A∗) = {φ ∈ A∗ : φ(x) = ax−1 + b} for some a, b ∈ A.
So E ∩ F = {φ ∈ A∗ : φ(x) = ax−1 − a} and again replacing φ(x) with φ(x−1) we can write
B = {φ ∈ A∗ : φ(x) = ax− a}.
In future it will be necessary to write Z = Z1(G,A) and B = B1(G,A).

Example: with similar computations one can check that H2(G,A) = Z2(G,A)/B2(G,A), where

Z2(G,A) = {φ ∈ A∗∗ : φ(y, z) + φ(x, yz) = φ(xy, z) + φ(x, y)z for every x, y, z ∈ G}
B2(G,A) = {φ ∈ A∗∗ : φ(x, y) = φ1(y)− φ1(xy) + φ1(x)y for some φ1 ∈ A∗}.

Proposition 7 Let A be a G-module. Then for every n ∈ Z:

(i) expHn(G,A)||G|;
(ii) expHn(G,A)| expA.

Proof: (i) for any G-module X, the exponent of F (X)/T (X) divides |G|: indeed for any a ∈ F (X),
|G|a =

∑
g∈G ag = T (a) ∈ T (X). The conclusion follows immediatly.

(ii) Hn(G,A) = F (An)/T (An), so it sufficies to prove that expAn| expA, and it is sufficient to

show that expA1| expA (the others follows by induction). If r = expA, ra = 0 for every a ∈ A, then
for every φ ∈ A∗ we have (rφ)(g) = (φ+ · · ·+ φ)(g) = φ(g) + · · ·+ φ(g) = rφ(g) = 0 for any g ∈ G, so

expA1| expA. �

In the following we use the multiplicative notation for the G-modules A.
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Theorem 4 Let A be a normal abelian subgroup of H and let G be a finite subgroup of H such that
AG = H and A ∩ G = 1. A is a G-module by taking ag = g−1ag for every a ∈ A and g ∈ G. Then
|H1(G,A)| is equal to the number of conjugacy classes of complements of A in H.

Proof: let G be a complement of A in H. We can write G = {xφ(x) : x ∈ G, φ(x) ∈ A}, where φ(x)
is the unique element of A such that xφ(x) ∈ G. We have xφ(x)yφ(y) = xyφ(x)yφ(y) ∈ G, but also
xyφ(xy) ∈ G, so it follows φ(xy) = φ(x)yφ(y) and then φ ∈ Z1(G,A). Now if G and G are conjugate,
we have, for any x ∈ G, xφ(x) = a−1xa = xa−xa for a suitable a ∈ A, and this shows φ ∈ B1(G,A).
The conclusion follows immediatly. �

Let A be a G-module. An extension of A is an exact sequence H of groups

1 // A
i // H

j // G // 1

where A 6 H and i is the inclusion. A function r : G → H such that jr = 1G is called retraction (it
always exists because j is surjective). In this case we take φH,r(x, y) = r(xy)−1r(x)r(y) for x, y ∈ G.
We say that H is a split extension (or that r splits H) if r is an homomorphism.

Theorem 5 Let A be a G-module, H an extension of A. Then:

(a) for any retraction r, φH,r ∈ Z2(G,A);

(b) for any φ ∈ Z2(G,A) there exists an extension H of A and a retraction r such that φ = φH,r;

(c) if r and s are two retractions of an extension H of A, then φH,rφ
−1
H,s ∈ B2(G,A);

(d) there exists a retraction which splits H if and only if φH,r ∈ B2(G,A) for every retraction r.

Proof: (a) firstly φH,r(x, y) ∈ A for every x, y ∈ G: indeed j(r(xy)−1r(x)r(y)) = (xy)−1xy = 1, so
φH,r(x, y) ∈ ker j = Im i = A. Moreover

r(xyz)φH,r(xy, z)φH,r(x, y)z = r(xyz)r(zyx)−1r(xy)r(z)(r(xy)−1r(x)r(y))z

= r(xy)r(z)−1r(z)r(xy)−1r(x)r(y)r(z)

= r(x)r(y)r(z)

= r(xyz)r(xyz)−1r(x)r(yz)r(yz)−1r(y)r(z)

= r(xyz)φH,r(x, yz)φH,r(y, z).

Thus φH,r(xy, z)φH,r(x, y)z = φH,r(x, yz)φH,r(y, z), that is exactly the condition for φH,r ∈ Z2(G,A).
(b) Put H = G×A (as sets) with the following operation:

(x, a)(y, b) = (xy, φ(x, y)ayb).

This law makes H a group with identity (1, φ(1, 1)−1). If we take i : A → H given by i(a) =
(1, φ(1, 1)−1a) and j : H → G given by j(x, a) = x, then i is a monomorphism, j is an epimorphism

and ker j = Im i, so H = 1 → A
i→ H

j→ G → 1 is an extension of A. If we take the retraction
r(x) = (x, 1), then φH,r = φ.

