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Abstract

This thesis presents the theory of modular forms in positive characteristic p.
Under certain hypotheses, there are modular curves parametrizing elliptic

curves with additional level structures of arithmetic interest. Katz defined
modular forms as global sections of a family of line bundles over these modular
curves.

Moreover, the modular curves have a special kind of points called the cusps.
The germs of a modular form at the cusps correspond to power series in one
variable called the q–expansions of the modular form. The q–expansions often
hold a lot of information about the modular form.

In particular, over an algebraically closed field of characteristic p, the algebra
of modular forms has a very simple description in terms of a modular form
known as the Hasse invariant. Specifically, modular forms are determined up
to powers of the Hasse invariant by their q–expansions. In addition, there is a
differential operator acting on the algebra of modular forms which helps us to
understand this structure.

Keywords: modular forms, congruences for modular forms, elliptic curves,
modular curves
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Preface

This thesis explains the main results describing the algebra of modular forms
modulo a prime number p. Specifically, the objective of the thesis is to develop all
the necessary theory in order to understand Katz’s article [9] in detail (including
the claims without proof in its introduction).

Modular forms are defined classically as analytic functions in the complex
upper half-plane which transform in a certain way under the action of a group
of matrices. Therefore, modular forms satisfy many symmetries which endow
them with a very rich structure. In particular, modular forms have Fourier series
expansions called q–expansions.

The Fourier coefficients of certain modular forms carry a large amount of
arithmetic information. For instance, modular forms occur as generating func-
tions of numbers of representations of integers by positive definite quadratic
forms, special values of L–functions or invariants in algebraic number theory
such as class numbers. Not to mention the deep connections of modular forms
with elliptic curves and Galois representations. In other words, modular forms
(and their generalizations) are virtually ubiquitous in number theory. This justi-
fies why one might be interested in understanding well the theory of modular
forms.

One can study classical modular forms just focusing on their q–expansions,
which are power series. In this context, there is a very simple notion of modular
forms modulo p, namely, the power series obtained by reducing the coefficients
of q–expansions modulo p whenever this is possible (i.e., when all the coefficients
are rational numbers with no powers of p in the denominators). This notion was
developed by Serre and Swinnerton-Dyer.

In this way, one obtains a subalgebra of Fp[[q]] which can be described ex-
plicitly in terms of a particular modular form, the Eisenstein series of weight
p − 1 (this is true for p ≥ 5; for p = 2 or p = 3 the result changes a bit), as
explained in Swinnerton-Dyer’s article [21] and in Serre’s article [17]. Indeed,
the q–expansion of the Eisenstein series of weight p− 1 reduces to 1 modulo p
and this determines completely the relations between the q–expansions modulo
p of classical modular forms (see theorem 1.41). In addition, divisibility by the
Eisenstein series of weight p− 1 induces a filtration and there is a derivation
acting on q–expansions as q d

dq which behaves well with respect to this filtration

vii
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(see corollary 1.37 and proposition 1.44).

The initial definition of classical modular forms may lead to the impression
that these objects are analytic in nature and so better understood by means of
complex analysis and differential geometry. Nevertheless, there is an alternative
interpretation in terms of moduli spaces (whence the name modular forms)
which allows us to study modular forms using the tools of modern algebraic
geometry.

More precisely, modular forms can be regarded as rules which assign values
to elliptic curves with certain level structures and there exist modular schemes
whose points parametrize elliptic curves with such structures (i.e., they represent
the corresponding moduli problems). One can then view modular forms as
global sections of certain line bundles on a modular scheme.

These modular schemes and the line bundles giving modular forms turn
out to be defined over very general rings. In this way, we can define modular
forms over rings other than C and use techniques from algebraic geometry to
study them. This was the approach taken by Katz in his article [8], where he also
introduced his notion of p–adic modular forms. Later generalizations are also
based on the ideas of Katz.

Using Katz’s definition of modular forms, the notion of modular forms mod-
ulo p becomes simply that of modular forms defined over a field of characteristic
p. Following Katz’s article [9], we focus especially on the case of an algebraically
closed field K of characteristic p. The results of Serre and Swinnerton-Dyer in
the classical case hold in this context after some slight modifications.

More concretely, there is a modular form called the Hasse invariant which
plays the same role as the Eisenstein series of weight p− 1 in the classical case.
Indeed, the q–expansions of the Hasse invariant over K are equal to 1 and this
determines completely the relations between the q–expansions of modular forms
defined over K (see theorem 4.8). Again, divisibility by the Hasse invariant
induces a filtration and there is a derivation acting on q–expansions as q d

dq which
behaves well with respect to this filtration (see theorem 4.12).

This thesis can be divided in two parts. The first part, corresponding to
the first chapter, explains the simplest case of classical modular forms defined
analytically with the goal of illustrating the results which one can expect in
more general situations. The proofs in this part use quite simple techniques of
analysis in one complex variable and manipulations of power series. In turn, the
second part, corresponding to the other three chapters, develops Katz’s theory



Preface ix

of modular forms and, in this context, exhibits results analogous to those of the
first part. However, Katz’s theory relies on much more involved concepts of
algebraic geometry which are mostly summarized without proofs.

Chapter 1 introduces classical modular forms (for SL2(Z)) and describes the
main examples, with an emphasis on their q–expansions, and the structure of the
algebra of such modular forms. There is also a brief introduction to the theory
of Hecke operators. After that, the structure of the algebra of modular forms
modulo p is studied in detail.

Chapter 2 defines Katz’s modular forms. At the beginning of the chapter, we
give a quite naive definition of modular forms as rules assigning a scalar value
to each triple consisting of an elliptic curve together with a global differential
and a level structure. The q–expansions of a modular form are defined using
this interpretation by means of the Tate curve. After that, there is a summary of
results (without proofs) about the representability of moduli problems which
allow us to redefine modular forms as global sections of certain line bundles on
modular schemes (in fact, curves). Using this last interpretation, we prove the
q–expansion principle, which roughly states that a modular form is uniquely
determined by its q–expansions.

Chapter 3 serves as a preparation for chapter 4. That is to say, chapter 3
presents some geometric tools which could be defined more generally but are
later used only in special cases in order to study Katz’s modular forms over a
field of characteristic p. In particular, we recall the definition of the Frobenius
morphisms, some facts about de Rham cohomology and the constructions of the
Gauss–Manin connection and the Kodaira–Spencer morphism.

Finally, chapter 4 introduces the Hasse invariant and uses it to describe the
structure of the algebra of modular forms over an algebraically closed field of
characteristic p. The results presented in chapter 4 are analogous to those of the
last section of chapter 1.

Each chapter contains a little summary and some references at the beginning.
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Chapter 1

The classical theory

This chapter introduces the classical theory of modular forms of level 1 in order
to illustrate in the simplest case the kind of objects and results which are studied
later.

Modular forms are a class of holomorphic functions with some symmetry
properties which allow us to express them in terms of certain power series called
q–expansions. One can study these power series directly, but then it is convenient
to find additional structure on the space of modular forms. One way to do so
is by means of Hecke operators, which have particularly simple expressions in
terms of the aforementioned q–expansions. Alternatively, one can focus on those
power series with integer coefficients and reduce them modulo a prime number.

The presentation in the first two sections is based mainly on chapter VII of
Serre’s book [16] and on some parts of chapter III of Koblitz’s book [15]. Also,
the first two chapters of Stein’s book [20] treat the same topics but from a more
computational point of view. The last section of this chapter follows closely
section 3 of Swinnerton-Dyer’s article [21] and section 1 of Serre’s article [17].

1.1 Modular forms

To begin with, we present some definitions and results in the simplest case.
Unless otherwise stated, all results appearing in this section and the next are
proved in sections VII.2 to VII.5 of Serre’s book [16].

Consider the complex upper half-plane H = { z ∈ C : Im(z) > 0 }, which is
then extended by adding the cusps P1

Q = Qt {∞ }. The group SL2(Z) acts on
both H and P1

Q via the formula

(
a b
c d

)
· z =

az + b
cz + d

with the usual conventions that

w
0
= ∞ and

a∞ + b
c∞ + d

=
a
c

.

1



2 THE CLASSICAL THEORY

In fact, one checks that the action on P1
Q is transitive. Modular forms are a class

of analytic functions which are almost invariant under this action.

Definition 1.1. Let k ∈ Z. A weakly modular form for SL2(Z) of weight k is a
meromorphic function f : H→ C with the property that

f (z) = (cz + d)−k f
( az + b

cz + d

)
for all z ∈H and all

(
a b
c d

)
∈ SL2(Z) .

Remarks.
(1) There are no non-zero weakly modular forms for SL2(Z) of odd weight

because
f (z) = f

((−1 0
0 −1

)
· z
)
= (−1)k f (z) .

(2) One can check that SL2(Z) is generated by the two matrices

S =
(

0 −1
1 0

)
and T =

(
1 1
0 1

)
,

so the condition in the definition is equivalent to

f
(1

z

)
= zk f (z) and f (z + 1) = f (z) for all z ∈H .

(3) Since f (z + 1) = f (z), f admits a Fourier series expansion of the form

f (z) = ∑
n∈Z

ane2πinz

which is absolutely convergent on H minus the poles of f . The map
z 7→ q = e2πiz defines an analytic isomorphism from 〈T〉\H to the open
unit disk with the origin removed and this isomorphism can be extended
to send ∞ to the origin. We say that f is holomorphic (resp. is meromorphic
or vanishes) at ∞ if an = 0 for all n < 0 (resp. n < n0 for some n0 ∈ Z or
n ≤ 0). That is, f is holomorphic at ∞ if its Fourier series expansion is
holomorphic at q = 0. In this case we write f (∞) = a0.

Definition 1.2. Let k ∈ Z. A modular form for SL2(Z) of weight k is a function
f : H→ C satisfying the following conditions:

(i) f is holomorphic on H;

(ii) f (z) = (cz + d)−k f
( az + b

cz + d

)
for all z ∈H and all

(
a b
c d

)
∈ SL2(Z), and

(iii) f is holomorphic at ∞ in the sense that it has a Fourier series expansion of
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the form

f (z) =
∞

∑
n=0

anqn , where q = e2πiz ,

which is absolutely convergent for each z ∈H, called the q–expansion of f .
If, in addition, f vanishes at ∞ (i.e., a0 = 0), we say that f is a cusp form. We
refer to a function which satisfies (i), (ii) and (iii) with “holomorphic” replaced
by “meromorphic” as a meromorphic modular form for SL2(Z) of weight k.

Remarks.
(1) As SL2(Z) acts transitively on the set of cusps, condition (ii) implies that f

has a power series expansion at each cusp with the same order of vanishing
as the q–expansion at ∞.

(2) This definition can be generalized to certain subgroups Γ of SL2(Z). One
must only take into account that there might be several equivalence classes
of cusps and require holomorphicity at all of them.

(3) The set Mk(SL2(Z)) of modular forms for SL2(Z) of weight k is a C–vector
space and the subset Sk(SL2(Z)) consisting of cusp forms is a subspace
of codimension ≤ 1 because it is the kernel of the linear map f 7→ f (∞).
Furthermore,

M(SL2(Z)) =
⊕
k∈Z

Mk(SL2(Z))

is a graded C–algebra with the usual multiplication.

Often in number theory one can attach a power series to arithmetic objects.
When this happens to be the q–expansion of a modular form, we can use the
additional structure of the spaces of modular forms to obtain relations between
the coefficients forming the series, which might lead to interesting arithmetic
results.

In the first two sections of this chapter we study the structure of the algebra
of modular forms, while in the last one we focus on the q–expansions reduced
modulo a prime number p (whenever this makes sense). But, before that, we
show the first examples of modular forms and compute their q–expansions.

Example 1.3. Let k > 1 be an integer. We define the Eisenstein series of weight 2k
as

G2k(z) = ∑′

m,n∈Z

1
(mz + n)2k

for z ∈ H. (The symbol ∑′ means that the summation runs over all values for
which the corresponding addends make sense; in this case, over all pairs (m, n)
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distinct from (0, 0).) This series converges to a modular form for SL2(Z) of
weight 2k.

Indeed, since the exponents of the denominators are at least 4, one can prove
that the series converges absolutely and uniformly on compact subsets of H,
thus defining a holomorphic function on H. Also, we can compute

G2k(z + 1) = ∑′

m,n∈Z

(mz + m + n)−2k = ∑′

m,n∈Z

(mz + n)−2k = G2k(z) ,

G2k

(−1
z

)
= ∑′

m,n∈Z

(m
z
+ n

)−2k
= z2k ∑′

m,n∈Z

(m + nz)−2k = z2kG2k(z) .

It remains to see that G2k is holomorphic at infinity. To this aim, we need
to prove that G2k has a limit for Im(z) → ∞. But, by the good convergence
properties of G2k, we can make the passage to the limit term by term:

lim
z→i∞

G2k(z) = ∑′

m,n∈Z

lim
z→i∞

1
(mz + n)2k = ∑

n∈Z\{0}

1
n2k = 2

∞

∑
n=1

1
n2k = 2ζ(2k) ,

where ζ denotes the Riemann zeta function.

We can even compute the q–expansions of the Eisenstein series explicitly.

Proposition 1.4. For every integer k > 1, the q–expansion of the Eisenstein series G2k

is

G2k(z) = 2ζ(2k) + 2
(2πi)2k

(2k− 1)!

∞

∑
n=1

σ2k−1(n) · qn ,

where
σj(n) = ∑

d|n
dj

is the sum of j–th powers of positive divisors of n and q = e2πiz.

Proof. We start with the well-known formula

1
z
+

∞

∑
n=1

( 1
z + n

+
1

z− n

)
= π

cos(πz)
sin(πz)

= πi− 2πi
1− q

= πi− 2πi
∞

∑
r=0

qr ,

which can be obtained taking the logarithmic derivative of the expression of
sin(πz) as an infinite product. By successive differentiations, we obtain the
formula

∑
n∈Z

1
(z + n)j =

1
(j− 1)!

(−2πi)j
∞

∑
r=1

rj−1qr
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for j ≥ 2. After replacing z with mz, this becomes

∑
n∈Z

1
(mz + n)j =

1
(j− 1)!

(−2πi)j
∞

∑
r=1

rj−1qmr .

Finally, we use this to expand

G2k(z) = ∑′

m,n∈Z

1
(mz + n)2k = 2ζ(2k) + 2

∞

∑
m=1

∑
n∈Z

1
(mz + n)2k

= 2ζ(2k) +
2(−2πi)2k

(2k− 1)!

∞

∑
m=1

∞

∑
r=1

r2k−1qmr

= 2ζ(2k) +
2(2πi)2k

(2k− 1)!

∞

∑
n=1

σ2k−1(n) · qn

as required.

Example 1.5. It is well-known that

ζ(2k) =
(−1)k+1B2k(2π)2k

2(2k)!
,

where Bj are the Bernoulli numbers defined by the equality (in Q[[T]])

T
eT − 1

=
∞

∑
j=0

Bj
T j

j!
.

(See proposition 7 of chapter VII of Serre’s book [16] for a proof of this identity.)
The Bernoulli numbers are all rational and, moreover, there are some well-known
congruence relations between them which we use later.

For each k > 1, we define the normalized Eisenstein series

E2k(z) =
1

2ζ(2k)
G2k(z) = 1− 4k

B2k

∞

∑
n=1

σ2k−1(n)qn .

These normalized Eisenstein series have q–expansions with rational coefficients
with very particular denominators. The first few E2k are:

E4(z) = 1 + 240
∞

∑
n=1

σ3(n)qn ,

E6(z) = 1− 504
∞

∑
n=1

σ5(n)qn ,
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E8(z) = 1 + 480
∞

∑
n=1

σ7(n)qn .

We can use E4 and E6, whose q–expansions have constant term 1, to construct the
first example of cusp form. More precisely, we define the modular discriminant

∆(z) =
1

1728
(E4(z)3 − E6(z)2) ,

which is a cusp form for SL2(Z) of weight 12. We have normalized ∆ so that the
first non-zero coefficient of its q–expansion is 1, but often in the literature the
modular discriminant is defined to be (2π)12∆ instead of ∆.

Let us check that the coefficients of the q–expansion of ∆ are all integers.
Observe that 1728 = 26 · 33, 240 = 24 · 3 · 5 and 540 = 23 · 32 · 7. Looking at the
powers of 2 and of 3, it is easy to see that

E4(z)3 =

(
1 + 24 · 3 · 5

∞

∑
n=1

σ3(n)qn
)3

≡ 1 + 24 · 32 · 5
∞

∑
n=1

σ3(n)qn mod 26 · 33

and

E6(z)2 =

(
1− 23 · 32 · 7

∞

∑
n=1

σ5(n)qn
)2

≡ 1− 24 · 32 · 7
∞

∑
n=1

σ5(n)qn mod 26 · 33

(also, we have only modified mod 1728 the coefficients of qn for n ≥ 2, so the
coefficients of 1 and q are exactly these ones). One checks that d3 ≡ d5 mod 12
for every d ∈ Z, and summing over the positive divisors of n ∈N we see that
24 · 32 · 5 · σ3(n) + 24 · 32 · 7 · σ5(n) ≡ 0 mod 26 · 33. This completes the proof.

Example 1.6. We can define E2 in a similar way:

E2(z) =
1

2ζ(2) ∑
m∈Z

∑′

n∈Z

1
(mz + n)2 = 1 +

3
π2 ∑

m∈Z\{0}
∑

n∈Z

1
(mz + n)2 .

In this case, however, the series is not absolutely convergent and so we must
take into account the order of summation. In particular, the previous proof that
G2k
(−1

z
)
= z2kG2k(z) does not carry over to the case k = 1 because we need to

reverse the order of summation over m and n. Therefore, E2 is not a (classical)
modular form for SL2(Z). Still, it has similar properties which will be useful
later (in fact, it is a p–adic modular form of weight 2; see section 2.1 of Serre’s
article [18]).
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The same computation as in proposition 1.4 shows that

3
π2 ∑

n∈Z

1
(mz + n)2 = −12

∞

∑
r=1

rqmr ,

whence

E2(z) = 1− 24
∞

∑
m=1

∞

∑
r=1

rqmr .

Since |q| < 1, this last double sum is absolutely convergent and we can collect
powers of q to get the expression

E2(z) = 1− 24
∞

∑
n=1

σ1(n)qn .

Let us see more precisely how E2 fails to be a modular form for SL2(Z) of
weight 2. The next result is proposition 7 of chapter 3 of Koblitz’s book [15].

Proposition 1.7. The normalized Eisenstein series of weight 2 satisfies the relation

z−2E2

(−1
z

)
= E2(z) +

12
2πiz

.

Proof. Set

am,n(z) =
1

(mz + n)(mz + n− 1)
=

1
mz + n− 1

− 1
mz + n

and consider

Ẽ2(z) = 1 +
3

π2 ∑
m∈Z\{0}

∑
n∈Z

[
1

(mz + n)2 − am,n(z)
]

.

On the one hand, the series ∑n∈Z am,n(z) telescopes to 0 and so Ẽ2(z) = E2(z).
On the other hand, the double series with general term

1
(mz + n)2 −

1
(mz + n)(mz + n− 1)

=
−1

(mz + n)2(mz + n− 1)

is absolutely convergent, which implies that we can change the order of the
summation in Ẽ2(z). That is,

E2(z) = Ẽ2(z) = 1 +
3

π2 ∑
n∈Z

∑
m∈Z\{0}

[
1

(mz + n)2 − am,n(z)
]
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= z−2E2

(−1
z

)
− 3

π2 ∑
n∈Z

∑
m∈Z\{0}

am,n(z) .

It remains to compute this last double sum.
As in the proof of proposition 1.4, we find that

∑
m∈Z\{0}

1
(mz + n)2 =

1
z2 ∑

m∈Z

1(
m + n

z
)2 −

1
n2 = −4π2

z2

∞

∑
r=1

re2πirn/z − 1
n2

and the sum over n of this last expression is absolutely convergent. Thus, the
outer sum in ∑n∈Z ∑m∈Z\{0} am,n(z) must also be absolutely convergent (because
the sum defining Ẽ2(z) is). Therefore, we can compute

∑
n∈Z

∑
m∈Z\{0}

am,n(z) = lim
N→∞

N

∑
n=−N+1

∑
m∈Z\{0}

am,n(z)

= lim
N→∞

∑
m∈Z\{0}

N

∑
n=−N+1

am,n(z) .

Using again the formulae introduced in the proof of proposition 1.4,

∑
m∈Z\{0}

N

∑
n=−N+1

am,n(z) = ∑
m∈Z\{0}

( 1
mz− N

− 1
mz + N

)
=

2
z

∞

∑
m=1

(
1

−N
z −m

+
1

−N
z + m

)
=

2
z

[
π

cos
(−πN

z
)

sin
(−πN

z
) + z

N

]
.

In conclusion, the double sum we wanted to compute is

2π

z
lim

N→∞

cos
(−πN

z
)

sin
(−πN

z
) =

2π

z
lim

N→∞
i
e−2πiN/z + 1
e−2πiN/z − 1

= −2πi
z

,

whence
E2(z) = z−2E2

(−1
z

)
+

6i
πz

= z−2E2

(−1
z

)
− 12

2πiz
.

After having introduced the main examples of modular forms, we describe
explicitly the structure of the C–vector spaces Mk(SL2(Z)). Recall that, by the
remarks after definition 1.2, we already know that Mk(SL2(Z)) = 0 when k is
odd and that Sk(SL2(Z)) has codimension 1 in Mk(SL2(Z)) when k is even and
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≥ 4 (as the Eisenstein series are not cusp forms). In fact, we can even give an
explicit basis of each Mk(SL2(Z)), k ∈ Z.

Theorem 1.8 (valence formula). Let k be an integer and let f be a meromorphic
modular form for SL2(Z) of weight k, not identically zero. Then,

ord∞( f ) +
1
2

ordi( f ) +
1
3

ordρ( f ) + ∑∗

P
ordP( f ) =

k
12

,

where ∑∗P means a summation over the points of SL2(Z)\H distinct from the classes of
i and ρ = e

πi
3 .

Proof. This formula can be proved integrating the logarithmic derivative of f
along a contour which contains in its interior essentially one representative of
each orbit of SL2(Z)\H and using the residue theorem. For a detailed proof, see
theorem 3 of chapter VII of Serre’s book [16].

Corollary 1.9. ∆(z) does not vanish in H and has a simple zero at i∞.

Proof. Since ∆ is a cusp form of weight 12, ordP(∆) ≥ 0 for all P ∈ H\ SL2(Z)

and ord∞(∆) ≥ 1. By theorem 1.8, these numbers add up to 1: this is only
possible if all the inequalities are equalities.

Proposition 1.10. Multiplication by ∆ defines an isomorphism of Mk−12(SL2(Z))

onto Sk(SL2(Z)) for every k ∈ Z.

Proof. Clearly, if f ∈ Mk−12(SL2(Z)), then f ∆ ∈ Sk(SL2(Z)). For the converse,
let f ∈ Sk(SL2(Z)). We set g = f

∆ , which is a meromorphic modular form of
weight k− 12. By the previous result, ordP(g) = ordP( f ) ≥ 0 for every P ∈ H

and ord∞(g) = ord∞( f )− 1 ≥ 0. In conclusion, g ∈ Mk−12(SL2(Z)).

This proves that multiplication by ∆ gives a bijection between Mk−12(SL2(Z))

and Sk(SL2(Z)), and it is obviously a linear map.

Proposition 1.11. Let k be an integer.
(1) Mk(SL2(Z)) = 0 if k < 0, k is odd or k = 2.
(2) M0(SL2(Z)) = C (that is, the only modular forms for SL2(Z) of weight 0 are

the constants).
(3) Mk(SL2(Z)) has dimension 1 and Gk is a basis if k = 4, 6, 8, 10 or 14.
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Proof. Recall that, if f is a non-zero modular form of weight k, then

ord∞( f ) +
1
2

ordi( f ) +
1
3

ordρ( f ) + ∑∗

p
ordp( f ) =

k
12

.

