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Introduction

The study of residues and nonresidues of Dirichlet characters dates back to the early
19th century when Gauss used a bound on the smallest χ-nonresidues where χ is the Leg-
endre symbol ( ·

p ) and p is a prime ≡ 1(mod 8) required for his first proof of the quadratic
reciprocity law.

Later work of Linnik and Vinogradov succeeded in giving a bound l ≪ϵ p
1
4+ε for the

smallest prime quadratic residue l i.e. χ(l) = 1 where χ is a quadratic character modulo a
prime p.

In the first section, we give a lower bound for prime residues of quadratic characters
based on an improved version of Burgess’s bound.

As a consequence of Chebotarev’s density theorem, the proportion of rational primes
that split completely in a number field K is given by 1

[L:Q] , where L is the normal closure of

K/Q, hence one could ask for an estimate of the smallest such prime. Following the work
of mathematician Paul Pollack, we prove as a main result in section 3, that in the special
case when K is an abelian number field, we have that p≪ε,k D

1
4+ε, where k = [K : Q]. To

see this, we heavily rely on Siegel’s Theorem on lower bounds for the L-series L(1, χ). A
drawback of this is that the constant appearing in Theorem 3.1 is not effective. This can
be improved though if one is allowed to exclude certain bad moduli. For instance, there can
be established a lower bound of the form (log q)−O(1) ≪ L(1, χ) after excluding one bad

moduli q in each hyperdyadic range 2100
k ≤ q ≤ 2100

k+1 ∀k ∈ N, which is due to a result
of Landau(see [7], pp. 362-363) By the same reason, we can have effectiveness in Theorem
3.1 if all the characters appearing in the decomposition of ζK(s) have odd order, thus not
being real. In particular, this holds true when [K : Q] is odd.
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1 Bounds for small prime character residues

1.1 Burgess’s bound

We want to prove the following theorem([12], Theorem 1.3)

Theorem 1.1. Let ε ≥ 0 and let A ≥ 0. There is an m0 = m0(ε,A) with the following
property: If m ≥ m0 and χ is a quadratic character modulo m, then there are at least
(logm)A primes l ≤ m

1
4+ε with χ(l) = 1.

In doing so, we need some some additional results, mainly a modified version of
Burgess’s bound below obtained by Norton([8]). Let χ be a Dirichlet character. Then
we define

SN (x, χ) =
N+x∑

y=N+1

χ(y)

for any integers N, x with x ≥ 1.

Theorem 1.2. (Burgess) Let n,x be positive integers, let N be any integer and let ε be
any positive real number. Let χ be a nonprincipal Dirichlet character mod n. Then∣∣SN (x, χ)

∣∣≪ε,t x
1− 1

t n
t+1

4t2
+ε (1.1)

for each of the values t = 1, 2, 3( the implied constant depends at most on ε and t). Further-
more, if n is cubefree, then (1.1) holds for any positive integer t.

This theorem has important applications in number theory and as mentioned, we will
prove the following, stronger version of (1.1) that holds for any positive integers n, x, t and
any nonprincipal character χ mod n, which actually gives several improved estimates in
questions about the structure of the multiplicative group mod n.

Theorem 1.3. Let n, k,N, x be any integers with n, k, x positive and let χ be a nonprin-
cipal character mod n such that χk is principal. Then∣∣SN (x, χ)

∣∣≪ε,t Rk(n)
1
t x1− 1

t n
t+1

4t2
+ε (1.2)

for any positive integer t, where

Rk(n) = min{M(n)
3
4 , Q(k)

9
8 }

and
M(n) =

∏
pe||n,e≥2

pe

Q(k) =
∏

pe||k,e≥3

pe

In particular, if x ≥ Rk(n)
1
4+δ for δ > 0, then∣∣SN (x, χ)

∣∣≪δ xn−δ2(1+2δ)−1

(1.3)

We need 2 useful lemmas.

Lemma 1.4. Suppose that n, q,m are positive integers with n = qm and gcd(q,m) = 1.
If χ is a character mod n, then χ admits a unique representation χ = θξ, where θ is a
character mod q and ξ is a character mod m. Furthermore, χ is primitive iff both θ and ξ
are primitive.
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This lemma is an easy application of the Chinese Remainder Theorem. For details,
see[4], pp.220-221.

Lemma 1.5. Let χ be a primitive character mod n, where n is a positive integer greater
than 1. Let N, x, t be any integers with x, t positive. Then∣∣SN (x, χ)

∣∣≪ε,t M(n)
3
4tx1− 1

t n
t+1

4t2
+ε

where M(n) is defined as before.

Proof. Write M(n) = m and let

q =
∏

pe||n,e≤2

pe

By the definition of M(n), we have that n = qm, with gcd(q,m) = 1.
Notice that if x < m, then

m
3
4tx1− 1

t n
t+1

4t2
+ε > m

3
4tx1− 1

t m
1
4t = m

1
t x1− 1

t > x
1
t x1− 1

t = x ≥ |SN (x, χ)|

So we may assume that m ≤ x and observe that if m = n, then

m
3
4tx1− 1

t n
t+1

4t2
+ε > n

3
4tn1− 1

t n
t+1

4t2
+ε = n

1
4t2

+1+ε > n ≥ |SN (x, χ)|

Hence we must have m < n and q > 1. By the previous lemma, χ can be represented in an
unique way as a product χ = θξ, where θ is a primitive character mod q and ξ is a primitive
character mod m.

Since gcd(q,m) = 1, we have that for any nonzero integer a, there exists a unique
integer b, 1 ≤ b ≤ m such that a ≡ −bq(mod m).

Using the decomposition of χ we have the following

|SN (x, χ)| = |
m∑

a=1

∑
N<a≤N+x

a≡−bq(modm)

θ(a)ξ(a)| ≤
m∑

a=1

|
∑

N<a≤N+x
a≡−bq(modm)

θ(a)|

Writing a = cm− bq, we have that θ(a) = θ(c)θ(m) so

|SN (x, χ)| ≤
m∑

a=1

|
∑

N+bq
m <c≤N+bq+x

m

θ(c)| (1.4)

Notice the following ∑
N+bq

m <c≤N+bq+x
m

θ(c) = S⌊N+bq
m ⌋(

⌊ x
m

⌋
, θ)

By applying Theorem 1.2, we have∣∣∣∣S⌊N+bq
m ⌋(

⌊ x
m

⌋
, θ)

∣∣∣∣≪ε,t M(q)
3
4

⌊ x
m

⌋1− 1
t

q
t+1

4t2
+ε

Therefore, since q is cubefree, we obtain∣∣∣∣S⌊N+bq
m ⌋(

⌊ x
m

⌋
, θ)

∣∣∣∣≪ε,t (
x

m
)1−

1
t q

t+1

4t2
+ε = (

x

m
)1−

1
t
n

m

t+1

4t2
+ε

= m−1+ 1
t−

t+1

4t2
−εx1− 1

t n
t+1

4t2
+ε

Applying this in (1.4) we get

|SN (x, χ)| ≪ε,t

m∑
a=1

m−1+ 1
t−

t+1

4t2
−εx1− 1

t n
t+1

4t2
+ε = m ·m−1+ 3

4t−
1

4t2
−εx1− 1

t n
t+1

4t2
+ε
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= m
3
4t−

1
4t2

−εx1− 1
t n

t+1

4t2
+ε

But
m

3
4t−

1
4t2

−εx1− 1
t n

t+1

4t2
+ε ≪ε,t m

3
4tx1− 1

t n
t+1

4t2
+ε = M(n)

3
4tx1− 1

t n
t+1

4t2
+ε

which concludes the proof.

Lemma 1.6. Let N,x, t be any integers with x, t positive and let χ be a nonprincipal
character mod n with conductor f . Then∣∣SN (x, χ)

∣∣≪ε,t 2
ω(n)M(f)

3
4tx1− 1

t n
t+1

4t2
+ε (1.5)

where ω(n) is the number of distinct prime factors of n.

