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Introduction

One of the most interesting results proved in the last 20 years is the modularity theorem
for elliptic curves de�ned over the rationals, which associates to every such a curve E of
conductor N a weight 2 newform of level N . In particular this gives rise to the modular
parametrization

φN : X0(N)→ E,

where X0(N) is the modular curve of level N . One of the most important arithmetic applica-
tions of this arises through the theory of complex multiplication. Fixed a quadratic imaginary
�eld K satisfying certain assumptions, one can indeed construct some special points on E,
called Heegner points, de�ned over the class �elds of K. They turn out to be very useful
tools to get di�erent kind of information about E.

In order to better understand this theory, Chapter 0 gives a brief overview about elliptic
curves, following mainly [Sil09]. After recalling the basic de�nitions and results, the theory of
complex multiplication is summarized, following [Shi71], in order to have the characterization
of the class �elds of a quadratic imaginary �eld needed for the construction of the Heegner
points. Finally we recall also the de�nition and properties of the L-function associated to
an elliptic curve over Q, that is a key tool to understand the connection with the theory of
modular forms.

Chapter 1 reviews �rst of all the classical de�nitions of modular forms and p-adic modu-
lar forms and then illustrates, following [Kat72], how these can be seen as particular functions
on marked elliptic curves. After introducing some operators, that will be useful in the follow-
ing chapters, we de�ne the L-function associated to a newform f with rational coe�cients
and �nally present the result of Eichler-Shimura, which associates to f an elliptic curve over
Q, and the modularity theorem, which does the converse. To conclude we then de�ne, �xed
a quadratic imaginary �eld K satisfying the Heegner hypothesis and an elliptic curve E over
Q, the Heegner point PK ∈ E(K).

Such a point PK , and in particular its being of in�nite order or not, gives information
about the L-function of E over K. Indeed the Gross�Zagier formula relates the Néron-Tate
height of PK to the �rst derivative of such a function evaluated at the central critical point
s = 1. In Chapter 2 we illustrate a particular case of the main theorem proved in [BDP],
as it is presented in chapter 1.3 of [BCD+14], that is a p-adic analogue of the Gross�Zagier
formula. If f is the newform associated to E, one can indeed construct the anticyclotomic
p-adic L-function attached to f and K interpolating the L-functions of f over K twisted
by certain Hecke characters. The main theorem relates the value of this function in a point
outside the domain of interpolation to the p-adic logarithm of PK .

Both in the case of the Gross�Zagier formula and in the case of the p-adic analogue
we presented, to determine whether the considered function vanishes at the relevant critical
point is equivalent to determine if the Heegner point PK has in�nite order. Using thus
this kind of question as a motivation for studying the behaviour of such special points, we
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present in Chapter 3 two explicit examples: the �rst one, explaining some results about
Heegner points proved in [Gro86], is an example of Heegner point of in�nite order; the second,
following [Zag84], is an example of trivial Heegner point.

The construction of the point PK ∈ E(K) can be generalized to get, as we were saying
at the beginning, a collection of points Pn ∈ E(Kn), where Kn is the class �eld of K of
conductor n. In the Appendix we present this construction and give a sketch, following
[Gro91], of how to use these points to prove Kolyvagin's theorem: if PK is of in�nite order,
then the rank of E(K) is equal to 1 and the Tate-Shafarevich group X(E/K) is �nite.
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Chapter 0

Elliptic Curves

0.1 A brief overview

We start by recalling some de�nitions and basic results about the theory of elliptic curves,
following mainly [Sil09].

De�nition 0.1.1. An elliptic curve is a pair (E,O), where E is a nonsingular curve of genus
one and O ∈ E. We say that the elliptic curve is de�ned over K, written E/K, if E is de�ned
over K and O ∈ E(K).

Using Riemann-Roch theorem, one can show quite easily that every elliptic curve is
isomorphic to a plane curve (in P2) given by the Weierstrass equation

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6, (1)

with ai ∈ K and with the point O corresponding to [0 : 1 : 0]. Moreover curve given by such
an equation is an elliptic curve. In the case of char(K) 6= 2, 3 the equation above simpli�es
further and can be written in the form

Y 2 = 4X3 +AX +B. (2)

One de�nes also the two quantities

∆ = −16(4A3 + 27B2) and j = −1728
(4A)3

∆
.

One has the following

Theorem 0.1.2. a) A curve given by the equation (2)

(i) is nonsingular (and so an elliptic curve) if and only if ∆ 6= 0;

(ii) has a node if and only if ∆ = 0 and A 6= 0;

(iii) has a cusp if and only if ∆ = A = 0.

b) Two elliptic curves are isomorphic over K̄ if and only if they have the same j-invariant.

c) Given j0 ∈ K̄ there exists an elliptic curve de�ned over K(j0) whose j-invariant is
equal to j0.

Proof. See [Sil09] proposition 1.4, chapter III.
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Using the characterization above, one de�nes, geometrically, a group law on E in the
following way:

if P,Q ∈ E, we consider L to be the line through P and Q, if P = Q we consider the
tangent line to E in P . Let R be the third point of intersection of L with E. We de�ne
P +Q to be the third point of intersection of the line through O and R with E.

This operation turns E into a commutative algebraic hroup with identity element given by
O and inverse denoted by −. Indeed one can prove the following:

Theorem 0.1.3. Let E/K be an elliptic curve. Writing explicit equations for the group law
above de�ned, one gets:

+ :E × E → E and − : E → E

(P,Q) 7→ P +Q P 7→ −P.

These maps de�ne two morphisms.

Proof. See [Sil09] theorem 3.6, chapter III.

One next de�nes which are the maps between elliptic curves.

De�nition 0.1.4. If E1, E2 are two elliptic curves, an isogeny from E1 to E2 is a morphism
ϕ : E1 → E2 such that ϕ(O) = O.

De�nition 0.1.5. If E is an elliptic curve, we de�ne the endomorphism ring End(E) of E
to be the ring of all isogenies from E to E.

Using then the group isomorphism between an elliptic curve E and the group of degree
zero divisors on E modulo principal divisors

E
'−→ Pic0(E)

P 7→ [P −O],

one gets the following

Theorem 0.1.6. An isogeny de�nes a group homomorphism with respect to the group law
on the elliptic curves. Concretely, if ϕ : E1 → E2 is an isogeny, then

ϕ(P +Q) = ϕ(P ) + ϕ(Q) for all P,Q ∈ E1.

Proof. If ϕ is the zero-isogeny there is nothing to prove. If ϕ is not the zero-isogeny, we can
use the fact that ϕ is a �nite map, we get a homomorphism

ϕ∗ : Pic0(E1)→ Pic0(E2)

[
∑

niPi] 7→ [
∑

niϕ(Pi)].

Using ϕ(O) = O we get a commutative diagram

E1 Pic0(E1)

E2 Pic0(E2),

'

ϕ ϕ∗

'

where the horizontal maps are de�ned as we have just seen. Since these two and ϕ∗ are group
homomorphism and the lower arrow is injective, we get that ϕ is a group homomorphism.
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Example 0.1.7. For each m ∈ Z one can de�ne the multiplication by m isogeny by setting,
if m > 0

[m] :E → E

P 7→ P + P + · · ·+ P︸ ︷︷ ︸
m-times

and if m < 0 we simply set [m](P ) = [−m](−P ). Clearly if m = 0 we de�ne [0] to be the
zero-isogeny.

We also de�ne the m-torsion subgroup of E to be the kernel of this isongeny, i.e.

E[m] := {P ∈ E s.t. [m](P ) = O},

one can prove that if char(K) = 0 or p = char(K) 6 |m, then E[m] = Z/mZ × Z/mZ. See
[Sil09] corollary 6.4, chapter III.

Using the above example, we can de�ne an injective map

[ ] :Z→ End(E)

m 7→ [m].

One can then prove the following

Theorem 0.1.8. The endomorphism ring of an elliptic curve E/K is either Z, or an order
in an imaginary quadratic �eld, or an order in a quaternion algebra. If char(K) = 0, only
the �rst two cases are possible.

Proof. See [Sil09] corollary 9.4, chapter III.

We will be interested in the case char(K) = 0 and we will see how to prove this theorem
in the easier case of K = C. We say that

De�nition 0.1.9. E/K has CM by a quadratic imaginary �eld L if its endomorphism ring
is strictly larger than Z and it is an order in L.

Another object which will be useful is the invariant di�erential or Néron di�erential of
an elliptic curve E/K. It is the canonical choice of a generator for ΩE which has some nice
properties that we recall now brie�y.

De�nition 0.1.10. Let E/K de�ned by the equation (1). The invariant di�erential or
Néron di�erential of E is

ωE =
dx

2y + a1x+ a3
.

It is called invariant di�erential in light of the following

Proposition 0.1.11. For every Q ∈ E, let τQ : E → E be the translation by Q map. Then

τ∗QωE = ωE .

Proof. See [Sil09] proposition 5.1, chapter III.

Moreover we have

Theorem 0.1.12. Let E and E′ be elliptic curves and ϕ, φ : E′ → E two isogenies. Then

(ϕ+ φ)∗ωE = ϕ∗ωE + φ∗ωE .

Proof. See [Sil09] theorem 5.2, chapter III.

As corollary from this, one gets that [m]∗ωE = mωE for every m ∈ Z.
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0.1.1 Elliptic curves over C

The theory of elliptic curves over the �eld of complex numbers C becomes much easier,
since it is equivalent (in a categorial sense) to the one of lattices in C or, equivalently again,
to the one of complex tori. We recall brie�y how this works, for a more detailed analysis see
[Sil09], chapter VI.

Consider Λ a lattice in C and C/Λ the corresponding complex torus. It is a complex Lie
group. What one shows is that it is isomorphic, as complex Lie group, to an elliptic curve
E/C. To do this we need the following

De�nition 0.1.13. The Eisenstein series of weight 2k associated to Λ is

G2k(Λ) =
∑

06=ω∈Λ

ω−2k.

The Weierstrass ℘-function associated to Λ is

℘(z; Λ) =
1

z2
+
∑

06=ω∈Λ

(
1

(z − ω)2
− 1

ω2

)
.

One can prove that G2k is absolutely convergent for k > 1 and that ℘ is an even elliptic
function with a double pole with residue 0 at each lattice point and no other poles. Moreover
for every z ∈ Z \ Λ, ℘ and its derivative ℘′ satisfy the relation

℘′(z)2 = ℘(z)3 − 60G4(Λ)℘(z)− 140G6(Λ). (3)

After de�ning g2 = g2(Λ) := 60G4(Λ) and g3 = g3(Λ) := 140G6(Λ), using the properties of
the Weierstrass ℘-function associated to Λ, one can prove the following key result:

Theorem 0.1.14. With the previous notation ∆(Λ) := g3
2 − 27g2

3 is non zero thus

E : y2 = 4x2 − g2x− g3

is an elliptic curve over C. Moreover the map

φ : C/Λ→ E(C)

z 7→ [℘(z) : ℘′(z) : 1]

de�nes an isomorphism of complex Lie groups.

Proof. See [Sil09] proposition 3.6, chapter VI.

To proceed, one consider then two lattices Λ1, Λ2 and the elliptic curves E1, E2 associated
to the complex tori C/Λ1, C/Λ2, in the sense of the previous theorem. Every α ∈ C such
that αΛ1 ⊂ Λ2 gives rise to a well de�ned holomorphic map

φα : C/Λ1 → C/Λ2

z 7→ αz

Using this association and the previous theorem one gets the following
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Theorem 0.1.15. There are bijections

{α ∈ C : αΛ1 ⊂ Λ2} ←→


holomorphic maps
φ : C/Λ1 → C/Λ2

such that φ(0) = 0

←→ {isogenies φ : E1 → E2},

where the �rst bijection assigns, with the above notation, α 7→ φα and the second one is
induced by the isomorphism de�ned in the previous theorem.

Proof. See [Sil09] theorem 4.1, chapter VI.

A natural question which arises at this point is whether every elliptic curve over C is
isomorphic to a complex torus or not. In other words, starting from an elliptic curve given
by the equation (2), can we �nd a lattice Λ such that g2(Λ) = −A and g3(Λ) = −B so that
C/Λ and E are isomorphic as complex Lie groups? The answer is positive and moreover this
lattice is unique up to homothety. This follows by the Uniformization Theorem, which can
be proved using the theory of modular forms, that we will see later.

Theorem 0.1.16 (Uniformization theorem). For every A,B ∈ C such that 4A3− 27B2 6= 0,
there exists a unique lattice Λ ⊂ C such that g2(Λ) = −A and g3(Λ) = −B.

This way we obtain what we were saying at the beginning of this discussion: the category
of elliptic curve over C, with morphisms given by the isogenies, and the category of complex
tori of dimension 1, with morphisms complex analytic maps sending 0 to 0, are equivalent.
In particular for E/C isomorphic to C/Λ we have

End(A) ' {α ∈ C : αΛ ⊂ Λ}.

Going back to the de�nition of complex multiplication and using the above results, we
can now prove theorem 0.1.8 in the case of elliptic curves over C.

Theorem 0.1.17. Let E/C be an elliptic curve and Λ = ω1Z ⊕ ω2Z be the corresponding
lattice. Then one of the following is true

i) End(E) ' Z,

ii) The �eld K := Q(ω1/ω2) is an imaginary quadratic �eld and End(E) is isomorphic to
an order in K.

Proof. Let τ := ω1/ω2 and suppose it is in H, the complex upper half plane (ω1, ω2 are a
R-basis of C, so either ω1/ω2 or ω2/ω1 are in H). Multiplying Λ by 1/ω1 we get that Λ is
homothetic to Z ⊕ Zτ , so we can replace Λ by Z ⊕ Zτ . Let A = {α ∈ C : αΛ ⊂ Λ}. Take
α ∈ A, then there exist integers a, b, c, d such that α = a+ bτ, ατ = c+ dτ . This means that
α is an eigenvalue for the matrix (

a b
c d

)
(with respect to the eigenvector (1, τ)). So it satis�es its characteristic polynomial, which is
a monic polynomial with coe�cients in Z, hence α is integral over Z and A ⊃ Z is integral.
If A ) Z, take α ∈ A \ Z, write it as before (now with b 6= 0) . Substituting α = a + bτ in
ατ = c+ dτ we get

bτ2 − (a− d)τ + c = 0.

So K = Q(τ) is a quadratic extension of Q and it is imaginary (otherwise τ ∈ R). Since OK ,
the ring of integers of K, is free as Z module and A is a Z-submodule of OK , A is also free
and of rank 2 (containing strictly Z), so we are done.
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0.1.2 Elliptic curves over �nite �elds

Consider now an elliptic curve E/K, where K is a �eld of characteristic p (suppose
p 6= 2, 3). We can de�ne the curve E(q)/K by raising all the coe�cients of the equation for
E to the q-th power. Using theorem 0.1.2 and the fact that ∆(E(q)) = ∆(E)q, we have that
E(q)/K is again an elliptic curve over K.

We are now interested in the case K = Fq the �nite �eld with q = pr elements. In this
case clearly E(q) = E and we can then de�ne the endomorphism of E

πq : [x : y : z] 7→ [xq : yq : zq] (4)

De�nition 0.1.18. The endomorphism given by (4) is called the Frobenius endomorphism
of E.

Remark 0.1.19. Notice that the set of points �xed by πq is exactly E(Fq).

Using the previous remark and some properties of the Frobenius endomorphism, one
proves

Theorem 0.1.20 (Hasse). Let E/Fq be an elliptic curve over the �nite �eld Fq, then

|#E(Fq)− q − 1| ≤ 2
√
q.

Proof. See [Sil09] theorem 1.1, chapter V.

Being in characteristic di�erent from zero it can happen that the endomorphism ring of
an elliptic curve E/Fq is neither Z nor an order in a quadratic imaginary �eld, i.e. it is an
order in a quaternion algebra. This is a quite unusual and rare case, which is the reason of
the use of the word supersingular in the following de�nition.

De�nition 0.1.21. An elliptic curve E/Fq is called supersingular if its endomorphism ring
is an order in a quaternion algebra.

For a more detailed discussion we refer to [Sil09], V.3-V.4. We restrict ourself to state a
couple of theorems. The �rst one clari�es what we meant by saying that such elliptic curves
are rare.

Theorem 0.1.22. Fix a �nite �eld Fq of characteristic p. There is only a �nite number of
supersingular elliptic curves (up to F̄q-isomorphism).

Proof. This descends from [Sil09], theorem 4.1.c, chapter V.

Theorem 0.1.23. Let Fq be a �nite �eld of characteristic p and E/Fq an elliptic curve which
is not supersingular. Then for every r ≥ 1

E[pr] = Z/prZ.

Proof. See [Sil09], theorem 3.1, chapter V.
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0.1.3 A general de�nition

Following [Kat72], chapter 1, we now give a more general de�nition of elliptic curve over
a scheme S, that will be useful later.

De�nition 0.1.24. An elliptic curve over a scheme S is the datum of a proper smooth
morphism π : E → S, whose geometric �bres are connected curves of genus 1, together with
a section s : S → E.

Remark 0.1.25. Notice that taking S = Spec(K), for K a �eld, we get back our de�nition
of elliptic curve over K. Indeed, since Spec(K) consists in a point, E is the only geometric
�bre of π : E → Spec(K) and it is a connected smooth curve of genus 1. Moreover the section
corresponds to the K-point O of our previous de�nition.

0.1.4 Reduction modulo a prime

For this section we consider E an elliptic curve over a number �eld K. We start by using
the language of (0.1.3) since it makes everything easier. Let OK be the ring of integers of
K, p a prime ideal and v = vp the associated valuation. Consider Kv the completion of K at
v. In particular E is an elliptic curve over Kv. Kv is a local �eld with ring of integers Ov, a
DVR with maximal ideal mv = (πv) and residue �eld kv = Ov/mv.

De�nition 0.1.26. An elliptic curve as above has good reduction at p if there exists an
elliptic curve E′ over Spec(Ov) such that the �bre over the generic point is isomorphic to E
(over Spec(Kv)), so that we have the following cartesian diagram

E E′

Spec(Kv) Spec(Ov).

We denote with Ẽ the �bre over the special point; Ẽ is an elliptic curve over the �nite �eld
kv, since the base change of a proper smooth morphism is again proper and smooth.

In this case we get a map, called the reduction map, from the the Kv-points of E to
the kv-points of Ẽ. Indeed to ϕ : Spec(Kv) → E ∈ E(Kv) we can associate a morphism
ϕ′ : Spec(Kv)→ Ẽ so that we get the following commutative diagram

Spec(Kv) Ẽ

Spec(Ov) Spec(kv).

ϕ′

Since the right arrow is proper for the assumption of good reduction, the valuative criterion
tells us that there exists a unique lift of ϕ′ to Spec(OK). Then

ϕ̃ : Spec(kv)→ Spec(Ov)
ϕ′−→ Ẽ

gives us the desired kv-point of Ẽ. We denote with

red : E(Kv)→ Ẽ(kv)

the map which associates ϕ̃ to ϕ. Notice that we can restrict it to a map E(K)→ Ẽ(kv).
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Remark 0.1.27. Following [Sil09], chapter VII.2-3, the same operation can be done in a
more concrete way by considering a Weierstrass equation for E/K. One then can reduce,
by multiplying for su�ciently large power of πv, to have such an equation de�ned over Ov.
The minimal Weiestrass equation for E at v is the one for which v(∆) is the minimum with
respect to the condition of the coe�cients being in Ov. Assume that E is given by this
equation. The Ẽ of above is given by the curve over kv whose coe�cients are the reduction
modulo mv of the coe�cients of E. One then sees that E has good reduction modulo p if and
only if v(∆) 6= 0. By this one can also see that E has good reduction at p for all but �nitely
many p. We say that E has multiplicative reduction if Ẽ has a node, additive reduction
if it has a cusp. Moreover, in the case of good reduction, the reduction map is given by
noticing that every P = [x : y : z] ∈ E(Kv) can be taken with coordinates in Ov and almost
one coordinate in O×v . Then one take the reduction modulo mv of every coordinate and get
P̃ = [x̃ : ỹ : z̃] ∈ Ẽ(kv).

If p is a prime lying above the rational prime p and of residual degree f , the �eld kv
is a �nite �eld of cardinality pf . If E/K has good reduction at p, one can then ask if the
reduction modulo p of E is supersingular or not. With the previous notation we give the
following

De�nition 0.1.28. An elliptic curve E/K is said to be supersingular at p if Ẽ is supersin-
gular. Otherwise it is said to be ordinary at p.

In the case of elliptic curves with CM the answer to our problem is given by the following

Theorem 0.1.29. Let E be an elliptic curve over the number �eld K such that it has complex
multiplication by L a quadratic imaginary �eld. Suppose that E has good reduction at p, a
prime of K lying above p. Then

E is ordinary at p ⇔ p splits completely in L.

Proof. See [Lan87], theorem 12, chapter 13, �4.

0.2 The formal group logarithm

In this section we recall brie�y how to associate to an elliptic curve over a local �eld
a formal group and a formal logarithm, following [Sil09] chapter IV. The case we will be
interested in later will be the one of an elliptic curve over Q. As before, we can view it as an
elliptic curve over Qp, the �eld of p-adic numbers, for every p prime and then use this theory.

We start with general de�nitions and properties.