Since f is holomorphic, this means that k
12 ≥ 0. Moreover, k must be even

because the least common denominator of the left-hand side is 6 and k 6= 2
because 1

6 cannot be written in the form a + b
2 +

c
3 with a, b, c ≥ 0.

If k ≤ 10, then k− 12 < 0 and Sk(SL2(Z)) = { 0 } by proposition 1.10. Hence,
dim(Mk(SL2(Z))) ≤ 1. But we already know that 1, G4, G6, G8, G10 are non-zero
modular forms for SL2(Z) of weights 0, 4, 6, 8, 10, respectively; this concludes
the proof.

Corollary 1.12. For any integer k,

dim(Mk(SL2(Z))) =


0 if k < 0, k is odd or k = 2 ,⌊

k
12

⌋
if k ≥ 0, k is even and k

2 ≡ 1 mod 6 ,⌊
k

12

⌋
+ 1 if k ≥ 0, k is even and k

2 6≡ 1 mod 6 .

Proof. The result follows by induction on k (the inductive step is performed by
increasing k to k + 12 using proposition 1.10).

Corollary 1.13. The q–expansion of ∆ can be expressed as the infinite product

∆(z) = q
∞

∏
n=1

(1− qn)24 , where q = e2πiz .

Proof. Define

F(z) = q
∞

∏
n=1

(1− qn)24 .

It suffices to prove that F ∈ S12(SL2(Z)), as dim S12(SL2(Z)) = 1 and the
coefficient of q in both the q–expansions of F and ∆ is 1. Thus, we only need to
prove that

F
(−1

z

)
= z12F(z) .

Observe that the logarithmic differential of F is

dF
F

=

[
1− 24

∞

∑
n=1

∞

∑
m=1

qmn
]

dq
q

=

[
1− 24

∞

∑
n=1

σ1(n)qn
]

dq
q

= E2(z) · 2πi dz .
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Using proposition 1.7, we can compute

dF
(−1

z
)

F
(−1

z
) = 2πiE2

(−1
z

)dz
z2 = 2πiE2(z) dz + 12

dz
z

=
dF(z)
F(z)

+ 12
dz
z

.

Hence, the functions F
(−1

z
)

and z12F(z) have the same logarithmic differential,
which implies that F

(−1
z
)
= λz12F(z) for some constant λ ∈ C×. Evaluating at

z = i, we see that 0 6= F(i) = λF(i), whence λ = 1.

Theorem 1.14. Let k be a non-negative integer. The vector space Mk(SL2(Z)) admits
as a basis the family of monomials Eα

4 Eβ
6 with α and β non-negative integers such that

4α + 6β = k. As a consequence, M(SL2(Z)) = C[E4, E6].

Proof. If k is odd, Mk(SL2(Z)) = 0 and the equation 4α+ 6β = k has no solutions,
so we may assume that k is even.

First, we show that these monomials generate Mk(SL2(Z)) by induction on
k. This is clear for k ≤ 6, so suppose that k ≥ 8. Choose a pair (α0, β0) of
non-negative integers such that 4α0 + 6β0 = k (this is possible for k ≥ 4). The
modular form g = Eα0

4 Eβ0
6 , of weight k, is not a cusp form. Let f ∈ Mk(SL2(Z)).

Now f − f (∞)
g(∞)

g is a cusp form and, in particular, is of the form ∆h for some
h ∈ Mk−12(SL2(Z)). We can apply the induction hypothesis to h and obtain thus
f as a linear combination of the desired monomials. (Recall that, by definition,
∆ = 1

1728(E3
4 − E2

6).)
Now we check that these monomials are linearly independent. Suppose, for

the sake of contradiction, that there exists a non-trivial linear combination

∑
4α+6β=k

λα,βEα
4 Eβ

6 = 0 .

Up to multiplying this linear relation by suitable powers of E4 and of E6, we may
assume that k is a multiple of 12. Dividing by Ek/6

6 , we obtain that

∑
4α+6β=k

λα,β

(E3
4

E2
6

)α/3
= 0

(where α
3 is an integer because 4α = k − 6β is a multiple of 3). That is, the

meromorphic function E3
4/E2

6 satisfies a non-trivial algebraic equation over C

and, therefore, must be constant. This gives the desired contradiction because
the q–expansion of E3

4/E2
6 is not constant.
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There is a more convenient basis for our purpose of reducing q–expansions
modulo prime numbers. The next result is based on lemma 2.20 of Stein’s book
[20], which he attributes to V. Miller. (Unfortunately, the author of this work was
unable to find the thesis of V. Miller where this result first appeared and so there
is no proper citation.) Actually we only describe a basis in echelon form, whereas
Miller’s basis is in diagonal form (obtained after applying gaussian elimination in
the obvious way).

Theorem 1.15. Let k be an even integer ≥ 4 and let d = dim Sk(SL2(Z)). Choose
two integers α, β ≥ 0 such that 4α + 6β ≤ 14 and 4α + 6β ≡ k mod 12. Define
gj = ∆jEα

4 E2(d−j)+β
6 for j = 0, 1, . . . , d. Every f ∈ Mk(SL2(Z)) whose q–expansion

lies in Z[[q]] can be expressed uniquely as a Z–linear combination of g0, g1, . . . , gd.

Proof. By corollary 1.12, we see that

d =


⌊

k
12

⌋
− 1 if k ≡ 2 mod 12 ,⌊

k
12

⌋
if k 6≡ 2 mod 12 .

This, together with the conditions for 4α + 6β, shows that k = 12d + 4α + 6β. We
deduce that every gj has weight k.

On the other hand, the q–expansions of E4, E6 and ∆ lie in Z[[q]] and their
first non-zero coefficient is 1, whence the q–expansion of gj lies in Z[[q]] too
and its first coefficients are ai(gj) = 0 for i < j and aj(gj) = 1. In particular,
the gj for j = 0, 1, . . . , d are linearly independent over C and so form a basis
of Mk(SL2(Z)). Furthermore, if f = λ0g0 + λ1g1 + · · · + λdgd, then the first
coefficients of the q–expansion of f are given by

aj( f ) = λj + λj−1aj(gj−1) + · · ·+ λ1aj(g1) + λ0aj(g0)

for j = 0, 1, . . . , d. We conclude that the q–expansion of f lies in Z[[q]] if and only
if λ0, λ1, . . . , λd ∈ Z (for example, using gaussian elimination on the triangular
system of linear equations).

1.2 Hecke operators

Hecke operators play a fundamental role in the theory of modular forms. They
are a family of averaging operators acting on the space of modular forms with
particularly simple formulae for the action on q–expansions. Moreover, they are
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multiplicative and satisfy certain recurrence relations. One can then show that
the coefficients of the q–expansions of Hecke eigenforms (i.e., eigenvectors of the
Hecke operators) satisfy similar relations.

Hecke operators are defined by means of the modular interpretation of mod-
ular forms. That is, we think of SL2(Z)\H as a moduli space parametrizing
complex elliptic curves with a nowhere vanishing differential 1–form. This inter-
pretation is very important because it leads to Katz’s generalization of the notion
of modular forms.

A lattice in C is a subgroup of the form Λ = Λ(ω1, ω2) = Zω1⊕Zω2, where
ω1 and ω2 are complex numbers which are linearly independent over R. We
shall always assume (up to interchanging ω1 and ω2) that Im

(ω1
ω2

)
> 0. Let L

denote the set of lattices in C. One checks easily that Λ(ω1, ω2) = Λ(ω′1, ω′2) if
and only if ω′1 = aω1 + bω2 and ω′2 = cω1 + dω2 for some

(
a b
c d

)
∈ SL2(Z).

Given a lattice Λ, we can form the one-dimensional complex torus C/Λ with
a holomorphic differential ω = dz (where z is the coordinate on C). Consider the
function

℘(z; Λ) =
1
z2 + ∑

l∈Λ\{0}

[
1

(z− l)2 −
1
l2

]
and the constants

g2(Λ) = 60 ∑
l∈Λ\{0}

1
l4 and g3(Λ) = 140 ∑

l∈Λ\{0}

1
l6 .

We have an analytic isomorphism from C/Λ to the complex elliptic curve

E : Y2Z = 4X3 − g2(Λ)XZ2 − g3(Λ)Z3

given by the map

z + Λ 7→

(℘(z; Λ) : ℘′(z; Λ) : 1) if z 6∈ Λ ,

(0 : 1 : 0) if z ∈ Λ ,

under which ω corresponds to dx
y . Conversely, given an elliptic curve E over C

together with a nowhere vanishing holomorphic differential ω, we can construct
a lattice

Λ(E, ω) =

{ ∫
γ

ω : γ ∈ H1(E, Z)

}
.

These two constructions are inverse to each other and so give a correspondence
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between lattices Λ and pairs (E, ω) consisting of an elliptic curve with a nowhere
vanishing holomorphic differential (see section I.6 of Koblitz’s book [15] for more
details).

One can show that two elliptic curves C/Λ and C/Λ′ are isomorphic if and
only if Λ = λΛ′ for some λ ∈ C×. Therefore, we consider the (left) action of C×

on L by homotheties and a lattice Λ(ω1, ω2) is equivalent to Λ(τ, 1) in C×\L,
where τ = ω1

ω2
∈ H. Thus, we write Λ(τ) = Λ(τ, 1) for all τ ∈ H. We see that

Λ(τ) and Λ(τ′) coincide in C×\L if and only if there exists
(

a b
c d

)
∈ SL2(Z) such

that τ′ = aτ+b
cτ+d . Hence, there is a bijective correspondence between the elements

of SL2(Z)\H and the isomorphism classes of elliptic curves. SL2(Z)\H is said
to be a moduli space of elliptic curves over C.

Throughout the remainder of this section, let k be a fixed integer.

Definition 1.16. The modular function associated with f ∈ Mk(SL2(Z)) is the
function F : L → C defined by

F(Λ(ω1, ω2)) = ω−k
2 f

(ω1

ω2

)
.

Remarks.
(1) The function F is well-defined. Indeed, for every Λ(ω1, ω2) ∈ L and every(

a b
c d

)
∈ SL2(Z),

F(Λ(aω1 + bω2, cω1 + dω2)) = (cω1 + dω2)
−k f

( aω1 + bω2

cω1 + dω2

)
= ω−k

2

(
c

ω1

ω2
+ d
)−k

f
( a ω1

ω2
+ b

c ω1
ω2

+ d

)
= F(Λ(ω1, ω2)) .

(2) The function F is homogeneous of degree −k: F(λΛ) = λ−kF(Λ) for all
Λ ∈ L and all λ ∈ C×.

(3) We can recover f from F because f (z) = F(Λ(z)).

We use this interpretation of modular forms to define Hecke operators. To
this aim, we first define operators on lattices, which then induce operators on
functions on lattices. Write Z(L) for the free abelian group generated by the
elements of L.

Definition 1.17. Let n ∈ N. The Hecke operator Tn : Z(L) → Z(L) is the unique
Z–linear operator which maps each lattice Λ to the sum of all of its sublattices of
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index n:
Tn[Λ] = ∑

[Λ:Λ′]=n
[Λ′] .

Similarly, the homothety operator Rn : Z(L) → Z(L) is the Z–linear operator
defined by Rn[Λ] = [nΛ].

Proposition 1.18. The Hecke operators and the homothety operators satisfy the follow-
ing identities:

(1) Rm ◦ Rn = Rn ◦ Rm = Rmn for all m, n ∈N;
(2) Rm ◦ Tn = Tn ◦ Rm for all m, n ∈N;
(3) Tm ◦ Tn = Tn ◦ Tm = Tmn for all m, n ∈N such that (m, n) = 1, and
(4) Tpn ◦ Tp = Tpn+1 + p Tpn−1 ◦ Rp for all primes p and all n ∈N.

Proof. The first two identities are trivial.
To prove the third identity, fix a lattice Λ. For every sublattice Λ′′ of Λ of

index mn, there exists a unique sublattice Λ′ of Λ containing Λ′′ and such that
[Λ : Λ′] = n and [Λ′ : Λ′′] = m. Indeed, Λ/Λ′′ is an abelian group of order mn
which decomposes uniquely as the direct sum of a group of order m and a group
of order n (because (m, n) = 1). Therefore, Tmn[Λ] = (Tm ◦ Tn)[Λ].

Finally, we prove the last identity with a similar argument. Let Λ be a lattice.
We observe that (Tpn ◦ Tp)[Λ], Tpn+1 [Λ] and (Tpn−1 ◦ Rp)[Λ] are all formal sums
of sublattices of Λ of index pn+1. One such sublattice Λ′′ occurs exactly a times
in the first sum, exactly once in the second sum and exactly b times in the third
sum, so we have to prove that a = 1 + pb. To do so, we distinguish two cases.

If Λ′′ is not contained in pΛ, it is clear that b = 0. On the other hand, a is the
number of sublattices Λ′ of Λ containing Λ′′ with [Λ : Λ′] = p. Such a lattice Λ′

contains pΛ, and its image in Λ/pΛ is of order p and contains the image of Λ′′,
which must also be of order p. Thus, there is exactly one possible Λ′ with these
properties, which means that a = 1.

If Λ′′ is contained in pΛ, we get that b = 1. But every sublattice Λ′ of Λ of
index p contains pΛ and so Λ′′ too. Therefore, a coincides with the number of
sublattices of Λ of index p (or, equivalently, with the number of subgroups of
Λ/pΛ ' (Z/pZ)2 of index p), and this number is p2−1

p−1 = p + 1.

Corollary 1.19. The Z–algebra generated by the Tp and Rp for all primes p contains
all the Tn, n ∈N, and is commutative.
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Definition 1.20. There is an action of Hecke operators and homothety operators
on the set of functions F : L → C which are homogeneous of degree −k: for all
n ∈N, we define Tn F and Rn F to be the functions given by

Tn F(Λ) = F(Tn[Λ]) = ∑
[Λ:Λ′]=n

F(Λ′)

and Rn F(Λ) = F(Rn[Λ]) = n−kF(Λ).

Proposition 1.21. Let F : L → C be a homogeneous function of degree −k.
(1) Tm Tn F = Tmn F for all m, n ∈N such that (m, n) = 1.
(2) Tp Tpn F = Tpn+1 F + p1−k Tpn−1 F for all primes p and all n ∈N.

Proof. It is immediate from proposition 1.18.

Definition 1.22. Let f ∈ Mk(SL2(Z)) and let F : L → C be the associated modu-
lar function (as in definition 1.16). For every n ∈N, we define Tn f : H→ C to
be the function associated with nk−1 Tn F:

Tn f (z) = nk−1 Tn F(Λ(z, 1)) .

Remarks.
(1) The factor nk−1 is introduced so that some formulae have integer coeffi-

cients.
(2) One can check that Tn f ∈ Mk(SL2(Z)), as Tn f (z) is defined as a linear

combination of values of f . This will become apparent once we give explicit
formulae for the action of Tn.

Proposition 1.23. Let f ∈ Mk(SL2(Z)).
(1) Tm Tn f = Tmn f for all m, n ∈N such that (m, n) = 1.
(2) Tp Tpn f = Tpn+1 f + pk−1 Tpn−1 f for all primes p and all n ∈N.

Proof. It is immediate from the definition of Tn f and proposition 1.21 (taking
into account the additional factor).

It is often convenient to understand the action of Hecke operators in terms
of the definitions given in the previous section. The following results provide
simpler descriptions of these functions and even precise formulae to compute
them.
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Lemma 1.24. Let A be a 2× 2 matrix with entries in Z and det(A) = n > 0. There
exists U ∈ SL2(Z) such that UA =

(
a b
0 d

)
with ad = n, a ≥ 1 and 0 ≤ b < d.

Moreover, the integers a, b and d are uniquely determined.

Proof. It is possible to put A into upper triangular form by using elementary
operations of the following types: adding a multiple of one row to another and
swapping two rows. Since these operations are invertible, they correspond to left
multiplication by a matrix in SL2(Z). Now we can assume, up to multiplication
by
( −1 0

0 −1

)
∈ SL2(Z), that the diagonal entries are positive. Finally, adding a

suitable multiple of the second row to the first one, we obtain a matrix of the
form UA =

(
a b
0 d

)
with the required properties.

For the uniqueness, observe that a is the greatest common divisor of the
elements in the first column of A (the operations performed to obtain an upper
triangular form coincide with Euclid’s algorithm). Now, d = n

a and b is obviously
uniquely determined modulo d.

Proposition 1.25. Let n ∈ N and let M(n) be the set of 2× 2 matrices with entries
in Z and determinant n. Let X(n) be the subset of M(n) consisting of matrices of the
form

(
a b
0 d

)
with a ≥ 1 and 0 ≤ b < d. If Λ = Λ(ω1, ω2), then the map(

a b
0 d

)
7→ Λ(aω1 + bω2, dω2)

is a bijection between X(n) and the set of sublattices of Λ of index n.

Proof. If
(

a b
0 d

)
∈ X(n), then Λ(aω1 + bω2, dω2) has index n in Λ because ad = n.

Conversely, if Λ′ is a sublattice of Λ of index n, then every basis of Λ′ must
be of the form (ω′1, ω′2) = (aω1 + bω2, cω1 + dω2) for some

(
a b
c d

)
∈ M(n). By

lemma 1.24,
(

a b
c d

)
is SL2(Z)–equivalent to exactly one element of X(n).

Corollary 1.26. Let n ∈N and let f ∈ Mk(SL2(Z)). Then,

Tn f (z) = nk−1 ∑
a,b,d

d−k f
( az + b

d

)
where the sum is over the triples of integers a, b and d such that a ≥ 1, ad = n and
0 ≤ b < d.

Theorem 1.27. Let f ∈ Mk(SL2(Z)) with q–expansion

f (z) =
∞

∑
m=0

c(m)qm .
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For every n ∈N, Tn f ∈ Mk(SL2(Z)) and its q–expansion is

Tn f (z) =
∞

∑
m=0

cn(m)qm ,

where
cn(m) = ∑

a|(n,m)

ak−1c
(mn

a2

)
(the last sum is over the positive divisors of (n, m)) for all m ∈ N. In particular, if
f ∈ Sk(SL2(Z)), then Tn f ∈ Sk(SL2(Z)) too.

Proof. Let F be the modular function associated with f . For each
(

a b
c d

)
∈ SL2(Z),

Tn f
( az + b

cz + d

)
= nk−1 Tn F

(
Λ
( az + b

cz + d
, 1
))

= nk−1 Tn F((cz + d)−1Λ(az + b, cz + d))

= (cz + d)knk−1 Tn F(Λ(z, 1)) = (cz + d)k Tn f (z) .

Moreover, by corollary 1.26, we see that Tn f is holomorphic on H because f is.
It remains to prove that Tn f is holomorphic at ∞, which we do by computing its
q–expansion explicitly.

We can write

Tn f (z) = nk−1 ∑
a≥1

∑
ad=n

∑
0≤b<d

d−k
∞

∑
m=0

c(m)e2πim az+b
d .

But, for fixed a and d, the sum ∑0≤b<d e2πibm/d is 0 unless d
∣∣ m, in which case it

is d. Thus, setting m′ = m
d ,

Tn f (z) = nk−1 ∑
a,d,m′

d−k+1c(m′d)e2πiam′z .

In the previous expression, we can collect powers of e2πiz and write t = am′ to
obtain that

cn(t) = ∑
a|(n,t)

ak−1c
(n

a
t
a

)
(the sum is over the positive divisors of (n, t)).

We could have defined Hecke operators by means of the formula in the-
orem 1.27, which is enough if one is interested only in formal manipulations of
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power series. However, it is not at all clear that, when one applies this formula
to the q–expansion of a modular form, the resulting power series is again the
q–expansion of a modular form. That is why the more abstract point of view
presented here is more convenient.

Corollary 1.28. Consider f ∈ Mk(SL2(Z)) non-constant and with q–expansion

f (z) =
∞

∑
m=0

cmqm .

If f is an eigenvector of all the Tn (i.e., an eigenform), say Tn f = λn f with λn ∈ C

for each n ∈N, then c1 6= 0 and cm = λmc1 for all m ∈N.

Proof. The coefficient of q in the q–expansion of Tn f is cn, by theorem 1.27. But,
since Tn f = λn f , this number is also λnc1. Finally, if c1 were zero, then cm

would be zero for all m ∈N, thus contradicting the assumption that f is not a
constant.

Corollary 1.29. Let f ∈ Mk(SL2(Z)) with q–expansion

f (z) =
∞

∑
m=0

cmqm .

If f is an eigenform with c1 = 1, then
(1) cmcn = cmn for all m, n ∈N with (m, n) = 1 and
(2) cpcpn = cpn+1 + pk−1cpn−1 for all primes p and all n ∈N.

Proof. These relations follow immediately from corollary 1.28 and proposi-
tion 1.23.

Example 1.30. As the spaces M4(SL2(Z)), M6(SL2(Z)) and S12(SL2(Z)) have
dimension 1, we deduce that E4, E6 and ∆ are eigenforms. In fact, one can prove
that all Eisenstein series are eigenforms.

1.3 Modular forms modulo p

The exposition in this section follows closely section 3 of Swinnerton-Dyer’s
article [21]. The same results are also presented in section 1 of Serre’s article [17].

To begin with, we fix some notation. Throughout this section, let p be a
fixed prime number. Write vp for the p–adic valuation on Q and consider its
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valuation ring Z(p) (this is the ring of rational numbers with denominators prime
to p). We can identify modular forms with their q–expansions and regard each
Mk(SL2(Z)), k ∈ Z, as a subspace of the ring of formal power series C[[q]]. We
consider those modular forms whose q–expansions have coefficients in Z(p): set

Mp
k (SL2(Z)) =

{
f ∈ Mk(SL2(Z)) : f =

∞

∑
n=0

anqn ∈ Z(p)[[q]]
}

for each k ∈ Z and

Mp(SL2(Z)) =
⊕
k∈Z

Mp
k (SL2(Z)) .

But elements of Z(p) can be reduced mod p; that is, the residue field of Z(p) is
Fp. Thus, given

f =
∞

∑
n=0

anqn ∈ Z(p)[[q]] ,

we can form

f̃ =
∞

∑
n=0

ãnqn ∈ Fp[[q]] ,

where ãn denotes the image of an in Fp. This leads us to the definition of modular
forms mod p.

Definition 1.31. For each k ∈ Z, let

M̃p
k (SL2(Z)) = { f̃ ∈ Fp[[q]] : f ∈ Mp

k (SL2(Z)) } .

The Fp–algebra of modular forms modulo p for SL2(Z) is

M̃p(SL2(Z)) = ∑
k∈Z

M̃p
k (SL2(Z)) .

Our objective is to determine the structure of the algebra M̃p(SL2(Z)). Write

P = E2 = 1− 24
∞

∑
n=1

σ1(n)qn ,

Q = E4 = 1 + 240
∞

∑
n=1

σ3(n)qn ,

R = E6 = 1− 504
∞

∑
n=1

σ5(n)qn .
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(See examples 1.5 and 1.6 for the formulae.)

By theorem 1.15, every f ∈ Mp
k (SL2(Z)) can be expressed uniquely as an

isobaric polynomial of weight k in Q, R and ∆ (which have weights 4, 6 and 12,
respectively) with coefficients in Z(p). Therefore, Mp(SL2(Z)) = Z(p)[Q, R, ∆]
(both regarded as subrings of Z(p)[[q]]) and it only remains to find the algebraic
relations satisfied by Q̃, R̃ and ∆̃ in Fp[[q]]. But, from the explicit formulae above,
two cases are trivial.

Theorem 1.32. If p = 2 or p = 3, then P̃ = Q̃ = R̃ = 1 and M̃p(SL2(Z)) = Fp[∆̃]
is the algebra of polynomials in one variable ∆̃ with coefficients in Fp (i.e., it is isomorphic
to Fp[X]).