(c) Put s(x) = r(x)φ(x) for every x ∈ G, where φ(x) ∈ A. Then

φH,s(x, y) = φ(xy)−1r(xy)−1r(x)φ(x)r(y)φ(y)

= φ(xy)−1r(xy)−1r(x)r(y)φ(x)yφ(y)

= φ(xy)−1φH,r(x, y)φ(x)yφ(y),

and the thesis follows by abelianity of A.
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(d) IfH is a split extension, then r is an homomorphism and then φH,r(x, y) = 1, so by (c) φH,s ∈ B2

for any other retraction s. Conversely, if for any retraction r we have φH,r(x, y) = φ(xy)−1φ(x)yφ(y) ∈
B2(G,A), then put s(x) = r(x)φ(x)−1; s is a retraction for H and we have s(xy) = r(xy)φ(xy)−1 =
r(x)r(y)φH,r(x, y)−1φ(xy)−1 = r(x)r(y)φ(x)−yφ(xy)φ(y)−1φ(xy)−1 = r(x)φ(x)−1r(y)φ(y)−1 = s(x)s(y)
and then s splits H. �

Two extensions H1 and H2 of the G-module A are equivalent, and we write H1
∼= H2, if there exists

an isomorphism σ : H1 → H2 such that the following diagram is commutative:

H1 : 1 // A
i1 //

id

��

H1
j1 //

σ

��

G //

id

��

1

H2 : 1 // A
i2 // H2

j2 // G // 1

Proposition 8 Let H1 and H2 be extensions of the G-module A with retractions r1 and r2 respectively.
Put φi = φHi,ri for i = 1, 2. Then H1

∼= H2 if and only if φ1φ
−1
2 ∈ B2(G,A).

Proof: (⇒) Let σ be the isomorphism H1 → H2; then σ(r1(x)) = r2(x)φ(x) for some φ(x) ∈ A. Thus

φ1(x, y) = σ(φ1(x, y)) = σ(r1(xy)−1r1(x)r1(y))

= φ(xy)−1r2(xy)−1r2(x)φ(x)r2(y)φ(y)

= φ(xy)−1r2(xy)−1r2(x)r2(y)φ(x)yφ(y)

= φ2(x, y)φ(xy)−1φ(x)yφ(x).

(⇐) Let φ1(x, y)φ2(x, y)−1 = φ(y)φ(xy)−1φ(x)y. Put σ(h1) = r2(x)aφ(x), where h1 = r1(x)a ∈
H1. Then σ is the isomorphism we were looking for (easy computation). �

By the two previous results it follows immediatly the following

Proposition 9 Let A be a G-module. Then H2(G,A) = 1 if and only if any extension H of A splits.

Now let’s see a connection with the cohomology of normal subgroups. If A is a G-module and N a
subgroup of G, then we can get the new structure FN (A), TN (A), Hn(N,A), obtained restricting to N
the domain of operation for A. Note that if N is a normal subgroup, then FN (A) is also a G/N -module
by taking, for b ∈ FN (A) and rN ∈ G/N , b(rN) = br.

Proposition 10 Let A be a G-module and N P G. Denote B = FN (A). Then we have two exact
sequences

H0(N,A) −→ H0(G,A) −→ H0(G/N,B) −→ 0
H1(N,A) ←− H1(G,A) ←− H1(G/N,B) ←− 0.

Proof: note that FG(A) = FG/N (B) and that TG(A) 6 TG/N (B), by TG(a) = TG/N (TN (a)). So it’s
easy to see that the first sequence is

FN (A)
TN (A)

TG/N // FG(A)
TG(A)

π // FG(A)
TG/N (B)

// 0

is exact, where π is the canonical projection.
About the second one, let X be a separable G-module with A as G-submodule. Put A1 = X/A and
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B1 = FN (X)/FN (A). Then H1(G/N,B) ∼= H0(G/N,B1), H1(N,A) = H0(N,A1) and H1(G,A) ∼=
H0(G,A1). One verifies that FG/N (B1) = FG(B1) = (FN (X) ∩ π−1(FG(X/A)))/B and TG/N (B1) =
(B + TG/N (FN (X)))/B, with π : X → X/A canonical projection. �

5.1.2 Cohomology of an irreducible G-module where G is solvable

In this paragraph suppose G finite solvable group, A multiplicative G-module such that Ap = 1 for
some p. A is a finitely generated group and it is cyclic as G-module.

The centralizer of A is the set CG(A) = {x ∈ G : ax = a for all a ∈ A}. Note that if N is a normal
subgroup of G contained in CG(A), then A can be viewed as G/N -module in a natural way; moreover
any isomorphism φ from A to a G-module X is a G-isomorphism if and only if it is a G/N -isomorphism.

If M and N are normal subgroups of G and M > N , then M/N is a G-module by taking:

(mN)x := x−1mNx for x ∈ G, m ∈M ;

certainly CG(M/N) >M . Notice that M/N is a chief factor of G if and only if M/N is an irreducible
G-module.

Proposition 11 Let G be a solvable group and A an irreducible G-module. Then, if |A| = pr,
G/CG(A) has no proper normal p-subgroups.