Proof. Let ξ be a primitive character mod f which induces χ and let

q =
∏

p|n,p-d

p

Then we can decompose χ as χ = θξ, where θ is the principal character mod q.
Using the representation

θ(y) =
∑

e|gcd(y,q)

µ(e) =
∑

e|y,e|q

µ(e)

where µ is the Möbius function, we get the following

|SN (x, χ)| = |
N+x∑

y=N+1

χ(y)|

= |
N+x∑

y=N+1

θ(y)ξ(y)|

= |
N+x∑

y=N+1

(
∑

e|y,e|q

µ(e)) · ξ(y)|

So we have that
|SN (x, χ)| = |

∑
N
e <z<N+x

e

(
∑
e|q

µ(e)) · ξ(z)|

= |
∑
e|q

µ(e)| · |
∑

N
e <z<N+x

e

ξ(z)|

But the last quantity is smaller than∑
e|q

|
∑

N
e <z<N+x

e

ξ(z)| =
∑
e|q

|S⌊N
e ⌋(
⌊x
e

⌋
, ξ)| (1.6)

By the previous lemma, we have∣∣∣∣S⌊N
e ⌋(
⌊x
e

⌋
, ξ)

∣∣∣∣≪ε,t M(f)
3
4t

⌊x
e

⌋1− 1
t

f
t+1

4t2
+ε

and since e ≥ 1 we get that∣∣∣∣S⌊N
e ⌋(
⌊x
e

⌋
, ξ)

∣∣∣∣≪ε,t M(f)
3
4tx1− 1

t f
t+1

4t2
+ε (1.7)
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From (1.6) and (1.7) we therefore obtain that

|SN (x, χ)| ≪ε,t

∑
e|q

M(f)
3
4tx1− 1

t f
t+1

4t2
+ε

and since ∑
e|q

1 = 2ω(q) ≤ 2ω(n)

we conclude that ∣∣SN (x, χ)
∣∣≪ε,t 2

ω(n)M(f)
3
4tx1− 1

t n
t+1

4t2
+ε

Notice that for any divisor d of a positive integer n, we have that M(d)|M(n). This
simply follows from the definition of M(n). Now, since 2ω(n) ≪ε n

ε, we remark that we can

get (1.2) from Lemma 1.6 with Rk(n) replaced by M(n)
3
4 . More work is required though to

prove the theorem in its entirety.

Let n, k be positive integers and denote (Z/nZ)× by C(n). Let Ck(n) ≤ C(n) be the
subgroup of the kth powers and write v := vk(n) = [C(n) : Ck(n)].

As a straightforward application of the Chinese Remainder Theorem, it can be showed
that vk is multiplicative and therefore the next lemma characterizes vk completely.

Lemma 1.7.

vk(n) =


1 if n = 2

gcd(k, φ(pa)) if n = pa for p odd prime and a ≥ 1

gcd(k, 2)gcd(k, 2a−2) if n = 2a, a ≥ 2

Proof. Suppose that n = pa, where p is an odd prime and a ≥ 1. Let g be a primitive root
mod pa and let t be a positive integer. Then y = gt is a kth power mod pa iff the congruence
t ≡ mk(mod pa) is solvable for the integer m. But a well known result in elementary number
theory, which can be proved for example using Dirichlet’s approximation theorem, tells us
that this congruence has solutions iff d = gcd(k, φ(pa))|t.

Hence Ck(p
a) is represented by the numbers gdr, 0 ≤ r < φ(pa)

d so |Ck(p
a)| = φ(pa)

d .
Therefore

vk(p
a) = [C(pa) : Ck(p

a)] = d = gcd(k, φ(pa))

It is known that for a ≥ 3, C(2a) ≃ Z/2Z×Z/2a−2Z =< −̂1, 5̂ >. So any element x ∈ C(2a)
can be written uniquely as

x ≡ (−1)α5β(mod 2a)

where α ∈ {0, 1} and β ∈ {0, 1, ..., 2a−2 − 1}. Notice that this also holds for a = 2 since

C(4) = {1̂, 3̂} =< −̂1 >.
In the same manner as before, we easily get that

vk(2
a) = gcd(k, 2)gcd(k, 2a−2) for a ≥ 2

Finally, vk(2) = [C(2) : Ck(2)] = 1.

We now give the proof of Theorem 1.3

Proof. Consider the prime decomposition of n:

n = pa1
1 · ... · par

r
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where r ≥ 1, ai ≥ 1∀ i ∈ 1, r and p1, ..., pr are primes with p1 < ... < pr.
Moreover, write

k = pk1
1 · ... · pkr

r k′

where ki ∈ N ∀ i ∈ 1, r and k′ ≥ 1 such that (k′, p1 · ... · pr) = 1. Now, for each i ∈ 1, r,
define

γi =

{
min{ai, ki + 1} if pi is odd

min{ai, ki + 2} if pi = 2

Furthermore, let

λ := λk(n) =

{
2 if n is even and k is odd

1 otherwise

and define

nk =

r∏
i=λ

pγii

with the convention that nk = 1 if the product is empty. Let d be the conductor of χ. We
show that d|nk. Indeed, since n = pa1

1 · ... · par
r , we can write

χ = χ1 · ... · χr

where χi is a character mod pai
i ∀ i ∈ 1, r. By the definition of the conductor, we have that

fχ =
r∏

i=1

fχi

where fθ denotes the conductor of the character θ. Also notice that χk
i is principal ∀i ∈ 1, r.

Let y be a positive integer such that ∃ i ∈ 1, r such that pi - y. Then y is a kth power
mod pai

i iff y is a kth power mod pγi

i . To see this, observe that if pi - y, then there exists
a positive integer t such that y = gt, where g is a primitive root mod pai

i . Hence, as in the
proof of Lemma 1.7, y = gt is a kth power mod pai

i if and only if d = gcd(k, φ(pai
i ))|t.

Similarly, y = gt is a kth power mod pγi

i if and only if the congruence t ≡ m′k(mod pγi

i )
is solvable for the integer m′ iff d′ = gcd(k, φ(pγi

i ))|t.
So from the above, it suffices to show that d|t ⇔ d′|t. It can be easily seen that for

a, b, c non-zero integers with gcd(b, c) = 1 we have that

gcd(ab, c) = gcd(a, c) (1.8)

Now we have the following

d = gcd(k, φ(pai
i ))

= gcd(pk1
1 · ... · pkr

r k′, pai−1
i (pi − 1))

= gcd(
k

pki
i

· pki
i , pai−1

i (pi − 1))

= p
min{ki,ai−1}
i gcd(

k

pki
i

, pi − 1)

= pγi−1
i gcd(

k

pki
i

, pi − 1)

But then, putting a = k

p
ki
i

, b = pki
i , c = pi − 1 in (1.8) yields

gcd(
k

pki
i

, pi − 1) = gcd(
k

pki
i

pki
i , pi − 1) = gcd(k, pi − 1)
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So d = pγi−1
i gcd(k, pi − 1).

On the other hand
d′ = gcd(k, φ(pγi

i ))

= gcd(k, pγi−1
i (pi − 1))

= p
min{ki,γi−1}
i gcd(k, pi − 1)

But, by definition, γi ≤ ki + 1 so γi − 1 ≤ ki and therefore

d′ = pγi−1
i gcd(k, pi − 1)

So d = d′ and this shows that y is a kth power mod pai
i iff y is a kth power mod pγi

i . It
follows that if y ≡ 1(mod pγi

i ) then χi(y) = 1 so by the definition of the conductor we get
that fχi |p

γi

i .
Now, if p1 = 2 and k is odd, then by Lemma 1.7, any odd y is a kth power mod pa1

1 so
χ1 is principal and fχ1 = 1.

Combining these results we get that fχ = d|nk.
For another way to prove this fact using the number Ωk(d) of primitive characters

χ(mod d) such that χk is principal, see [8].
Since d|nk, it follows that M(d) ≤M(nk). Also, observe that ω(n) ≤ ω(nk) + 1 since

λ ≤ 2.
By applying Lemma 1.6 for the character χ and using the fact that 2ω(m) ≪ε mε for

a positive integer m we obtain∣∣SN (x, χ)
∣∣≪ε,t M(nk)

3
4tx1− 1

t n
t+1

4t2
+ε

k ∀t ∈ N∗ (1.9)

Clearly nk|n and therefore M(nk)|M(n). Let us prove that M(nk) ≤ 8Q(k)
3
2 .