From now on, we assume that p ≥ 5. In this case, p
∣∣- 1728 and, from the

equation 1728∆ = Q3 − R2, we deduce that Mp(SL2(Z)) = Z(p)[Q, R]. Also, Q
and R satisfy no non-trivial algebraic relations over C, as we saw in the proof of
theorem 1.14. Thus, we have surjective ring homomorphisms

Mp(SL2(Z)) ∼= Z(p)[X, Y]→→ Fp[X, Y]→→ M̃p(SL2(Z))

Φ(X, Y) 7→ Φ̃(X, Y) 7→ Φ̃(Q̃, R̃)

given by reduction mod p and we want to determine the kernel of the last arrow.
But, before doing so, we need to introduce some additional structure on the
algebra of modular forms.

Consider the operator

θ = q
d
dq

acting on C[[q]]:

θ

( ∞

∑
n=0

anqn
)
=

∞

∑
n=1

nanqn .

Theorem 1.33 (Ramanujan). Let k ∈ Z.
(1) For every f ∈ Mk(SL2(Z)), (12θ − kP) f ∈ Mk+2(SL2(Z)).
(2) We have identities

θP =
1

12
(P2 −Q) , θQ =

1
3
(PQ− R) ,

θR =
1
2
(PR−Q2) , θ∆ = P∆ .
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Proof. Observe that, in terms of z,

θ =
1

2πi
d
dz

.

Take f ∈ Mk(SL2(Z)) and set F = (12θ − kP) f . It is clear that F is holomorphic
(also at the cusps) and that F(z + 1) = F(z), so it only remains to prove that
F
(−1

z
)
= zk+2F(z). Differentiating the equation f

(−1
z
)
= zk f (z), we get that

f ′
(−1

z

)
= kzk+1 f (z) + zk+2 f ′(z) .

Using these formulae and proposition 1.7, we obtain that

F
(−1

z

)
=

12
2πi

f ′
(−1

z

)
− kP

(−1
z

)
f
(−1

z

)
=

12
2πi

zk+2 f ′(z)− kzk+2P(z) f (z) = zk+2F(z) .

This concludes the proof of (1).
Similarly, set G = 12θP− P2, which is holomorphic (also at the cusps) and

satisfies that G(z + 1) = G(z) because P has these properties. We differentiate
the equation P

(−1
z
)
= z2P(z) + 12z

2πi (see proposition 1.7) to obtain that

P′
(−1

z

)
= z4P′(z) + 2z3P(z) +

12z2

2πi

and then compute

G
(−1

z

)
=

12
2πi

P′
(−1

z

)
− P

(−1
z

)2
=

12
2πi

z4P(z)− z4P(z)2 = z4G(z) .

Therefore, G ∈ M4(SL2(Z)). But this space has dimension 1 and G(∞) = −1,
so G = −Q. Finally, by (1), we obtain that G1 = (12θ − 4P)Q ∈ M6(SL2(Z)),
G2 = (12θ − 6P)R ∈ M8(SL2(Z)) and G3 = (12θ − 12P)∆ ∈ M14(SL2(Z)). As
these spaces have dimension 1 and G1(∞) = −4, G2(∞) = −6 and G3(∞) = 0,
we conclude that G1 = −4R, G2 = −6Q2 and G3 = 0.

Definition 1.34. We define ∂ to be the derivation on M(SL2(Z)) acting on each
graded component Mk(SL2(Z)), k ∈ Z, by 12θ − kP.

Remarks.
(1) The first part of theorem 1.33 shows that ∂ is well-defined and one checks

easily that ∂ is a derivation.
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(2) By the second part of theorem 1.33, ∂Q = −4R and ∂R = −6Q2. Hence, ∂

acts on Mp(SL2(Z)) = Z(p)[Q, R], which is isomorphic to the polynomial
ring Z(p)[X, Y] via X 7→ Q and Y 7→ R. Thus, we obtain an induced
derivation ∂ on Z(p)[X, Y] defined by ∂X = −4Y and ∂Y = −6X2. The
same equations define a derivation on Fp[X, Y] which we call ∂ as well.

(3) If f ∈ Mp
k (SL2(Z)), we write ∂ f̃ for ∂ f mod p, which lies in M̃p

k+2(SL2(Z)).
That is, ∂ f̃ = (12θ − kP̃) f̃ in Fp[[q]].

Theorem 1.35. Let k ∈N.
(1) If p− 1

∣∣ 2k, then pB2k ∈ Z(p) and pB2k ≡ −1 mod p (Clausen–von Staudt
congruence). In particular, vp(B2k) = −1.

(2) If p− 1
∣∣- 2k, then B2k/(2k) ∈ Z(p) and its residue class mod p depends only

on 2k mod p− 1. That is,

B2k
2k
≡ B2k′

2k′
mod p if 2k ≡ 2k′ 6≡ 0 mod p− 1

(Kummer’s congruence).

Proof. See theorems 4 and 5 of section 5.8 of Borevich and Shafarevich’s book
[1].

Corollary 1.36.
(1) Ep−1 ∈ Mp

p−1(SL2(Z)) and Ẽp−1 = 1.
(2) Ep+1 ∈ Mp

p+1(SL2(Z)) and Ẽp+1 = P̃.

Proof. Recall that

E2k(z) = 1− 2
2k
B2k

∞

∑
n=1

σ2k−1(n)qn .

Since vp
(
2 p−1

Bp−1

)
= 1, we get (1). On the other hand,

Bp+1

p + 1
≡ B2

2
≡ −1

12
6≡ 0 mod p .

Now (2) follows from this congruence and the fact that, by Fermat’s little theorem,
σi(n) ≡ σj(n) mod p if i ≡ j mod p− 1.

Corollary 1.37. The algebra M̃p(SL2(Z)) is stable under θ.
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Proof. If f ∈ M̃p
k (SL2(Z)), we can write

12θ f = kP̃ f + ∂ f = kẼp+1 f + Ẽp−1∂ f

and observe that Ẽp+1 f and Ẽp−1∂ f belong to M̃p
k+p+1(SL2(Z)).

Definition 1.38. We define A, B ∈ Z(p)[X, Y] to be the unique polynomials
satisfying that A(Q, R) = Ep−1 and B(Q, R) = Ep+1.

These are all the elements required to determine the structure of M̃p(SL2(Z)).
We are now in a position to prove the main theorem.

Lemma 1.39. ∂Ã = B̃ and ∂B̃ = −X∂Ã.

Proof. Since Ã(Q̃, R̃) = Ẽp−1 = 1, we see that θÃ(Q̃, R̃) = 0 and so

∂Ã(Q̃, R̃) = P̃Ã(Q̃, R̃) = P̃ = Ẽp+1 = B̃(Q̃, R̃) .

That is to say, the modular form ∂A(Q, R)− B(Q, R) lies in pMp
p+1(SL2(Z)) or,

equivalently, ∂A− B ∈ pZ(p)[X, Y]. Therefore, ∂Ã = B̃.
Similarly,

∂B̃(Q̃, R̃) = (12θ − P̃)P̃ = −Q̃ = −Q̃Ã(Q̃, R̃) ,

where the second inequality follows from theorem 1.33. Thus, the modular form
∂B(Q, R) + QA(Q, R) lies in pMp

p+3(SL2(Z)) and so ∂B + XA ∈ pZ(p)[X, Y]. In
conclusion, ∂B̃ = −XÃ.

Lemma 1.40. The polynomial Ã has no repeated factors in Fp[X, Y] and is prime to B̃.

Proof. Recall that Ã is an isobaric polynomial of weight p− 1, where X and Y
have weights 4 and 6, respectively. Thus, the factors appearing in its decomposi-
tion must be of the form X3 − cY2 with c ∈ F

×
p , X or Y.

Suppose, for the sake of contradiction, that the polynomial Ã is exactly
divisible by (X3 − cY2)n for some c ∈ F×p and some n > 1. Since Ã(Q̃, R̃) = 1
and Q̃3 − R̃2 ∈ qFp[[q]], we see that c 6= 1. Then, ∂(X3 − cY2) = 12(c− 1)X2Y
is prime to X3 − cY2 and so (X3 − cY2)n−1 divides ∂Ã = B̃ exactly. In the same
way, we see that (X3 − cY2)n−2 divides ∂B̃ = −XÃ exactly, contradicting the
hypothesis.
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Analogously, if Ã is exactly divisible by Xn (resp. Yn) for some n > 1, we
deduce that −XÃ is exactly divisible by Xn−2 (resp. Yn−2) using that ∂X = −4Y
is prime to X (resp. ∂Y = −6X2 is prime to Y), which is a contradiction.

We have seen that the factors of Ã have multiplicity n = 1 and that they
appear with multiplicity n− 1 = 0 in ∂Ã = B̃ (i.e., they do not divide B̃).

Theorem 1.41. The algebra M̃p(SL2(Z)) of modular forms mod p is naturally iso-
morphic to Fp[X, Y]/(Ã− 1) and has a natural grading with values in Z/(p− 1)Z.

Proof. We have a surjective ring homomorphism

Fp[X, Y]→→ M̃p(SL2(Z))

φ(X, Y) 7→ φ(Q̃, R̃)

and we have to prove that its kernel a is generated by Ã− 1. Since Ã(Q̃, R̃) = 1,
it is clear that (Ã− 1) ⊆ a and we only need to prove that the inclusion is in fact
an equality.

Observe that M̃p(SL2(Z)) is a subring of Fp[[q]] and, in particular, an integral
domain, which implies that a is a prime ideal. However, a is not maximal: if it
were, M̃p(SL2(Z)) would be finite by Hilbert’s nullstellensatz, but theorem 1.15
gives arbitrarily many Fp–linearly independent elements if we take large enough
weights. Now, since the ring Fp[X, Y] has dimension 2, it suffices to prove that
(Ã− 1) is a prime ideal or, equivalently, that Ã− 1 is an irreducible polynomial.

Suppose, for the sake of contradiction, that Ã− 1 is not irreducible and let φ be
one of its irreducible factors. Consider a decomposition φ = φn +φn−1 + · · ·+φ0,
where φk is an isobaric polynomial of weight k (X and Y have weights 4 and
6, respectively) and φn 6= 0. In particular, n < p− 1 because φ

∣∣ Ã− 1. Take
a primitive (p− 1)–th root of unity ζ in Fp. Considering the weights, we see
that Ã(ζ4X, ζ6Y) = Ã(X, Y) but φn(ζ4X, ζ6Y) = ζnφn(X, Y) 6= φn(X, Y). Thus,
φ(X, Y) and φ(ζ4X, ζ6Y) are two distinct factors of Ã(X, Y)− 1. Therefore, we
can write

Ã(X, Y)− 1 = φ(X, Y)φ(ζ4X, ζ6Y)ψ(X, Y)

for some polynomial ψ = ψm + ψm−1 + · · ·+ ψ0. Looking at the terms of highest
weight in this equation, we find that

Ã(X, Y) = φn(X, Y)φn(ζ
4X, ζ6Y)ψm(X, Y) = ζnφn(X, Y)2ψm(X, Y)

and this contradicts lemma 1.40.
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Finally, since A has weight p − 1, the grading on Mp(SL2(Z)) induces a
grading

M̃p(SL2(Z)) =
⊕

α∈Z/(p−1)Z

[
∑
k∈α

M̃p
k (SL2(Z))

]
.

Example 1.42. We list the first few cases.
(1) If p = 5, Ep−1 = Q and A(X, Y) = X, so M̃5(SL2(Z)) ∼= F5[Y].
(2) If p = 7, Ep−1 = R and A(X, Y) = Y, so M̃7(SL2(Z)) ∼= F7[X].
(3) If p = 11, Ep−1 = QR and A(X, Y) = XY, so M̃11(SL2(Z)) ∼= F11[X, X−1].

As we have seen, the weights of the modular forms induce a grading on
M̃p(SL2(Z)). Even more, we can use weights to define a filtration.

Definition 1.43. Let α ∈ Z/(p− 1)Z and consider a non-zero element

f̃ ∈ ∑
k∈α

M̃p
k (SL2(Z)) .

By multiplying each summand by suitable powers of Ã(Q̃, R̃), we can assume
that f̃ ∈ M̃p

k (SL2(Z)) for some k ∈ α. We say that f̃ is of exact filtration k if
f̃ ∈ M̃p

k (SL2(Z)) but f̃ 6∈ M̃p
k′(SL2(Z)) for any k′ < k; in this case, we write

w( f̃ ) = k. We make the convention that w(0) = −∞.

Proposition 1.44. Let k ∈ Z and let f ∈ Mp
k (SL2(Z)) such that f̃ 6= 0. Consider the

unique polynomial Φ ∈ Z(p)[X, Y] satisfying that Φ(Q, R) = f .
(1) w( f̃ ) < k if and only if Ã divides Φ̃.
(2) w(θ f̃ ) ≤ w( f̃ ) + p + 1, with equality if and only if w( f̃ ) 6≡ 0 mod p.

Proof. (1) is immediate from theorem 1.41. For (2), assume that w( f̃ ) = k and, as
we saw in corollary 1.37, we can write

12θ f̃ = Ã(Q̃, R̃)∂ f̃ + kB̃(Q̃, R̃) f̃

and A(Q, R)∂ f + kB(Q, R) f ∈ Mp
k+p+1(SL2(Z)). Hence, w(θ f̃ ) ≤ k + p + 1. In

addition, using (1) and that Ã and B̃ are relatively prime (by lemma 1.40), we
find that Ã divides Ã∂Φ̃ + kB̃Φ̃ if and only if k = 0 in Fp. Again by (1), we have
just proved that w(θ f̃ ) = k + p + 1 if and only if k ≡ 0 mod p.

We finish with an interesting result which can be proved only with the tools
from section 1.1.
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Proposition 1.45. Let k ∈ N ∪ { 0 }. Two elements f̃1 and f̃2 of M̃p
k (SL2(Z)) are

equal if and only if the coefficients of qn in f̃1 and f̃2 are equal for every n ≤ k
12 .

Proof. The condition is obviously necessary. Suppose that it holds. By the-
orem 1.15, we have a basis g0, g1, . . . , gd of Mp

k (SL2(Z)) with d ≤ k
12 . Moreover,

in the proof of the theorem, we saw that the first coefficients of their q–expansions
are ai(gj) = 0 for i < j and aj(gj) = 1. Thus, the coefficients expressing f̃1 − f̃2

in terms of the basis g̃0, g̃1, . . . , g̃d can be computed solving a triangular linear
system of equations given by the coefficients of qn for n ≤ d, which are all 0.
Therefore, f̃1 − f̃2 = 0.





Chapter 2

Katz’s theory of modular forms

In this chapter we present Katz’s theory of modular forms. The approach of
Katz is much more geometric than the one taken in chapter 1 and allows us
to generalize the notion of modular forms to all kinds of base rings and work
algebraically. In fact, this geometric context is also useful to define p–adic
modular forms and other generalizations which we do not treat in this work.

Katz’s modular forms are rules which assign values to elliptic curves with
certain additional structures. One can then define q–expansions as the values
assigned to a particular elliptic curve defined over the ring of power series on q,
the Tate curve. As in the classical case, a modular form is uniquely determined
by its q–expansions (although the proof in this case is more difficult). On the
other hand, modular forms must satisfy some extra conditions which allow us
to interpret them as twisted functions on elliptic curves: more precisely, they cor-
respond to global sections of certain line bundles over elliptic curves. (A similar
interpretation for classical modular forms is already hinted at in section 1.2.) It
turns out that (in many cases) there is a universal elliptic curve from which all
the other elliptic curves can be obtained and then modular forms correspond to
global sections of some line bundle over the universal elliptic curve.

This chapter reproduces the main concepts explained in the first chapter of
Katz’s paper [8] and gives pointers to the proofs involving general elliptic curves
and moduli spaces in Katz and Mazur’s book [12], as explaining all that theory
would take us too much afar from our objective of studying modular forms.

2.1 Definitions

We have seen in section 1.2 that (classical) modular forms (of level 1) can be
interpreted as certain functions associating a complex number with each pair
(E, ω), where E is an elliptic curve over C and ω is a nowhere vanishing holo-
morphic differential on E. The key fact is that the space SL2(Z)\H parametrizes
isomorphism classes of elliptic curves over C. Katz vastly generalized this idea
to define modular forms over arbitrary base schemes. Moreover, the geometric

29
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viewpoint of Katz allows for further generalizations and constructions, some
of which are presented in his article [8]. Here we only reproduce some basic
definitions from section 1 of op. cit.

Definition 2.1. An elliptic curve over a scheme S is a proper smooth morphism
of schemes π : E → S whose geometric fibres are connected curves of genus 1
together with a section e : S→ E. We write ωE/S = π∗(Ω1

E/S).

Remarks.
(1) The geometric fibres of π : E → S are elliptic curves over algebraically

closed fields in the usual sense.
(2) As is the case with elliptic curves defined over algebraically closed fields,

the S–scheme E admits a unique structure of abelian group scheme for
which e is the identity section. See theorems 2.1.2 and 2.5.1 of Katz and
Mazur’s book [12] for the details.

(3) The invertible sheaf Ω1
E/S is fibrewise of degree 0 and Serre–Grothendieck

duality defines a canonical trace map Tr : R1π∗(Ω1
E/S) → OS which is an

isomorphism compatible with arbitrary base change. Therefore, ωE/S is an
invertible sheaf whose formation is compatible with arbitrary base change
and is dual to R1π∗(OE). In particular, we can find a basis ω for ωE/S

locally on S.

Fix N ∈N. Later we define modular forms for the group

Γ(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 0
0 1

)
mod N

}
.

One can check that Γ(N)\H parametrizes isomorphism classes of pairs (E, α),
where E is an elliptic curve over C and α = (α1, α2) is a basis of the N–torsion
subgroup E[N] of E with the property that en(α1, α2) = e2πi/N for the Weil pair-
ing en : E[N]× E[N]→ µN . Recall that E[N] is the kernel of the homomorphism
[N] : E→ E given by multiplication by N and that (over any algebraically closed
field in which N is invertible) E[N] is a free (Z/NZ)–module of rank 2.

More generally, given an elliptic curve E over an arbitrary scheme S, we
can still consider the homomorphism [N] : E → E given by multiplication by
N and its kernel E[N]. In general, E[N] is a finite flat abelian group scheme of
order N2 over S. Moreover, E[N] is étale over S if and only if N is invertible in
H0(S, OS) or, equivalently, S is a Z

[ 1
N
]
–scheme. In that case, there exists a finite

étale covering S′ of S such that ES′ [N] is isomorphic to (Z/NZ)S′ ×S′ (Z/NZ)S′
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over S′, where (Z/NZ)S′ is the constant cyclic group scheme of order N over
S′. (See theorem 2.3.1 of Katz and Mazur’s book [12] for a proof of these claims
about the structure of E[N].)

Definition 2.2. Let N ∈ N. A level Γ(N)–structure on an elliptic curve E over
a scheme S is an isomorphism αN : E[N] → (Z/NZ)S ×S (Z/NZ)S of group
schemes over S.

Definition 2.3. Let N ∈ N and k ∈ Z. A modular form for Γ(N) of weight k
is a rule f which assigns to each triple (E/R, ω, αN), consisting of an elliptic
curve E over a ring R together with a basis ω of H0(Spec(R), ωE/R) and a level
Γ(N)–structure αN on E, an element f (E/R, ω, αN) ∈ R satisfying the following
conditions:

(i) f (E/R, ω, αN) depends only on the R–isomorphism class of the triple
(E/R, ω, αN);

(ii) f (ER′/R′, ωR′ , αN,R′) = g( f (E/R, ω, αN)) for every ring homomorphism
g : R→ R′ (i.e., f commutes with base change), and

(iii) f (E/R, λω, αN) = λ−k f (E/R, ω, αN) for all λ ∈ R× (i.e., f is homogen-
eous of degree −k in the second variable).

Remarks.
(1) Observe that condition (iii) implies that f (E/R, ω, αN)ω

⊗k is a global sec-
tion of ω⊗k

E/R independent of the choice of ω. Thus, we can define a modular
form for Γ(N) of weight k alternatively as a rule f which assigns to each
pair (E/S, αN), consisting of an elliptic curve E over a scheme S and a level
Γ(N)–structure αN on E, an element f (E/S, αN) ∈ H0(S, ω⊗k

E/S) satisfying
the following conditions:

(i) f (E/S, αN) depends only on the S–isomorphism class of the pair
(E/S, αN), and

(ii) f (ES′/S′, g∗(αN)) = g∗( f (E/S, αN)) for every morphism g : S′ → S
of schemes (i.e., f commutes with base change).

(2) If N = 1, we omit the level structure because it is trivial.
(3) If M

∣∣ N, every level Γ(N)–structure induces a level Γ(M)–structure in the
obvious way. Hence, we can view modular forms for Γ(M) as modular
forms for Γ(N).

(4) If we consider only base rings R (or base schemes S) defined over a fixed
ring R0 and only base changes by R0–morphisms, we obtain the notion of a
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modular form for Γ(N) of weight k defined over R0; we define F(R0; Γ(N), k)
to be the R0–module of such modular forms.

The previous definition of modular forms is analogous to the classical one
except that we have not required any condition at ∞ yet.

2.2 The Tate curve and q–expansions

In this section we introduce Tate’s curve via computations over the complex
numbers, following section A1.2 of Katz’s article [8]. This curve is then used to
define the q–expansions of a modular form.

Fix τ ∈H and write qτ = e2πiτ. As in the beginning of section 1.2, we have
an elliptic curve Eτ over C corresponding to C/Λ(τ), where Λ(τ) = Zτ ⊕Z,
defined by the affine equation

Eτ : ỹ2 = 4x̃3 − 60G4(τ)x̃− 140G6(τ) = 4x̃3 − (2πi)4

12
E4(τ)x̃− (2πi)6

216
E6(τ)

(see example 1.5). The discriminant of Eτ is

( (2πi)4

12
E4(τ)

)3
− 27

( (2πi)6

216
E6(τ)

)2
= (2π)12∆(τ)

and it has a nowhere vanishing holomorphic differential dx̃
ỹ corresponding to dz.

Using the q–expansions of E4 and E6, we obtain an equation in C[[qτ]] for Eτ.
We regard q as a formal variable and consider the elliptic curve

E : ỹ2 = 4x̃3 − (2πi)4

12

(
1 + 240

∞

∑
n=1

σ3(n)qn
)

x̃− (2πi)6

216

(
1− 504

∞

∑
n=1

σ5(n)qn
)

(see example 1.5) defined over C((q)) with discriminant

(2π)12q
∞

∏
n=1

(1− qn)24

(see corollary 1.13). Observe that the discriminant is invertible in C((q)) but not
in C[[q]], even if the equation of E is defined over C[[q]].

On the other hand, there is an analytic isomorphism

C/Λ(τ)→ C×/qZ
τ
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z 7→ t = e2πiz

(where qZ
τ is the subgroup of C× generated by qτ). We can express x̃ = ℘(z; Λ(τ))

and ỹ = ℘′(z; Λ(τ)) in terms of qτ and t.

Proposition 2.4. We have the following identities:

1
(2πi)2℘(z; Λ(τ)) = ∑

n∈Z

qn
τt

(1− qn
τt)2 +

1
12
− 2

∞

∑
n=1

qn
τ

(1− qn
τ)2 ,

1
(2πi)3℘

′(z; Λ(τ)) = ∑
n∈Z

qn
τt(1 + qn

τt)
(1− qn

τt)3 .

Proof. See lemma 6.1 and theorem 6.2 of chapter I of Silverman’s book [19].

It is convenient to make a change of variables to remove the powers of 2πi
and the denominators in the formulae above. More precisely, we set

1
(2πi)2 x̃ = x +

1
12

and
1

(2πi)3 ỹ = 2y + x

and, substituting in the equation of the elliptic curve above and clearing common
factors, we obtain the equation

Eτ : y2 + xy = x3 + a4(qτ)x + a6(qτ)

with

a4(qτ) =
1− E4(τ)

48
= −5

(E4(τ)− 1
240

)
=

∞

∑
n=1
−5σ3(n)qn

τ ,

a6(qτ) =
1− 3E4(τ)− 2E6(τ)

1728
= − 5

12

(E4(τ)− 1
240

)
− 7

12

(E6(τ)− 1
−504

)
=

∞

∑
n=1

−5σ3(n)− 7σ5(n)
12

qn
τ .