De�nition 0.2.1. A formal group F over a ring R is a power series F (X,Y ) ∈ R[[X,Y ]]
such that

(a) F (X,Y ) = X + Y+ (terms of degree ≥ 2);

(b) (associativity) F (X,F (Y,Z)) = F (F (X,Y ), Z);

(c) (commutativity) F (X,Y ) = F (Y,X);

(d) (inverse) there is a unique i(T ) ∈ R[[T ]] such that F (T, i(T )) = 0;

(e) F (X, 0) = X and F (0, Y ) = Y .
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F (X,Y ) is the formal group law of F .

De�nition 0.2.2. If (F , F ) and (G, G) are two formal groups de�ned over R, a homomor-
phism from F to G de�ned over R is a power series f ∈ R[[T ]] such that f(F (X,Y )) =
G(f(X), f(Y )).

De�nition 0.2.3. An invariant di�erential on a formal group F over R is a di�erential form
ω(T )dT ∈ R[[T ]]dT such that ω(F (T, S)) = ω(T ).

The condition in the above de�nition tells us that the power series de�ning an invariant
di�erential satis�es P (F (T, S))FX(T, S) = P (T ), where FX is the partial derivative of F
with respect to X. It is normalized if P (0) = 1. Then one can show that there exists a
unique normalized di�erential on F/R and it is given by ω = FX(0, T )−1dT . Every invariant
di�erential is of the form aω for a ∈ R.

Example 0.2.4. The easiest example is the one of the formal additive group, denoted by
Ĝa, de�ned by F (X,Y ) = X + Y . In this case the invariant di�erential is ω = dT .

Now we proceed with the de�nition of the formal logarithm.

De�nition 0.2.5. Let R be a torsion-free ring and K = R ⊗ Q. If F/R is a formal group
and ω(T ) = (1 + c1T + c2T

2 + . . . )dT is the normalized invariant di�erential, the formal
logarithm of F/R is the power series

logF (T ) =

∫
ω(T ) = T +

c1

2
T 2 +

c2

3
T 3 + · · · ∈ K[[T ]].

Remark 0.2.6. Notice that one can also de�ne the formal logarithm associated to a non-
normalized di�erential in a similar way, writing logω(T ) =

∫
ω(T ). One chooses the normalized

one so that the power series admits an inverse in R[[T ]], since the coe�cient of T is invertible.
We call formal exponential of F/R the unique power series expF (T ) ∈ R[[T ]] such that

logF (expF (T )) = expF (logF (T )) = T.

An easy fact that follows right from the de�nition is the following

Proposition 0.2.7. Let F and G be two formal groups over R and f a formal group homo-
morphism. If ω is the normalized invariant di�erential of G we have

logf∗ω(T ) = logω(f(T )),

where f∗ω(T ) = ω(f(T )).

Proof. We just write logf∗ω(T ) =
∫
ω(f(T )) = logω(f(T )).

Proposition 0.2.8. If R is a torsion-free ring and F/R is a formal group. Then

logF : F → Ĝa

is an isomorphism of formal groups over K = R⊗Q.

Proof. Let ω(T ) be the normalized invariant di�erential so that ω(F (T, S)) = ω(T ). Inte-
grating with respect to T gives us logFF (T, S) = logF (T ) + C(S) for some C(S) ∈ K[[S]].
Taking T = 0 gives us C(S) = logF (S) so that logF is a homomorphism (recall the de�nition
of the formal group Ĝa from example 0.2.4). Moreover there exists an inverse, expF , so it is
an isomorphism of formal groups.
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Remark 0.2.9. One can associate to a formal group a group, in the case in which R is a
complete local ring. We will be interested in the case ofR = Ov so that Frac(R) = R⊗Q = Kv

is the completion of a number �eld with respect to the valuation v. To associate a group to
F/R, one considers the set m, the maximal ideal of R, with the group operations

x+F y = F (x, y)

−Fx = i(x)

for x, y ∈ m. Since R is a complete ring, the power series F (x, y), i(x) converge in R. In the
case of F = Ĝa, the associated group is simply m with the usual group law.

The formal group of an elliptic curve. Let E/K be an elliptic curve. We want to
associate to it a formal group and, consequently a formal logarithm. The idea is to investigate
its structure and the group law close to the origin. Let (x, y) be the a�ne coordinates of E.
We make a change of variables

z = −x/y and w = −1/y, (5)

so that the origin O of E is now the point (0, 0). Now the Weierstrass equation for E gets
the form

w = f(z, w) ∈ K[z, w].

By substituting this equation into itself one gets a power series in z of the form

w(z) = z3(1 +A1z +A2z
2 + . . . ) ∈ K[[z]].

This can be done thanks to the Hensel lemma applied to the complete ring K[[z]] to �nd a
solution of F (w) = f(z, w) − w, so that the power series above is the unique one satisfying
w(z) = f(z, w(z)). Then using (5) one can derive the Laurent series x(z), y(z) ∈ K((z)). If
we further assume that E has equation whose coe�cients are in R, the ring of integers of a
local �eld K, we get an injective map

m→ E(K)

z 7→ (x(z), y(z)),

since the power series x(z), y(z) converge for any z ∈ m, the maximal ideal of R. The image
of this map is given by the points (x, y) with x−1 ∈ m.

Finally one �nds the power series formally giving the addition law on E by following the
de�nition, i.e. by considering the line between two points (z1, w(z1)), (z2, w(z2)), taking the
intersection with E, and so on. Similarly for the inverse. For a more detailed discussion see
[Sil09], IV.1. So one gets two power series

F (z1, z2) ∈ K[[z1, z2]] and i(z) ∈ K[[z]]

giving the formal addition law and the formal inverse. From the properties of the addition
law on E one gets

F (z1, z2) = F (z2, z1)

F (z1, F (z2, z3)) = F (F (z1, z2), z3)

F (z, i(z)) = F (i(z), z).
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The explicit equation for F and some computations show that F satis�es also the remaining
properties of de�nition 0.2.1. We denote with Ê the formal group associated to E, which is
de�ned over R, if the coe�cients de�ning E are in R.

Moreover, if we consider the expansion of the invariant di�erential for E we get that
ω(z) ∈ K[[z]]dz is the formal normalized invariant di�erential, so that we can associate to
E/K the formal logarithm logÊ . In particular we will be interested in considering an elliptic
curve E/Q. For every prime p it is in particular an elliptic curve over Qp. Assuming that the
coe�cients of its equation are in R = Zp the ring of p-adic integers, we get a map as above

pZp → E(Qp),

with an inverse de�ned on the points whose �rst coordinate has p-adic norm strictly bigger
than 1. On such points we then de�ne

logp : P 7→ logp(P ) ∈ Qp,

using the inverse given above and the formal logarithm associated to the normalized invariant
di�erential of Ê seen as formal group over Zp. Using proposition 0.2.8 and remark 0.2.9 we
get that logp is an isomorphism to Qp.

The formal group associated to an elliptic curve is very useful to prove some properties of
the elliptic curve itself. One can for example prove that the group associated to the formal
group Ê with respect to Zp is isomorphic to the kernel of the reduction modulo p map de�ned
above and get the following important exact sequence

0→ Ê(pZp)→ E(Qp)
redp−−−→ Ẽ(Fp)→ 0.

0.3 Main theorem of Complex Multiplication

We brie�y state here the main theorem of complex multiplication for elliptic curves as
presented in chapter V of [Shi71] and list the most interesting consequences.

Before starting we need to de�ne the multiplication of a Z-lattice in a quadratic imaginary
�eld K by an idèle x ∈ A×K . If a ⊂ K is a Z-lattice, one has that, for p a rational prime,
ap := a ⊗Z Zp ⊂ Kp = K ⊗Q Q is a Zp-lattice and a is determined by the ap's, in the sense
that a = b if and only if ap = bp for every p. Moreover we have the following

Lemma 0.3.1. Given two lattices a, b, one has ap = bp for almost all p. Conversely if a is
a lattice as above and for every prime p we are given a Zp-lattice cp such that ap = cp for
almost all p, then there exists a unique lattice b such that bp = cp for every p.

Using A×K = K ⊗ A×Q we can talk about the p-th component of x ∈ A×K , we denote it

with xp ∈ K×p . Since ap = xpap for almost all p, we can use the conversely part of the above
lemma to show that there exists a unique lattice, denoted with xa, such that (xa)p = xpap
for every p. Finally using the isomorphisms K/a '

⊕
pKp/ap and K/xa '

⊕
pKp/xpap, we

have a well de�ned isomorphism
K/a

·x−→ K/xa.

We also recall that class �eld theory gives us a surjective map

rec : A×K → Gal(Kab/K)

s 7→ [s,K],

where Kab is the maximal abelian extension of K.
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Theorem 0.3.2 (Main theorem of complex multiplication). Let E be an elliptic curve over
C with complex multiplication by an order O in K and denote with a the Z-lattice in K such
that we have in isomorphism ξ : C/a → E(C). Let σ ∈ Aut(C/K) and s ∈ A×K such that
[s,K] = σ|Kab. Then there exists a unique isomorphism ξ′ : C/s−1a → Eσ(C) such that the
following diagram commutes

K/a Etors(C)

K/s−1a Eσtors(C).

ξ

·s−1 σ

ξ′

One of the most interesting applications of this theorem is the description of the class �elds
of a quadratic imaginary �eld K. We sum up these results in the two following theorems.

Theorem 0.3.3. Let O be an order in a quadratic imaginary �eld K. If a is a proper O-ideal,
we denote with j(a) the j-invariant of elliptic curve C/a. Then we have

(i) Gal(K(j(a))/K) is isomorphic to Pic(O) and if σ corresponds to the class of the ideal
b, j(a)σ = j(b−1a).

(ii) If a1, . . . , an are a complete set of representatives for Pic(O), then j(a1), . . . , j(an) is a
complete set of conjugates of j(a) over Q and over K.

Theorem 0.3.4. If K is a quadratic imaginary �eld, let E be any elliptic curve with complex
multiplication my the maximal order in K, so that E ' C/a, for some fractional ideal a. Then

1) the ray class �eld Km of conductor m is Km = K(j(a), E[m]). In particular the Hilbert
class �eld HK is HK = K(j(a)).

2) Kab = K(j(a), Etors).

Moreover, if O is the order of conductor m ∈ Z, we also have that Km = K(j(O)).

Remark 0.3.5. Recall that HK is the maximal unrami�ed abelian extension of K and that
the Artin map gives an isomorphism

Art : Pic(OK)→ Gal(HK/K)

[b] 7→
(
HK/K

b

)
.

We can now say more: if the class of b is equal to Art−1(σ), i.e. σ =
(
HK/K

b

)
, then we have

j(a)σ = j(b−1a).

0.4 The L-function of an elliptic curve over Q

Following [Dar04], chapter 1.4, we give the de�nition of the L-function associated to an
elliptic curve over Q.

Let E/Q be an elliptic curve. We have seen that for every prime p we can look at the
reduction of E modulo p. Following the notation of remark 0.1.27, when E has bad reduction
at p we have two cases: Ẽ has a cusp (additive reduction) or it has a node (multiplicative
reduction). In the second case we further distinguish two cases: if Ẽ has a node and the
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tangent lines in the node have rational coe�cients we say that E has split multiplicative
reduction at p, otherwise it has non-split multiplicative reduction at p.

The next step is to de�ne an integer ap for every prime p. We do it in the following way:

ap =


0 if E has additive reduction at p

1 if E has split multiplicative reduction at p

−1 if E has non-split multiplicative reduction at p

−Np + p+ 1 if E has good reduction at p,

where Np = #Ẽ(Fp) in the case of good reduction.
We make the extra assumption that for p = 2 or 3 E has not additive reduction at p, to

semplify the following

De�nition 0.4.1. The conductor N of the elliptic curve E is de�ned by N :=
∏
p p

ordp(N),
where

ap =


0 if E has good reduction at p

1 if E has multiplicative reduction at p

2 otherwise.

Finally the L-function of E is de�ned by

L(E, s) =
∑

ann
−s :=

∏
p 6|N

(1− app−s + p1−2s)−1
∏
p|N

(1− app−s)−1.

Theorem 0.4.2. The L-series above de�ned converges absolutely in the right half-plane
Re(s) > 3/2.

Proof. We need to prove the convergence of the in�nite product∏
p of good red

(1− app−s + p1−2s),

since L(E, s) is obtained by multiplication of it by a �nite product. It converges absolutely
if and only if ∑

p of good red

| − app−s + p1−2s| < +∞.

Using theorem 0.1.20 with q = p we get that |ap| < 2
√
p. Thus∑

p of good red

| − app−s + p1−2s| ≤
∑

p of good red

2|p−s+
1
2 |+ |p1−2s|

≤
∑

p prime

2|p−s+
1
2 |+ |p1−2s| ≤

∑
p prime

pRe(−s+
1
2

)(1 + 2pRe(−s+
1
2

))

≤
∑

p prime

pRe(−s+
1
2

) <
∑
n

nRe(−s+
1
2

),

which converges if Re(s) > 3/2.

We will see later that, thanks to the work started by A. Wiles, one can prove the following
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Theorem 0.4.3. The L-function L(E, s) extends to an entire function on C and has a
functional equation of the form

Λ(E, s) = −εEΛ(E, 2− s), with εE = ±1,

where Λ(E, s) := (2π)−sΓ(s)N s/2L(E, s), with Γ(s) =
∫∞

0 e−tts−1dt the usual Γ-function.

Remark 0.4.4. Notice that from the functional equation one gets, deriving n-times,

Λ(n)(E, s) = (−1)n+ ε+1
2 Λ(n)(E, 2− s).

In particular evaluating it in s = 1, one �nds

- if εE = 1, L(n)(E, 1) = 0 for every n even;

- if εE = −1, L(n)(E, 1) = 0 for every n odd.

Hence in the �rst case L(E, s) vanishes with odd order at 1, in the second with even order.
Moreover the Birch and Swinnerton-Dyer conjecture asserts that this order of vanishing
(called the analytic rank) is equal to the rank of the abelian group E(Q), which is �nite
thanks to Mordell-Weil theorem.
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Chapter 1

Modular Forms, Modularity Theorem

and Heegner Points

In this chapter we give an overview of the classical theory of modular forms and p-adic
modular forms, following Serre's approach, in particular [Ser73] for the �rst ones and [Ser72]
for the second ones. We also try to understand the more general approach introduced by
Katz in [Kat72]. In the �nal part we connect the theory of modular forms with the one of
elliptic curves, illustrating the Modularity Theorem and the construction of Heegner points
on an elliptic curve over the rationals.

1.1 Modular forms

We start by �xing some notations. Consider SL2(Z), the standard modular group. For
every N ≥ 1 we have the following congruence subgroups

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
,

Γ1(N) :=

{(
a b
c d

)
∈ SL2(Z) : a ≡ d ≡ 1, c ≡ 0 (mod N)

}
.

They both have �nite index in SL2(Z). From now on we denote with Γ one of the above
groups. One can consider more in general a subgroup Γ ⊂SL2(Z), requiring that it has �nite
index. We also denote with H the complex upper half plane.

De�nition 1.1.1. A weakly modular function of weight k ∈ Z with respect to Γ is a function
f such that

(i) f is meromorphic on H,

(ii) f(γτ) = (cτ + d)−kf(τ), for every τ ∈ H, γ =

(
a b
c d

)
∈ Γ and where γτ = aτ+b

cτ+d .

Remark 1.1.2. Since γ = −I ∈ Γ for every Γ, condition (ii) tells us that a modular function
of odd weight is identically zero. So we have non trivial modular functions only for k even.

We consider, set-theoretically, Γ \H∗, where H∗ = H t P1
Q = H tQ t {∞}, and Γ acts on

H∗ in the following way: if γ =

(
a b
c d

)
∈ Γ, then

γτ =
aτ + b

cτ + d
, for τ ∈ H,
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γ[x : y] = [ax+ by : cx+ dy], for [x : y] ∈ P1
Q.

We will come back later to this quotient space. We are now interested in the cusps, i.e. in
the set Γ \ P1

Q. First of all we need to show

Lemma 1.1.3. The set of cusps is �nite.

Proof. It is easy to see that SL2(Z)\P1
Q = {∞} and also that Γ is a subgroup of �nite index of

SL2(Z), write γ1, . . . , γm for a set of representatives. For every point P ∈ P1
Q take γ ∈SL2(Z)

such that γP = ∞ and γi such that γ = γ′ · γi, with γ′ ∈ Γ. So we have P = γ′(γi∞) and
the set of cusps is the set {[γi∞], i = 1, . . . ,m} and so is �nite.

Now the idea is the following: in the simplest case of Γ =SL2(Z), a modular function f

is invariant by translation for every n ∈ Z since f(τ + n) = f(

(
1 n
0 1

)
τ) = f(τ) for every τ .

Thus we can write f(τ) = f∗(q) with q = e2πiτ , in a suitable neighbourhood of q = 0. We
will require some conditions on f∗ in order to de�ne the modular function f to be a modular
form.

We want to consider something like the above f∗ for every cusp [s] ∈ Γ \ H∗. Take
γ ∈SL2(Z) such that γs =∞ and let Γs be the stabilizer of s in Γ. We have that

γ · Γx · γ−1∞ =∞.

Since we have that γ∞ =

(
a b
c d

)
∞ =∞ if and only if c = 0 we get that

γ · Γx · γ−1 ⊂ {±
(

1 n
0 1

)
, n ∈ Z}.

Let h be the smallest positive integer n occurring in this way, we get

γ · Γx · γ−1 ⊂ {±
(

1 h
0 1

)m
,m ∈ Z}.

It is easy to see that this number h is the index of γ · Γx · γ−1 and it is independent on the
choice of the representative s of the cusp.

Taking f as in de�nition 1.1.1, we de�ne fs(τ) = f(γ−1τ)(cτ+d)−k, where γ−1 =

(
a b
c d

)
.

Then one can show that fs is a weakly modular function of weight k with respect to the
subgroup γ · Γx · γ−1. In particular it is invariant with respect to the translation by h and
we then have fs(τ) = f∗s (q1/h) with q = e2πiτ .

De�nition 1.1.4. A weakly modular function of weight k with respect to Γ is meromorphic
(respectively holomorphic) at a cusp [s] if f∗s is meromorphic (respectively holomorphic) at
0.

If f satis�es the condition of the above de�nition, we can then consider the q expansion

fs(τ) =

+∞∑
n=r

anq
n/h, (1.1)

where r ∈ Z and, again, q = e2πiτ .
We are �nally ready to give the de�nition of modular function and modular form.
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De�nition 1.1.5. A weakly modular function of weight k with respect to Γ is said to be a
modular function if it is meromorphic at every cusp; we write f ∈ Fk(Γ). If it is holomorphic
on H and at every cusp, it is said to be a modular form; we write f ∈Mk(Γ). If moreover it
vanishes at every cusp (i.e. r ≥ 1 in (1.1) for every cusp), then it is said to be a cusp form;
we write f ∈ Sk(Γ).

Remark 1.1.6. One can replace Γ with any discrete subgroup of SL2(R) such that Γ \ H∗,
which has a natural structure of Riemann surface, is compact. Such a Γ is called Fuchsian
group of the �rst kind. One de�nes then in the same way automorphic functions and auto-
morphic form for Γ, so that for Γ a congruence subgroup we exactly have modular functions
and modular forms.

Modular forms on SL2(Z). To make some examples, we restrict to the simplest case of
modular forms over Γ =SL2(Z).

First of all we state an important theorem. We denote with ordτf the order, as meromor-
phic function, of the modular function f in τ . Notice that for every γ ∈ Γ, ordτf = ordγτf .
Moreover the order in ∞ is the order of f∗ in 0. We have

Theorem 1.1.7. Let f be a modular function of weight k, not identically zero. One has:

ord∞f +
1

2
ordif +

1

3
ordρf +

∑
τ∈Γ\H

ordτf =
k

12
,

where the last sum is taken over τ 6= i, ρ and ρ = e2πi/3.

Proof. See [Ser73] theorem 3, chapter 2, �3.

Example 1.1.8 (Eisenstein series). The �rst example is given by

Gk(τ) :=
∑

(m,n) 6=(0,0)

1

(mτ + n)k
,

when m,n run over the integers. Then one can prove that this is a modular form of weight
k for every k > 2 even. Moreover it is not a cusp form as Gk(∞) = G∗k(0) = 2ζ(k), where ζ
is the Riemann zeta function. See [Ser73], chapter 2 proposition 4,�2 and proposition 8, �4.
One can also prove (see proposition 8, chapter 2,�4) that the q-expansion of Gk is given by

Gk(q) = 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn, (1.2)

where σk−1(n) =
∑

d|n d
k−1.

Notice that Gk(τ) is the Eisenstein series of weight k associated to the lattice Z + Zτ in
(0.1.13). And following that notation we de�ne g2(τ) := 60G4(τ), g3(τ) = 140G6(τ), which
are modular forms of weight 4 and 6 respectively.

Example 1.1.9 (∆-function). We de�ne

∆(τ) := g2(τ)3 − 27g3(τ)2.

It is a modular form of weight 12 and since for every τ it is the discriminant of the elliptic
curve associated to the lattice Z+Zτ (times a non zero factor), it is non-vanishing on all H.
Then, using theorem 1.1.7, we �nd that ∆ has a simple zero at ∞ and in particular it is a
cusp form.
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Example 1.1.10 (j-function). We de�ne

j(τ) :=
1728 · g2(τ)3

∆(τ)
.