Proof: suppose there exists a normal subgroup N of G such that CG(A) ⊂ N P G and N/CG(A) is
a p-group. Then FN (A) is a G-submodule of A, so by irreducibility FN (A) = 1 or A. FN (A) 6= 1,
because any orbit in A (under the action of G) has cardinality 1 or a p-power and |FN (A)| is the
number of orbits of cardinality 1, so necessarly FN (A) > 1 (otherwise the sum cannot be a multiple of
p). Then FN (A) = A and then N 6 CG(A), contradiction. �

Proposition 12 Let G be a solvable group and A an irreducible G-module. If CG(A) = 1, then
H1(G,A) = H2(G,A) = 1.

Proof: if G = 1 the proposition is trivial, so suppose G 6= 1 and take 1 < N P G and (|N |, p) = 1 (it
exists by previous proposition). Then FN (A) = 1, so by Prop. 7 H1(N,A) = 0. Now from Prop. 10
we have the exact sequence

1 −→ H1(G/N,FN (A)) −→ H1(G,A) −→ H1(N,A),

that in our case becomes 1 −→ 1 −→ H1(G,A) −→ 1, which implies H1(G,A) = 1.
In order to prove that H2(A) = 1 we show that any extension of A through G splits and we conclude

by Prop. 9. By Prop. 7 we have H1(N,A) = 1. If H is a group such that A / H and H/A ∼= G and
L = π−1(N) (where π is the canonical epimorphism H → H/A), then by H2(N,A) = 1 there exists
a complement K0 of A in L, and being H1(N,A) = 1, by Theorem 4 each complement of A in L are
conjugate. Now L / H, so for any h ∈ H there exists a ∈ A such that h−1K0h = a−1K0a and then, if
K = NH(K0), we have H = KA. Moreover K ∩ A = 1 because A is minimal normal subgroup (it is
an irreducible G-module) and being CG(A) = 1. �

Corollary 2 Let M/N be a chief factor of G solvable group. If CG(M/N) = M , then M/N is
complemented and all of its complements are conjugate in G.
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Proof: M/N is a simpleG/M -module, so by previous propositionH1(G/M,M/N) = H2(G/M,M/N) =
1. We conclude by Theorem 4 and Prop. 9. �

Now let G be a solvable group and A an irreducible G-module. Put

RG(A) =
⋂
{N P G : N 6 CG(A), CG(A)/N ∼=G A, CG(A)/N has a complement in G/N},

with RG(A) = CG(A) if the set above is empty. Then we have CG(A)/RG(A) ∼= AδG(A) for a suitable
integer δG(A) and RG(A) is minimal with this property. The number δG(A) is defined by the following

Proposition 13 Let G be a solvable group, A an irreducible G-module. Then CG(A)/RG(A) is iso-
morphic to the direct product of δG(A) copies of A, where δG(A) is the number of complemented chief
factors of G that are G-isomorphic to A, independently on the choice of the chief series.

Proof: if A is not isomorphic to any chief factor of G, RG(A) = CG(A) and the statement is trivial.
Now let L be the chief series G = Gr > · · · > G1 > G0 = 1, with CG(A) ∈ L and let m be the

number of complemented chief factors of L G-isomorphic to A. We distinguish two cases:
(a) suppose G1 is not complemented or it is not G-isomorphic to A. Then RG(A) > G1, otherwise

there would be N / G such that N 6 CG(A) and CG(A)/N ∼=G A: thus G1
∼=G A and by Corollary 2

there would exist a complement K/N of CG(A)/N in G/N and K would be a complement of G1 in
G, contradicion.
Now m is the number of complemented chief factor G/G1-isomorphic to A, i.e G-isomorphic to A in
the chief series of G/G1 induced by L; by induction on the length of L we get m = δG/G1

(A). By
G1 6 RG(A), we get

CG/G1
(A)

RG/G1
(A)
∼=G/G1

CG(A)

RG(A)
⇒

CG/G1
(A)

RG/G1
(A)
∼=G

CG(A)

RG(A)
,

and then m = δG(A).
(b) Suppose G1 is G-isomorphic to A and complemented in G: say K its complement. Put

R/G1 = RG/G1
(A). Then CG(A)/(K ∩ CG(A)) ∼=G G1

∼=G A. By definition of RG(A) we have

RG(A) 6 R∩K. If it would be RG(A) < R∩K, then also RG(A)G1 < R and CG/G1
(A)/(R/G1) would

be semisimple, against the definition of RG/G1
(A). Then R ∩K = RG(A) and δG(A)− 1 = δG/G1

(A).
The number of complemented chief factors G-isomorphic to A in the chief series of G/G1 induced by
L is m− 1, so we can proceed by induction and get the thesis. �

Proposition 14 CG(A)/RG(A) is complemented in G/RG(A).

Proof: by Prop. 12 we have H2(G/CG(A), A) = 1. Thus H2(G/CG(A), AδG(A)) = 1 and we conclude
by Prop. 9 bearing in mind that CG(A)/RG(A) ∼=G AδG(A). �

Theorem 6 Let G be a solvable group and A an irreducible G-module. Then H1(G,A) ∼= EndG(A)δG(A).