(See example 1.5 for the formulae for E4 and E6.) Observe that the coefficients
of qn

τ, n ∈N, in the previous equation are integers because d3 ≡ d5 mod 12 for
every d ∈ Z. The discriminant of Eτ is

−a6(qτ) + a4(qτ)
2 + 72a4(qτ)a6(qτ)− 64a4(qτ)

3 − 432a6(qτ)
2 = · · · = ∆(τ)

and it has a nowhere vanishing holomorphic differential ω = dx
2y+x . Moreover,
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we can write in terms of qτ and t

x =
1

(2πi)2 x̃− 1
12

= ∑
n∈Z

qn
τt

(1− qn
τt)2 − 2

∞

∑
n=1

qn
τ

(1− qn
τ)2 ,

y =
1

2(2πi)3 ỹ− 1
2

x = ∑
n∈Z

(qn
τt)2

(1− qn
τt)3 +

∞

∑
n=1

qn
τ

(1− qn
τ)2 ,

ω =
dx

2y + x
= (2πi)

dx̃
ỹ

= 2πi dz =
dt
t

.

Regarding q as a formal variable, we obtain the Tate curve.

Definition 2.5. The Tate curve is the elliptic curve over Z((q)) given by the affine
equation

Tate(q) : y2 = x3 + a4(q)x + a6(q) ,

where

a4(q) =
∞

∑
n=1
−5σ3(n)qn and a6(q) =

∞

∑
n=1

−5σ3(n)− 7σ5(n)
12

qn ,

together with its canonical differential

ωcan =
dx

2y + x
.

Remark. The equation defining Tate(q) has coefficients in Z[[q]]. However, the
discriminant of Tate(q) is

∆(q) = q
∞

∏
n=1

(1− qn)24 ,

which is invertible in Z((q)) but not in Z[[q]]. In addition, its j–invariant is

j(q) =
1
q
+ 744 + 196884q + · · · ∈ 1

q
Z[[q]] .

We use the Tate curve to define the q–expansions of modular forms, following
Katz. But first let us briefly explain the relation between the Tate curve and the
q–expansion of a modular form in the sense of section 1.1.

Let R be the subring of C((q)) consisting of Laurent series of functions which
are holomorphic on { q ∈ C : 0 < |q| < 1 }. The equation defining Tate(q)
defines also an elliptic curve over R, which abusing notation we call again



2.2. The Tate curve and q–expansions 35

Tate(q). Take f ∈ Mk(SL2(Z)). The q–expansion of f is an element f̂ ∈ R which,
in Katz’s definition of modular forms, corresponds to f (Tate(q), ωcan). Moreover,
the morphism of C–algebras q 7→ qτ = e2πiτ : R→ C yields a cartesian diagram

Eτ Tate(q)

Spec(C) Spec(R)

p

and in this situation the condition that f commutes with base change is just that
f (τ) = f (Eτ , ω) = f̂ (qτ) (cf. definition 1.16), which is the equation defining
the q–expansion in the classical case. On the other hand, the natural inclusion
R ↪→ C((q)) yields another cartesian square

Tate(q)⊗Z((q)) C((q)) Tate(q)

Spec(C((q))) Spec(R)

p

which allows us to view f̂ as a formal series in C((q)).
Let N ∈N. We have to take into consideration some level Γ(N)–structures.

Consider a primitive N–th root of unity ζN . We observe that, via the isomorphism
Eτ
∼= C×/qZ

τ , the subgroup Eτ[N] corresponds to { ζ i
Nqj/N

τ : 0 ≤ i, j ≤ N − 1 }.
Replacing t with ζ i

Nqj/N
τ in the previous formulae for x and y, we see that this

point has coordinates in Z[[q1/N
τ ]]⊗Z Z[ζN]. On the other hand, Tate(q)[N] is

étale over the base ring if N is invertible in it, in which case we can think of the
group scheme Tate(q)[N] (of order N2) in terms of its points. All in all, the level
Γ(N)–structures on Tate(q) are defined over Z((q1/N))⊗Z Z

[
ζN , 1

N
]
. (Abusing

notation, we write Tate(q) for any base change of the Tate curve.)

Definition 2.6. Let N ∈ N and k ∈ Z. Let f be a modular form for Γ(N)

of weight k defined over a ring R0 which contains N−1 and a primitive N–th
root of unity ζN. For each level Γ(N)–structure αN on the curve Tate(q) over
Z((q1/N))⊗Z R0, the q–expansion of f at αN is the Laurent series

f̂αN(q) = f (Tate(q)/(Z((q1/N))⊗Z R0), ωcan, αN) ∈ Z((q1/N))⊗Z R0 .

Definition 2.7. Let N ∈N and k ∈ Z. Consider a ring R0 in which N is not nilpo-
tent and let ζN be a primitive N–th root of unity. We say that f ∈ F(R0; Γ(N), k) is
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holomorphic at ∞ (resp. is a cusp form) if its image in F
(

R0
[
ζN , 1

N
]
; Γ(N), k

)
has all

its q–expansions in Z[[q1/N]]⊗Z R0
[
ζN , 1

N
]

(resp. in q1/NZ[[q1/N]]⊗Z R0
[
ζN , 1

N
]
).

We write M(R0; Γ(N), k) (resp. S(R0; Γ(N), k)) for the R0–module of modular
forms for Γ(N) of weight k defined over R0 which are holomorphic at ∞ (resp.
cusp forms for Γ(N) of weight k defined over R0).

2.3 The modular curves

In the previous section, we have encountered an elliptic curve parametrizing
all the elliptic curves over C. We want to generalize this in order to redefine
modular forms in a more geometric way. To do this, one needs to solve some
moduli problems.

In this section we briefly introduce these moduli problems and state the main
representability results without proof. The properties we use later are stated
in sections 1.4 and 1.5 of Katz’s article [8]. The general theory in a much more
comprehensive way (and the proofs) can be found in Katz and Mazur’s book
[12].

Definition 2.8. Let R0 be a ring. We define Ell /R0 to be the category
(i) whose objects are elliptic curves E/S, where S is an R0–scheme, and

(ii) whose morphisms from E′/S′ to E/S are cartesian squares

E′ E

S′ S

ϕ

π′
p

π

f

of R0–morphisms (i.e., the induced morphism (ϕ, π′) : E′ → E×S S′ is an
isomorphism).

Definition 2.9. Let R0 be a ring. A moduli problem for elliptic curves over R0 is
a functor P : (Ell /R0)

op → Set. Given E/S ∈ Ob(Ell /R0), the elements of
P(E/S) are called level P–structures.

We say that P is representable if there exists E/M(P) ∈ Ob(Ell /R0) such
that P ∼= HomEll /R0( · , E/M(P)). We say that P is relatively representable if,
for every E/S ∈ Ob(Ell /R0), the functor PE/S : (Sch /S)op → Set given by
PE/S(T) = P(ET/T), where ET = E×S T, is represented by an S–scheme PE/S.
(We use the same notation for the scheme and the functor it represents.)
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Lemma 2.10. Let R0 be a ring and let P : (Ell /R0)
op → Set be a moduli problem.

If P is represented by E/M(P), then the R0–scheme M(P) represents the functor
P̃ : (Sch /R0)

op → Set given by

P̃(S) = { [(E/S, α)] : E/S ∈ Ob(Ell /R0) and α ∈ P(E/S) } ,

where [(E/S, α)] is the S–isomorphism class of the pair (E/S, α).

Proof. Given an R0–morphism f : S→M(P), we can form the fibre product

E = E×M(P) S E

S M(P)

ϕ

π
p

f

and we obtain E/S ∈ Ob(Ell /R0) defined up to S–isomorphism. Moreover,
(ϕ, f ) ∈ HomEll /R0(E/S, E/M(P)) yields α ∈ P(E/S), by hypothesis.

Remark. In particular, setting S = M(P) and f = idM(P) in the previous proof,
we obtain a universal pair (E/M(P), αuniv).

Throughout the rest of this section, let N ∈ N. Let R0 be a ring in which
N is not nilpotent. Our objective is to study the representability of the moduli
problem Γ(N)R0 : (Ell /R0)

op → Set given by

Γ(N)R0(E/S) = { αN level Γ(N)–structure on E/S }

(here, we refer to level Γ(N)–structures in the sense of definition 2.2). We write
Γ(N) = Γ(N)Z.

Theorem 2.11 (relative representability). Let E/S be an elliptic curve. The functor
Γ(N)E/S is represented by a finite S–scheme. If, in addition, S is a Z

[ 1
N
]
–scheme, then

Γ(N)E/S is represented by a finite étale S–scheme.

Proof. See proposition 1.6.5 and theorems 3.6.0 and 3.7.1 of Katz and Mazur’s
book [12].

Definition 2.12. Let R0 be a ring and let P be a property of morphisms of
schemes. We say that a moduli problem P : (Ell /R0)

op → Set has property P if it
is relatively representable and, for every E/S ∈ Ob(Ell /R0), the morphism of
schemes PE/S → S has property P.
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Corollary 2.13. The moduli problem Γ(N)Z[1/N] is finite and étale.

Definition 2.14. Let R0 be a ring. A moduli problem P : (Ell /R0)
op → Set is

called rigid if, for every E/S ∈ Ob(Ell /R0) and every α ∈ P(E/S), the pair
(E/S, α) has no non-trivial automorphisms (i.e., the group Aut(E/S) acts freely
on P(E/S)).

Theorem 2.15 (rigidity). Let S be a connected scheme and let E/S ∈ Ob(Ell /Z).
Let ϕ : E→ E be an automorphism of E over S. If N ≥ 3 and ϕ restricts to the identity
on E[N], then ϕ = idE.

Proof. See corollary 2.7.2 of Katz and Mazur’s book [12].

Theorem 2.16. Let R0 be a ring and let P : (Ell /R0)
op → Set be a moduli problem

which is relatively representable and affine. The moduli problem P is representable if and
only if it is rigid. In that case, the R0–scheme M(P) representing P̃ (see lemma 2.10) is
affine.

Proof. See theorem 4.7.0 of Katz and Mazur’s book [12].

Theorem 2.17. Let R0 be a ring and let P : (Ell /R0)
op → Set be a moduli problem.

If P is relatively representable, rigid, affine and étale, then it is representable by some
E/M(P) ∈ Ob(Ell /R0) and M(P) is a smooth affine curve over R0.

Proof. See corollary 4.7.1 of Katz and Mazur’s book [12].

Corollary 2.18. If N ≥ 3, the moduli problem Γ(N)Z[1/N] is representable by some
E/M(Γ(N)) ∈ Ob

(
Ell /Z

[ 1
N
])

and M(Γ(N)) is a smooth affine curve over Z
[ 1

N
]
.

Furthermore, over a Z
[ 1

N
]
–algebra R0, the moduli problem Γ(N)R0 is representable by

ER0/M(Γ(N))R0 , where ·R0 is obtained from · by the base change Z
[ 1

N
]
→ R0.

Definition 2.19. For N ≥ 3, consider the universal pair (E/M(Γ(N)), αuniv) for
the moduli problem Γ(N)Z[1/N] (see the remark after lemma 2.10). We write
Y(N) for the smooth affine curve M(Γ(N)) over Z

[ 1
N
]

and call it the modular
curve (without cusps) for Γ(N). We call E/Y(N) the universal elliptic curve for
Γ(N) and αuniv its universal level Γ(N)–structure.

Suppose for the rest of this section that N ≥ 3. Since modular forms com-
mute with base change and every elliptic curve with a level Γ(N)–structure
can be obtained as a pull-back of the universal elliptic curve, we see that every
f ∈ F

(
Z
[ 1

N
]
; Γ(N), k

)
for some k ∈ Z is uniquely determined by its value

f (E/Y(N), αuniv) ∈ H0(Y(N), ω⊗k
E/Y(N)

). Thus we obtain an alternative defini-
tion of modular forms which can be generalized in the following way.
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Definition 2.20. Let K be a Z
[ 1

N
]
–module and let k ∈ Z. A modular form for Γ(N)

of weight k with coefficients in K is an element of H0(Y(N), ω⊗k
E/Y(N)

⊗Z[1/N] K)

(cf. definition 2.3). We also write F(K; Γ(N), k) = H0(Y(N), ω⊗k
E/Y(N)

⊗Z[1/N] K)
and

F(K; Γ(N)) =
⊕
k′∈Z

F(K; Γ(N), k′) .

Remark. Let f ∈ F(K; Γ(N), k). Consider an elliptic curve E/S with a level
Γ(N)–structure αN. There is a cartesian diagram

E E

S Y(N)

p

g

such that (E/S, αN) = g∗(E/Y(N), αuniv) and g is unique with this property.
We define f (E/S, αN) = g∗( f ) ∈ H0(S, ω⊗k

E/S ⊗Z[1/N] K). This agrees with
definition 2.3 when K is a ring. In particular, we can define the q–expansions of f
in the same way as in definition 2.6.

In definition 2.20, we use exactly the same notation as in definition 2.3 because
the two notions of modular form agree when both make sense (i.e., when N ≥ 3
and K is a ring). In this case, we can use the two definitions interchangeably and
this sometimes gives us greater insight. For this reason, we would like to find a
similar alternative definition for modular forms which are holomorphic at ∞. To
this aim, we need to extend the sheaf ωE/Y(N).

There is a morphism of Z
[ 1

N
]
–schemes j : Y(N)→ A1

Z[1/N] defined on points

as follows. Consider a Z
[ 1

N
]
–algebra R and take P ∈ Y(N)(R). By lemma 2.10,

P corresponds to some isomorphism class [(E/R, αN)], where E/R is an elliptic
curve and αN is a level Γ(N)–structure. Then, j(P) ∈ A1

Z[1/N](R) is given by the

j–invariant of E/R (i.e., the morphism of Z
[ 1

N
]
–algebras Z

[ 1
N
]
[j] → R which

maps j to the j–invariant of E/R, where j denotes the variable defining A1
Z[1/N]).

The morphism j is finite and flat.
Moreover, the affine j–line A1

Z[1/N] can be canonically embedded in the

projective j–line P1
Z[1/N] = Proj

(
Z
[ 1

N
]
[j]
)
. After composition, we obtain a

morphism Y(N)→ P1
Z[1/N].

Definition 2.21. The modular curve (with cusps) X(N) over Z
[ 1

N
]

is the normal-
ization of P1

Z[1/N] in Y(N).
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We obtain a commutative diagram

Y(N) X(N) C(N)

A1
Z[1/N] P1

Z[1/N] A1
Z[1/N]

Spec
(
Z
[ 1

N
])

j j

where the affine line A1
Z[1/N] in the last column is Spec

(
Z
[ 1

N
]
[j−1]

)
and C(N) is

the closed subscheme X(N) \Y(N) of X(N).

Definition 2.22. The Z
[ 1

N
]
–scheme C(N) = X(N) \Y(N) is called the scheme

of cusps.

Theorem 2.23. The modular scheme X(N) is a proper smooth curve over Z
[ 1

N
]

and its
closed subscheme C(N) is finite étale over Z

[ 1
N
]
. Moreover, locally in a neighbourhood

of the cusps, the invertible sheaf Ω1
X(N)/Z[1/N](log(C(N))) of differential 1–forms with

at worst simple poles along the cusps has a basis dj−1

j−1 .

Proof. See theorem 8.6.8 and corollary 10.9.2 of Katz and Mazur’s book [12].

The modular curve X(N) can be defined in an alternative way. There is a
notion of generalized elliptic curves and one can define a moduli problem for
generalized elliptic curves analogous to Γ(N). It turns out that such a moduli
problem is representable over Z

[ 1
N
]

by a universal generalized elliptic curve
over a base scheme which coincides with X(N). This is the approach taken
in Deligne and Rapoport’s article [5], even though that article makes use of
algebraic spaces, stacks and other mathematical tools the author of this work is
not familiar with.

Let R0 be a Z
[ 1

N
]
–algebra. Let S be an R0–scheme and consider an elliptic

curve E/S with a level Γ(N)–structure αN. Observe that the Z/NZ–module
Z/NZ×Z/NZ has a canonical basis ((1, 0), (0, 1)) and so the isomorphism
αN : E[N] → (Z/NZ)S ×S (Z/NZ)S induces locally on S a canonical basis
(P, Q) of E[N]. Moreover, we have the Weil pairing

eN : E[N]×S E[N]→ µN,S
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(see section 2.8 of Katz and Mazur’s book [12]) and eN(P, Q) is a primitive N–th
root of unity (see theorem 5.6.3 of op. cit.) which we call the determinant of αN.
This definition can also be extended to generalized elliptic curves.

Now assume that R0 contains a primitive N–th root of unity ζN (e.g., if
R0 = Z

[ 1
N , ζN

]
). We have a moduli problem Γ(N)R0,ζN : (Ell /R0)

op → Set
given by

Γ(N)R0,ζN(E/S) = { αN level Γ(N)–structure of determinant ζN on E/S }

(see paragraph 9.4.3.1 of Katz and Mazur’s book [12]). This moduli problem
is representable by ER0,ζN /Y(N)R0,ζN , where Y(N)R0,ζN is a closed subscheme
of Y(N)R0 (the locus of points corresponding to the level Γ(N)–structures of
determinant ζN) and ER0,ζN is the pull-back of ER0 by the closed immersion
Y(N)R0,ζN ↪→ Y(N)R0 (see proposition 9.1.7 of op. cit.). In particular, we write
Y(N)ζN = Y(N)Z[1/N,ζN ],ζN

and EζN = EZ[1/N,ζN ],ζN
. Analogously, one can

define a closed subscheme X(N)ζN of X(N)Z[1/N,ζN ] using generalized elliptic
curves.

Theorem 2.24. The curve Y(N)ζN (resp. X(N)ζN ) is an affine (resp. proper) smooth
geometrically connected curve over Z

[ 1
N , ζN

]
.

Proof. See corollary 10.9.2 of Katz and Mazur’s book [12].

From now on, set R0 = Z
[ 1

N , ζN
]
. Theorem 2.24 implies that Y(N)R0 (resp.

X(N)R0) is a disjoint union of ϕ(N) = |(Z/NZ)×| geometrically connected
components, one for each primitive N–th root of unity. Thus, over R0, the
scheme of cusps C(N)R0 becomes a disjoint union of points: it is a divisor on
a curve given by the equation j−1 = 0. Write Ĉ(N) for the formal completion
of X(N) along the cusps (i.e., along the divisor defining the cusps). We have a
cartesian diagram

Ĉ(N)R0
X(N)R0 Y(N)R0 Ĉ(N)R0,j−1

Spec(R0[[j−1]]) Proj(R0[j]) Spec(R0[j]) Spec(R0((j−1)))

p q q

where Ĉ(N)R0,j−1 is the open subscheme of Ĉ(N)R0
where j−1 is invertible (as

the morphism Spec(R0((j−1)))→ Proj(R0[j]) factors through Spec(R0[[j−1]])).
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Lemma 2.25. The scheme Ĉ(N)R0
is the normalization of R0[[j−1]] in Ĉ(N)R0,j−1 .

Proof. See lemma 8.11.2 of Katz and Mazur’s book [12].

There is a unique R0–algebra isomorhism R0[[j−1]]→ R0[[q]] which is continu-
ous for the adic topologies and which maps j−1 to the inverse of the j–invariant
of the Tate curve (see the remark after definition 2.5). That is,

j−1 7→ q(1− 744q + · · · ) .

This extends to an isomorphism R0((j−1)) → R0((q)). Via these isomorphisms,
we can view Ĉ(N)R0

as a scheme over R0[[q]] and Ĉ(N)R0,j−1 as a scheme over
R0((q)). Using this, one can prove the following result.

Theorem 2.26. There is a canonical bijection between the cusps over R0 (i.e., the points
of C(N)R0) and the isomorphism classes of level Γ(N)–structures on Tate(q) over
Z((q1/N))⊗Z R0.

Proof. In fact, there is a much more precise way to describe the cusps in terms of
the Tate curve; see proposition 8.11.7 of Katz and Mazur’s book [12].

This suggests that the q–expansions of modular forms should be somehow
related to the cusps.

Theorem 2.27. There is an invertible sheaf of modules ω on X(N) whose restriction
to Y(N) is ωE/Y(N) and whose sections over the formal completion R0[[q]] at each cusp
(after base change to R0) correspond to the R0[[q1/N]]–multiples of ωcan on Tate(q) (via
the correspondence between cusps and the Tate curve implied in theorem 2.26).

Proof. See section 10.13 (especially proposition 10.13.4) of Katz and Mazur’s
book [12].

Alternatively, ω can be constructed in the same way as ωE/Y(N) but using
generalized elliptic curves. In that case, one can prove that the cusps correspond
to Tate(q) over Z[[q1/N]] (recall that the Tate curve is not an elliptic curve if q is
not invertible, but in this case it is at least a generalized elliptic curve).

Let f ∈ H0(Y(N), ω⊗k
E/Y(N)

⊗Z[1/N] R0) = F(R0; Γ(N), k) for some k ∈ Z. Via
the correspondence between cusps and Γ(N)–level structures on Tate(q) over
Z((q1/N))⊗Z R0, we see that the q–expansions of f are holomorphic (i.e., contain
no negative powers of q) if and only if f extends to H0(X(N), ω⊗k ⊗Z[1/N] R0).
This leads us to the following generalization of the definition of modular forms
holomorphic at ∞.
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Definition 2.28. Let K be a Z
[ 1

N
]
–module and let k ∈ Z. A modular form for

Γ(N) of weight k with coefficients in K and holomorphic at ∞ is an element of
H0(X(N), ω⊗k ⊗Z[1/N] K) (cf. definition 2.20 and definition 2.7). We also write
M(K; Γ(N), k) = H0(X(N), ω⊗k ⊗Z[1/N] K) and

M(K; Γ(N)) =
⊕
k′∈Z

M(K; Γ(N); k′) .

Remark. Let f ∈ M(K; Γ(N), k). At each cusp, f has a q–expansion given by
f
(
Tate(q)/

(
Z((q1/N))⊗Z Z

[ 1
N , ζN

])
, ωcan, αN

)
, for some level Γ(N)–structure

αN associated with the cusp, which lies in Z[[q1/N]]⊗Z Z
[ 1

N , ζN
]
⊗Z[1/N] K (by

theorems 2.26 and 2.27).

2.4 The q–expansion principle

In this section we prove a very important result called the q–expansion prin-
ciple, which asserts that every modular form is uniquely determined by its
q–expansions. The proof of this result is section 1.6 of Katz’s article [8].

Theorem 2.29. Let N, k ∈ Z with N ≥ 3. Let ζN denote a primitive N–th root
of unity and let K be a Z

[ 1
N
]
–module. Consider f ∈ M(K; Γ(N), k). If each con-

nected component of X(N)Z[1/N,ζN ] has at least one cusp at which the corresponding
q–expansion of f vanishes identically, then f = 0.

Proof. Observe that ω is a locally free OX(N)–module and that X(N) is flat over
Z
[ 1

N
]
. Thus, for every short exact sequence

0→ F′ → F → F′′ → 0

of Z
[ 1

N
]
–modules, we obtain a short exact sequence

0→ ω⊗k ⊗Z[1/N] F′ → ω⊗k ⊗Z[1/N] F → ω⊗k ⊗Z[1/N] F′′ → 0

of OX(N)–modules and, after taking sheaf cohomology, an exact sequence

0→ M(F′; Γ(N), k)→ M(F; Γ(N); k)→ M(F′′, Γ(N), k) .

We can regard K as a Z
[ 1

N
]
–submodule of the dual ring D(K) = Z

[ 1
N
]
⊕ K,

where the multiplication is given by (a, x)(b, y) = (ab, ay + bx), and we get an
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inclusion M(K; Γ(N), k) ↪→ M(D(K); Γ(N), k). Hence, it suffices to prove the
theorem when K is a ring over Z

[ 1
N
]
. Next, we can express K as the inductive

limit of its finitely generated Z
[ 1

N
]
–subalgebras, which are noetherian. But

the formation of the cohomology of quasi-coherent sheaves of modules on a
noetherian scheme commutes with inductive limits, so we can assume that K is
a noetherian ring.