It is a modular function of weight 0, with a simple pole at ∞. In particular it de�nes a
function j : Γ \ H → C. Using again theorem 1.1.7, it is easy to prove that the weight 12
modular form 1728g3

2 − λ∆ has a unique zero for every λ ∈ C, i.e. j : Γ \H→ C is bijective.
This gives us the fact that every elliptic curve over C, uniquely determined up to isomorphism
by its j-invariant jE , is isomorphic to the elliptic curve associated to the lattice Z⊕Zτ where
τ ∈ H is such that j([τ ]) = jE . From this one gets also easily a proof of theorem 0.1.16.

1.1.1 The modular curve

We give a brief overview of the de�nition and properties of the modular curves. For more
details we refer to the notes [Mil12] or to chapter 1.5 of [DS05].

For Γ =SL2(Z) = Γ0(1), one can de�ne on X0(1) := Γ \ H∗ the structure of a compact
Riemann surface, and using j of (1.1.10), �nd an analytic isomorphism j : X0(1) → P1

C.
Moreover the �eld of meromorphic functions on X0(1) is given by the modular functions
of weight 0 F0(Γ), which is given by the space of rational functions in j, C(j). Using the
bijection above and denoting with Y0(1) = Γ \ H ⊂ X0(1) one also shows that there is a
bijection

Y0(1)←→ {isomorphism classes of elliptic curves/C}
τ 7−→ [C/Z⊕ Zτ ].

Moreover for any �eld L ⊂ C, an isomorphism class [E] of an elliptic curve over C de�nes
under the above bijection a L-rational point of Y0(1) (i.e. a L-rational point of P1

C) if and
only if there is a representative for [E] de�ned over L.

One can do the same for Γ = Γ0(N) or Γ = Γ1(N), obtaining a Riemann surface Γ \ H∗,
denoted with X0(N) and X1(N) respectively. As above we have an isomorphism with an
algebraic curve. We call C ′(N) and C(N) respectively the model of this curve over Q. We
also have bijections

Y0(N)←→


(E,S) : E elliptic curve over C,
S is a cyclic subgroup of E

of order N

 / ≈

τ 7−→ [C/Z⊕ Zτ, 〈 1

N
〉]

and

Y1(N)←→
{

(E, t) : E elliptic curve over C,
t is a point of E of order N

}
/ ≈

τ 7−→ [C/Z⊕ Zτ,
1

N
].

In both cases Yi(N) is Xi(N) without the cusps, i.e Yi(N) = Γ \ H and the equivalence
relations on the right sets are given by isomorphisms of elliptic curves preserving the given
structure (of the cyclic group or of the point respectively).

Also in this case, the isomorphism with C ′(N) and C(N) respectively together with
the above bijections �acts well with respect to sub�elds�: an isomorphism class [(E,C)] (or
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[(E, t)]) de�nes a L-rational point of Yi(N) if and only if there is a representative for the pair
de�ned over L. As above a point on Yi(N) is L-rational if it corresponds to an L-rational
point of C ′(N) and C(N) respectively. We can summarize this in the following

Remark 1.1.11. Denote with (C ′)0(N)(C) and C0(N)(C) the subsets of C ′(N)(C) and
C(N)(C) respectively corresponding to Y0(N) and Y1(N). These are solutions of the moduli
problems of elliptic curves with cyclic subgroups (respectively, points) of order N over C.
Actually this is still a solution over any �eld of characteristic not dividing N .

1.1.2 The geometric de�nition of modular form

As we were saying above, we want to give, following Katz, a more geometric de�nition of
modular form. To do this we restrict to the case of Γ = Γ1(N) and we follow the notation of
the preliminaries' chapter of [BDP].

First of all recall the general de�nition given in (0.1.24). We want to de�ne for such an
elliptic curve what does it means �to have a point of order N �.

De�nition 1.1.12. An elliptic curve with Γ-level structure over a ring R is a pair (E, t)
where

i) E → SpecR is an elliptic curve over SpecR as in (0.1.24);

ii) t : Z/NZ→ E is a closed immersion of group schemes over SpecR.

Moreover a marked elliptic curve with Γ-level structure is a triple (E, t, ω), where ω is a global
section of Ω1

E over SpecR.

An isomorphism of elliptic curves with Γ-level structure (resp. of marked elliptic curves)
is clearly de�ned as an R-isomorphism between elliptic curves which is compatible with the
closed immersions (and with the chosen di�erentials).

De�ne Ẽll(Γ, R) to be the set of isomorphism classes of marked elliptic curves with Γ-level
structure.

De�nition 1.1.13. A weakly holomorphic algebraic modular form of weight k on Γ de�ned
over C is a rule which to every isomorphism class of triples (E, t, ω) ∈ Ẽll(Γ, R), for R a
C-algebra, associates an element f(E, t, ω) ∈ R such that

i) (Compatibility with base change). For every j : R→ R′ homomorphism of C-algebras

f((E, t, ω)⊗j R′) = j(f(E, t, ω)).

ii) (Weight k). For all λ ∈ R×

f(E, t, λω) = λ−kf(E, t, ω).

Now let us consider the Tate curve Gm/q
Z with some level N structure t de�ned over

the C-algebra C((q1/h)), for some h | N . Let ωcan := du
u , where u is the usual parameter on

Gm/q
Z.

De�nition 1.1.14. A weakly holomorphic modular form f is an algebraic modular form on
Γ over C if

f(Tate(q), t, ωcan) ∈ C[[q1/h]], for all t.

If these values are in q1/hC[[q1/h]], f is called a cusp form.
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The q-expansions of f are the �nitely many Laurent series obtained by varying the level
N structure on the Tate curve.

Now consider E the universal elliptic curve with level N -structure. Consider C = C(N)
and C0 = C0(N) the modular curves of level N over Q. C0 is a moduli scheme for the moduli
problem “elliptic curves with level N structure”, so we consider the map

π : E → C0.

E is an elliptic curve over the scheme C0 in the sense of (0.1.24). Then consider Ω1
E/C0 the

sheaf of di�erential on E/C0, we de�ne via π a sheaf on C0 by

ω := π∗Ω
1
E/C0 .

Then one can view a (weakly holomorphic) modular form f as global section of the sheaf ωk

by setting
f(E, t) = f(E, t, ω)ωk, (1.3)

where ω is a generator of Ω1
E over SpecR. Thanks to the weight k-condition in the de�nition,

this expression does not depend on the choice of ω. We identify a point of C0 as a pair (E, t)
as in de�nition 1.1.12. Working on C and viewing ωk as analytic sheaf over C0(C), f is a
holomorphic section and it gives rise to a holomorphic function on H setting

f(τ) := f(C/Z⊕ τZ, 1

N
, 2πidw),

where w is the standard coordinate on C/Z⊕ τZ. This function obeys to the transformation
rule

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ),

with

(
a b
c d

)
∈ Γ1(N), thanks again to the weight-k condition in the de�nition. This gives us

the correspondence between the more general de�nition of modular form and the basic one.
Moreover the Laurent series of f correspond to the q-expansions of f , seen as holomorphic
function on the upper half plane, at the cusps. Clearly, in the other direction, if f is a modular
form in the classical sense, since every elliptic curve over C is isomorphic to a complex torus
and the associated lattice is homothetic to Z⊕ Zτ for some τ ∈ H, we put

f(C/Z⊕ Zτ,
1

N
, dw) := f(τ). (1.4)

1.1.3 The Shimura-Maas derivative operator

Another key object we want to introduce and that we will use later is the Shimura-Maas
derivative operator, which acts on modular forms. Even if one can work with the geometric
de�nition of modular form and give a more general de�nition of this operator, we de�ne it
by the way it acts on modular forms, seen in the classical de�nition we gave. We follow for
this [BCD+14], 1.2.

De�nition 1.1.15. Let f be a modular form of weight k with respect to a congruence
subgroup Γ. Then the action of the Shimura-Maas derivative operator δk is de�ned as follows

δkf(τ) =
1

2πi

(
d

dτ
+

k

τ − τ̄

)
f(τ), for every τ ∈ H.
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The �rst thing we notice is that δkf can be no more holomorphic. What is true, �xing
the congruence subgroup Γ, is the following

Lemma 1.1.16. δk sends modular forms of weight k to modular functions of weight k + 2.

Proof. Consider γ =

(
a b
c d

)
∈ Γ, we have

d(γτ) = d

(
aτ + b

cτ + d

)
=
acτ + ad− bc− acτ

(cτ + d)2
dτ =

1

(cτ + d)2
dτ ;

γτ − γτ =
aτ + b

cτ + d
− aτ̄ + b

cτ̄ + d
=

τ − τ̄
(cτ̄ + d)(cτ + d)

.

Then with some calculations we compute:

δkf(γτ) =
1

2πi

(
d

d(γτ)
+

k

γτ − γτ

)
f(γτ)

=
1

2πi

(
(cτ + d)2 d

dτ
+ (cτ̄ + d)(cτ + d)

k

τ − τ̄

)
(cτ + d)kf(τ)

=
1

2πi

(
(cτ + d)k+2 d

dτ
f(τ) + ck(cτ + d)k+1f(τ) + (cτ̄ + d)(cτ + d)k+1 k

τ − τ̄
f(τ)

)
=

1

2πi

(
(cτ + d)k+2 d

dτ
f(τ) + (cτ + d)k+1f(τ)

(
ck +

k(cτ̄ + d)

τ − τ̄

))
=

1

2πi

(
(cτ + d)k+2 d

dτ
f(τ) + (cτ + d)k+2 k

τ − τ̄
f(τ)

)
= (cτ + d)k+2δkf(τ).

Moreover for r positive integer, one can de�ne

δrk := δk+2r−2 ◦ · · · ◦ δk+2 ◦ δk,

which sends modular forms of weight k to real analytic modular form of weight k+ 2r. This
is just an iterated application of the above lemma.

One can naturally de�ne

De�nition 1.1.17. A nearly holomorphic modular form of weight k on Γ is a linear combi-
nation

f =

t∑
i=1

δjik−2ji
fi,

where the fi are modular forms of weight k − 2ji on Γ.

Remark 1.1.18. As for modular forms, it makes sense to evaluate a nearly holomorphic
modular form f on Γ1(N) in triples (E, t, ω) as above, with E elliptic curve over C, by
setting

f(C/Z⊕ Zτ,
1

N
, dw) := f(τ).
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1.2 p-adic modular forms

Let p be an odd prime number. As above we �rst quickly recall the classical de�nition
of p-adic modular form, following Serre [Ser72], and then give the geometric one, as given in
[Kat72].

Let f =
∑+∞

n=0 anq
n ∈ Qp[[t]]. The p-adic valuation of f is de�ned as

vp(f) := inf
n≥0
{vp(an)}.

De�nition 1.2.1. An element f ∈ Qp[[t]] is said to be a p-adic modular form on Γ if there
exists a sequence {fk}k ⊂ Q[[t]] such that fk is the q-expansion at ∞ of a classical modular
form on Γ and fk tends p-adically to f , i.e.

sup
n≥0
|an,k − an|p −−−−→

k→+∞
0, i.e. vp(fk − f) −−−−→

k→+∞
+∞.

The weight of a p-adic modular form is de�ned to be the p-adic limit of the weights of
the fk's. It is an element of the weight space W := Zp×Z/(p− 1)Z. One can show that this
de�nition does not depend on the sequence {fk}k.

Notice that, in particular, the q-expansion of a classical modular form of weight k with
rational coe�cients is a p-adic modular form of weight k.

Example 1.2.2 (p-adic Eisenstein series). The idea is to take the limit of families of Eisen-
stein series. We notice the q-expansion of Gk (1.2) has not rational coe�cients. So we
consider the classical modular forms of weight k

Ek(τ) :=
(k − 1)!

(−1)(k/2)πk2k+1
·Gk(τ).

One can show that its q-expansion is given by

Ek(q) = −Bk
2k

+
∞∑
n=1

σk−1(n)qn ∈ Q[[q]],

where Bk ∈ Q is the k-th Bernoulli number. We then de�ne

σ
(p)
k−1(n) :=

∑
d|n
p 6|d

dk−1.

Notice that since p 6| d, d ∈ Z×p and thus the exponential dk−1 makes sense. For k ∈ 2W \{0},
take a sequence of ki ∈ 2Z such that ki → +∞ in the usual sense and ki → k p-adically.
Then one has

σki−1(n)→ σ
(p)
k−1(n)

in Zp and uniformly in n. Now consider Eki . Then one can show that this family converges
to the p-adic modular form of weight k

E
(p)
k = a0 +

∞∑
n=1

σ
(p)
k−1(n)qn,

where a0 = lim(−Bki/2ki). It is called the p-adic Eisenstein series of weight k. See [Ser72]
1.5, corollary 2 and 1.6 for more details.

Notice that this gives us also the p-adic Eisenstein series of weight 2, even if a classical
Eisenstein series of weight 2 does not exist.
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1.2.1 The geometric de�nition of p-adic modular form

We follow, as before, the notations of the preliminaries' chapter of [BDP]. Let Cp the
completion of the algebraic closure of Qp.

De�nition 1.2.3. A p-adic modular form of weight k on Γ de�ned over Cp is a rule which
to every isomorphism class of triples (E, t, ω) ∈ Ẽll(Γ, R), with E ordinary at p and for R a
Cp-algebra, associates an element f(E, t, ω) ∈ R such that

i) (Compatibility with base change). For every j : R→ R′ homomorphism of Cp-algebras

f((E, t, ω)⊗j R′) = j(f(E, t, ω)).

ii) (Weight k). For all λ ∈ R×

f(E, t, λω) = λ−kf(E, t, ω).

iii) (Behaviour at cusps). For all level N structure t on the Tate elliptic curve de�ned on
Cp((q1/h)),

f(Tate(q), t, ωcan) ∈ Cp[[q1/h]].

As in the case of classical modular form, we would like to see p-adic modular forms as
sections of a suitable rigid analytic line bundle. One can not hope to de�ne, in a similar way
as before, a line bundle on C(Cp), since we are considering only “points” of the form (E, t, ω)
with E not supersingular. So we need to remove something. First of all assume that p - N ,
then C extends to a smooth proper model C over SpecZp. Then we can consider the natural
reduction map

redp : C(Cp)→ CFp(F̄p),

with CFp := C ×Zp Fp. Recall that theorem 0.1.22 tells us that there are only �nitely many
(isomorphism classes of) supersingular elliptic curves over F̄p. They correspond to �nitely
many points {P1, . . . , Pt} in CFp(F̄p). De�ne D(Pj) the residue disc attached to Pj to be
the set of points of C(Cp) which have the same image as Pj under redp. It is conformal to
the unit disc in Cp. The union of all these D(Pj) corresponds to all elliptic curves whose
reduction modulo p is supersingular. It is then natural to de�ne

A := C(Cp) \ (D(P1) ∪ · · · ∪D(Pt)),

this is called the ordinary locus of C(Cp). Now, as before, one can consider a sheaf ω on A
and, arguing as in (1.3), view a p-adic modular form as a section of ωk over A ⊂ C(Cp).

1.2.2 The operators U and V

Following Serre's approach, we quickly recall the de�nition of two operators on the space
of p-adic modular forms. Let f be a p-adic modular form of weight k

f =
∑

anq
n.

We then de�ne
Uf :=

∑
apnq

n and V f :=
∑

anq
pn.

This de�nition are meaningful in light of the following
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Proposition 1.2.4. With the above notation and assumptions, Uf and V f are p-adic mod-
ular forms of weight k.

Proof. See [Ser72], théorème 4, �2.

We can introduce another operator, which will turn out to be very useful, combining this
two. We then consider UV − V U . The following lemma makes clear how it acts.

Lemma 1.2.5. If f is a p-adic modular form as above,

(UV − V U)f =
∑
p 6|n

anq
n.

Proof. We just compute V Uf and UV f . First we get

V Uf = V (
∑

apnq
n) =

∑
apnq

pn =
∑
p|n

anq
n.

Then we compute

UV f = U(
∑

anq
pn) =

∑
anq

n = f.

Putting together these computations we get the thesis.

As always, this operators can be described also geometrically, in a way that is compatible
with the approach we have presented.

1.2.3 The lifting of the Frobenius morphism

Following the above notation, we choose a rigid analytic isomorphism

hj : D(Pj)→ {z ∈ Cp : ordp(x) ≥ 0},

for every j = 1, . . . , t. For every ε ∈ R>0, we have the wide open neighbourhood of A which
is de�ned by

Wε := A ∪
t⋃

j=1

{x ∈ D(Pj) : ordp(hj(x)) < ε}.

So Wε is obtained by adjoining to A t open annulli of width ε around the boundaries of the
deleted residue discs D(Pj).

Now we consider UFp := CFp \ {P1, . . . , Pt}. We denote with σ the Frobenius automor-
phism of Fp. There exists a canonical morphism φ : UFp → UσFp = UFp ×σ Fp such that for

every f ∈ OCFp (UFp), φ
∗fσ = fp. We assume that {P1, . . . , Pt} is stable under φ. One can

then show that there exists a morphism

Φ : A → A

which is a lifting in characteristic zero of φ.
This can be extended to a morphism Φ : Wε → Wε′ , for suitable 0 < ε < ε′ and induces

a linear map
Φ : Ω1(Wε′)→ Ω1(Wε).

In particular if we start with a p-adic modular form f and associate to it the di�erential
ωf =

∑
anq

ndq/q, i.e. a section of Ω1 over A, we can obtain an explicit description of the
action. Indeed we have

Φωf = pωV f .
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1.2.4 The Coleman primitive

For this section we refer to the third chapter of [BDP], considering the case r = 0.
As above, we can associate to f , a p-adic modular form of weight k, the analytic section

ωf of Ω1 over A.
We denote with ∇ the rigid analytic integrable connection

∇ : O → Ω1.

For a more precise de�nition of it we refer to [BDP]. One shows that, starting with a rigid
analytic section of O on some wide open neighbourhood W and considering its q-expansion,
the action of ∇ is given by taking the derivative with respect to q, so that ∇(

∑
anq

n) =
(
∑
n · anqn−1)dq.

De�nition 1.2.6. The Coleman primitive Ff of ωf is the locally analytic section of O over
C such that ∇Ff = ωf and Ff vanishes at in�nity.

One proves that such a section exists and that, moreover, one can obtain a p-adic modular
form of weight zero applying an operator to it. We will state a theorem (theorem 3.15 in
[BDP]), which is proved in [Col94], sections 10 and 11.

Theorem 1.2.7. Let ω = ωf be the global rigid section of Ω1 over C as before. There exists
a polynomial P ∈ Cp[x] and a locally analytic section Fω of O over C such that

(i) ∇Fω = ω;

(ii) P (Φ)(Fω) is a rigid analytic section of O on some open neighbourhood W.

Remark 1.2.8. Notice that the theorem doesn't give us only the existence of the Coleman
primitive, but also tells us that, after applying P (Φ), we get a p-adic modular form of weight
0.

1.2.5 The Atkin-Serre operator

We now introduce another operator, which acts on p-adic modular forms. As before,
even if one can work with the geometric de�nition, we de�ne it by the way it acts on p-adic
modular forms as in Serre's de�nition.

Let now g =
∑+∞

n=0 bnq
n be a p-adic modular form of weight k on Γ.

De�nition 1.2.9. The Atkin-Serre operator d acts on a p-adic modular form g as follows

dg = q
d

dq

+∞∑
n=0

bnq
n =

+∞∑
n=1

nbnq
n.

This is again a p-adic modular form and its weight is k + 2. To see this, we �rst analyse
the behaviour of the d-operator on classical modular forms (with rational coe�cients). Let f
be such a modular form of weight k, with q-expansion at ∞ given by f =

∑∞
n=0 anq

n, with
q = e2πiz for z ∈ H. Let us call θ = 1

2πi
d
dz . Then we have

θf =
1

2πi

df

dz
=

1

2πi

∞∑
n=0

(2πi)nanq
n =

∞∑
n=0

nanq
n = df.

Now consider the Eisenstein series of weight 2: P = 1− 24
∑
σ1(n)qn. This is not a modular

form in the usual sense, but we have that P (−1
z ) = z2P (z) + 12z

2πi . We have the following
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Lemma 1.2.10. If f is a modular form of weight k, then

θf − k

12
Pf

is a modular form of weight k + 2.

Proof. Assuming for semplicity that Γ =SL2(Z), we only need to check that (θf− k
12Pf)(−1

z ) =

zk+2(θf − k
12Pf)(z). To do this we use P (−1

z ) = z2P (z) + 12z
2πi and we di�erentiate with re-

spect to z the equality f(−1
z ) = zkf(z), which holds since f is a modular form of weight k.

From the latter we get
df

dz
=

(
kzk+1

1− zk+2

)
f.

Then, substituting this into

(θf − k

12
Pf)(−1

z
) =

1

2πi

df

dz

(
−1

z

)
− k

12
zk+2P (z)f(z)− k

12

12

2πi
zk+1f(z),

one gets the thesis.

From the lemma it easily follows what we stated before.

Proposition 1.2.11. The Atkin-Serre operator d sends p-adic modular forms of weight k to
p-adic modular forms of weight k + 2.

