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Introduction

Let C/Q be a hyperelliptic curve, given a�nely by a model

y2 = f(x),

with f(x) ∈ Q[x] monic, squarefree and of odd degree. We consider the Jacobian variety J/Q
attached to C. Since J is an Abelian variety, the Mordell-Weil Theorem shows that its Q-rational
points J(Q) form a �nitely generated Abelian group. Therefore, we have a decomposition

J(Q) ∼= Zrank J(Q) ⊕ tors(J(Q)),

where tors(J(Q)) is a �nite group containing elements in J(Q) of �nite order, and rank J(Q) is the
rank of J/Q. In this thesis, we are interested in bounding rank J(Q) in terms of the invariants of
C.

To this end, we de�ne the Selmer group Sel(2)(Q, J) of J over Q, and �nd a more practical
description of it. As the inequality (see Theorem 2.3.1)

rank J(Q) ≤ dim Sel(2)(Q, J)− dim J(Q)[2]

suggests, we study rank J(Q) by means of the Selmer group Sel(2)(Q, J). Here, the dimensions are
taken over F2 and J(Q)[2] denotes the 2-torsion subgroup of J(Q). Moreover, we will see that the
computation of dim J(Q)[2] depends only on the shape of the factorisation of f(x) in Q[x] and is
therefore "easy to compute".

Our main approach to studying Sel(2)(Q, J) is to use Stoll's Implementation of 2-descent. Fol-
lowing [23], we �rstly give a more concrete description of the 2-Selmer group, referring to [16] for
general and complete proofs. In [16], Edward F. Schaefer replaces the cohomology groups appear-
ing in the original de�nition of the Selmer group by the kernels of certain norm maps of the algebra
L = Q[T ]/(f(T )) de�ned by f(x), making Sel(2)(Q, J) more tangible to work on. See Theorem
3.2.3 for the precise statement.

We will see that this concrete description of the 2-Selmer group can further be simpli�ed so as
to yield an upper bound on dim Sel(2)(Q, J) as follows:

dim Sel(2)(Q, J) ≤ m∞ − 1 + dim Cl(L)[2] + dim ker(G→ Cl(L)/2 Cl(L)),

where G is a group de�ned by �nitely many local conditions at �nite places of Q and m∞ is the
number of irreducible factors of f(x) in R[x]. The main step in deriving that bound is to �nd a
suitable �nite subgroup S̃el ⊆ L×/(L×)2 containing Sel(2)(Q, J), whose dimension can be studied
relatively easily. The details can be found in Chapter 3.

In the next chapter, we will concentrate on a more current consideration. Following [4], we
will introduce a subgroup Sel(2)(Q, J) ⊆ Ŝel ⊆ L×/(L×)2 with Ŝel ⊆ S̃el and obtain the following
bound:

dim Sel(2)(Q, J) ≤ dimµ∞ + dim Cl+(L)[2] + dim(G ∩ V∞), (*)

where µ∞ ⊆ O×L /(O
×
L )2 and G ∩ V∞ ⊆ I(L)/I(L)2 are de�ned by certain local conditions at

in�nity, I(L) is the group of fractional ideals of L and Cl+(L) is the narrow class group of L.
Furthermore, we will study the dimension of the totally positive units O×,+L more carefully and
will be able to make the bound (*) stronger for some families of hyperelliptic curves.
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For example, when L is a cyclic number �eld of odd prime degree p, the order of 2 in (Z/pZ×)
is even and O×,+L = (O×L )2, we will see that the bound (*) improves to the one

dim Sel(2)(Q, J) ≤ g + dim Cl(L)[2] + dim ker(G→ Cl(L)/2 Cl(L)) (**)

where g = (p− 1)/2 is the genus of C. See Theorem 4.5.2 for details.
In the last chapter, we will present an in�nite family En of elliptic curves for which we are able

to use the bound (**) and estimate dim ker(G → Cl(Ln)/2 Cl(Ln)). This will yield the following
optimal bound on rankEn(Q):

rankEn(Q) ≤ 3 + dim Cl(Ln)[2].

I would like to sincerely thank my advisor, Richard Gri�on, for he has
constantly supported me in all of my academic pursuits

during the period he has been advising.

6



Chapter 1

Preliminaries

This chapter is intended to contain preliminary de�nitions and results we will need in the next
sections for our main exposition. Some proofs are omitted due to their being long or technical, but
we then provide references for them. Every title has a rich literature on its own, so one probably
cannot expect to get a full account of them through this chapter.

1.1 Hyperelliptic curves

We give a de�nition of hyperelliptic curves in this section. Let k be a �eld of characteristic
0 and let f(x) ∈ k[x] be a monic, squarefree polynomial of odd degree d = 2g + 1 with g ≥ 1 (so

that d ≥ 3). Write f =

d∑
j=0

ajx
j ∈ k[x] and consider

h0(x, y) = y2 − f(x) ∈ k[x, y].

The polynomial f(x) being squarefree, we have that h0(x, y) is irreducible in k[x, y] and hence, the
ideal (h0) ⊆ k[x, y] is prime. Let C0 ⊆ A2 be the a�ne set corresponding to the ideal (h0) ∈ k[x, y].
One can see that C0 is smooth because f(x) is squarefree. Therefore, we conclude that C0 ⊆ A2

is a smooth a�ne algebraic variety of dimension 1, de�ned over k. Let C0 ⊆ P2 be the projective
closure of C0. Then one can check that there is a unique point at in�nity on C0; namely, [0 : 1 : 0],
which is Q-rational. One can also check that the point [0 : 1 : 0] is singular if d > 3.

Consider the projective algebraic set C ⊆ Pg+2, whose ideal is generated by the following 2g
homogeneous polynomials of degree 2:

Q1 = x2
1 − x0x2

Q2 = x2
2 − x1x3

...
Qg = x2

g − xg−1xg+1

Qg+1 = x0xg+1 − x1xg
Qg+2 = x1xg+1 − x2xg

...
Q2g−1 = xg−2xg+1 − xg−1xg

H = −x2
g+2 +

g∑
j=0

aj .x0xj +

g∑
j=0

aj+g+1.xgxj .

Let φ : A2 → Pg+2 be the map given by

(x, y) 7→ [1 : x : x2 : · · · : xg+1 : y].

We claim that φ is an isomorphism of algebraic varieties between C0 and the dehomogenisation
C ∩ {x0 = 1}. Indeed, an induction argument shows that for all [x0 : x1 : · · · : xg+2] ∈ C, one has

xjx
j−1
0 = xj1, (*)

7
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for all j = 1, . . . , g + 1. By de�nition, C ∩ {x0 = 1} is de�ned by dehomogenisations of the above
equations Q1, . . . Qg, Qg+1, . . . Q2g−1, H with respect to the 0th variable x0; i.e., by the following
polynomials:

Q′1 = x2
1 − x2

Q′2 = Q2

...
Q′g = Qg

Q′g+1 = xg+1 − x1xg
Q′g+2 = Qg+2

...
Q′2g−1 = Q2g−1

H ′ = −x2
g+2 +

g∑
j=0

aj .xj +

g∑
j=0

aj+g+1.xgxj = −x2
g+2 + f(x1).

Moreover, for all j = 1, . . . , g + 1, (*) reads xj = xj1 for the points on the "dehomogenised curve"
C∩{x0 = 1}. It follows that all points on C∩{x0 = 1} are of the form [1 : x1 : x2

1 : · · · : xg+1
1 : xg+2],

meaning φ−1(C ∩ {x0 = 1}) ⊆ C0. Moreover, the inverse of φ is given by

φ−1|C∩{x0=1} : [1 : x1 : x2
1 : · · · : xg+1

1 , xg+2] 7→ (x1, xg+2) ∈ C0,

for [1 : x1 : x2
1 : · · · : xg+1

1 : xg+2] ∈ C ∩ {x0 = 1}. Hence φ|C0 and φ−1|C∩{x0=1} are mutually
inverse, and moreover, they are both given by polynomial functions. Thus, it follows that φ is an
isomorphism of algebraic varieties, as claimed.

Notice that C∩{x0 = 0} consists of a unique point P∞ = [0 : · · · : 0 : 1 : 0], the point at in�nity,
and this point is k-rational. A straightforward computation shows that the rank of the Jacobian
matrix of C at the point P∞ is g− 1; that is, C is smooth at P∞. Since C0 is smooth and we have
established an isomorphism C0

∼= C ∩{x0 = 1} above, we conclude that C = C0 ∪{P∞} ⊆ Pg+2 is
a smooth projective variety of dimension 1, de�ned over k, containing C0 as a dense open subset.

De�nition 1.1.1. Let k be a �eld of characteristic 0 and let f =

d∑
j=0

ajx
j ∈ k[x] be a monic,

squarefree polynomial of odd degree d = 2g + 1 ≥ 3. Let C be the smooth projective variety of
dimension 1 constructed above. We then call C/k the hyperelliptic curve associated to f .

In what follows, we show that if C/k is the hyperelliptic curve over a �eld k of characteristic
0, associated to f with f monic, squarefree and of odd degree d = 2g + 1 ≥ 3, then the genus of
the curve C is g.

To this end, let C0 be as above and consider the morphism π0 : C0 → A1, (x, y) 7→ x, de�ned
over k. There exists a unique �nite morphism

π : C → P1,

extending π0 via P∞ 7→ [1 : 0]. Let p ∈ P1 be a point such that p 6= [1 : 0]; i.e., p ∈ A1. Then,
whenever f(p) 6= 0 (which holds for almost all p ∈ P1), the �bre f−1(p) consists of two points
(p,±

√
f(p)) where

√
f(p) ∈ k. This implies that the degree of the morphism π is 2 (see [21,

Proposition 2.6]). On the other hand, whenever p ∈ P1 is such that f(p) = 0, the �bre π−1(p)
consists of a single point and the rami�cation index ep is 2. Note also that π−1[1 : 0] = P∞ and
π rami�es at the point p = [1 : 0], meaning that ep = 2. Hence, the set of rami�cation points is
Ω = {p ∈ k : f(p) = 0} ∪ {[1 : 0]}.

Now, let gC denote the genus of the hyperelliptic curve C, then the Riemann-Hurwitz formula
(see [21, Chapter II, Theorem 5.9]) reads

2gC − 2 = 2(2gP1 − 2) +
∑
p∈Ω

(ep − 1)

= 2(2gP1 − 2) + deg(f)(2− 1) + (2− 1).

Since the genus gP1 of P1 is 0 and deg(f) = 2g + 1, we get that gC = g, as claimed.
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1.2 Jacobians of hyperelliptic curves

Let k be a �eld of characteristic 0 and let C : y2 = f(x) be a a hyperelliptic curve over k with
f monic, squarefree and of odd degree 2g+1. Let P∞ be the point at in�nity of C. In this section,
we want to sketch the construction of the Jacobian variety J(C) attached to the curve C.

Let Div(C) be the group of divisors on C (over the algebraic closure k) and let Pic(C) be
the quotient of Div(C) by the principal divisors div(f) where f ∈ k(C)×. Then there is a group
homomorphism

deg : Pic(C)→ Z,
[∑

niPi

]
7→
∑

ni,

where [D] ∈ Pic(C) denotes the linear equivalence class of a divisor D ∈ Div(C). We de�ne

De�nition 1.2.1. The Jacobian variety of C is given by

J(C) = ker(deg : Pic(C)→ Z).

The kernel ker(deg) is sometimes denoted by Pic0(C) and called the class group of C.

Note that we have to "justify" this de�nition; that is, we must endow the Abelian group J(C)
with the structure of an algebraic variety. This is explicitly done in [10] by D. Mumford over an
algebraically closed �eld. In the following, we present a sketch of this construction, closely following
[10]. For two divisors D1, D2 ∈ Div(C), we write D1 ≡ D2 to mean [D1] = [D2] in Pic(C).

• Let Cg = C × · · · × C be the product of g copies of C. Then Cg is an algebraic variety of
dimension g. Let Sg be the symmetric group on g letters. There is an action of Sg on Cg by
permutation of the factors. We can therefore form the quotient Symmg C = Cg/Sg of Cg by
the action of Sg. It can be shown that Symmg C is also an algebraic variety of dimension g.

Now if [D] is any element of J(C), then one can show that there are points P1, . . . , Pg such

that D ≡
g∑
i=1

Pi − g.P∞ (see [10, p. 3.29]). This yields a surjection

I : Symmg C → J(C),
g∑
i=1

Pi 7→
g∑
i=1

Pi − g.P∞.

De�ne Θ as the subset of J(C) of divisor classes of the form
g−1∑
i=1

Pi − (g − 1).∞. One can

explicitly de�ne a subvariety Z ⊆ Symmg C of dimension g such that the restriction

I|Z : Z → J(C) \Θ

is a bijection. Hence one can transfer the structure of algebraic variety from Z to J(C) \Θ.

• The aim in this step is to cover J(C) by a�ne pieces which are in bijection with to Z which
we know is an algebraic variety of dimension g from the previous step. The following type
of elements of J(C) is particularly important:

De�nition 1.2.2. Let Ω = {Pα = (α, 0) ∈ C(k) : f(α) = 0} ∪ {P∞}. Let T ⊆ Ω be a subset
of even cardinality. We de�ne

eT =

[ ∑
P∈T

P − |T |P∞
]
∈ J(C).