If p is a prime ideal in K, the canonical morphism K → Kp is flat and, by
flat base change on cohomology, M(Kp; Γ(N), k) ∼= M(K; Γ(N), k)⊗K Kp. In fact,
by studying the localizations of K at all its prime ideals, it suffices to prove the
theorem when K is a noetherian local ring. In this case, the completion of K with
respect to its maximal ideal m gives a faithfully flat morphism K → K̂m and so we
can replace K with K̂m. That is, we assume that (K,m) is a complete noetherian
local ring. In particular, K = lim←−(K/mn), where we take the projective limit
of the artinian local rings K/mn for n ∈ N with the canonical projections. By
the theorem on formal functions, it suffices to prove the theorem when K is an
artinian local ring over Z

[ 1
N
]
.

We regard f as a global section of the sheaf on X(N)K obtained from ω⊗k by
base change. The hypothesis of the theorem is that the germs of the section f
at one cusp in each geometrically connected component of X(N)K⊗Z[1/N,ζN ] are
0. This means that we can find open neighbourhoods of these cusps on which
f vanishes. But the union of such open neighbourhoods gives an open subset
U of X(N)K which meets all the irreducible components (because a smooth
geometrically connected curve is geometrically integral). In particular, U is
dense in X(N)K.

Suppose, for the sake of contradiction, that f 6= 0. Then, the support of f is a
non-empty closed subset Z of X(N)K with Z ∩U = ∅. In particular, Z contains
no irreducible components (hence no maximal points) of X(N)K. Let z be a
maximal point of Z and consider the local ring A = OX(N)K ,z with its maximal
ideal m = mz. There is a canonical morphism

Spec(A) = Spec(OX(N)K ,z)→ X(N)K

which is a homeomorphism of Spec(A) onto the set of points of X(N)K which
are generalizations of z. We deduce that {m } ( Spec(A) because some maximal
point of X(N)K must be a generalization of z distinct from z. On the other hand,
the sheaf ω⊗k is an invertible OX(N)–module, so the stalk of its base change to
K at z is (non-canonically) isomorphic to A. Fix one such isomorphism and
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let a denote the image of fz in A. Since z is a maximal point of the support of
f , the support of a must be {m }. This means that a 6= 0 in A but, for every
p ∈ Spec(A) \ {m }, the image of a in the localization Ap is 0. Now take b ∈ m.
Observe that Spec(Ab) is a proper open subset of Spec(A) and so the image of
a in Ab must be 0. That is to say, bna = 0 for some n ∈ N and, in particular, b
is a zero divisor. But this holds for all the elements of m, which implies that A
has depth 0. Moreover, X(N)K is smooth over an artinian local ring K and so
it is Cohen–Macaulay. Therefore, A has dimension 0 (equal to the depth), thus
contradicting the fact that {m } ( Spec(A).

Corollary 2.30 (the q–expansion principle). Let N, k ∈ Z with N ≥ 3. Let ζN

denote a primitive N–th root of unity and let K be a Z
[ 1

N
]
–module with a submodule

L. Consider f ∈ M(K; Γ(N), k). If each connected component of X(N)Z[1/N,ζN ] has at
least one cusp at which all the coefficients of the corresponding q–expansion of f lie in
L⊗Z[1/N] Z

[ 1
N , ζN

]
, then f ∈ M(L; Γ(N), k).

Proof. Since ω is a locally free OX(N)–module and X(N) is flat over Z
[ 1

N
]
, we

obtain a short exact sequence

0→ ω⊗k ⊗Z[1/N] L→ ω⊗k ⊗Z[1/N] K → ω⊗k ⊗Z[1/N] K/L→ 0

of OX(N)–modules. Taking sheaf cohomology yields an exact sequence

0→ M(L; Γ(N), k)→ M(K; Γ(N), k)→ M(K/L; Γ(N), k) .

The image of f in M(K/L; Γ(N), k) satisfies the hypothesis of theorem 2.29 and
so is 0. Therefore, f lies in the image of M(L; Γ(N), k) ↪→ M(K; Γ(N), k).

Corollary 2.31. Theorem 2.29 and corollary 2.30 hold also for modular forms which
are not holomorphic at ∞ (that is, replacing M(K; Γ(N), k) with F(K; Γ(N), k) and
M(L; Γ(N), k) with F(L; Γ(N), k)).

Proof. Consider the modular discriminant ∆ ∈ M(K; Γ(N), 12). Observe that
∆ is defined first as a cusp form over C, but its q–expansion has integer coeffi-
cients (see example 1.5) and so we can regard it as a cusp form over Z

[ 1
N
]

by
corollary 2.30 and then consider its image in M(K; Γ(N), 12) by base change.
Moreover, ∆ is invertible in F(K; Γ(N)) because the discriminant of an elliptic
curve must be invertible.
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Let f ∈ F(K; Γ(N), k) and choose r � 0 such that f ∆r is holomorphic at
∞. The q–expansion of f at a cusp is 0 if and only if the q–expansion of f ∆r at
the same cusp is also 0. Thus, if each connected component of X(N)Z[1/N,ζN ]

has one cusp at which the corresponding q–expansion of f is 0, we can apply
theorem 2.29 to deduce that f ∆r = 0 and so that f = 0.

Now the proof of corollary 2.30 works exactly in the same way if we replace
ω with ωE/Y(N).



Chapter 3

Some geometric tools

This chapter presents some geometric tools which we use in the next chapter.
To begin with, we describe the absolute and relative Frobenius morphisms for
schemes in positive characteristic and, focusing on elliptic curves, the duality
between the Frobenius and the Verschiebung morphisms. Next, we recall the
definition of (algebraic) de Rham cohomology and a couple of important fil-
trations on it, again focusing on the case of elliptic curves. Then, we recall
the constructions of the Gauss–Manin connection and of the Kodaira–Spencer
isomorphism. Finally, we exhibit some computations on the Tate curve using
complex analytic tools.

The concepts introduced in this chapter can be defined in quite general
situations, but we only use them for elliptic curves and so we simplify some
things. Furthermore, we use some deep theorems which we only state without
proof (but giving appropriate references to the proofs).

The first three sections of this chapter explain most of the concepts sum-
marized in Kedlaya’s notes [14] but with more detailed explanations in some
parts. More precise references are given later. The computations at the end are
essentially an extended version of sections A1.3 and A1.4 of Katz’s article [8].

3.1 The Frobenius morphisms

Throughout this section, let p be a prime number and let S be an Fp–scheme.
That is, for every open subset U of S and every section a ∈ Γ(U, OS), pa = 0. In
what follows, we define the Frobenius morphisms following section 12.1 of Katz
and Mazur’s book [12].

Definition 3.1. The absolute Frobenius endomorphism of S is the morphism of
schemes (over Fp) FrobS : S→ S which is the identity on the underlying topolo-
gical spaces and such that Frob]

S : OS → OS is given, for every open subset U of
S, by the map a 7→ ap on Γ(U, OS).

47
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Remark. The map

Frob]
S : Γ(U, OS)→ Γ(U, OS)

a 7→ ap

is a morphism of rings because pΓ(U, OS) = 0.

If S is affine, say S = Spec(R) for some Fp–algebra R, then FrobS corresponds
to the morphism of rings

R→ R

a 7→ ap

(which is also called the Frobenius endomorphism of R).

Now consider a morphism of Fp–schemes π : X → S. It is clear that the
diagram

X X

S S

FrobX

π π

FrobS

is commutative. Observe, however, that FrobX is not an S–morphism in general.
Thus, if we want to regard X as an S–scheme, we need to give a different
definition of the Frobenius morphism. Let π(p) : X(p) → S be the pull-back of
π : X → S under FrobS : S→ S. There is a unique S–morphism FX/S : X → X(p)

which makes the diagram

X

X(p) X

S S

FX/S

FrobX

π

σX/S

π(p)
p

π

FrobS

commutative.

Definition 3.2. The S–morphism FX/S : X → X(p) constructed above is called
the relative Frobenius morphism of X over S. (When there is no possible confusion,
we write F = FX/S.)
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The construction of the Frobenius morphisms can be iterated. That is to say,
for each n ∈ N, we can consider Frobn

S = FrobS ◦ (n). . . ◦ FrobS : S → S and also
Fn = F

X(pn−1)/S
◦ · · · ◦ FX(p)/S ◦ FX/S : X → X(pn) (where X(pn) is obtained from

X by pull-back under Frobn
S). These iterated Frobenius morphisms have mostly

the same properties as FrobS and FX/S and are useful if one works over Fpn for
n ∈N.

Let us describe the situation locally. Suppose that S = Spec(R) and that
X = Spec(B). The morphism π : X → S endows B with the structure of an
R–algebra, by means of which we can identify B with R[Xi : i ∈ I]/( f j : j ∈ J),
where Xi for i ∈ I is a family of indeterminates and f j for j ∈ J is a family of
polynomials in these indeterminates. For every polynomial f ∈ R[Xi : i ∈ I],
which is of the form

f = ∑
ν∈N(I)

aνXν ,

we write
f (p) = ∑

ν∈N(I)

ap
ν Xν

(i.e., f (p) is the polynomial obtained from f by raising its coefficients, but not
the variables, to the p–th power). By construction, X(p) = Spec(B(p)), where
B(p) = B⊗R R. Here, we regard R as an R–algebra by means of Frob]

S (not the
identity). That is, aνXν ⊗ 1 = Xν ⊗ ap

ν in B(p). Therefore, we can identify B(p)

with R[Xi : i ∈ I]/( f (p)
j : j ∈ J) and σ]

X/S : B → B(p) is induced by f 7→ f (p).

Since Frob]
X : B → B is given by f 7→ f p, we conclude that F] : B(p) → B is

induced by the morphism of R–algebras R[Xi : i ∈ I] → R[Xi : i ∈ I] defined
by Xi 7→ Xp

i . Using the local description of the Frobenius morphisms, one can
easily see that FX/S ◦ σX/S = FrobX(p) . On the other hand, by definition, we have
that σX/S ◦ FX/S = FrobX.

We give an alternative interpretation of the ring B(p) following section V.2 of
the preliminary version of van der Geer and Moonen’s book [7]. This alternative
interpretation is useful later when we define a dual of F.

Define Tp(B) = B⊗R
(p). . .⊗R B and consider the subalgebra Sp(B) of Tp(B)

consisting of the symmetric tensors (i.e., those which are invariant under the
action of the symmetric group Sp by permutations). Let S : Tp(B)→ Sp(B) be
the morphism of R–modules given by

S(b1 ⊗ · · · ⊗ bp) = ∑
σ∈Sp

bσ(1) ⊗ · · · ⊗ bσ(p) .
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Observe that, for every s ∈ Sp(B) and every t ∈ Tp(B), S(st) = sS(t). Therefore,
J = S(Tp(B)) is an ideal of Sp(B). We obtain a well-defined map

ϕB/R : B(p) → Sp(B)/J

b⊗ a 7→ a(b⊗ (p). . .⊗ b) mod J

which, in fact, is a morphism of R–algebras (recall that, in B(p) = B⊗R R, we
view R as an R–module through the Frobenius endomorphism).

Lemma 3.3. If B is flat over R, then ϕB/R : B(p) → Sp(B)/J is an isomorphism of
rings.

Proof. Since ϕB/R is a ring homomorphism, it suffices to prove that it is bijective.
In fact, we prove that it is an isomorphism of R–modules.

First, suppose that B is a free R–module with a basis (ei)i∈I . The tensors
ei1 ⊗ . . .⊗ eip for (i1, . . . , ip) ∈ Ip form a basis of Tp(B). For each (i1, . . . , ip) ∈ Ip,
take its stabilizer H ⊆ Sp and define

si1,...,ip = ∑
σ∈H\Sp

eiσ(1) ⊗ · · · ⊗ eiσ(p)
.

The symmetric tensors obtained in this way span Sp(B). Now observe that
S(ei ⊗ · · · ⊗ ei) = p! si,...,i = 0 for every i ∈ I and S(ei1 ⊗ · · · ⊗ eip) = usi1,...,ip for
some u ∈ R× if (i1, . . . , ip) 6= (i1, . . . , i1). Therefore, the tensors ei ⊗ · · · ⊗ ei for
i ∈ I form a basis of Sp(B)/J and it is clear from this that ϕB/R is an isomorphism
in this case.

In the general case, B is a filtered direct limit of free modules (of finite rank)
by Lazard’s theorem. But the functor lim−→ is exact and commutes with tensor
products, so the result follows from the previous case.

We now focus on the case of an elliptic curve E over S. Let us recall some
basic definitions and results on elliptic curves which can be found in Katz and
Mazur’s book [12].

Definition 3.4. Let E and E′ be two elliptic curves over a scheme S. A ho-
momorphism f : E → E′ of group schemes over S is called an isogeny if it is
surjective, finite and locally free. In this case, Ker( f ) is a finite locally free group
scheme over S of locally constant rank and, if this rank is constant equal to d, we
say that f has degree d.
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Definition 3.5. Let f : E → E′ be an isogeny of degree d between two elliptic
curves E and E′ over a scheme S. We say that an isogeny f ′ : E′ → E of degree
d is dual to f if f ′ ◦ f = [d] (here, [d] : E → E is the homomorphism given by
multiplication by d).

Remark. If f ′ ◦ f = [d], then f ◦ f ′ ◦ f = f ◦ [d] = [d] ◦ f and so f ◦ f ′ = [d].
Indeed, since f is an isogeny, it is faithfully flat and, in particular, an epimorphism
of schemes.

Theorem 3.6. Let f : E→ E′ be an isogeny of degree d between two elliptic curves E
and E′ over a scheme S. There exists an isogeny f ′ : E′ → E which is dual to f .

Proof. See theorem 2.6.1 of Katz and Mazur’s book [12].

Lemma 3.7. Let S be an Fp–scheme and let E be an elliptic curve over S. The relative
Frobenius morphism F : E→ E(p) is an isogeny of degree p.

Proof. Using that elliptic curves have dimension 1 over the base, it is clear from
its local expression that F is surjective, finite and locally free of rank p.

Definition 3.8. Let E be an elliptic curve over an Fp–scheme S. Consider the
relative Frobenius morphism FE/S : E→ E(p). Its dual isogeny VE/S : E(p) → E
is called the Verschiebung morphism of E over S. (When there is no possible
confusion, we write V = VE/S.)

In fact, the construction of the Verschiebung morphism works more generally.
Next, we give an alternative more direct construction following section V.2 of
the preliminary version of van der Geer and Moonen’s book [7].

From now on, suppose that X is a commutative group scheme which is
flat over S (e.g., if X/S is an elliptic curve). Write m : X ×S X → X for the
morphism corresponding to the group law and ∆ : X → X×S X for the diagonal
morphism. Write also mp : X ×S

(p). . . ×S X → X for the p–fold group law and
∆p : X → X×S

(p). . .×S X for the p–fold diagonal. We work locally: consider affine
open subsets U = Spec(B) of X and W = Spec(R) of S such that π(U) ⊆W. We
have seen that U(p) = Spec(B(p)) can be identified with Spec(Sp(B)/J) through
ϕB/R. Then, the ring homomorphism F] : B(p) → B factors through ϕB/R; that
is to say, we can express F] = F̃] ◦ ϕB/R with F̃] : Sp(B)/J → B defined by
F̃](b1 ⊗ · · · ⊗ bp mod J) = b1 . . . bp. Since the group scheme is commutative,
the morphism (mp)] : B → Tp(B) factors through Sp(B); let (m̃p)] : B → Sp(B)
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be the induced morphism. Now, we define V] : B → B(p) to be the unique
morphism which makes the diagram

B Sp(B) Tp(B)

B(p) Sp(B)/J B

(m̃p)]

(mp)]

V]
(∆p)]

ϕB/R
∼=

F]

F̃]

commutative. This construction can be performed on affine open coverings of X
and S and, after gluing together the resulting morphisms, we obtain a morphism
V = VX/S : X(p) → X of S–schemes. The next result shows that this morphism
must coincide with the Verschiebung morphism as defined in definition 3.8 when
X is an elliptic curve (that is why we have used the same notation).

Corollary 3.9. The composition V ◦ F is the homomorphism [p] : X → X given by
multiplication by p.

Proof. We can check it locally using the same notation as in the construction
above. But we have seen that F] ◦ V] = (∆p)] ◦ (mp)] (see the commutative
diagram defining V]). The result follows from this because [p] = mp ◦ ∆p.

3.2 De Rham cohomology

We begin this section by briefly recalling the definition of algebraic de Rham
cohomology. We mostly follow section 1 of Kedlaya’s notes [14] and the summary
in sections 1.1 and 1.2 of Wedhorn’s notes [22].

Let A and B be two abelian categories and suppose that A has enough
injectives (e.g., the category of abelian sheaves on a scheme). Let T : A → B be a
left-exact functor. We say that M ∈ Ob(A) is T–acyclic if RiT(M) = 0 for every
i > 0, where RiT is the i–th right derived functor of T.

Now consider a complex C• of objects in A such that Ck = 0 for every k < 0.
Choose a T–acyclic resolution C• → I• (i.e., a quasi-isomorphism to I• with Ik

T–acyclic for each k ≥ 0 and Ik = 0 for each k < 0). Then, the right hyper-derived
functors RiT are given by RiT(C•) = Hi(T(I•)). (The result is independent of
the choice of I•.)
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Definition 3.10. Let π : X → S be a morphism of schemes and consider the
relative de Rham complex

Ω•X/S = (0→ OX → Ω1
X/S → Ω2

X/S → · · · ) .

For each n ≥ 0, the n–th (relative) de Rham cohomology of X over S is defined to be
Hn

dR(X/S) = Rnπ∗(Ω•X/S).

Now fix a morphism of schemes π : X → S. In order to compute the de Rham
cohomology of X over S, we can choose a Cartan–Eilenberg resolution D•,• of
Ω•X/S. Thus, we get a double complex

...
...

...

0 D0,1 D1,1 D2,1 · · ·

0 D0,0 D1,0 D2,0 · · ·

0 OX Ω1
X/S Ω2

X/S · · ·

in which the columns are injective resolutions. We can then form the associated
total complex C •, with

C k =
⊕

a+b=k

D a,b ,

which is an injective resolution of Ω•X/S. In particular, for each n ∈ Z,

Hn
dR(X/S) = Rnπ∗(C

•) = Hn(π∗(C
•)) = H n(π∗(C

•)) .

We have (at least) two natural filtrations IFil and IIFil on C •, namely

IFili C k =
⊕
a≥i

D a,k−a and IIFilj C k =
⊕
b≥j

D k−b,b ,

which induce filtrations

IFili Hn
dR(X/S) = Im

(
Rnπ∗(IFili C •)→ Rnπ∗(C

•) = Hn
dR(X/S)

)
and

IIFilj Hn
dR(X/S) = Im

(
Rnπ∗(IIFilj C •)→ Rnπ∗(C

•) = Hn
dR(X/S)

)
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on the de Rham cohomology of X over S. These filtrations give rise to two
spectral sequences IE and IIE abutting to the de Rham cohomology. They are
sometimes called the first and second spectral sequences of hypercohomology. Some
of their terms are:

IE
a,b
0 = IGra π∗(C

a+b) = π∗(D
a,b), IIE

a,b
0 = IIGra π∗(C

a+b) = π∗(D
b,a),

IE
a,b
1 = Rbπ∗(Ωa

X/S), IIE
a,b
1 = π∗(H

b(D•,a)),

IE
a,b
2 = H a(Rbπ∗(Ω•X/S)), IIE

a,b
2 = Raπ∗(H

b(Ω•X/S)),

IE
a,b
∞ = IGra Ha+b

dR (X/S), IIE
a,b
∞ = IIGra Ha+b

dR (X/S) .

(Here, H k denotes the k–th cohomology sheaf of a complex.) We usually write

IE
a,b
1 = Rbπ∗(Ωa

X/S) =⇒ Ha+b
dR (X/S) ,

IIE
a,b
2 = Raπ∗(H

b(Ω•X/S)) =⇒ Ha+b
dR (X/S) .

Definition 3.11. We call IFil the Hodge filtration and IE the Hodge–de Rham spectral
sequence for X/S. We call IIFil the conjugate filtration and IIE the conjugate spectral
sequence for X/S.

Next, we focus in the case we are most interested in. The main results are
stated without proof. This second part is based on sections 2.1 to 2.3 of Katz’s
article [10], also summarized in sections 1.4 to 1.6 of Wedhorn’s notes [22].

Throughout the rest of this section, let p be a fixed prime number. Let S
be an Fp–scheme and let π : X → S be an S–scheme. Consider the absolute
Frobenius endomorphism FrobS : S→ S and let X(p) be the pull-back of X under
FrobS. Let F : X → X(p) be the relative Frobenius morphism of X/S. We have a
commutative diagram

X

X(p) X

S S

F

FrobX

π

σ

π(p)
p

π

FrobS

(see section 3.1). We want to use the additional structure in order to interpret the
terms of IIE2 in an alternative way.
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Theorem 3.12. There is a unique isomorphism of OX(p)–modules

C−1
k : Ωk

X(p)/S →H k(F∗(Ω•X/S))

for every k ≥ 0 satisfying the following conditions on sections over open subsets U of
X(p):

(i) C−1
0 (1) = 1;

(ii) C−1
k+k′(ω ∧ ω′) = C−1

k (ω) ∧ C−1
k′ (ω

′) for every ω ∈ Γ(U, Ωk
X(p)/S

) and every

ω′ ∈ Γ(U, Ωk′
X(p)/S

), and

(iii) C−1
1 (dσ∗(x)) = [xp−1 dx] for all x ∈ Γ(F−1(U), Ω1

X/S) (where [ · ] denotes the
cohomology class).

Proof. See theorem 7.2 of Katz’s article [11].

Definition 3.13. For every k ≥ 0, the k–th Cartier isomorphism for X/S is the
isomorphism of OX(p)–modules Ck : H k(F∗(Ω•X/S)) → Ωk

X(p)/S
given by the-

orem 3.12.

Now suppose that X is smooth and proper over S. As F is a homeomorphism
and π = π(p) ◦ F,

Raπ∗(H
b(Ω•X/S))

∼= Raπ
(p)
∗ (F∗(H b(Ω•X/S)))

∼= Raπ
(p)
∗ (H b(F∗(Ω•X/S))) .

In addition, the Cartier isomorphism induces an isomorphism

Raπ
(p)
∗ (H b(F∗(Ω•X/S)))

∼= Raπ
(p)
∗ (Ωb

X(p)/S)

and so we usually rewrite the conjugate spectral sequence as

IIE
a,b
2 = Raπ

(p)
∗ (Ωb

X(p)/S) =⇒ Ha+b
dR (X/S) .

Also, the canonical isomorphism σ∗(Ωb
X/S)

∼= Ωb
X(p)/S

induces an isomorphism

Raπ
(p)
∗ (Ωb

X(p)/S)
∼= Raπ

(p)
∗ (σ∗(Ωb

X/S))

and, if Raπ∗(Ωb
X/S) is flat over OS (e.g., if it is a locally free OS–module), the flat

base change theorem yields an isomorphism

Raπ
(p)
∗ (σ∗(Ωb

X/S))
∼= Frob∗S(R

aπ∗(Ωb
X/S)) .
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Theorem 3.14. Suppose that X is smooth and proper over S, as above. If the sheaves
Raπ∗(Ωb

X/S) are locally free OS–modules of finite rank for all a, b ∈ Z and the Hodge–
de Rham spectral sequence

IE
a,b
1 = Rbπ∗(Ωa

X/S) =⇒ Ha+b
dR (X/S)

degenerates at IE1, then the conjugate sequence

IIE
a,b
2 = Frob∗S(R

aπ∗(Ωb
X/S)) =⇒ Ha+b

dR (X/S)

degenerates at IIE2.

Proof. See proposition 2.3.2 of Katz’s article [10].

Theorem 3.15. If X is an elliptic curve over S, then the Hodge–de Rham spectral
sequence

IE
a,b
1 = Rbπ∗(Ωa

X/S) =⇒ Ha+b
dR (X/S)

degenerates at IE1.

Proof. See theorem 4.1.3 and corollary 4.1.5 of Deligne and Illusie’s article [4].