Proof. If g is a p-adic modular form of weight k, we can �nd a family {gi}i of classical modular
forms with rational coe�cients such that the q-expansions of the gi's converge p-adically to
g, each gi is of weight ki and k is the limit of the ki's. One can easily see that the dgi = θgi
converge to dg. The lemma tells us that dgi = ki

12Pgi + hi where hi is a modular form of
weight ki + 2. Since Pgi is a p-adic modular form of weight ki + 2, we have that dg is the
limit of modular forms of weight ki + 2, hence is a p-adic modular form of weight k + 2.

There is a key result which connects this operator and the Shimura-Maas derivative
operator. If f is a classical modular form of weight k on Γ with rational coe�cients, we
can apply to it both the Shimura-Maas derivative operator and the Atkin-Serre operator,
viewing f as p-adic modular form for the latter. We obtain very di�erent objects, but,
using the geometric de�nitions we gave, we can evaluate both of them in triples of the form
(E, t, ω), where E is an elliptic curve with Γ-level structure and E is ordinary at p. Using a
more geometric description of these operators, one can prove the following surprising

Theorem 1.2.12. Let f be a classical modular form of weight k on Γ with rational coe�cients
and r ≥ 0 an integer. Consider (E, t, ω) an elliptic curve with Γ-level structure, such that E
is ordinary at p and E has complex multiplication, then we have

δrkf(E, t, ω) = dr(E, t, ω).

1.3 Modularity theorem and Heegner points

We conclude this chapter with the statement of modularity theorem; we will also see how
to use it to construct some special points on elliptic curves de�ned over the rationals. Our
main references are the notes [Dar04], chapter 2.
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1.3.1 The L-function attached to a newform

Even if the following de�nitions and constructions can be given in general for modular
forms of weight k on Γ, we restrict our attention to the case of cusp forms of weight 2 on
Γ0(N). We will denote Sk(N) := Sk(Γ0(N)) ⊂Mk(N) := Mk(Γ0(N)).

Hecke operators. The complex vector spaceMk(N) is equipped with the Hecke operators
Tp for p prime, which act on an element f ∈Mk(N) in the following way:

Tpf(τ) =


1
p

∑p−1
i=0 f

(
τ+i
p

)
+ pf(pτ) if p 6 |N

1
p

∑p−1
i=0 f

(
τ+i
p

)
if p | N .

It sends modular forms in modular form and cusp forms in cusp forms. The action of Tp
on the q-expansions of f at ∞ is given by

Tpf =

{∑
p|n anq

n/p + p
∑
anq

pn if p 6 |N∑
p|n anq

n/p if p | N .

One then de�ne the Hecke operator Tn for n positive integer by equating the coe�cient of
n−s in the formal identity

+∞∑
n=1

Tnn
−s :=

∏
p6|N

(1− Tpp−s + p1−2s)−1
∏
p|N

(1− Tpp−s)−1. (1.5)

We denote with T the commutative subalgebra of EndC(Mk(N)) generated over Z by the
Tn's. One also has that the following properties hold:

(i) Tn · Tm = Tnm if (n,m) = 1;

(i) Tp · Tpn = Tpn+1 + p2k−1Tpn−1 for p prime and n ≥ 2,

where k is the weight of the modular forms in which the operators are acting.

De�nition 1.3.1. An eigenform of weight k is a modular form such that there exists a
ring homomorphism λ : T → C so that for every n, Tnf = λ(Tn)f . It is normalized if the
coe�cient a1 of the q-expansion is equal to 1.

Looking at the action on q-expansions and using the above properties one has that, for
an eigenform f with Fourier coe�cients an

(i) an · am = anm if (n,m) = 1;

(i) ap · apn = apn+1 + p2k−1apn−1 for p prime and n ≥ 2;

(iii) an = a1λ(Tn).

We now look at the case of S2(N). We say that f ∈ S2(N) is an oldform if it is a linear
combination of functions of the form g(d′τ), with g ∈ S2(N/d) and d′ | d > 1. The new
subspace of S2(N), denoted with Snew

2 (N), is the orthogonal complement of the space of
oldforms with respect to the Petersson scalar product on S2(N), de�ned by

〈f1, f2〉 =

∫
Γ\H

f1(τ)f2(τ)dxdy.

Finally, we give the following
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De�nition 1.3.2. A newform of level N is a normalized eigenform which lays in Snew
2 (N).

To a newform f of level N we want to attach an L-series. Consider f =
∑+∞

n=1 anq
n the

q-expansion at ∞. We de�ne

L(f, s) :=

∞∑
n=1

ann
−s.

By applying λ associated to f to (1.5) and noticing that an = λ(Tn) one can see that
such a function admits the Euler product factorization

L(f, s) =
∏
p6|N

(1− app−s + p1−2s)−1
∏
p|N

(1− app−s)−1.

Moreover there is the following important

Theorem 1.3.3. The L-function L(f, s) extends to an entire function on C and has a func-
tional equation of the form

Λ(f, s) = ±Λ(f, 2− s),

where Λ(f, s) := (2π)−sΓ(s)N s/2L(f, s), with Γ(s) =
∫∞

0 e−tts−1dt the usual Γ-function.

Remark 1.3.4 (Atkin-Lehner involution). One can prove that the rule

wN (f)(τ) :=
1

Nτ2
f(− 1

Nτ
), for every τ ∈ H,

where f is a newform of level N , is an involution on the space of newforms of level N ,
commuting with the Hecke operators. In fact T is generated by {Tp, p 6 |N} and by wN . One
also has

wN (f) = εff, where εf = ±1.

With this notation the functional equation of the above theorem can be written more precisely
as

Λ(f, s) = −εfΛ(f, 2− s).

The fact that such L-functions have properties similar to the ones of L-functions attached
to elliptic curve suggests a connection between this two theories. We explain the biggest
results about this in the following section.

1.3.2 Eichler-Shimura theory and Modularity theorem

From a newform to an elliptic curve. This direction of the connection we were talking
about is due to the work of Shimura and Eichler. Indeed they proved the following

Theorem 1.3.5. If f is a newform of level N with rational Fourier coe�cients, there exists
an elliptic curve Ef over Q such that

L(Ef , s) = L(f, s).

In particular we want to describe how the elliptic curve Ef is obtained. One can consider
the ring homomorphism associated to f

λf : T→ Z,
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de�ned on the generators of the Hecke algebra of level N by λf (Tp) = ap(f) and λf (wN ) = εf .
Take then the ideal If := ker(λf ). Consider the Jacobian J0(N) of the curve X0(N) (where
by abuse of notation we denote with X0(N) also the associated curve C ′(N)); it is an abelian
variety of dimension equal to the genus of X0(N). The Hecke algebra can be viewed as a
subring of the endomorphism ring of J0(N). Thus one de�nes Ef to be the quotient of J0(N)
by the subvariety IfJ0(N).

Moreover, since we have a canonical morphism from X0(N) to its Jacobian, sending
a point P to the degree zero divisor (P ) − (∞), composing with the natural projection
π : J0(N)→ Ef , we get

φN : X0(N)→ Ef ,

which is called the modular parametrization. One often denotes with ϕN the projection
morphism from J0(N) to Ef .

Remark 1.3.6. Notice that since λf (Tp−ap) = λf (wN − εf ) = 0, for every (class of) degree
zero divisor d, one has ϕN (Tpd) = apd and ϕN (wNd) = εfd.

The converse. Thanks to the work started by Wiles in the 1990's, it is now proved also
the converse, in the case of elliptic curves over the rationals.

Theorem 1.3.7. If E is an elliptic curve over Q of conductor N , there exists a newform
f ∈ S2(N) such that

L(E, s) = L(f, s).

Furthermore, E is isogenous to the elliptic curve Ef obtained with the Eichler-Shimura con-
struction.

From this theorem, together with theorem 1.3.3, we obtain theorem 0.4.3. We also get a
modular parametrization

φN : X0(N)→ E,

obtained by the one associated to Ef and composing with the isogeny Ef → E.

1.3.3 Heegner points

We �nally give the construction of Heegner points. Let K be a quadratic imaginary �eld
and N an integer. We assume

Heegner hypothesis. There exists an ideal n ⊂ OK satisfying OK/n = Z/NZ.

What one can require for instance is that every prime dividing N splits in K. Indeed

Lemma 1.3.8. If K is a quadratic imaginary �eld in which every prime p dividing N splits,
then K satis�es the Heegner hypothesis, i.e. there exists an ideal of norm N . More precisely,
if N is divided by m distinct rational primes, there are 2m such ideal.

Proof. For every p dividing N write (p) = p1,pp2,p, for p1,p, p2,p integral primes of K. Let
N =

∏
p|N p

np , then

n =
∏
p|N

p
np
ip,p

,

for ip ∈ {1, 2}, is an ideal of norm N . We have 2m possibilities for such ideals and they are
all the possible ones thanks to the unique prime ideals factorization in the Dedekind ring OK
and to the multiplicativity of the norm.
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To proceed we notice that, using the bijections in (0.1.15) and

End(C/Λ) ' {α ∈ C : αΛ ⊂ Λ},

the lattices associated to elliptic curves over C with complex multiplication by OK are given
by rank 2 Z-submodules of K, hence fractional ideals. So we have

Pic(OK)
1:1−−→ {elliptic curves/C with CM by OK}/ ≈

[a] 7−→ [C/a].

Moreover, given n as above, we also get a map

Pic(OK) −→ Y0(N)(C)

[a] 7−→ [C/a→ C/n−1a],

where we view Y0(N)(C) = Γ0(N) \ H as the moduli space classifying either, as before, the
pairs (E,C) with E elliptic curve over C and C cyclic subgroup of order N up to isomorphism
(preserving the subgroups), or, equivalently, the isogenies ϕ : E1 → E2 with kernel a cyclic
subgroup of order N .

Now considerE an elliptic curve overQ of conductorN . Consider the modular parametriza-
tion de�ned above:

φN : X0(N)(C)→ E(C).

Collecting everything we can associate to every element [a] ∈ Pic(OK) of the class group
a point P[a] ∈ E(C), which actually turns out to be in E(HK), where HK is the Hilbert
class �eld of K. Indeed in the isomorphism class of the elliptic curve C/n, together with the
corresponding subgroup, there is a representative de�ned over K(j(a)) = HK , and thus the
considered point on Y0(N) is an HK-point. Using the group law on E we de�ne

PK :=
∑

[a]∈Pic(OK)

P[a].

Recall, using theorems 0.3.3 and 0.3.4, that if [a1], . . . , [ah] are representative of Pic(OK),
HK = K(j([ai])) and j([a1]), . . . , j([ah]) are a complete set of conjugates over K. We also
have that the Artin map gives an isomorphism

Art : Pic(OK)→ Gal(HK/K) (1.6)

So taking σ ∈ Gal(HK/K), as shown in remark 0.3.5, one �nds, letting Art−1(σ) = [b], that
P[a]

σ = P[b]−1[a], hence we get

PK
σ =

∑
[a]∈Pic(OK)

P[a]
σ =

∑
[a]∈Pic(OK)

P[b]−1·[a] = PK ,

hence PK ∈ E(K).

Remark 1.3.9. Notice that one could do the same by choosing points which correspond to
elliptic curves with complex multiplication by an order On in OK , using the Picard group
of On. So for every n 6 |2Ndisc(K), we consider such a point yn which turns out to be in
E(Kn), where Kn is the ring class �eld of K associated to On. Such a collection of points
{yn ∈ E(Kn)} satis�es the axioms
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AX 1. TrKpn/Kn(ypn) = Lpyn for every p 6 |2Ndisc(K),

AX 2. ypn ≡ Fr−1
δ yn (mod ω), for every ω, δ prime ideals of Kpn,K respectively, such that

ω | δ | p,

where Lp = ap = p + 1 − Np, with the notation of (0.4), if p remains prime in K and
Lp = ap−Frδ1 −Frδ2 if (p) = δ1δ2 splits in K. We denoted with Frδ the Frobenius element
with respect to δ.

Such a collection of points is called an Euler system of Heegner points. See the Appendix
to have some ideas of how one can use them to get information about the elliptic curve E.

Remark 1.3.10. To conclude we want to emphasize why we required that K satis�es the
Heegner hypothesis. It is clear that this is fundamental to construct the Heegner points on
E, since we explicitly used the existence of an ideal of norm N . It is proved that if, more
generally, the sign of the functional equation of L(E/K, s) is equal to −1 then there exists a
non-trivial Heegner system of points yn ∈ E(Kn), satisfying the required properties, so that,
for example, one can apply the same constructions and reasoning presented in the appendix.

One can not hope to build the points yn starting from the modular curve and using the
modular parametrization if the Heegner hypothesis is not satis�ed. Let's suppose for example
that the conductor N is divisible by p an inert prime in K and that there exists an ideal of
norm N/p in K. One could then de�ne a point x on X0(N/p) and lift it to X0(N). One has
that the trace of this point on J0(N) is equal to the sum of all the lifts and it therefore comes
from the old part of J0(N), which is contained in the kernel of the modular parametrization.
We therefore would get that the trace of ϕN (x) is equal to 0. This construction hence does
not yield any point on E de�ned over ring class �elds of conductor prime to p.

If E is a semistable elliptic curve of conductor N and the sign of the functional equation
of L(E/K, s) is equal to −1, the natural construction is done with Shimura curves. If every
inert prime dividing N , divides it exactly, the construction of Heegner points using Shimura
curves and a generalization of the results of [BDP], removing the Heegner hypothesis, is
presented in [Bro13].
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Chapter 2

A p-adic Gross�Zagier formula

In this chapter we illustrate a particular case of the main theorem proved in [BDP], as it
is presented in chapter 1.3 of [BCD+14].

2.1 Motivation

Let E be an elliptic curve over Q andK a quadratic imaginary �eld satisfying the Heegner
hypothesis. Consider L(E/K, s), the L-function associated to E, which can be de�ned in a
way that is similar to the one used to de�ne L(E, s). It actually turns out that L(E/K, s)
is a multiple of L(E, s). Let us denote with ĥ, the Néron-Tate height on E. We have the
following

Proposition 2.1.1. For P ∈ E(Q̄), ĥ(P ) = 0 if and only if P ∈ E(Q̄)tors.

Proof. See [Sil09] theorem 9.3.d, chapter VIII.

The main result proved in [GZ86] relates the �rst derivative of the function L(E/K, s)
evaluated at s = 1 to the Néron-Tate height of PK , the Heegner point de�ned at the end of
the previous chapter. Namely

Theorem 2.1.2 (the Gross�Zagier formula). With the above assumptions and notations

L′(E/K, 1) = cE,K · ĥ(PK),

where cE,K is a non zero constant depending on E and on K.

Using the above proposition, we get an immediate

Corollary 2.1.3. L′(E/K, 1) = 0⇐⇒ PK is torsion in E(K).

If L′(E/K, 1) 6= 0, then, from the above corollary, we have that the rank of E(K) as
abelian group is certainly greater or equal then 1. Surprisingly, this is enough for saying that
it is actually equal to 1. To show this one uses another deep result proved by Kolyvagin in
[Kol90]. He proved that we also have an upper bound for the rank using the theory of Euler
systems. See the appendix A to have some ideas of how the proof of a similar and slightly
weaker result goes.

Theorem 2.1.4 (Kolyvagin). If PK is of in�nite order, then E(K) has rank 1 and the
Tate-Shafarevic group X(E/K) is �nite.
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And so we get, as we were saying,

Corollary 2.1.5. If L′(E/K, 1) 6= 0 then the rank of E(K) is 1.

What we want to do is to state (and prove) a result which is similar to the theorem of
Gross and Zagier and which replaces the �rst derivative of the L-function with a p-adic L-
function associated to f , the newform attached to E, and the height of PK with (the square
of) the formal group logarithm on E evaluated in PK .

2.2 The hypotheses

We now �x the notation and the hypothesis of the setting we are working in.
Consider K to be a quadratic imaginary �eld with odd discriminant D < 0, assuming for

simplicity that its class number is one and that it has trivial group of units. We will also
consider a prime p which splits in K, i.e. (p) = pp̄. Assume also that K satis�es the Heegner
hypothesis. Following the notation of before we denote with n a �xed integral ideal such that

OK/n = Z/NZ.

Notice that, being the discriminant odd, we are in the case

K = Q(
√
D) and OK = Z[1+

√
D

2 ].

Assume that we can write the ideal n in the form

n = ZN ⊕ Z
b+
√
D

2
,

for some b ∈ Z. Now write

τn = b+
√
D

2N ∈ H.

We want to specialize the construction we gave in (1.3.3) for our situation. There exists a
unique (up to sign) element α of norm N such that (α) = n, as OK-module. It is of norm
N , so we have that ±N = α · ᾱ. We now consider the Z-module Z⊕ Zτn. We have

Z⊕ Zτn =
1

N
· n =

1

α · ᾱ
· (α) = (ᾱ−1) = n̄−1

We want to consider the pair (C/n̄−1, 1/N), where, by abuse of notation, we write 1/N for
the cyclic subgroup of order N generated by this element. We start by proving the following:

Lemma 2.2.1. With the notation above and under the moduli interpretation of X0(N), we
have

[(C/n̄−1,
1

N
)] ∈ X0(N)(Kn),

where Kn is the ray class �eld of K of conductor n. More precisely, there exists a model A of
the elliptic curve corresponding to C/n̄−1 de�ned over K ⊂ Kn and the corresponding point
tn is de�ned over Kn.

Proof. The elliptic curve E/C corresponding to the given complex torus has a model A
de�ned over K(j(E)) = HK , the Hilbert class �eld of K. Using the isomorphism (1.6) and
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the fact that Pic(OK) is trivial under our assumptions, we have that HK = K. Moreover we
notice that 1/N is a n-torsion point of E. Indeed using the previous notations we get

n · 1

N
= (α) · 1

αᾱ
⊂ n̄−1.

Using the characterization of theorem 0.3.4, we have Kn = HK(E[n]) = K(E[n]) and we get

that (C/n̄−1, 1/N)
'−→ (A, tn) where A is an elliptic curve de�ned over K and tn is de�ned

over Kn.

Since we will be interested in evaluating a modular form in such a point, we need to
choose a di�erential. So let ωA be the Néron di�erential associated to A, as in de�nition
0.1.10. We can assume that A, and hence ωA, are actually de�ned over OK . We get the
isomorphism of marked elliptic curves

(A, tn, ωA)
'−→ (C/n̄−1,

1

N
, ᾱΩKdz),

where the isomorphism is the inverse of the one used in the proof of the above lemma and
ΩK is a complex number uniquely determined (up to sign, since OK = {±1}) once ωA has
been chosen.

So for f modular form of weight k on Γ0(N), using (1.4) and the weight k condition, we
have

f(A, tn, ωA) = f(C/Z⊕ Zτn,
1

N
,ΩK ᾱdz) = (ΩK ᾱ)−kf(τn). (2.1)

Remark 2.2.2. Notice that, since A is an elliptic curve with complex multiplication by K
and p splits in K, we can apply theorem 0.1.29 to prove that A is ordinary at p. We can
then apply theorem 1.2.12 to say that, for every r, we have

δrkf(A, tn, ωA) = dr(A, tn, ωA), (2.2)

where δrk and dr are Shimura-Maas operator and Atkin-Serre operator respectively.

2.3 The anticyclotomic p-adic L-function

We now de�ne a key object that, as we will see, will play the same role as the �rst
derivative of the L function associated to an elliptic curve in the Gross�Zagier formula.

2.3.1 Waldspurger's formula

Waldspurger's formula relates the the value δrkf(A, tn, ωA) with the L-function of f twisted
over K by certain unrami�ed Hecke characters of K.

Recall that an Hecke character of K is a continuous homomorphism φ : A×K → C×, where
A×K is the idèle group of K. Recall also that, using

A×K −→ {fractional ideals of K}

a 7−→
∏

pordvp (a),

where vp is the non archimedean valuation associated to p, we can view φ as a multiplicative
function on the fractional ideal of K.

Let f be a newform of weight k on Γ0(N), we then give the following
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De�nition 2.3.1. The L-function of f over K twisted by the Hecke character φ is de�ned,
for s ∈ C in some right-half plane, by the Euler product

L(f,K, φ, s) =
∏

l prime

[(1− αN l · φ(l) ·N l−s)(1− βN l · φ(l) ·N l−s)]−1,

where, if the q-expansion of f at ∞ is given by f =
∑

n an(f)qn and x2 − al(f)x + lk−1 is
the Hecke polynomial for f at the rational prime l, αl(f) and βl(f) are its roots. Then if
N l = lt, αN l := αl(f)t and βN l := βl(f)t.

One can show that L(f,K, φ, s) admits an analytic continuation to the entire complex
plane. Now consider k1, k2 integers with the same parity and de�ne the Hecke character of
K by

φk1,k2((α)) = αk1α−k2 .

It is de�ned on the fractional ideal of K, that are all principal by our assumptions. We have
that

Lemma 2.3.2. φk1,k2 as de�ned above is an Hecke character.

Proof. The map is clearly continuous. It is also well de�ned thanks to the fact that k1, k2

have the same parity. Indeed k1−k2 is even and if (α) = (β) then α = u ·β for some u ∈ O×K .
But we assumed that O×K = {±1}, so we have φk1,k2((α)) = αk1α−k2 = uk1−k2βk1β−k2 =
φk1,k2((β)).

Now we de�ne, for k1 − k2 ∈ 2Z

L(f,K, k1, k2) := L(f,K, φ−1
k1,k2

, 0).

Waldspurger's formula relates the value of this function in (k + r,−r) to the value of δrkf in
our special point. Notice that k is even (it is the weight of f) and so k+ 2r ∈ 2Z and we are
in the case of the de�nition above.