The following lemma summarises some important properties of eT . We will make a heavy
use of this lemma in the next section while computing the dimension of the 2-torsion of the
Jacobian.
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Lemma 1.2.3. Let T, T1, T2 ⊆ Ω be some subsets of even cardinality (so that the symmetric
di�erence T14T2 = (T1 ∪ T2) \ (T1 ∩ T2) also has even cardinality). Then

(i) 2eT = 0,

(ii) eT1
+ eT2

= eT14T2
,

(iii) eT1
= eT2

if and only if T1 = T2 or T1 = Ω \ T2.

Thus, the set of the eT 's forms a group isomorphic to (Z/2Z)2g.

Proof. See [10, Lemma 2.4].

We achieve our aim by the following lemma:

Lemma 1.2.4. We have

⋃
T

[
(J(C) \Θ) + eT

]
= J(C),

where T varies over the subsets T ⊆ Ω of even cardinality and eT is de�ned as above.

Proof. See [10, Lemma 2.5].

We know from the previous step that Z and J(C) \Θ are in bijection. Since (J(C) \Θ) + eT
is a translation of J(C) \Θ by an element eT using the group structure of J(C), we have an
isomorphism (J(C) \ Θ) + eT ∼= J(C) \ Θ. Hence, Z and (J(C) \ Θ) + eT are in bijection,
which allows us to de�ne the structure of an algebraic variety on (J(C) \Θ) + eT . Thus, we
have covered J(C) with the "a�ne pieces" isomorphic Z, as desired.

• Take one copy of Z for each T ⊆ Ω. To �nalise the construction of J(C), one has to show in
this last step that these copies can be glued together to give J(C) as a variety according to
their identi�cation as subsets of the Jacobian. This amounts to checking the compatibility
of algebraic variety structure on the intersection ((J(C) \Θ) + eT ) ∩ ((J(C) \Θ) + e′T ) with
T, T ′ ∈ Ω arbitrary subsets of even cardinality. For the proofs, we refer to [10, Lemma 2.6]
and [10, Proposition 2.7].

Since there exists a surjection Cg → J(C) and C is complete, it follows that J(C) is a complete
variety. Moreover, J(C) is an Abelian variety. By an Abelian variety, we mean the following:

De�nition 1.2.5. An Abelian variety is a complete variety A with an Abelian group law such that
the addition A×A→ A and inverse A→ A are morphisms.

Indeed, we just observed that J(C) is a complete variety and by de�nition, it has an Abelian
group structure. To show that the addition and inverse are morphisms, one relies on [10, Lemma
2.9].

Therefore, we conclude that given a hyperelliptic curve C over k, there exists an Abelian variety
J(C)/k naturally attached to C of dimension the genus g of C; namely, the Jacobian J(C). One
can actually show that J(C) is indeed de�ned over k (see [9] for more details).
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1.3 2-torsion of the Jacobian

Let k/Q be a �eld extension and C : y2 = f(x) be a hyperelliptic curve over k with f(x) ∈ k[x]
monic, squarefree and of odd degree. Let

f = f1 . . . fmk

be the factorisation of f over k into monic, irreducible factors f1, . . . , fmk . Let Gk = Gal(k/k) be
the absolute Galois group of k. Then the action of Gk on the points P ∈ C(k) linearly extends
to an action on J(C)[2], the 2-torsion subgroup of J [2]. One can then consider the Gk-invariant
points J(C)[2]Gk := J(k)[2] of J(C)[2] under the action of Gk. One of our aims in this section is
to prove the following theorem:

Theorem 1.3.1. In the above set-up, to every factor fi of f in k[x], we associate an element
Di ∈ J(k)[2] such that the Di's for i = 1, . . . ,mk, generate J(k)[2] and satisfy

mk∑
i=1

Di = 0.

Moreover, we have dim J(k)[2] = mk − 1; i.e., J(k)[2] ∼= (Z/2Z)mk−1.

Since J(C)/k is an Abelian variety of dimension g over a �eld k of characteristic 0, it is known
(see [9]) as a general fact that

J(C)[2] ∼= (Z/2Z)2g.

Note that this fact is a special instance of Theorem 1.3.1 when f factorises completely in k[x] and
in particular, this happens in k[x]. By Lemma 1.2.3, we know that {eT }T⊆Ω, where T ⊆ Ω varies
over the subsets of even cardinality, form a subgroup of J(C) isomorphic to (Z/2Z)2g. Therefore,
we conclude that the same collection {eT }T⊆Ω is the whole J(C)[2].

Now, let Ω0 = {Pα = (α, 0) ∈ C(k) : f(α) = 0}. For any α ∈ k such that f(α) = 0, we de�ne

e′α := e{Pα,∞} = [Pα +∞− 2∞] = [Pα −∞].

We have the following lemma:

Lemma 1.3.2. Let e′α where f(α) = 0 be de�ned as above. We have

(i) The classes {e′α}f(α)=0 generate J(C)[2] as a group,

(ii) The only relation between the e′α, where α varies over the roots of f(x), is given by∑
f(α)=0

e′α = 0. (*)

Proof. (i) Note that if Pα1
, Pα2

∈ Ω0 are distinct, then the part (ii) of Lemma 1.2.3 gives that
e′α1

+ e′α2
= e{Pα1

,Pα2
}. This implies that if T = {Pα1

, . . . , Pα2k
} ⊆ Ω0, where k ≤ g, is a subset of

even cardinality, then

eT = e′α1
+ · · ·+ e′α2k

.

Likewise, if T ⊆ Ω is a subset of even cardinality of the form T = {Pα1
, . . . , Pα2k−1

, P∞}, where
k ≤ g, then

eT = e′α1
+ · · ·+ e′α2k−1

.

Since {eT }T⊆Ω with T ⊆ Ω varying over subsets of even cardinality generates J(C)[2], it thus
follows that {e′α}f(α)=0 also generate J(C)[2], proving part (i).

(ii) Note that we can write ∑
f(α)=0

e′α = eT1
+ eT2

,
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where T1 = {P1, . . . , P2g} and T2 = {P2g+1,∞}. Since T1 = Ω \ T2, part (ii) and (iii) of Lemma
1.2.3 gives the relation (*). On the other hand, the "if" part of part (iii) of Lemma 1.2.3 also
implies that this is the only relation between e′α's. Indeed, this follows because as J(k)[2] is in
particular a (Z/2Z)-vector space, any relation between {e′α} is given by

∑
α∈A e

′
α = 0 with A ⊆ Ω.

Thus, the proof is complete.

Recall that we put Gk = Gal(k/k). Clearly there is an action of Gk on Ω0 given by σ.(α, 0) =
(σ(α), 0) for σ ∈ Gk and α ∈ k a root of f(x). This yields an action of Gk on {e′α}f(α)=0 via
σ.e′α = e′σ(α). Denote by Oi the orbit of an element e′αi ∈ {e

′
α}f(α)=0 so that

{e′α}f(α)=0 =

r⊔
i=1

Oi,

where r is the number of orbits. For all i = 1, . . . , r, we de�ne

Di :=
∑
e′α∈Oi

e′α.

Note that part (i) of Lemma 1.2.3 implies that

2Di = 2
∑
e′α∈Oi

e′α =
∑
e′α∈Oi

2e′α = 0,

which means that Di ∈ J(k)[2]. Moreover, since {e′α}f(α)=0 generates J(C)[2], it follows that
{Di}i=1,...,r generates J(k)[2] as a group.

Therefore, the following lemma concludes the proof of Theorem 1.3.1:

Lemma 1.3.3. In the above set-up, we have

(i) r = mk = the number of irreducible factors of f in k[x],

(ii) J(k)[2] ∼= (Z/2Z)mk−1.

Proof. (i) Note that by de�nition, the number r of orbits of the action of Gk on {e′α}f(α)=0 is
the same as the number of orbits of the action of Gk on Ω0. But this number is clearly mk.
Indeed, write f = f1 . . . fmk in k[x] with f ′is monic and irreducible for i = 1, . . . ,mk. If α is a
root of f(x), then there is a unique i ∈ {1, . . . ,mk} such that fi(α) = 0. Moreover since each fi is
irreducible, the orbit Gk.α contains all the roots of the irreducible factor fi. Thus the result follows.

(ii) The previous part now implies that J(k)[2] is generated by the elements {Di}i=1,...,mk .
Moreover, part (ii) of Lemma 1.3.2 implies that the only relation between the Di for i = 1, . . . ,mk

is given by
mk∑
i=1

Di = 0.

As J(k)[2] ⊆ J(C)[2] ∼= (Z/2Z)2g, it thus follows that J(k)[2] is a (Z/2Z)-module of rank mk − 1,
�nishing the proof.

We now present some results about the dimensions of the F2-vector spaces J(R)/2J(R) and
J(Qp)/2J(Qp), where Qp denotes the p-adic �eld for a prime number p.

Theorem 1.3.4. Let p be a prime and consider the p-adic extension Qp of Q. Let

dp =

{
1 if p = 2

0 otherwise
.

Let g be the genus of C; i.e., g = (deg(f) − 1)/2, and let mp denote the number of irreducible
factors of f(x) in Qp[x]. Then we have

dim J(Qp)/2J(Qp) = dim J(Qp)[2] + dpg = mp − 1 + dpg.
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Proof. See [8], where the author proves the fact that J(Qp) contains a subgroup of �nite index
isomorphic to g copies of the ring of integers in Qp. This leads to the desired conclusion via [16,
prop. 2.4].

Theorem 1.3.5. Let m∞ denote the number of irreducible factors of f(x) in R[x] and g be the
genus of C. Then we have

dim J(R)/2J(R) = m∞ − 1− g.

Proof. See [18, Proposition 5.4].

1.4 Galois cohomology

We review the basics of cohomology theory of groups, avoiding technicalities and tedious
constructions, and aiming at the results and constructions we will need in the subsequent sections.
Our main reference for this section is [13].

De�nition 1.4.1. Let G be a group. Then an Abelian group A is a (continuous) G-module if there
exists a (continuous) composition ρ : G × A → A, (σ, a) 7→ σa, which satis�es, for all a, b ∈ A,
σ, σ1, σ2 ∈ G, and the unit 1 ∈ G, the following conditions:

(i) σ(a+ b) = σa+ σb,
(ii) σ1(σ2a) = (σ1σ2)a,
(iii) 1a = a.

Example 1.4.2. Let K be a �eld of characteristic 0. Let G = Gal(K/K) be the absolute Galois
group of K. For a smooth curve C of genus g ≥ 1 over K, let J denote its Jacobian variety J(C).
Then we know that J is an Abelian variety over K. Moreover J(K) is a G-module. An instance
of this example when K = Q will subsequently be of our particular interest.

Let G be a group. For a G-module A, consider the Abelian group AG of G-invariant elements of
A. This association de�nes a functor F from the category of G-modules to the category of Abelian
groups.

Theorem 1.4.3. The functor F from the above discussion is a left-exact covariant functor. Hence
one can construct right derived functors

Hi(G, •), i = 1, 2, . . . ,

of F , from the category of G-modules to the category of Abelian groups. They are characterised by
the property that, given a short exact sequece

0→ A→ B → C → 0

of G-modules, there exists an associated long exact sequence, called long exact cohomolgy sequence,

0→ AG → BG → CG
δ−→ H1(G,A)→ H1(G,B)→ H1(G,C)→ H2(G,A)→ . . . ,

where the map δ is a connecting morphism.

Proof. See [5, p. 204, Theorem 1.1A].

De�nition 1.4.4. For an i ≥ 1, the Abelian group Hi(G,A) is called a cohomology group. In
case where G = Gal(L/K) is a Galois group (of a �eld extension K ⊆ L), the cohomolgy group
Hi(G,A) is called a Galois cohomology group. When G = Gal(K/K) is the absolute Galois group
of a �eld K, we often abreviate Hi(G,A) to Hi(K,A).

For a subgroup H of G, there are canonical morphisms Hi(G,A)→ Hi(H,A) for i = 1, 2, . . . ,
called restriction maps. Since we will be frequently using the restriction map on the �rst cohomol-
ogy groups, we want to give a description of H1(G,A) and see how this restriction map is induced.
We will also de�ne the in�ation map under the assumption that H is a normal subgroup of G. We
will �nally present a fundamental exact sequence relating these two maps.

Following [13], we de�ne the group Z1(G,A) of 1-cocyles as the maps x : G → A with the
property that, for all σ, τ ∈ G,
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x(στ) = σx(τ) + x(σ).

The subgroup B1(G,A) ⊆ Z1(G,A) of 1-coboundaries are the maps x : G→ A of the form

x(σ) = σa− a

for a �xed a ∈ A, where σ ∈ G. It can be shown that

H1(G,A) =
Z1(G,A)

B1(G,A)
.

Remark 1.4.5. Observe that when the action of G on A is trivial, one gets

H1(G,A) = Hom(G,A),

where Hom(G,A) is the group of homomorphisms from G to A.