Proof: for convenience write C = CG(A) and R = RG(A).
Let φ ∈ Z1(G,A) and φ its restriction to C; then the application τ : φ 7→ φ induces an homo-

morphism from Z1(G,A) to HomG(C/R,A): for any x, y ∈ C we have φ(xy) = φ(xy) = φ(x)yφ(x) =
φ(x)φ(y) and if g ∈ G we have φ(g−1xg) = φ(g−1)xgφ(x)gφ(g) = φ(g−1)gφ(x)gφ(g) = φ(x)g; being
φ(g−1)gφ(g) = φ(1) = 1 and φ is trivial on R, i.e. ker τ contains R.

Now let γ ∈ HomG(C/R,A) and suppose by Prop. 14 that there exists K 6 G such that G = KC
and K ∩ C = R. Put φ(x) = γ(cR), where x = kc for k ∈ K and c ∈ C. Then φ is well-defined
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and certainly φ = γ. Let’s verify that φ ∈ Z1(G,A): if x, y ∈ G, x = kc, y = ld (with k, l ∈ K
and c, d ∈ C), then φ(xy) = φ(kcld) = φ(kll−1cld) = γ(l−1cldR) = γ(cR)lγ(dR). On the other hand
φ(x)yφ(x) = γ(cR)ldγ(dr) = γ(cR)lγ(dR), as we wished.

Finally verify that φ ∈ B1(G,A) if and only if φ = 1. φ ∈ B1(G,A) implies ϕxϕ−1 for some ϕ ∈ A;
then φ(x) = 1 if x ∈ C. Conversely if φ = 1, then φ is constant on any xC, x ∈ G and then the
function ψ defined by ψ(xC) = φ(x) is well-defined on G/C and ψ ∈ Z1(G/C,A). By Prop. 12 we
have ψ ∈ B1(G/C,A) and then for xC ∈ G/C, ψ(xC) = ϕxCϕ−1 with ϕ ∈ A, that is φ(x) = ϕxϕ−1

for every x ∈ G; then φ ∈ B1(G,A).
In conclusion we have the exact sequence

1 −→ B1(G,A) −→ Z1(G,A) −→ HomG(C/R,A) −→ 1

and it follows H1(G,A) ∼= HomG(C/R,A) ∼= HomG(AδG(A), A) ∼= EndG(A)δG(A). �

5.1.3 Number of generators and Eulerian function of a solvable group

Let G be a (arbitrary) group. The eulerian function of G is the function φG from N in the set of
cardinals defined by

φG(k) =
∣∣{(x1, . . . , xk) ∈ Gk : 〈x1, . . . , xk〉 = G}

∣∣ .
For example: if G = Zn cyclic group of order n, then φG(1) = φ(n) the classical Euler function.

Proposition 15 Let G be a group and M an abelian minimal normal subgroup of G and write G/M =
〈x1M, . . . , xkM〉. If c(M) is the number of complements of M in G, then there are exactly |M |k−c(M)
k-tuples (x1, . . . , xk) such that xi ∈ xiM and 〈x1, . . . , xk〉 = G.

Proof: the number of k-tuples (x1, . . . , xk) with xi ∈ xiM is clearly |M |k. Now either〈x1, . . . , xk〉 = G
or it is a complement of M in G. But for any complement K of M in G it is uniquely determined the
k-tuple xi = xiM ∩K. �

Corollary 3 Let G be a group and M an abelian minimal normal subgroup of G. Then

φG(k) = φG/M (k)(|M |k − c(M)).

Proof: if 〈x1, . . . , xk〉 = G, then 〈x1M, . . . , xkM〉 = G/M . The result follows directly by Prop. 15. �

Proposition 16 Let G be a solvable group, M an abelian minimal normal subgroup of G. If M is
complemented, then

c(M) = |EndG(A)|δG(A)−1|A|θG(A),

where A ∼=G M as G-module and θG(A) = 0 or 1 according as A is the trivial G-module or not.

Proof: let K be a complement of M in G. K is maximal in G. The number of conjugates of K in
G is equal to |G : NG(K)| = 1 or |A| according as M is in the center of G or not. By Theorem 4
the number of conjugacy classes of complements of M in G is |H1(G/M,A)|, and by Prop. 13 and
Theorem 6 |H1(G/M,A)| = |EndG(A)|δG(A)−1. �
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Theorem 7 Let G be a solvable group, then:

φG(k) =
|G|k(∏

A |A|δG(A)
)k ∏

A

δG(A)−1∏
i=0

|A|k − |EndG(A)|i|A|θG(A)

 , (5)

where A runs over all complemented chief factors of G.

Proof: we work by induction on the length of a chief series G = Gr > · · · > G1 > G0 = 1 of G.
Let G1

∼= A and suppose the formula holds for G/G1. By Corollary 3 φG(k) = φG/G1
(k)(|G1|k −

c(A)). If k = 0, then

φG(k) = φG/G1
(k)|G1|k = φG/G1

(k)
|G|k

|G/C1|k
.