To show this, consider the two possible cases:

Case 1. n is odd or n is even and k is odd.

Then for each i ∈ λ, r and γi ≥ 3, we must have that pi is odd and ki ≥ 2. But
γi = min{ai, ki + 1} so

γi ≤ ki + 1 ≤ 3

2
ki since ki ≥ 2

Hence ∏
pe||nk

e≥3

pe = M(nk) ≤
∏

λ≤i≤r
ki≥2

p
3
2ki

i = (
∏

λ≤i≤r
ki≥2

pki
i )

3
2

But by the definition of Q(k), we have that

Q(k) ≥
∏

λ≤i≤r
ki≥2

pki
i

so
M(nk) ≤ (

∏
λ≤i≤r
ki≥2

pki
i )

3
2 ≤ Q(k)

3
2 (1.10)

Case 2. n and k are both even.

Then λ = 1 and p1 = 2. If γ1 < 3, we have that

M(nk) =
∏

pe||nk

e≥3

pe =
∏

2≤i≤r
γi≥3

pγi

i
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and as in the first case we obtain that

M(nk) ≤ Q(k)
3
2 (1.11)

If γ1 = 3, then

M(nk) =
∏

pe||nk

e≥3

pe = 23 ·
∏

2≤i≤r
γi≥3

pγi

i ≤ 23 ·
∏

2≤i≤r
ki≥3

p
3
2ki

i = 8(
∏

2≤i≤r
γi≥3

pki
i )

3
2 ≤ 8Q(k)

3
2 (1.12)

If γ1 = min{a1, k1 + 2} ≥ 4, then k1 ≥ 2, hence 1 + 3
2f1 = f1 + ( f12 + 1) ≥ f1 + 2 ≥ γ1.

Therefore we obtain

M(nk) = 2γ1 ·
∏

2≤i≤r
γi≥3

pγi

i ≤ 21+
3
2 f1 ·

∏
2≤i≤r
ki≥2

p
3
2ki

i = 2(
∏

1≤i≤r
ki≥2

pki
i )

3
2 ≤ 2Q(k)

3
2 (1.13)

From (1.10), (1.11), (1.12) and (1.13) we conclude that

M(nk) ≤ 8Q(k)
3
2 (1.14)

So we have that
M(nk)

3
4 ≤ 8

3
4Q(k)

9
8

and since nk ≤ n and M(nk) ≤M(n), by setting Rk(m) = min{M(n)
3
4 , Q(K)

9
8 } and using

(1.9) we obtain ∣∣SN (x, χ)
∣∣≪ε,t Rk(n)

1
t x1− 1

t n
t+1

4t2
+ε

which is precisely the main statement of Theorem 1.3.
As for the remaining part of the theorem, observe that if x ≥ Rk(n)n

1
4+δ for some

δ > 0, then Rk(n) ≤ xn− 1
4−δ and from (1.2) we get∣∣SN (x, χ)

∣∣≪ε,t (xn
− 1

4−δ)
1
t x1− 1

t n
t+1

4t2
+ε = xn

t+1

4t2
+ε− 1

4t−
δ
t = xn

1
4t2

+ε− δ
t

So ∣∣SN (x, χ)
∣∣≪ε,t xn

f(t)+ε

where f : (0,+∞) −→ R , f(t) = 1
4t2 −

δ
t .

Since the derivative of f is

f ′(t) =
δ

t2
− 1

2t3
=

2δt− 1

t3

we have that f is increasing for t ≥ 1
2δ so for t =

⌈
1
2δ

⌉
we have

f(t) ≤ f(
1

2δ
+ 1) =

1

4 · (1 + 1
2δ )

2
− δ

1 + 1
2δ

=
δ2

(2δ + 1)2
− 2δ2

2δ + 1

=
δ2 − 2δ2(2δ + 1)

(2δ + 1)2

= −δ2(4δ + 1

(2δ + 1)2
< −δ2(2δ + 1

(2δ + 1)2
= −δ2(1 + 2δ)−1

So we have that ∣∣SN (x, χ)
∣∣≪ε xn

−δ2(1+2δ)−1+ε

and (1.3) follows for an appropriate choice of ε = ε(δ).

9



Corollary 1.8. Let q > 1, χ a primitive character modulo q of order dividing k and let
δ ∈ (0, 1

3 ]. Then, for x ≥ q
1
4+δ, we have that∣∣∣∣∑

n≤x

χ(n)

∣∣∣∣≪δ,k x1−δ2 (1.15)

Proof. Applying Theorem 1.3 with N = 0 reads

∣∣S0(x, χ)
∣∣ = ∣∣∣∣ ∑

1≤n≤x

χ(n)

∣∣∣∣≪ε,t Rk(q)
1
t x1− 1

t q
t+1

4t2
+ε ∀t ∈ N, t ≥ 1

Hence ∣∣∣∣∑
n≤x

χ(n)

∣∣∣∣≪ε,t,k x1− 1
t q

t+1

4t2
+ε ∀t ∈ N, t ≥ 1

Since x ≥ q
1
4+ε, we have that

q
t+1

4t2
+ε ≤ x

t+1

4t2
+ε

1
4
+δ

Thus ∣∣∣∣∑
n≤x

χ(n)

∣∣∣∣≪ε,t,k x1− 1
t x

t+1

4t2
+ε

1
4
+δ = x · x

1
4t2

− δ
t
+ε

1
4
+δ

Since this holds for any t ∈ N, t ≥ 1 and for any ε > 0, choosing t =
⌈

1
2δ

⌉
, ε = δ2

60 and
keeping in mind that δ ∈ (0, 1

3 ], we have that

t <
1

2δ
+ 1 =

1

δ
(
1

2
+ δ) ≤ 1

δ

(1
2
+

1

3

)
=

5

6δ

Hence
1

4t2
− δ

t
=

1

t

( 1

4t
− δ
)
≤ 1

t

(δ
2
− δ
)
= − δ

2t
≤ −δ

2

6δ

5
= −3

5
δ2

So
1

4t2
− δ

t
+ ε ≤ −3

5
δ2 +

δ2

60
= − 7

12
δ2

But then, since 1
4 + δ ≤ 1

4 + 1
3 = 7

12 , we have that

1
4t2 −

δ
t + ε

1
4 + δ

≤ −δ2

which completes the proof.

This corollary is a very important consequence of Burgess’s bound as it is heavily used
in the third section to obtain the main result of this paper.

We continue with an application of Theorem 1.3

Theorem 1.9. Let χ be a nonprincipal character mod n. Let m,h be any integers with
h positive and suppose that χ is constant on {y|m < y ≤ m + h and gcd(y, n) = 1}.Then
h≪ε n

1
4+ε.

This theorem generalizes a result of Burgess who obtained the bound h
1
4 log p for the

particular case when n = p is a prime and also a result of Norton on consecutive power
residues(see[9], Theorem 4).

10



Proof. Let χ be a nonprincipal character mod n of order k which satisfies the condition in
the hypothesis and let p be a prime factor of k.

Consider θ, the principal character mod n and define a character ξ mod n, ξ = χ
k
p .