Let H ⊆ G be a subgroup. If x : G → A ∈ Z1(G,A) is a 1-cocycle, then its restriction x|H to
H is clearly a 1-cocyle in Z1(H,A). Therefore, we get a map

res : H1(G,A)→ H1(H,A),

sending the class of a 1-cocycle to the class of its restriction to H.
Now, assume that H is a normal subgroup of G and consider the quotient G/H. Let AH be

the group of H-invariant elements of A. Then G/H acts on AH via σH.a = σ(a) for σH ∈ G/H
and a ∈ AH . Indeed, for any τ ∈ H,

τ(σ(a)) = σ(τ(a)) = σ(a).

So σ(a) ∈ AH and AH has a G/H-module structure. Moreover, if x : G/H → AH ∈ Z1(G/H,AH)
is a 1-cocylcle, then it induces a 1-cocycle in Z1(G,A) via the composition

G→ G/H
x−→ AH ↪→ A.

Hence we have obtained a map

inf : H1(G/H,AH)→ H1(G,A),

called in�ation.
We have an in�ation-restriction exact sequence:

Theorem 1.4.6. Let A be a G-module and let H be a normal subgroup of G. Then the sequence

0→ H1(G/H,AH)
inf−−→ H1(G,A)

res−−→ H1(H,A).

is exact.

Proof. See [13, p. 34, Theorem 4.6].

Example 1.4.7. In line with Example 1.4.2 above, we want to write the in�ation-restriction exact
sequence explicitely when G = Gal(K/K) and A = J(K). To this end, let L/K be a Galois
extension and let H = Gal(K/L). Then H is a normal subgroup of G. Hence, we have an
isomorphism G/H ∼= Gal(L/K). Also, since the action of H is continuous on J(K), we have
J(K)H = J(L). Therefore, the exact sequence reads

0→ H1(Gal(L/K), J(L))
inf−−→ H1(G, J(K))

res−−→ H1(Gal(K/L), J(K)).



Chapter 2

Bounding the rank in terms of the

Selmer group

In this chapter, we will de�ne the 2-Selmer group Sel(2)(Q, J), properly introduce the notion
of rank, and put a bound on the rank in terms of Sel(2)(Q, J). For this chapter and the rest of the
thesis, we restrict attention to the hyperelliptic curves over Q.

2.1 The 2-Selmer and Shafarevich-Tate groups

Let C be a hyperelliptic curve over Q. Let J be the Jacobian of C. Let K be an extension of
Q and let K denote the algebraic closure of K. Let G = Gal(K/K) be the absolute Galois group
of K. Consider the K-rational points J(K) of J . We give a �rst de�nition of the 2-Selmer group

Sel(2)(Q, J) of J over Q in terms of Galois cohomology groups. We closely follow the write up [15]
of B. Poonen.

Since multiplication by 2 map [2] is surjective on the K-rational points J(K) of J , we have a
short exact sequence

0→ J(K)[2]→ J(K)
[2]−→ J(K)→ 0,

where J(K)[2] is the group of 2-torsion points of J(K). Recall from Example 1.4.2 that there is an
action of G on J(K), which turns it into a continuous G-module. By de�nition, we can de�ne this
action by de�ning it on a divisor. Indeed, if σ ∈ G and D =

∑
P∈C nP (P ) ∈ Div(C) is a divisor

on C, then we de�ne the action as follows:

σ(D) = σ
( ∑
P∈C

nP (P )
)

:=
∑
P∈C

nPσ(P ).

It is easy to see that if D is of degree 0, then so is σ(D). Moreover, if D is a 2-torsion, then
2σ(D) = σ(2D) = σ(0) = 0. This implies that G also induces an action on the 2-torsion subgroup
J(K)[2] of J(K).

Associated to the above short exact sequence, by Theorem 1.4.3 we have a long exact cohomolgy
sequence

0→ J(K)[2]→ J(K)
[2]−→ J(K)→ H1(G, J(K)[2])→ H1(G, J(K))

[2]∗−−→ H1(G, J(K))→ · · · ,

where the map [2]∗ is functorially induced from the multiplication by 2 map. Thus, simplifying
the notation, we obtain the following short exact sequence:

0→ J(K)/2J(K)
δ−→ H1(K,J [2])→ H1(K,J)[2]→ 0, (*)

where

δ : J(K)/2J(K)→ H1(K,J [2])

15
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is called the coboundary morphism.
Let v be a place of Q. Then v is either a �nite place or is in�nity. In the �rst case, v is a prime

number p and Qv = Qp, the p-adic (local) �eld; and in the second, Qv = R, the real numbers. For
a discussion of this, see [12, �1].

For any place v of Q, let Gv = Gal(Qv/Qv) be the absolute Galois group of Qv. We have an
injection (see [24, Section 1])

Gv ↪→ G, σ 7→ σ |Q,

giving J(Q) a natural Gv-module structure and yielding a restriction map on Galois cohomology
groups as follows:

resv : H1(G, J(Q))→ H1(Gv, J(Q)).

Therefore, writing the exact sequence (*) with K = Q and K = Qv for all places v, the
construction of the resv maps de�ned above yields the following commutative diagram with exact
rows:

0 J(Q)/2J(Q) H1(Q, J [2]) H1(Q, J)[2] 0

0
∏
v
J(Qv)/2J(Qv)

∏
v
H1(Qv, J [2])

∏
v
H1(Qv, J)[2] 0

φ
ψ , (**)

where the products are over all the places v of Q.

De�nition 2.1.1. The 2-Selmer group Sel(2)(Q, J) of J over Q is de�ned as

Sel(2)(Q, J) = ker(φ) = ker
(
H1(Q, J [2])→

∏
v

H1(Qv, J)[2]
)

=
⋂
v

ker
(
H1(Q, J [2])→ H1(Qv, J)[2]

)
.

The Shafarevich-Tate group X(Q, J) of J over Q is de�ned as

X(Q, J) = ker
(
H1(Q, J)

Res−−→
∏
v

H1(Qv, J)
)

=
⋂
v

ker
(
H1(Q, J)

resv−−→ H1(Qv, J)
)
,

where Res is the product
∏
v resv of restriction maps over all the places v.

Remark 2.1.2. The Shafarevich-Tate group X(Q, J) has a useful interpretation with regard to
the Hasse's (Local-Global) Principle. Also it is not known in general if the Shafarevich-Tate group
X(Q, J) is �nite although it is conjectured to be so. See [6, �C.4] for a detailed discussion.

2.2 The rank of a Jacobian

In this section, we will properly de�ne rank J(Q). We obtain the following commutative
diagram with exact rows from the diagram (**) above:

0 J(Q)/2J(Q) H1(Q, J [2]) H1(Q, J)[2] 0

0 0
∏
v
H1(Qv, J)[2]

∏
v
H1(Qv, J)[2] 0

φ ψ

id
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to obtain the short exact sequence

0→ J(Q)/2J(Q)→ Sel(2)(Q, J)→X(Q, J)[2]→ 0, (***)

where X(Q, J)[2] is the 2-torsion of the Shafarevich-Tate group X(Q, J).
In what follows, we give a sketch of the proof to the important fact that the 2-Selmer group

Sel(2)(Q, J) is �nite group. For a detailed and general proof, we refer to [6, p. 282, Proposition
C.4.2].

De�nition 2.2.1. Let J be the Jacobian of a hyperelliptic curve C/Q. Let v be a place of Q and
let Iv ⊆ G = Gal(Q/Q) be an inertia for v. Consider the 2-torsion subgroup J [2] of J(Q). We say
that a cohomology class φ ∈ H1(Q, J [2]) is unrami�ed at v if the restriction map

res : H1(Q, J [2])→ H1(Iv, J [2])

is trivial on φ. For a �nite set S of places of Q, we denote by H1
S(Q, J [2]) the subgroup of

H1(Q, J [2]) consisting of cohomology classes that are unrami�ed at all places not in S.

Theorem 2.2.2. Let C : y2 = f(x) be a hyperelliptic curve with f(x) ∈ Q[x] squarefree, and let J

be its Jacobian. Then the 2-Selmer group Sel(2)(Q, J) is a �nite group of exponent 2.

Proof. Let S be the set

S = {∞, 2} ∪ {p | p2 divides disc(f)}.

It can be shown that S contains the primes of bad reduction of J together with ∞ and 2 (see
the statement of [6, C.4.2]). Then the strategy is to prove that the subgroup H1

S(Q, J [2]) of
H1(Q, J [2]) containing cohomology classes which are unrami�ed outside S is �nite, and then to
see that Sel(2)(Q, J) is contained in H1

S(Q, J [2]).

Since J [2] is the kernel of the isogeny J(Q)
[2]−→ J(Q), it is known to be �nite. Hence we have

a continuous action of G on the �nite set J [2]. This implies that G contains an open subgroup
that acts trivially on J [2]. Since the open subgroups of G are of the form Gal(K/Q) where K is
a �nite extension of Q, we conclude that there exists a �nite extension K/Q such that Gal(K,Q)
acts trivially on J [2].

Let GK be the absolute Galois group of K. An instance of Example 1.4.7 yields an exact
sequence

0→ H1(G/GK , J [2]GK )
inf−−→ H1(Q, J [2])

res−−→ H1(GK , J [2]).

Since res(H1
S(Q, J [2])) ⊆ res(H1

S(GK , J [2])), this shows that proving H1
S(GK , J [2]) is �nite would

imply H1
S(Q, J [2]) is �nite. Hence, we can replace Q by K in the previous paragraph and assume

that G acts trivially on J [2]. By Remark 1.4.5, this implies that

H1(Q, J [2]) = Hom(G, J [2]).

Note that by de�nition, any element of J [2] is killed by 2. This implies that the elements of
Hom(G, J [2]) correspond to �nite Abelian extensions of Q whose Galois group has exponent 2
by means of Kummer Theory (see [13]). Hence, the elements of H1

S(Q, J [2]) correspond to �nite
Abelian extensions of Q of exponent 2 that are unrami�ed outside of S. But it is known that there
are only �nitely many maximal Abelian extensions of exponent 2 that are unrami�ed outside S,
see [6, p. 265, Corollary C.1.8]. Thus, it follows that H1

S(Q, J [2]) is a �nite set.
Now, let φ ∈ Sel(2)(Q, J) and let v be a place not in S. Then v is a prime p 6= 2, at which J

has good reduction J̃ . Furthermore, the reduction map

J(Q)[2]→ J̃(Fp)

is injective; see [6, p. 263, Theorem C.1.4]. One can show that this implies that φ is unrami�ed at
v and hence, φ ∈ H1

S(Q, J).
Finally, it follows by de�nition of Sel(2)(Q, J) that it is a group of exponent 2.
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Having the exact sequence (***), this important theorem has two immediate �niteness conse-
quences. The �rst one is that the 2-torsion X(Q, J)[2] of the Shafarevich-Tate group is �nite (cf.
Remark 2.1.2). And the second one is

Corollary 2.2.3 (Weak Mordell-Weil). The group J(Q)/2J(Q) is a �nite group.

The Weak Mordell-Weil Theorem together with the theory of Néron-Tate heights (see [6, B.4])
implies the Mordell-Weil Theorem:

Theorem 2.2.4 (Mordell-Weil). J(Q) is a �nitely generated Abelian group and we have a decom-
position

J(Q) ∼= Zrank J(Q) ⊕ tors(J(Q)),

where tors(J(Q)) is a �nite group containing elements in J(Q) of �nite order, and rank J(Q) is
called the rank of J/Q.

Proof. See [3, �5, pp. 158-161].

Remark 2.2.5. The proof of Mordell-Weil nevertheless does not give a recipe to compute the rank.
So it still remains a mysterious invariant of the Jacobian.

2.3 Bound on the rank

Going back to the exact sequence (***), it is now clear that the members of the sequence all have
a structure of an F2-vector space. Therefore,

dimF2
J(Q)/2J(Q) + dimF2

X(Q, J)[2] = dimF2
Sel(2)(Q, J).

Moreover, if r = rankJ(Q), then Mordell-Weil implies that

J(Q)/2J(Q) ∼= (Z/2Z)r ⊕ tors(J(Q))/2 tors(J(Q)).

On the other hand,

tors(J(Q))/2 tors(J(Q)) ∼= J(Q)[2].

Therefore,

dimF2
J(Q)/2J(Q) = rank J(Q) + dimF2

J(Q)[2].

Thus, we have proved

Theorem 2.3.1. Let C/Q be a hyperelliptic curve and let J/Q denote its Jacobian. Dropping the
subscripts F2 from the notation, we obtain

rank J(Q) ≤ dim Sel(2)(Q, J)− dim J(Q)[2].



Chapter 3

Stoll's implementation of 2-Descent

In this chapter, our aim is to �nd a practical description of the 2-Selmer group, which allows
us to have an upper bound on dim Sel(2)(Q, J). Our main reference throughout this chapter is M.
Stoll's article, [23].

3.1 Notation

We �x some notation and give de�nitions that will be used throughout the thesis. We want
to restrict attention to the hyperelliptic curves C/Q, given by y2 = f(x) such that f(x) ∈ Z[x] is
monic, squarefree and of odd degree. However, we remark that M. Stoll also treats the case where
f(x) is of even degree. See [23, �5]. Observe that since f(x) is of odd degree, C has a unique point
at in�nity that is Q-rational. We denote this point by ∞.