If k 6= 0, then by Prop. 16 c(A) = |EndG(A)|δG(A)−1|A|θG(A) and then

φG(k) = φG/G1
(k)(|A|k − |EndG(A)|δG(A)−1|A|θG(A)). �

Now it’s clear that PG(k) = φG(k)/|G|k, so dividing the formula 5 by |G|k we get

PG(k) =
∏
A

δG(A)−1∏
i=0

1− |EndG(A)|i|A|θG(A)

|A|k

 .

5.2 The formula in the profinite case

Now we need some work to generalize these arguments to the profinite case.
We say that H/K is a chief factor of G if H and K are closed normal subgroups of G with K < H and
there are no intermediate closed normal subgroups (i.e. if X is a closed normal subgroup of G such
that K 6 X 6 H, then either X = H or X = K). We are interested to the case of prosupersolvable
groups, so any chief factor is cyclic and then abelian. Since X =

⋂
{XN, N P G open} for every closed

subset X, necessarly HN 6= KN for at least one open normal subgroup N , and so H/K ∼=G HN/KN .
This implies that H/K is finite and the action of G on H/K is continuous and irreducible.

A chief factor H/K is called Frattini factor if H/K 6 Frat(G/K). Notice that if H/K is a Frattini
factor, so is HN/KN for every N P G closed. Now let’s give a definition.

Let A be a finite irreducible G-group with G prosolvable. Let XG(A) be the set of the open normal
subgroups N of G with the properties that N 6 CG(A), CG(A)/N ∼=G A and CG(A)/N is non-Frattini,
and define

RG(A) =
⋂

N∈XG(A)

N

and RG(A) = CG(A) if XG(A) is empty. The quotient group CG(A)/RG(A) is called the A-crown of
G.

Note that two G-isomorphic G-groups define the same crown. Since RG(A) and CG(A) are closed
normal subgroups of G, then the quotient groups G/RG(A) and CG(A)/RG(A) are profinite groups
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with a fundamental system of neighborhoods given by the family of subgroup N/RG(A) where N is a
finite intersection of elements of XG(A).

We want to study the structure of G/RG(A). First note that RG(A) 6= CG(A) if and only if A is
equivalent to a non-Frattini chief factor of G; so we restrict out attention to this case. Moreover, since
we are dealing with prosupersolvable groups, we assume that A is abelian.

Define the monolithic primitive group associated with A the group

LG(A) = Ao (G/CG(A)).

Simplify our notation by identifying C = CG(A), R = RG(A), L = LG(A) and X = XG(A) and let
Y be the set of all normal subgroups of G obtained as finite intersections of elements in X ; we remark
that G/R is the inverse limit of the family of finite groups G/N with N ∈ Y.

Now we want to describe the structure of G/R. Define the crown-based power of L of size k the
group

Lk = {(l1, . . . , lk) ∈ Lk : l1 ≡ · · · ≡ lk (mod A)} = Ak o (G/CG(A)).

Now we have the following results.

Lemma 2 Let Y ∈ Y, Y = N1 ∩ · · · ∩ Nk with k minimal. Then G/Y ∼= Lk. Moreover C/Y =
soc(G/Y ) and any chief factor H/K of G with Y 6 K < H 6 C is non-Frattini and G-isomorphic to
A.

Proof: the Lemma follows by the following result in finite case (see Prop. 9, [2]): let A be a non-
Frattini chief factor of the finite group G and CG(A)/RG(A) its crown. Then G/RG(A) is isomorphic
to LδG(A)(A), with δG(A) <∞ since G is finitely generated. By Prop. 13 CG(A)/RG(A) ∼=G AδG(A),
and by RG(A) ≤ Y ≤ CG(A), it follows Y ∼=G Au for some u ≤ δG(A). Then G/Y ∼=G LδG(A)−u. �

Corollary 4 If N is a closed normal subgroup of G and R 6 N then either C 6 N or N 6 C.
Moreover if N is open and R 6 N < C, then N ∈ Y.

Proof: as N is closed and {Y/R}Y ∈Y is a fundamental system of open neighborhoods of the identity
in G/R, then N =

⋂
Y ∈Y NY . Now NY/Y is a normal subgroup of the finite group G/Y which is

isomorphic to Lk for some k by previous lemma. It follows that C/Y = soc(G/Y ) and also either
NY 6 C or NY > C. In the first case we conclude N 6 C. Otherwise NY > C for every Y ∈ Y, and
thus N =

⋂
Y ∈Y NY > 1. �

We can define crown-based power of L of infinite rank too in the following way: for any set Ω take

LΩ = {(lω)ω∈Ω ∈ LΩ : lω1 ≡ lω2 (mod A) for any ω1, ω2 ∈ Ω}.

It is a closed subgroup of LΩ with the product topology, so it can be viewed as a profinite group:
indeed LΩ is the inverse limit of the family of finite groups LI with I ⊆ Ω finite.

