
ALGANT Master Program

Master’s Thesis

Chebyshev’s bias in function fields

Author:
Shehzad Hathi

Supervisor:
Dr. Florent Jouve

July 15, 2018

http://algant.eu/master.php
https://shehzadhathi.weebly.com/
https://www.math.u-bordeaux.fr/~fjouve001/




iii

Abstract

In this thesis, we look at the geometric analogue of Chebyshev’s bias, a phenomenon
that refers to the fact that primes are biased towards quadratic non-residues in most
intervals [2, x]. In the case of number fields, this phenomenon was studied in a well-
known paper by Rubinstein and Sarnak. Following that, Cha studies this bias in a
function field setting. Under a linear independence hypothesis on zeros of L-function
(LI), we see how irreducible monic polynomials in a polynomial ring over a finite field
are distributed in a given set of residue classes modulo a fixed monic polynomial. As
in the classical case, we obtain an asymptotic formula (Theorem 2.6) for a counting
function measuring the number of prime quadratic residues minus prime quadratic
non-residues. The proof we give here is based on a strategy suggested (but not
pursued) in [Cha08]. Although quite a few results are analogous to the number field
case, an important distinction is that LI can be proven to hold in some cases and
can be violated in some other cases in the function field setting. Also, under the LI,
we see that the bias dissipates as the degree of modulus under consideration tends to
infinity (along with some necessary and sufficient conditions).

Since LI for function fields can be violated in certain cases, it is important to show
that it holds in certain cases (which it does) for the above described work to be useful.
Hence, this becomes the second part of the thesis. Using the sieve for Frobenius
developed earlier by him, Kowalski showed that in a certain sense, the roots of the
L-functions of most algebraic curves over finite fields do not satisfy any non-trivial
(linear or multiplicative) dependency relations, which is essentially what LI says.
Although we don’t give the proof of the most general version of the aforementioned
result, we illustrate the use of the sieve for Frobenius to prove LI for a certain family
of hyperelliptic curves. We also give an improved bound in Proposition 3.11 for the
number of hyperelliptic curves (in a family, indexed by integers) with a Jacobian that
is not simple. This improvement is in comparison to the one in Proposition 6.3 of
[Kow06] using the suggestion of C. Helsholtz which has been mentioned as a note in
the paper.
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Chapter 1

Dirichlet characters over
function fields

1.1 Primes and the reciprocity law
Let p be an odd prime number and q be a power of p. We will denote by F, a finite
field with q elements. A monic irreducible polynomial in F[T ] will be denoted by P
and henceforth, will be called "prime".

Let a ∈ F[T ] such that P does not divide a and d a divisor of q − 1 (q is the
cardinality of F). Since F∗ → (F[T ]/P )∗ is one-to-one, there is a unique α ∈ F∗ such
that

a
|P |−1
d ≡ α mod P.

Definition 1.1. If P does not divide a, let (a/P )d be the unique element of F∗ such
that

a
|P |−1
d ≡

(
a

P

)
d
mod P.

If P |a define (a/P )d = 0. Note that the above definition is also valid if P is
irreducible but not necessarily monic.

Theorem 1.2 (The d-th power reciprocity law). Let P and Q be monic irreducible
polynomials of degrees δ and ν respectively. Then,(

Q

P

)
d

= (−1)
q−1
d
δν
(
P

Q

)
d

1.2 Dirichlet characters
Let m be an element of F[T ] with non-zero degreeM . A Dirichlet character χ modulo
m is a function from F[T ]→ C such that

1. χ(a+ bm) = χ(a) for all a, b ∈ F[T ]

2. χ(a)χ(b) = χ(ab) for all a, b ∈ F[T ]

3. χ(a) 6= 0 if and only if (a,m) = 1.

χ induces a homomorphism from (F[T ]/m)∗ → C∗ and conversely, given such a ho-
momorphism there is a unique Dirichlet character corresponding to it. It can be
shown that there are exactly Φ(m) = #(F[T ]/m)∗ Dirichlet characters modulo m. In
fact, the set of Dirichlet characters modulo m, say Xm, is a group that is isomorphic
to (F[T ]/m)∗. The principal Dirichlet character χ0 is defined by the property that
χ0(a) = 1 if (a,m) = 1 and χ0(a) = 0 if (a,m) 6= 1.

The Dirichlet characters modulo m satisfy the standard orthogonality relations.
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Proposition 1.3. Let χ and ψ be two Dirichlet characters modulo m and a and b
two elements of F[T ] prime to m. Then

1.
∑
a
χ(a)ψ̄(a) = Φ(m)δ(χ, ψ).

2.
∑
χ
χ(a)χ̄(b) = Φ(m)δ(a, b).

The first sum is over any set of representatives for F[T ]/m and the second sum is over
all Dirichlet characters modulo m. Here δ represents the Kronecker delta function.

1.3 Zeta function and Dirichlet L-series
Definition 1.4. The zeta function of F[T ], denoted ζ(s) is defined by the infinite
series

ζ(s) =
∑

f monic

1
|f |s

,

where |f | := qdeg(f).

The above series converges for <(s) > 1. Since there are exactly qd monic poly-
nomials of degree d in F[T ], we have

∑
deg(f)≤d

|f |−s = 1 + q

qs
+ q2

q2s + · · ·+ qd

qds
,

and consequently
ζ(s) = 1

1− q1−s (1.1)

for all complex numbers s with <(s) > 1. As in the classical case, we again have a
unique decomposition of monic polynomials into primes which leads to the following
identity

ζ(s) =
∏

P prime
(1− |P |−s)−1. (1.2)

This is also valid for all <(s) > 1. The identity above is quite useful as we will see
below.

We can define a quantity similar to the prime counting function in case of positive
integers, π(N) := #{P prime | deg(P ) = N}. Then, from (1.2) we find

ζ(s) =
∞∏
d=1

(1− q−ds)−π(d)

Using (1.1) and substituting u = q−s (note that |u| < 1 if and only if <(s) > 1) we
obtain the identity

1
1− qu =

∞∏
d=1

(1− ud)−π(d).

Taking the logarithmic derivative of both sides and multiplying the result by u yields

qu

1− qu =
∞∑
d=1

dπ(d)ud

1− ud .

Finally, we expand both sides into power series using the geometric series and compare
coefficients of un, giving us
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Proposition 1.5. ∑
d|n

dπ(d) = qn.

By applying the Mob̈ius inversion formula to the above formula, we get

Corollary 1.6.
π(d) = 1

n

∑
d|n

µ(d)qn/d, (1.3)

where µ(d) is the Möbius function.

In (1.3), the highest power of q that occurs is qn and the next highest power that
may occur is qn/2 (this occurs if and only if 2|n). All the other terms have the form
±qm where m ≤ n/3. The total number of terms is

∑
d|n
|µ(d)|, which is easily seen to

be 2t, where t is the number of distinct prime divisors of n. Let p1, p2, . . . , pt be the
distinct primes dividing n. Then, 2t ≤ p1p2 . . . pt ≤ n. Thus, we have the following
estimate: ∣∣∣∣π(n)− qn

n

∣∣∣∣ ≤ qn/2

2 + qn/3.

Thus, we have a result similar to the classical prime number theorem.

Theorem 1.7 (The prime number theorem for polynomials).

π(n) = qn

n
+O

(
qn/2

n

)

We also have a function field analogue of the Riemann hypothesis. This was first
proved by Weil in the late 1940s.

Theorem 1.8 (the Riemann Hypothesis for function fields). Let K/F be a function
field with finite constant field, F, having q elements. Let ζK(s) be the zeta function
of K. All the zeros of ζK(s) lie on the line <(s) = 1

2 .

The zeta function is a special case of the Dirichlet L-series (when "χ = 1").

Definition 1.9. Let χ be a Dirichlet character modulo m. The Dirichlet L-series
corresponding to χ is defined by

L(s, χ) =
∑

f monic

χ(f)
|f |s

.

From the definition of the L-series and comparison with the zeta function, one sees
immediately that the series for L(s, χ) converges absolutely for <(s) > 1. Also, since
characters are multiplicative, we can deduce that the following product decomposition
is valid in the same region.

L(s, χ) =
∏
P

(
1− χ(P )

|P |s
)−1

,

The zeta function also has a similar decomposition.

ζ(s) =
∏
P

(
1− 1
|P |s

)−1
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Using this, we can then derive a relation between L(s, χ0) (where χ0 is the principal
character) and ζ(s).

ζ(s) =
∏
P -m

(
1− 1
|P |s

)−1 ∏
P |m

(
1− 1
|P |s

)−1

= L(s, χ0)
∏
P |m

(
1− 1
|P |s

)−1

which gives us
L(s, χ0) =

∏
P |m

(
1− 1
|P |s

)
ζ(s). (1.4)

Since ζ(s) is meromorphic over C with a simple pole at s = 1, L(s, χ0) can be
analytically continued to all of C with a simple pole at s = 1.

If χ is non-principal, then L(s, χ) can be analytically continued to an entire func-
tion on all of C. This is due to the following proposition.

Proposition 1.10. Let χ be a non-principal Dirichlet character modulo m. Then,
L(s, χ) is a polynomial in q−s of degree at most M − 1.

For the proof of this proposition, see [Ros13, Proposition 4.3].

Lemma 1.11. Let χ be a non-principal Dirichlet character modulo m. Then

L′

L
(1, χ) = O(logM)

as M →∞.

The number-theoretic counterpart of this lemma is (L′/L)(1, χ) = O(log log q),
where χ is a non-principal Dirichlet character modulo q. The proof of the above
lemma is similar to that of its number-theoretic counterpart (given in [Lit28]) and
can be found in [Cha08] (Lemma 6.3).

Since L(s, χ) is a polynomial in q−s, let L(u, χ) := L(s, χ), obtained by the change
of variable u := q−s.

χ is primitive if there is no proper divisor m′|m so that χ(f) = 1 whenever
(f,m) = 1 and f ≡ 1 mod m′. Also, χ is even if χ(cf) = χ(f) for all 0 6= c ∈ F.

Proposition 1.12. Let χ∗ be the primitive Dirichlet character modulo a polynomial
m(χ∗) which induces a non-principal Dirichlet character χ modulom. Also, letM(χ∗)
be the degree of m(χ∗). Then we have:

1.
L(u, χ) = L(u, χ∗)

∏
P |m

P -m(χ∗)

(1− udeg(P ));

2. L(u, χ∗) is a polynomial in u of degree M(χ∗)− 1;

3. if χ∗ is even,

L(u, χ∗) = (1− u)
M(χ∗)−2∏

i=1
(1− γiu),

and, otherwise,

L(u, χ∗) =
M(χ∗)−1∏

i=1
(1− γiu)
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for some complex numbers γi with |γi| =
√
q;

4. if m is irreducible, then

L(u, χquad) = (1− u)
(M−2)/2∏
i=1

(1− γiu)(1− γ̄iu)

for M even, and

L(u, χquad) =
(M−1)/2∏
i=1

(1− γiu)(1− γ̄iu)

for M odd.

Proof. These properties are essentially consequences of Theorem 1.8. Property (1)
is immediate from our definition of Dirichlet L-series. Note that, for a non-principal
character χ, the Dirichlet L-series can be modified to give the Artin L-function (see
[Ros13, pp. 126-131]) by introducing a local factor at the infinite prime, which is
(1− q−s)−1 if χ is even, and one otherwise. This together with Theorem 1.8, proves
(2) and (3) (see [Ros13, Proposition 14.10]). Lastly, property (4) is immediate from
property (2), (3), and the fact that the inverse zeros of L(u, χquad) are stable under
complex conjugation.
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Chapter 2

Chebyshev’s bias in function
fields

2.1 Introduction
Chebyshev noted in 1853 that for most values of x, there are more primes (≤ x)
congruent to 3 than 1 modulo 4. More generally, it was observed that the prime
quadratic non-residues of a given modulus predominate over the prime quadratic
residues in most intervals [2, x]. This bias towards quadratic non-residues is referred
to as Chebyshev’s bias. In [RS94], one can find conditional results justifying the
existence of this bias. This paper is crucial in understanding the analogous results
obtained in [Cha08].

In this chapter, we look at the geometric analogue of Chebyshev’s bias, i.e., in a
rational function field setting, as studied in [Cha08]. We fix m, a monic polynomial
in F[T ] with degree at least two. As before, we will denote the degree of m by M
and the irreducible monic polynomials in F[T ] will be denoted by P . For any positive
integer N , we define π(N) as before. We also define another prime counting function
for an element a in F[T ] prime to m,

π(a,m,N) := #{P |P ≡ a mod m, deg(P ) = N}.

For a positive integer X, we define Em;a(X) by

Em;a(X) := X

qX/2

X∑
N=1

(Φ(m)π(a,m,N)− π(N)). (2.1)

The function Em;a(X) can be thought as describing how much more (or less) primes
there are in the residue class of a than its fair share. In § 2.2, the explicit formula
of Em;a(X) is obtained (Theorem 2.5) by analyzing the coefficients of the power
series of the logarithmic derivative of a Dirichlet L-function L(s, χ) for all Dirichlet
characters modulo m. From the explicit formula, we also see the source of the bias
(−c(m, a)Bq(X) term in the formula).

In § 2.3, we focus on the principal-real quadratic character χquad modulo an ir-
reducible m. We again obtain an asymptotic formula (Theorem 2.6) for a counting
function measuring the number of prime quadratic residues minus prime quadratic
non-residues. The proof given here is different from the one given in [Cha08], although
the strategy used was suggested in the original paper itself. From the formula, we
can prove the existence of a certain limiting distribution µm;R,N that is constructed
from Em;R,N (X) (see Theorem 2.9). We define a function field version of the lin-
ear independence hypothesis (LI) (Definition 2.10). As in [RS94], under LI for all
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non-principal characters, we can find a formula (Theorem 2.11) of the Fourier trans-
formation of µm;R,N . From this, we can deduce that, if we define Pm;R,N to be the
set of all positive integers with

X∑
N=1

a(N) >
X∑
N=1

b(N),

where a(N) := #{P ∈ F[T ]|χquad(P ) = 1,deg(P ) = N} and b(N) := #{P ∈
F[T ]|χquad(P ) = −1, deg(P ) = N}, then

δ(Pm;R,N ) := lim
X→∞

#(Pm;R,N ∩ {1, 2, . . . , X})
X

exists and δ(Pm;R,N ) < 1/2. As an application of this, we also prove that more primes
of an affine line splits on a double covering of an irreducible plane curve than remain
inert. Note that in the classical case, the natural density does not exist and one
must work with logarithmic density. Hence, it is quite remarkable that in the case of
function fields, we can work with the natural density as defined above.