For any �eld extension K of Q, we consider the algebra LK = K[T ]/(f(T )) de�ned by f(x) and
write it as a product of �nite �eld extensions of K as follows:

LK = LK,1 × · · · × LK,mK ,

where mK is the number of irreducible factors of f(x) in K[x] and each LK,mi corresponds to an
irreducible factor of f(x) in K[x] via the Chinese Remainder Theorem. The notions like the ring
of integers, the group of fractional ideals and the class group are available for the algebra LK ;
namely, we de�ne

OLK = OLK,1 × · · · × OLK,mK ,
I(LK) = I(LK,1)× · · · × I(LK,mK ),

Cl(LK) = Cl(LK,1)× · · · × Cl(LK,mK ).

Moreover, for an element α = (α1, . . . , αmK ) ∈ LK , we de�ne the norm NK(α) of α by

NK(α) =

mK∏
i=1

N
LK,i
K (αi),

where, for each i = 1, . . . ,mK , N
LK,i
K : LK,i → K is the usual �eld norm.

Finally, we remark that all the dimensions in this thesis are taken over the �nite �eld F2.

3.2 A more concrete description of the 2-Selmer group

The following group will replace the rather abstract cohomology group H1(Q, J [2]):

De�nition 3.2.1. We put

HK = ker(NK : L×K/(L
×
K)2 → K×/(K×)2),

where the map NK is induced by the norm map we have de�ned above.

19
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At this point, we want to make some simpli�cations on the notation. When K = Q, we will
omit the �eld from subscripts, and if K = Qv for a place v of Q, we will just use the subscript v.
With this convention, when we write L, for example, we actually mean LQ = Q[T ]/(f(T )). Or,
instead of the somewhat cumbersome notation HQv = ker(NQv : L×Qv/(L

×
Qv )2 → Qv×/(Qv×)2), we

will be writing Hv = ker(Nv : L×v /(L
×
v )2 → Qv×/(Qv×)2). This convention is to apply to any

object in this thesis that has a �eld as subscript.
Let Div0

⊥ denote the degree 0 divisors on C with support disjoint from the support of the
principal divisor div(y). Note that the support of div(y) contains the points with coordinates
(α, 0), where α is a root of f(x), and the point at in�nity. Then for any extension K of Q, we have
a homomorphism

FK : Div0
⊥(C)(K)→ L×K ,

∑
P

nPP 7−→
∏
P

(x(P )− θ)nP ,

where θ is the image of T under the reduction K[T ] → K[T ]/(f(T )). More precisely, θ is an
mK-tuple (θ1, . . . , θmK ) with each θi being a root of the ith irreducible factor of f(x). Hence the
map FK is given by

FK :
∑
P

nPP 7→
(∏

P

(x(P )− θ1), . . . ,
∏
P

(x(P )− θmK )
)
.

Theorem 3.2.2. The map FK above induces a homomorphism

δK : J(K)→ HK ,

with kernel 2J(K). The induced injective map J(K)/2J(K)→ HK will be denoted by δK as well.

Proof. The proof essentially relies on two lemmas. The �rst one shows that the function FK is a
well-de�ned map which maps to L×/(L×)2. This part makes use of Weil's Reciprocity and is not
very technical. And the second one shows that any point in J(K) can be represented by a divisor
from Div0

⊥(C)(K). For details, see [16, Proposition 3.3] or [17, Lemma 2.1 and Lemma 2.2]. E.
Schaefer's treatment in [16] is much more general, though.

The following theorem �nally establishes the important isomorphism H ∼= H1(Q, J [2]).

Theorem 3.2.3. For all extensions K of Q, there exists a natural isomorphism

HK
∼= H1(K,J [2]).

Moreover, δK from Theorem 3.2.2 above composed with this isomorphism is the coboundary mor-
phism

δ : J(K)/2J(K)→ H1(K,J [2])

from �2.1.

Proof. Let K be an extension of Q. We want to relate the two seemingly di�erent groups HK and
H1(K,J [2]). To this end, assume that deg(f) = d and remember that we assume d to be odd. Let
{α1, . . . , αd} be roots of f(x) in K. Then Theorem 1.3.1 implies that the classes of the divisors

D1 = (α1, 0)−∞, . . . , Dd = (αd, 0)−∞

generate J [2]. De�ne L to be the algebra K[T ]/(f(T )) and L to be the algebra K[T ]/(f(T )). So
we have

L ∼= K[T ]/(T − α1)× · · · ×K[T ]/(T − αn) ∼= K
d
.

Let µ2(L) denote the 2nd roots of unity in L. Clearly, µ2(L) ∼= {±1}d. Let

e2 : J [2]× J [2]→ {±1}

denote the Weil pairing on J [2]. We de�ne a map

w : J [2]→ µ2(L)
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via

D 7→ (e2(D,D1), . . . , e2(D,Dd))

for all D ∈ J [2] ∼= Pic0(C)[2]. Then, by functoriality of Galois cohomology, w induces a map

w∗ : H1(K,J [2])→ H1(K,µ2(L)).

On the other hand, we have an isomorphism

k : H1(K,µ2(L))→ L×/(L×)2.

Indeed, since L is a �nitely generated K-algebra, a generalised version of Hilbert's 90 implies that
H1(K,L

×
) = 0 (see [19, p. 152]). Therefore, k is a Kummer isomorphism which is obtained from

the long exact cohomology sequence associated to the following short exact sequence:

0→ µ2(L)→ L
× 2

−→ L
× → 0.

Now, we want to prove that the composition

k ◦ w : H1(K,J [2])→ L×/(L×)2

maps to HK and gives rise to a group isomorphism between H1(K,J [2]) and its image HK .
To this end, we �rst want to see that the sequence

0→ J [2]
w−→ µ2(L)

N−→ µ2(K)→ 1, (*)

is exact, where N denotes the norm map. The map w is injective by non-degeneracy of the Weil
pairing and the norm map N is clearly surjective. Note, moreover, that

dimF2
J [2] = d− 1, dimF2

µ2(L) = d, and dimF2
µ2(K) = 1,

where the �rst equality follows from Theorem 1.3.1. Hence, to prove the exactness at the middle,
it is enough to show that N ◦ w = 1. So let D ∈ J [2]: by Theorem 1.3.1 and the additivity of the
Weil pairing, we get

w(D) = (e2(D,D1), . . . , e2(D,Dd))

=
(
e2(D,D1), . . . , e2(D,Dd−1), e2(D,−

d−1∑
i=1

Di)
)

=
(
e2(D,D1), . . . , e2(D,Dd−1),

d−1∏
i=1

e2(D,Di)
)
.

Therefore,

N(w(D)) =
( d−1∏
i=1

e2(D,Di)
)2

= 1,

and the sequence (*) is exact. Hence Theorem 1.4.3 yields a long exact cohomology sequence:

· · · → µ2(L)
N−→ µ2(K)→ H1(K,J [2])

w∗−−→ H1(K,µ2(L))
N∗−−→ H1(K,µ2(K))→ . . . ,

where H1(K,µ2(L))
N∗−−→ H1(K,µ2(K)) is induced functorially by µ2(L)

N−→ µ2(K). But we have
the following Kummer isomorphisms:

H1(K,µ2(L)) ∼= L×/(L×)2 and H1(K,µ2(K)) ∼= K×/(K×)2.

Moreover, (−1, . . . ,−1) ∈ µ2(L) is mapped to −1 as d is odd. So the norm map N is surjective
and hence H1(K,J [2]) ∼= ker(N∗), as desired. Therefore, we have proved the �rst assertion of the
theorem.

For the second assertion, one can prove that the maps FK and k ◦ w ◦ δ coincide as injections
from J(K)/2J(K) to L×/(L×)2, where δ is the coboundary morphism. Since by Theorem 3.2.2,
FK induces δK , this can be shown to imply the desired result. For details and general case, refer
to [16, Theorem 2.3] or [17, Theorem 1.2].
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Suppose for simplicity that L is a number �eld; i.e. f(x) is irreducible over Q. Suppose α ∈ L
with NL

Q (α) = 1. Then, if the minimal polynomial of α over Q has degree d and constant term ad,
we have NL

Q (α) = (−1)dad = 1. Now, write

Lv = Qv[T ]/(f(T )) = Lv,1 × · · · × Lv,mv ,

where, as usual, mv is the number of irreducible factors of f(x) in Qv[x] and Lv,i/Qv are �nite
�eld extensions for i = 1, . . . ,mv. We then have a natural inclusion map

L→ Lv, α 7→ (α, . . . , α),

which is induced by the inclusion Q ↪→ Qv. Assume that the minimal polynomial of α ∈ Lv,i over
Qv has constant term Ci ∈ Qv for all i = 1, . . . ,mv so that NLv,i

Qv (α) = (−1)[Lv,i:Qv ]Ci. Then

Nv(α, . . . , α) =

mv∏
i=1

N
Lv,i
Qv (α) =

mv∏
i=1

(−1)[Lv,i:Qv ]Ci = (−1)dad = 1.

Therefore, we have obtained a map of groups

H = ker(N : L×/(L×)2 → Q×/(Q×)2)→ Hv = ker(Nv : L×v /(L
×
v )2 → Q×v /(Q×v )2).

This reasoning carries over to the case where L is an algebra; i.e., to the case where f(x) is only
assumed to be squarefree. We conclude that for any place v of Q, the inclusion Q ↪→ Qv induces
a map

resv : H → Hv.

Remember that we have seen in Theorem 3.2.2 that there are induced maps δv : J(Qv)→ Hv.
We obtain

Theorem 3.2.4. The 2-Selmer group of J over Q can be identi�ed to

Sel2(Q, J) = {ξ ∈ H | resv(ξ) ∈ δv(J(Qv)) for all places v},

where resv : H → Hv is the restriction map de�ned above.

Proof. By Theorem 3.2.3 we can form the following commutative diagram with exact rows:

0 J(Q)/2J(Q) H H1(Q, J)[2] 0

0
∏
v
J(Qv)/2J(Qv)

∏
v
Hv

∏
v
H1(Qv, J)[2] 0

∏
v resv

φ

∏
v δv

,

where the products are taken over all the places v. Assume ξ ∈ ker(φ) = Sel2(Q, J). By commu-
tativity of the right square, this is equivalent to requiring that∏

v

resv(ξ) ∈ ker
(∏

v

Hv →
∏
v

H1(Qv, J)[2]
)
.

By exactness of the second row, this is the same as requiring that∏
v

resv(ξ) ∈
∏
v

J(Qv)/2J(Qv).

Since 2J(Qv) is in the kernel of δv, this holds if and only if

resv(ξ) ∈ δv(J(Qv)),

for all places v, as needed.
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3.3 A �nite description of the 2-Selmer group

Although the new description of the 2-Selmer group we gave in Theorem 3.2.4 seems fairly
less abstract than the original de�nition, it still takes us to check in�nitely many conditions to
determine if an element ξ ∈ H belongs to Sel(Q, J), simply because there are in�nitely many places
v of Q. In this section, however, we will be able to reduce the set of places to consider to a �nite
set S. It is not a coincidence that S will turn out to be the same S that appeared in the statement
of Theorem 2.2.2.

Write L = Q[T ]/(f(T )) = L1×· · ·×Lm, where Li/Q are number �elds for i = 1, . . . ,m. Recall
that we have de�ned the group of fractional ideals of L as follows:

I(L) = I(L1)× · · · × I(Lm),

where I(Li) is the usual group of ideals of Li for each i = 1, . . . ,m.
Let v be a �nite place of Q; i.e., v = p is a prime, and let Ip(L) denote the subgroup of I(L)

consisting of ideals with support above p. In other words, Ip(L) is the subgroup of I(L) generated
by ideals of the form

p1 × · · · × pi × · · · × pm,

where, for each i = 1, . . . ,m, pi is a prime ideal of Li above p. Therefore, a typical element of
Ip(L) can be written as ( g1∏

i=1

p
n1,i

1,i , . . . ,

gm∏
i=1

p
nm,i
m,i

)
,

where, for each j = 1, . . . ,m, pj,i is a prime ideal of Li above p for all i = 1, . . . , gj and nj,i ∈ Z.
For any prime p, the norm of an element of Ip(L) is given by

N
( g1∏
i=1

p
n1,i

1,i , . . . ,

gm∏
i=1

p
nm,i
m,i

)
=

m∏
j=1

gm∏
i=1

N(pj,i)
nj,i .

This motivates the following de�nition:

De�nition 3.3.1. Let L be as above and p be a prime. We de�ne

Ip = ker(N : Ip(L)/Ip(L)2 → Ip(Q)/Ip(Q)2).

Observe that for any prime p, we have an isomorphism (see [22, Theorem 2.14])

Ip(L) ∼= I(Lp).

To see this, suppose for simplicity that L is a number �eld. Let p be a prime number and assume
p1, . . . , pn are primes of L over p. Then we have

I(Lp) = I(L⊗Q Qp) ∼= I(Lp1)× · · · × I(Lpn).

Therefore, this isomorphism assigns to an ideal I ∈ Ip(L) the n-tuple (Ip1 , . . . ,Ipn) of localisations
of I at the various prime ideals of L above p. One then generalises this reasoning to an algebra L.