Let now D be the set of subsets ∆ of Hom(G,L) satisfying:

(1) for any φ ∈ ∆, kerφ ∈ X ;

(2) for any finite subset I = {φ1, . . . , φk} of ∆ and g ∈ G we have φ1(g) ≡ · · · ≡ φk(g) (mod A), i.e.
they define an homomorphism φI : G→ Lk;

(3) for any finite subset I ⊆ ∆, the homomorphism φI is surjective.
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This definition implies that if ∆ ∈ D, then the functions φI are compactible surjections from G to
lim←−LI ; thus the corresponding induced mapping of profinite groups Φ : G → L∆ is onto. Moreover

kerφI ∈ Y and so ker Φ =
⋂
φ∈∆ kerφ is an intersection of elements of X .

We may order the elements of D by inclusion, and by Zorn’s Lemma D has a maximal element.

Lemma 3 If ∆ is a maximal element of D, then
⋂
φ∈∆ kerφ = R.

Proof: for any φ ∈ ∆, let Nφ = kerφ ∈ X . Suppose by contradiction S =
⋂
φ∈∆Nφ 6= R. Then there

exists N ∈ X with S 66 N and an epimorphism α : G → L with kerα = N . Fix φ̄ ∈ ∆; the map
G/(Nφ̄ ∩N)→ L2 defined by g(Nφ̄ ∩N) 7→ (φ̄(g), α(g)) is injective; by Lemma 2 G/(Nφ̄ ∩N) ∼= L2,

hence there exists β ∈ Aut(L) such that β−1α(g)β ∼= φ̄(g) (mod soc(L)) for any g ∈ G. Let γ : G→ L
be defined by γ(g) = α(g)β . Now let ∆̄ = ∆ ∪ {γ}. We claim that ∆̄ ∈ D, against the maximality of
∆. The only thing that remains to prove is that for any finite subset I = {φ1, . . . , φk} of ∆, the homo-
morphism φ̄I : G → Lk+1 defined by g 7→ (φ1(g), . . . , φk(g), γ(g)) is surjective. By Lemma 5 and the
fact that φI is surjective, either φ̄I is surjective or G/(Nφ1

∩· · ·∩Nφk
) ∼= G/(Nφ1

∩· · ·∩Nφk
∩N) ∼= Lk.

But in the latter case S 6 Nφ1
∩ · · · ∩Nφk

6 N , a contradiction. �

Let w0(G) denote the local weight of the profinite group G, i.e. the smallest cardinality of a
fundamental system of open neighborhoods of 1 in G. Then

Theorem 8 G/R is homeomorphic to LΩ, for a suitable choice of the set Ω. If X is infinite, then
|Ω| = |X |.

Proof: by previous lemma G/R is homeomorphic to LΩ, where Ω is a maximal element of D. Since
a base of neighborhoods of 1 in G/R is given by the subgroups N/R for N ∈ Y, if X is infinite then
|X | = |Y| = w0(G/R). On the other hand, w0(G/R) = w0(LΩ) is the cardinality of the set of the
finite subsets of Ω, which is exactly the cardinality of Ω for Ω infinite. �

Recall that any profinite group G has a chain of closed normal subgroups

1 = Gµ / · · · / Gλ / · · · / G0 = G

indexed by ordinals λ ≤ µ such that

• Gλ/Gλ+1 is a chief factor of G for each λ < µ;

• if λ is a limit ordinal, then Gλ =
⋂
ν≤λGν .

Note that if G is infinite, then |µ| = w0(G), so |µ| is an invariant.
In our case G is a prosupersolvable group, so Gλ/Gλ+1 is cyclic for every λ < µ.

Lemma 4 Let H/K be a chief factor of G. If R 6 K < H 6 C then H/K is non-Frattini and
G-isomorphic to A.

Proof: since Y induces a fundamental system of open neighborhoods of the identity in C/R, we get
K =

⋂
N∈Y KN and H =

⋂
N∈Y HN . Thus there exists N ∈ Y such that KN 6= HN and so

H/K ∼=G HN/KN . By Lemma 2 HN/KN is non-Frattini and G-isomorphic to A, and thus the same
holds for H/K. �

Lemma 5 Let H/K be a chief factor of G. Then H/K is non-Frattini and G-isomorphic to A if and
only if RH/RK 6= 1 and RH 6 C.
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Proof: if RK 6= RH 6 C, then by Lemma 4, RH/RK is non-Frattini and G-equivalent to A. As
H/K 66 Frat(G/K), there exists a closed maximal subgroup M containing K but not H. Let N = MG

be the normal core; since H and K are normal in G, we deduce K 6 N and H 66 N . In particular
HN/N is a minimal normal subgroup of the primitive group G/N and it is G-isomorphic to H/K,
hence to A. Note that, C/N is the socle of G/N . Then either C/N = HN/N and N ∈ X or N ∈ Y
(see Lemma 3, [3]). In particular R 6 N = NK < NH 6 C and so RK 6= RH 6 C. �

The following theorem proves the result just known in the finite case.

Theorem 9 Let {Gλ}λ≤µ be a chief series of G and let Θ be the set of factors Gλ/Gλ+1 which are
non-Frattini and G-isomorphic to A. The cardinality δG(A) of Θ does not depend on the choice of the
chief series. Moreover if G/R ∼= LΩ then |Ω| = δG(A).