In §2.4, we state the general result for existence of a certain limiting distribution µ
that is constructed from Em;a1(X), . . . , Em;ar(X), for a1, . . . , ar in F[T ] representing
distinct classes in (F[T ]/m)∗ (see Theorem 2.14). As before, under LI for all non-
principal characters, we find a formula (Theorem 2.15) of the Fourier transform of
µ. From this, we can deduce that, if we define Pm;a1,...,ar to be the set of all positive
integers X with

X∑
N=1

π(a1,m,N) >
X∑
N=1

π(a2,m,N) > · · · >
X∑
N=1

π(ar,m,N),

then the limit

δ(Pm;a1,...,ar) := lim
X→∞

#(Pm;a1,...,ar ∩ {1, 2, . . . , X})
X

is equal to µ({x1 > · · · > xr} ⊂ Rr), hence always exists.
In the last section, § 2.6, we have proved analogues of Theorems 1.6, 1.4, and 1.5

of [RS94]. The first and the third (Theorems 2.20 and 2.23) describe certain central
limit behaviours. Essentially, we see that as the degree of m goes to infinity, the bias
dissipates. The second analogue (Theorem 2.21) gives the necessary and sufficient
conditions for the density function of µ to remain unchanged under permutations of
(x1, . . . , xr).

2.2 The asymptotic formula
In this section, we want to find an asymptotic formula of Em;a(X) as X → ∞. By
Theorem 1.7,

π(N) = qN

N
+O

(
qN/2

N

)
(2.2)

and
π(a,m,N) = 1

Φ(m)
qN

N
+O

(
qN/2

N

)
. (2.3)

For a proof of (2.3), see [Ros13, Theorem 4.8].
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We will estimate Φ(m)π(a,m,N) − π(N) in (2.1) by calculating the coefficients
of the power series of

∑
χ χ̄(a)u d

du logL(u, χ) for all Dirichlet characters χ modulo m.
For each character χ, define the numbers cN (χ) by the equation

u
d

du
logL(u, χ) =

∞∑
N=1

cN (χ)uN

From the Euler product L(s, χ) =
∏
P -m

(1− χ(P )|P |−s)−1, we have

L(u, χ) =
∞∏
d=1

∏
P -m

deg(P )=d

(1− χ(P )ud)−1. (2.4)

Hence,

u
d

du
logL(u, χ) = u

d

du

∞∑
d=1

∑
P -m

deg(P )=d

log (1− χ(P )ud)−1

=
∞∑
d=1

∞∑
k=1

∑
P -m

deg(P )=d

dχ(P k)udk

=
∞∑
N=1

∑
d|N

d
∑
P -m

deg(P )=d

χ(PN/d)

uN .
From this, we obtain

cN (χ) =
∑
d|N

d
∑
P -m

deg(P )=d

χ(PN/d). (2.5)

Summing over all Dirichlet characters modulo m, we get∑
χ

χ̄(a)cN (χ) =
∑
d|N

d
∑
P -m

deg(P )=d

∑
χ

χ̄(a)χ(PN/d). (2.6)

Let us introduce a notation to simplify the summation:

π(a,m, d, k) := #{P |P k ≡ a mod m,deg(P ) = d},

for any positive integers k and d. Clearly,

π(a,m, d, 1) = π(a,m, d) (2.7)

As in [RS94], we define
c(m, a) := −1 +

∑
b2≡a mod m
b∈(F[T ]/m)∗

1 (2.8)

to simplify π(a,m, d, 2). Ifm is irreducible, the second term in the definition of c(m, a)
will be 0 if a is not a square residue and 2 if it is a square residue. Therefore, c(m, a)
is just the non-principal real quadratic character mod m. In general, c(m, a) + 1 is
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the number of square roots of a in (F[T ]/m)∗. So, from (2.3),

π(a,m, d, 2) = c(m, a) + 1
Φ(m)

qd

d
+O

(
qd/2

d

)
. (2.9)

From (2.2), for an arbitrary k, we have the trivial estimate

π(a,m, d, k) ≤ π(d) = O

(
qd

d

)
. (2.10)

By the definition of π(a,m, d, k) and the orthogonality relations in Proposition
1.3, we can write (2.6) as∑

χ

χ̄(a)cN (χ) =
∑
d|N

dΦ(m)π(a,m, d,N/d)

We separate out the terms for d = N and d = N/2 (which exists only when N is
even) from above. By (2.7), the term corresponding to d = N is NΦ(m)π(a,m,N).
(2.9) implies that the term corresponding to d = N/2 (when N is even) is equal to

N

2 Φ(m)
(
c(m, a) + 1

Φ(m) .
qN/2

N/2 +O(q
N/4

N

)
= (c(m, a) + 1)qN/2 +O(qN/4).

We now need to estimate the sum of the terms with d < N/2. Using (2.10) and
the summation formula for a geometric progression, we have

∑
d|N

d≤N/3

dΦ(m)π(a,m, d,N/d) ≤
∑
d|N

d≤N/3

dO

(
qd

d

)

=
∑

d≤N/3
O(qd)

= O(qN/3).

Therefore, we proved that, for even N ,∑
χ

χ̄(a)cN (χ) = NΦ(m)π(a,m,N) + (c(m, a) + 1)qN/2 +O(qN/3) (2.11)

and, if N is odd, ∑
χ

χ̄(a)cN (χ) = NΦ(m)π(a,m,N) +O(qN/3). (2.12)

Now, we will give another estimate of
∑
χ χ̄(a)cN (χ). Assuming that χ is a non-

principal Dirichlet character mod m, we can write (using Proposition 1.10)

L(u, χ) =
d(χ)∏
ν=1

(1− α(χ, ν)u). (2.13)

Here, d(χ) is the degree of L(u, χ) as a polynomial in u and α(χ, ν) are complex
numbers called inverse zeros of L(u, χ). They have absolute values either √q or 1.
This is a consequence of a theorem of Weil, the function field analogue of the Riemann
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hypothesis (see [Ros13, Theorem 5.10]). From (2.13), we obtain

u
d

du
logL(u, χ) = −

∞∑
N=1

d(χ)∑
ν=1

α(χ, ν)NuN .

Now, recall the definition of the numbers cN (χ). It gives us

cN (χ) = −
d(χ)∑
ν=1

α(χ, ν)N , (2.14)

for a non-principal character χ. For the principal character χ0, we can use (1.1) and
(1.4) to get

L(u, χ0) =
∏
P |m(1− udeg(P ))

1− qu .

This gives us

u
d

du
logL(u, χ0) = u

∑
P |m

−deg(P )udeg(P )−1

1− udeg(P )


= −deg(P )

∑
P |m

∞∑
k=1

ukdeg(P ) +
∞∑
k=1

qkuk.

The coefficient of uN in the first sum is clearly bounded and that in the second term
is qN . Therefore,

cN (χ0) = qN +O(1). (2.15)

Summing up, we have proved

∑
χ

χ̄(a)cN (χ) = −
∑
χ 6=χ0

χ̄(a)
d(χ)∑
ν=1

α(χ, ν)N + qN +O(1). (2.16)

Proposition 2.1. Define B(a,m,N) by

B(a,m,N) :=
{

0 if N is odd,
c(m, a) if N is even.

Then, we have

N(Φ(m)π(a,m,N)− π(N)) = −B(a,m,N)qN/2 −
∑
χ 6=χ0

χ̄(a)
d(χ)∑
ν=1

α(χ, ν)N +O(qN/3).

Proof. By Corollary 1.6
π(N) = 1

N

∑
d|N

qN/dµ(d).

Separating out all terms of size qN/2 or larger, we write this as

π(N) =
{

(qN − qN/2)/N +O(qN/3/N) if N is even,
qN/N +O(qN/3/N) if N is odd. (2.17)
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If N is odd, we use (2.12), (2.16) and (2.17) to obtain

N(Φ(m)π(a,m,N)− π(N)) =
∑
χ

χ̄(a)cN (χ)− qN +O(qN/3)

= −
∑
χ 6=χ0

χ̄(a)
d(χ)∑
ν=1

α(χ, ν)N +O(qN/3).

Similarly, in the case of even N , we will use (2.11), (2.16) and (2.17) to get

N(Φ(m)π(a,m,N)− π(N)) = −c(m, a)qN/2 −
∑
χ 6=χ0

χ̄(a)
d(χ)∑
ν=1

α(χ, ν)N +O(qN/3),

which completes the proof.

Lemma 2.2. For any complex number β with |β| > 1,

lim
n→∞

n

βn

(
n∑
i=1

βi

i

)
= β

β − 1 .

Proof. Let h(n) := βn and f(x) := 1/x. Also, let H(x) :=
∑
n≤x

h(n). Then, clearly,

H(x) = β · β
[x] − 1
β − 1 .

To calculate
n∑
i=1

βi/i, we apply the partial summation formula (see [CM05, Theorem

1.3.1]) which gives

∑
n≤x

h(n)f(n) = H(x)f(x)−
∫ x

1
H(t)f ′(t)dt.

Therefore,
N

βN

N∑
n=1

βn

n
= β − β1−N

β − 1 + N

βN
· β ·

∫ N

1

β[t] − 1
β − 1

1
t2
dt,

and it remains to show that the second term on the right-hand side above tends to
zero as N →∞. Since

∫∞
1 (1/t2)dt <∞ and |β[t]| ≤ |β|t, it is sufficient to prove that

N

βN

∫ N

1

|β|[t]

t2
dt→ 0

as N →∞. Using integration by parts,

N

βN

∫ N

1

|β|[t]

t2
dt = N

βN
1

log |β|

(
|β|N

N2 −
|β|
12

)
− N

βN
1

log |β|

∫ N

1
(−2) |β|

t

t3
dt.

The first term is easily seen to tend to zero as N →∞, and, again, we only need to
show

N

βN

∫ N

1

|β|t

t3
dt→ 0.
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To do so, ∫ N

1

|β|t

t3
dt =

∫ N/2

1

|β|t

t3
dt+

∫ N

N/2

|β|t

t3
dt

≤
∫ N/2

1

|β|N/2

t3
dt+

∫ N

N/2

|β|N

t3
dt

≤ k · |β|N/2 + |β|N ·
(−2
N2 −

(−2)
(N/2)2

)
for a constant k. We multiply N/βN on both sides of this inequality, and this com-
pletes the proof.

Corollary 2.3. Define B(N) by

B(N) :=
{

0 if N is odd,
1 if N is even.

Then
X

qX/2

X∑
N=1

B(N)q
N/2

N
=
{ √

q/(q − 1) + o(1) if X is odd,
q/(q − 1) + o(1) if X is even.

Proof. Suppose that X is even, X = 2X ′. Since B(N) is zero for all odd N we have
that

X

qX/2

X∑
N=1

B(N)q
N/2

N
= 2X ′

qX′

X′∑
n=1

qn

2n

= q

q − 1 + o(1),

where we use Lemma 2.2 for the last equality.
For an odd X = 2X ′ + 1, we proceed similarly:

X

qX/2

X∑
N=1

B(N)q
N/2

N
= 1
√
q

2X ′ + 1
qX′

X′∑
n=1

qn

2n

=
√
q

q − 1 + o(1),

again, by Lemma 2.2.

Corollary 2.4. Let γ be a complex number with absolute value √q and argument θ,
that is γ = √qeiθ. Then

X

qX/2

X∑
N=1

γN

N
= eiθX

γ

γ − 1 + o(1).

Proof. This is straightforward from Lemma 2.2, because

X

qX/2

X∑
N=1

γN

N
= X

eiθX

γX
γN

N
= eiθX

γ

γ − 1 + o(1).
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Theorem 2.5. Define Bq(X) by

Bq(X) :=
{ √

q/(q − 1) if X is odd,
q/(q − 1) if X is even.

Then

Em;a(X) = −c(m, a)Bq(X)−
∑
χ 6=χ0

χ̄(a)
∑
γχ

(
eiθ(γχ)X γχ

γχ − 1

)
+ o(1),

as X → ∞, where χ denotes a non-principal Dirichlet character, γχ denotes an
inverse zero of L(u, χ) and θ(γχ) denotes the argument of γχ.

Proof. From Proposition 2.1, we know that we need to estimate the following three
sums:

X

qX/2

X∑
N=1

B(a,m,N)q
N/2

N
,

X

qX/2

X∑
N=1

χ̄(a)α(χ, ν)N

N
,

X

qX/2

X∑
N=1

O(qN/3)
N

.

The third sum is o(1) because

X

qX/2

X∑
N=1

O(qN/3)
N

≤ X

qX/2
O(qX/3)

X∑
N=1

1
N

= X

qX/2
O(XqX/3).

Now, note that B(a,m,N) = c(m, a)B(N) and so Corollary 2.3 gives us that the
first sum is equal to c(m, a)Bq(X) + o(1). It remains to estimate the second sum.
As mentioned earlier, the inverse zeros of L(u, χ) have absolute values either √q
or 1. When |α(χ, ν)| = 1, the second sum (its absolute value) is clearly o(1). If
|α(χ, ν)| = √q, then we write α(χ, ν) = γχ = √qeiθ(γχ). From Corollary 2.4, we
obtain

X

qX/2

X∑
N=1

χ̄(a)α(χ, ν)N

N
= X

qX/2

X∑
N=1

χ̄(a)γχN

N
= χ̄(a)eiθ(γχ)X γχ

γχ − 1 + o(1).

Summing this over all the inverse zeros and over all non-principal characters gives the
second term in the expression for E(m; a) (which has to be real since all the other
terms are). Finally, we combine the three sums with appropriate signs to prove the
theorem.

2.3 The quadratic character and its applications
In this section, we assume that m is irreducible. We obtain an asymptotic formula
(Theorem 2.6) for a counting function (Em;R,N (X)) measuring the number of prime
quadratic residues minus prime quadratic non-residues. In [Cha08], it is suggested
that it may be possible to obtain Theorem 2.6 from Theorem 2.5 and so we have
given a different proof here from the one given in the above cited paper.

As earlier, define a(N) and b(N) by

a(N) := #{P ∈ F[T ]|χquad(P ) = 1,deg(P ) = N}
b(N) := #{P ∈ F[T ]|χquad(P ) = −1, deg(P ) = N}.
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Also, define

Em;R,N (X) := X

qX/2

X∑
N=1

(a(N)− b(N)).

Let χquad be the non-principal real quadratic character modm. We enumerate, among
all of the inverse zeros {α(χquad, ν)}M−1

ν=1 of L(u, χquad), those whose absolute values
are √q as γ1, γ̄1, . . . , γk, γ̄k. Then we have the following asymptotic formula.