De�nition 3.3.2. For any prime p, denote by

valp : Hp → Ip,

the map induced by L×p → I(Lp) that sends α ∈ L×p to the ideal (α) ∈ I(Lp) it generates.

Via the identi�cation Ip(L) ∼= I(Lp), it is clear that the map val is well-de�ned. The following
is the last de�nition of this section:

De�nition 3.3.3. LetL = Q[T ]/(f(T )) be as above.

(i) For a �nite set S of places of Q, we put
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IS(L) =
∏

p∈S\{∞}

Ip(L) ⊆ I(L);

that is, IS(L) is the group generated by ideals in I(L) with support above S \ {∞}.
(ii) We de�ne

val : H → I(L)/I(L)2.

The map val is induced by the map associating to an element α ∈ H the principal ideal (α) ∈ I(L)
it generates.

In the following lemma, we present some useful dimension results for various spaces we have
de�ned so far.

Lemma 3.3.4. Let p be a prime and consider the p-adic �eld Qp. Let dp be as in Theorem 1.3.4.
We have

(i) dimHp = 2 dim J(Qp)/2J(Qp) = 2(mp − 1 + dpg),

(ii) dim Ip = mp − 1.

Proof. (i) If M is a p-adic local �eld; that is, if it is a �nite extension of Qp for a prime p, then we
know that (see [20, Chapter II, Corollary to Theorem 3.3])

dimM×/(M×)2 = 2 + dp[M : Qp],

where [M : Qp] is the degree of the extension M/Qp. Recall that dp = 0 if p 6= 2 and dp = 1 if
p = 2. Since Lp is the product of mp-many p-adic local �elds, we obtain

dimL×p /(L
×
p )2 = 2mp + deg(f)dp.

Moreover, as deg(f) = 2g + 1 is odd by assumption, the norm map Np : L×p /(L
×
p )2 → Q×p /(Q×p )2

is surjective. Thus,

dimHp = dimL×p /(L
×
p )2 − dimQ×p /(Q×p )2 = 2mp + (2g + 1)dp − 2− dp = 2(mp − 1 + dpg),

as required. Finally, this is equal to 2 dim J(Qp)/2J(Qp) by Theorem 1.3.4.

(ii) Remember we noted that

Ip(L) ∼= I(Lp) ∼= I(Lp1)× · · · × I(Lpn),

where pi's are the prime ideals of L lying above p. But the number of such primes is precisely mp.
Therefore

dim Ip(L)/Ip(L)2 = dim I(Lp)/I(Lp)
2 = mp.

On the other hand, the norm map N : Ip(L)/Ip(L)2 → Ip(Q)/Ip(Q)2 is clearly surjective. There-
fore,

dim Ip = dim Ip(L)/Ip(L)2 − dim Ip(Q)/Ip(Q)2 = mp − 1,

as needed.

Let p be a prime. Recall that we have de�ned the maps δp : J(Qp)/2J(Qp) → Hp (see �3.2)
and valp : Hp → Ip. Therefore, one can form the sequence

0→ J(Qp)/2J(Qp)
δp−→ Hp

valp−−→ Ip ⊆ Ip(L)/Ip(L)2

and study if it is exact or not. The following technical lemma, the proof of which is omitted due
to its being so, will immediately imply that this sequence is actually exact for almost all primes p.

Lemma 3.3.5. Suppose that p is an odd prime such that p2 does not divide disc(f). Then the
composition

valp δp : J(Qp)/2J(Qp)→ Ip
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is the trivial map.

Proof. See [23, Lemma 4.5].

Corollary 3.3.6. If p is an odd prime such that p2 does not divide the discriminant disc(f) of f ,
then the sequence

0→ J(Qp)/2J(Qp)
δp−→ Hp

valp−−→ Ip → 0

is exact.

Proof. We know that the map δp is injective and valp is surjective. We also know from the previous
lemma that valp δp = 0.

Moreover, since p is odd, Lemma 3.3.4 together with Theorem 1.3.4 implies

dimHp = 2(mp − 1) = dim J(Qp)/2J(Qp) + dim Ip.

This proves the exactness at Hp and concludes the proof.

The above corollary will be crucial in simplifying the description of the 2-Selmer group to a
�nite set S. Before we state this simpli�cation as a theorem, we want to study a commutative
diagram which will be helpful in proving it.

Suppose that L is a number �eld. Note that there exists an isomorphism

I(L)→
∏
p

Ip(L),
∏

pnp 7→
(∏

p|p

pnp

)
p
,

where the product runs over all primes p. This isomorphims induces an isomorphism

I(L)/I(L)2 →
∏
p

Ip(L)/Ip(L)2.

Moreover, via the natural identi�cation(∏
p|p

pnp

)
p
↔
∏
p

∏
p|p

pnp ,

we will not distinguish between the elements of I(L)/I(L)2 and
∏
p Ip(L)/Ip(L)2. Therefore, we

can form the following commutative diagram:

0 J(Q)/2J(Q) H I(L)/I(L)2

0
∏
p
J(Qp)/2J(Qp)

∏
p
Hp

∏
p
Ip(L)/Ip(L)2

δ val

∏
p resp∏

p δp
∏
p valp

, (*)

where the products are over all the primes p. The commutativity of the left square is clear by the
isomorphisms H ∼= H1(Q, J [2]) and Hp

∼= H1(Qp, J [2]) we obtained in Theorem 3.2.3. And the
commutativity of the right square follows from the isomorphism we have de�ned above and the
identi�cation Ip(L) ∼= I(Lp). Note that whenever the products are taken over odd primes p such
that p2 does not divide disc(f), the sequence at the bottom is exact by Corollary 3.3.6.

We have also proved

Lemma 3.3.7. We have

val =
∏
p

valp resp,

where p runs over all the primes.

We �nally obtain the following practical description of the 2-Selmer group:

Theorem 3.3.8. Let S = {∞, 2} ∪ {p | p2 divides disc(f)}. Then
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Sel(2)(Q, J) = {ξ ∈ H | val(ξ) ∈ IS(L)/IS(L)2 and resv(ξ) ∈ δv(J(Qv)) for all v ∈ S}.

Proof. Recall that from Theorem 3.2.4, we have

Sel2(Q, J) = {ξ ∈ H | resv(ξ) ∈ δv(J(Qv)) for all places v}.

Call the set given in the theorem A. We must show that A = Sel(2)(Q, J).
First, assume that ξ ∈ Sel(2)(Q, J). This means that

resv(ξ) ∈ δv(J(Qv))

for all places v. This implies in particular that resv(ξ) ∈ δv(J(Qv)) for all v ∈ S. So, to show
that ξ ∈ A, we only need to see that val(ξ) ∈ IS(L)/IS(L)2. By Lemma 3.3.7, this is equivalent to
showing that ∏

p

valp resp(ξ) ∈ I(L)/I(L)2

has support above S; i.e. that if p /∈ S, then valp resp = 0. But we know that whenever p /∈ S, the
sequence at the bottom of the diagram (*) is exact. Hence, since resv(ξ) ∈ δv(J(Qv)) for all places
v, we get valp resp(ξ) = 0 if p /∈ S. Thus, ξ ∈ A and Sel(2)(Q, J) ⊆ A.

Conversely, assume that ξ ∈ A. Then to show that ξ ∈ Sel(2)(Q, J), we only need to show that
whenever p /∈ S,

resp(ξ) ∈ δp(J(Qp)).

That ξ ∈ A implies that val(ξ) ∈ IS(L)/IS(L)2, which implies that valp resp(ξ) = 0 as p /∈ S. Hence
by Corollary 3.3.6, it follows that resp(ξ) ∈ δp(J(Qp)). Thus, ξ ∈ Sel(2)(Q, J) and A ⊆ Sel(2)(Q, J).

3.4 A �rst bound on the dimension of the 2-Selmer group

Based on the new description of the 2-Selmer group we gave in Theorem 3.3.8, we derive a
�rst bound on dim Sel(Q, J), hence on rank J(Q). We continue to consider L as before. Moreover,
throughout this section,

S = {∞, 2} ∪ {p | p2 divides disc(f)},

as above.

De�nition 3.4.1. For any prime p ∈ S, we put Jp = δp(J(Qp)) ⊆ Hp, Gp = valp(Jp) ⊆ Ip, and
de�ne

G =
∏

p∈S\{∞}

Gp ⊆ I(L)/I(L)2.

Notice that when p /∈ S, we have valp δp(J(Qp)) = 0 by Lemma 3.3.5.

We approximate Sel(2)(Q, J) by

S̃el = {ξ ∈ L×/(L×)2 | val(ξ) ∈ G} ⊇ Sel(2)(Q, J).

Lemma 3.4.2. We have

Sel(2)(Q, J) ⊆ S̃el.

Moreover, S̃el is a �nite group of exponent 2 and hence, has a structure of a �nite-dimensional
F2-vector space.
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Proof. Let ξ ∈ Sel(2)(Q, J). Then in particular, resp(ξ) ∈ δp(J(Qp)) for all p ∈ S \ {∞}. So
valp resp(ξ) ∈ valp δp(J(Qp)) for all p ∈ S \ {∞}. Since valp resp(ξ) = 0 for all p /∈ S, this means
that val(ξ) ∈ G, as needed.

Moreover, since it is the image of a group under a homomorphism, Gp is a group for each
p ∈ S \ {∞}. Also, since Gp ⊆ Ip, it is a �nite group by Lemma 3.3.4. Hence, since G is a �nite

product of Gp's, it is a �nite group. But we have S̃el = val−1(G) and val is a group homomorphism.

Thus, S̃el is a �nite group. Finally observe that S̃el ⊆ H, which implies that S̃el is of exponent 2
as H is.

In the proof of the following important lemma, we show that the containment above is a proper
one:

Lemma 3.4.3. We have

dim Sel(2)(Q, J) ≤ dim S̃el− 1.

Proof. Consider the norm map

N : L×/(L×)2 → Q×/(Q×)2.

By Theorem 3.4.2 above, Sel(2)(Q, J) ⊆ S̃el and by de�nition, we have Sel(2)(Q, J) ⊆ ker(N).
Therefore,

Sel(2)(Q, J) ⊆ S̃el ∩ ker(N) ⊆ S̃el. (*)

It is clear that −1 ∈ S̃el as val(−1) ∈ G. On the other hand, we have N(−1) = (−1)deg(f) = −1
as deg(f) is odd. This means that −1 /∈ ker(N). Hence we have found an element, namely −1, in
S̃el which is not in the intersection S̃el ∩ ker(N). Thus, the second containment in (*) is indeed
proper. Since S̃el is �nite over F2 by the above lemma, this implies that

dim Sel(2)(Q, J) ≤ dim
(
S̃el ∩ ker(N)

)
< dim S̃el,

yielding in particular

dim Sel(2)(Q, J) ≤ dim S̃el− 1,

as needed.

We derive an upper bound on dim Sel(2)(Q, J) by �nding the dimension of the larger group S̃el.
To this end, consider the subgroup

W0 = ker(val : L×/(L×)2 → I(L)/I(L)2) ⊆ L×/(L×)2,

where the val map is induced by the maps

Li → I(Li), α 7−→ (α)

on each "component" Li of the algebra L. Since 1 ∈ G, it is obvious that W0 ⊆ S̃el. Moreover,
with the following lemma, the dimension of W0 turns out to be easy to compute.

Lemma 3.4.4. There is an exact sequence

0→ O×L /(O
×
L )2 →W0 → Cl(L)[2]→ 0.

Proof. Apply the Snake Lemma to the diagram

L× L× L×/(L×)2 0

0 I(L) I(L) I(L)/I(L)2 0

2

val

2

to get an exact sequence

O×L
2

−→ O×L →W0 → Cl(L)
2

−→ Cl(L),
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from which we extract the desired short exact sequence.

Therefore, we get

dimW0 = dimO×L /(O
×
L )2 + dim Cl(L)[2].

Secondly, we let

W = G ∩ val(L×/(L×)2) ⊆ I(L)/I(L)2.

We have

Lemma 3.4.5. In the above set-up, we have

(i) dim S̃el = dimW0 + dimW ,

(ii) W = ker(G→ Cl(L)/2 Cl(L)).

Proof. (i) Consider the following group homomorphism

S̃el
ϕ−→W = G ∩ val(L×/(L×)2), ξ 7→ val(ξ).

The map ϕ is surjective by de�nition of S̃el and by surjectivity of val onto val(L×/(L×)2). We
claim that W0 = ker(ϕ). Notice �rst that the inclusion ker(ϕ) ⊆W0 is clear.

To show that W0 ⊆ ker(ϕ), suppose ξ ∈W0. This means that val(ξ) = 0. Looking at its image
under the right-most vertical map in the commutative diagram (*) from the previous section, we
see that at each p ∈ S \ {∞}, val(ξ) maps to 0 in Ip(L)/Ip(L)2. This means, by commutativity of
the diagram (*), that valp resp(ξ) = 0 for all p ∈ S \ {∞}. But obviously for each p ∈ S \ {∞},
1 ∈ δp(J(Qp)) as δp(J(Qp)) is a group. Thus, val(ξ) ∈ G. This implies that ξ ∈ ker(ϕ) and hence
W0 ⊆ ker(ϕ).