Proof: we obtain a chain of closed normal subgroups {Hλ}λ≤µ with H0 = G and Hµ = R by defining
Hλ = RGλ. For any λ ≤ µ, either Hλ = Hλ+1 or Hλ/Hλ+1 is a chief factor of G/R. Moreover the set
of non trivial factors Hλ/Hλ+1 coincides with the set of factors of a chief series of G/R. By Corollary
4 either Hλ ≤ C or Hλ ≥ C. Let ν be the smallest ordinal with Hν ≤ C. Now Lemma 5 implies
that if λ < ν, Gλ/Gλ+1 cannot be non-Frattini and G-isomorphic to A; moreover, if λ ≥ ν, then
Hλ/Hλ+1 6= 1 if and only if Gλ/Gλ+1 is non-Frattini and G-isomorphic to A.

So {Hλ/Hλ+1 : Hλ/Hλ+1 6= 1} is a chief series of G/R which passes through C/R and has the
property that the elements of Θ are in bijective correspondence with the non trivial factors Hλ/Hλ+1

contained in C/R; in particular |Θ| does not depend on the choice of the series.
Finally, since G/R ∼= LΩ implies C/R ∼= AΩ, we conclude |Θ| = |Ω|. �

Theorem 10 If G is finitely generated then δG(A) is finite for every finite irreducible G-group A.

Proof: if X ∈ XG(A), then by definition C/X ∼= A and then |G : X| = |G : C||A| = n for an integer
n. As G is finitely generated, the number of subgroups of index n is finite; thus |XG(A)| is finite and
consequently R has finite index in G. Therefore G/R ∼= LΩ for a finite set Ω and the result follows
from the previous theorem. �

Now we have, for a profinite group G, the formula

PG(k) =
∑
H6G

µ(H)

|G : H|k
, (6)

where µ is the Möbius function of the subgroup lattice of G. If G is finite, then PG(k) is a finite
Dirichlet series

∑
n ann

−k, with an ∈ Z and an = 0 unless n divides |G|. So the formula can be
extended to an arbitrary complex number s. Given a normal subgroup N of G, we defined the formal
Dirichlet series PG,N (s) as follows:

PG,N (s) =
∑

HN=G

µ(H)

|G : H|s
. (7)

We can write the two formal Dirichlet series as follows:

PG(s) :=
∑
n>0

an
ns

with an :=
∑

|G:H|=n

µ(H), (8)

and

PG,N (s) :=
∑
n>0

bn
ns

with bn :=
∑

|G:H|=n,
HN=G

µ(H). (9)
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If A(s) and B(s) are two Dirichlet series, denote with A(s) ∗ B(s) the convolution product of A and
B. Then we have:

Theorem 11 If G is a finitely generated profinite group and N is a closed normal subgroup of G, then
PG(s) = PG/N (s) ∗ PG,N (s).

Proof: we have already seen the result in the finite case, so we need an argument to reduce us to the
finite case. Let n ∈ N. The coefficients of 1/ns in PG(s) and in PG/N (s) ∗ PG,N (s) are equal if

∑
|G:H|=n

µ(H) =
∑
d|n


 ∑
N6H16G
|G:H1|=d

µ(H1)


 ∑

H2N=G
|G:H2|=n/d

µ(H2)


 . (10)

Let Xn be the intersection of the open subgroups of G with index at most n; as G is finitely generated,
Xn has finite index in G. Thus

PG/Xn
(s) = PG/NXn

(s) ∗ PG/Xn,NXn/Nn
(s). (11)

Now (10) follows by (11) since the terms in (10) are equal to the coefficients of 1/ns in the two series
in (11); indeed if |G : H| ≤ n, then Xn 6 H and µ(H) = µ(H/Xn). �

In the case of a finite group G, if we take a chief series

σ : 1 = Nl / Nl−1 / · · · / N1 / N0 = G

and iterate the above formula, we get an expression for PG(s) as product indexed by the non-Frattini
chief factors in the series

PG(s) =
∏

Ni/Ni+1 66Frat(G/Ni+1)

PG/Ni+1,Ni/Ni+1
(s). (12)

We have just proved that the formula can be rewritten as

PG(s) =
∏
A

 ∏
0≤i≤δG(A)−1

P̃LA,i(s)

 ,

with P̃LA,i(s) = 1 − |EndG(A)|i|A|θG(A)/|A|s and A runs over all non-Frattini chief factors of G. We
want to show that this formula yields in the case G prosolvable too (in this case the first product will
be infinite).

Theorem 12 Let G be a finitely generated prosolvable group and let A = H/K be a non-Frattini chief
factor of G. If R = RG(A) we have:

PG/K,H/K(s) = PG/RK,RH/RK(s) = P̃LA,k(s)

with k = δG(A).
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Proof: take Sn = {X 6 G : K 6 X 6 G, XH = G, |G : X| = n and µ(X) 6= 0}; PG/K,H/K(s) =∑
n αn/n

s with αn =
∑
X∈Sn µ(X). Now µ(X) 6= 0 only if X is intersection of closed maximal

subgroups of G. Moreover in the proof of Lemma 5 we have seen that if M is a closed maximal
subgroup of G with K 6M but H 66M , then R 6M ; hence RK 6 X for any X ∈ Sn. This implies
immediatly that PG/K,H/K(s) = PG/RK,RH/RK(s).