Finally, consider an elliptic curve π : E→ S (where S is still an Fp–scheme).
In this case, the Hodge filtration gives a short exact sequence

0→ IFil1 H1
dR(E/S)→ IFil0 H1

dR(E/S)→ IGr0 H1
dR(E/S)→ 0 .

But, since E/S is an elliptic curve, IFil2 H1
dR(E/S) = 0. Using theorem 3.15 to

express IGr0 H1
dR(E/S) and IGr1 H1

dR(E/S) in terms of IE1, the previous short
exact sequence becomes

0→ R0π∗(Ω1
E/S)→ H1

dR(E/S)→ R1π∗(OE)→ 0

and we call it again the Hodge filtration for E/S. Similarly, the conjugate filtration
together with theorem 3.14 yields a short exact sequence

0→ R1π
(p)
∗ (OE(p))→ H1

dR(E(p)/S)→ R0π
(p)
∗ (Ω1

E(p)/S)→ 0

which we call again the conjugate filtration for E/S. These short exact sequences
are functorial for S–morphisms E→ E′ and their formation commutes with base
change by Fp–morphisms T → S.
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We have presented these results in characteristic p because it is what we
need later in chapter 4. In characteristic 0 there is no Cartier isomorphism and
so we cannot express the conjugate spectral sequence as above. However, the
Hodge–de Rham sequence always degenerates at IE in characteristic 0. We put it
more precisely in the following result.

Theorem 3.16. Let S be a Q–scheme and let π : X → S be a proper smooth morphism
of schemes. The sheaves Rbπ∗(Ωa

X/S) are locally free OS–modules of finite rank for all
a, b ∈ Z and the Hodge–de Rham spectral sequence

IE
a,b
1 = Rbπ∗(Ωa

X/S) =⇒ Ha+b
dR (X/S)

degenerates at IE1.

Proof. See theorem 5.5 of Deligne’s article [3].

3.3 The Gauss–Manin connection

This section explains the construction of the Gauss–Manin connection on de
Rham cohomology following sections 1 to 3 of Katz and Oda’s article [13].
Throughout this section, let S→ T be a smooth morphism of schemes.

Definition 3.17. Let E be a quasi-coherent OS–module. A connection on E is a
homomorphism ∇ : E → E ⊗OS Ω1

S/T of abelian sheaves on S such that, for
every open subset U of S and every f ∈ Γ(U, OS) and e ∈ Γ(U, E ),

∇( f e) = f∇(e) + e⊗ dS/T( f )

(here, dS/T : OS → Ω1
S/T is the universal derivation of S/T). For each derivation

D ∈ Der OT(OS, OS), we write ∇(D) : E → E for the composition

E E ⊗OS Ω1
S/T E ⊗OS OS

∼= E ,∇ idE ⊗D̃

where D̃ is the unique element of Hom OS(Ω
1
S/T , OS) such that D = D̃ ◦ dS/T.

Remarks.
(1) On sections f ∈ Γ(U, OS) and e ∈ Γ(U, E ) for some open subset U of S, we

have that
∇(D)( f e) = D( f )e +∇(D)(e)⊗ dS/T( f )
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by definition.
(2) For each k ∈N, ∇ induces a connection ∇ : E ⊗k → E ⊗k ⊗OS Ω1

S/T by the
Leibniz rule on sections. That is, for an open subset U of S and sections
e1, . . . , ek ∈ Γ(U, E ),

∇(e1 ⊗ · · · ⊗ ek) = ∇(e1)⊗ e2 ⊗ · · · ⊗ ek + · · ·+ e1 ⊗ e2 ⊗ · · · ⊗ ∇(ek) .

This in turn induces a connection on Symk E .

Now consider a smooth T–morphism π : X → S. By smoothness, we get a
short exact sequence of OX–modules

0→ π∗(Ω1
S/T)→ Ω1

X/T → Ω1
X/S → 0 .

We can construct the associated Koszul filtration Fil on the de Rham complex
Ω•X/T, given by Fili Ω•X/T = Im

(
π∗(Ωi

S/T)⊗OX Ω•−i
X/T → Ω•X/T

)
. As the sheaves

Ωi
X/T (resp. Ωi

S/T) for i ≥ 0 are locally free OX–modules (resp. OS–modules) by
smoothness, we see that Gri Ω•X/T

∼= π∗(Ωi
S/T)⊗OX Ω•−i

X/S.

Applying the functor R0π∗ from the category of complexes of OX–modules
to the category of OS–modules (whose right derived functors are Riπ∗ for i ≥ 0),
this filtration induces a spectral sequence E abutting to the de Rham cohomology
of X over T with terms

Ea,b
1 = Ra+bπ∗(π

∗(Ωa
S/T)⊗OX Ω•−a

X/S) = Rbπ∗(π
∗(Ωa

S/T)⊗OX Ω•X/S) .

But we observe that Ωa
S/T is a locally free OS–module and that the differential in

the complex π∗(Ωa
S/T)⊗OX Ω•X/S is π−1(OS)–linear. Therefore,

Rbπ∗(π
∗(Ωa

S/T)⊗OX Ω•X/S)
∼= Ωa

S/T ⊗OS Rbπ∗(Ω•X/S) = Ωa
S/T ⊗OS Hb

dR(X/S)

and, using this isomorphism, we write

Ea,b
1 = Ωa

S/T ⊗OS Hb
dR(X/S) =⇒ Ha+b

dR (X/T) .

Let us focus on the terms of E1. For each b ≥ 0, we have a complex E•,b1 of
the form

0 Hb
dR(X/S) Ω1

S/T ⊗OS Hb
dR(X/S) Ω2

S/T ⊗OS Hb
dR(X/S) · · ·

d0,b
1 d1,b

1
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which we write Ω•S/T ⊗OS Hb
dR(X/S). For every b ≥ 0, one checks that the

differential d0,b
1 : Hb

dR(X/S)→ Ω1
S/T ⊗OS Hb

dR(X/S) is induced by a morphism
H b(Ω•X/S) → H b(π∗(Ω1

S/T)⊗OX Ω•X/S) defined on sections as follows. Take
a section [ω] of H b(Ω•X/S) represented by ω in Ωb

X/S and choose a lift ω̃ of
ω to Ωb

X/T. Computing the connecting morphism of cohomology, we see that
dX/T(ω̃) is a section of Fil1 Ωb+1

X/T = Im
(
π∗(Ω1

S/T)⊗OX Ωb
X/T → Ωb+1

X/T

)
. We get

a section [dX/T(ω̃)] of H b(π∗(Ω1
S/T)⊗OX Ω•X/T) after projecting to the quotient

Gr1 Ωb+1
X/T. The image of [ω] is then [dX/T(ω̃)]. From this construction, we deduce

that d0,b
1 is a connection on Hb

dR(X/S). That is, for every open subset U of S and
every f ∈ Γ(U, OS) and η ∈ Γ(U, Hb

dR(X/S)),

d0,b
1 ( f η) = dS/T( f )⊗ η + f d0,b

1 (η) .

Definition 3.18. The Gauss–Manin connection on Hn
dR(X/S) is the differential

∇ = d0,n
1 : Hn

dR(X/S)→ Ω1
S/T ⊗OS Hn

dR(X/S) appearing in the first page of the
spectral sequence

Ea,b
1 = Ωa

S/T ⊗OS Hb
dR(X/S) =⇒ Ha+b

dR (X/T)

described above.

Since E is the spectral sequence of a filtered object, the differentials

da,b
1 : Ea,b

1 → Ea+1,b
1

can be computed as the connecting homomorphisms of the functors Rbπ∗ on the
short exact sequence

0→ Gra+1 Ω•X/T → Fila Ω•X/T/ Fila+2 Ω•X/T → Gra Ω•X/T → 0 .

In the case we are most interested in, this exact sequence is quite simple. Suppose
that T = Spec(K) for some field K, that S is a smooth curve over K and that
π : E = X → S is an elliptic curve. Then, Ω2

S/K = 0 and so Fil2 Ω•E/K = 0. Hence,
for a = 0, we have a short exact sequence

0→ π∗(Ω1
S/K)⊗OE Ω•−1

E/S → Ω•E/K → Ω•E/S → 0

of complexes of OE–modules. Applying the functor R0π∗, we obtain a connecting
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homomorphism

δ : R1π∗(Ω•E/S) R2π∗(π∗(Ω1
S/K)⊗OE Ω•−1

E/S)

∇ : H1
dR(E/S) Ω1

S/K ⊗OS H1
dR(E/S)

= ∼=
which is precisely the Gauss–Manin connection on H1

dR(E/S).
Now assume that K has positive characteristic p. By theorem 3.15, the Hodge

filtration yields a short exact sequence

0→ π∗(E/S)→ H1
dR(E/S)→ R1π∗(OE)→ 0 .

Set ωE/S = π∗(E/S). There is a canonical isomorphism R1π∗(OE) ∼= ω⊗−1
E/S

given by Serre–Grothendieck duality, so we rewrite the Hodge filtration as

0→ ωE/S → H1
dR(E/S)→ ω⊗−1

E/S → 0 .

Using this, we define a morphism κ : ωE/S → ω⊗−1
E/S ⊗OS Ω1

S/K of OS–modules
given by the composition

ωE/S H1
dR(E/S) H1

dR(E/S)⊗OS Ω1
S/K ω⊗−1

E/S ⊗OS Ω1
S/K

∇

(where ∇ is the Gauss–Manin connection).

Definition 3.19. In the above situation, κ : ωE/S → ω⊗−1
E/S ⊗OS Ω1

S/K induces a
morphism of OS–modules KS : ω⊗2

E/S → Ω1
S/K which is called the Kodaira–Spencer

morphism for E/S.

Theorem 3.20. Let N ≥ 3 such that p
∣∣- N (i.e., N is invertible in K). Let EK/Y(N)K

be the universal elliptic curve for Γ(N) over K (see definition 2.19). The Kodaira–
Spencer morphism KS: ω⊗2

EK/Y(N)K
→ Ω1

Y(N)K/K for EK/Y(N)K is an isomorphism of
OY(N)K

–modules.

Proof. See lemma 7 of Diamond and Taylor’s article [6].

3.4 Computations for the Tate curve

In the previous sections of this chapter we have introduced several geometric
tools abstractly. In this section we apply the previous theory to the case of the
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Tate curve and exhibit some explicit computations working mostly over the
complex numbers (like in the introduction of the Tate curve in section 2.2). We
follow sections A1.3 and A1.4 of Katz’s article [8].

Unless otherwise stated, we use the same notation as in section 2.2. Let
R be the subring of C((q)) consisting of Laurent series of functions which are
holomorphic on { q ∈ C : 0 < |q| < 1 }. We regard R as a C–algebra via the
inclusion of constants. The Tate curve Tate(q) is defined over R by the affine
equation

Tate(q) : Y2 = X3 + a4(q)X + a6(q)

given in definition 2.5. (Here, unlike in section 2.2, we use capital letters for
the affine coordinates X and Y because later we want to use x and y for the
coordinates of the complex plane.) Our objective is to compute the Gauss–Manin
connection ∇ : H1

dR(Tate(q)/R)→ H1
dR(Tate(q)/R)⊗R Ω1

R/C
.

For each τ ∈H, we have an elliptic curve Eτ over C which corresponds to the
compact Riemann surface C/Λ(τ), where Λ(τ) = Zτ ⊕Z. It can be obtained
from Tate(q) by pull-back under the map q 7→ qτ = e2πiτ : R → C; that is, we
have a cartesian diagram

Eτ Tate(q)

Spec(C) Spec(R)

p
π

where the lower arrow corresponds to the morphism R → C of C–algebras
defined by q 7→ qτ. These morphisms are all the C–points of Spec(R) over
Spec(C), so we can study many properties of Tate(q)/R by studying Eτ/C for
every τ ∈H (i.e., by studying every fibre). In addition, we can use the complex
analytic structure of each Eτ/C (i.e., of C/Λ(τ)).

From now on, let τ denote a coordinate on H and set aτ = Re(τ) and
bτ = Im(τ), so that τ = aτ + ibτ. It is also convenient to interpret R as the
ring of holomorphic functions H→ C (using the change of variables q = e2πiτ).
Consider a fundamental parallelogram Pτ for Λ(τ) centred at the origin. Let
γ1,τ be the line segment from the vertex −1−τ

2 to the vertex −1+τ
2 and let γ2,τ be

the line segment from the vertex −1−τ
2 to the vertex 1−τ

2 , as shown in figure 3.1.
The singular homology classes of these two paths (which we write again γ1,τ

and γ2,τ) form a Z–basis of H1(Eτ , Z) (where we identify Eτ with C/Λ(τ)).
Furthermore, H1(Eτ , C) ∼= H1(Eτ , Z)⊗Z C.
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−1−τ
2

1−τ
2

1+τ
2

−1+τ
2

γ1,τ

γ2,τ

Pτ

Figure 3.1: A basis of H1(C/Λ(τ), Z).

There is a perfect pairing

( · , · ) : H1(Eτ , C)×H1
dR(Eτ/C) C

([γ], θ)
∫

γ
θ

which allows us to identify H1(Eτ , C) with the dual of H1
dR(Eτ/C). Thus, we

write (γ∨1,τ , γ∨2,τ) for the basis of H1
dR(Eτ/C) dual to (γ1,τ , γ2,τ). Let z denote a

coordinate on C/Λ(τ) and set x = Re(z) and y = Im(z), so that z = x + iy. One
checks easily that, in coordinates,

γ∨1,τ =
1
bτ

dy and γ∨2,τ = dx− aτ

bτ
dy .

That is, the forms defined by these formulae satisfy that (γi,τ , γ∨j,τ) = δij.

On the other hand, there is another perfect pairing

〈 · , · 〉 : H1
dR(Eτ/C)×H1

dR(Eτ/C) C

(θ1, θ2)
∫

Pτ

θ1 ∧ θ2

which allows us to identify H1
dR(Eτ/C) with its own dual. Putting these two

dualities together, we obtain a basis (ϕ1,τ , ϕ2,τ) of H1
dR(Eτ/C) satisfying that

〈ϕi,τ , θ〉 = (γi,τ , θ) for all θ ∈ H1
dR(Eτ/C), i ∈ { 1, 2 }. Using that∫

Pτ

dx ∧ dy = bτ

(this is the area of Pτ), one checks easily that, in coordinates,

ϕ1,τ = dx− aτ

bτ
dy and ϕ2,τ = − 1

bτ
dy .
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That is, the forms defined by these formulae satisfy that 〈ϕi,τ , γ∨j,τ〉 = δij. Also,
〈ϕ1,τ , ϕ1,τ〉 = 0 = 〈ϕ2,τ , ϕ2,τ〉 and 〈ϕ2,τ , ϕ1,τ〉 = 1 = 〈ϕ1,τ , ϕ2,τ〉.

In this way, by letting τ vary, we obtain a basis (ϕ1, ϕ2) of H1
dR(Tate(q)/R).

It is quite easy to compute the Gauss–Manin connection in terms of this basis.
Indeed, as we have seen at the end of section 3.3, the Gauss–Manin connection is
the connecting homomorphism obtained from the short exact sequence

0→ Ω•−1
Tate(q)/R ⊗R Ω1

R/C → Ω•Tate(q)/C → Ω•Tate(q)/R → 0

and the functor R0π∗, where π : Tate(q)→ Spec(R) is the structure morphism.
Hence, there is an exact sequence

H1
dR(Tate(q)/C) H1

dR(Tate(q)/R) H1
dR(Tate(q)/R)⊗R Ω1

R/C
.∇

But, since ϕ1 and ϕ2 are defined in terms of complex (singular) homology, they
are in the image of H1

dR(Tate(q)/C). Therefore, ∇(ϕ1) = 0 = ∇(ϕ2).

We want to express the Gauss–Manin connection in terms of the more con-
ventional basis (ω, η) of H1

dR(Tate(q)/R) given by the cohomology classes of dX
Y

and X dX
Y , respectively. Again, we work analytically on fibres given by τ ∈ H.

We have ωτ = dX
Y = dz and ητ = X dX

Y = ℘(z; Λ(τ)) dz. Define, for i ∈ { 1, 2 },
ωi,τ = (γi,τ , ωτ) = 〈ϕi,τ , ωτ〉 and ηi,τ = (γi,τ , ητ) = 〈ϕi,τ , ητ〉. We can express
ωτ = ω2,τ ϕ1,τ −ω1,τ ϕ2,τ and ητ = η2,τ ϕ1,τ − η1,τ ϕ2,τ or, in matrix form,(

ωτ
ητ

)
=
(

ω2,τ −ω1,τ
η2,τ −η1,τ

)(
ϕ1,τ
ϕ2,τ

)
.

Furthermore, a straight-forward computation shows that

ω1,τ =
∫

γ1,τ

dz = τ and ω2,τ =
∫

γ2,τ

dz = 1 .

Lemma 3.21. The period η2,τ is −π2

3 E2(τ).

Sketch of the proof. We consider the Weierstrass zeta function

ζ(z; Λ(τ)) =
1
z
+ ∑′

l∈Λ(τ)

( 1
z− l

+
1
l
+

z
l2

)
,

which satisfies that ζ ′(z; Λ(τ)) = −℘(z; Λ(τ)). It turns out that the series for
ζ(z; Λ(τ)) is absolutely convergent and so the order of summation is irrelevant.
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The elements of Λ(τ) are of the form mτ + n for m, n ∈ Z. With this notation,
we consider the sum first over n and then over m. Now we can decompose the
previous series as

ζ(z; Λ(τ)) = ∑
m∈Z

fm(z) + g(z) + h(z) ,

where

fm(z) =
1

z + mτ
+

∞

∑
n=1

( 1
z + mτ + n

+
1

z + mτ − n

)
,

g(z) = ∑′

l∈Λ(τ)

1
l
= 0 ,

h(z) = ∑
m∈Z

∑′

n∈Z

z
(mτ + n)2 = z

π2

3
E2(τ) .

By definition, ℘(z + l; Λ(τ)) = ℘(z; Λ(τ)) for every l ∈ Λ(τ). This shows
that the function ζ(z + l; Λ(τ))− ζ(z; Λ(τ)) is constant (its derivative is 0) for
every l ∈ Λ(τ). In particular,

η2,τ =
∫

γ2,τ

℘(z; Λ(τ)) dz = ζ
(−1− τ

2
; Λ(τ)

)
− ζ
(1− τ

2
; Λ(τ)

)
= ζ

(−1
2

; Λ(τ)
)
− ζ
(1

2
; Λ(τ)

)
= −2ζ

(1
2

; Λ(τ)
)

(because ζ(z; Λ(τ)) is odd).
It remains to prove that

∑
m∈Z

fm

(1
2

)
= 0 .

But, using the formula at the beginning of proposition 1.4, we can write

fm(z) = π
cos(π(z + mτ))

sin(π(z + mτ))
= π

e2πizqm
τ + 1

e2πizqm
τ − 1

.

Therefore,

∑
m∈Z

fm

(1
2

)
= f0

(1
2

)
+

∞

∑
m=1

[
fm

(1
2

)
+ f−m

(1
2

)]
= −π

∞

∑
m=1

(1− qm
τ

1 + qm
τ
+

1− q−m
τ

1 + q−m
τ

)
= 0 ,
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as required.

Lemma 3.22. The periods ω1,τ, ω2,τ, η1,τ and η2,τ satisfy the Legendre relation

η1,τω2,τ − η2,τω1,τ = 2πi .

Sketch of the proof. We integrate ζ(z; Λ(τ)) along the boundary of the funda-
mental parallelogram Pτ. On the one hand, in Pτ, ζ(z; Λ(τ)) has only a simple
pole with residue 1 at the origin. Hence, by the residue theorem,∫

∂Pτ

ζ(z; Λ(τ)) dz = 2πi .

On the other hand, we know that ℘(z; Λ(τ)) is periodic of period Λ(τ). Thus,
since 1, τ ∈ Λ(τ), we observe that ℘(z+ 1; Λ(τ)) = ℘(z; Λ(τ)) = ℘(z+ τ; Λ(τ))

and, by integrating these relations, we deduce that

ζ(z + τ; Λ(τ))− ζ(z; Λ(τ)) = ζ
(−1 + τ

2
; Λ(τ)

)
− ζ
(−1− τ

2
; Λ(τ)

)
=
∫

γ1,τ

−℘(z; Λ(τ)) dz = −η1,τ

and, similarly,

ζ(z + 1; Λ(τ))− ζ(z; Λ(τ)) =
∫

γ2,τ

−℘(z; Λ(τ)) dz = −η2,τ .

Therefore, the integrals of ζ(z; Λ(τ)) along opposite sides of the parallelogram
Pτ almost cancel out and we get that∫

∂Pτ

ζ(z; Λ(τ)) dz =
∫

γ1,τ

−η2,τ dz−
∫

γ2,τ

−η1,τ dz = −η2,τω1,τ + η1,τω2,τ .

Equating the two expressions for the integral, we obtain the desired relation.

The Legendre relation computes precisely the determinant of the matrix
expressing (ωτ , ητ) in terms of (ϕ1,τ , ϕ2,τ). Inverting that matrix, we obtain that

2πi
(

ϕ1,τ
ϕ2,τ

)
=
(

η1,τ −ω1,τ
η2,τ −ω2,τ

)(
ωτ
ητ

)
.

Again, letting τ vary, we can regard ωi,τ and ηi,τ as functions of τ and we get in
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this way ωi, ηi ∈ R, i ∈ { 1, 2 }, such that

2πi
(

ϕ1
ϕ2

)
=
(

η1 −ω1
η2 −ω2

)(
ω
η

)
.

Next we want to apply the Gauss–Manin connection to the previous relation.
Before that, we notice that Ω1

R/C
∼= R dτ (because the derivative of a holomorphic

function is again holomorphic). Since the derivation ∂τ = d
dτ is dual to dτ, it

suffices to study ∇τ = ∇(∂τ) : H1
dR(Tate(q)/R) → H1

dR(Tate(q)/R). Indeed,
for a section ψ of H1

dR(Tate(q)/R), we observe that ∇(ψ) = ∇τ(ψ)⊗ dτ.

All in all, applying ∇τ to the relation between (ϕ1, ϕ2) and (ω, η), we obtain
that (

0
0

)
=

(
∂τη1 −∂τω1
∂τη2 −∂τω2

)(
ω
η

)
+
(

η1 −ω1
η2 −ω2

)(∇τ(ω)
∇τ(η)

)
.

Again by the Legendre relation, we can invert the last matrix and express(
∇τ(ω)
∇τ(η)

)
= − 1

2πi

(
ω2 −ω1
η2 −η1

)(
∂τη1 −∂τω1
∂τη2 −∂τω2

)(
ω
η

)
and, plugging in the values of ω1, ω2 and η2 and using the Legendre relation,
we conclude that

(
∇τ(ω)
∇τ(η)

)
= − 1

2πi

 −π2

3
E2(τ) −1

π4

9
E2(τ)

2 +
2π3i

3
E′2(τ)

π2

3
E2(τ)

(ω
η

)
.

Now consider the canonical differential ωcan on the Tate curve. Recall that,
on fibres, ωcan,τ = 2πi dz and ωτ = dz. Therefore, ωcan = 2πiω. Set ηcan = 1

2πi η,
which is then dual to ωcan. Consider also the derivation q d

dq = 1
2πi

d
dτ . We can

compute ∇
(
q d

dq
)

as

∇
(

q
d
dq

)(
ω
η

)
=

1
2πi

(
∇τ(ω)
∇τ(η)

)
and then express it in terms of (ωcan, ηcan). In this way, we have proved the
following result.

Theorem 3.23. The Gauss–Manin connection of Tate(q)/R/C is defined by

∇
(

q
d
dq

)(
ωcan
ηcan

)
=

 − 1
12

P 1

− 1
144

(
P2 − 12q

d
dq

P
) 1

12
P

(ωcan
ηcan

)
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(where P is the q–expansion of the Eisenstein series E2; as in section 1.3).