Theorem 2.6. Let Bq(X) be defined as in Theorem 2.5. Then we have

Em;R,N (X) = −Bq(X)− 2
k∑
j=1
<
(
eiθjX

γj
γj − 1

)
+ o(1),

as X →∞.

Proof. Since m is irreducible, we clearly have

a(N) + b(N) = π(N),

if N 6= M (which we recall as the degree of m). Also,

a(N) =
∑
t

χquad(t)=1

π(t,m,N)

b(N) =
∑
t

χquad(t)=−1

π(t,m,N).

For convenience, let us denote the set of squares by S and the set of non-squares by
NS. Then

qX/2

X
Em;R,N (X) =

X∑
N=1

(∑
t∈S

π(t,m,N)−
∑
t∈NS

π(t,m,N)
)

Φ(m)q
X/2

X
Em;R,N (X) =

X∑
N=1

(∑
t∈S

(Φ(m)π(t,m,N)− π(N))
)

−
X∑
N=1

( ∑
t∈NS

(Φ(m)π(t,m,N)− π(N))
)

+O(X),

where the O(X) term arises because the number of squares and non-squares might
not be equal. Interchanging the order of summation, we get

Φ(m)q
X/2

X
Em;R,N (X) = qX/2

X

∑
t∈S

Em;t(X)− qX/2

X

∑
t∈NS

Em;t(X) +O(X),

and so
Φ(m)Em;R,N (X) =

∑
t∈S

Em;t(X)−
∑
t∈NS

Em;t(X) + o(1).



16 Chapter 2. Chebyshev’s bias in function fields

Now we can invoke Theorem 2.5. This will give us

Em;R,N (X) = 1
Φ(m)

∑
t∈S

−c(m, t)Bq(X)−
∑
χ 6=χ0

χ̄(t)
∑
γχ

eiθ(γχ)X γχ
γχ − 1


− 1

Φ(m)
∑
t∈NS

−c(m, t)Bq(X)−
∑
χ 6=χ0

χ̄(t)
∑
γχ

eiθ(γχ)X γχ
γχ − 1

+ o(1).

To simplify the expression we will denote
∑
γχ e

iθ(γχ)X γχ
γχ−1 by I(χ) (it is also de-

pendent on X but for the summation only χ matters). Recall that c(m, t) is the
non-principal real quadratic character mod m. Therefore,

Em;R,N (X) = 1
Φ(m)

∑
t

−Bq(X)− 1
Φ(m)

∑
t∈S

∑
χ 6=χ0

χ̄(t)I(χ)−
∑
t∈NS

∑
χ 6=χ0

χ̄(t)I(χ)

+o(1).

The first term is just −Bq(X). In the second term, we can again interchange the
order of summation.

Em;R,N (X) = −Bq(X)− 1
Φ(m)

∑
χ 6=χ0

I(χ)
(∑
t∈S

χ̄(t)−
∑
t∈NS

χ̄(t)
)+ o(1).

We can rewrite
∑
t∈S

χ̄(t) −
∑

t∈NS
χ̄(t) as

∑
t
χquad(t)χ̄(t). By Proposition 1.3, this is

equal to Φ(m)δ(χquad, χ). So we end up with

Em;R,N (X) = −Bq(X)− I(χquad) + o(1)
= −Bq(X)−<(I(χ)) + o(1).

Using the enumeration of inverse zeros described earlier, we get the statement of the
theorem.

By Proposition 1.12, L(u, χquad) is a polynomial in u of degree M − 1 (since m is
irreducible) and so there will be k = [(M − 1)/2] pairs of inverse zeros.

Corollary 2.7. For M = 2, Em;R,N (X) < 0 for almost all X (i.e. all but finitely
many X).

This is true because for M = 2, the L-series has no inverse zeros with absolute
values equal to √q (see Proposition 1.12). This means that the prime non-residues
predominate over prime residues.

Define

E(T )(X) := −Bq(X)− 2
k∑
j=1
<
(
eiθjX

γj
γj − 1

)
(2.18)

so that ε∗(X) := Em;R,N (X)− E(T )(X) is o(1) by Theorem 2.6.

Lemma 2.8. For any continuous bounded function f on R, the limit

lim
N→∞

1
N

N∑
X=1

f(E(T )(X))

exists.
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Proof. We denote the corresponding arguments of γ1, . . . , γk as θ1, . . . , θk. Define
b0, b1, . . . , bk ∈ C by

b0 := −1

and
bj := − γj

γj − 1

for j = 1, . . . , k. Also define a function g on Rk+1 by

g(x) = g(x0, x1, . . . , xk) := f

b0 q(3+cos(2πx0))/4

q − 1 + 2
k∑
j=1
<(e2πixjbj)

 .
Then g gives rise to a continuous function on Rk+1/Zk+1 and clearly

f(E(T )(X)) = g

(
X

2 ,
θ1X

2π , . . . ,
θkX

2π

)
.

Let
Γ :=

{(
X

2 ,
θ1X

2π , . . . ,
θkX

2π

)
∈ Rk+1/Zk+1

∣∣∣∣X = 1, 2, 3, . . .
}
. (2.19)

Then, by Kronecker-Weyl Theorem, Γ is equidistributed in its topological closure Γ̄,
and we have

lim
N→∞

1
N

N∑
X=1

f(E(T )(X)) =
∫

Γ̄
g(x)dx. (2.20)

where dx is the normalized Haar measure on Γ̄.

Theorem 2.9. There exists a probability measure µm;R,N on all Borel sets in R such
that

µm;R,N (f) = lim
N→∞

1
N

N∑
X=1

f(Em;R,N (X)),

for all bounded continuous functions f on R.

The proof of this theorem is along the lines of the proof of [Cha08, Theorem
3.2]. Here, we abbreviate Em;R,N (X) to E(X) and the probability measure νN :=
mNE

(T )−1 is defined on R (wheremN is the probability measure on the set {1, . . . , N}
with mN ({1}) = · · · = mN ({N}) = 1/N). The rest of the elements of the proof are
identical.

Definition 2.10 (Linear Independence Hypothesis). Consider a set I = {χ 6= χ0}
of non-principal Dirichlet characters modulo m, which is closed under complex con-
jugation. Then we say that I satisfies LI if the set

{θ|γ = √qeiθ is an inverse zero of L(u, χ) for some χ ∈ I with 0 ≤ θ ≤ π} ∪ {2π}

is linearly independent over Q.

Theorem 2.11. Assume that the set {χquad} satisfies LI. Then the Fourier transform
µ̂m;R,N of µm;R,N is given by

µ̂m;R,N (ξ) = Bm;R,N (ξ)
k∏
j=1

J0

(∣∣∣∣∣ 2γj
γj − 1

∣∣∣∣∣ ξ
)
,
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where
J0(z) =

∞∑
n=0

(−1)n(z/2)2n

(n!)2

is the Bessel function of the first kind, and

Bm;R,N (ξ) := 1
2

(
exp

(
i

√
q

q − 1ξ
)

+ exp
(
i

q

q − 1ξ
))

.

Proof. We again use the enumeration of inverse zeros described previously. We also
abbreviate µm;R,N as µ. The main consequence of LI for us is that the Γ̄ in (2.19) is
the union of two copies of a k-torus, more precisely,

Γ̄ ={(0, x1, . . . , xk) ∈ Rk+1/Zk+1|(x1, . . . , xk) inRk/Zk}
∪ {(1/2, x1, . . . , xk) ∈ Rk+1/Zk+1|(x1, . . . , xk) inRk/Zk}. (2.21)

Also, the normalized Haar measure dx on Γ̄ is simply half of the usual Lebesgue
measure on each k-torus.

Now, using Theorem 2.9, (2.20) and (2.21)

µ̂(ξ) =
∫
R
e−iξxdµ(x) = Bm;R,N (ξ)

k∏
j=1

µ̂j(ξ) (2.22)

where µ1, . . . , µk is the distribution

−
(

2<
(
eiθ1X γ1

γ1 − 1

)
, . . . , 2<

(
eiθkX

γk
γk − 1

))

of the terms in (2.18). Let ωj be the argument of γj/(γj−1). Further, let Rj :=
∣∣∣ 2γj
γj−1

∣∣∣.
Then we can write the distribution as

−(R1 cos(θ1X + ω1), . . . , Rk cos(θkX + ωk))

Then, as in [RS94, § 3.1] (also, see the proof of [Cha08, Theorem 3.4]),

µ̂j(ξ) = 1
π

∫ 1

−1
cos

(
Rjξ

√
1− t2

) dt√
1− t2

= J0(Rjξ).

Note that J0 is an even function and so is

k∏
j=1

J0

(∣∣∣∣∣ 2γj
γj − 1

∣∣∣∣∣ ξ
)
.
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If we split the integral representing the inverse fourier transform of 2µ̂m;R,N into two
parts corresponding to the two terms of 2Bm;R,N ,

2µm;R,N (x) = 2
∫
R
eiξxBm;R,N (ξ)

k∏
j=1

J0

(∣∣∣∣∣ 2γj
γj − 1

∣∣∣∣∣ ξ
)
dξ

=
∫
R

exp
(
iξ

(
x+

√
q

q − 1

)) k∏
j=1

J0

(∣∣∣∣∣ 2γj
γj − 1

∣∣∣∣∣ ξ
)
dξ

+
∫
R

exp
(
iξ

(
x+ q

q − 1

)) k∏
j=1

J0

(∣∣∣∣∣ 2γj
γj − 1

∣∣∣∣∣ ξ
)
dξ,

then we find that the first integral is symmetric about x = −
√
q

q−1 < 0 and the second
integral is symmetric about x = − q

q−1 < 0. Since µm;R,N is the average of the two
integrals, we have

µm;R,N (−∞, 0] > 1
2 .

In other words, the primes are biased toward quadratic non-residues, if we assume
that LI holds on {χquad}.

As an application of Theorem 2.6, we consider the double covering C −→ A1
F where

C is an affine plane curve defined by the equation y2 = m for a fixed irreducible monic
m ∈ F[T ] and A1

F is the affine line over F. Define

a′(N) := #{P ∈ F[T ]|(m/P ) = 1,deg(P ) = N},
b′(N) := #{P ∈ F[T ]|(m/P ) = −1,deg(P ) = N},

and

Em;S,I(X) := X

qX/2

X∑
N=1

(a′(N)− b′(N)).

The function Em;S,I(X) counts the number of primes of A1
F splitting in C minus that

of primes remaining inert in C, whose degrees are up to N . By Theorem 1.2 (for
d = 2), we have (

m

P

)
= (−1)M deg(P ).(q−1)/2

(
P

m

)
. (2.23)

Therefore, if either M is even or q ≡ 1(mod 4), then (m/P ) = (P/m) for all P , and
Em;S,I(X) = Em;R,N (X). So in this case, the prime number race between splitting
primes and inert primes is the same as prime residues and non-residues. For M odd
and q ≡ 3(mod 4). Then, (

m

P

)
= (−1)deg(P )

(
P

m

)
,

which implies
a′(N)− b′(N) = (−1)N (a(N)− b(N)).

This gives us (see [Cha08, Proposition 4.2] and [Cha08, Theorem 4.3])

Theorem 2.12.

Em;S,I(X) = −Bq(X)− 2
k∑
j=1
<
(
ei(π−θj)X

γj
γj − 1

)
+ o(1), (2.24)
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as X →∞.

Hence, we see that the splitting primes outnumber the inert primes.

2.4 Limiting distribution
In this section, we look at the limiting distribution in the general case. The proofs
of the results have been omitted since they are quite similar to the proofs in the
quadratic character case which has been dealt with in the previous section. The
omitted proofs in this section can be found in [Cha08, § 3].

Let a1, . . . , ar be elements of F[T ] prime to m, representing distinct residue classes
modulo m. Define the vector-valued function

Em;a1,...,ar(X) := (Em;a1(X), . . . , Em;ar(X)).

Define
E(T )(X) := (E(T )

1 (X), . . . , E(T )
r (X))

where
E

(T )
l (X) := −c(m, a)Bq(X)−

∑
χ 6=χ0

χ̄(a)
∑
γχ

eiθ(γχ)X γχ
γχ − 1

for l = 1, . . . , r, and ε∗(X) := (Em;a1(X) − E(T )
1 (X), . . . , Em;ar(X) − E(T )

r (X)). By
Theorem 2.5, |ε∗(X)| = o(1).

Lemma 2.13. For any continuous bounded function f on Rr, the limit

lim
N→∞

1
N

N∑
X=1

f(E(T )(X))

exists.

Theorem 2.14. There exists a probability measure µ = µm;a1,...,ar on Borel sets in
Rr such that

µ(f) = lim
N→∞

1
N

N∑
X=1

f(Em;a1,...,ar(X))

for all bounded continuous functions f on Rr.

Theorem 2.15. Assume that the set of all non-principal Dirichlet characters mod
m satisfies LI. Then, the Fourier transform µ̂ of the measure µ in Theorem 2.14 is
given by

µ̂(ξ) = Bm;a1,...,ar(ξ)
∏
χ 6=χ0

∏
=(γχ)>0

J0

(∣∣∣∣∣ 2γχ
γχ − 1

∣∣∣∣∣
∣∣∣∣∣
r∑
l=1

χ(al)ξl

∣∣∣∣∣
)
,

where
J0(z) =

∞∑
n=0

(−1)n(z/2)2n

(n!)2

is the Bessel function of the first kind, and

Bm;a1,...,ar(ξ) := 1
2

(
exp

(
i

√
q

q − 1

r∑
l=1

c(m, al)ξl

)
+ exp

(
i

q

q − 1

r∑
l=1

c(m, al)ξl

))
.

The term Bm;a1,...,ar(ξ) in the above theorem is the cause of the bias.
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2.5 Violation of the LI and examples
In the number field case, LI is conjectured to always hold but in the function field
case, LI can be violated (as in the first three examples of this section), and the bias
can be any of the following: towards squares, non-squares, or non-existent. However,
the results in [Cha08] are still significant since LI holds for the roots of the L-functions
of most algebraic curves as we will show in Chapter 3.

In this section, we continue to assume that m is irreducible. When the degree of
m is small, it is possible to calculate L(s, χquad) explicitly.

Example 2.16. Let p = 3 and m = T 3 + 2T + 1. Then, we have

L(u) = 3u2 − 3u+ 1 =
(

1− 3 +
√

3i
2 u

)(
1− 3−

√
3i

2 u

)
.