Then ξ has order p and it must be constant on {y|m < y ≤ m+ h and gcd(y, n) = 1}. But
then

Sm(h, ξ) = Sm(h, θ) (1.16)

By the representation of θ used in the proof of Lemma 1.6, we have

Sm(h, θ) =
m+h∑

y=m+1

θ(y)

=

m+h∑
y=m+1

∑
d|y,d|n

µ(d)

=

m+h∑
y=m+1

gcd(y,n)=1

∑
d|y,d|n

µ(d) +

m+h∑
y=m+1

gcd(y,n)>1

∑
d|y,d|n

µ(d)

=
m+h∑

y=m+1
gcd(y,n)=1

1 +
m+h∑

y=m+1
gcd(y,n)>1

∑
d|gcd(y,n)

µ(d) (1.17)

Since there are φ(n) numbers relatively prime to n in any length n interval [kn+1, (k+1)n],
we can estimate the first term in (1.17) by h

nφ(n).
As for the second one, we have that∑

d|gcd(y,n)

µ(d) ≤
∑

d|gcd(y,n)

1 = 2ω(gcd(y,n))

So
m+h∑

y=m+1
gcd(y,n)>1

∑
d|gcd(y,n)

µ(d) ≤
m+h∑

y=m+1
gcd(y,n)>1

2ω(gcd(y,n))

and this can be bounded in terms of nε for any ε > 0.
Hence we have the estimate∣∣Sm(h, θ)

∣∣ = h

n
φ(n) +Oε(n

ε)

On the other hand, Theorem 1.3 gives us∣∣Sm(h, ξ)
∣∣≪ε,t h

1− 1
t n

t+1

4t2
+ε ∀t ∈ N∗

So from these last results and (1.15) we get that

h

n
φ(n)≪ε,t h

− 1
t n

t+1

4t2
+ε

Hence
h

1
t ≪ε,t n

t+1

4t2
+ε

So
h≪ε,t n

t+1
4t +εt = n

1
4+

1
4t+ε

Choosing t as an appropriate function of ε, we get the desired result.

Theorem 1.9 can be generalized as follows:

11



Theorem 1.10. Let K be a real valued function on the positive integers such that

1 ≤ K(n)≪ε n
ε ∀n ∈ N∗

Let χ be a nonprincipal character mod n of order k. Let m,h be any integers with h positive
and suppose that χ takes at most min{k − 1,K(n)} distinct values on the set {y|m < y ≤
m+ h and gcd(y, n) = 1}. Then h≪ε n

1
4+ε.

For details of the proof of this theorem, see [10].

1.2 Dirichlet’s hyperbola method

Let f, g, h be multiplicative functions such that f = g ⋆ h, where ⋆ denotes the
Dirichlet convolution of g and h i.e.

(g ⋆ h)(n) =
∑
d|n

g(d)h(
n

d
) =

∑
ab=n

g(a)h(b)

where the sum extends on all positive divisors of n or equivalently over all pairs (a, b) of
positive integers whose product is n. For more on the Dirichlet convolution also known as
Dirichlet product, see [5].

Dirichlet’s hyperbola method ( typically shortened to hyperbola method ) is a way to
compute

∑
n≤x f(n) using the Dirichlet convolution f = g ⋆ h.

Theorem 1.11. (Dirichlet’s hyperbola method). Let f, g, h be multiplicative functions
as above and write

G(X) =
∑

1≤n≤X

g(n) and H(X) =
∑

1≤n≤X

h(n)

Then∑
1≤n≤X

f(n) =
∑

1≤n≤X

(g ⋆ h)(n)

=
∑

1≤a≤y

g(a)H(
x

a
) +

∑
1≤b≤X

y

h(b)G(
X

b
)−G(y)H(

X

y
) ∀ 1 ≤ y ≤ X (1.18)

Proof. We have that ∑
1≤n≤X

f(n) =
∑

1≤n≤X

(g ⋆ h)(n)

=
∑

1≤n≤X

∑
ab=n

g(a)h(b)

=
∑

1≤ab≤X

g(a)h(b)

where the sum is over the set

M = {(a, b) ∈ (N∗)2|ab ≤ X}

The name of the method comes from the fact that M is the set of positive integer pairs
under the hyperbola xy = X.

Let 1 ≤ y ≤ X and (a, b) ∈M. Then we must have a ≤ y or b ≤ X
y , otherwise ab > X.

Hence we can writeM =M1 ∪M2 where

M1 = {(a, b) ∈ (N∗)2|ab ≤ X and a ≤ y}

12



M2 = {(a, b) ∈ (N∗)2|ab ≤ X and b ≤ X

y
}

Therefore, by the inclusion-exclusion principle we have∑
(a,b)∈M

g(a)h(b) =
∑

(a,b)∈M1∪M2

g(a)h(b)

=
∑

(a,b)∈M1

g(a)h(b) +
∑

(a,b)∈M2

g(a)h(b)−
∑

(a,b)∈M1∩M2

g(a)h(b)

But

M1 ∩M2 = {(a, b) ∈ (N∗)2|ab ≤ X, a ≤ y, b ≤ X

y
}

= {(a, b) ∈ (N∗)2|a ≤ y, b ≤ X

y
}

Finally ∑
(a,b)∈M

g(a)h(b) =
∑
ab≤X

∑
a≤y

g(a)h(b) +
∑
ab≤X

∑
b≤X

y

g(a)h(b)−
∑
a≤x

∑
b≤X

y

g(a)h(b)

=
∑
a≤y

g(a)
∑
b≤X

a

h(b) +
∑
b≤X

y

h(b)
∑
a≤X

b

g(a)−
∑
a≤y

g(a)
∑
b≤X

y

H(b)

=
∑
a≤y

g(a)H(
X

a
) +

∑
b≤X

y

h(b)G(
X

b
)−G(y)H(

X

y
)

Using the hyperbola method, a nice and quite straightforward result can be obtained
on τ(n), the divisor function, namely

Theorem 1.12. For any X ≥ 1 we have∑
1≤n≤X

τ(n) = X logX + (2γ − 1)X +O(X 1
2 )

where γ is the Euler-Mascheroni constant.

Given a character χ, we define rχ : Z −→ C, rχ(n) =
∑

d|n χ(d). It follows then that

rχ(n) =
∏
pe||n

(1 + χ(p) + ...+ χ(p)e) (1.19)

so rχ is multiplicative.
Notice that for a quadratic character χ, (1.19) tells us that rχ(n) ≥ 0 ∀n ∈ Z and in

fact we can give a complete characterization of rχ:

rχ(n) =


0 if ∃ prime p | n such that vp(n) is odd and χ(p) = −1
τ(n) if all the primes p | n are residues

τ( n
m ), otherwise

Here τ(n) represents as usual, the number of divisors of n, vp(n) is the valuation of n at p
and

m =
∏
pe||n
χ(p)=1

pe

13



Proposition 1.13. For any ε > 0,if χ is a quadratic character mod m and x ≥ m
1
4+ε,

then there exists a constant η = η(ε) > 0 such that∑
n≤x

rχ(n) = L(1, χ)x+Oε(x
1−η)

Proof. Let α =
1
4+

ε
2

1
4+ε
∈ (0, 1) and let y = xα. Then

y = xα ≥ (m
1
4+ε)α = m

1
4+

ε
2

Put z = x
y and remark that from the definition of rχ and of the Dirichlet convolution, we

have that rχ = χ ⋆ 1. But then, by Dirichlet’s hyperbola method, putting g ≡ χ and h ≡ 1
in (1.18) gives us∑

n≤x

rχ(n) =
∑
n≤x

(χ ⋆ 1)(n) =
∑
a≤y

χ(a)
∑
b≤ x

a

1 +
∑
b≤z

∑
a≤ x

b

χ(a)−
∑
a≤y

χ(a)
∑
b≤z

1 (1.20)

Observe that by putting k = 2 in Theorem 1.3, we have that 1 ≤ R2(m) ≤ Q(2)
9
8 = 1 since

2 is cubefree. Hence, by using (1.2), we get the following estimate∑
d≤w

χ(d)≪ε,t w
1− 1

t m
t+1

4t2
+ε ∀w, t positive integers

Consider now an integer w ≥ y. Since y ≥ m
1
4+

ε
2 we have that w ≥ m

1
4+

ε
2 so for big enough

t there is a constant θ = θ(ε) > 0 such that∑
d≤w

χ(d)≪ε w
1−θ ∀w ≥ y (1.21)