Corollary 3.24. In the above situation, the image of ω⊗2
can under the Kodaira–Spencer

morphism KS: ω⊗2
Tate(q)/R → Ω1

R/C
is the differential dq

q . In particular, the map KS is
an isomorphism of R–modules.

Proof. The Hodge filtration

0→ ωTate(q)/R → H1
dR(Tate(q)/R)→ R1π∗(OTate(q))→ 0

allows us to project ηcan to an element η̃can of R1π∗(OTate(q)) which is the Serre–
Grothendieck dual of ωcan. Thus, the projection of

∇
(

q
d
dq

)
(ωcan) =

−P
12

ωcan + ηcan

is also η̃can. Since the differential dq
q is the dual of the derivation q d

dq , we see that
the image of ωcan under κ : ωTate(q)/R → ω⊗−1

Tate(q)/R ⊗R Ω1
R/C

is

κ(ωcan) = η̃can ⊗
dq
q

,

whence the corollary follows.

Remark. Since the canonical differential ωcan for the Tate curve is always defined
(regardless of the base ring) and the Kodaira–Spencer morphism commutes with
base change, the corollary is true for the Tate curve over any base ring, even if
we have used the complex analytic structure over C for the computations.





Chapter 4

Modular forms in characteristic p

Throughout this chapter, let p be a fixed prime number. This chapter explains
the structure of the algebra of Katz’s modular forms over an algebraically closed
field of characteristic p analogously to the exposition of the classical case in
section 1.3. In the context of Katz’s modular forms, it is not enough to study
q–expansions as power series. Instead, most proofs require a geometric approach
using the theory introduced in chapters 2 and 3.

In characteristic p, one can define the Hasse invariant, a modular form which
describes the action of the Frobenius morphism on the de Rham cohomology
of elliptic curves. The Hasse invariant plays a fundamental role in the study
of the algebra of modular forms because it is essentially the only modular form
with q–expansions equal to 1. That is, we can compare modular forms with their
q–expansions by means of the Hasse invariant. Moreover, the Hasse invariant
induces a filtration on the algebra of modular forms and it is used to define a
certain derivation which respects the filtration. The properties of this derivation
help us to understand the filtration.

This chapter explains the theory mentioned in Katz’s paper [9]. The main
result of op. cit. is also the main topic of the last section. Before that, the first
section presents the several characterizations of the Hasse invariant appearing in
section 12.4 of Katz and Mazur’s book [12] (some of which are also in section 2.0
of Katz’s article [8]) and the second section explains the main result of section 2.7
of Cais’s notes [2].

4.1 The Hasse invariant

We introduce the Hasse invariant, regarded as a modular form, following section
12.4 of Katz and Mazur’s book [12]. Unless otherwise stated, all results appearing
in this section are proved in op. cit.

Consider a pair (E/R, ω), where R is an Fp–algebra, E is an elliptic curve
over R and ω is a basis of H0(Spec(R), ωE/R) = H0(E, Ω1

E/R). By Serre duality,
the R–module H1(E, OE) is dual to H0(E, Ω1

E/R). Let η be the basis of H1(E, OE)

69



70 MODULAR FORMS IN CHARACTERISTIC P

dual to ω. Let FrobE : E→ E be the absolute Frobenius endomorphism (given by
the p–th power endomorphism of OE). We get an induced Fp–linear morphism
Frob∗E : H1(E, OE)→ H1(E, OE) and so

Frob∗E(η) = A(E/R, ω)η for some A(E/R, ω) ∈ R .

Recall that the absolute Frobenius endomorphism fits in a commutative diagram

E

E(p) E

S S

F

FrobE

σ

p

FrobS

(where S = Spec(R)), so we can also write F∗(η(p)) = A(E/R, ω)η.
Moreover, if we replace ω with λω for some λ ∈ R×, we obtain λ−1η instead

of η and then

Frob∗E(λ
−1η) = λ−p Frob∗E(η) = λ−p A(E/R, ω)η = λ1−p A(E/R, ω)(λ−1η) ,

whence A(E/R, λω) = λ1−p A(E/R, ω). In this way, we have constructed an
element A ∈ F(Fp; Γ(1), p− 1).

Definition 4.1. The Hasse invariant is the modular form A ∈ F(Fp; Γ(1), p− 1)
which satisfies that Frob∗E(η) = A(E/R, ω)η for each triple (E/R, ω, η) as above.

Remark. We can regard the Hasse invariant as a modular form for Γ(N) for any
N ∈N and with coefficients in any Fp–algebra.

Theorem 4.2. The q–expansion of the Hasse invariant is equal to 1 (in Fp((q))).

Proof. Let R be an Fp–algebra and consider an elliptic curve E over R. By Serre
duality, the R–module H1(E, OE) is dual to H0(E, Ω1

E/R) which, in turn, is dual
to the restricted Lie algebra (of characteristic p) of left invariant R–derivations
of E (regarded as an R–module). Thus, we identify the elements of H1(E, OE)

with left invariant derivations. The action of Frob∗E on H1(E, OE) corresponds to
taking the p–th iterate of a left invariant derivation.

Consider the Tate curve Tate(q) over Fp((q)) together with its canonical dif-
ferential ωcan. There is a local parameter X on the completion of Tate(q) along



4.1. The Hasse invariant 71

its identity section in terms of which ωcan is dX
1+X . Let D be the left invariant

derivation dual to ωcan, so that D(X) = 1+ X. Therefore, D(1+ X) = 1+ X. We
deduce that Dp(1 + X) = 1 + X and so Dp(X) = 1 + X = D(X), which implies
that Dp = D. By the observations in the previous paragraph, we conclude that
A(Tate(q)/Fp((q)), ωcan) = 1.

The proof of theorem 4.2 hints at an alternative definition of the Hasse invari-
ant in terms of derivations. Let E be an elliptic curve over S = Spec(R) for an
Fp–algebra R with a basis ω of H0(E, Ω1

E/R). Consider the relative Frobenius
morphism F : E → E(p) and the Verschiebung morphism V : E(p) → E. Also,
write m : E ×S E → E for the group law morphism of the elliptic curve and
e : S → E for its identity section. We work locally as in section 3.1 to describe
F and V. Let U = Spec(B) be an affine open subset of E. Let d be the basis
of DerR(B, R) dual to the differential ω

∣∣
U. The left invariant R–derivation D

corresponding to d is the composition

B B⊗R B B⊗R R ∼= Bm] idB ⊗d

(here, we view R as an R–module through the identity) and we can then recover
d = e] ◦ D. We want to express the map D 7→ Dp = D ◦ (p). . . ◦ D (correspond-
ing to the action of Frob∗E used to define the Hasse invariant) in terms of the
Verschiebung morphism.

In what follows, the notation ·(p) denotes the pull-back of · under FrobS. The
tangent map tg(V) : DerR(B(p), R)→ DerR(B, R) maps d(p) ∈ DerR(B(p), R) to
the composition

B B(p) R .V] d(p)

We claim that the left invariant derivation tg(V)(D(p)) (corresponding to the
derivation tg(V)(d(p))) is precisely Dp. Indeed, we have a commutative diagram

B B⊗R B B⊗R Tp(B) B⊗R Tp(B) B

B⊗R Sp(B) B⊗R Sp(B)

B B⊗R B B⊗R B(p) B⊗R B(p) B

m] idB ⊗(mp)] idB ⊗D⊗p idB ⊗(e])⊗p

idB ⊗D⊗p

m] idB ⊗V] idB ⊗D(p)

idB ⊗d(p)

idB ⊗(e(p))]
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where we used the same notation as in the local description of V in section 3.1
and the downmost vertical arrows are given by the map

B(p) → Sp(B)

b⊗ a 7→ a(b⊗ (p). . .⊗ b)

which induces the isomorphism ϕB/R : B(p) → Sp(B)/J (see lemma 3.3). But the
first row of the diagram is Dp and the last row is tg(V)(D(p)), which proves the
claim. We conclude that tg(V)(D(p)) = A

(
U/R, ω

∣∣
U

)
D.

Repeating the previous construction on an affine open covering of E, we
obtain that tg(V)(D(p)) = A

(
E/R, ω)D for the left invariant derivation D dual

to ω and its pull-back D(p) under FrobS.
We can compute the Hasse invariant in yet another way. Take, as above, an

elliptic curve E over an Fp–algebra R with a basis ω of H0(E, Ω1
E/R). The Cartier

isomorphism C1 : H 1(F∗(Ω•E/R))→ Ω1
E(p)/R

induces an R–linear map

H0(E, Ω1
E/R)

∼= H0(E(p), F∗(Ω1
E/R)) H0(E(p), H 1(F∗(Ω•E/R)))

H0(E(p), Ω1
E(p)/R

)
C

C1∼ =

called the Cartier operator. Locally, F∗ corresponds to taking p–th powers of the
generators of OE over R, whereas C corresponds to taking p–th roots. Thus, we
see that C is obtained from F∗ by Serre duality. Since F∗ maps η(p) (whose dual
is ω(p)) to A(E/R, ω)η (whose dual is A(E/R, ω)−1ω), we conclude that

C(ω) = A(E/R, ω)ω(p) .

The next result is lemma 3.6.1 of Katz’s article [8].

Lemma 4.3. Let R be an Fp–algebra and let E be an elliptic curve over R with a basis
ω of ωE/R. If X is a parameter for the formal group of E/R for which

ω =
(

∑
n≥0

anXn
)

dX

with a0 = 1, then

apn−1 = A(E/R, ω)(pn−1)/(p−1) for every n ∈N .
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Proof. On the one hand, we know that C(ω) = A(E/R, ω)ω(p). On the other
hand, we can compute locally

C(anXn dX) =

{
0 if p

∣∣- n + 1 ,

an(X(p))−1+(n+1)/p dX(p) if p
∣∣ n + 1 ,

using the properties defining C1 (see theorem 3.12). Therefore,

A(E/R, ω) ∑
m≥0

ap
m(X(p))m dX(p) = C(ω) = ∑

m≥0
ap(m+1)−1(X(p))m dX(p)

and, for m = pn − 1, we find that

apn+1−1 = A(E/R, ω)ap
pn−1 .

The lemma follows from this equality by induction on n (as a0 = 1).

Having seen several interpretations of the Hasse invariant, we prove a fun-
damental result which we use later to determine the structure of the algebra of
modular forms over an algebraically closed field of characteristic p. It is theorem
12.4.3 of Katz and Mazur’s book [12].

Theorem 4.4 (Igusa). Let K be a perfect field of characteristic p and let (R,m) be an
artinian local K–algebra with residue field K. Let E be an elliptic curve over R and
consider the Verschiebung morphism VE/R : E(p) → E. If tg(V) = 0, then there exist a
supersingular elliptic curve E0 over K and an R–isomorphism E0 ⊗K R ∼= E.

Proof. We use the formal groups of the elliptic curves E and E(p). Let X be a
parameter for the formal group of E such that, for each (p− 1)–th root of unity
ζ ∈ Z×p , [ζ](X) = ζX and let X(p) be the induced parameter for the formal group
of E(p). Using these parameters, we can express

VE/R(X) = ∑
n≥1

an(X(p))n

with a1 = tg(V) = 0. On the other hand, since VE/R is a homomorphism of
group schemes, VE/R([ζ](X)) = [ζ](VE/R(X)) for every (p− 1)–th root of unity
ζ ∈ Z×p . That is to say, VE/R(ζX) = ζVE/R(X) or, comparing coefficients of
the power series expansions, anζn = anζ for all n ∈ N. But, if ζ is a primitive
(p− 1)–th root of unity in Z×p , ζ − ζn is invertible in Zp for all n ∈N such that
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n 6≡ 1 mod p− 1. We conclude that an = 0 unless n ≡ 1 mod p− 1. All in all,

VE/R(X) = ∑
m≥1

am(p−1)+1(X(p))m(p−1)+1 = ap(X(p))p + · · · .

From this last equation and using that FE/R(X(p)) = Xp, we see that

[p](X) = (VE/R ◦ FE/R)(X) = ∑
m≥1

am(p−1)+1Xmp(p−1)+p = apXp2
+ · · · .

Reducing coefficients modulo m, we observe that the formal group of the elliptic
curve E = E ⊗R K over K has height ≥ 2, so E must be supersingular and
the height is 2. That is, ap 6∈ m. Thus, VE/R(X) = (X(p))pu(X(p)) for some
u ∈ R[[X(p)]]×. In particular, in terms of the formal group, Ker(VE/R) is defined
by the equation (X(p))p = 0. But this equation defines Ker(FE(p)/R) as well. In
this way, we obtain a commutative diagram

E(p)/ Ker(VE/R) E(p)/ Ker(FE(p)/R)

E E(p2)

VE/R

∼= F
E(p)/R∼ =

and the last row must be the isomorphism given by taking p2–th powers on R.
Iterating this construction, we obtain a sequence of isomorphisms

E E(p2) E(p4) · · · E(p2n) · · · .
∼= ∼= ∼= ∼= ∼=

As (R,m) is an artinian local ring, there exists some n� 0 such that mp2n
= 0.

Thus, for every a ∈ R and every b ∈ m, (a + b)p2n
= ap2n

+ bp2n
= ap2n

. This
shows that the morphism ·p2n

: R → R given by a 7→ ap2n
factors through the

residue field K or, equivalently, that the diagram

R R

K K

·p2n

·p2n

is commutative. Therefore, taking pull-backs of E, we obtain R–isomorphisms

E ∼= E(p2n) ∼= ((E⊗R K)(p2n))⊗K R and we can take E0 = (E⊗R K)(p2n) = E(p2n).

Note that, as K is a perfect field, ·p2n
: K → K is an isomorphism and so E(p2n) ∼= E
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(and we have seen that E/K is supersingular).

Corollary 4.5. Let K be an algebraically closed field of characteristic p and let N ∈N

such that N ≥ 3 and p
∣∣- N. The Hasse invariant A ∈ M(K; Γ(N), p− 1) has only

simple zeros (cf. lemma 1.40).

Proof. Since the q–expansions of A are all equal to 1, the zeros of A must be
points of Y(N)K (regarded as a subscheme of X(N)K). Write Y = Y(N)K and
E = EK for the universal elliptic curve over Y.

Let y be a closed point of Y at which A has a zero. Since Y is a smooth curve
over the algebraically closed field K, the local ring OY,y is a discrete valuation
ring with residue field K and also a K–algebra. Set S = Spec(OY,y). We have a
cartesian diagram

E E

S Y

p

g

(where g is the canonical morphism). We want to see that g∗(A) ∈ H0(S, ω
⊗p−1
E/S )

has a simple zero at the closed point of S.
Let my be the maximal ideal of OY,y. Take a basis ω of H0(S, ωE/S) and

consider the Hasse invariant A(E/S, ω) ∈ my ⊂ OY,y. We have to prove that
A(E/S, ω) 6∈ m2

y. Suppose, for the sake of contradiction, that the Hasse invariant
has a zero of order ≥ 2 at the closed point of S. Consider R = OY,y/m2

y and set
ER
∼= E⊗OY,y R. We see that A(ER/R, ω) = 0. But, by definition, R is an artinian

local K–algebra with residue field K, so we are in the situation of theorem 4.4
and we can express ER = E0 ⊗K R for a supersingular elliptic curve E0/K. In
fact, we can take E0 = ER ⊗R K = E⊗OY,y K.

We get two different morphisms Spec(R)→ Y defining ER by pull-back from
E: the morphisms induced by the canonical projection OY,y →→ R and by the
composition OY,y →→ R→→ K ↪→ R. By the universal property of E/Y, these two
morphisms are associated with two level Γ(N)–structures α1 and α2 on ER. Let
ϕ : R → R denote the composition of the canonical projection R →→ K and the
canonical inclusion K ↪→ R. This morphism induces a cartesian diagram

(ER, α2) (ER, α1)

Spec(R) Spec(R)

∼=

p

Spec(ϕ)
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and, as a matter of fact, we can define inductively αn+1 to be the pull-back of
αn for each n ∈ N. The isomorphism ER → ER in the top row of the previous
diagram must permute the level Γ(N)–structures of ER, so at some point we
obtain a repetition. That is to say, αn = α1 for some n > 1. This contradicts the
universal property of E/Y because the corresponding morphisms Spec(R)→ Y
are different (observe that ϕ ◦ ϕ = ϕ).

4.2 The structure theorem

This section describes the structure of the algebra of modular forms in positive
characteristic in terms of their q–expansions and using the Hasse invariant. The
main result is analogous to theorem 1.41 in the classical setting. The exposition
in this section is based on section 2.7 of Cais’s notes [2].

First of all, we establish some notation for the rest of this chapter. Fix N ∈N

such that N ≥ 3 and p
∣∣- N. Let K be an algebraically closed field of characteristic

p. The moduli problem Γ(N)K giving elliptic curves E over K–algebras with
level Γ(N)–structures αN is represented by

(EK , αK,univ)

Y(N)K

π

where the modular curve Y(N)K is a smooth affine curve over K (see defini-
tion 2.19). Adding the cusps, we obtain the modular curve X(N)K (see defini-
tion 2.21), which is a proper smooth curve over K (see theorem 2.23). To simplify
the notation, from here on we write Y = Y(N)K, X = X(N)K and E = EK.

For each primitive N–th root of unity ζN ∈ K, the modular curve Y (resp. X)
has a connected component YζN (resp. XζN ) formed of the points corresponding
to elliptic curves with level Γ(N)–structures of determinant ζN (see theorem 2.24).
Observe that an element f ∈ Γ(YζN , ω⊗k

E/Y) (resp. f ∈ Γ(XζN , ω⊗k)) for some
k ∈ Z, which is the restriction of a modular form for Γ(N) of weight k to one
connected component of the modular curve, is uniquely determined by any
one of its q–expansions at that component and its weight k by corollaries 2.30
and 2.31.

Consider the Hasse invariant A ∈ M(K; Γ(N), p− 1). Recall that all of its
q–expansions are 1. Thus, if we multiply any element of F(K; Γ(N)) by A, its
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q–expansions remain unchanged. The main theorem of this section shows that
this is essentially the only relation between the q–expansions of the elements of
the algebra of modular forms for Γ(N) with coefficients in K.

The proof of the following result is based on the formulae explained in section
A1.5 of Katz’s article [8].

Proposition 4.6. The line bundle ω on the curve X is ample.

Proof. Each cusp corresponds to a triple (Tate(q)/K((q1/N)), ωcan, αN), where
the level Γ(N)–structure αN is defined up to automorphism of Tate(q)/K((q1/N))

(see theorem 2.26). Also, the formal completion of X along the cusp corresponds
to the formal group of Tate(q). Thus, since the Kodaira–Spencer isomorphism for
the Tate curve maps ω⊗2

can to the logarithmic differential dq
q (by corollary 3.24), the

Kodaira–Spencer isomorphism KS: ω⊗2
E/Y → Ω1

Y/K extends to an isomorphism
ω⊗2 → Ω1

X/K(log(C)) over X, where C is the closed subscheme of cusps of X.

Next, we study each connected component of X separately. That is, take a
primitive N–th root of unity ζN ∈ K, so that XζN is a proper smooth connected
curve over the algebraically closed field K. We have that

deg
(
ω⊗2∣∣

XζN

)
= deg(Ω1

XζN /K(log(CζN))) = 2g− 2 + |CζN | ,

where g is the genus of XζN and |CζN | denotes the number of cusps in the
connected component XζN . In order to prove that ω

∣∣
XζN

is ample, it suffices to

show that the previous degree is positive.

Consider the morphism j : XζN → P1
K given on points by the j–invariant. A

closed point of P1
K other than ∞ corresponds to an elliptic curve E/K defined

up to isomorphism and the closed points of XζN lying over it correspond to
the level Γ(N)–structures of determinant ζN on E modulo the automorphisms
of E/K. Thus, the fibre over this point of P1

K has |SL2(Z/NZ)|/|Aut(E/K)|
points. In particular, if j(E) 6∈ { 0, 1728, ∞ }, then Aut(E/K) = { [1], [−1] }. We
deduce that j is a covering of degree |SL2(Z/NZ)|

2 . On the other hand, the cusps
correspond to Tate(q)/K((q1/N)) and the formal completion of X along each
cusp is isomorphic to K[[q1/N]], while the formal completion of P1

K along ∞ is
isomorphic to K[[q]] (via the map j−1 7→ q(1− 744q + · · · )). Hence, each cusp
has ramification index N over ∞. We conclude that

|CζN | =
|SL2(Z/NZ)|

2N
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and we observe that this quantity is greater than 2 (for N ≥ 3). Since g ≥ 0, this
concludes the proof.

Lemma 4.7. Let T be a proper normal connected locally noetherian scheme over a base
ring R and let L be an ample line bundle on T. Consider the graded ring

B =
⊕
n≥0

H0(T, L ⊗n)

and choose f ∈ H0(T, L ⊗k) for some k ∈ N such that k ∈ R×. If f has at least one
simple zero, then f − 1 generates a prime ideal in B.

Proof. Since L is ample, we have an isomorphism

T ∼= Proj
(⊕

n≥0
L ⊗n

)
and the open immersion Tf ↪→ T is an affine morphism (here, Tf is the open
subscheme of points at which f is invertible). Also, T is integral: it is irreducible
because it is connected and locally noetherian and it is reduced because it is
normal.

The natural morphism of graded R–algebras

B f → B̃ =
⊕
n∈Z

Γ(Tf , L ⊗n)

is an isomorphism. It is clear that the closed subscheme V( f − 1) of Spec(B) lies
in Spec(B f ), so we consider the closed subscheme Z of Spec(B̃) corresponding
to V( f − 1) through the previous isomorphism.

Take an affine open subset U = Spec(C) of T such that L
∣∣
U is trivial. Since

Tf ↪→ T is affine, we see that U ∩ Tf = U f = Spec(C̃). Choose a generator t of
Γ(U, L ), so that L

∣∣
U = tOU. In particular, Γ(U f , L ) = tC̃ and we identify

⊕
n∈Z

Γ(U f , L ⊗n) = C̃[t, t−1] .

With this identification, the restriction of f to U f is of the form utk for some
u ∈ C̃×. Hence, f − 1 is given by utk − 1. As k ∈ R×, we deduce that Z is étale
over U f . Using this argument on an affine open covering, we get that Z is étale
over Tf and so over T too. Therefore, Z is normal (because T is).
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Furthermore, we claim that Z is connected. As Tf is irreducible, any two
open subschemes of Tf have non-trivial intersection. Therefore, it suffices to
prove it over U f = Spec(C̃) irreducible. That is to say, we have to prove that
Spec(C̃[t, t−1]/(utk − 1)) ∼= Spec(C̃[z]/(zk − u)) (where z = t−1) is connected.
As Spec(C̃[z]/(zk − u)) is étale over Spec(C̃), each of its connected components
has at least one point in the generic fibre. Hence, we only need to prove that
the generic fibre is connected, so we consider the fraction field F of the normal
domain C̃. Next, we want to show that zk − u is an irreducible polynomial over
F (which implies the claim).

Consider the closed subscheme V( f ) of T (i.e., the zeros of f ). By Krull’s
principal ideal theorem, each irreducible component of V( f ) has codimension 1
in T. We deduce that the local rings at the maximal points of V( f ) are discrete
valuation rings because T is normal. By hypothesis, f has a simple zero. We
choose a maximal point x of V( f ) where f has a simple zero, so that the image
of f in OT,x is a uniformizer. But we can also regard F as the fraction field of OT,x

and we deduce that the element u ∈ F must be a uniformizer of OT,x. Eisenstein’s
criterion shows that the polynomial zk − u is irreducible over F, as desired.

In conclusion, the closed subscheme V( f − 1) of Spec(B) is normal and
connected and so the ideal ( f − 1)B is prime.

Theorem 4.8. Let µ be the set of primitive N–th roots of unity in K. For each ζN ∈ µ,
choose a level Γ(N)–structure α(ζN) of determinant ζN on Tate(q)/K((q1/N)). The
kernel of the K–algebra homomorphism

M(K; Γ(N))→ ∏
ζN∈µ

K[[q1/N]]

f 7→ ( f̂α(ζN)(q))ζN∈µ

(taking one q–expansion of each determinant) is the ideal generated by A− 1, where
A ∈ M(K; Γ(N), p− 1) is the Hasse invariant (cf. theorem 1.41).