Theorem 2.3.3 (Waldspurger's formula). With the notations and assumptions of this chap-
ter, we have

(δrkf(A, tn, ωA))2 = 1/2 · (2π/
√
D)k+2r−1r!(k + r − 1)! · L(f,K, k + r,−r)

(2πi · αΩK)2(k+2r)
.

2.3.2 The anticyclotomic p-adic L-function attached to f and K

Using Waldspurger's formula we want to construct a p-adic analytic function which inter-
polates the L-function we have just de�ned. We are assuming that p = pp is a prime which
splits in K and does not divide N . Recall that, if the q-expansion of f at ∞ is given by
f =

∑∞
n=1 an(f)qn, we have

drf =

∞∑
n=1

nran(f)qn,

where dr is the Atkin-Serre operator.
The coe�cients of qn when p|n do not extend to a p-adic analytic function of r ∈ W =

Zp × Z/(p− 1)Z. What one can do is to consider the p-depletion of f :

f [p](τ) := f(τ)− ap(f)f(pτ) + pk+1f(p2τ).
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Proposition 2.3.4. The q expansion of the p-depletion of f is f [p] =
∑

p-n an(f)qn.

Remark 2.3.5. Notice that, if we prove the proposition, then we have, as we wanted,

drf [p] =
∑
p-n

nran(f)qn. (2.3)

Proof. Recall that f is a newform, in particular a normalized eigenform, so we have

(i) a1 = 1;

(ii) if (n,m) = 1, anm = anam;

(iii) for p prime and i ≥ 2, api = apapi−1 − pk−1api−2 ,

where we write an for an(f). Moreover, using q = e2πiτ we get, letting g(τ) = f(pτ) and
h(τ) = f(p2τ),

g(q) =
∞∑
n=1

nranq
pn =

∑
p|n

an
p
qn and h(q) =

∑
p2|n

a n
p2
qn

Using (ii) we have that if p ‖ n (i.e. p | n but p2 - n), then an = apan
p
. So we �nd

f [p](q) =
∞∑
n=1

anq
n −

∑
p|n

apan
p
qn + pk+1

∑
p2|n

a n
p2
qn =

∑
p-n

anq
n +

∑
p2|n

(an − apan
p

+ pk−1a n
p2

)qn.

Now, using (ii) and (iii) and writing n = pim with p - m, we get that the second sum in the
last term above is zero. Indeed an = amapi = am(apapi−1−pk−1api−2) = apan

p
−pk−1a n

p2
.

Remark 2.3.6. Notice that f [p] is a priori a modular form of weight k on Γ0(p2N) since
g(τ) = f(pτ) and h(τ) = f(p2τ) are modular forms on Γ0(pN) and Γ0(p2N) respectively
and Γ0(N)∩ Γ0(pN)∩ Γ0(p2N) = Γ0(p2N). Hence drf [p] is a p-adic modular form of weight
k + 2r on Γ0(p2N).

We would like to evaluate drf [p] in (A, tn, ωA). To do this we need to work a bit, since,
like we noticed in the above remark, drf [p] is not a p-adic modular form on Γ0(N). We can
consider the natural projection

π : X0(p2N)→ X0(N).

This is given by sending the pair (E,C), where C is a cyclic subgroup of order p2N , to the
pair (E,C ′), where C ′ is the cyclic subgroup of C of order N , which exists unique since p
and N are coprime. The following proposition will be important for our discussion:

Proposition 2.3.7. π admits a section s from the ordinary locus of X0(N), AN , to the
ordinary locus of X0(p2N), Ap2N .

Remark 2.3.8. Using this proposition we can then give sense to the evaluation of f [p] in
(A, tn, ωA) by setting

drf [p](A, tn, ωA) := drf [p](s(A, tn, ωA)) (2.4)
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Proof. We just de�ne how to associate to a point of Y0(N)∩AN a point of Y0(p2N)∩Ap2N ,
not considering the cusps. This will be enough for us. So we consider (E,C) ∈ Y0(N), with
E elliptic curve over Cp ordinary at p and C a cyclic subroup of order N , say generated by
t. We can moreover suppose that E is de�ned over the ring of integers of Cp. The reduction
modulo p of E, say Ẽ is ordinary, thus, applying theorem 0.1.23, Ẽ[p2] = Z/p2Z. Moreover,
using (0.1.7), E[p2] = (Z/p2Z)2, then the kernel of the map

E[p2]→ Ẽ[p2]

is a cyclic subgroup of E of order p2. Take u to be its generator, we can then de�ne

s : (E, 〈t〉) 7→ (E, 〈ut〉),

which gives us the desired section.

Using this construction we want to give an explicit computation of drf [p](A, tn, ωA) in
terms of drf(A, tn, ωA). In particular we have the following:

Proposition 2.3.9. With the above notations and assumptions, we have

drf [p](A, tn, ωA) = (1− ap(f)βrβ̄−k−r + βk+2r−1β̄−k−2r−1)drf(A, tn, ωA), (2.5)

where β is a generator of p.

Proof. First of all, letting again g(τ) = f(pτ) and h(τ) = f(p2τ), we have

drf [p] = drf − apprdrg + pk−1p2rh. (2.6)

Now recall that [(A, tn, ωA)] = [(C/n̄−1, 1/N, ᾱΩKdz)], where (α) = n. The torsion part of
C/n̄−1 is given by K/n̄−1 and in particular we can deduce, using (p) = p · p̄ in K,

C/n̄−1[p2] = C/n̄−1[p2]× C/n̄−1[p̄2].

After �xing an embedding K ↪→ Q̄p, we can assume that the cyclic subgroup of order p2 is
given by the p2-torsion part of C/n̄−1. Let β a generator of p as OK module. It is an element
of norm p so that p = ββ̄. Then the p2-torsion subgroup is generated by u = 1/β2 = β̄2/p2.
So we get

s(A, tn, ωA) = s(C/n̄−1, 1/N, ᾱΩKdz) = (C/n̄−1, β̄2/p2N, ᾱΩKdz).

Now notice that p2n = ZNp2 ⊕ Z b+
√
D

2 , since the r.h.s. term is an ideal of norm p2N and it

does not contain (p2). So we get, letting again τn = b+
√
D

2N ,

Z⊕ Z
1

p2
τn =

1

p2N
p2n = p̄−2n−1.

Hence we �nd an isomorphism of marked elliptic curves

(C/n̄−1, β̄2/p2N, ᾱΩKdz)
·β̄−2

−−−→ (C/Z⊕ Z
1

p2
τn,

1

p2N
, β̄−2ᾱΩKdz).

Using (2.6), we want to evaluate f, g, h in this point. In particular we want to compute

drf [p](C/Z⊕Z 1

p2
τn,

1

p2N
, β̄−2ᾱΩKdz) = (β̄−2ᾱΩK)−(k+2r)

(
drf(

1

p2
τn)− apprdrf(

1

p
τn) + pk−1+2rdrf(τn)

)
.
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But we have

1

p2
τn ↔ [(C/p̄−2n−1,

1

N
, dz)] = [(C/n−1,

1

N
, β̄2dz)]

1

p
τn ↔ [(C/p̄−1n−1,

1

N
, dz)] = [(C/n−1,

1

N
, β̄dz)],

where we used as we did many times the multiplication by β̄2 and β̄ respectively and the fact
that the cyclic group generated by β̄/N or β̄2/N is the same as the one generated by 1/N
since p̄ and N are coprime. So what we get at the end is

drf [p](C/Z⊕ Z
1

p2
τn,

1

p2N
, β̄−2ᾱΩKdz) = (β̄−2ᾱΩK)−(k+2r)drf(C/n−1,

1

N
, dz)·

· (β̄−2(k+2r) − apβ̄−(k+2r) + pk−1+2r) =

= (1− apβ̄−(k+2r) + pk−1+2rβ̄−2(k+2r))drf(C/n−1,
1

N
, ᾱΩKdz)

Using ββ̄ = p and substituting we get

drf [p](C/n−1,
1

N
, ᾱΩKdz) = (1− ap(f)βrβ̄−k−r + βk+2r−1β̄−k−2r−1)drf(C/n−1,

1

N
, ᾱΩKdz)

ane hence the thesis.

Then, since (2.3) tells us that the function sending r 7→ nran(f [p]) extends to a p-adic
analytic function on W = Zp × Z/(p − 1)Z, up to multiplying by a p-adic period Ωp ∈ C×p ,
(2.5) extends to a p-adic analytic function on W . More precisely, in a similar way we did
for the complex period ΩK with respect to the di�erential dz, we consider the canonical
di�erential dt/t on the formal multiplicative group Ĝm. We then �x an isomorphism

i : Â→ Ĝm,

where Â is the formal completion of A de�ned over the ring of integers of Cp along its identity
section. Then letting ωcan := i∗(dt/t), the p-adic period Ωp ∈ C∗p is de�ned by

ωA = Ωp · ωcan.

Now we de�ne
Lp(f,K, k + r,−r) := Ω2(k+2r)

p × drf [p](A, tn, ωA)2 (2.7)

to be the anticyclotomic p-adic L-function attached to f and K. Then, using (2.2) and
Waldspurger's formula, one gets that Lp(f,K, k+r,−r) interpolates the values of L(f,K, k+
r,−r) for r ≥ 0 integer (up to multiplication of some factors coming from the Waldspurger's
formula).

2.4 The Coleman primitive of f and Heegner points

Before getting to the theorem, we need to see some results concerning the Coleman
primitive associated to f , seen as p-adic modular form of weight k, as in (1.2.4), and its value
in our special point (A, t, ω).

Following [BDP] we consider the operator UV − V U , that we de�ned in (1.2.2). This
operator will play the role of P (Φ) in theorem 1.2.7. This makes sense, since using lemma
1.2.5 together with the fact that Φf = pV f we have the following
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Lemma 2.4.1. UV − V U is a polynomial in the variable Φ.

Proof. To show this we use proposition 2.3.4. We can rephrase it by saying that

(1− 1

p
apΦ + pk−3Φ2)f =

∑
p 6|n

anq
n.

Lemma 1.2.5 gives us 1− 1
papΦ + pk−3Φ2 = UV − V U , so we are done.

Assuming the fact that UV − UV = P (Φ) satis�es the conditions of theorem 1.2.7, with

P = 1− 1
papx+pk−3x2, we denote with F

[p]
f the locally analytic section obtained by applying

UV − V U to the Coleman primitive Ff . What we get is, in fact, a p-adic modular form. To
see this we use proposition 3.24 of [BDP], which becomes much easier for us since j = r = 0.

Proposition 2.4.2. If f is as above a p-adic modular form,

d(F
[p]
f ) = f [p],

where d is the Atkin-Serre operator.

Proof. To prove this we use the fact that the q-expansion of Ff is given by Ff =
∑
an/n q

n

so that F
[p]
f =

∑
p 6|n an/n q

n. Recalling that the Atkin-Serre operator acts as q d/dq we �nd

d(F
[p]
f ) = q

d

dq

∑
p6|n

an
n
qn =

∑
p 6|n

anq
n

and so the thesis.

Remark 2.4.3. In particular this theorem implies that, using the explicit description of

the action of ∇ on q-expansions, ∇F [p]
f = f [p]dq/q = ωf [p] and so we have that F

[p]
f =

(UV − V U)Ff = Ff [p] is the Coleman primitive of ωf [p] and theorem 1.2.7 tells us that it is
a rigid analytic section of O on some open neighbourhood W.

We conclude this section by stating another key result we will need in the proof of the
theorem. In paragraph 3.7 of [BDP] it is shown how the p-adic Abel-Jacobi map, introduced
in 3.4, and the Coleman primitive of f are related to each other. In the case of r = 0 the
Heegner cycles are just Heegner points and the p-adic Abel-Jacobi map is characterized by

AJ : {Heegner points} → Ω1(A)∨

P 7→ (ω 7→ logω(P ))

In particular lemma 3.22 of [BDP] gives us, in our case with j = r = 0 and with ϕ = id,

Lemma 2.4.4. Let (A, t, ω) a marked elliptic curve of level N with complex multiplication
by a quadratic imaginary �eld where p splits. Consider f a p-adic modular form of level N
and let P be the Heegner point corresponding to (A, t, ω). We have

logωf (P ) = Ff (A, t, ω),

where Ff is the Coleman primitive of ωf .
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2.5 The theorem

We �nally get to the theorem. In our setting f is attached to a rational elliptic curve E
of conductor N in the sense of theorem 1.3.7. Thus f is a newform on Γ0(N) and of weight
2.

Consider J0(N) the Jacobian variety of the modular curve X0(N) and let PK ∈ J0(N)(K)
be the class of the degree 0 divisor (A, tn)− (∞). Consider the map

ϕN : J0(N)→ E

arising from f and let ωE be the regular di�erential on E such that ϕ∗N (ωE) = ωf :=
(2πi)f(τ)dτ . De�ne PK,f := ϕN (PK).

Theorem 2.5.1. Let f , N and E be as above and consider p a rational prime not dividing
N . Let K be a quadratic imaginary �eld satisfying the assumptions of this chapter. Denote
with logp the formal group logarithm on E associated with the regular di�erential ωE de�ned
above. Then

Lp(f,K, 1, 1) =

(
1− ap(f) + p

p

)2

logp(PK,f )2.

Proof. The key fact we are using to prove the theorem is the existence of the Coleman
primitive. In our setting, with k = 2, r = −1 in (2.7), we have

Lp(f,K, 1, 1) = d−1f [p](A, tn, ωA)2.

Denote with F [p] := d−1f [p] =
∑

p 6|n an(f)/nqn. Then we have seen that

dF [p] =
∑
p 6|n

an(f)qndq/q = ωf [p] .

We have that F [p] = Ff [p] is the Coleman primitive of ωf [p] .

Now consider Ff the Coleman primitive of ωf . Similarly we get that Ff = d−1f . Moreover
applying lemma 2.4.4 and theorem 0.2.7 together with the hypothesis that ϕ∗E(ωE) = ωf we
get

Ff (A, tn, ωA) = logωf (P ) =

∫
ωf (PK) =

∫
ωE(ϕN (PK)) =

∫
ωE(PK,f ) = logp(PK,f ).

We then rewrite (2.5) in our special situation, using ββ̄ = p, and get

d−1f [p](A, tn, ωA) = (1− ap(f)β−1β̄−1 + β−1β̄−1)d−1f(A, tn, ωA)

= (1− ap(f)p−1 + p−1)d−1f(A, tn, ωA)

=

(
1− ap(f) + p

p

)
d−1f(A, tn, ωA).

Putting everything together we conclude. Indeed

Lp(f,K, 1, 1) = d−1f [p](A, tn, ωA)2 =

(
1− ap(f) + p

p

)2

d−1f(A, tn, ωA)2

=

(
1− ap(f) + p

p

)2

Ff (A, tn, ωA)2

=

(
1− ap(f) + p

p

)2

logp(PK,f )2.
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Following the ideas of (2.1), we can get a corollary of the main theorem, just as we did
for corollary 2.1.5 after the Gross�Zagier formula, applying Kolyvagin's theorem 2.1.4. To
do this we recall the following

Proposition 2.5.2. Let P ∈ E(K). P is a torsion point if and only if logp(P ) = 0.

So we get, as an easy corollary of the theorem above

Corollary 2.5.3. With the notations and assumptions as in theorem 2.5.1,

Lp(f,K, 1, 1) 6= 0⇔ PK,f has in�nite order.

Proof. We just need to check that the coe�cient on the right hand side of the formula in
theorem 2.5.1 is di�erent from zero. Then we can apply the previous proposition and the
result follows. But recall that ap(f) = ap, the p-th coe�cient of the L-function associated to
E. Since E has good reduction at p ((N, p) = 1), we have ap = −Np + p+ 1, where Np is the
number of Fp-points of the reduction of E modulo p and it is strictly greater than 0. Thus
1− ap(f) + p 6= 0.

Then the main theorem, together with Kolyvagin's result gives us

Corollary 2.5.4. With the notations and assumptions as in theorem 2.5.1, if Lp(f,K, 1, 1) 6=
0 then the rank of E(K) is 1.
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Chapter 3

Examples and applications

The aim of this chapter is to present some concrete examples of how to use the p-adic
Gross�Zagier formula we proved, and in particular corollary 2.5.3, to verify if the p-adic L-
function vanishes or not in r = −1. To do this we will need to deal with the Heegner point
associated to K and to look at his order, using some results of Gross and Zagier, and we will
see at work both the p-adic and the classical Gross�Zagier formulas. We start by proving
some general results, to get more into the theory of Heegner points.

3.1 Example 1: Lp(f,K, 1, 1) 6= 0

3.1.1 Gross' criterion

We start by presenting a result, proved by Gross in [Gro86], which will give us an easy
su�cient condition for a Heegner point to be of in�nite order.

We �rst need to understand what we hinted in (1.3.2): we want to see Hecke operators,
having �xed the level N , as endomorphisms of the Jacobian of the corresponding modular
curve. Indeed, using correspondences, we will give a second de�nition of Hecke operators
following [Maz77] and see that the de�nition given in (1.3.1) can be recovered from it. Then
we introduce the concept of Eisenstein prime, again following [Maz77], in order to understand
Gross' construction.

Atkin-Lehner involution. We consider the matrix gN =

(
0 −1
N 0

)
. It induces an invo-

lution on X0(N), seen as quotient Γ0(N) \ H∗, obtained by [τ ]→ [gNτ ] = [−1/Nτ ]. This is
easy to see since gN (gNτ) = gN (−1/Nτ) = τ . Moreover if [τ ] = [τ ′], we have τ ′ = aτ+b

cτ+d with
ad− bc = 1 and c ≡ 0 (mod N). Then

gNτ
′ =

−cτ − d
Naτ +Nb

=

(
d c

N
−Nb a

)(
− 1

Nτ

)
=

(
d c

N
−Nb a

)
gnτ.

Since the last matrix is again in Γ0(N), the map is well de�ned. We also notice that it
interchanges the two cusps ∞ and 0. One gets an induced map

wN : H0(X0(N),Ω1)→ H0(X0(N),Ω1)

f(τ)dτ 7→ f

(
− 1

Nτ

)
1

Nτ2
dτ.
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Recalling that we have a bijection

S2(N)→ H0(X0(N),Ω1)
f(τ) 7−→ f(τ)dτ,

(3.1)

we then obtain the Atkin-Lehner involution de�ned on newforms in remark 1.3.4.
Under the moduli interpretation of the modular curve, one actually has that the multi-

plication by gN corresponds to

(E,C) 7→ (E/C,E[N ]/C), (3.2)

where, as always, E is an elliptic curve over C and C a cyclic subgroup of orderN . We denoted
with E[N ] the N -torsion part of E. To check this, one uses the fact that τ ∈ H corresponds
to (E,C) = (C/Z + Zτ, 1/N), so that gNτ corresponds to (C/Z + Z(−1/Nτ), 1/N). Then
we have

(E/C,E[N ]/C) = (C/Z1/N + Zτ, τ/N)
'−→ (C/Z + Z(−1/Nτ), 1/N),

where the last is an isomorphism of marked elliptic curves induced by the multiplication by
−1/τ .

Hecke operators as correspondences. To de�ne a correspondence for two curves C1, C2,
one needs to choose another curve D and two �nite morphism α, β in the following way

D

C1 C2.

α β

The correspondence is the induced map on the Jacobians sending

(x) 7→
∑

y∈α−1(x)

(β(y)).

We will be interested in the case where C1 = C2 =: C. We then have two natural maps

α∗ : H0(C,Ω1)→ H0(D,Ω1), β∗ : H0(D,Ω1)→ H0(C,Ω1).

Composing them, we get

β∗ ◦ α∗ : H0(C,Ω1)→ H0(C,Ω1).

Now consider C = X0(N) as above. We de�ne Tl, for l rational prime not dividing N , to be
the correspondence associated to the diagram

X0(lN)

X0(N) X0(N).

α β

We now de�ne α and β �rst as holomorphic maps between Riemann surfaces, then we will
see, as we did for wN , the corresponding interpretation using the moduli spaces structure.
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Since Γ0(lN) ⊂ Γ0(N), we take α to be the natural projection

α : Γ0(lN) \ H∗ → Γ0(N) \ H∗.

It is clear that, in this case, α : (E,Cl ⊕ CN ) 7→ (E,CN ), where E is an elliptic curve over
C, and we used the fact that, thanks to the coprimality, every cyclic subgroup of order lN is
the direct sum of a cyclic subgroup of order l, Cl, and a cyclic subgroup of order N , CN .

To de�ne β, we notice that the map τ → lτ de�nes an isomorphism

Γ0(lN) \ H∗ '−→ γΓ0(lN)γ−1 \ H∗,

with γ =

(
l 0
0 1

)
. Notice that

γΓ0(lN)γ−1 = Γ′ := {
(
a b
c d

)
∈ SL2(Z) : b ≡ 0 (mod l) , c ≡ 0 (mod N)}.

It is then clear that γΓ0(lN)γ−1 ⊂ Γ0(N) and as above we obtain a natural projection. We
de�ne β to be the composition of the two:

β : Γ0(lN) \ H∗ '−→ Γ′ \ H∗ → Γ0(N) \ H∗.