Notice that if 1 ≤ b ≤ z = x
y then y ≤ x

b , so we can apply (1.21) for the second double sum

in (1.20) and get∑
b≤z

∑
a≤ x

b

χ(a)≪ε

∑
b≤z

(
x

b
)1−θ = x1−θ

∑
b≤z

bθ−1 ≤ x1−θ · z · zθ−1 = z(
z

x
)θ−1 = x(

z

x
)θ = xy−θ

Similarly, applying (1.21) for the third double sum in (1.20) we get∑
a≤y

χ(a)
∑
b≤z

1 ≤ z
∑
a≤y

χ(a)≪ε zy
1−θ = xy−θ

For the first double sum in (1.20) we have∑
a≤y

χ(a)
∑
b≤ x

a

1 =
∑
a≤y

χ(a)(
x

a
+O(1))

= x
∑
a≤y

χ(a)

a
+O(1)

∑
a≤y

χ(a)

= x(L(1, χ)−
∑
a>y

χ(a)

a
) +O(y)

= xL(1, χ) +Oε(xy
−θ) +O(y)

From these 3 estimations of the double sums in (1.20) we deduce that∑
n≤x

rχ(n) = xL(1, χ) +Oε(xy
−θ) +O(y)
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= xL(1, χ) +Oε(x · x−αθ) +O(xα)

= xL(1, χ) +Oε(x
1−αθ) +O(xα)

Letting η = min{αθ, 1− α}, we have that

max{xα, x1−αθ} = max{x1−(1−α), x1−αθ}

= x1−min{αθ,1−α}

= xη

Hence this and the last estimate yield∑
n≤x

rχ(n) = L(1, χ)x+Oε(x
1−η)

Together with Corollary 1.8, the following result of Siegel is used to prove both the
final results of this section as well as the main result of the paper. The downside of using
this theorem is that the constant appearing in the statement is generally non-effective.

1.3 Siegel’s Theorem

Theorem 1.14. (Siegel) For any ε > 0, there exists a constant C(ε) > 0 such that
C(ε)q−ε ≤ |L(1, χ)| for any primitive character χ modulo q.

Proof. Let χ1 ̸= χ2 be primitive non-principal real characters modulo q1 and q2 respectively.
Define

F (s) = ζ(s)L(s, χ1)L(s, χ2)L(s, χ1χ2)

=
∏
p

(
1− 1

ps

)−1(
1− χ1(p)

ps

)−1(
1− χ2(p)

ps

)−1(
1− χ1(p)χ2(p)

ps

)−1

We can thus write

F (s) =

∞∑
n=1

an
ns

with a0 = 1 and an ≥ 0 ∀n ≥ 2. Notice that F (s) has a simple pole at s = 1 with

Ress=1F (s) = L(1, χ1)L(1, χ2)L(1, χ1χ2) = λ

and it is regular on C \ {1}. We show that ∃α ∈ (0, 1) and A,B,C > 0 such that

F (s) > A− Bλ

1− s
(q1q2)

C(1−s) (1.22)

holds for any s ∈ (α, 1).
Since F (s) has nonnegative Dirichlet series, its Taylor expansion at s0 = 2 is

F (s) =
∞∑
k=0

(bk − λ)(2− s)k ∀s ∈ C

where b0 = F (2) > 1 and bk > 0∀k ≥ 0. F is entire except for a simple pole of residue λ at
s = 1 so we have

F (s)− λ

s− 1
=

∞∑
k=0

(bk − λ)(2− s)k ∀s ∈ C

15



Consider this equality on the circle |s−2| = 3
2 . The trivial bounds L(s, χ1)≪ q1, L(s, χ2)≪

q2, L(s, χ1χ2)≪ q1q2 and the fact that ζ(s) is bounded on |s− 2| = 3
2 give us that F (s)≪

(q1q2)
2, hence the same holds for F (s)− λ

s−1 . Thus

|bk − λ| ≪
(2
3

)k
(q1q2)

2

Then
∞∑

k=M

|bk − λ|(2− s)k ≪ (q1q2)
2
(2
3
(2− α)

)M
for any s ∈ (α, 1), where α ∈ ( 12 , 1) is fixed. Consequently, since b0 > 1 and bk ≥ 0∀k, we
have

F (s)− λ

s− 1
≥ 1−λ+(b1−λ)(2−s)+ ...+(bM−1−λ)(2−s)M−1−O((q1q2)2)

(2
3
(2−α)

)M
Hence

F (s)− λ

s− 1
≥ 1− λ(1 + (2− s) + ...+ (2− s)M−1)−O((q1q2)2)

(2
3
(2− α)

)M
So

F (s)− λ

s− 1
≥ 1− λ

(2− s)M − 1

1− s
−O((q1q2)2)

(2
3
(2− α)

)M
Let M be the largest integer such that the error estimate is < 1

2 . Then

F (s) >
λ

s− 1
+ 1− λ

(2− s)M − 1

1− s
− 1

2
=

1

2
− λ

1− s
(2− s)M

But
(2− s)M = eM log (2−s) ≤ eM(2−s−1)

and since
eM ≪ (q1q2)

O(1)

this concludes the proof of (1.22).
Fix ε > 0. Then, Siegel’s Theorem is trivial if there is no modulus qε and real character

χε mod qε such that L(s, χε) has a zero in
(
1− ε

2C , 1
)
. So we can assume that L(s, χε) has

a zero βε. Then, for qε = q2, χε = χ2, let β be a zero of L(s, χ2), hence F (β) = 0.
Then (1.22) reads

0 > A− Bλ

1− β
(q1q2)

C(1−β)

Thus

λ >
A

B
(1− β)(q1q2)

−C(1−β)

Therefore

L(1, χ1)L(1, χ2)L(1, χ1χ2) >
A

B
(1− β)(q1q2)

−C(1−β)

Using the trivial bounds L(1, χ2)≪ log q2, L(1, χ1χ2)≪ log q1q2 we obtain

L(1, χ1) > Mq
−C(1−β)
1

1

log q1

1

log q1q2

and since log q1 ∈ o(qδ1), log q1q2 ∈ o((q1q2)
δ) ∀δ > 0, we conclude that

L(1, χ1)≫ q−ε
1
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Definition 1.15. For a positive integer n, we define P+(n) to be the largest prime factor
of n, with the convention that P (1) = 1. We say that n is y − smooth or y − friable if
P+(n) ≤ y.

For x ≥ y ≥ 2 define the de Bruijn function Ψ(x, y) = |{n ≤ x|P+(n) ≤ y}|. A result
of de Bruijn([1]) states that for a fixed θ ≥ 1 we have that

Ψ(x, , (log x)θ) = x1− 1
θ+o(1) as x −→∞ (1.23)

1.4 Proof of Theorem 1.1

Let ε ∈ (0, 1
4 ) and let χ be a quadratic character mod n. Let x = m

1
4+ε and set

q =
∏

p prime
p≤x

χ(p)=1

p

Then it suffices to prove that ω(q) ≥ (logm)A. Suppose then that ω(q) < (logm)A.
Choose S ⊆ [1, x] such that Supp(rχ) ⊆ S on [1, x] and let M = max{rχ(n)|n ∈ S}.

As seen before, rχ(n) ≥ 0 ∀n ∈ N∗ so we have that

0 ≤
∑
n≤x

rχ(n) ≤ |S|M

But from our characterization of rχ, we can choose S = {n ≤ x|p||n ⇒ p|mq}. Now, each
element n of S can be written as a product n = n1n2 of a squarefree divisor n1 of mq and
a squarefull divisor n2 of mq. Notice that the number of elements of S for which n2 > x

1
2

is O(x 3
4 ) and let us consider the remaining elements of S.

Given n2, we have at most d choices for n1, where d is the number of squarefree
integers in [1, x

n2
] composed of the first ω(mq) primes. Since ω(q) < (logm)A and ω(mq) ≤

ω(m) + ω(q), we get that ω(mq) < ω(m) + (logm)A.

But x = m
1
4+ε, so

ω(mq) < ω(m) + (log(xc)A

where c = 1
1
4+ε

.