Proof. We prove a stronger result, namely that for each ζN ∈ µ the kernel of the
morphism

Φ : B =
⊕
n∈Z

Γ(XζN , ω⊗n)→ K[[q1/N]]

given by evaluation at (Tate(q)/K((q1/N)), ωcan, α(ζN)) is the ideal generated by
A− 1 (in fact, by its restriction to XζN , but we omit it from the notation). That is,
we prove the theorem separately on each connected component of X.
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First, observe that Γ(XζN , OX) = K because K is an algebraically closed field
and XζN is connected and reduced. Next, choose f ∈ Γ(XζN , ω⊗k) for some
k < 0. We can consider the modular discriminant ∆ ∈ Γ(XζN , ω⊗12) (as in the
proof of corollary 2.31). We see that f 12∆−k ∈ Γ(XζN , OX), which means that
f 12∆−k is a constant. But it is also (the restriction of) a cusp form, so f 12∆−k = 0,
which is only possible if f = 0. In conclusion, there are no non-zero modular
forms of negative weight which are holomorphic at ∞.

All in all, we can express

B =
⊕
n∈Z

Γ(XζN , ω⊗n) =
⊕
n≥0

Γ(XζN , ω⊗n)

and so lemma 4.7 implies that A− 1 generates a prime ideal a = (A− 1) in B.
It is clear that a ⊆ Ker(Φ), as the q–expansions of the Hasse invariant are all
equal to 1, so it remains to prove that the inclusion is not proper. But XζN is a
proper smooth curve over K, so XζN

∼= Proj(B) and this implies that B has Krull
dimension 2. Since Φ(∆) = q(1+ · · · ), we see that the image of Φ has dimension
≥ 1 and so Ker(Φ) cannot be a maximal ideal of B. Therefore, a = Ker(Φ).

Corollary 4.9. Theorem 4.8 holds also for modular forms which are not holomorphic at
∞ (that is, replacing M(K; Γ(N)) with F(K; Γ(N)) and K[[q1/N]] with K((q1/N))).

Proof. Let f ∈ F(K; Γ(N)) such that f̂α(ζN)(q) = 0 for every ζN ∈ µ. As in the
proof of corollary 2.31, we can choose r � 0 such that f ∆r is holomorphic at
∞ (because the modular discriminant ∆ is a cusp form) and so theorem 4.8
implies that A− 1 divides f ∆r in M(K; Γ(N)) ⊂ F(K; Γ(N)). But ∆ is invertible
in F(K; Γ(N)), which means that A− 1 divides f in F(K; Γ(N)).

We are basically in the same situation as in the classical case: we can use A to
define a filtration on the space of modular forms of weight in a congruence class
modulo p− 1 (cf. definition 1.43).

Definition 4.10. Let k ∈ Z. We say that f ∈ F(K; Γ(N), k) is of exact filtration
k if f is not divisible by A in F(K; Γ(N)) or, equivalently, if there exists no
g ∈ F(K; Γ(N), k′) for k′ < k having the same q–expansions as f .

Proposition 4.11. If f is a non-zero element of M(K; Γ(N), k) for some k < p− 1
(resp. for k = p− 1 which vanishes at one cusp in each connected component of X),
then f has exact filtration k.
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Proof. Suppose that f = Ag for some g ∈ F(K; Γ(N), k− (p− 1)). In this case,
the q–expansions of g must coincide with the q–expansions of f . But there are no
non-zero modular forms holomorphic at ∞ of weight < 0 and those of weight
0 are constant on each connected component of X, as we saw in the proof of
theorem 4.8. Thus, there cannot be one such g.

4.3 The operator Aθ

The exposition in this section follows closely Katz’s article [9]. We keep the
notation from the previous section except that we set ω = ωE/Y to further
simplify it. (We work exclusively on the modular curve Y without the cusps, so
there is no possible confusion with the extended sheaf ω on X.)

The main result we prove in this section is the following (cf. proposition 1.44):

Theorem 4.12. There exists a derivation

Aθ : F(K; Γ(N), •)→ F(K; Γ(N), •+ p + 1)

whose effect on q–expansions is q
d
dq

and such that

(1) if f ∈ F(K; Γ(N), k) has exact filtration k and p
∣∣- k, then Aθ( f ) has exact

filtration k + p + 1 (in particular, Aθ( f ) 6= 0), and
(2) if f ∈ F(K; Γ(N), pk) and Aθ( f ) = 0, then there is a unique g ∈ F(K; Γ(N), k)

such that f = gp.

Before moving to the proof of the theorem, we state some consequences.

Corollary 4.13.
(1) Aθ maps modular forms which are holomorphic at ∞ to cusp forms.
(2) The restriction of Aθ to M(K; Γ(N), k) is injective if 1 ≤ k < p− 1.
(3) If f ∈ F(K; Γ(N), k) satisfies that Aθ( f ) = 0, then we can write uniquely

f = Argp with 0 ≤ r ≤ p − 1, r + k ≡ 0 mod p, and g ∈ F(K; Γ(N), l),
pl + r(p− 1) = k. If, in addition, f is holomorphic at ∞ (resp. a cusp form), so
is g.

Proof.
(1) Aθ acts as q d

dq on q–expansions.
(2) Let f ∈ M(K; Γ(N), k) \ { 0 }. By proposition 4.11, f has exact filtration k.

Now the theorem says that Aθ( f ) 6= 0.
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(3) Take r ∈ { 0, 1, . . . , p− 1 } such that r ≡ −k mod p. We argue by induction
on r. The case r = 0 is given by the theorem. Now suppose that r > 0 and
that the result holds for r− 1. Since p

∣∣- k and Aθ( f ) = 0, f cannot have
exact filtration k; that is, f = A f ′ for a unique f ′ ∈ F(K; Γ(N), k− p + 1).
But −(k − p + 1) ≡ r − 1 mod p and Aθ( f ′) = 0 by the q–expansion
principle (because it has the same q–expansions as Aθ( f ) = 0). Therefore,
we can express f ′ = Ar−1gp for a unique g ∈ F(K; Γ(N), l).

The operator Aθ is roughly the composition of an operator θ and multiplica-
tion by the Hasse invariant A. However, in the construction of θ, we get an A in
the denominator, so θ is only defined over the locus where A is invertible. Next,
we investigate this locus.

Consider the commutative diagram

E

E(p) E

Y Y

F

FrobE

π

σ

π(p)
p

π

FrobY

where FrobY and FrobE are the absolute Frobenius endomorphisms and F is the
relative Frobenius morphism. We are in the situation of section 3.1. The relative
Frobenius morphism induces a morphism F∗ : H1

dR(E
(p)/Y) → H1

dR(E/Y) on
de Rham cohomology. Let F be the image of F∗.

Lemma 4.14. The image F and the cokernel H1
dR(E/Y)/F of F∗ are two locally free

OY–modules of rank 1.

Proof. The Hodge–de Rham spectral sequences for E(p)/Y and E/Y degenerate
at the first page by theorem 3.15 and, by functoriality, yield a commutative
diagram

0 R0π
(p)
∗ (Ω1

E(p)/Y
) H1

dR(E
(p)/Y) R1π

(p)
∗ (O

E(p)) 0

0 R0π∗ (Ω1
E/Y) H1

dR(E/Y) R1π∗ (OE) 0

F∗ F∗ F∗

with exact rows.
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We claim that the leftmost vertical arrow is 0. By functoriality, this map
is the push-forward by π(p) of the canonical map Ω1

E(p)/Y
→ F∗(Ω1

E/Y). We
work locally to prove that this last map vanishes. Restrict π : E → Y to
π : Spec(S)→ Spec(R) for some affine open subsets Spec(S) and Spec(R) of E

and Y, respectively. In what follows, the tensor product · ⊗R R is taken regarding
R as an R–module via Frob]

Y. Then, the map Ω1
E(p)/Y

→ F∗(Ω1
E/Y) corresponds

to the (S ⊗R R)–linear map Ω1
(S⊗RR)/R → Ω1

S/R induced by the derivation D
making

Ω1
(S⊗RR)/R

S⊗R R Ω1
S/R

S

d(S⊗RR)/R

D

F] dS/R

a commutative diagram (here, d(S⊗RR)/R and dS/R are the universal derivations).
Then,

D(b⊗ a) = dS/R(F](b⊗ a)) = dS/R(abp) = pabp−1dS/R(b) = 0

for all b ∈ S and all a ∈ R, so D = 0 and the claim follows.
The Hodge–de Rham spectral sequence for E(p)/Y (which degenerates at the

first page by theorem 3.15) and the conjugate spectral sequence for E/Y (which
degenerates at the second page by theorem 3.14) yield two short exact sequences
of OY–modules

0 R0π
(p)
∗ (Ω1

E(p)/Y
) H1

dR(E
(p)/Y) R1π

(p)
∗ (O

E(p)) 0

0 R1π
(p)
∗ (O

E(p)) H1
dR(E/Y) R0π

(p)
∗ (Ω1

E(p)/Y
) 0

0 F∗

and we see that F∗ factors through R1π
(p)
∗ (O

E(p)). In lemma 1 of his article [9],
Katz claims without proof that the induced map coincides with the inclusion
R1π

(p)
∗ (O

E(p)) → H1
dR(E/Y) in the bottom row. (Unfortunately, the author of

this work has been unable to understand why this is true.)
Therefore, F ∼= R1π

(p)
∗ (O

E(p)) and H1
dR(E/Y)/F ∼= R0π

(p)
∗ (Ω1

E(p)/Y
) and

both are locally free OY–modules of rank 1.
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Lemma 4.15. The open subset YH of Y where A is invertible is the largest open subset
over which the map ω⊕F → H1

dR(E/Y) induced by the inclusions is an isomorphism.

Proof. We work locally on Y. We choose an open subset U of Y with a basis
(ω, η) of H1

dR(E/Y)
∣∣
U such that ω is the image of a basis of R0π∗ (Ω1

E/Y)
∣∣
U

whose Serre–Grothendieck dual is the projection η̃ of η on R1π∗ (OE)
∣∣
U. (In

particular, (ω, η) is a basis adapted to the Hodge filtration.) The basis (ω(p), η(p))

of H1
dR(E

(p)/Y)
∣∣
U obtained after base change by FrobY has exactly the same

properties.

The proof of lemma 4.14 shows that F∗(ω(p)) = 0. Moreover, F∗ ◦ σ∗ = Frob∗E
and so the projection of F∗(η(p)) on R1π∗ (OE)

∣∣
U is precisely A(π−1(U)/U, ω)η̃,

by the definition of the Hasse invariant. That is, F∗ can be described in matrix
form as (

F∗(ω(p)) F∗(η(p))
)
= (ω η)

(
0 B1
0 A1

)
,

where we write A1 for the value A(π−1(U)/U, ω) of the Hasse invariant. There-
fore, F

∣∣
U is generated by B1ω + A1η. In conclusion, H1

dR(E/Y)
∣∣
U is isomorphic

to ω
∣∣
U ⊕F

∣∣
U if and only if the sections ω and B1ω + A1η generate H1

dR(E/Y)
∣∣
U

or, equivalently, A1 is invertible.

Remark. The proof shows that F
∣∣
U is generated by B1ω + A1η. Since U is chosen

so that F
∣∣
U is isomorphic to OU, we see that A1 and B1 have no common zeros

(cf. lemma 1.40).

We can now define a derivation θ of F(K; Γ(N))
[ 1

A
]

(i.e., over the locus where
the Hasse invariant A is invertible). By lemma 4.15, we have an isomorphism
H1

dR(E/Y)
∣∣
YH
∼= ω

∣∣
YH ⊕F

∣∣
YH . Since both ω and F are invertible OY–modules,

for each k ∈N we obtain a decomposition

Symk H1
dR(E/Y)

∣∣
YH
∼= ω⊗k∣∣

YH ⊕ (ω⊗k−1 ⊗OY F )
∣∣
YH ⊕ · · · ⊕F⊗k∣∣

YH .

The Gauss–Manin connection ∇ : H1
dR(E/Y)→ H1

dR(E/Y)⊗OY Ω1
Y/K induces

for each k ∈N a connection

∇ : Symk H1
dR(E/Y)→ Symk H1

dR(E/Y)⊗OY Ω1
Y/K

and we have the Kodaira–Spencer isomorphism KS: ω⊗2 → Ω1
Y/K.



4.3. The operator Aθ 85

Definition 4.16. Let k ∈ N. The map θ : ω⊗k
∣∣
YH → ω⊗k+2

∣∣
YH is defined to be

the composition

ω⊗k
∣∣
YH Symk H1

dR(E/Y)
∣∣
YH
∼= ω⊗k

∣∣
YH ⊕ · · ·

Symk H1
dR(E/Y)

∣∣
YH ⊗Ω1

YH/K

Symk H1
dR(E/Y)

∣∣
YH ⊗ω⊗2

∣∣
YH
∼= ω⊗k+2

∣∣
YH ⊕ · · ·

ω⊗k+2
∣∣
YH

θ

∇

KS−1∼ =

and we write again θ for the induced map H0(YH, ω⊗k) → H0(YH, ω⊗k+2) (cf.
corollary 1.37).

Lemma 4.17. The effect of θ on q–expansions is q
d
dq

.

Proof. Consider (Tate(q)/K((q1/N)), ωcan, αN) for some level Γ(N)–structure αN .
By corollary 3.24, KS(ω⊗2

can) = dq
q , the dual derivation to which is q d

dq . Set

ηcan = ∇
(
q d

dq
)
(ωcan). In section A2.2 of his article [8], Katz computes the effect

of the Frobenius endomorphism on the de Rham cohomology of the Tate curve
using complex analytic tools (the same kind of techniques as in section 3.4) and
shows that

(
Frob∗Tate(q)(ωcan) Frob∗Tate(q)(ηcan)

)
= (ωcan ηcan)

(p 0
0 1

)
.

From this expression, since p = 0 in K, we deduce that the image of the Frobenius
morphism in H1

dR(Tate(q)/K((q1/N))) is spanned by ηcan.
Given f ∈ H0(YH, ω⊗k), consider f̂αN(q) = f (Tate(q)/K((q1/N)), ωcan, αN)

and the local expression f̂αN(q)ω
⊗k
can obtained by pull-back from f (observe that

Tate(q)/K((q1/N)) can be obtained by pull-back from π−1(YH)/YH because the
q–expansions of A are equal to 1). We compute the action of θ on this local
expression via the chain of maps appearing in definition 4.16, all of which
commute with base change. By duality, we can express

∇( f̂αN(q)ω
⊗k
can) = ∇

(
q

d
dq

)
( f̂αN(q)ω

⊗k
can)⊗

dq
q
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and, after applying the Kodaira–Spencer isomorphism, we obtain

∇
(

q
d
dq

)
( f̂αN(q)ω

⊗k
can)⊗ω⊗2

can = q
d
dq

( f̂αN(q))ω
⊗k+2
can + k f̂αN(q)ω

⊗k+1
can ⊗ ηcan

≡ q
d
dq

( f̂αN(q))ω
⊗k+2
can mod ηcan .

Therefore,

θ( f̂αN(q)ω
⊗k
can) = q

d
dq

( f̂αN(q))ω
⊗k+2
can ,

whence
(θ̂ f )αN(q) = q

d
dq

( f̂αN(q)) ,

as required.

Lemma 4.18. For each k ∈N, there is a unique map

Aθ : F(K; Γ(N), k)→ F(K; Γ(N), k + p + 1)

making the diagram

H0(YH, ω⊗k) H0(YH, ω⊗k+2) H0(YH, ω⊗k+p+1)

H0(Y, ω⊗k) H0(Y, ω⊗k+p+1)

θ ·A

Aθ

commute.

Proof. First, observe that the vertical arrows in the previous diagram are injective
by the q–expansion principle, as all q–expansions are defined over YH.

We work locally on Y. We can choose an open subset U of Y such that
R0π∗ (Ω1

E/Y)
∣∣
U = ω

∣∣
U, R1π∗ (OE)

∣∣
U
∼= ω⊗−1

∣∣
U and F

∣∣
U are isomorphic to OU.

Let ω be a basis of ω
∣∣
U . Set ξ = KS(ω⊗2), which is a basis of Ω1

U/K, and consider
the basis D of Der K(OU , OU) dual to ξ. Define η = ∇(D)(ω). Observe that the
image of ω under the composition of maps

ω
∣∣
U H1

dR(E/Y)
∣∣
U (H1

dR(E/Y)⊗Ω1
Y/K)

∣∣
U (ω⊗−1 ⊗Ω1

Y/K)
∣∣
U ω⊗−1

∣∣
U

ω ω⊗−1 ⊗ ξ ω⊗−1

κ

∇ D
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is its Serre–Grothendieck dual. (The unlabelled arrows above come from the
short exact sequence

0→ ω = R0π∗ (Ω1
E/Y)→ H1

dR(E/Y)→ R1π∗ (OE) ∼= ω⊗−1 → 0

induced by the Hodge filtration.) Hence, the projection of η on R1π∗ (OE)
∣∣
U is

the Serre–Grothendieck dual of ω (i.e., (ω, η) is a basis of H1
dR(E/Y)

∣∣
U adapted

to the Hodge filtration). We are in the situation of the proof of lemma 4.15, so

(
F∗(ω(p)) F∗(η(p))

)
= (ω η)

(
0 B1
0 A1

)
.

Now set V = U ∩YH and write again ω, η, A1 and B1 for the restrictions of
ω, η, A1 and B1 to V. Since A1 is invertible over V, we have a basis

ϕ =
B1

A1
ω + η

of F
∣∣
V whose projection on R1π∗ (OE)

∣∣
V is the Serre–Grothendieck dual of ω.

Let f ∈ H0(Y, ω⊗k) and express it locally on U as f1ω⊗k for some f1 ∈ OY(U).
Abusing notation we write again f1ω⊗k for its restriction to V. Next, we compute
θ( f1ω⊗k) via the chain of maps appearing in definition 4.16. By duality, we can
write

∇( f1ω⊗k) = ∇(D)( f1ω⊗k)⊗ ξ ,

which corresponds by the Kodaira–Spencer isomorphism to

∇(D)( f1ω⊗k)⊗ω⊗2 = D( f1)ω
⊗k+2 + k f1ω⊗k+1 ⊗ η

= D( f1)ω
⊗k+2 + k f1ω⊗k+1 ⊗ ϕ− k f1

B1

A1
ω⊗k+2

≡
(

D( f1)− k f1
B1

A1

)
ω⊗k+2 mod ϕ .

Therefore,

θ( f1ω⊗k) =
(

D( f1)− k f1
B1

A1

)
ω⊗k+2

and, multiplying by the Hasse invariant A1ω⊗p−1, we see that the formula

Aθ( f1ω⊗k) = (D( f1)A1 − k f1B1)ω
⊗k+p+1 .

makes sense over U.
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Corollary 4.19. The local formula obtained at the end of the proof of lemma 4.18 defines
a map Aθ : F(K; Γ(N), k)→ F(K; Γ(N), k + p + 1) for every k ∈ Z.

Proof. Consider f ∈ F(K; Γ(N), k) for some k ∈ Z. We use that the modular
discriminant ∆ ∈ F(K; Γ(N), 12) is invertible in F(K; Γ(N)). Choose an integer
r � 0 such that k + 12pr > 0 and define

Aθ( f ) =
Aθ( f ∆pr)

∆pr

(here, Aθ( f ∆pr) is defined as in lemma 4.18, which makes sense because f ∆pr

has positive weight).
Using the same notation as in the proof of lemma 4.18, we can compute

locally on Y

Aθ( f ∆pr) = (D( f1∆pr
1 )A1 − (k + 12pr) f1∆pr

1 B1)ω
⊗k+12pr+p+1

= (D( f1)∆
pr
1 A1 + pr f1∆pr−1

1 D(∆1)− k f1∆pr
1 B1)ω

⊗k+12pr+p+1

= (D( f1)∆
pr
1 A1 − k f1∆pr

1 B1)ω
⊗k+12pr+p+1

(where we used that p = 0 in K), whence

Aθ( f ) =
Aθ( f ∆pr)

∆pr = (D( f1)A1 − k f1B1)ω
⊗k+p+1 .

This is the same formula as for modular forms of positive weight.

Proof of theorem 4.12. We have constructed a derivation Aθ on F(K; Γ(N)) acting
on q–expansions as q d

dq , as desired. It remains to show its properties with respect
to the filtration given by A.

(1) Let f ∈ F(K; Γ(N), k) of exact filtration k. Since A does not divide f , there
is a point y of Y at which A has a zero of larger order than f . As in the
proof of lemma 4.18, we express f locally in an open neighbourhood of y
as f1ω⊗k and obtain that

Aθ( f1ω⊗k) = (D( f1)A1 − k f1B1)ω
⊗k+p+1 .

Suppose that p
∣∣- k, so that k 6= 0 in K. Since A1 and B1 have no common

zeros (see the remark after lemma 4.15),

ordy(D( f1)A1 − k f1B1) = ordy( f1) < ordy(A1) ,
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which implies that A does not divide Aθ( f ). That is, Aθ( f ) has exact
filtration k + p + 1.

(2) Let f ∈ F(K; Γ(N), pk) such that Aθ( f ) = 0. Again working locally on an
open subset U of Y and with the same notation, we have that

0 = Aθ( f1ω⊗pk) = (D( f1)A1 − pk f1B1)ω
⊗pk+p+1 = D( f1)A1ω⊗pk+p+1 ,

which is only possible if D( f1) = 0. But Y is a smooth curve over the perfect
(in fact, algebraically closed) field K of characteristic p and D is a basis of
Der K(OU , OU). Therefore, f1 = gp

1 for a necessarily unique g1 ∈ OY(U).
We obtain that f1ω⊗pk = (g1ω⊗k)p. By uniqueness, these local sections
g1ω⊗k can be glued together to a unique g ∈ F(K; Γ(N), k) satisfying that
gp = f .
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General index

B
Bernoulli numbers, 5

C
Cartier isomorphism, 55
Cartier operator, 72
connection, 57
cusp form, 3; see also modular form

D
de Rham cohomology, 53

conjugate filtration, 54, 56
conjugate spectral sequence, 54
Hodge filtration, 54, 56
Hodge–de Rham spectral sequence, 54
Koszul filtration, 58

E
eigenform, 19; see also modular form
Eisenstein series, 3
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normalized series, 5

elliptic curve, 30
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dual, 51

level Γ(N)–structure, 31
determinant, 41

moduli problem, 36
property, 37
relatively representable, 36
representable, 36

95



96 INDICES

rigid, 38

F
Frobenius morphism, 47

absolute, 47
relative, 48

G
Gauss–Manin connection, 59

H
Hasse invariant, 70
Hecke operator, 14–16
homothety operator, 15

K
Kodaira–Spencer morphism, 60

M
modular curve, 38, 39

cusps, 40
modular discriminant, 6
modular form, 2, 31, 39

q–expansion, 3, 35, 39, 43
holomorphic at ∞, 36, 43
modulo p, 20

filtration, 26, 80
modular function, 14

T
Tate curve, 34

canonical differential, 34

U
universal elliptic curve, 38; see also elliptic curve

universal level structure, 38

V
Verschiebung morphism, 51; see also Frobenius morphism
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W
weakly modular form, 2

holomorphic at ∞, 2
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FX/S, 48
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M(K; Γ(N)), 43
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M(SL2(Z)), 3
Mp(SL2(Z)), 20
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k (SL2(Z)), 20
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Λ(τ), 14
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H, 1
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Tate(q), 34
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dR(X/S), 53
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L, 13
P , 36
PE/S, 36

IIFil, 53

IFil, 53
∇(D), 57
∇, 57, 59
ωcan, 34
∂, 22

IIE, 54

IE, 54
σj(n), 4
θ, 21, 85
ω, 42
ωE/S, 30
f̂αN(q), 35
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M̃p(SL2(Z)), 20
M̃p

k (SL2(Z)), 20
℘(z; Λ), 13
ζ(z; Λ), 63
a4(q), 34
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eN, 40
f (p), 49
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