Therefore, the only inverse zero (with argument between 0 and π) is

γ1 = 3 +
√

3i
2 =

√
3eiπ/6.

In particular, LI is violated. We now compute Em;R,N (X) using Theorem 2.6. It is
easy to verify the following.

X mod 12 Em;R,N (X)(mod o(1))
0 or 2 −9/2

1 −5
√

3/2
3 or 11 −3

√
3/2

4 or 10 −3/2
5 or 9

√
3/2

6 or 8 3/2
7 3

√
3/2

This shows that Em;R,N (X) is negative for 7/12 of all (large enough) positive
integers X. The bias is therefore towards non-squares. Also, the measure µm;R,N is
concentrated at the seven points, more precisely,

µm;R,N ({P}) :=
{

1/12 if P = −5
√

3/2 or P = 3
√

3/2
2/12 if P = −9/2,−3

√
3/2,−3/2,

√
3/2, or 3/2,

and µm;R,N (A) = 0 for all A not containing the above points.

Example 2.17. For p = 5 and m = T 4 + 4T 3 + 4T 2 + 4T + 1, we have

L(u) = −5u3 + 5u2 − u+ 1 = (1− u)(1 + 5u2),

and
γ1 =

√
5i =

√
5eiπ/2.

The results are as follows.
Since the measure µm;R,N is concentrated evenly in this example, there is no bias.
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X mod 4 Em;R,N (X)(mod o(1))
0 −35/12
1 −7

√
5/12

2 5/12
3

√
5/12

Example 2.18. Taking p = 5 and m = T 5 + 3T 4 + 4T 3 + 2T + 2, we have

L(u) = 25u4 − 25u3 + 15u2 − 5u+ 1

=
(

1 + 5 +
√

5
2 u+ 5u2

)(
1− 5−

√
5

2 u+ 5u2
)

= (1− 2
√

5 cos(4π/5)u+ 5u2)(1− 2
√

5 cos(2π/5)u+ 5u2).

and so
γ1 =

√
5ei2π/5 and γ2 =

√
5ei4π/5.

Using these, we can verify the following. Here, for more than half the values of X,

(Approximate value of)
X mod 10 Em;R,N (X)(mod o(1))

0 −5.80
1 −4.83
2 −2.16
3 1.27
4 0.57
5 0.25
6 0.11
7 2.29
8 1.02
9 −1.79

Em;R,N (X) is positive and so the bias is towards squares.

We now give an example where LI holds.

Example 2.19. Take q = 3 and m = T 4 + 2T 3 + 2T 2 + T + 2. Then

L(u) = −3u3 + 5u2 − 3u+ 1,

and
γ1 = 1 + i

√
2 =
√

3eiθ

where θ = tan−1√2.
√

2 is not in the list of quadratic irrational numbers that can
arise as values of the tangent function at rational multiple values of π (see [Cal06]).
Therefore, (tan−1√2)/π is irrational and LI holds.

We compute µm;R,N (−∞, 0] for the case k = 1. Let µ̃ be a measure whose Fourier
transform is J0(2rξ), with r := |γ1/(γ − 1)|. Then the density of µ̃ is given by{ 1

2r
1√

1−(t/2r)2
1
π if −2r < t < 2r,

0 otherwise.
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Let µ1 and µ2 be the shifts of µ̃ by −q/(q − 1) and −√q/(q − 1), respectively. Then,

µ1(−∞, 0] = 1
π

(
sin−1

(
q

q − 1
1
2r

)
+ π

2

)
∼ 0.71,

µ2(−∞, 0] = 1
π

(
sin−1

( √
q

q − 1
1
2r

)
+ π

2

)
∼ 0.62.

Hence,
µm;R,N (−∞, 0] = µ1(−∞, 0] + µ2(−∞, 0]

2 ∼ 0.67

which means that the bias is towards non-squares.

2.6 Symmetry and central limit behaviours
Theorem 2.20. Suppose that m is irreducible of degree M . Assume that LI holds
for {χquad}. Let µ̃m;R,N be the limiting distribution of√

q − 1
q

Em;R,N (X)√
M

.

Then µ̃m;R,N converges in measure to the Gaussian (2π)−1/2e−X
2/2dX as M →∞.

Proof. We fix an irreducible m whose degree is M . Recall that, if we enumerate the
inverse zeros (whose absolute values are√q) of L(u, χquad) as {γ1, γ̄1, . . . , γk, γ̄k}, then
k = [(M − 1)/2]. We will abbreviate µ̂m;R,N as µ̂ during the proof. From Theorem
2.11, we have

log µ̂
(√

q − 1
q

ξ√
M

)
= logBm;R,N

(√
q − 1
q

ξ√
M

)

+
k∑
j=1

log J0

(∣∣∣∣∣ 2γj
γj − 1

∣∣∣∣∣
√
q − 1
q

ξ√
M

)
(2.25)

Fix a large constant A. Then, for |ξ| ≤ A,∣∣∣∣∣logBm;R,N

(√
q − 1
q

ξ√
M

)∣∣∣∣∣ ≤ log
(

exp
∣∣∣∣ iξ√
q − 1 .

1√
M

∣∣∣∣+ exp
∣∣∣∣ iξ√q√
q − 1 .

1√
M

∣∣∣∣)
= log

(
O

(
exp A√

M

))
= O

(
A√
M

)
, (2.26)

as M → ∞, directly from the definition of Bm;R,N (ξ) in Theorem 2.11. Also, from
the power series expansion of J0(z) = 1− 1

4z
2 + · · · , we see that

k∑
j=1

log J0

(∣∣∣∣∣ 2γj
γj − 1

∣∣∣∣∣
√
q − 1
q

ξ√
M

)
= −

k∑
j=1

∣∣∣∣∣ γj
γj − 1

∣∣∣∣∣
2
q − 1
q

ξ2

M
+ · · · (2.27)
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For all |ξ| ≤ A, it can be shown that the higher term is O(A4/M). To estimate the
first term, let

I :=
k∑
j=1

∣∣∣∣∣ γj
γj − 1

∣∣∣∣∣
2

. (2.28)

We define

L̃(u) = L̃(u, χquad) :=
k∏
j=1

(1− γju)(1− γ̄ju). (2.29)

By taking logarithmic derivative of L̃(u) and then evaluating at u = 1, we obtain

− L̃′

L̃
(1) =

k∑
j=1

γj + γ̄j
|γj − 1|2 − 2I.

Also,

k +
k∑
j=1

γj + γ̄j
|γj − 1|2 =

k∑
j=1

(
γj + γ̄j
|γj − 1|2 + 1

)

=
k∑
j=1

γj + γ̄j + (γj − 1)(γ̄j − 1)
|γj − 1|2

=
k∑
j=1

1 + |γj |2

|γj − 1|2 = 1 + q

q
I.

Therefore, from these two equalities, we deduce

I = q

q − 1

(
L̃′

L̃
(1)− k

)
(2.30)

We can estimate L̃′/L̃(1) using the functional equation (which can be derived easily
from (2.29))

L̃(u, χquad) = ε(χquad)qku2kL̃(1/qu, χquad) (2.31)

for some constant ε(χquad) of absolute value 1. We take the logarithmic derivative
of (2.31). Taking into account the fact that L̃(u) = L(u, χquad) if M is odd, and
L̃(u)(1− u) = L(u, χquad) if M is even (see Proposition 1.12), it follows that

L̃′

L̃
(1) = 2k − 1

q

L′

L
(1/q)− C

where
C :=

{
0 for an odd M ,
1/(q − 1) for an even M .

Switching back to the variable s using u = q−s. Then, from (2.30),

I = q

q − 1

(
k + 1

log q
L′

L
(1, χquad) + C

)
= q

q − 1
M

2 +O(logM), (2.32)
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where we use Lemma 1.11 for the last equality. Combining (2.25), (2.26), (2.27),
(2.28), and (2.32), we obtain

log µ̂
(√

q − 1
q

ξ√
M

)
= −ξ

2

2 +O

(
A√
M

+ A2 logM
M

+ A4

M

)
, (2.33)

for all |ξ| ≤ A. Now, as in [RS94], we can use Levy’s Theorem to prove that the
measures µ̂m;R,N converge in measure to the standard Gaussian. This concludes the
proof.

Theorem 2.21. Assume that the set of all non-principal Dirichlet characters mod
m satisfies LI. The density function of µm;a1,...,ar is symmetric in (x1, . . . , xr) if and
only if either:

1. r = 2 and c(m, a1) = c(m, a2); or

2. r = 3 and there exists ρ 6= 1 satisfying these congruences modulo m:

ρ3 ≡ 1, a2 ≡ a1ρ, and a3 ≡ a1ρ
2.

Since the product of the Bessel functions in the expression for µ̂(ξ) in Theorem
2.15 is even, it is only the factor Bm;a1,...,ar(ξ) that shifts the mean of µ. Hence, if
µ is symmetric, c(m, aj) = c(m, al) for all 1 ≤ j, l ≤ r. If we assume this, then µ is
symmetric if the product of the Bessel functions is symmetric. For this, we have the
following lemma.

Lemma 2.22. Bχ(ξ1, . . . , ξr) :=
∑r
l=1 χ(al)ξl is symmetric in (ξ1, . . . , ξr) for all χ if

and only if one of the two conditions in Theorem 2.21 obtains.

For the proof of this lemma, see [RS94, Lemma 3.2].
We can now prove Theorem 2.21. If r = 2 and c(m, a1) = c(m, a2), then since

Bχ(ξ1, ξ2) is symmetric, so is µ̂(ξ1, ξ2) and also µ. If r = 3 and a2 ≡ a1ρ mod m,
a3 ≡ a1ρ

2 mod m, then c(m, a1) = c(m, a2) = c(m, a3), so the exponential factor in
µ̂ is symmetric in (ξ1, ξ2, ξ3) and by the lemma, so is Bχ(ξ1, ξ2, ξ3). This shows that
µ̂ is symmetric, and therefore also µ.

Conversely, if r ≥ 4 or if condition (2) of Theorem 2.21 fails, then

Bχ(ξ1, . . . , ξr) 6= Bσ
χ(ξ1, . . . , ξr)

for some permutation σ. Assume that

Bm;a1,...,ar(ξ)
∏
χ 6=χ0

∏
=(γχ)>0

J0

(∣∣∣∣∣ 2γχ
γχ − 1

∣∣∣∣∣ |Bχ(ξ)|
)

≡ Bm;aσ(1),...,aσ(r)(ξ)
∏
χ 6=χ0

∏
=(γχ)>0

J0

(∣∣∣∣∣ 2γχ
γχ − 1

∣∣∣∣∣ |Bσ
χ(ξ)|

)
.

First, any χ for which Bχ(ξ) ≡ Bσ
χ(ξ) can be removed on both sides of this identity

without altering the relation. So we may assume that the above product over χ
contains only terms such that Bχ(ξ) 6≡ Bσ

χ(ξ). In view of our earlier assumption, the
product is non-empty. Now we choose ξ generically so that:

1. Bχ(ξ) 6= 0 and Bσ
χ(ξ) 6= 0, for all χ mod m;
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2. if Bχ(ξ)/Bσ
λ(ξ) 6= 1, then

Bχ(ξ)
Bσ
λ(ξ) 6=

∣∣∣∣∣γλ(γχ − 1)
γχ(γλ − 1)

∣∣∣∣∣
for all χ, λ mod m.

This can be done because our set of γχ’s is finite. As a corollary to Theorem 2.20, we
deduce that δ(Pm;R,N ) = µ̃m;R,N [0,∞) satisfies

δ(Pm;R,N )→ 1
2 as M →∞.

From this corollary we have that, for ξ fixed as above and all t ∈ R,

Bm;a1,...,ar(tξ)
∏
χ 6=χ0

∏
=(γχ)>0

J0

(∣∣∣∣∣ 2tγχ
γχ − 1

∣∣∣∣∣ |Bχ(ξ)|
)

≡ Bm;aσ(1),...,aσ(r)(tξ)
∏
χ 6=χ0

∏
=(γχ)>0

J0

(∣∣∣∣∣ 2tγχ
γχ − 1

∣∣∣∣∣ |Bσ
χ(ξ)|

)
.

The smallest zero in t of the left-hand side occurs at a number of the form

w|γχ − 1|
2|γχ|Bχ(ξ) ,

where w is the smallest zero of J0(z). The smallest zero on the right-hand side is at
some

w|γλ − 1|
2|γλ|Bσ

λ(ξ) .

So we must have
w|γχ − 1|

2|γχ|Bχ(ξ) = w|γλ − 1|
2|γλ|Bσ

λ(ξ) .

Due to the second condition above, this implies

Bχ(ξ)
Bσ
λ(ξ) = 1 =

∣∣∣∣∣γλ(γχ − 1)
γχ(γλ − 1)

∣∣∣∣∣ .
. But the γ’s are distinct, since we are assuming LI, so χ = λ. We conclude that
Bχ(ξ) = Bσ

χ(ξ), which contradicts an earlier condition. This completes the proof of
Theorem 2.21.

The next theorem shows that the bias towards a particular residue modulo m
dissipates as M →∞. This is similar to the classical case where µ̂ becomes unbiased
as q →∞ (see [RS94]).
Theorem 2.23. Suppose that m is an arbitrary (not necessarily irreducible) element
in F[T ] of degree M . Assume that the set of all non-principal Dirichlet characters
modulo m satisfies LI. For a fixed r,

max
a1,...,ar∈(F[T ]/m)∗

∣∣∣∣δ(Pm;a1,...,ar)−
1
r!

∣∣∣∣→ 0

as M →∞.
Proof. Take m to be of arbitrary degree M , and a1, . . . , ar, with r fixed, are distinct
elements in (F[T ]/m)∗. Recall that µ̂ is the Fourier transform of a measure who
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existence is established in Theorem 2.15. Let µ̃m;a1,...,ar be the measure on Rr whose
Fourier transform is

µ̂

(√
q − 1
q

ξ√
Φ(m)M

)
.

Then, as in [RS94, §3.2], it is sufficient to prove that µ̃m;a1,...,ar converges in measure
to the Gaussian

e−(x2
1+···+x2

r)

(2π)r/2
dx1 . . . dxr

as M →∞. Fix a large A. For ξ ∈ Rr with |ξ| ≤ A, we obtain

log ˆ̃µm;a1,...,ar(ξ) = logBm;a1,...,ar

(√
q − 1
q

ξ√
Φ(m)M

)

+
∑
χ 6=χ0

∑
=(γχ)>0

log J0

(∣∣∣∣∣ 2γχ
γχ − 1

∣∣∣∣∣
√
q − 1
q

|
∑r
l=1 χ(al)ξl|√
Φ(m)M

)
(2.34)

from Theorem 2.15. The most significant term in (2.34) comes from the first non-
constant term in the expansion of log of the Bessel function, and is given by

S := −1
4
∑
χ 6=χ0

∑
=(γχ)>0

∣∣∣∣∣ 2γχ
γχ − 1

∣∣∣∣∣
2 (

q − 1
q

) |∑r
l=1 χ(al)ξl|2

Φ(m)M .