Since 2ω(m) ≪ε m
ε ≤ x4ε, we therefore obtain

ω(mq) < log2(x
4ε) + cA logA x = 4ε log2 x+ cAlogAx

Hence, for large enough x, all the first ω(mq) primes are ≤ (log x)A+1 so the number of
choices of n1 for a fixed n2 is at most Ψ( x

n2
, (log x)A+1). But then, from (1.23) for θ = A+1

we get

Ψ(x, (log x)A+1) = x1− 1
A+1+o(1)

Since
Ψ(x, (log x)A+1) ≥ Ψ(

x

n2
, (log x)A+1)

and keeping in mind that x
n2
≥ x

1
2 , for large enough x we have

Ψ(
x

n2
, (log x)A+1) ≤ (

x

n2
)1−

1
A+2

So we have that
|S| ≪ x

3
4 + x1− 1

A+2 ≪ xα
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where α = max{34 , 1−
1

A+2}. Let β = 1− α. Then we have that

rχ(n) =
∑
d|n

χ(d) ≤
∑
d|n

1 = τ(n)≪ x
β
2

Hence ∑
n≤x

rχ(n)≪ |S|M ≪ xαx
β
2 = xα · x

1−α
2 = x

α+1
2

But then, by Proposition 1.13, this implies

xL(1, χ) +Oε(x
1−η)≪ x

α+1
2

So we obtain
L(1, χ)≪ xγ

where γ = α−1
2 < 0 since α < 1, which contradicts Siegel’s theorem. Therefore we conclude

that ω(q) ≥ (logm)A as desired.

In the same setup as Theorem 1.1, but for primes character residues smaller than m
we have

Proposition 1.16. Let χ be a quadratic character mod m. Then∑
p≤m

χ(p)=1

1

p
≥ 1

2
log(

φ(m)

m
L(1, χ) logm) +O(1)

To prove this, we need the following lemma

Lemma 1.17. Let f be a non-negative multiplicative function which for suitable con-
stants A,B satisfies

(1)
∑
p≤y

f(p) log p ≤ Ay ∀y ≥ 0

(2)
∑
p

∑
e≥2

f(pe)

pe
log pe ≤ B

Then ∑
n≤x

f(n) ≤ (A+B + 1)
x

log x

∑
n≤x

f(n)

n
∀x > 1

Proof. Let

S(x) :=
∑
n≤x

f(n) and L(x) :=
∑
n≤x

f(n)

n

Clearly S(x) ≤ xL(x). Furthermore

S(x) log x =
∑
n≤x

f(n) log x

=
∑
n≤x

f(n) log
x

n
+
∑
n≤x

f(n) log n

=
∑
n≤x

f(n) log
x

n
+
∑
n≤x

f(n)
∑
p||n

log p+
∑
n≤x

f(n)
∑
pe||n
e≥2

log pe

18



For 1 ≤ n ≤ x, we have that log x
n < x

n hence∑
n≤x

f(n) log
x

n
≤
∑
n≤x

f(n)
x

n
= xL(x)

Writing n = mp where p is a prime divisor of n and using the first condition in the statement
we have that∑
n≤x

f(n)
∑
p||n

log p =
∑
m≤x

∑
p≤ x

m

p-m

f(p) log p ≤
∑
m≤x

f(m)A
x

m
≤
∑
m≤x

f(m)A
x

m
≤ mL(x)A

x

m
= AxL(x)

Finally∑
n≤x

f(n)
∑
pe||n
e≥2

log pe =
∑
p

∑
e≥2

f(pe) log pe ·
∑

m≤ x
pe

p-m

f(m) ≤
∑
p

∑
e≥2

f(pe) log peS(
x

pe
)

≤
∑
p

∑
e≥2

f(pe) log pe
x

pe
L((

x

pe
)

≤
∑
p

∑
e≥2

f(pe)

pe
xL(x)

≤ BxL(x)

Summing up the results we conclude that

S(x) log x ≤ (A+B + 1)xL(x)

Hence ∑
n≤x

f(n) ≤ (A+B + 1)
x

log x

∑
n≤x

f(n)

n
∀x > 1

Proof of Proposition 1.16
Let us consider the function that we introduced earlier,

r = rχ(n) =
∑
d|n

χ(d) =
∑
pe||n

(1 + χ(p) + ...+ χ(p)e)

Then r satisfies the conditions of Lemma 1.17, hence, for some constants A,B we have that∑
n≤m

r(n) ≤ (A+B + 1)
m

logm

∑
n≤m

r(n)

n

So
1

m

∑
n≤m

r(n)≪ 1

logm

∑
n≤m

r(n)

n

Proposition 1.13 gives us

L(1, χ)≪ 1

m

∑
n≤m

r(n)

Thus

L(1, χ)≪ 1

logm

∑
n≤m

r(n)

n
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So it suffices to show that ∑
n≤m

r(n)

n
≪ m

φ(m)
exp

(
2
∑
p≤m

p prime
χ(p)=1

1

p

)

We have that
∞∑

n=1

r(n)

ns
= (

∞∑
n=1

χ(n)

ns
)(

∞∑
n=1

1

ns
)

= L(s, χ)ζ(s)

But for s→ 1+, we have that ζ(s) ∼ 1
s−1 . Indeed, for k ≥ 1, set

ak(s) =
1

ks
−
∫ k

k−1

dt

ts

Then, by Taylor’s formula to order 2, we have that

ak(s) ∼
s

2
k−s−1

as s→ +∞, hence
∑

k≥2 ak(s) converges for s > 0. For s > 1 we have∑
k≥2

ak(s) =
∑
k≥2

1

ks
−
∫ ∞

1

dt

ts

= ζ(s)− 1− 1

s− 1

Since the series on the left converges normally for s ≥ ε > 0, by analytic continuation of
ζ(s), it follows that the equality holds for all s > 0.

Using the Taylor expansion of ak around s0 = 1, we obtain the following power series
in s− s0 = s− 1 :

ak(s) =
∑
m≥0

(−1)m

m!

( (log k)m
k

− (log k)m+1 − (log k − 1)m+1

m+ 1

)
(s− 1)m

Thus, by absolute convergence, we can reorder the terms of the double sum
∑

k≥2 ak(s) and
get ∑

k≥2

ak(s) = ζ(s)− 1− 1

s− 1
=
∑
m≥0

(−1)m

m!
γm(s− 1)m

where we define

γm =
∑
k≥2

( (log k)m
k

− (log k)m+1 − (log k − 1)m+1

m+ 1

)

= lim
N→+∞

( N∑
k=2

(log k)m

k
− (logN)m+1

m+ 1

)
Notice that in particular, γ0 = γ−1, where γ is the Euler-Mascheroni constant. Furthermore,
by the Euler-MacLaurin summation formula, the limit defining γm exists, hence

ζ(s) =
1

s− 1
+
∑
m≥0

(−1)m

m!
γm(s− 1)m

=
1

s− 1
+ γ +O(s− 1)
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Therefore

L(s, χ)ζ(s) ∼ L(1, χ)

s− 1

as s→ 1+.
Using Perron’s formula we have

∑
n≤x

r(n) =
1

2πi

∫ c+i∞

c−i∞
(

∞∑
n=1

r(n)

ns
)
xs

s
ds

=
1

2πi

∫ c+i∞

c−i∞
L(s, χ)ζ(s)

xs

s
ds

=
1

2πi

∫ c+i∞

c−i∞

L(1, χ)

s− 1

xs

s
ds

= L(1, χ)
1

2πi

∫ c+i∞

c−i∞

xs

s(s− 1)
ds

∼ L(1, χ)x (1.24)

Moreover, Abel summation gives us∑
n≤x

r(n)

n
=

R(x)

x
−
∫ x

1

(
∑
n≤t

r(n))(
1

t
)′dt

=
R(x)

x
+

∫ x

1

(
∑
n≤t

r(n))
1

t2
dt

where R(x) =
∑

n≤x r(n). But from (1.24), we have that∫ x

1

(
∑
n≤t

r(n))
1

t2
dt =

∫ x

1

(L(1, χ)t)t−2dt

= L(1, χ) log x

Hence ∑
n≤x

r(n)

n
∼ L(1, χ) log x (1.25)

Now, the Prime Number Theorem gives the following∑
p≤m

p prime
χ(p)=1

1

p
∼ C

∑
p≤m

p prime

1

p
∼ C log log x

with C = 1
φ(m) , which combined with (1.25) gives us the desired estimate.
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2 The Dedekind zeta function

2.1 Preliminaries

In this section, we explain how the Dedekind zeta function associated to a number
field decomposes, which is of vital importance to prove the main theorem in section 3.