Therefore, it follows that

dim S̃el = dim ker(ϕ) + dim im(ϕ) = dimW0 + dimW ,

as needed.

(ii) First we claim that W ⊆ ker(G → Cl(L)/2 Cl(L)). So let val(ξ) ∈ W be arbitrary
where ξ ∈ S̃el. Since val(ξ) is the class of the principal (ξ) ideal generated by ξ, we see that
val(ξ) ∈ ker(G→ Cl(L)/2 Cl(L)), as claimed.

Conversely, if I ∈ ker(G → Cl(L)/2 Cl(L)), then I is the square of a principal ideal, hence is
a itself principal ideal, say, (ζ). Then ζ ∈ S̃el with val(ζ) = I and hence I ∈ G ∩ val(L×/(L×)2).
Thus, ker(G→ Cl(L)/2 Cl(L)) ⊆W .

The following number-theoretical lemma is the last result we prove in this section before the
main theorem.

Lemma 3.4.6. We have dimO×L /(O
×
L )2 = m∞.

Proof. Let L ∼= L1 × · · · × Lm as before. Let r be the sum of the numbers of real embeddings of
all the number �elds Li in L and s the sum of the numbers of pairs of complex embeddings of Li
in L. We begin by observing that m∞ = r + s. To see this, factorise f into its irreducible factors
in R[x]:

f(x) = f1 . . . frfr+1 . . . fm∞ ,

where fi are of degree 1 for i = 1, . . . , r and are of degree 2 for i = r + 1, . . . ,m∞. Hence,
deg f = r + 2(m∞ − r). Since deg(f) = r + 2s, this gives that m∞ − r = s.

Note that Dirichlet's Unit Theorem (see [12, Chapter 1, �7]) is applicable to the algebra L as

O×L ∼=
m∏
i=1

O×Li .
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Thus, we obtain

O×L /(O
×
L )2 ∼= O×L [2]× (Z/2Z)r+s−1,

where r + s− 1 is called the rank of O×L . Since O
×
L [2] = µ2(L) = {±1}, we obtain

dimO×L /(O
×
L )2 = dimO×L [2] + rankO×L

= 1 + r + s− 1

= r + s,

from which the result follows.

The following is the main theorem of this section:

Theorem 3.4.7 (Stoll). One has

dim Sel2(Q, J) ≤ m∞ − 1 + dim Cl(L)[2] + dim ker(G→ Cl(L)/2 Cl(L)).

Proof. By Lemma 3.4.4 and Lemma 3.4.6, we get

dimW0 = dimO×L /(O
×
L )2 + dim Cl(L)[2] = m∞ + dim Cl(L)[2].

Hence, using Lemma 3.4.3 and Lemma 3.4.5, we get

dim Sel(2)(Q, J) ≤ dim S̃el− 1

= dimW0 + dimW − 1

= m∞ − 1 + dim Cl(L)[2] + dim ker(G→ Cl(L)/2 Cl(L)),

as desired.

Corollary 3.4.8. Let C : y2 = f(x) be a hyperelliptic curve with f(x) ∈ Q[x] monic, squarefree
and of odd degree. One has the following bound on rank J(Q):

rank J(Q) ≤ m∞ −m+ dim Cl(L)[2] + dim ker(G→ Cl(L)/2 Cl(L)),

where m is the number of irreducible factors of f(x) in Q[x].

Proof. This directly follows from Theorem 2.3.1 and Theorem 3.4.7.
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Chapter 4

A re�ned estimation

We describe the idea in the article [4] of Harris B. Daniels, Àlvaro Lozano-Robledo and Erik
Wallace. They obtain stronger bounds on dim Sel(2)(Q, J) for certain special classes of hyperelliptic
curves.

4.1 Adding a condition at in�nity

Similarly to the previous chapter, we approximate Sel(2)(Q, J) by a larger subgroup of L×/(L×)2,
whose dimension is easier to estimate.

Recall that we have de�ned for all p ∈ S \ {∞}, Jp = δp(J(Qp)). For the place at in�nity, we
de�ne in a similar way:

J∞ = δ∞(J(R)).

Recall also the maps

res∞ : H → H∞ and val : H → I(L)/I(L)2

we have de�ned in the previous chapter. Finally, for S = {∞, 2} ∪ {p | p2 divides disc(f)}, recall
that we have de�ned Gp = valp(Jp) and put

G =
∏

p∈S\{∞}

Gp ⊆ I(L)/I(L)2.

With the notations as above, we now put

Ŝel = {ξ ∈ L×/(L×)2 | val(ξ) ∈ G, res∞(ξ) ∈ J∞}.

Clearly, one has

Ŝel = S̃el ∩ res−1
∞ (J∞).

Being the intersection of the �nite subgroup S̃el of exponent 2 with the subgroup res−1
∞ (J∞) of

L×/(L×)2, the above equality shows that Ŝel is itself a �nite group of exponent 2 and hence has
the structure of a �nite-dimensional F2-vector space. Moreover, we have

Lemma 4.1.1. One has the following containments:

Sel(2)(Q, J) ⊆ Ŝel ⊆ S̃el.

Proof. As we noted above, Ŝel = S̃el ∩ res−1
∞ (J∞). So the second containment is clear. Also,

having already proved in Lemma 3.4.2 that Sel(2)(Q, J) ⊆ S̃el, to prove the �rst containment, it is
enough to prove that res∞(ξ) ∈ J∞ whenever ξ ∈ Sel(2)(Q, J). But this obviously follows from the
de�niton of Sel(2)(Q, J) in Theorem 3.2.4.

Since Ŝel consists of elements in S̃el satisfying an extra condition at in�nity, we can rightfully
expect the upper bound on dim Sel(2)(Q, J) obtained by approximating by dim Ŝel to be more
precise.

31
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4.2 Restriction map at in�nity

In this section, we will look more closely at the map res∞ and see that it actually agrees with
the signature map sgntr.

We restrict ourselves to the case where f(x) has n ≥ 3 real roots and is of degree n. In this
case, the algebra L de�ned by f(x) is said to be totally real. So if we write

L ∼= L1 × · · · × Lm,

then Li is a totally real number �eld for each i = 1, . . . ,m. We de�ne

τi : L ↪→ R, i = 1, . . . , n,

an embeddings of the algebra L, via

τi(α) = τi(α1, α2, . . . , αm) := τi(αj),

where (α1, . . . , αm) ∈ L, and τi : Lj ↪→ R is an embedding of the real number �eld Lj with αj ∈ Lj .
Note that given α = (α1, . . . , αm) ∈ L, for each i = 1, . . . , n, there exists a unique αj ∈ Lj such
that τi is an embedding of Lj . So the map is well-de�ned. In particular, for each i = 1, . . . ,m,
there are [Li : Q]-many real embeddings of Li among all the embeddings τ1, . . . , τn so that

m∑
i=1

[Li : Q] = deg(f) = n,

the number of all embeddings τ1, . . . , τn of the algebra L. Finally, we can, and do, order the
embeddings τ1, . . . , τn in accordance with the ordering of the number �elds L1, . . . , Lm.

Since f has all real roots and is of degree n, we have

L∞ = R[T ]/(f(T )) ∼= Rn

as R-algebras. Also,

R×/(R×)2 = {±1}.

Hence, by de�nition,

res∞ : H = ker(N : L×/(L×)2 → Q×/(Q×)2)→ H∞ = ker(N∞ : (Rn)×/((Rn)×)2 → {±1}),

where N∞ is induced by the norm map

(αi, . . . , αn) 7→
∏
i

αi ∈ R×.

Suppose α = (α1, . . . , αm) ∈ H, then N(α) =
∏
i τi(α) = 1. We notice that

res∞(α) = (τ1(α), . . . , τn(α)),

so that

N∞(res∞(α)) =
∏
i

τi(α) = 1,

as required. We extend the domain of res∞ to L×/(L×)2 and still call the resulting map res∞.
That is, we have de�ned

res∞ : L×/(L×)2 → {±1}n, α 7−→ (τ1(α), . . . , τn(α)).

Consider now the signature homomorphism

sgntr : L× → {±1}n,

given by

α 7→
(
τi(α)

|τi(α)|

)
i=1,...,n

.
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We obtain

Proposition 4.2.1. It follows that res∞ agrees with sgntr in the sense that for any α ∈ L×/(L×)2,
if α̃ ∈ L× denotes its lift to L×, then

res∞(α) = sgntr(α̃).

Proof. Let α ∈ L×/(L×)2 be arbitrary. Note �rst that if ᾱ and α̃ are two di�erent lifts of α to
L×, then sgntr(ᾱ) = sgntr(α̃). So, if i ∈ {1, . . . , n} is arbitrary, then we want to show that(

τi(α̃)

|τi(α̃)|

)
= τi(α) mod (R×)2.

But τi(α) mod (R×)2 ∈ {±1}. Hence this is obvious by a sign analysis.

Now, let O×,+L ⊆ O×L be the subgroup of totally positive units of OL. These are by de�nition
the elements α ∈ O×L such that τi(α) > 0 for all i = 1, . . . , n. From Proposition 4.2.1, it follows
that

ker
(

res∞ |O×L /(O×L )2

)
= O×,+L /(O×L )2.

De�nition 4.2.2. We put

ρ∞ = dim
(
O×,+L /(O×L )2

)
,

and

j∞ = dim
(

res∞
(
O×L /(O

×
L )2
)
∩ J∞

)
.

In particular, if every totally positive unit of L is a square in L, then we have ρ∞ = 0.

Proposition 4.2.3. We have

dim
(
O×L /(O

×
L )2 ∩ res−1

∞ (J∞)
)

= j∞ + ρ∞.

Proof. Considering the surjective group homomorphism

res∞ |O×L /(O×L )2 : O×L /(O
×
L )2 ∩ res−1

∞ (J∞)→ res∞(O×L /(O
×
L )2) ∩ J∞,

it clearly follows from above that

dim
(
O×L /(O

×
L )2 ∩ res−1

∞ (J∞)
)

= dim
(

res∞
(
O×L /(O

×
L )2
)
∩ J∞

)
+ dim ker

(
res∞ |O×L /(O×L )2

)
= dim

(
res∞

(
O×L /(O

×
L )2
)
∩ J∞

)
+ dim

(
O×,+L /(O×L )2

)
= j∞ + ρ∞.

Remark 4.2.4. In [4], the above proposition and construction is only done for number �elds.
Hence, we have generalised this to algebras. This will allow us to generalise the re�nement of the
bound on the rank they obtained in [4, Proposition 2.25] to algebras as well. See Theorem 4.5.1.

4.3 A new bound on the dimension of the 2- Selmer group

As a piece of notation, we begin by putting LJ∞ = res−1
∞ (J∞) to have

Ŝel = {ξ ∈ LJ∞ | val(ξ) ∈ G}.

As in �3.4, we will de�ne certain subspaces Ŵ0 ⊆ LJ∞ and Ŵ ⊆ I(L)/I(L)2 and compute the
dimension of Ŝel with the help of these subspaces.

Indeed, we put

Ŵ0 = ker(val : LJ∞ → I(L)/I(L)2) ⊆ LJ∞ .
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and

Ŵ = G ∩ val(LJ∞) ⊆ I(L)/I(L)2.

Observe that the subspaces Ŵ0 and Ŵ are analogues of the ones we have de�ned in �3.4. Observe
also that

dim(Ŵ0) = dim(W0 ∩ LJ∞) ≤ dim(W0),

and

dim(Ŵ ) = dim(W ∩ val(LJ∞)) ≤ dim(W ).

The following two lemmas should therefore look familiar:

Lemma 4.3.1. Let the subspaces Ŵ0 and Ŵ be de�ned as above. We have

dim Ŝel = dim Ŵ0 + dim Ŵ .

Proof. Consider the group homomorphism

Ŝel
ϕ̂−→ G ∩ val(LJ∞), ξ 7→ val(ξ).

We claim that W0 = ker(ϕ̂). First observe that ϕ̂ is surjective by construction. Moreover, the
containment ker(ϕ̂) ⊆W0 is a triviality.

Conversely, if ξ ∈ Ŵ0, to show that ξ ∈ ker(ϕ̂), we only need to show val(ξ) ∈ G. But we have
already showed this in Lemma 3.4.5. Thus, we conclude that ker(ϕ̂) = W0.

Before we state the next lemma, we need to introduce some notation. Let

U = (O×L /(O
×
L )2) ∩ LJ∞ and Cl(LJ∞) = I(L)/P (LJ∞),

where P (LJ∞) is the group of principal fractional ideals A = (α) with a generator α ∈ L such that
res∞(α) ∈ J∞. Moreover, we put

Cl(LJ∞)[2] = {[A] ∈ Cl(LJ∞) | A2 = (α) for some α ∈ LJ∞}.

Note that then we have an exact sequence

0→ O×L ∩ res−1
∞ (J∞)→ L× ∩ res−1

∞ (J∞)→ I(L)→ Cl(LJ∞)→ 0.

We obtain

Lemma 4.3.2. There exists a short exact sequence

0→ U → Ŵ0 → Cl(LJ∞)[2]→ 0.

In particular,

dim Ŵ0 = dimU + dim Cl(LJ∞)[2].