Define, for any non-principal Dirichlet character χ,

I(χ) := 1
2
∑
γχ

∣∣∣∣∣ γχ
γχ − 1

∣∣∣∣∣
2

.

Note that here the summation is over all inverse zeros. Since∣∣∣∣∣ γχ
γχ − 1

∣∣∣∣∣ =
∣∣∣∣∣ γ̄χ
γ̄χ − 1

∣∣∣∣∣ ,
we have that

I(χ) =
∑

=(γχ)>0

∣∣∣∣∣ γχ
γχ − 1

∣∣∣∣∣
2

.

Therefore,

S =− 1
4
∑
χ 6=χ0

(
q − 1
q

) |∑r
l=1 χ(al)ξl|2

Φ(m)M
∑

=(γχ)>0
4
∣∣∣∣∣ γχ
γχ − 1

∣∣∣∣∣
2

=− q − 1
q

1
Φ(m)M

∑
χ 6=χ0

I(χ)
∣∣∣∣∣
r∑
l=1

χ(al)ξl

∣∣∣∣∣
2

. (2.35)

Let χ∗ be the primitive Dirichlet character which induces χ, and let M(χ∗) be the
degree of its modulus. Then, I(χ) = I(χ∗) (see Proposition 1.12). Also, the technique
used to establish (2.32) applies to I(χ∗) to yield

I(χ∗) = q

q − 1
M(χ∗)

2 +O(logM(χ∗)).
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Applying this to (2.35) (recall |ξ| ≤ A), we get

S = − 1
2Φ(m)M

∑
χ 6=χ0

M(χ∗)
∣∣∣∣∣
r∑
l=1

χ(al)ξl

∣∣∣∣∣
2

+O

(
A2 logM

M

)
. (2.36)

To simplify the above summation, we can apply an argument similar to the one on
[RS94, p. 186]. If we write |

∑r
l=1 χ(al)ξl|2 as the product of the complex sum and

its conjugate, we will get

∑
χ 6=χ0

M(χ∗)
∣∣∣∣∣
r∑
l=1

χ(al)ξl

∣∣∣∣∣
2

=
∑
l,k

ξlξk
∑
χ 6=χ0

χ

(
al
ak

)
M(χ∗).

Essentially, this argument shows that the asymptotic behaviour of S remains un-
changed if M(χ∗) is replaced by M and if all of the cross terms in |

∑r
l=1 χ(al)ξl|2 are

dropped. We conclude

S → −1
2

r∑
l=1

ξl
2, (2.37)

as M →∞. It remains to estimate the other terms in (2.34) than S.
From the definition of Bm;a1,...,ar , we have

2Bm;a1,...,ar

(√
q − 1
q

ξ√
Φ(m)M

)
= exp

(
i

1√
q − 1

1√
Φ(m)M

r∑
l=1

c(m, al)ξl

)

+ exp
(
i

√
q√

q − 1
1√

Φ(m)M

r∑
l=1

c(m, al)ξl

)
.

Let d(m) be the number of monic divisors of m. Then we have that c(m, a) < d(m)
for any a ∈ (F[T ]/m)∗ and d(m) = Oε((qM )ε) for any ε > 0. Therefore,

Bm;a1,...,ar

(√
q − 1
q

ξ√
Φ(m)M

)
= O

(
exp d(m)A√

Φ(m)M

)
. (2.38)

Also, the higher terms in log J0 than S is O(A4/(Φ(m)2M)). Combining all of these
results, we get

ˆ̃µm;a1,...,ar(ξ)→ exp
(
−1

2

r∑
l=1

ξl
2
)
.

Again, by Levy’s theorem, this implies the necessary convergence of µ̃m;a1,...,ar which
completes the proof of the theorem.
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Chapter 3

Linear independence

3.1 Introduction
In the previous chapter, there arises the issue of the existence of linear dependence
relations, with rational coefficients, among zeros (or rather arguments of inverse zeros)
of Dirichlet L-functions. This was analogous to the Grand Simplicity Hypothesis,
introduced in [RS94] as the statement that the set of all ordinates γ ≥ 0 of the non-
trivial zeros ρ of Dirichlet L-functions L(s, χ) are Q-linearly independent when χ runs
over primitive Dirichlet characters and the zeros are counted with multiplicity (in fact,
they are conjectured to be simple). In [Kow08b], the author considers analogues of
this type of independence questions in the context of finite fields since the current
knowledge of the behaviour of zeros of zeta functions of algebraic curves over finite
fields is somewhat more extensive than in the case of number fields. To tackle this
issue, the author uses results developed by him in [Kow06].

In [Cha+97], Chavdarov proves that, in an algebraic family C → U of smooth
projective curves of genus g over a finite field Fq, if the monodromy groups mod l
of the family are "as large as possible" for almost all l, then the numerators det(1 −
TFr|H1(C̄u,Ql)) of the zeta functions of the curves Cu of the family are "almost
all" irreducible, and have splitting field "as large as possible" (not necessarily the
symmetric group).

Chavdarov’s method is similar in principle to the method used by van der Waerden
to show that "most" polynomials of given degree d with integer coefficients have
splitting field as large as possible. This latter result was reproved in a simpler way
and stronger form by Gallagher ([Gal73]) using the large sieve inequalities. Applying
similar ideas to Chavdarov’s problem is possible to some extent. This yields stronger
results than in [Cha+97] (see Theorem 3.9 and Theorem 3.10).

In the next two sections, we introduce the data involved and then state our main
bilinear form estimate from which we derive a "large sieve" statement. Then we apply
the sieve statement to prove Theorem 3.10. We also prove an easy consequence of
the theorem (Proposition 3.11). Note that the statement here is slightly different (an
improved bound) from the one in [Kow06].

Finally, we want to use the sieve for Frobenius to show that in a certain sense, the
roots of the L-functions of most algebraic curves over finite fields do not satisfy any
non-trivial (linear or multiplicative) dependency relations. Although we won’t prove
the most general results given in [Kow08b], we will show this for a certain family of
hyperelliptic curves (see Theorem 3.1). To show this, we use a result very similar to
Theorem 3.10.

Let C/Fq be a smooth, projective, and geometrically connected algebraic curve
over a finite field with q elements and characteristic p, and let g ≥ 0 be its genus. Its
zeta function Z(C, s) is defined (first for s ∈ C with <(s) large enough) by either of
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the equivalent expressions

Z(C, s) = exp

∑
n≥1

|C(Fqn)|
n

q−ns

 =
∏

x closed
point in C

(1−N(x)−s)−1.

It was proved by Schmidt that this can be expressed as

Z(C, s) = L(C, s)
(1− q−s)(1− q1−s)

where L(C, s) = PC(q−s) for some polynomial PC(T ) ∈ Z[T ] of degree 2g. This
polynomial is also called the L-function of C/Fq, and can be factored as

PC(T ) =
∏

1≤j≤2g
(1− αjT ).

Here, αj , 1 ≤ j ≤ 2g are the inverse zeros (sometimes referred to as "zeros", even in
this chapter). By the analogue of Riemann Hypothesis in function fields, we have
that |αj | =

√
q.

When we investigate the possible linear relations among the ordinates of these
zeros, if we allow all imaginary parts, many "trivial" relations come from the fact
that, e.g., the θj +k, k ∈ Z, are Q-linearly dependent. One must therefore consider θj
up to integers, and the simplest way to do this is to consider multiplicative relations∏

1≤j≤2g
e(njθj) = 1

with nj ∈ Q or, raising to a large power to eliminate the denominator, relations

∏
1≤j≤2g

(
αj√
q

)nj
= 1

with nj ∈ Z.
In the multiplicative case, it is immediately clear that we have to take into account

the functional equation

L(C, s) = qg(1−2s)L(C, 1− s),

which may be interpreted as stating that for any j, q/αj is also among the inverse
roots. In particular, except if αj = ±√q, there are identities αjαk = q with j 6= k,
leading to multiplicative relations of the form

αjαk = αj′αk′

(this is similar to the fact that a root 1/2 + iγ of L(s, χ), for a Dirichlet character χ,
gives a root 1/2− iγ of L(s, χ̄), which leads to the restriction of the Grand Simplicity
Hypothesis to non-negative ordinates of zeros). Hence the most natural question is
whether those "trivial" relations are the only multiplicative relations.

Finally, since dealing with a single curve seems still far away of this Grand Simplic-
ity Hypothesis, which involves all Dirichlet L-functions, an even more natural-looking
analogue would be to ask the following: given a family of curves, interpreted as an
algebraic family C → U of curves of genus g over some parameter variety U/Fq, what
(if any) multiplicative relations can exist among the αj(t)/

√
q which are the inverse
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roots of the polynomials PCt(T ), for all t ∈ U(Fq)?
Here is now a result concerning a specific family of curves. We use the following

notation: given a finite family α = (αj) of non-zero complex numbers, we write 〈α〉a
for the Q-vector subspace of C generated by the αj , and 〈α〉m for the multiplicative
subgroup of C∗ generated by the αj . For an algebraic curve C over a finite field, we
denote by Z(C) the multiset of inverse zeros of PC(T ), and similarly with Z̃(C) for
the multiset of normalized inverse zeros α/√q.
Theorem 3.1. Let f ∈ Z[X] be a squarefree monic polynomial of degree 2g, where
g ≥ 1 is an integer. Let p be an odd prime such that p does not divide the discriminant
of f , and let U/Fp be the open subset of the affine t-line where f(t) 6= 0. Consider the
algebraic family Cf → U of smooth projective hyperelliptic curves of genus g given as
the smooth projective models of the curves with affine equations

Ct : y2 = f(x)(x− t), for t ∈ U.

Then for any extension Fq/Fp, we have

|{t ∈ U(Fq)| there is a non-trivial linear relation among Z(C)}| � q1−γ(log q),
(3.1)

|{t ∈ U(Fq)| there is a non-trivial multiplicative relation among Z̄(C)}| � q1−γ(log q),
(3.2)

where γ = 1
4g2+2g+4 > 0, the implied constants depending only on g.

In order to explain precisely the meaning of the statements,we introduce the
following notation: for any finite set M of complex numbers, we define

Rel(M)a = {(tα) ∈ QM |
∑
α∈M

tαα = 0}, (3.3)

Rel(M)m = {(nα) ∈ ZM |
∏
α∈M

αnα = 1}, (3.4)

the additive relation Q-vector space and multiplicative relation group, respectively.
Note that Rel(M)m is a free abelian group.

Then, the condition in (3.1) for a given curve may be phrased equivalently as

Rel(Z(C))a = 0, or dimQ〈Z(C)〉a < 2g or 〈Z(C)〉a ' Q2g.

From the functional equation, it follows that we can arrange the 2g normalized
roots α̃ = α/

√
q in g pairs of inverses (α̃, α̃−1), so that the multiplicative subgroup

〈 ˜Z(Ct)〉m ⊂ C∗ is of rank ≤ g. Denote by Triv(M)m the abelian group

{(nα̃) ∈ ZM |nα̃ − nα̃−1 = 0} (3.5)

which is a subset of Rel(M)m, and let Rel0(M)m = Rel(M)m/Triv(M)m (the group
of non-trivial relations). The interpretation of (3.2) is that most of the time, there is
equality:

Rel(Z̃(Ct))m = Triv(Z̃(Ct))m, or Rel0(Z̃(Ct))m = 0. (3.6)

3.2 Preliminaries
Our main tool is a general estimate for a bilinear form made up from representations
of a system of lisse F̄l-sheaves on a variety over a finite field.
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The first basic data is therefore a base variety U/Fq, where as usual Fq denotes a
finite field of characteristic p with q elements. We assume that U is smooth, affine,
and geometrically connected of dimension d ≥ 1.

We denote by η̄ the geometric generic point of U and by Ū the variety U extended
to F̄q. We therefore have the arithmetic fundamental group π1(U, η̄) and the geometric
fundamental group π1(Ū , η̄). We have an exact sequence

1→ π1(Ū , η̄)→ π1(U, η̄) d→ Gal(F̄q/Fq) ' Ẑ→ 1. (3.7)

For n ≥ 1 and u ∈ U(Fqn , we denote by Fru,qn the geometric Frobenius auto-
morphism at u in π1(U, η̄), i.e., the image of the inverse of the canonical generator
x 7→ xq

n of the Galois group of Fqn via the map

Gal(F̄q/Fq)→ π1(U, η̄)

induced from the inclusion Spec Fqn → U which "is" u. In the above exact sequence
we have then

d(Fru,qn) = −n.

In most of our results, the base field (i.e., q) will be considered fixed, although
the results will be uniform in q so they can be applied to U × Fqn for any n ≥ 1. So
most of the time we just write Fru instead of Fru,q for u ∈ U(Fq).

We also denote generically by Fr the global geometric Frobenius automorphism.
We now come to the sheaves on U that we consider. We assume given a set Λ of

primes 6= p, and for l ∈ Λ, a lisse sheaf F̃l of Fλ-vector spaces of (fixed) rank r ≥ 1,
where Fλ is a finite field characteristic l (the degree if which over Fl may depend on
l). The basic example is when we have lisse sheaves Fl of Zλ-modules and

F̃l = Fl/mλFl,

where Zλ is the ring of integers in a finite extension of Ql with residue field Fλ and
maximal ideal mλ.

Equivalently, F̃l "is" a representation

ρl : π1(U, η̄)→ GL(r,Fλ).