Definition 2.1. Let K be a number field and OK its ring of integers. The Dedekind
zeta function of K, ζK(s) is defined to be the analytic continuation of the series∑

I⊆OK

1

(NK/Q(I))s

where I ranges over all non-zero integral ideals of K and NK/Q(I) = |OK : I| is the norm
of I.

ζK converges for Re(s) > 1 and has a meromorphic continuation to the whole plane
with a unique simple pole at s = 1. Furthermore, if k = [K : Q], r1 is the number of real
embeddings and r2 is the number of pairs of complex embeddings of K, then ζK satisfies
the following functional equation

AsΓ(
s

2
)r1Γ(s)r2ζK(s) = A1−sΓ(

1− s

2
)r1Γ(1− s)r2ζK(1− s) (2.1)

where
A = 2−r2π− k

2

√
|disc(K)|

For details of this result, see [6], p. 254.

Assume thatK is a non-trivial abelian extension ofQ withD > 1, whereD = |disc(K)|
is the absolute value of the discriminant. Let k = [K : Q] and consider ζK(s), the Dedekind
zeta function of K. Then, by the Kronecker-Weber theorem, there exists an integer n(which
we choose minimal) such that K ⊆ Q(ξn), the n-th cyclotomic field.

Let G = Gal(Q(ξn)/Q) and let χ : G −→ C∗ be a Dirichlet character. Then the kernel
of χ determines a fixed subfield of Q(ξn) and for any field K as above, there is a group X of
Dirichlet characters of G such that K is equal to the intersection of the fixed fields by the
kernels of all χ ∈ X. Moreover, |X| = k and X ≃ Gal(K/Q).

Conversely, given X a finite group of Dirichlet characters of conductors fχ1 , ..., fχk
,

where k = |X|, let n = lcm(fχ1 , ..., fχk
). Then X is a subgroup of the characters of

Gal(Q(ξn)/Q) and let H =
∩

χ∈X Ker(χ). If K is the fixed field of H, then X coincides
with the set of homomorphisms Gal(K/Q) −→ C∗.

If G is a finite abelian group, let Ĝ be the group of multiplicative homomorphisms
from G to C∗.

Lemma 2.2. If G is a finite abelian group, then G ≃ Ĝ(noncanonically).

Proof. By the divisors theorem, G decomposes as

G ≃
r⊕

i=1

Z/diZ

Hence

Ĝ ≃
r⊕

i=1

Ẑ/diZ

For χ ∈ Ẑ/diZ, we have that χ(1) determines χ since Z/diZ additive and cyclic, so since
χ(1) can be any m-th root of unity, it follows that the lemma holds true for any Z/mZ,
hence for G.
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Corollary 2.3. G ≃ ̂̂G(canonically).

Proof. Let g ∈ G and suppose χ(g) = 1 ∀χ ∈ Ĝ. Let H =< g > . Then Ĝ acts as a set
of distinct characters of the quotient G/H. But by the previous lemma, there are at most

|G/H| of these, hence H = {1} which yields g = 1. Therefore G injects into Ĝ and the

conclusion follows since |G| = |Ĝ| = | ̂̂G|.
Let H be subgroup of G . Then we define

H⊥ = {χ ∈ Ĝ|χ(h) = 1 ∀h ∈ H}

Clearly, there is an isomorphism H⊥ ≃ Ĝ/H.

Lemma 2.4. Ĥ ≃ Ĝ/H⊥.

Proof. By restriction, there exists a map Ĝ −→ Ĥ whose kernel is H⊥.
On the other hand,

|H⊥| = |Ĝ/H| = |G/H| = |G|
|H|

Hence

|Ĥ| = |H| = |G|
|H⊥|

=
|Ĝ|
|H⊥|

which gives us the surjectivity as well.

Another straightforward result is

Lemma 2.5. (H⊥)⊥ = H.

The previous three results hold true for locally compact abelian groups as well, but
the proofs are harder since we cannot use counting arguments.

Consider the pairing
G× Ĝ −→ C∗

(g, χ) −→ χ(g)

Notice that if χ(g) = 1∀χ ∈ Ĝ, then g = 1. But then, if χ(g) = 1∀g ∈ G, then clearly χ = 1.
Therefore the pairing is nondegenerate.

Let K be a field and X its associated group of Dirichlet characters. Let L be a subfield
of K and let

Y = {χ ∈ X|χ(σ) = 1 ∀σ ∈ Gal(K/L)}

Then

Y = Gal(L/K)⊥

= ̂Gal(K/Q)/Gal(K/L)

= ̂Gal(L/Q)

Conversely, if Y ⊆ X is a subgroup and L the fixed field of Y ⊥ = {g ∈ Gal(K/Q)|χ(g) =
1∀χ ∈ Y }, then by Galois theory, we have that Y ⊥ = Gal(K/L). So

Y = (Y ⊥)⊥ = Gal(K/L)⊥ = ̂Gal(L/Q)

Therefore there is a one to one correspondence between subgroups of X and subfields of K
given by

Gal(K/L)⊥ ←→ L
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Y ←→ fixed field ofY ⊥

whence a one to one correspondence between groups of Dirichlet characters and subfields of
cyclotomic fields.

Since Gal(L/Q) is a finite abelian group, Lemma 2.2 tells us that

Y = ̂Gal(L/Q) ≃ Gal(L/Q)

although not canonically, thus the preference for the natural nondegenerate pairingGal(L/Q)×
Y −→ C∗.

Let n =
∏k

i=1 p
αi
i be the prime decomposition of a positive integer n ≥ 2. By the

Chinese Remainder Theorem we know that

(Z/nZ)× ≃
k∏

i=1

(Z/pαi
i Z)×

Then given a character χ mod n, decompose it as

χ =

k∏
i=1

χpi

where χpi is a Dirichlet character defined mod pαi
i .

For a group X of Dirichlet characters, define

Xpi = {χpi |χ ∈ X} ∀i ∈ 1, k

.

Theorem 2.6. Let X be a group of Dirichlet characters and K its associated field. If p
is a prime number with ramification index ep in K, then ep = |Xp|.

Proof. Let n = lcm(fχ)χ∈X , where fχ denotes as usual, the conductor of the character χ.
Then K ⊆ Q(ζn). Decompose n as n = pam, with gcd(p,m) = 1 and consider the composite
field L = K(ζm) = KQ(ζm). Let

Y = {χ|χ character of (Z/nZ)× with gcd(fχ, p) = 1}

Notice that Y consists in fact of the characters mod m. Then the group of characters of L
is generated by X and Y . Hence the group of characters of L is given by the direct product
of Xp with the characters of Q(ζm). So

L = Q(ζm)F

the compositum of Q(ζm) with the field F ⊆ Q(ζpa) associated to Xp.
Observe that the ramification index ep of p in K is the same as for p in L since p

is unramified in Q(ζm). But p is unramified in L/F , hence ep is equal to the ramification
index of p in F which is deg(F/Q) = |Xp|.

Corollary 2.7. Let χ be a Dirichlet character and K its associated field. Then a prime
p ramifies in K ⇔ χ(p) = 0. More generally, given a group X of Dirichlet characters, if L
is its associated field, then p is unramified in L/Q⇐⇒ χ(p) ̸= 0∀χ ∈ X.

Proof. By the previous theorem, we have that p ramifies in L ⇐⇒ Xp ̸= 1 ⇐⇒ ∃χ ∈ X
with χp ̸= 1⇐⇒ ∃χ ∈ X such that p|fχ ⇐⇒ ∃χ ∈ X such that χ(p) = 0.
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Theorem 2.8. Let X be a group of Dirichlet characters, K its associated field and p a
rational prime. Let

X1 = {χ ∈ X|χ(p) ̸= 0}

X2 = {χ ∈ X|χ(p) = 1}

Let ep be the ramification index of p in K and fp the residue class degree. Then ep = [X : X1]
and fp = [X1 : X2]. In fact, X/X1 ≃ the inertia group and X1/X2 is cyclic of order fp.