Proof. Similarly to Lemma 3.4.4, one applies the Snake Lemma to the diagram

L× ∩ res−1
∞ (J∞) L× ∩ res−1

∞ (J∞) LJ∞ 0

0 I(L) I(L) I(L)/I(L)2 0

2

val

2

to get an exact sequence

O×L ∩ res−1
∞ (J∞)

2

−→ O×L ∩ res−1
∞ (J∞)→ Ŵ0 → Cl(LJ∞)

2

−→ Cl(LJ∞),

which induces a short exact sequence

0→ O×L ∩ res−1
∞ (J∞)/(O×L ∩ res−1

∞ (J∞))2 → Ŵ0 → Cl(LJ∞)[2]→ 0.
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Therefore, it remains to see that

O×L ∩ res−1
∞ (J∞)/(O×L ∩ res−1

∞ (J∞))2 ∼= O×L /(O
×
L )2 ∩ res−1

∞ (J∞).

To this end, consider the map

O×L ∩ res−1
∞ (J∞)→ O×L /(O

×
L )2 ∩ res−1

∞ (J∞), u 7→ u.

Note that if u ∈ O×L ∩ res−1
∞ (J∞), then we have u ∈ O×L and res−1

∞ (u) ∈ J∞. So the map is
well-de�ned and is also clearly surjective. Moreover, it is also clear that the kernel of the map is
(O×L ∩ res−1

∞ (J∞))2.
Therefore, we obtain the desired isomorphism and hence the exact sequence in the theorem.

The claim on dimensions is immediate from the exact sequence.

Let P (L) ⊆ I(L) be the subgroup of principal ideals of L, P+(L) ⊆ P (L) be the subgroup of
P (L) consisting of principal ideals generated by totally positive elements and P (LJ∞) be as above.
We then have

Lemma 4.3.3. One has P+(L) ⊆ P (LJ∞) ⊆ P (L). In particular,

Cl(L)[2] ⊆ Cl(LJ∞)[2] ⊆ Cl+(L)[2],

where Cl+(L) denotes the narrow class group of L.

Proof. Note that the second containment follows from the de�nition. So we only prove the �rst
containment that P+(L) ⊆ P (LJ∞).

To this end, assume that α ∈ L× is a totally positive element. Let α be its class in L×/(L×)2.
We then have res∞(α) = (1, . . . , 1). This implies that

α ∈ ker(res∞) ⊆ res−1
∞ (J∞).

Thus, res(α) ∈ J∞ and the principal ideal (α) generated by the totally positive element α ∈ L× is
in P (LJ∞). Thus, P+(L) ⊆ P (LJ∞).

Finally, the containments P+(L) ⊆ P (LJ∞) ⊆ P (L) clearly imply the desired containments of
2-torsion subgroups of the class groups.

The following theorem is in some sense the analogue of Theorem 3.4.7 from the previous chapter.

Theorem 4.3.4. We have

dim Sel(2)(Q, J) ≤ dim
(
O×L /(O

×
L )2 ∩ res−1

∞ (J∞)
)

+ dim Cl+(L)[2] + dimG ∩ val(LJ∞),

Proof. The results we have obtained in this section clearly imply

dim Sel(2)(Q, J) ≤ dim Ŝel

= dim Ŵ0 + dim Ŵ

= dimU + dim Cl(LJ∞)[2] + dim Ŵ

= dim
(
O×L /(O

×
L )2 ∩ res−1

∞ (J∞)
)

+ dim Cl(LJ∞)[2] + dimG ∩ val(LJ∞)

≤ dim(O×L /(O
×
L )2 ∩ res−1

∞ (J∞)) + dim Cl+(L)[2] + dimG ∩ val(LJ∞).

Remark 4.3.5. The bound in the above theorem is not immediately comparable with Stoll's bound
(Theorem 3.4.7). However, we observe, for example, that

dim(O×L /(O
×
L )2 ∩ res−1

∞ (J∞)) ≤ m∞ − 1.

To see this, it is enough to �nd an element in O×L /(O
×
L )2 which does not belong to the intersection

O×L /(O
×
L )2 ∩ res−1

∞ (J∞). But res∞(−1) does the job. Indeed, since J∞ is contained in the kernel
of the norm map N∞ : L×∞/(L

×
∞)2 → R×/(R×)2, we have N∞(j) = 1 for any j ∈ J∞. However,

N(res∞(−1)) = N(−1) = −1,

as deg(f) is odd. Thus, res∞(−1) /∈ res∞(J∞) and the result follows.
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4.4 Totally positive units

In this section, we study totally positive units in number �elds as a preliminary to the next
section, where we will obtain some re�nements of the bound we obtained in Theorem 4.3.4. In
particular, we will be able to get the term Cl+(L) in the bound under control.

Lemma 4.4.1. Let L be a totally real number �eld of odd degree n ≥ 3. De�ne

ρ = dimF2
Cl(L)/2 Cl(L), ρ+ = dimF2

Cl+(L)/2 Cl+(L), and ρ∞ = dimF2
(O×,+L /(O×L )2).

Then there exists an exact sequence

0→ {±1}n/ res∞(O×L /(O
×
L )2)→ Cl+(L)→ Cl(L)→ 0.

In particular, ρ+ ≤ ρ∞ + ρ.

Proof. Recall that P (L) denotes the group of principal ideals in L and P+(L) the group of principal
ideals generated by totally positive elements. We then have the isomorphisms:

Cl(L) ∼= I(L)/P (L) ∼= (I(L)/P+(L))/(P (L)/P+(L)) ∼= Cl+(L)/(P (L)/P+(L)),

yielding the following exact sequence relating the narrow and usual class groups:

0→ P (L)/P+(L)→ Cl+(L)→ Cl(L)→ 0. (*)

Also, the map α 7→ (α) that sends α ∈ L× to the principal ideal (α) it generates yields the exact
sequence

1→ O×L → L× → P (L)→ 0.

Let L×,+ ⊆ L× be the subgroup of totally positive elements. By de�nition, P+(L) is the image of
L×,+ in P (L). This gives an isomorphism

P (L)/P+(L) ∼= L×/O×LL×,+.

So the exact sequence (*) can be wrtitten as

0→ L×/O×LL
×,+ → Cl+(L)→ Cl(L)→ 0. (**)

Now, consider the surjective homomorphism

{±1}n → L×/O×LL×,+,

mapping an n-tuple (εi)i=1,...,n ∈ {±1}n to the class of an element α ∈ L× that satis�es

sgntr(α) = (ε)i=1,...,n.

Note that if α, β ∈ L× such that sgntr(α) = sgntr(β), then since sgntr is a group homomorphism,
we have

sgntr(αβ−1) = sgntr(α) sgntr(β)−1 = 1

so that αβ−1 ∈ O×LL×,+. Hence the map is well-de�ned. Moreover, the kernel of this homomor-
phism is res∞

(
O×L /(O

×
L )2
)
. Hence we get an isomorphism

{±1}n/ res∞
(
O×L /(O

×
L )2
) ∼= L×/O×LL×,+

and the exact sequence (**) can be written as

0→ {±1}n/ res∞(O×L /(O
×
L )2)→ Cl+(L)→ Cl(L)→ 0, (***)

as needed.
Finally, to see that ρ+ ≤ ρ∞ + ρ, �rst observe that

dim{±1}n/ res∞(O×L /(O
×
L )2) = n− dim res∞

(
O×L /(O

×
L )2
)
.

Considering now the surjective homomorphism
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res∞ |O×L /(O×L )2 : O×L /(O
×
L )2 → res∞

(
O×L /(O

×
L )2
)
,

since dim
(
O×L /(O

×
L )2
)

= n and ρ∞ = dim
(
O×,+L

/
(O×L

)
)2 is the dimension of ker

(
res∞ |O×L /(O×L )2

)
,

it follows that

dim{±1}n/ res∞(O×L /(O
×
L )2) = n− (n− ρ∞) = ρ∞.

Thus, ρ+ ≤ ρ∞ + ρ by exactness of the sequence (***). Proof is complete.

The proof of the following theorem is technical. So we only give a reference for it. The corollary
following it will prove important in subsequent sections.

Theorem 4.4.2. Let L/Q be a �nite Abelian extension with Galois group of odd exponent n, and
suppose that −1 is congruent to a power of 2 modulo n. Then, in the notation of the above theorem,
we have ρ = ρ+.

Proof. See [14].

Corollary 4.4.3. Let L be a cyclic number �eld of odd prime degree p, and suppose that the order
of 2 in (Z/pZ)× is even. Then, ρ = ρ+. In particular, dim Cl(L)[2] = dim Cl+(L)[2].

Proof. By assumption Gal(L/Q) ∼= Z/nZ for n ≥ 2. Suppose that the order of 2 in (Z/nZ)× is
even. This is equivalent to −1 being congruent to a power of 2 modulo n. Thus result follows from
the previous theorem.

We �nally state the following proposition with its proof omitted. We restrict to the case where
L is a cyclic number �eld of odd prime p ≥ 3 degree and we let O×,1L denote the units of norm 1.

Proposition 4.4.4. Let L be as above. Suppose that the polynomial

φp(x) = (xp − 1)/(x− 1)

is irreducible over F2. Then, either ρ∞ = 0, or ρ∞ = p − 1, in which case every unit in O×,1L is
totally positive.

Proof. See [4, Proposition 2.22].

4.5 Improvement of the rank bound

Remember that an algebra L = Q[x]/(f(x)) de�ned by f(x) ∈ Q[x] is totally real if and only
if f(x) has deg(f)-many real roots. Recall also that in �4.2, we have introduced the following
notations:

ρ∞ = dim
(
O×,+L /(O×L )2

)
and j∞ = dim(res∞(O×L /(O

×
L )2) ∩ J∞).

With notations as above, we obtain

Theorem 4.5.1. Let n be an odd number and let C : y2 = f(x) be a hyperelliptic curve with f(x)
of degree n (and hence of genus g = (n− 1)/2) such that L, the algebra de�ned by f(x), is totally
real of degree n. Then we have

dim Sel(2)(Q, J) ≤ j∞ + ρ∞ + dim Cl+(L)[2] + dimG ∩ val(LJ∞).

Moreover,

(i) ρ∞ + j∞ ≤ n− 1.

(ii) j∞ ≤ g.

(iii) One has

dim Sel(2)(Q, J) ≤ j∞ + 2ρ∞ + dim Cl(L)[2] + dimG ∩ val(LJ∞).
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(iv) If G ∩ val(LJ∞) is trivial, then

dim Sel(2)(Q, J) ≤ j∞ + ρ∞ + dim Cl+(L)[2] ≤ j∞ + 2ρ∞ + dim Cl(L)[2].

Proof. We have shown in Proposition 4.2.3 that

dim
(
O×L /(O

×
L )2 ∩ res−1

∞ (J∞)
)

= j∞ + ρ∞.

Therefore, the �rst bound is basically the same as the one we obtained in Theorem 4.3.4. We prove
the rest one by one:

(i) Since (
O×L /(O

×
L )2 ∩ res−1

∞ (J∞)
)
⊆ O×L /(O

×
L )2,

Lemma 3.4.6 implies that

ρ∞ + j∞ ≤ dimO×L /(O
×
L )2 = m∞ = n,

where the last equality follows from the asumption that L is totally real. Moreover, res∞(−1) /∈ J∞
as shown before in Remark 4.3.5. Hence, the result follows.

(ii) Recall that we have de�ned J∞ = δ∞(J(R)/2J(R)) and we know that δ∞ is injective by
Theorem 3.2.2. This yields by Theorem 1.3.5 that

dim(J∞) = dim J(R)/2J(R) = m∞ − 1− g.

Hence the containment res∞
(
O×L /(O

×
L )2
)
∩ J∞ ⊆ J∞ implies

j∞ ≤ dim(J∞) = m∞ − 1− g = n− 1− n− 1

2
=
n− 1

2
= g,

as desired.

(iii) By Lemma 4.4.1, we have dim Cl+(L)[2] ≤ ρ∞ + dim Cl(L)[2]. Thus the result follows.

(iv) Clear from the previous part.

In the following, we �nally obtain a neat bound on dim Sel(2)(Q, J) under the assumption that
L is a cyclic number �eld.

Theorem 4.5.2. Suppose that L is a cyclic number �eld of odd degree n ≥ 3, such that the order
of 2 in (Z/nZ)× is even. Then we have

dim Sel2(Q, J) ≤ j∞ + ρ∞ + dim Cl(L)[2] + dim ker(G→ Cl(L)/2 Cl(L)).

Hence, if ρ∞ = 0, then

dim Sel2(Q, J) ≤ g + dim Cl(L)[2] + dim ker(G→ Cl(L)/2 Cl(L)).

Proof. Clear from Corollary 4.4.3 and Theorem 4.5.1.

Corollary 4.5.3. Let C : y2 = f(x) be a hyperelliptic curve such that the algebra L de�ned by
f(x) is a cyclic number �eld of odd degree n ≥ 3. Then we have the following bound on rank J(Q):

rank J(Q) ≤ j∞ + ρ∞ + dim Cl(L)[2] + dim ker(G→ Cl(L)/2 Cl(L)).