From this description, we can easily define the monodromy groups of F̃l, or of ρl: the
arithmetic monodromy group Gl ⊂ GL(r,Fλ) is the image of ρl, and the geometric
monodromy group Ggl is the image of the subgroup π1(Ū , η̄. Thus from (3.7) we
derive a commutative diagram with exact rows and surjective downward arrows:

1 π1(Ū , η̄) π1(U, η̄) Ẑ 1

1 Ggl Gl Γl 1 ,

d

ϕ

m

(3.8)

where Γl is a finite commutative (cyclic) group.
In the case where the sheaves F̃l arise by reduction of Zλ-sheaves Fl, as described

previously, one says that they form a compatible system if for every extension Fqn/Fq,
every u ∈ U(Fqn) and every l ∈ Λ, the reversed characteristic polynomial of Fru,qn
acting on Fl, i.e., the polynomial

det(1− TFru,qn | Fl)
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has coefficients in Q̄ and is independent of l.
For any l we will consider various sums involving irreducible (complex valued)

linear representations of Gl. Say that two representations of Gl are geometrically
equivalent if their restrictions to Ggl are equivalent, or (by the lemma) if and only
if they differ by a twist by a character of Γl. We now assume chosen a set Πl of
representatives of the irreducible representations of Gl for this equivalence relation.
Using these and characters of Γl, one can parametrize all irreducible representations of
Gl as follows: they are of the form π⊗ψ where π ∈ Πl and ψ ∈ Γ̂l; the representation
π is unique, but ψ is only unique up to multiplication by an element of the group

Γ̂πl := {ψ ∈ Γ̂l | π ' π ⊗ (ψ ◦m)}

where Γ̂l is the character group of Γl.
This ambiguity requires us to control the size of those groups Γ̂πl . We will assume

that for all l ∈ Λ and π ∈ Πl, we have

|Γ̂πl | ≤ κ (3.9)

for some fixed κ ≥ 1. Here is a useful case when we can get such a bound.

Lemma 3.2. Assume that r is even and that for all l we have Ggl = Sp(r,Fl), the
symplectic group for some non-degenerate alternating form 〈·, ·〉 on Frl , and that Gl
is a subgroup of the group SSp(r,Fl) of symplectic similitudes, i.e, for g ∈ Gl we have
〈gv, gw〉 = m(g)〈v, w〉 for some m(g) ∈ F∗l , called the multiplicator of g. Then (3.9)
holds with κ = 2.

Proof. If π is an irreducible representation of Gl and ψ ∈ Γ̂πl , then ψ is trivial on the
center Zl of Gl. For any x ∈ Gl, we can write

x2 = m(x)y

with y ∈ Sp(r,Fl) = Ggl (since m(ax) = a2x for scalar a), so ψ(x)2 = 1. This means
that ψ is of order at most 2, and since it is character of a cyclic group, there are at
most 2 such characters, giving (3.9) with κ = 2.

We need various estimates involving sums of dimensions of the representations in
Πl. We will phrase them in terms of upper bound for the "dimensions" of Gl and of
the set G#

l of its conjugacy classes: let s and t be such that the inequalities

|Gl| ≤ c1l
s, |G#

l | ≤ c2l
t (3.10)

hold for all primes l ∈ Λ, c1 and c2 being two given constants. Note that of course
s = t = r2 is always possible with c1 = c2 = 1 (and that in fact this does not in
general significantly affect the applications).

Lemma 3.3. 1. We have ∑
π∈Πl

dim π ≤ (c1c2l
s+t)1/2,

and for all π ∈ Πl we have

dim π ≤ (c1l
s)1/2.
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2. If r is even, Ggl = Sp(r,Fl) and Gl ⊂ SSp(r,Fl), the estimates (3.10) hold with

c1 = 1, s = 1 + r(r + 1)
2 , c2 = 6r/2, t = r/2 + 1.

Proof. 1. For a representation of a finite groupG, the dimension is always≤ |G|1/2,
and the sum of the dimension is bounded by Cauchy’s inequality by∑

π

dim π ≤ |G#|1/2|G|1/2.

Using (3.10) in the above inequalities, the result follows.

2. It follows from the formula for the cardinality of Sp(r,Fl), and [LP97, Lemmas
1.3 and 1.6].

We now define what it means for a family of sheaves to be linearly disjoint.

Definition 3.4. The family (F̃l) is linearly disjoint if for all l and l′ in Λ, with l 6= l′,
the product map

π1(Ū , η̄)→ Ggl ×G
g
l′

is surjective.

The next couple of results will be useful later and are quoted here without proofs.

Lemma 3.5. Let G1 and G2 be finite groups such that every normal subgroup of Gi
is contained in the center Ci, and such that G1/C1 and G2/C2 are distinct, simple
and non-abelian. Then no proper subgroup G ⊂ G1×G2 projects surjectively on both
G1 and G2.

This is typically applied with G1 = Ggl , G2 = Ggl , and G the image of π1(Ū , η̄)→
G1 × G2 which projects surjectively on both factors. For instance, we have the
following corollary:

Corollary 3.6. Let r be even and let (F̃l) be a family of sheaves as above such that
Ggl = Sp(r,Fl) for all l in Λ, with l ≥ 5 is r = 2 and l ≥ 3 if r = 4. Then the family
is linearly disjoint.

3.3 Bilinear form estimates and large sieve for algebraic
families

We write ∑ ∗

π 6=1
α(π, l, . . .)

for a sum over all the irreducible representations π ∈ Πl of Ggl which are non-trivial.
Using this notation, we now state the bilinear form estimate which is our main tool.

Theorem 3.7. Let U be a variety and (F̃l) a family of sheaves as above, with given
sets Πl of irreducible representations which are representatives for geometric equiva-
lence. Assume that the family is linearly disjoint, that it satisfies (3.9) and moreover
that U and (F̃l) satisfy one of the following conditions:

1. U is a smooth affine curve and (F̃l) arises from a a compatible system of integral
l-adic sheaves.
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2. For all l ∈ Λ, the order of Ggl is prime to p.

Then there exist constants C ≥ 0 and A ≥ 0 such that we have

∑
l≤L

∑ ∗

π 6=1

∣∣∣∣∣∣
∑

u∈U(Fq)
α(u)Tr(π ◦ ρl)(Fru)

∣∣∣∣∣∣
2

≤ (κqd + Cqd−1/2LA)
∑

u∈U(Fq)
|α(u)|2, (3.11)

for any L ≥ 1 and any complex coefficients α(u).
In case 1, we can take A = 1 + s + t/2, and the constant C depends only on Ū ,

the "geometric" compatible system (Fl) on Ū and the constants c1 and c2. In case 2,
we can take A = 1 + 3s+ t/2, and the constant C depends only on Ū , c1 and c2.

In particular the estimate can be applied uniformly for U ⊗ Fqn for any n ≥ 1.

Note that the left-hand side of (3.11) is in fact independent of the choice of
representative sets Πl.

The proof of Theorem 3.7 can be found in [Kow06, § 5]. Here, we derive a large
sieve estimate concerning the average distribution of the Frobenius conjugacy classes
in Gl.

Let L ≥ 2 and suppose that for l ∈ Λ, l ≤ L, we select some conjugacy-invariant
subset Ω(l) of Gl with cardinality ω(l), such that

m(x) = ϕ(−1) ∈ Γl

for all x and l (where m : Gl → Γl and ϕ are defined by the commutative diagram
(3.8).

Let then
P (u, L) =

∑
l≤L

ρl(Fru)∈Ω(l)1

for u ∈ U(Fq) and
P (L) =

∑
l≤L

ω(l)|Ggl |
−1.

The large sieve statement says that for "most" u, the value of P (u, L) is close to the
average value P (L) (in terms of variance).

Proposition 3.8. With U and (F̃l) satisfying one of the assumptions of Theorem
3.7, we have ∑

u∈U(Fq)
(P (u, L)− P (L))2 ≤ (κqd + Cqd−1/2LA)P (L), (3.12)

where the constants C and A are the same as in Theorem 3.7. In particular, the
cardinality of the sifted set

S(U,Ω;L) = {u ∈ U(Fq)|Fru /∈ Ω(l) for all l ≤ L}

satisfies
|S(U,Ω;L)| ≤ (κqd + Cqd−1/2LA)P (L)−1. (3.13)

The above proposition is [Kow06, Proposition 3.3] and its proof can also be found
there.
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3.4 Zeta functions of families of curves
We now come to the application of the large sieve to a strong form of Chavdarov’s
theorem on the generic behaviour of the numerators of zeta functions of curves in
families. We will look for arguments uniform with respect to g so that, in some cases
at least, we obtain results valid even for g large (though not for q fixed, g → +∞).

Let C/Fq be a smooth, projective, and geometrically connected curve of genus g
over a finite field. If Z(C) is its zeta function, we recall that there exists a polynomial
PC ∈ Z[T ] of degree 2g with PC(0) = 1 such that

Z(C) = PC(T )
(1− T )(1− qT ) .

The cohomological definition is that the polynomial PC(T ) can be described as the
(reversed) characteristic polynomial of the geometric Frobenius automorphism acting
on a suitable et́ale cohomology group, specifically

PC(T ) = det(1− TFr|H1(C̄,Zl)). (3.14)

The question investigated by Chavdarov concerns the splitting field of this integer
polynomial as C varies in an algebraic family, e.g. in a hyperelliptic family

Cu : y2 = f(x)(x− u)

where f is a fixed polynomial in Fq[X] of degree 2g with distinct roots in F̄q, and u
is the parameter that can take any value in F̄q which is not a zero of f .

The polynomial Pc satisfies the "functional equation"

T 2gPc
q

T
= Pc(T ).

It is clear from the functional equation that the roots of Pc are paired, i.e. if α ∈ C
is a root of Pc, then qα−1 is also a root. This means that the "splitting algebra"
Q[T ]/(f) has Galois group G which can be seen as a subgroup of the group W2g of
signed permutations of {1, . . . , 2g}. In particular, if the polynomial is irreducible, its
splitting field has maximal Galois group G ' W2g if and only if the splitting field is
of maximal degree |W2g| = 2gg!.

In terms of étale cohomology, the functional equation above is a consequence of
the Poincaré duality which states that there is a natural non-degenerate alternating
pairing

H1(C̄,Zl)⊗H1(C̄,Zl)→ Zl(−1). (3.15)

Note that this implies that the "global" geometric Frobenius Fr of Fq acts onH1(C̄,Zl)
as a symplectic similitude for this pairing, with multiplicator q.

Here is now our first general result about the behaviour of the splitting fields in
a suitable family, which significantly strengthens the results of Chavdarov. We won’t
give the proof of this result (see [Kow06, § 9] for the proof) since it is not directly
applicable to the objective at hand; however, it does complement the second result
that we will state and prove.

Theorem 3.9. Fix an integer g ≥ 1. Let q = pk and let U/Fq be a geometrically
irreducible smooth affine scheme of dimension d ≥ 1 such that one of the following
two conditions is satisfied:

1. U is a curve, i.e., d = 1.
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2. We have p > 2g + 1.

Let π : C → U be a proper smooth family of projective curves of genus g over U .
Assume that for all l > L0 the geometric monodromy group of the integral sheaves
R1π!Zl is the full symplectic group Sp(2g). Then the number N(U/Fq) of u ∈ U(Fq
such that the numerator

Pu = det(1− TFr|H1(C̄u,Ql)) ∈ Z[T ] (3.16)

of the zeta function of the curve Cu = π−1(u) is reducible or has splitting field with
degree strictly less than 2gg! satisfies

N(U/Fq)� qd−γ(log q)

for γ = 1
4g2+3g+5 in case (1) and γ = 1

12g2+7g+9 in case (2), where the implied constant
depends only on L0, g and Ū/F̄q.

The second result is a uniform version (in terms of g) for the families of hyperel-
liptic curves already introduced.

Theorem 3.10. Let g ≥ 1, p 6= 2, q = pk with k ≥ 1. Let f ∈ Fq[X] be a monic
polynomial of degree 2g with distinct roots in F̄q, U ⊂ A1 be the complement of the
set of zeros of f and denote by π : C → U the family of hyperelliptic curves of genus
g given by

Cu : y2 = f(x)(x− u)

completed by the section at ∞, with projection π(x, y, u) = u.
Then the number N(f, q) of u ∈ U(Fq) such that the polynomial

Pu = det(1− TFr|H1(C̄u,Ql)) ∈ Z[T ]

is either reducible or has splitting field with degree strictly smaller than 2gg! satisfies

N(f, q)� q1−γ(log q)

for γ = 1
4g2+3g+5 , where the implied constant is absolute.

Note that the uniform bound in this last result is only non-trivial if g2 is somewhat
smaller than log q.

We will prove the theorem in § 3.6 after some common preliminaries. Here we
include an additional result which is of independent interest.

Since the estimate of Theorem 3.10 is (in particular) uniform in q, it can also be
used in "horizontal" direction, i.e., with q = p varying. For instance, we deduce the
following proposition. In [Kow06], this result is slightly different (Proposition 6.3).
Here, we improve the bound to a power of the logarithm following the suggestion of
C. Helsholtz which has been mentioned as a note in [Kow06].

Proposition 3.11. Let g ≥ 1 be an integer, f ∈ Q[X] be a polynomial of degree 2g
with distinct complex roots. For n ∈ Z not a root of f , let Cn/Q be the hyperelliptic
curve of genus g with equation

Cn : y2 = f(x)(x− n)
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and let Jn be its Jacobian. Then for N ≥ 3, the set S(N) of integers n with |n| ≤ N
such that Jn/Q is not simple up to isogeny satisfies

|S(N)| � N1/2−δ logN

where δ = 1
2

1
4g2+3g+5 . The implied constant depends on g and the splitting field of f .

Proof. Denote first by Qf the set of primes p totally split in the splitting field of f .
Notice that for any y ≥ 2 we have the sieving estimate

|S(N)| ≤ |{n ∈ Z | |n| ≤ N and n(mod p) /∈ Ω(p) for p ∈ Qf , p ≤ y}|

where

Ω(p) = {t ∈ Z/pZ | f(t) 6≡ 0(mod p) and det(1− TFrt |H1(C̄t,Ql)) is irreducible}.

By Theorem 3.10, there exists a constant C ≥ 0 such that for all p we have

|Ω(p)| ≥ p− Cp1−γ(log p) (3.17)

with γ = 1
4g2+3g+5 . We want to apply Gallagher’s larger sieve, as described in [CM05,

§ 2.2]. S(N) is a (non-empty) finite set of integers and our set of prime powers will
just be all primes ≤ y for some y ≤ N that we will choose later. For each p ≤ y, we
have

|S(N)(mod p)| ≤ p− |Ω(p)|.