In this case one obtains, with the above notation that β : (E,Cl⊕CN ) 7→ (E/Cl, Cl⊕CN/Cl).
Finally we get the description of the correspondence Tl on the Jacobian of X0(N)

Tl : (E,CN ) 7→
∑
H

(E/H,H ⊕ CN/H),

where the sum is taken over all cyclic subgroups H of E of order l.
What we claim now is that, using the bijection (3.1), we can recover with the map

β∗ ◦ α∗ the description of Tl on cusp forms of weight 2. Since α∗ is simply the inclusion
S2(N) ⊂ S2(Nl) we need to work on β∗. One has

β∗ : f(τ)dτ 7→
∑
τ ′ s.t.

β([τ ′])=[τ ]

f(τ ′)d(τ ′)

Since we know that multiplication by l is an isomorphism between Γ0(lN) \ H∗ and Γ′ \ H∗,
we only need to compute a set of representatives for the quotient Γ0(N)/Γ′. It is easy to see
that this is given by the l + 1 matrices

γj :=

(
1 j
0 1

)
, j = 0, . . . , l − 1 and γl =

(
ml n
N 1

)
, with m,n ∈ Z s.t. ml − nN = 1.

We �nally get

Proposition 3.1.1. If f is a cusp form of weight 2 and level N , β∗ ◦α∗(f) = Tlf , as de�ned
in (1.3.1).
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Proof. It is now only a simple computation, using the above discussion. Indeed we have, for
a di�erential form f(τ)dτ for X0(N),

β∗ ◦ α∗(f(τ)dτ) = β∗(f(τ)dτ) =

l∑
j=0

f
(γjτ
l

)
d
(γjτ
l

)

=
1

l

l−1∑
j=0

f

(
τ + j

l

)
dτ + f

((
m n
N l

)
lτ

)
l

(lNτ + l)2
dτ

=
1

l

l−1∑
j=0

f

(
τ + j

l

)
dτ + lf(lτ)dτ,

where for the last equality we used the fact that, thanks to the bijection (3.1), f is a cusp form
of weight 2. Invoking again that bijection and using the above computation we conclude.

From now on we denote with J the Jacobian of the modular curve X0(N). We further
assume that N is prime. We can give the following de�nitions.

De�nition 3.1.2. The Hecke algebra T is the subring of End(J) generated by the Hecke
operators Tl for l prime di�erent from N and by the involution wN .

De�nition 3.1.3. The Eisenstein ideal I ⊂ T is the ideal generated by 1 + l− Tl for l 6= N
and by 1 + wN .

One can prove that, letting m :=gcd(N − 1, 12) and n = (N − 1)/m, the quotient T/I is
isomorphic to Z/nZ, as shown in proposition 9.7 of [Maz77].

De�nition 3.1.4. An Eisenstein prime is a prime ideal P ⊂ T in the support of the Eisen-
stein ideal, i.e. such that P ⊂ I.

Using T/I ' Z/nZ, we see that the Eisenstein primes are in one to one correspondence
with the primes p dividing n, so that such an ideal is in the form P = (I, p) and T/P ' Z/pZ.

We now consider the completion of T at an Eisenstein prime P = (I, p): TP := lim←−T/Pm;
it is, for what we said above, a Zp module. We then de�ne

γP := ker(T→ TP) =
⋂
m

Pm.

We now prove an easy lemma we will need later

Lemma 3.1.5. 1 + wN ∈ γP if p is an odd prime and P = (I, p).

Proof. The key fact we are using is that wN is an involution. One then �nds

(1 + wN )2 = 2 + 2wN = 2(1 + wN );
(1 + wN )3 = (1 + wN )(1 + wN )2 = 4(1 + wN );

. . .
(1 + wN )i = 2i−1(1 + wN )

. . .

Moreover, since p is odd, for every i there existsmi, ni ∈ Z such thatmip
i−1+ni2

i−1 = 1. We
obtain ni(1+wN )i+mip

i−1(1+wN ) = ni2
i−1(1+wN )+mip

i−1(1+wN ) = (1+wN ) ∈ (p, I)i,
since (1 + wN )i, pi−1(1 + wN ) ∈ (p, I)i. So we have (1 + wN ) ∈

⋂
iP

i and we are done.
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Denote with γP · J ⊂ J the sub-abelian variety generated by the images α · J for α ∈ γP.

De�nition 3.1.6. The p-Eisenstein quotient of J is the quotient abelian variety J̃ (p)

0→ γP · J → J → J̃ (p) → 0.

Letting as above m :=gcd(N − 1, 12) and n = (N − 1)/m, we now consider the meromor-
phic function on X0(N)

f(z) :=

(
∆(z)

∆(Nz)

)1/m

.

To recover its q-expansion at ∞ we need the following

Lemma 3.1.7. The q-expansion of ∆ ∈ S12(SL2(Z)) can be written as

∆(τ) = (2π)12q
∏
n≥1

(1− qn)24,

with q = e2πiτ .

Proof. See [Kna92], corollary 8.9, chapter VIII.

It is now easy to write

f(q) = ((2π)12q
∏
n≥1

(1− qn)24)1/m((2π)12qN
∏
n≥1

(1− qNn)24)−1/m.

We can conclude that f has a pole of order N−1
m = n at ∞ and, since div(f) is of degree zero

and the only other possible zero/pole of f can be at the other cusp z = 0 (being ∆ 6= 0 for
every z ∈ H), we must have

div(f) = n(0)− n(∞).

What Gross does, is to consider a homomorphism from the group of degree zero divisors,
de�ned over a �xed sub�eld F of C and coprime with the cusps (0) and (∞), to F ∗. It is
de�ned by

δ :
∑

ai(xi) 7→
∏

f(xi)
ai ∈ F ∗.

Using Weil reciprocity, we �nd that, on principal divisors, δ((g)) = f((g)) = g((f)) =
(g(0)/g(∞))n, thus δ induces a homomorphism

δ : J(F )→ F ∗/F ∗n ' F ∗ ⊗ Z/nZ.

Using the isomorphism T/I ' Z/nZ and the fact that the Eisenstein ideal annihilates the
divisor (0)− (∞) one �nds that δ is a homomorphism of Hecke modules and that δ is trivial
on IJ(F ). If we consider a prime p dividing n and the corresponding Eisenstein prime P we
then get that δ induces a homomorphism

δp : J(F )⊗ TP/ITP → F ∗ ⊗ Zp/nZp.

Lemma 3.1.8. If e ∈ J(F ) is such that δp(e) 6= 0, then e 6= 0 in J(F ) ⊗P. If e is not P
-primary torsion, its projection e(p) to J̃ (p) has in�nite order.

Proof. If e = 0, then δp(e) = 0, so the �rst assertion is trivial. For the second one, following
Gross, write kP = TP ⊗ Qp. One can prove that the projection induces an isomorphism
J(F )⊗T kP ' J̃ (p)(F )⊗T kP. We can translate the fact that e is not P-primary torsion with
the condition e⊗ 1 6= 0 in J(F )⊗T kP; hence its projection has in�nite order on J̃ (p).

50



We now focus on the case where F = K a quadratic imaginary �eld and the primeN = n·n̄
splits in K. Let p be a odd prime and h the class number of K. Consider the Heegner point
PK :=

∑
[a]∈Pic(OK) P[a] − h(∞) ∈ J(K), where we recall that P[a] correspond to the pair

(C/a, n−1a/a), we denote this pair with ([a], n). This divisor class has some cuspidal support,
so we consider

e := PK − PK =
∑

[a]∈Pic(OK)

P[a] −
∑

[a]∈Pic(OK)

P[a].

It is not hard to see that P[a] corresponds to the pair ([a]−1, n̄). Moreover using that, if
E = C/a has complex multiplication then E[N ] = E[n]×E[n̄] = n−1a/a× n̄−1a/a and using
the characterization of the action of wN on X0(N) given in (3.2), we �nd

([a], n)
wN−−→ ([n−1a], n̄).

Applying this, one gets

wN (
∑

[a]∈Pic(OK)

P[a]) =
∑

[a]∈Pic(OK)

([n−1a], n̄) =
∑

[b]∈Pic(OK)

([b]−1, n̄) =
∑

[b]∈Pic(OK)

P[b].

Lemma 3.1.9. With the above notations, e(p) = 2P
(p)
K .

Proof. We have to prove that the di�erence e− 2PK ∈ γP · J . First of all notice that we can
write it as

2PK − e = PK + PK =
∑
[a]

P[a] +
∑
[a]

P[a] − 2h(∞).

Now we want to compute the image of PK under 1+wN , which is an element of γP, as proved
in lemma 3.1.5. We use what we said in the discussion above.

1+wN (PK) = 1+wN

∑
[a]

P[a] − h(∞)

 =
∑
[a]

P[a]−h(∞)+
∑
[a]

P[a]−h(0) = 2PK−e+(h(∞)−h(0)).

We are almost done. Indeed if h(∞)−h(0) was a principal divisor, then 1+wN (PK) = 2PK−e
in J(K) and we would get e−2PK ∈ γP·J . But this is true because we can proceed in a similar
way as before, letting g(z) := (∆(Nz)/∆(z))h/(N−1) and we �nd (g) = h(∞)− h(0).

Consider now the ring A = OK [N−1] and let hA be the order of Pic(A). One has
h = hA ·O(n), where O(n) is the order of [n] in Pic(OK). This can be seen, for example using
the exact sequence of abelian groups

Z→ Pic(OK)→ Pic(A)→ 1,

obtained as in proposition 6.5 of [Har77]. In particular the �rst map is given by 1 7→ [n] and
we then obtain the desired relation between the cardinalities.

The theorem we want to prove asserts that δp(e) 6= 0 if and only if ordp(hA) < ordp(n).
Before stating it in details and proving it, we notice that, from the de�nition of δ and e, we
have

δp(e) ≡

 ∏
[a]∈Pic(OK)

∆(a)

∆(na)
· ∆(n̄ā)

∆(ā)

1/m

(mod K∗n), (3.3)

where the ∆ function is now seen as function on lattices in C. We need to work a bit on
this, since the complex numbers of the form ∆(a)

∆(na) have some nice properties we will need in

51



the proof. We then make a small digression, following more or less the �rst paragraphs of
chapter IV of [DE66], changing a bit the notation.

Consider Hp to be the set of matrices of integer coprime coe�cients and determinant p
a prime number. A set of representative of Hp modulo the action of SL2(Z) is given by the
p+ 1 matrices

Mj :=

(
1 j
0 p

)
, j = 0, . . . , p− 1 and γp =

(
p 0
0 1

)
.

For any M ∈ Hp we de�ne ϕM (ω1, ω2) := ∆(ω1,ω2)
p12∆(M(ω1,ω2))

, where again ∆ is seen as func-

tion on lattices, i.e. ∆(ω1, ω2) = ω−12
2 ∆(ω1/ω2), assuming ω1/ω2 ∈ H. This is a homoge-

neous function of degree 0 in ω1, ω2 and it depends only on the class of M in Hp/SL2(Z).
We then obtain p + 1 homogeneous functions ϕ0, . . . , ϕp, where ϕi := ϕMi . The action of
SL2(Z) permutes these functions among themselves. Using lemma 3.1.7, we write ∆(ω1, ω2) =
(2π/ω2)12q(1 + B(q)), where q = e2πiω1/ω2 and B(q) is a power series with integral rational
coe�cient such that B(0) = 0. We can then write for i = 0, . . . , p− 1

ϕi(ω1, ω2) = ζ−jp q1−1/p(1 +B(ζjpq
1/p−1))−1(1 +B(q)),

where ζp = e2πi/p. And clearly ϕp(ω1, ω2) = p−12q1−p(1 +B(pq))−1(1 +B(q)). From this we
see that a symmetric function in the ϕi's can only have the singularity of a pole at ∞ and
thus is a polynomial in the variable j, where j is the usual j-function. We �nd then

φp(t) :=

p∏
i=0

(t− p−12ϕi(ω1, ω2)) ∈ C(j)[t];

we moreover see that the coe�cients are actually algebraic integers.

Lemma 3.1.10. Let a be a fractional ideal of the quadratic imaginary �eld K and (α1, α2) a
Z-basis such that α1/α2 ∈ H. For any M ∈ Hp, ϕM (α1, α2) is an integer in the Hilbert class
�eld HK of K and the ideal (ϕM (α1, α2)) divides (p−12).

Proof. Recalling the fact that j(a) is an algebraic integer (generating HK over K), we have
that ϕM (α1, α2) = ϕj(α1, α2) for some j and it satis�es φp(t, j(a)), which is a monic polyno-
mial with algebraic coe�cients, hence it is an algebraic integer.

Moreover, using the above computations, the q-expansion of
∏
ϕi(ω1, ω2) starts with the

constant term
∏
ζ−jp p−12 = (−1)p−1p−12. The second part then follows.

We �nally get the result we need

Proposition 3.1.11. Let a, α1, α2,K be as in the lemma. Let p be a prime which splits in
K. Write (p) = p · p̄. Let P ∈ Hp such that P (α1, α2) is a Z-basis for p · a. Then

(ϕP (α1, α2)) = p̄−12,

and then we deduce that
(

∆(α1,α2)
∆(P (α1,α2))

)
= p12p̄−12 = p12.

Proof. Let f be a positive integer such that pf = (α), for α ∈ K, with αᾱ = pf . We can
�nd elements P1 = P, P2, . . . , Pf ∈ Hp such that PiPi−1 · · ·P1(α1, α2) is a basis of pi · a; in
particular Pf · · ·P1(α1, α2) = (αα1, αα2). Now let

λi = ϕPi(Pi−1 · · ·P1(α1, α2)) =
∆(Pi−1 · · ·P1(α1, α2))

p12∆(Pi · · ·P1(α1, α2))
.
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We then �nd(
f∏
i=1

λi

)
=

(
∆(α1, α2)

p12f∆(Pf · · ·P1(α1, α2))

)
=

(
∆(α1, α2)

p12f∆(αα1, αα2)

)
=
(
α12p−12f

)
= (ᾱ−12) = p̄−12.

The previous lemma tells us that λi is an algebraic integer and we have shown that (λi)
divides p̄−12. The lemma also tells us that (λi) divides (p−12) = p−12p̄−12. We then get that,
for every i, (λi) = p̄−12. In particular we have (ϕP (α1, α2)) = p̄−12.

We can now proceed to the statement and proof of the result of Gross' article.

Theorem 3.1.12. Let p > 3 be a prime such that p | n. With the previous notations, one
has

δp(e) 6= 0 if and only if ordp(hA) < ordp(n).

In this case P (p)
K has in�nite order in J (p)(K) (and then PK has in�nite order in J(K)).

Proof. Using the above proposition and (3.3) we have that δp(e) is congruent to an element
of K∗ which generates the ideal (nn̄−1)12h/m. Let α ∈ K∗ be a generator of the principal
ideal (nn̄−1)O(n), we can then write

δp(e) ≡ ζα,

where ζ is a unit of K, i.e. a root of unity in K∗.
We claim that α is not a p-th power in K∗. Indeed, if otherwise α = xp, for x ∈ K∗ we

would �nd, using [n · n̄−1] = [n2],

[(xp)] = [(n · n̄−1)O(n)] = [n2O(n)] = [(y2)],

where y ∈ K∗ is a generator of the principal ideal nO(n). So we would �nd z ∈ K∗ such that
y2 = zxp and this is not possible since p 6= 2. Since (12/m, p) = 1, we also have that α12/m

is not a p-th power.
It is easy to see that ζ is a p-th power. Indeed the possible values of ζ, beingK a quadratic

imaginary �eld, are ±1,±i, ζj6 for, j = 1, . . . , 5. We have −1 = (−1)p and we also can write
i = ip if p ≡ 1 (mod 4) or i = (−i)p if p ≡ 3 (mod 4); moreover using (p, 6) = 1 we can
�nd k, l such that 1 = 6l + pk and then ζ6 = (ζk6 )p. Notice that this discussion also implies
that ζ is a pk-th power for every k. We then have that δp(e) is a pk-th power if and only
if hA ≡ 0 (mod pk). We can then conclude that δp(e) 6= 0 in K∗/K∗n ⊗ Zp if and only if
ordp(hA) <ordp(n).

If this is the case and if we prove that e is not P-primary torsion, we can apply lemma

3.1.8 to conclude that e(p) = 2P
(p)
K has in�nite order and so has P

(p)
K . Using the fact that

ē = −e, we would �nd, if e was P-primary torsion, a non trivial element in the minus space
for complex conjugation of J [P](K), which is not possible because of the determination of
the P primary torsion part of J given by Mazur, J [P] = Z/pZ⊕ µp

3.1.2 A Heegner point of in�nite order

We now want to give an example of how to apply this result. First we need to �x an
elliptic curve. We want to consider the modular curve X0(11), which will turn out to be an
elliptic curve itself. This way the modular parametrization will simply be the identity and
we will also have a concrete description of the associated newform. We proceed by steps.
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Step 1: The modular curve X0(11)

We �rst prove a general result which will help us showing that X0(11) is actually an
elliptic curve.

Proposition 3.1.13. Let p be a rational prime such that p ≡ −1 (mod 12), then the genus
of the modular curve X0(p) is p+1

12 .

Proof. Let
f : X0(p)→ X0(1)

be the natural projection induced by Γ0(p) ⊂ Γ = SL2(Z). We have the commutative diagram

H∗

X0(p) X0(1)

π
πp

f

where πp, π are the natural projections. We start by proving the following

Lemma 3.1.14. f is a morphism of Riemann surfaces of degree p+ 1. Moreover

i. #{x ∈ X0(p) |f(x) = π(i)} = p+1
2 and for every such element multx(f) = ex(f) = 2,

ii. #{x ∈ X0(p) |f(x) = π(ρ)} = p+1
3 and for every such element ex(f) = 3,

iii. e0(f) = p,

iv. eτ (f) = 1, otherwise.

Proof of the lemma. We will prove that f is a morphism of Riemann surfaces showing that
for every complex chart (Up, φUp) of X0(p) and for every complex chart (U, φU ) of X0(1) such

that Up ∩ f−1(U) 6= ∅, φU ◦ f ◦ φ−1
Up

is holomorphic. Doing this we will discover also the
rami�cation point and the multiplicity.
We know that for every x ∈ X0(p) (respectively x ∈ X0(1)), if StabΓ0(p)(x) = {±1} (re-
spectively StabΓ(x) = {±1}) a local chart is given by π−1

p (respectively π−1) restricted to a
suitable neighbourhood. Moreover we know that this is always possible if π−1

p (x) 6= ρ, i,∞, 0,
so in such a neighbourhood of x we �nd that φU ◦f ◦φ−1

Up
is the identity. So it is holomorphic

and the multiplicity of x is equal to 1.
We now consider the case x = πp(φ

−1
j (i)), where φj = T−jS. Recalling that Γ =

∐p
j=0 Φj ·

Γ0(p) and that F (p) =
⋃p
j=0 Φ−1

j (F (1)) is a fundamental domain for Y0(p), we see that this
are all the points of X0(p) such that f(x) = π(i). Now we use the following fact, which is
not hard to prove: there exists γ ∈ Γ0(p) such that γφ−1

k (i) = φ−1
j (i) if and only if kj ≡ −1(

mod p) or j = 0, k = p. Noticing that p ≡12 −1 implies p ≡4 3, we have that j2 6≡p −1 and
so γφ−1

j (i) 6= φ−1
j (i) for every j, hence their stabilizer in Γ0(p) is trivial and the charts are

given locally by π−1
p . Moreover since πp(φ

−1
0 (i)) = πp(φ

−1
p (i)) and πp(φ

−1
j (i)) = πp(φ

−1
k (i))

for p−1
2 distinct couples, we have exactly p−1

2 + 1 = p+1
2 elements in X0(p) that are mapped

to π(i). Using the de�nition of the chart in the neighbourhood of π(i) ∈ X0(1) we have that
in this case

φU ◦ f ◦ φ−1
Up

: τ 7−→
(
τ − i
τ + i

)2

.
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Hence, being τ−i
τ+i a biholomorphism restricted to our suitable neighbourhood, and charac-

terizing the multiplicity as �local numbers of preimages�, we have that ex(f) = 2 for every
x ∈ f−1(π(i)). This also gives us

deg f =
∑

x∈f−1(π(i))

ex(f) = 2 · p+ 1

2
= p+ 1.

Now we can use the same reasoning applied to the case x = πp(φ
−1
j (ρ)). Here we have

φjγφ
−1
k = ST, (ST )2, for the characterization of the stabilizer in Γ. Hence, in particular,

StabΓ0(p)(φ
−1
j (ρ)) is non trivial if and only if j(1− j) ≡ 1 or j(j+1) ≡p −1 (this is, as above,

a not too hard computation). So we are looking for solutions in Fp of X2 −X + 1 = 0 and
of X2 +X + 1 = 0. The solutions would be in the form

1±
√
−3

2
,
−1±

√
−3

2
,

so if we show that -3 is not a square modulo p (i.e.
(−3
p

)
= −1), we have proved StabΓ0(p)(φ

−1
j (ρ))

is trivial. But now we use the properties of Legendre symbol and the fact that p ≡4 3 and
we get (

−3

p

)
=

(
−1

p

)
·
(

3

p

)
= −

(
3

p

)
.

Now, applying the reciprocity law and p ≡4 3, we have(
3

p

)
= (−1)

2(p−1)
4

(
p

3

)
= −

(
p

3

)
since p ≡3 2 (using again p ≡12 −1) is not a square.
So as before we have, using π−1

p as chart around πp(φ
−1
j (ρ)) and the usual one around π(ρ)

φU ◦ f ◦ φ−1
Up

: τ 7−→
(
τ − ρ
τ − ρ

)3

.