Now by Theorems 9 and 10 we get that k = δG(A) is finite and G/RK ∼= Lk. Moreover RH/RK
is a minimal normal subgroup of G/RK that is equivalent to A. By the finite case we conclude

PG/RK,RH/RK(s) = P̃LA,k(s). �

If G is an infinite finitely generated profinite group, then w0(G) = ℵ0 and G has a chief series of
length ℵ0

Σ : G = G0 > G1 > · · · > Gi > · · · > Gℵ0 = 1.

To each chief factor Gi/Gi+1 is associated the finite Dirichlet series PG/Gi+1,Gi/Gi+1
(s). By Theorem

12, for any i ∈ N, we can write

PG/Gi+1
(s) = P0(s) ∗ P1(s) ∗ · · · ∗ Pi(s).

So we are tempted to say that PG(s) is the product of the infinite factors {Pi(s)}i∈N.
Unfortunately the formal series PG(s) is not necessarly convergent, so PG(s) does not define a function
in general. However it can be proved (see [3]) that the formal Dirichlet series PG(s) is uniquely deter-
mined as an ”infinite convolution” of the factors {Pi(s)}i∈N and that the set of factors is independent
on the choice of the chief series Σ. In our case we have a prosolvable group and we are interested to
the case s = t integer. In the first section we saw that the product converges for t large enough.

5.3 The free prosupersolvable case and its convergence

In order to get information about the convergence of our formula for supersolvable groups it is sufficient
to consider the free prosupersolvable group of rank d. In fact, any supersolvable group H of rank d
is epimorphic image of G, so the chief series of H is a ”subset” of the chief series of G and then the
Dirichlet product for PH(s) will be composed just by some of the factors of the Dirichlet product for
PG(s).

In the prosupersolvable group G any chief factor is cyclic of prime order p, so the formula can be
rewritten in the form

PG(s) =
∏
p

 ∏
|A|=p

δG(A)−1∏
i=0

1− |EndG(A)|i|A|θG(A)

|A|s

 .

We need to know how many non-complemented chief factor of order p pairwise non-G-isomorphic are
there and, for each of these, to estimate the value of δG(A).

Firstly A is the cyclic group of order p, so EndG(A) ∼= Cp.
A nontrivial action of G over A is identified by a homomorphism ϕ : G→ Aut(A) ∼= Aut(Cp) ∼= Cp−1.
Any generator of G can be sent in any element of Cp−1, so there are (p−1)d choices for ϕ. We are sure
that two modules obtained by two different homomorphisms ϕ1 and ϕ2 are not G-isomorphic. Indeed
in this case we should have an automorphism α ∈ Aut(Cp) such that α(ϕ1(g)(x)) = ϕ2(g)(α(x)) for
every x ∈ A and g ∈ G. This implies ϕ1(g)α = αϕ2(g) and then ϕ1 = ϕ2 because Cp−1 is abelian.
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It remains to estimate δG(A). Let’s consider the A-crown Lt = At o H of rank t, with H =
G/CG(A). Lt is finite supersolvable (it’s easy to find a chief series of cyclic groups), and it is (t+θG(A))-
generated, because H = 1 if A is the trivial G-module, otherwise it is cyclic being A cyclic of prime
order. Then Lt is epimorphic image of the free prosupersolvable group G of rank d if and only if
t + θG(A) ≤ d, i.e. t ≤ d − θG(A). On the other hand, by Theorem 9 Lt is epimorphic image of G if
and only if t ≤ δG(A). By this two observations we have δG(A) = d− θG(A).

So the formula becomes:

PG(s) =
∏
p

 ∏
|A|=p

δG(A)−1∏
i=0

1− |EndG(A)|i|A|θG(A)

|A|s


=

∏
p

[(
d−2∏
i=0

1− pi+1

ps

)αp (d−1∏
i=0

1− pi

ps

)]

=
∏
p

[(
d−1∏
i=1

1− pi

ps

)αp (d−1∏
i=0

1− pi

ps

)]
,

where αp = (p − 1)d − 1; the first term involves all non-trivial G-submodules A of order p and the
second term regards the trivial G-submodule A.

We are looking for the minimum integer k such that PG(k) > 0. Since the product
∏

(1 + xn)
converges if and only if the sum

∑
xn converges, then PG(k) converges if and only if converges the

sum

∑
p

(
d−1∑
i=1

((p− 1)d − 1)
pi

pk
+

d−1∑
i=0

pi

pk

)
∼
∑
p

(
pd − 1

p− 1

)
pd

pk
∼
∑
p

p2d−1

pk
,

that converges if k − (2d− 1) > 1.
In conclusion PG(k) > 0 for k > 2d, so we may expect to generate G with positive probability with

k ≥ 2d+ 1 elements.
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