Using (3.17),

∑
p≤y

log p
p− |Ω(p)| − log 2N ≥

∑
p≤y

log p
Cp1−γ(log p) − log 2N

=
∑
p≤y

Cpγ−1 − log 2N

Note that we always use the same symbol C for the constant even though it might
change in value from one expression to another (as in the case above). Now, γ−1 < 0
and so pγ−1 ≥ yγ−1. Using this, we have

∑
p≤y

Cpγ−1 − log 2N ≥ Cyγ−1

∑
p≤y

1

− log 2N

≥ C yγ

log y − log 2N

for large enough N . Choose y =
√
N . Then

∑
p≤y

log p
p− |Ω(p)| − log 2N ≥ C N δ

logN − log 2N > 0 (3.18)
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for large enough N . In this case, we can apply Gallagher’s larger sieve ([CM05,
Theorem 2.2.1]) and use (3.18) to get

|S(N)| ≤

∑
p≤y

log p− log 2N∑
p≤y

log p
p−|Ω(p)| − log 2N

≤

∑
p≤y

log p− log 2N

C Nδ

logN − log 2N

for large enough N . By Chebyshev’s theorem, we know that
∑

p≤
√
N

log p < C ′
√
N for

some C ′ > 0. Therefore,

|S(N)| ≤ C ′
√
N − log 2N

C Nδ

logN − log 2N

� N1/2−δ logN.

3.5 Preliminaries for the proof of Chavdarov’s theorem
We start with some preliminaries related to the group W2g and to setting up a sieve
for characteristic polynomials of symplectic similitudes.

From the description of W2g we see that there is an exact sequence

1→ {±1}g →W2g
p→ Sg → 1.

We also denote by i the natural inclusion i : W2g → S2g.
The first lemma describes various ways of ensuring that a subgroup of W2g is

equal to W2g.

Lemma 3.12. Let g ≥ 1 and W ⊂ W2g be a subgroup of W2g. Assume that one of
the following conditions is true, where i : W2g → S2g is the embedding above:

1. For any conjugacy class c ⊂W2g, we have c ∩W 6= ∅.

2. The subgroup i(W ) contains a 2-cycle, a 4-cycle, a (2g−2)-cycle and a 2g-cycle.

3. The subgroup i(W ) contains a transposition and acts transitively on {1, . . . , 2g};
moreover, the projection p(W ) contains a transposition and an m-cycle with
m > g/2 prime.

Then in all cases we have W = W2g.

Proof. 1. It is a standard result in finite group theory which is not specific to W2g
(see [Cha+97, Lemma 5.8]).

2. See [DDS98, Lemma 2].

3. Observe that the first condition already implies that W = W2g if g = 1. Oth-
erwise we see that p(W ) acts transitively on {1, . . . , g} and so with the second
and third conditions, we get p(W ) = Sg by the result of Bauer given in [Gal73,
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Lemma, p. 98]. Since i(W ) contains a transposition, we deduce that W = W2g
by [Cha+97, Lemma 5.5].

To set up our sieve, it will be convenient to say that a polynomial f ∈ A[T ] (A
any commutative ring) of degree 2g such that f(0) = 1 and

T 2gf

(
q

T

)
= f(T ),

is q-symplectic of degree 2g. Hence the numerator of the zeta function of a curve
C/Fq is q-symplectic.

We now state a general result comparing a sieve related to characteristic polyno-
mials of elements with multiplicator q in the finite group SSp(2g,Fl) of symplectic
similitudes to the "same" sieve applied to all q-symplectic polynomials of degree 2g.

Recall that we denote by m(g) the multiplicator for a symplectic similitude, i.e.,

〈gv, gw〉 = m(g)〈v, w〉.

Lemma 3.13. Let g ≥ 1 and l a prime. Put

Υg,l = {f ∈ Fl[T ]|f is q-symplectic of degree 2g}.

Let Ω̃(l) ⊂ Υg,l be an arbitrary subset of cardinality ω̃(l) and

Ω(l) = {g ∈ SSp(2g,Fl)|m(g) = q, and deg(1− Tg) ∈ Ω̃(l)},

with cardinality ω(l).
Then we have

ω(l)|Sp(2g,Fl)|−1 ≥ ω̃(l)(l + 1)−g.

The proof of the above lemma, although short, is quite technical and can be found
as the proof of Lemma 7.2 in [Kow06].

The next results are technical estimates which won’t be proved since they are
only required in this precise form for the proof of the uniform version of Chavdarov’s
theorem. The proofs can be found in [Kow06] (see Lemma 7.3).

Recall the following terminology: if f is a monic polynomial of degree g in Z[T ]
which factorizes modulo a prime l as

f = f1 · · · fr

with the fi coprime, irreducible, of degree di ≥ 1, then one says that the cycle type
(or the conjugacy class) associated to f is the conjugacy class in Sg of elements which
are product of disjoint cycles of lengths d1, . . . , dr.

Lemma 3.14. 1. Let g ≥ 1 and let c be a conjugacy class in Sg. For l prime, let

Ω̂c(l) = {f ∈ Fl[T ]|f is monic of degree g and the cycle type associated to f is c},

and ω̂c(l) = |Ω̂c(l)|. Then we have for l > 4g2

ω̂c(l) ≥
|c|
|Sg|

(l − 1)g
(

1− 1√
l

)g
.
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2. Let g ≥ 1 and for l prime let ω1(l) be the number of q-symplectic irreducible
polynomials in Fl[T ] of degree 2g. Then for l > 4g2 we have

ω1(l) ≥ lg

2g

(
1− 1

l

)g
− lg/2.

3. Let g ≥ 1 and for l prime let ω2(l) be the number of q-symplectic polynomials of
degree 2g which factorize as a product of an irreducible quadratic polynomial and
a product of irreducible polynomials of odd degrees. Then we have for l > 4g2

ω2(l) ≥ lg

4g

(
1− 1

l

)g
.

3.6 Proof of the uniform version of Chavdarov’s theorem
We will now prove Theorem 3.10. We will apply Proposition 3.8 with the following
data: in addition to U , which is a smooth geometrically connected affine curve over
Fq, we take the sheaves F̃l = R1f!Fl for l ∈ Λ, where Λ is the set of odd primes.

These sheaves are obtained by reduction modulo l from the compatible system
Fl = R1f!Zl. The existence of the symplectic pairing (3.15) implies that the arith-
metic monodromy group of F̃l can be seen as a subgroup of SSp(2g,Fl, and for any
u ∈ U(Fq), the image of Fru has multiplicator q.

Crucially, for l > 2, we use the unpublished result by Yu ([Yu97]) which states
that the geometric monodromy group for F̃l is equal to Sp(2g,Fl). Then the sheaves
(F̃l) are also linearly disjoint as a consequence of Goursat’s lemma (see Corollary 3.6),
and by Lemma 3.2 we have (3.9) with κ = 2. And finally, Lemma 3.3 (2) give us
(3.10) with s = 2g2 + g + 1, t = g + 1 and c1 = 1, c2 = 6g.

Thus all conditions needed to apply Proposition 3.8 in the case of a one-parameter
family (such as in Theorem 3.10) are valid. We now set up the sieving problem. As
in Lemma 3.13, for any choice of sets Ω̃(l) ⊂ Υg,l defined for l > 2 we let

Ω(l) = {g ∈ SSp(2g,Fl)|m(g) = q, and deg(1− Tg) ∈ Ω̃(l)}.

Applying Proposition 3.8 (see (3.13)) to this sieving problem, we get

|S(U,Ω;L)| ≤ (2q + 4gq1/2(6L)A)P (L)−1, (3.19)

where A = 2g2 + 3g/2 + 5/2 and

P (L) =
∑

2<l≤L
ω(l)|Ggl |

−1, (3.20)

and here we have taken the constant C = 4g. Moreover, by Lemma 3.13, we have

P (L) ≥
∑

2<l≤L
ω̃(l)(l + 1)−g. (3.21)

To use this sieve estimate to study the characteristic polynomials Pu, we will recall
the following two facts:

1. If f ∈ Z[T ] is a polynomial of degree d that factorizes in Fl[T ] as a product of
coprime polynomials f1 · · · fr, with fi irreducible of degree di, then the Galois
group of f , seen as a permutation group of the complex roots of f , contains a
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cycle c of type (d1, . . . , dr), i.e., a product of disjoint cycles of respective length
d1, . . . , dr.

2. The reduction modulo a prime l of a polynomial Pu (the numerator of the zeta
function of the curve Cu = π−1(u)) is the characteristic polynomial of Fru acting
on F̃l.

Thus (2) allows us to control the reduction of a polynomial Pu, while (1) tells us
that the reduction gives information on the Galois group of Pu.

In particular, for any sieving sets Ω(l) ⊂ SSp(2g,Fl), an element u ∈ S(U,Ω;L)
will have the property that the Galois group of Pu, seen as a subgroup of S2g, does
not contain a cycle c associated to an f ∈ Ω(l), where l ranges over primes 2 < l ≤ L.

If we have finitely many sieving sets Ωi, 1 ≤ i ≤ m, defined by the condition that
the cycle associated to det(1− Tg) is in a certain conjugacy classes, and if moreover
those ci have the property that the only subgroup W ⊂W2g containing an element of
each ci is W2g, then it follows that the set of exceptional u ∈ U(Fq) with Pu having
small Galois group will be a subset of the union of the S(U,Ωi;L). So in such a
situation we have

N(U/Fq) ≤ S(U,Ω1;L) + · · ·+ S(U,Ωm;L)
≤ (2q + 4gq1/2LA)

∑
1≤i≤m

Pi(L)−1. (3.22)

Lemma 3.12 describes three possible choices of sets ci; however, the first and the
second involve some ci which are "too" small, so the dependency on g in the estimate
for Pc(L) is bad. Thus we use case (3) of Lemma 3.12. Precisely, we have m = 4 and
the four sets Ωi can be described as follows:

1. Ω1 is the set of irreducible polynomials f ∈ Υg,l.

2. Ω2 is the set of polynomials f ∈ Υg,l which factorize as a product of an irre-
ducible quadratic polynomial and a product of irreducible polynomials of odd
degrees.

To define Ω3 and Ω4, recall that any f ∈ Υg,l can be written uniquely

f = T gh(qT + T−1)

where h ∈ Fl[T ] is a monic polynomial of degree g.

3. Ω3 is the set of f ∈ Υg,l such that the corresponding h has an irreducible factor
of prime degree > g/2.

4. Ω4 is the set of f ∈ Υg,l such that the corresponding h has a single quadratic
irreducible factor and no other irreducible factor of even degree.

These sets allow us to sieve the exceptional elements u. From the relation between
the factorization of Pu modulo l and the existence of elements in the Galois group of
Pu with the associated cycle type, we see that:

1. If Pu is reducible then u ∈ S(U,Ω1;L).

2. If Pu is irreducible but the Galois group W does not contain a transposition,
then u ∈ S(U,Ω2;L), since having Pu(mod l) ∈ Ω2(l) implies that W contains
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an element with cycle type consisting of one 2-cycle and further cycles of odd
length, a power of which will be a transposition.

For the next two facts, we note that the cycle in Sg associated to the polynomial
Qu such that Pu = T gQu(qT + T−1 is the image by the map p : W2g → Sg of
the cycle associated to Pu.

3. If Pu is irreducible but p(W ) does not contain a cycle of prime order m > g/2,
then u ∈ S(U,Ω3;L).

4. If Pu is irreducible but p(W ) does not contain a transposition, then u ∈ S(U,Ω4;L).

Therefore, by case (3) of Lemma 3.12, the u ∈ U(Fq) that should be excluded are in
the union of the S(U,Ωi;L), and we conclude that

N(U/Fq) ≤ S(U,Ω1;L) + · · ·+ S(U,Ω4;L)

≤ 4(2q + 4gq1/2(6L)A)

min
∑

1≤i≤4
Pi(L)

−1

. (3.23)

It remains to give appropriate lower bounds of Pi(L). For Ω3 and Ω4, since
the correspondence between polynomials f ∈ Υg, l and the h ∈ Fl[T ] such that
f = T gh(qT +T−1) is one-to-one, we can count the corresponding h by Lemma 3.14,
applied to the cycle types (i.e., conjugacy classes) in Sg associated to the polynomials
in Ωi. For l > 4g2 and i ∈ {3, 4}, denoting by Ci the set of elements in Sg having the
associated cycle type, we get

ω̃i(l) ≥
|Ci|
|Sg|

(l − 1)g
(

1− 1√
l

)g
,

and thus for L > 4g2 we have

Pi(L) ≥ |Ci|
|Sg|

∑
4g2<l≤L

(
l − 1
l + 1

)g (
1− 1√

l

)g
.

By the mean value theorem we have for any l ≥ 2(
l − 1
l + 1

)g (
1− 1√

l

)g
= 1− gh(l) +O(g2h(l)2)

with
h(l) = 2

l + 1 + 1√
l
− 2√

l(l + 1)
,

and an absolute implied constant. Inserting this in the sum and using the prime
number theorem, we get for L > 4g2 that

Pi(L) ≥ |Ci|
|Sg|

(π(L) +O(g
√
L(logL)−1 + g2 log logL)), (3.24)

with an absolute implied constant.
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By [Gal73, p. 99] (where our C3 is denoted P and C4 is denoted T ), we have for
g ≥ 1

|C3|
|Sg|

� 1
log 2g and |C4|

|Sg|
� 1
√
g
. (3.25)

Using (3.24), this gives the lower bounds

P3(L)� 1
log 2gL(logL)−1, and P4(L)� 1

√
g
L(logL)−1 (3.26)

with absolute implied constants for L � g2(log 2g) (i.e. for L ≥ α1g
2(log 2g), where

the absolute constant α1 can be specified from the implied constants in (3.24) and
(3.25)).

Coming to Ω1, we have by (2) of Lemma 3.14 that for l > 4g2

ω̃1(l) ≥ lg

2g

(
1− 1

lg

)
− lg/2

and so by (3.21), the prime number theorem and the mean-value theorem as before,
we get for L > 4g2 that

P1(L) ≥ 1
2g (π(L) +O(g log logL+ g2 +

√
L))

with an absolute implied constant, and hence for L� g2(log 2g), we have

P1(L)� 1
g
L(logL)−1 (3.27)

with absolute implied constant.
Finally, by (3) of Lemma 3.14 we have for l > 4g2

ω̃2(l) ≥ 1
4g

(
1− 1

l

)g
and P2(L) ≥ 1

4g (π(L) +O(g log logL+ g2))

and for L� g2(log 2g) we obtain also

P2(L)� 1
g
L(logL)−1 (3.28)

with absolute implied constant.
In conclusion, from (3.23), (3.26), (3.27) and (3.28) we get

N(U/Fq)� g2(2q + q1/2(6L)A)L−1(logL)

with an absolute implied constant. We can choose this constant in a way so that
the inequality is valid for all L ≥ 2 and g ≥ 1, since it becomes trivial for g2 �
L(logL)−1. Choosing 6L = q(2A)−1 = q(4g2+3g+5)−1 , with logL� g−2 log q, this gives
the announced uniform estimate

N(U/Fq)� q1−γ(log q)

with γ = (4g2 + 3g + 5)−1, and an implied constant depending only on g.
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3.7 An algebraic criterion for independence
Let g ≥ 1 be a fixed integer, and let W2g be the finite group of order 2gg! which is
described by the following equivalent definitions:

• it is the group of permutations of a finite set M of order 2g which commute
with a give involution c on M without fixed points:

σ(c(α)) = c(σ(α)) for all α ∈M ;

we write usually c(α) = ᾱ, so that σ(α) = σ(ᾱ).