As before, this tells us that ex(f) = 3 for every x such that f(x) = π(ρ). To count the
preimages of π(ρ) (i.e. the cardinality of Γ0(p) ·{φ−1

j (ρ)}pj=0) we use that we already know
that the degree of f is p+ 1, so:

p+ 1 =
∑

x∈f−1(π(ρ))

ex(f) = 3 ·#{f−1(π(ρ))}

and we get #{f−1(π(ρ))} = p+1
3 . Now notice that f−1(π(∞)) = {πp(∞), πp(0)}. Since

StabΓ(∞) = StabΓ0(p)(∞) =< T >, the charts around π(∞) and around πp(∞) are de�ned

in the same way and hence φU ◦ f ◦ φ−1
Up

is the identity. So πp(∞) is unrami�ed and the
formula about the degree tells us

p+ 1 =
∑

x∈f−1(π(∞))

ex(f) = 1 + eπp(0)(f)

and we get eπp(0)(f) = p.
If we want to be precise and show holomorphicity at πp(0), we know that the chart around

πp(0) is given by πp(τ) 7→ e
2πi
h
γ(τ) =: qτ (for some γ and h) and hence
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φU ◦ f ◦ φ−1
Up

: q 7−→ π(τ) = π(γ(τ)) 7→ e2πiγ(τ) = qh

is holomorphic and h must be p.

To compute the genus we want to apply Hurwitz formula. We need to calculate the index
of rami�cation:

rf =
∑

x∈X0(p)

(ex(f)− 1) =
∑

x∈f−1(π(ρ))

2 +
∑

x∈f−1(π(i))

1 + (p− 1)

=
p+ 1

3
· 2 +

p+ 1

2
+ p− 1 =

13p+ 1

6

Now using 2− 2g = deg f(2− 2g(X0(1)))− rf and g(X0(1)) = 0, we have

g =

(
2− 2(p+ 1) +

13p+ 1

6

)
1

2
=
p+ 1

12
.

Applying the proposition for p = 11, which clearly satis�es the hypothesis, we get that
the genus of X0(11) is 1. So, since it is a nonsingular curve of genus one, it is an elliptic
curve over Q. Moreover since the jacobian of an elliptic curve is isomorphic to the elliptic
curve itself, the modular parametrization is the identity.

One can �nd in di�erent ways an explicit equation for such an elliptic curve, see for
example [Wes]. Moreover it has conductor 11 and it can be shown, see [Cre97] p.110, that
X0(11)(Q) has rank 0.

Step 2: The newform associated to X0(11)

To �nd the newform associated to X0(11) we �rst recall bijection (3.1)

S2(N)
1:1−−→ Ω1(X0(N)).

So, applying proposition 3.1.13, one gets dimC(S2(11)) = g(X0(11)) = 1, so that S2(11) 6=
{0}. Let s be any non-zero weight 2 cusp form of level 11. We will use it in order to �nd an
explicit generator (as C-vector space) of S2(11).

To do this we �rst look for a cusp form of weight 24 and level 11. Let ∆(z) ∈ S12(SL2(Z))
be the discriminant function. Denote with ∆11 the function de�ned on H by ∆11(z) :=
∆(11 · z) and set h11 := ∆ ·∆11 ∈ S24(11). One can easily see, looking at the q-expansion,
that h11 has a zero of order 12 at∞. Moreover one computes the order of h11 at 0, the other
cusp, �nding that h11 has a zero of order 12 in 0.

Now take 0 6= s ∈ S2(Γ0(11)) and consider f := s12

h11
as a meromorphic function on X0(11).

Since s is holomorphic and has two zeroes of order greater or equal then 12 in π11(0) and
π11(∞), f is holomorphic (remind that h11 has no zeroes di�erent from π11(0) and π11(∞)
and that their order is equal to 12). Being X0(11) a compact Riemann surface, this implies
f = λ ∈ C∗ constant. So we can write 12

√
h11 = 1

12√
λ
· s. We denote with h the cusp form

12
√
h11 multiplied by a suitable constant, so that the coe�cient of q in the q-expansion at

in�nity is 1. We then have S2(Γ0(11)) = C · h.
Since the modularity theorem ensures that there exists a newform associated to X0(11),

it must be h: indeed every other cusp form of weight 2 can not be normalized since it is a
multiple of h.

Notice in particular that, from the construction, we get that h(τ) 6= 0 for every τ ∈ H.
We can also present the q-expansion of h, using lemma 3.1.7.
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Proposition 3.1.15. The q-expansion at in�nity of h ∈ S2(Γ0(11)) is

h(τ) = q
∏
n≥1

(1− qn)2(1− q11n)2.

Proof. From the lemma we can recover the q-expansion at in�nity of ∆11. We get

∆11(τ) = ∆(τ)∆(11τ) = (2π)24q12
∏
n≥1

(1− qn)24(1− q11n)24.

To conclude, one just recall that h was de�ned as the 12-th root of this cusp form, multiplied
by a scalar so that it is normalized.

Step 3: the �eld K

Another ingredient we need to apply our theorem is a quadratic imaginary �eld K satis-
fying the Heegner hypothesis and all our assumptions; we moreover need to choose a prime p
such that p 6= 11 and p splits in K. Summarizing we want the following facts to be veri�ed:

1. 11 splits or rami�es in K and then there exists an ideal n in OK of norm 11;

2. the discriminant D of K is odd;

3. Pic(OK) is trivial;

4. O×K = {±1};

5. p 6= 11 is a rational prime which splits in K.

The only quadratic imaginary �elds whose group of units is bigger than {±1} are Q(i) and
Q(
√
−3). Moreover there are only a �nite number of quadratic imaginary �elds, among the

remaining ones, whose class group is trivial; they are in the form Q(
√
D) with

D ∈ {−2,−7,−11,−19,−43,−67,−163}.

In order to have odd discriminant, we need to pick one of the odd D, since they are all
congruent to 1 modulo 4. One can see that 11 is inert in Q(

√
−7). We proceed with the next

one and then claim

Claim. K = Q(
√
−11) together with p = 5 satis�es the hypotheses 1. to 5. above.

Proof. We have already discussed points 2. to 4. Moreover since 11 divides the discriminant,
it rami�es in K and there exists a unique ideal of norm 11. Now we check that 3 splits in K.
The minimal polynomial of the ring of integers is X2−X+3. We have X2−X+3 = X(X−1)
(mod 3) and thus 3 splits in K.

Step 4: the Heegner point PK

As we said before, in this case the modular parametrization is just the identity, so, with
the notation introduced in (2.5), we have that PK,h = PK .

What we want to do is to show that L3(h,K, 1, 1) 6= 0, and applying the results above,
it will be enough to prove that PK is a point of in�nite order (and, then that the rank of
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X0(11)(K) is 1). But we can now apply theorem 3.1.12, with N = 11 and p = 5. Indeed in
this case hA = 1 and gcd(N − 1, 12) = 2 so that n = 5. Then we have

ord5(hA) = 0 < ord5(n) = 1

and we get that PK has in�nite order as we wanted.

Remark 3.1.16. The hypothesis that the class group of K is trivial has been used only
to explicit some computations concerning the Coleman primitive and the p-adic L-function.
Removing this restrictive hypothesis and using an analogue of theorem 3.1.12 one has plenty
of examples where the Heegner point is of in�nite order. It is indeed enough to take an
elliptic curve with prime conductor N and �x a prime p dividing n = (N −1)/gcd(N −1, 12),
so that ord5(n) > 0. We can then take any imaginary quadratic �eld K = Q(

√
−D) where

N, p split, i.e. such that (
−D
p

)
=

(
−D
N

)
= 1

and with class number h such that p 6 |h = c · hA. This is enough because this way we have
that p does not divide hA and ordp(hA) = 0.

3.2 Example 2: Lp(f,K, 1, 1) = 0

On the other side now, following [Zag84] and using the classical Gross�Zagier formula,
we want to give an example of an elliptic curve of rank 3 with trivial Heegner point. In order
to do so we need a brief discussion about the L-series L(E/K, s) of an elliptic curve E/Q
associated to a quadratic imaginary �eld K.

3.2.1 The L-function L(E/K, s)

Let K be a quadratic imaginary �eld with square free discriminant −D > 0, so that
K = Q(

√
D) and let E be an elliptic curve de�ned over Q, say given by E : y2 = x3 +ax+ b.

De�nition 3.2.1. The quadratic twist of E by K is the elliptic curve ED over Q given by
the equation Dy2 = x3 + ax+ b.

Remark 3.2.2. Such an elliptic curve is named twist of E since ED becomes isomorphic to
E over Q̄, even already over K. It is indeed enough to take the isomorphism

ED(K)→ E(K)

(x, y) 7→ (
√
Dx, y)

Let L(ED, s) be the L-function associated to ED/Q and L(E, s) the one associated to
E/Q. One has

L(E/K, s) = L(E, s) · L(ED, s).

From this and using the remark 0.4.4, one gets

Lemma 3.2.3. With the above notations

- if εE = 1, L′(E/K, 1) = L′(E, 1) · L(ED, 1)

- if εE = −1, L′(E/K, 1) = L(E, 1) · L′(ED, 1)
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Example 3.2.4. We have that, for E = X0(11), εE = −1. Indeed X0(11) is a semistable
elliptic curve, since it has bad reduction only of split multiplicative type (and only at p = 11).
In this case the sign of the functional equation of L(E, s) is given by (−1)s+1 where s is the
number of primes of split multiplicative reduction, in this case s = 1 and thus −εE = 1.
Recalling that the Heegner point PK chosen as before is of in�nite order, the Gross�Zagier
formula tells us that L′(E/K, 1) 6= 0. Thus the above lemma tells us that L(E, 1) 6= 0, thus
the analytic rank of E is equal to zero which is equal to the rank of E(Q), as asserted by the
Birch and Swinnerton-Dyer conjecture.

Clearly also L(E/K, s) satis�es a functional equation Λ(E/K, s) = ±Λ(E/K, 2− s) for a
suitable Λ(E/K, s). Another interesting fact is that the sign of this functional equation can
be computed explicitly.

Theorem 3.2.5. If E is an elliptic curve over Q of conductor N and K is a quadratic
imaginary �eld the sign of the functional equation of L(E/K, s) is given by (−1)#SE,K , where

#SE,K = {λ prime of K : λ|l|N and E has split multiplicative reduction at the prime
l} ∪ {∞}.

Corollary 3.2.6. If K is a quadratic imaginary �eld where every prime dividing the conduc-
tor N splits, the sign of the functional equation of L(E/K, s) is −1 and in particular, with
the above notation, εE · εED = −1.

Proof. The set {λ prime of K : λ|l|N and E has split multiplicative reduction at the prime
l} has even cardinality, since for every prime l dividing the conductor we �nd two primes
λ1, λ2 in K dividing N . Thus #SE,K is odd and we apply the theorem.

3.2.2 A trivial Heegner point

We know consider the elliptic curve E given by y2 = x3 +10x2−20x+8. It has conductor
N = 37. Next consider K = Q(

√
−139), since −139 ≡ 1 (mod 4), it has odd discriminant.

Moreover N splits in K since −139 ≡ 9 (mod 37) and hence it is a square; write (37) = nn̄.
Since OK = Z[x] where x = (1 +

√
−139)/2 has minimal polynomial X2 − X + 35, and

X2−X + 35 = (X − 2)(X − 1) (mod 37), we can write n = (x− 2, 37), n̄ = (x− 1, 37). Thus
K satis�es the Heegner hypothesis. We then do the following

Claim. The class group of K is isomorphic to Z/3Z and it is generated by a prime ideal of
norm 5.

Proof. We proceed in the standard way, computing the Minkowsky bound, which is less
than 8. The generators of the class group are then the (classes of the) prime ideals dividing
2, 3, 5, 7. We have OK = Z[x] where x has minimal polynomial X2−X+ 35. It is irreducible
both modulo 2 and 3, thus they are inert and trivial in the class group. Modulo 5 and 7
we have X2 − X + 35 ≡ X(X − 1), thus 5OK = pp̄ and 7OK = qq̄, with p = (5, x), p̄ =
(5, x− 1), q = (7, x), q̄ = (7, x− 1). An easy computation on the norms shows that they are
all non principal. Moreover the norm of x is 35 and thus (35) = pq, so that [q] = [p]−1. If
we show that p3 is principal we are done, since this implies that its order is 3 and it is a
generator of the class group. It is enough to take 9 + x, whose norm is 125, it is contained in
p̄, but not in p, thus (9 + x) = p̄3, so that [p] = [p̄]−3 = 1.
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We now want to �nd three points zi in H corresponding to the three points on X0(37)
associated to the three isomorphism classes of elliptic curves with complex multiplication by
the maximal order in K. Consider, letting y =

√
−139,

τ1 =
−3 + y

2
= x− 2, τ2 =

71 + y

2
= x+ 35, τ3 =

−151 + y

2
= x− 76

and the three lattices

Λ1 = 37Z⊕ τ1Z, Λ2 = 37 · 5Z⊕ τ2Z, Λ1 = 37 · 5Z⊕ τ3Z.

They are integral ideals of K of norm, respectively, 37, 37 · 5, 37 · 5. In particular notice that
Λ1 = n and, since τ2 = (x− 2) + 37 = x+ 7 · 5, Λ2 is contained in n and in p, thus Λ2 = pn;
similarly τ3 = (x− 2)− 37 · 2 = (x− 1)− 15 · 5, Λ3 is contained in n and in p̄, thus Λ3 = p̄n.
In this way (C/Λ1 → C/OK), (C/Λ2 → C/p), (C/Λ3 → C/p̄) are the three representatives
of the cyclic isogenies of order 37 of elliptic curves with complex multiplication by OK . The
corresponding points in H are

z1 = τ1/37, z2 = τ2/(37 · 5), z3 = τ3/(37 · 5)

Looking at the modular curve X0(37) as quotient Γ0(37) \H∗, the Heegner point PK is given
by the class of the degree zero divisor

(z1) + (z2) + (z3)− 3(∞).

Claim. PK is trivial in J0(37)(K) and thus the corresponding Heegner point on E is trivial.

Proof. To prove this we need to show that the divisor (z1) + (z2) + (z3)− 3(∞) is principal.
We consider the following matrices in SL2(Z)

A1 =

(
−3 −1
1 0

)
, A2 =

(
−77 −31

5 2

)
, A3 =

(
34 −7
5 −1

)
.

Some computations show that for i = 1, 2, 3, one has 37zi = Aizi and (cizi + di) = z1 for
every i, where ci, di are the entries of the second row of Ai. Letting α := z−1

1 , we then de�ne,
for every τ ∈ H

g(τ) := 12

√
∆(τ)

∆(37τ)
− α.

This is a meromorphic function on Γ0(37) \ H∗. We �nd, for every i

g(zi) = 12

√
∆(zi)

∆(37zi)
− α = 12

√
∆(zi)

∆(Aizi)
− α = 12

√
(czi + di)−12 − α = 0.

As we did many times, using the q-expansion of ∆ at ∞ we �nd that g has a pole of order 3
at ∞, thus (g) = (z1) + (z2) + (z3)− 3(∞) and we are done.

What we can now conclude is that, as we wanted, if f is the newform associated to E
and p is any prime splitting in K and di�erent from 37, then Lp(f,K, 1, 1) = 0. Notice that
Tchebotarev density theorem tells us that there are in�nitely many such primes.
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Remark 3.2.7. All these computations about the triviality of the Heegner point can actually
allow us to conclude more, using the classical Gross�Zagier formula. Applying it we indeed
have the vanishing also of the the classical L function: L(E/K, 1) = 0. Arguing as before,
since E has split multiplicative reduction only at p = 37, we get εE = −1. We then know
that εE−139 = 1. Moreover applying lemma 3.2.3 and that, in fact, L(E, 1) 6= 0, one �nds
that L′(E−139, 1) = 0, so that the next possible order of non-vanishing of this function is 3.
Indeed L(3)(E−139, 1) 6= 0 and we found an elliptic curve of analytic rank 3 (that is easily
seen to have also algebraic rank equal to 3, compatibly with the Birch and Swinnerton-Dyer
conjecture).

Notice, to conclude, that the interesting point of the Gross�Zagier formula and also of
the p-adic analogue we presented here is that they are closed formulae where on one side we
have something hard to understand (the value of the �rst derivative of L(E/K, s) in 1 in the
�rst case, the p-adic L-function evaluated in a point outside the domain of interpolation in
the second one) and on the other side we have much more understandable quantities. Indeed
as we showed in this last chapter dealing with Heegner points it is, somehow, very concrete.
One can also notice that the values L(E/K, 1) and Lp(K, f, 1, 1) can be approximated com-
putationally. In the �rst case one uses the fact that the L-function is the Mellin transform
of the associated newform and for the p-adic version one has some computational tools as
well, as showed for example in [Lau14]. However approximation can be helpful to prove that
something is di�erent from zero, while proving that it is exactly equal to zero can not be
done without the help of such closed formulae. Indeed, since we don't have a Gross�Zagier
analogue for the third derivative of the L-function, it is not yet known an example of elliptic
curve of analytic rank strictly bigger than 3, even if it easy to �nd elliptic curves of algebraic
rank bigger than 3. The approximation methods in these cases show that L(3)(E, 1) is close
to zero, but one can not prove it is actually equal to zero.
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Appendix A

Euler system of Heegner points for

bounding Selmer groups

In this appendix we want to give some ideas of how, given an elliptic curve E over Q of
conductor N and a quadratic imaginary �eld K, one can use the construction of Heegner
points as in (1.3.9) to bound a Selmer group of the E. We will further assume that K satis�es
the Heegner hypothesis, assuming that all prime factors of N split in K.

A.1 A weaker version of Kolyvagin's result

We denote with PK the Heegner point on E(K). Recall the result of Kolyvagin we stated
in theorem 2.1.4:

Theorem A.1.1. If PK is of in�nite order, then

(1) E(K) has rank 1,

(2) the Tate-Shafarevic group X(E/K) is �nite.

Following [Gro91], we will sketch brie�y how to prove a slightly weaker result, namely

Theorem A.1.2. If p is an odd prime such that Gal(Q(Ep)/Q) = GL2(Z/pZ) and p does
not divide PK in E(K). Then

(1) E(K) has rank 1,

(2) the p-torsion subgroup of the Tate-Shafarevic group X(E/K)p is trivial.

To justify the assumptions on p in the above theorem we say that, �rst of all, it has been
proved by Mazur that if E is semi-stable (and this is the case since N is square-free), the
Galois group of Q(Ep)/Q is isomorphic to GL2(Z/pZ) for all p ≥ 11. Moreover the Mordell-
Weil theorem tells us that E(K) is �nitely generated, hence if PK has in�nite order, then it
is not divisible by p in E(K) for almost every p. So we can prove the �rst part of theorem
A.1.1 taking one of these primes and applying theorem A.1.2.

We consider the usual exact sequence of Z/pZ-modules

0→ E(K)/pE(K)
δ−→ Sel(E/K)p →X(E/K)p → 0.

Theorem A.1.2 is a corollary of the following

62



Theorem A.1.3. If p is an odd prime such that Gal(Q(Ep)/Q) = GL2(Z/pZ) and p does
not divide PK in E(K), then the p-Selmer group Sel(E/K)p is cyclic generated by δPK

Indeed using the above exact sequence we get that the subgroup E(K)/pE(K) is again
cyclic and it is generated by PK . Thus X(E/K)p = 0 and, using the fact that E(K) contains
no p-torsion (otherwise Q(Ep) ∩ K = K and this contradicts our hypothesis on the Galois
group, whose cardinality is p2 and is not divisible by 2), we have also that the rank of E(K)
is equal to one.

A.2 Heegner points and cohomology classes

We review the construction of the Euler system of Heegner points on E, proving only
some of their properties and showing how to build up some cohomology classes attached to
them.

As in the previous chapters, we denote with n the ideal of OK of norm N , which exists
thanks to Heegner hypothesis. For every n ≥ 1 square-free and coprime with N , p as in the
above theorems and denoting with D the discriminant of K, let On = Z+nOK be the order
of conductor n. The ideal nn = n ∩ On satis�es On/nn ' Z/NZ. As we did for n = 1, we
then can de�ne a point xn on X0(N), de�ned over K(j(On)) = Kn (theorem 0.3.4). Using
the modular parametrization we de�ne yn := φN (xn); notice that PK = TrK1/Ky1, where
K1 = H the Hilbert class �eld of K.

Denote with τ the complex conjugation.

Claim. The complex conjugation τ acts on Gal(Kn/K) by

τστ−1 = σ−1. (A.1)

Proof. Since σ �xes K and we have the characterization Kn = K(j(On)), we just need to
check that τσ(j(On)) = σ−1τ(j(On)). We use theorem 0.3.3: if σ corresponds to (the class)
of the On-proper ideal b, then σ(j(On)) = j(b−1). For any lattice Λ, it is easy to see that
g2(Λ̄) = g2(Λ) and the same for g3; thus j(a) = j(ā) for any proper On-ideal a. Since in
Pic(On) one has [ā] = [a−1], we get that j(a) = j(a−1). In particular (j(On)) = j(On). We
then conclude that σ(j(On)) = j(b−1) = j(b) = σ−1(j(On)) = σ−1((j(On))).