Proof. Clear from Theorem 4.5.2 above. Note in particular that L being a number �eld means
that f(x) is irreducible over Q so that dim J(Q)[2] = 0 by Theorem 1.3.1. So the above bound
cannot be made any better using Theorem 2.3.1.



Chapter 5

Some hyperelliptic Jacobians

We aim to compute the rank bounds of some families of hyperelliptic curves explicitely. We
shall make use of the improvements on the bounds we obtained in the previous chapter. We will
also obtain a lower bound for the rank of certain hyperelliptic Jacobians whenever the curve has
su�ciently many rational points. We will �nally include a very short discussion about the bounds
on the 2-torsion of class groups and obtain some rank bounds involving discriminants.

5.1 A family of elliptic curves

Let n ≥ 1 be an integer such that D = 3n2 + 3n+ 1 is squareefree. We consider the following
family of elliptic curves:

En : y2 = fn(x) = x3 + (9n+ 6)x2 + (9n+ 3)x− 1,

which is due to F. Thaine, see [25]. In this section, we will prove that rankEn(Q) can be bounded
only in terms of dim Cl(Ln)[2] by using Theorem 4.5.2. We remark that by a result of T. Nagel,
see [11], there are in�nitely many n ≥ 1 such that D = 3n2 + 3n+ 1 is squarefree; i.e., the above
family En is in�nite.

Since En is an elliptic curve, it can be identi�ed with its Jacobian J . We have disc(fn(x)) =
(27D)2. Also, fn(x) is irreducible over Q for any n. So the algebra Ln de�ned by fn(x) is a cubic
�eld. Since disc(fn(x)) > 0, we conclude that Ln is a cyclic cubic �eld. Moreover, the order of 2
in (Z/3Z)× is 2, which is even. Hence, we can use the bound in Theorem 4.5.2.

Lemma 5.1.1. In the above set-up, we have ρ∞ = 0.

Proof. Note that fn(x) has two negative roots and one positive root and roots are all units.
Therefore, for any root α of fn(x), we must have N(α) = 1. However, α is not totally positive.
Hence, we have found an element in O×,1L which is not totally positive. Moreover the polynomial

φ3(x) = (x3 − 1)/(x− 1) = x2 + x+ 1

is clearly irreducible in F2. Thus, the result follows by Proposition 4.4.4.

With the following lemma, we �nd the images Gv = valv(Jv) ⊆ Iv to be trivial for almost all
places v ∈ S = {∞, 2} ∪ {v | v2 divides disc(fn)}. More precisely, we have

Lemma 5.1.2. In the above set-up, for any p ∈ S \ {∞, 3}, fn(x) is irreducible over Qp.

Proof. Let p = 2. Then, reducing the polynomial fn(x) in F2[x], we have

fn(x) =

{
x3 + x+ 1 n ≡ 0 mod 2

x3 + x2 + 1 n ≡ 1 mod 2
.

In both cases, we see that fn(x) is irreducible over F2, hence it is irreducible over Q2.
Now, let p > 3 be a prime such that p2 divides disc(fn(x)); that is, p divides D. We compute

that

39
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fn(x− (3n+ 2)) = x3 − 9Dx+ 9D(2n+ 1).

Moreover, we have

4D − 3(2n+ 1)2 = 1,

which implies gcd(D, 2n+1) = 1. Since D is squarefree by assumption, we see that fn(x−(3n+2))
is irreducible over Zp by Eisenstein criterion applied with prime p. Hence, it follows that fn(x) is
irreducible over Qp, as claimed.

We obtain the following theorem on rankEn(Q):

Theorem 5.1.3. Let En, n ≥ 1, be the family of elliptic curves de�ned above. We have

rankEn(Q) ≤ 3 + dim Cl(Ln)[2].

Proof. Fix an n ≥ 1 and consider

Gn =
∏

p∈S\{∞}

Gn,p ⊆
∏

p∈S\{∞}

In,p.

By Lemma 3.3.4,

dim In,p = mn,p − 1,

where mn,p is the number of irreducible factors of fn(x) in Qp. From Lemma 5.1.2, it follows that
when p > 3, dim In,p = 1 − 1 = 0 and hence, Gn,p is trivial. On the other hand, when p = 3, we
have

fn(x) ≡ x3 − 1 = (x− 1)3 mod 3,

which implies that dim In,3 = 3− 1 = 2. Therefore,

dim ker(Gn → Cl(Ln)/2 Cl(Ln) ≤ dimGn = 2.

Moreover, since fn(x) is irreducible over Q and En identi�es with its Jacobian, we have

dimEn(Q)[2] = 1− 1 = 0,

by Theorem 1.3.1. Note �nally that the genus g of En(Q) is 1. Therefore, Theorem 2.3.1 and
Theorem 4.5.2 imply

rankEn(Q) ≤ dim Sel2(Q, J)− dimEn(Q)[2]

= g + dim Cl(Ln)[2] + dim ker(Gn → Cl(Ln)/2 Cl(Ln))− dimEn(Q)[2]

≤ 3 + dim Cl(Ln)[2],

as claimed.

Remark 5.1.4. Since fn(x) has all real roots, it follows that m∞ = 3. Therefore, if we used the
bound in Theorem 3.4.7 for the above family of elliptic curves, we would obtain the bound

rankEn(Q) ≤ 4 + dim Cl(Ln)[2],

which is weaker than the bound we found in the above theorem. The family En : y2 = fn(x) is
therefore an explicit example illustrating how Stoll's bound in Theorem 3.4.7 can be made stronger
with the "re�ned estimation".

Remark 5.1.5. We �nally remark that the bound we found above is optimal, meaning that there
are curves En from this family satisfying that rankEn(Q) = 3 + dim Cl(Ln)[2]. Below picture
created using Sage shows the optimal cases for varying n in the horizontal axis. Note that by as-
sumption, we must only consider n ≥ 1 such that D = 3n2 + 3n+ 1 is squarefree. Indeed, it turns
out that among such n ∈ [1, 100], when n = 4, 40, 58, 67, 76, the bound is optimal.
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5.2 Joshi-Tzermias family of hyperelliptic curves

Let p ≥ 5 be a prime. In this section, we will consider the following family of hyperelliptic
curves:

C : y2 = f(x) =

p−1∏
i=0

(x− ai) + p2d2,

where d ≥ 1 is an integer and ai are distinct modulo p. This family is special in the sense that it
has many rational points. This will allow us to have a bound on its Jacobian rank from below.

Following theorem is key to this section. We state its contrapositive as a corollary to emphasise
that it yields a lower bound on the rank of a Jacobian.

Theorem 5.2.1 (Coleman's E�ective Chabauty). Let C/Q be a smooth projective curve of genus
g ≥ 2 and let J be the Jacobian associated with C. Let r denote the rank of the Jacobian J .
Suppose that r ≤ g − 1. Then, for any prime p ≥ 2g + 1 for which C has good reduction, which is
to be denoted by C̃, we have

#C(Q) ≤ #C̃(Fp) + 2g − 2.

Proof. See [2].

Corollary 5.2.2. Let C/Q be a smooth projective curve of genus g ≥ 2 and let J be the Jacobian
associated with C. Let r denote the rank of the Jacobian J . Suppose that, for any prime p ≥ 2g+1
for which C has good reduction, which is to be denoted by C̃, we have #C̃(Fp) + 2g− 2 ≤ #C(Q).
Then we have the following lower bound on the rank r:

g − 1 ≤ r.

Lemma 5.2.3. Let

C : y2 = f(x) =

p−1∏
i=0

(x− ai) + p2d2

be a curve from the Joshi-Tzermias family and let J/Q denote its Jacobian. Let g = (p− 1)/2 be
its genus. Then

(i) rank J(Q) ≥ g,

(ii) If f(x) is irreducible over Q, then rank J(Q) ≥ 2g.

Proof. (i) Since for all i = 0, . . . , p− 1, ai's are distinct modulo p, the reduction C̃ of C modulo p
is given by

C̃ : y2 = xp − x,
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which can be easily checked to be non-singular. Note that every a�ne Fp-rational point of C̃ is of
the form (a, 0), where a ∈ Fp. Adding the point at in�nity, we get

#C̃(Fp) = p+ 1 = 2g + 2.

On the other hand, the points Pi = (ai,±pd) is in C(Q) for all i = 0, . . . , p − 1. Again, with the
point at in�nity counted, we have

#C(Q) ≥ 2p+ 1 = 4g + 3.

But then we get

4g + 3 ≥ 2g + 2 + 2g − 2 = 4g.

Thus, result follows by Corollary 5.2.2.

(ii) See [7, Theorem 1.1].

We have

Lemma 5.2.4. For a �xed prime p ≥ 5 and an integer d ≥ 1, write

fa0(x) = (x− a0)

p−1∏
i=1

(x− ai) + p2d2,

with ai all distinct modulo p. Then, if a0 is large enough, then fa0(x) has p distinct real roots.

Proof. Fix j ≥ 1. We have

fa0

(
aj ±

1

2

)
=
(
aj − a0 ±

1

2

)(
± 1

2

)∏
i 6=j

(
aj − ai ±

1

2

)
+ p2d2.

If we choose a0 so large that∣∣∣(aj − a0 ±
1

2

)∏
i 6=j

(
aj − ai ±

1

2

)∣∣∣ > 2p2d2,

then we see that fa0(aj + 1/2) and fa0(aj − 1/2) have distinct signs for j = 1, . . . , p − 1. This
implies that fa0(x) has p distinct real roots by the Intermediate Value Theorem.

Therefore, �xing a prime p ≥ 5 and an integer d ≥ 1, we have obtained an in�nite family of
Joshi-Tzermias hyperelliptic curves f(x) ∈ Q[x] such that f(x) is of degree p and has p distinct real
roots so that the algebra L de�ned by f(x) is totally real. Therefore, Theorem 4.5.1 is applicable.
Thus, we obtain

Theorem 5.2.5. Let C : y2 = f(x) be a hyperelliptic curve from the family described above so that
it has genus g = (p− 1)/2. Let j∞, ρ∞ and LJ∞ be as de�ned before (see �4.1 and �4.2). Then we
obtain

g ≤ rank J(Q) ≤ j∞ + ρ∞ + dim Cl+(L)[2] + dimG ∩ val(LJ∞).

Moreover, the results of Theorem 4.5.1 hold true in this case.

Proof. Trivial from Lemma 5.2.3.
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5.3 Obtaining bounds that involve the discriminants

Let C : y2 = f(x) be a hyperelliptic curve with f(x) ∈ Q[x] monic, squarefree and of odd
degree such that f(x) de�nes the algebra L. We will see that rank J(Q) can be bounded only in
terms of disc(f) as f(x) ∈ Q[x] runs through monic and squarefree polynomials of �xed odd degree
n.

When L is a number �eld, an improvement of the Brauer-Siegel Theorem on the size of Cl(L)[2]
has been made in the article [1]. Namely, if L is a number �eld of degree n, then one has

|Cl(L)[2]| = Oε(|disc(L)|1/2−δn+ε),

for some δn > 0. Since disc(L) ≤ disc(f), this implies that

dim Cl(L)[2]�n,ε (1/2− δn + ε) log(disc(f)). (*)

Recall that when L = L1×· · ·×Lm is an algebra with Li's number �elds for i = 1, . . . ,m, we have
de�ned Cl(L) = Cl(L1)× · · · ×Cl(Lm) so that dim Cl(L)[2] = dim Cl(L1)[2] + · · ·+ dim Cl(Lm)[2].
This implies that (*) holds when L is an algebra as well.

On the other hand, we can put a "trivial" bound on dim ker(G → Cl(L)/2 Cl(L)) in terms of
disc(f) without having to assume L to be a number �eld. Indeed,

dim ker(G→ Cl(L)/2 Cl(L)) ≤ dimG =
∑

p∈S\{∞}

dimGp

≤
∑

p∈S\{∞}

dim Ip

≤ (|S| − 1)(n− 1),

where we have used the de�nition of G and the fact dim Ip = mp−1 ≤ n−1 (see Lemma 3.3.4). By
de�nition, S contains ∞, 2 and odd primes p such that p2 divides disc(f). But p2|disc(f) implies
p ≤

√
|disc(f)|. We note that the Prime Number Theorem implies

|{p : prime | p ≤
√
|disc(f)|}| = π(

√
|disc(f)|)�

√
|disc(f)|

log
√
|disc(f)|

.

Since n− 1 is considered as a constant, we obtain

dim ker(G→ Cl(L)/2 Cl(L))�n

√
disc(f)

log
√

disc(f)
.

We have the following proposition:

Proposition 5.3.1. Let n ≥ 1 be an odd integer, and let C : y2 = f(x) be a hyperelliptic curve
with f(x) ∈ Q[x] monic, squarefree and of degree n. Then we have

rank J(Q)�n

√
|disc(f)|

log
√
|disc(f)|

.

Proof. Corollary 3.4.8 and the results we have obtained above above yield

rank J(Q) ≤ m∞ −m+ dim Cl(L)[2] + dim ker(G→ Cl(L)/2 Cl(L))

�n,ε 1 + (1/2− δn + ε) log(disc(f)) +

√
disc(f)

log
√

disc(f)

�n log(disc(f)) +

√
disc(f)

log
√

disc(f)
<<n

√
disc(f)

log
√

disc(f)
,

as desired.
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