• given a set of M with 2g elements which is partitioned in a set N of g couples
{x, y}, W2g is the subgroup of the group of permutations of M which permute
the set of pairs N .

The second definition provides a short exact sequence

1→ {±1}g →W2g → Sg → 1. (3.29)

The set N of the second definition can also be described as the quotient ofM modulo
the equivalence relation induced by c (α ∼ ᾱ). We now state some properties of the
group W2g, which we assume to be given with some set M and set N of couples on
which W2g acts, as in the second definition.

We let F (M) = QM be the Q-vector space generated by M . We will denote the
canonical basis of F (M) by (fα)α∈M . We will also consider F (M) as given with the
associated permutation representation of W2g.

Lemma 3.15. Let g ≥ 2 be any integer, W2g,M,N and F (M) as before. Then

1. The group W2g acts transitively on M , and acts on M ×M with three orbits:

• ∆ = {(α, α)|α ∈M},
• ∆c = {(α, ᾱ)|α ∈M},
• O = {(α, β)|α 6= β, ᾱ 6= β}.

2. The representation of W2g on F (M) decomposes as the direct sum

F (M) = 1⊕G(M)⊕H(M)

of the three subspaces defined by

1 = Qψ ⊂ F (M), where ψ =
∑
α∈M

fα,

G(M) =
{∑
α∈M

tαfα ∈ F (M)|tα − tᾱ = 0, α ∈M, and
∑
α∈M

tα = 0
}
,

H(M) =
{∑
α∈M

tαfα ∈ F (M)|tα + tᾱ = 0, α ∈M
}
,

which are absolutely irreducible representations of W2g.

Proof. 1. The transitivity of W2g on M is clear since by definition, elements of
W2g only permute the elements of M . Furthermore, it is obvious that the sets
∆, ∆c, O form a partition of M × M , and that ∆ is the orbit of any fixed
(α, α) ∈ ∆ by transitivity.
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∆c is also an orbit. To check this, fix some x0 = (α0, ᾱ0 ∈ ∆c, and let x =
(α, ᾱ) ∈ ∆c be arbitrary. If σ is any element of W2g such that σ(α0) = α, we
have σ(ᾱ) = ᾱ0, hence σ(x0) = x.
Finally, we need to check that O is an orbit. O 6= ∅ because g ≥ 2 (so that
there exist (α, β) ∈ M × M with β /∈ {α, ᾱ}). Using the fact that for any
γ 6= δ in M , there exists σ ∈ W2g such that σ(γ) = δ and σ acts as identity on
M \ {γ, γ̄, δ, δ̄}, it is clear that if y = (α, β) ∈ O, then all elements of O of the
form (α, γ) are in the orbit of y, and so are all elements of the form (γ, β).
So given y1 = (α, β) and y2 = (γ, δ) ∈ O, we can find σ1 such that σ(y1) = (α, δ),
then σ2 such that

σ1σ2(α, β) = σ2(α, δ) = (γ, δ) = y2,

so O is a single orbit as desired.

2. Again from the definition, it is clear that 1, G(M) and H(M) are W2g-invariant
subspaces of F (M), and it suffices to check that the representation F (M)⊗ C
is a direct sum of three irreducible components. This means that we must show
that

〈χ, χ〉 = 3

where χ is the character of the representation of W2g on F (M) ⊗ C, as 3 can
only be written as 1+1+1 as sum of squares of positive integers. Since χ is real-
valued, we have 〈χ, χ〉 = 〈χ2, 1〉; further χ2 is the character of the permutation
presentation of W2g on M ×M , and hence, as for any permutation character,
the inner product 〈χ2, 1〉 is the number of orbits of the action ofW2g onM×M ,
which is equal to 3 as argued before.

Corollary 3.16. Let k ≥ 1 be an integer and W = W2g× · · ·×W2g, the product of k
copies of W2g, the j-th copy acting on Mj. Consider the action of W on the disjoint
union

M =
⊔

1≤j≤k
Mj

where the j-th factor acts trivially on Mi for i 6= j. Let F (M) denote the permutation
representation of W on the Q-vector space QM of dimension 2kg. Then F (M) is Q-
isomorphic to the direct sum

F (M) ' k · 1⊕
⊕

1≤j≤k
Gj ⊕

⊕
1≤j≤k

Hj

of geometrically irreducible representations of W , where Gj is the representation
G(Mj) of the previous lemma, σ1, . . . , σk acting as σj, and similarly Hj is H(Mj)
acting through the j-th factor W2g.

Proof. This is clear from Lemma 3.15 and the definition of M .

Since Corollary 3.16 has described explicitly the decomposition of F (M) as sum of
irreducible representations of W , the theory of linear representations of finite groups
shows that there are very few possibilities for the subrepresentations Rel(M)a and
Rel(M)m ⊗Q.

Proposition 3.17. Let k ≥ 1 and g ≥ 2 be integers. Let P1, . . . , Pk be polynomials
satisfying the conditions above. With notation as above, in particular P = P1 · · ·Pk
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and M the set of zeros of P , assume in addition that for any pair of roots (α, ᾱ, we
have αᾱ ∈ Q∗.

1. We have
Rel(M)a =

⊕
1≤j≤k

Rel(Mj)a,

and for each j, we have either Rel(Mj)a = 0, or Rel(Mj)a = 1. The latter
alternative holds if and only if ∑

α∈Mj

α = 0

or equivalently if TrK/E(α) = 0 for any α ∈Mj.

2. We have
Rel(M)m ⊗Q =

⊗
1≤j≤k

Rel(Mj)m ⊗Q.

Moreover, assume that the rational number αᾱ ∈ Q is positive ad independent
of α, say equal to m. Then for g ≥ 5 in the general case and for g ≥ 2 if m = 1,
we have for each j that

Rel(Mj)m ⊗Q =
{

1⊕G(Mj) if m = 1,
G(Mj) otherwise.

Proof. 1. From representation theory, we know that Rel(M)a is the direct sum
of some subset of the irreducible components of F (M) corresponding to the
decomposition in Corollary 3.16. This isomorphism shows that F (M) decom-
poses as a direct sum over j of representations F (Mj) depending on the j-th
factor ofW , each of which is given by Lemma 3.15. Accordingly, Rel(M)a is the
direct sum over j of subrepresentations of F (Mj). Those are representations
of the j-th factor W2g extended by the identity to W , and tautologically, they
correspond exactly to the relation space Rel(Mj)a among zeros of Pj .
To finish the proof, it suffices therefore to treat each Pj in turn, so we might as
well assume k = 1 and remove the subscript j, using notation in Lemma 3.15
(in particular, writing now M instead of Mj). Noting that, for any α ∈M , the
relation TrK/E(α) = 0 is equivalent with 1 ⊂ Rel(M)a, the claim then amounts
to saying that G(M) and H(M) cannot occur in Rel(M)a.
First, G(M) ⊂ Rel(M)a means that∑

α

tαα = 0 (3.30)

whenever (tα) ∈ QM sum to zero and satisfy tα − tᾱ = 0 for α ∈ M . In
particular, fix a root α of P ; we find that for any σ ∈ W2g with σ(α) 6= α, say
σ(α) = β, we have

(α+ ᾱ)− (β + β̄) = (α+ ᾱ)− σ(α+ ᾱ) = 0

for all σ ∈ W2g = Gal(K/Q) not fixing α. Since the last relation is trivially
valid for σ fixing α (hence ᾱ), it follows that α+ ᾱ ∈ Q. From the assumption
αᾱ ∈ Q∗, it follows that Q(α) is a quadratic field. It must be the splitting field
K of the polynomial P , and hence this cannot occur under the conditions g ≥ 2
and Gal(K/Q) = W2g.
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SimilarlyH(M) ⊂ Rel(M)a means that (3.30) holds whenever (tα) ∈ QM satisfy
tα + tᾱ = 0. Using again a fixed root α of P , we obtain in particular

α− ᾱ = 0 (3.31)

which contradicts the fact that the elements α and ᾱ are distinct.

2. The proof of the direct sum decomposition for Rel(M)m⊗Q is the same as that
for additive relations, and hence we are again reduced to the case k = 1 (and we
write M instead of Mj). We first show that G(M) ⊂ Rel(M)m⊗Q in all cases.
Indeed, considering the generators of G(M) (given by (fαi+fᾱi)−(fαi+1 +fᾱi+1),
1 ≤ i ≤ g − 1), it suffices to show that

αᾱ

ββ̄
= 1

for all α and β, and this is correct from our assumption that αᾱ is independent
of α.
Now we consider the consequences of the possible inclusion of the subrepresen-
tations 1, and H(M) in Rel(M)m⊗Q. First, 1 ⊂ Rel(M)m⊗Q means exactly
that for some integer n ≥ 1, we have

nψ =
∑
α∈M

nfα ∈ Rel(M)m,

which is equivalent to

∏
α∈M

αn =
( ∏
α∈M

α

)n
= (NK/E(α))n = 1.

But the assumption that αᾱ = m be a positive rational number independent of
α implies that NK/E(α) = mg, so 1 ⊂ Rel(M)m ⊗Q if and only if m = 1.
It remains to exclude the possibility that H(M) ⊂ Rel(M)m ⊗ Q to conclude
the proof. But instead of (3.31), this possibility implies now that, for some
integer n ≥ 1, we have

α2n = mn

(
α2n

mn

)
= mn

(
α

ᾱ

)n
= mn.

Hence K/Q would be the Kummer extension Q(
√
m,µ2n), where µ2n is the

group of 2n-th roots of unity. In particular, the Galois group of K/E would be
solvable, which is false for W2g if g ≥ 5 (the non-solvable group Ag occurs as
one composition factor). For m = 1, the Galois group would be abelian, which
is not the case of W2g for g ≥ 2.

3.8 Proof of Theorem 3.1
Consider a squarefree monic polynomial f ∈ Z[X] of degree 2g and an odd prime p
not dividing the discriminant of f . Let q 6= 1 be a power of p. For each t ∈ Fq with
f(t) 6= 0, we consider the (smooth projective model of the) hyperelliptic curve

Ct : y2 = f(x)(x− t),
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which is of genus g so that the L-function Pt ∈ Z[T ] of Ct, as defined in the intro-
duction, has degree 2g.

For a fixed q, we say that t ∈ Fq is special if any one of the following condition
holds:

• f(t) = 0.

• The Galois group of the splitting field of Pt is not isomorphic to W2g.

• The sum of the inverse roots α ∈ Z(Ct) is 0.

Then, under the assumptions stated, it follows from Theorem 8.15 in [Kow08a] (which
is similar to Theorem 3.10) that

|{t ∈ Fq|t is special}| � q1−γ(log q),

where γ = 1
4g2+2g+4 and the implied constant depends only on g. We will show that

the roots of the zeta function of Ct, if t is not special, satisfy the two independence
conditions in Theorem 3.1, and this will finish the proof.

For convenience, we drop the dependency on t (t is fixed) from the notation now
on in cases where it does not lead to any ambiguity. The additive case is clear from
(1) of Proposition 3.17 applied with k = 1,m = q and

P = T 2gPt(T−1) ∈ Z[T ]

(which has the α ∈ Z(Ct) as roots), since the splitting field of K of this polynomial
is the same as that of Pt, hence its Galois group is indeed W2g, and the sum of the
roots of P is non zero for t not special, from the definition.

Now we come to the multiplicative independence of the normalized inverse roots.
Recall first that with M = Z̃(Ct), and involution given by

ᾱ = c(α) = 1
α

the desired conclusion (3.6) can be rephrased as

Rel(Z̃(Ct))m = {(nα̃) ∈ ZM |nα̃ − nα̃−1 = 0},

and the left-hand side does contain the right-hand side, so only the reverse inclusion
is required.

The elements of M are roots of the polynomial

Qt = T 2gPt(q−1/2T−1) ∈ Q(√q)[T ],

which creates a slight complication: if we extend scalars to E = Q(√q) so that
Qt ∈ E[T ], there is a possibility that the Galois group of its splitting field (over E)
is not W2g any more (for example, when √q is in the splitting field of Pt). We deal
with this by looking at the squares of the inverse roots.

Let
M ′ = {α̃2|α̃ ∈M = Z̃(Ct)} = {α2/q|α ∈ Z(Ct)};

the second expression shows that M ′ ⊂ K = Q(Z(Ct)), so the field F = Q(M ′) is
a subfield of K. Its Galois group is the group of those σ ∈ Gal(K/Q) which fix all
α2 for α ∈ Z(Ct), i.e., such that σ(α) ∈ {α,−α} for all α. If σ ∈ Gal(K/F ) is not
the identity, there exists some α ∈ Z(Ct) such that β = σ(α) is equal to −α, and
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this leads to α + β = 0, in particular to Rel(Z(Ct))a 6= 0. Since this contradicts the
previous observation that the elements of Z(Ct) are Q-linearly independent when t
is not special, we have in fact Gal(K/F ) = 1, and so F = K.

We can now apply (2) of Proposition 3.17, with k = m = 1 and P taken to be the
polynomial with zeros M ′, namely∏

γ∈M ′
(T − γ) =

∏
α̃∈M

(T − α̃2) ∈ Q[T ],

with F = K such that Gal(F/Q) = W2g, acting by permutation of the set M ′ with
the involution

c(γ) = γ−1, i.e. c(α̃2) = α̃−2.

Since γc(γ) = 1 for all γ ∈M ′, we obtain

Rel(M ′)m ⊗Z Q = 1⊕G(M ′) = {(nγ) ∈ QM |nγ − nc(γ) = 0, γ ∈M ′}.

Since Rel(M ′)m is free, the natural map Rel(M ′)m → Rel(M ′)m ⊗Q is injective.
Note also the tautological embedding Rel(M)m

i→ Rel(M ′)m induced by the map
ZM → ZM which maps any basis vector fα̃ of ZM to fα̃2 of ZM . If m ∈ Rel(M)m,
we have

i(m) ∈ {(nγ) ∈ QM |nγ − nc(γ) = 0, γ ∈M ′}

and this means that Rel(M)m = Triv(M)m, as desired.
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