Now take any integer n as above and any prime l dividing it and consider the extension
K(Ep)/Q, which has index 2p2. Using the assumptions on n, one shows that l is unrami�ed
forK(Ep)/Q, so we have a well de�ned conjugacy class Frob(l) in Gal(K(Ep)/Q). We further
require that

Frob(l) = Frob(∞), (A.2)

where Frob(∞) is the conjugacy class of τ . Tchebotarev density theorem implies that there
are in�nitely many such l and so in�nitely many n satisfy our assumptions.

Since (A.2) implies that Frob(l) in K/Q is equal to τ , every such l is inert in K, we denote
with λ its unique prime factor and with Fλ the residue �eld at λ, which has l2 elements. Since
the characteristic polynomial of Frob(l) acting on Ep is x

2− al + l and the one of τ is x2− 1,
one has, equating the coe�cients,

al ≡ l + 1 ≡ 0 (mod p). (A.3)
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Now write n =
∏
l and let Gn = Gal(Kn/K1) so that we have Gn '

∏
Gl. We have that

Gl ' F×λ /F
×
l is cyclic of order l + 1 and we �x a generator σl and let

Trl :=
∑
σ∈Gl

σ =

l+1∑
i=1

σil ∈ Z[Gl],

Dl :=
l∑

i=1

i · σil ∈ Z[Gl].

Lemma A.2.1. We have the following equality in Z[Gl]:

(σl − 1) ·Dl = l + 1− Trl.

Proof. It is just an easy computation. Indeed we have

(σl − 1) ·Dl = (σl − 1) ·
l∑

i=1

i · σil =

l+1∑
i=2

(i− 1)σil −
l∑

i=1

i · σil = −Trl + lσl+1
l + σl+1

l = −Trl + l + 1.

We �nally de�ne Dn to be Dn =
∏
Dl ∈ Z[Gn].

As we were anticipating in (1.3.9), our collection of points yn is an Euler system. Indeed

Proposition A.2.2. The collection {yn}n as above satis�es the axioms of an Euler system.
Namely, if n = l ·m, then

AX 1. Trl yn = al · ym in E(Km),

AX 2. each prime factor λn of l inKn divides a unique prime λm ofKm and yn ≡ Frob(λm)(ym)
(mod λn).

Proof. We will only sketch the proof of the �rst property and refer to Gross' article (propo-
sition 3.7) for the proof of the second one.

From the description of Tl that we gave in (3.1.1), one can check that Trl xn = Tl(xm)
as divisors on X0(N). We then use what we observed in remark 1.3.6 and get

Trl yn = ϕN (Trl xn) = ϕN (Tl(xm)) = al · ϕN (xm) = al · ym.

The �rst important result, that will allow us to build up the desired cohomology classes,
is the following

Proposition A.2.3. The class of the point Dnyn in E(Kn)/pE(Kn) is �xed by the action
of Gn.

Proof. It su�ces to show that the class of Dnyn is �xed by σl for every l dividing n, since
these elements generate Gn. We thus need to show that (σl − 1)Dnyn ∈ pE(Kn). Writing
n = l ·m, we have, by de�nition Dn = Dl ·Dm and applying lemma A.2.1 we get that

(σl − 1)Dnyn = (σl − 1)Dl ·Dmyn = (l + 1)Dmyn −Dm(Trl yl).

We now use (A.3) and the �rst part of proposition A.2.2 to conclude.
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Let now Gn := Gal(Kn/K), we then have an exact sequence

0→ Gn → Gn → Gal(K1/K)→ 0.

Let S be a set of coset representatives for Gn in Gn, de�ne then

Pn :=
∑
σ∈S

σ(Dnyn) ∈ E(Kn) (A.4)

An easy corollary of proposition A.2.3 is that the class of Pn in E(Kn)/pE(Kn) is �xed by
Gn, in other words (the class of) Pn lies in (E(Kn)/pE(Kn))Gn . Moreover the class of Pn is
independent on the choice of S. Notice further that P1 = TrK1/K(y1) = PK .

Now take the Galois cohomology of the exact sequence 0 → Ep → E
·p−→ E → 0, we get

the following diagram with exact rows and columns

0 0

H1(Kn/K,Ep(Kn)) H1(Kn/K,E(Kn))p

0 E(K)/pE(K) H1(K,Ep) H1(K,E)p 0

0 (E(Kn)/pE(Kn))Gn H1(Kn, Ep)
Gn H1(Kn, E)Gnp 0

Inf Inf

δ

Res Res

δn

(A.5)
First of all we say that one can prove (see lemma 4.3 of [Gro91]) that our assumptions on p

force Ep(Kn) to be trivial. This implies that H1(Kn/K,Ep(Kn)) = H2(Kn/K,Ep(Kn)) = 0
and so we get that the left restriction map in the above diagram is actually an isomorphism.
Using this we de�ne the Kolyvagin's cohomology class c(n) to be the unique element in
H1(K,Ep) such that

Res c(n) = δn(Pn).

We also let d(n) be the image of c(n) in H1(K,E)p. We have that Res d(n) is equal to the
image of δn(Pn) in H1(Kn, Ep)

Gn by the commutativity of the diagram, and the exactness
tells us that thus Res d(n) = 0, so there exists a unique element d̃(n) ∈ H1(Kn/K,E(Kn))p
such that

Inf d̃(n) = d(n).

From the de�nition of c(n), d(n), d̃(n) and using again the above diagram, it is immediate to
prove the following

Proposition A.2.4. (i) The class c(n) is trivial if and only if Pn ∈ pE(Kn).

(ii) The class d(n) is trivial (and so it is d̃(n)) if and only if Pn ∈ pE(Kn) + E(K).

Remark A.2.5. We can give an explicit description of the cohomology class c(n). Indeed
one has

δn(Pn) :Gal(Q̄/Kn)→ Ep(Q̄)

σ 7→ σ(
1

p
Pn)− 1

p
Pn,
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where 1
pPn is a �xed p-th root of Pn in E(Q̄). And one shows that

δn(Pn) :Gal(Q̄/K)→ Ep(Q̄)

σ 7→ σ(
1

p
Pn)− 1

p
Pn −

(σ − 1)Pn
p

,

where (σ−1)Pn
p is the unique p-th root of (σ−1)Pn in E(Kn), which exists since, being Ep(Kn)

trivial, multiplication by p gives an automorphism of E(Kn).

A.2.1 Some properties of the cohomology classes c(n), d(n)

We want �rst of all investigate the behaviour of c(n), d(n) under the action of complex
conjugation τ , we will show in particular that they lay in an eigenspace for τ . To do this, we
�rst need to discuss the action of τ on the points yn ∈ E(Kn) (notice that this makes sense
since clearly τ acts on Kn). From now on we will denote with ε the eigenvalue of wN on the
newform f associated to E.

Lemma A.2.6. We have yτn = ε · yσ′n +(torsion) in E(Kn) for some σ′ ∈ Gn = Gal(Kn/K).

Proof. The reasoning we presented in the proof of (A.1) can be applied to show that if xn is
the point on X0(N) corresponding to the elliptic curve with associated lattice a, using the
ideal n to build up the corresponding cyclic subgroup, xτn corresponds to the pair (a−1, n̄).
Moreover the description that we gave of wN in terms of an endomorphism of J0(N), tells
us that such a point is equal to wN (y), where y corresponds to the pair (a−1 · n, n). Finally,
using the description of the action of Gn = Gal(Kn/K) ' Pic(On) in terms of ideals as in
theorem 0.3.3, gives us xτn = wN (xσ

′
n ), where σ′ corresponds to the element [a]. We then have

(xn −∞)τ = wN (xσ
′
n )− (∞)− wN∞+ wN∞ = wN (xn −∞)σ

′
+ (0)− (∞).

As we did many times, we can realize m((0)− (∞)) as the divisor of a meromorphic function
on X0(N) for an appropriate m, so that (0)− (∞) is a torsion point. We then apply ϕN on
both sides and to conclude we apply what we observed in remark 1.3.6, namely

yτn = ϕN ((xn −∞)τ ) = ϕN (wN (xn −∞)σ
′
) + (torsion) = ε · yσ′n + (torsion).

Using this lemma, we get to the following

Proposition A.2.7. Let fn := #{l prime: l | n} and εn := ε · (−1)fn. The class of Pn, c(n)
and d(n) lie in the εn-eigenspace for τ in (E(Kn)/pE(Kn))Gn, H1(K,Ep) and H1(K,E)p
respectively.

Proof. Since the diagram (A.5) commutes with the action of τ , it is enough to prove that the
class of Pn lies in the εn-eigenspace for τ in (E(Kn)/pE(Kn))Gn . Using the de�nition of Pn
and the relation (A.1), we �nd that τPn =

∑
σ∈S τσDnyn =

∑
σ∈S σ

−1τDnyn. Now consider
Dl for l | n. We have, using again (A.1)

τDl + σlDlτ =

l∑
i=1

iτσil +

l∑
i=1

iσi+1
l τ =

l∑
i=1

iσl+1−i
l τ +

l+1∑
i=2

(i− 1)σilτ

=
l∑

i=1

(l + 1− i)σilτ +

l+1∑
i=2

(i− 1)σilτ = lσlτ + lτ + l

l∑
i=2

σilτ = l · Trl · τ = l · Trl.
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Using the �rst part of theorem A.2.2 together with (A.3) we get

τPn ≡ (−1)fn ·
∏
l|n

σl ·
∑
σ∈S

σ−1Dnyn (mod pE(Kn)).

Now, applying the above lemma, together with the fact that Ep(Kn) = 0 we �nd that

τPn ≡ εn ·
∏
l|n

σl · σ′ ·
∑
σ∈S

σ−1Dnyn (mod pE(Kn)),

for some σ′ ∈ Gn. Using proposition A.2.3 and the fact that {σ−1}σ∈S is another set of coset
representatives for Gn in Gn, we get that

∑
σ∈S σ

−1Dnyn ≡ Pn. Moreover the class of Pn is
�xed by Gn so we can conclude τPn ≡ εn · Pn.

Another question one could ask is whether the class c(n) lies in the Selmer group Sel(E/K)p
or not. Recall the de�nition of this group

Sel(E/K)p = ker

(
H1(K,Ep)→

∏
v

H1(Kv, E)p

)
,

where the product is taken over all places v of K and Kv denotes the compeltion of K at v.
Moreover the map is given by the collections of the maps obtained from the composition of
H1(K,Ep)→ H1(K,E)p followed by the restriction H1(K,E)p → H1(Kv, E)p, whose image
of an element d we will denote with dv. Thus asking for c(n) to be in Sel(E/K)p is equivalent
to ask for d(n)v to be trivial for every place v. What one can prove is the following

Proposition A.2.8. (1) d(n)v is trivial at the archimedean place v = ∞ and at all �nite
places v such that v 6 |n.

(2) If n = l ·m and (l) = λ in K, then d(n)λ is trivial if and only if Pm ∈ pE(Kλ).

Proof. See proposition 6.2 of [Gro91].

A.3 A useful pairing

In this section we present a collection of results that will be used to prove the main
theorem. For the proofs of the following statements and the construction of the pairing one
need to look at Weil pairing and use Tate duality. We refer to sections 7-8-9 of [Gro91] for
more details. We decided not to go too much into it since we just want to give an idea of
how, using cohomology classes c(n) and these results, one can obtain the bounding on the
Selmer group.

One has a non-degenerate pairing of Z/pZ-vector spaces respecting the ±-eigenspaces for
complex conjugation τ

〈 , 〉 : E(Kλ)/pE(Kλ)×H1(Kλ, E)p → Z/pZ,

where Kλ is the completion of K at a prime λ. Using this one can prove, with the notation
of the previous section, the following

Proposition A.3.1. If d ∈ H1(K,Ep)
± is such that dv = 0 for every v 6= λ but dλ 6= 0

for λ an inert prime of K, then for every s ∈ Sel(E/K)±p ⊂ H1(K,Ep)
± we have sλ = 0 in

H1(Kλ, Ep)
±.
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We now de�ne L := K(Ep) and G := Gak(L/K). One has

Proposition A.3.2. There is a pairing [ , ] : H1(K,Ep)×Gal(Q̄/L)→ Ep(L) such that

(i) [sσ, ρσ] = [s, ρσ] = [s, ρ]σ, for ever s ∈ H1(K,Ep), ρ ∈ Gal(Q̄/L) and σ ∈ G.

(ii) If [s, ρ] = 0 for every ρ ∈ Gal(Q̄/L), then s = 0.

Moreover for every �nite subgroup S ⊂ H1(K,Ep), denote with GalS(Q̄/L) = {ρ ∈ Gal(Q̄/L) :
[s, ρ] = 0 for every s ∈ S} and with LS the �eld �xed by GalS(Q̄/L). Then we obtain a non-
degenerate induce pairing

[ , ] : S ×Gal(LS/L)→ Ep(L).

Such a pairing induces isomorphisms Gal(LS/L) ' Hom(S,Ep(L) and S ' HomG(Gal(LS/L), Ep(L)).

We want to apply the second part of the above proposition to S = Sel(E/K)p. We write
M = LS and H = Gal(M/L). We assume that PK is not divisible by p in E(K) so that
δPK ∈ Sel(E/K)p is di�erent from zero. We moreover de�ne I to be the subgroup of H
which �xes the sub�eld L(1

pPK) of M , so that Gal(M/L(1
pPK)) = I. We denote with H+

and I+ the +1-eigenspace for τ , which acts by conjugation on H and I. One has

Proposition A.3.3. (1) H+ = {(τh)2 : h ∈ H}, I+ = {(τi)2 : i ∈ H} and H+/I+ '
Z/pZ.

(2) Let s ∈ Sel(E/K)±p . The following are equivalent

(a) [s, ρ] = 0 for all ρ ∈ H
(b) [s, ρ] = 0 for all ρ ∈ H+

(c) [s, ρ] = 0 for all ρ ∈ H+ \ I+

(d) s = 0.

Now we want to consider a prime λ of K not dividing Np, so that λ is unrami�ed in
M/K and further assume that λ splits completely in L/K. Let λM be a prime factor of λ in
M . We let

ρ :=

(
M/K

λM

)
(A.6)

be the Frobenius element corresponding to λM . It actually lies in H = Gal(M/L), since its
restriction to L is the Frobenius with respect to the extension L/K, where λ splits completely,
thus it is the identity.

Proposition A.3.4. Let s ∈ Sel(E/K)p and let ρ ∈ H and λ as above. Then

[s, ρ] = 0 ⇔ sλ = 0 in H1(Kλ, Ep).

Moreover, �xed a prime λ as above, we have

Lemma A.3.5. Let λ be as above have and let P be a K-point which is not divisible by p in
E(K). Then the following are equivalent

(a) λ splits completely in L(1
pP ),

(b) P is divisible by p in E(Kλ), i.e. 1
pP ∈ E(Kλ).

Proof. Since λ splits completely in L/K, we have that, for every place w | λ, Lw = Kλ. Now
�rst notice that L(1

pP ) = L(Q), where Q is such that pQ = P , since L contains all p-torsion
points of E. Now, saying that Q is de�ned over Kλ = Lw (for every w | λ) is equivalent to
say that Lw(Q) = Lw, i.e. every prime w of L dividing λ splits completely in L(Q) = L(1

pP );

equivalently λ splits completely in L(1
pP ).
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A.4 Proof of theorem A.1.3

Recall that in order to prove theorem A.1.2 it is enough to prove A.1.3, which asserts
that, under our assumptions on p and PK , the p-Selmer group is cyclic and generated by
δPK . One has the direct sum decomposition in eigenspaces with respect to τ

Sel(E/K)p = Sel(E/K)+
p ⊕ Sel(E/K)−p .

We therefore prove the following theorem, that gives us the desired result.

Theorem A.4.1. Sel(E/K)−εp = 0 and Sel(E/K)εp ' Z/pZ · δPK .

Proof. Step 1. We �rst prove that Sel(E/K)−εp = 0.
Take s ∈ Sel(E/K)−εp ; applying proposition A.3.3, we get that s = 0 if and only if

[s, ρ′] = 0 for all ρ′ ∈ H+ \ I+. We can then write such a ρ′ as (τh)2 for h ∈ H.
Now consider l a rational prime unrami�ed in M/Q and whose prime factor λM is such

that the Frobenius of λM in Gal(M/Q) is equal to τh. Such a prime exists thanks to
Tchebotarev density theorem. One can show that (l) = λ is inert inK and λ splits completely
in L. Since ρ = (τh)2 = ρ′, where ρ is as in (A.6), by proposition A.3.4, [s, ρ′] = 0 if and
only if sλ = 0.

We now �nally consider the cohomology classes c(l) and d(l). Proposition A.2.7 tells
us that they both lie in the −ε-eigenspaces for τ and proposition A.2.8 (1) tells us that
d(n)v is trivial for all places v 6= λ. Using (2) of the same proposition we get that d(n)λ
is trivial if and only if P1 = PK ∈ pE(Kλ) and lemma A.3.5 tells us that this holds if and
only if λ splits completely in L(1

pPK), using our hypothesis that PK is not divisible by p in

E(K). But if λ split completely in L(1
pPK), then ρ|L( 1

p
PK) would be equal to the identity,

i.e. ρ′ ∈ I+ = I ∩H+, but we were considering ρ′ ∈ H+ \ I+, so we get d(l)λ 6= 0.
Now we apply proposition A.3.1 to d = d(l), which satis�es the assumptions, and get

sλ = 0, so we are done.
Step 2. We now prove, using the �rst step, a useful lemma.

Lemma A.4.2. Let l, λM , λ, h as in the Step 1. The following are equivalent:

(a) c(l) = 0

(b) c(l) ∈ Sel(E/K)p

(c) Pl is divisible by p in E(Kl)

(d) d(l) = 0

(e) d(l)λ = 0

(f) P1 = PK is divisible by p in E(Kλ)

(g) hτh ∈ I+.

Proof (of lemma A.4.2). As above c(l) and d(l) lie in the −ε-eigenspaces for τ . Using
Sel(E/K)−εp = 0 we get (a) ⇔ (b) and we have (a) ⇔ (c) for the �rst part of proposition
A.2.4. Moreover Sel(E/K)−εp = 0 implies (E(K)/pE(K))−ε = 0, thus c(l) = 0 if and only if
d(l) = 0. Moreover, as we have shown above, d(l)v = 0 for all v 6= λ thus d(l) ∈X(E/K)−εp
if and only if d(l)λ = 0. Since X(E/K)−εp = 0, we get (d) ⇔ (e). Again we have (e) ⇔ (f)
thanks to proposition A.2.8. Finally hτh = τ−1hτh = (τh)2 = ρ, thus hτh ∈ I+ if and only
if λ splits completely in L(1

pPK). So lemma A.3.5 gives (f)⇔ (g).
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Step 3. To conclude, we now prove that Sel(E/K)εp ' Z/pZ · δPK .
Take s ∈ Sel(E/K)εp. We want to show that [s, ρ′] = 0 for every ρ′ ∈ I, so that, using

proposition A.3.2 and the �rst part of proposition A.3.3, we get s ∈ HomG(H/I,Ep) '
Z/pZ · δPK . An analogous of proposition A.3.3 tells us that it is enough to check [s, ρ′] = 0
for every ρ′ ∈ I+. Take such a ρ′ and write it in the form ρ′ = (τi)2, for i ∈ I.

Now consider a rational prime l′ such that c(l′) 6= 0. We make full use of the lemma
of the previous step to construct such a prime: it is indeed enough to take l′ such that its
Frobenius in M/Q is conjugate to τh, for h ∈ H such that hτ+1 6∈ I+. The same lemma tells
us that c(l′) 6∈ Sel(E/K)p. We consider then L′ := Lc(l′), the subextension of Q̄/L �xed by
Gal(Q̄/L) = {σ : [c(l′), σ] = 0}. SinceM = LSel(E/K)p and c(l

′) 6∈ Sel(E/K)p, the extensions
M/L and L′/L are disjoint.

Using the description of c(l′) given in remark A.2.5 one can show that L′ = L(1
pPl′). Then

we get, applying lemma A.3.5, that a prime (l) = λ of K splitting completely in L splits
completely in L′ if and only if Pl′ ∈ pE(Kλ).

Now take a prime l such that its Frobenius in M/Q is conjugate to τi and its Frobenius
in L′/Q its conjugate to τj in L′/Q, with j ∈ Gal(L′/L) such that jτ+1 6= 1. We used here
the fact that L′ ∩M = L to �nd a prime satisfying both conditions. We want to proceed as
before: we would like to apply proposition A.3.1 to d = d(ll′) to prove sλ = 0; this would
give us [s, ρ′] = 0, thanks to proposition A.3.4.

We now check that d(ll′) satis�es the assumptions of proposition A.3.1. If v 6= λ, λ′, then
d(ll′)v = 0 for the �rst part of proposition A.2.8. If v = λ′, being i ∈ I, using the lemma
of Step 2, we get c(l) = 0 and Pl ∈ pE(Kl) and applying the second part of proposition
A.2.8, we get d(ll′)λ′ = 0. If also d(ll′)λ = 0 then, for the same reasoning, Pl′ ∈ pE(Kλ) and
this holds, as we concluded above, if and only if λ splits completely in L′, i.e. if and only if
(τj)2 = jτ+1 = 1, which is not true thanks to the assumption on j.
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