Proof. Let L ⊆ K be the subfield associated to X1. Corollary 2.7 tells us that L is the
maximal subfield of K in which p is unramified. Then L is the fixed field of the inertia group,
hence the inertia group is Gal(K/L). Considering the pairing Gal(K/Q)×X −→ C∗, by the
Galois correspondence between subgroups and subfields, we have that X1 = Gal(K/L)⊥.
Therefore

X/X1 = ̂Gal(K/Q)/Gal(K/L)⊥

= ̂Gal(K/L)

≃ Gal(K/L)

where we made use of Lemma 2.2 and Lemma 2.4.
Since ep = |Gal(K/L)|, the order of the inertia group, we therefore have that ep =

|X/X1|.
Consider now the extension L/Q which has X1 as its group of characters. Let n =

lcm(fχ)χ∈X1 . Since p is unramified in L, we have that p - n and L ⊆ Q(ζn). Since

Gal(Q(ζn)/Q) = (Z/nZ)×

we obtain
Gal(L/Q) = (Z/nZ)×/(Gal(Q(ζn)/L)

Notice that σp, the Frobenius map for L/Q is just the coset of p in Gal(L/Q). Since
for χ ∈ X1 we have that χ(σ) = 0 ∀σ ∈ Gal(Q(ζn)/L), we get that χ(σp) = χ(p) so
χ(σp) = 1 ⇐⇒ χ(p) = 1, hence X2 =< σp >⊥ under the pairing Gal(L/Q) × X1 −→ C∗,
where | < σp > | = fp. Consequently, Lemma 2.4 gives us the isomorphism

X1/X2 ≃ <̂ σp >

But since <̂ σp > ≃< σp > , we obtain

|X1/X2| = | < σp > | = fp
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2.2 Decomposition of the Dedekind zeta function

Theorem 2.9. Let K ⊆ Q(ζn) be a number field and let X be the associated group of
Dirichlet characters mod n. Then

ζK(s) =
∏
χ∈X

L(s, χ)

Proof. Recall the Euler product expansion of the Dedekind zeta function of K

ζK(s) =
∏

℘∈OK

(1− 1

N(℘)s
)−1

We compare the product expansions for each integer prime p. Let pOK =
∏g

i=1 ℘
e
i be the

prime factorization of p in K, where each ℘i has residue class degree f and thus N(℘i) =
pf ∀i ∈ 1, g.

Then the Euler factors of ζK(s) corresponding to p are just (1 − 1
pfs )

−g. For the
L-series, the Euler product expansion is

L(s, χ) =
∏
p

(1− χ(p)

ps
)−1

The terms corresponding to p are in this case∏
χ∈X

(1− χ(p)

ps
)−1

Let X1 = {χ ∈ X|χ(p) ̸= 0} and X2 = {χ ∈ X|χ(p) = 1}. Then only the χ ∈ X1 will
contribute to the product.

By Theorem 2.8, X1/X2 is cyclic of order f and let χ0 ∈ X1 such that its image
generates X1/X2. Clearly χ0(p) = ζf , a primitive f -th root of unity. Thus

f−1∏
i=0

(1− χi
0(p)

ps
)−1 =

f−1∏
i=0

(1−
ζif
ps

)−1 = (1− 1

pfs
)−1

Notice though that taking the product over all χ ∈ X is the same as taking it over all χ ∈ X1

and since χ(p) = 1∀χ ∈ X2 and the image of χ0 generates X1/X2, it is the same as taking
it g times over the powers of χ0.

We therefore conclude that the Euler factor at any integer prime p for the product of
L-series is (1− 1

pfs )
−g, the same as for ζK(s), which completes the proof of the theorem.

Corollary 2.10. L(1, χ) ̸= 0.

Proof. Let K be the associated field to χ and let k be the order of χ. Then, by Theorem
2.9, we have that

ζK(s) =

k−1∏
i=0

L(s, χi) = ζ(s)

k−1∏
i=1

L(s, χi)

Since ζ(s) has only a simple pole at s = 1, none of the factors L(s, χi) can vanish at s = 1,
which yields the desired result.
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2.3 Application to Dirichlet’s Theorem on arithmetic progressions

As a popular application of this corollary, we give a proof of Dirichlet’s theorem on
arithmetic progressions.

Theorem 2.11. Let a, n be relatively prime positive integers. Then there are infinitely
many primes p ≡ a(modn).

Proof. Let Pa be the set of primes p ≡ a(modn), hence we need to show that Pa is infinite.
Consider the function

Pa(s) =
∑
p∈Pa

1

ps

defined for complex s with Re(s) > 1. It suffices then to show that for real s we have that
lims→1+ Pa(s) = +∞.

Define the function
1a : Z −→ {0, 1}

the characteristic function of the congruence class a(modn) given by

1a(k) =

{
1 if k ≡ a(modn)

0 otherwise

Then for all k ∈ Z, we have

1a(k) =
∑

χ∈X(n)

χ(a)−1

φ(n)
χ(k)

where X(n) denotes the group of Dirichlet characters mod n.
Indeed, since χ is completely multiplicative, we have that∑

χ∈X(n)

χ(a)−1

φ(n)
χ(k) =

1

φ(n)

∑
χ∈X(n)

χ(a−1k)

But by the orthogonality property of characters, we have that

∑
χ∈X(n)

χ(a−1k) =

{
φ(n) if a−1k ≡ 1(modn)

0 otherwise

which gives us the formula for 1a.
Then the corresponding identity for Pa(s) is

Pa(s) =
∑

χ∈X(n)

χ(a)−1

φ(n)

∑
p

χ(p)

ps
(2.2)

Now let

L(s, χ) =
∏
p

(1− χ(p)

ps
)−1

Taking the logarithm, we obtain

logL(s, χ) = −
∑
p

log (1− χ(p)

ps
)

By Taylor expansion, we have

logL(s, χ) =
∑
p

∑
n

1

n
(
χ(p)

ps
)n
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Define

l(s, χ) =
∑
p

∑
n

1

n
(
χ(p)

ps
)n

Observe that the n = 1 contribution to l(s, χ) gives us the sum appearing in (2.2). We show
that we can disregard all the other terms of l(s, χ) coming from n ≥ 2. For this, separate
l(s, χ) as follows:

Let

l1(s, χ) =
∑
p

χ(p)

ps

and

l≥2(s, χ) =
∑
n≥2

∑
p

1

n
(
χ(p)

ps
)n

Then
l(s, χ) = l1(s, χ) + l≥2(s, χ)

and

Pa(s) =
∑

χ∈X(n)

χ(a)−1

φ(n)
l1(s, χ)

We have then that

|l≥2(s, χ)| ≤
∑
n≤2

∑
p

1

npn
≤
∑
p

∑
n≥2

(
1

p
)n =

∑
p

1

p2
lim

n→∞

( 1p )
n − 1

1
p − 1

So

|l≥2(s, χ)| ≤
∑
p

1

p2
p

p− 1
≤
∑
p

1

p2
· 2 ≤ 2

∑
n≥1

1

n2
=

π2

3
<∞

Hence l≥2(s, χ) is absolutely convergent at s = 1 so it is bounded as s −→ 1+. Consequently,
we can disregard the l≥2(s, χ) part of l(s, χ) and write

Pa(s) =
∑

χ∈X(n)

χ(a)−1

φ(n)
l(s, χ) +O(1)

Let χ0 be the principal character mod n. Then we can rewrite

Pa(s) =
1

φ(n)

∑
p-n

1

ps
+
∑
χ ̸=χ0

l(s, χ) +O(1) (2.3)

Since
∑

p-n
1
ps is up to a finite number of terms, just the sum

∑
p

1
ps and since

∑
p

1
p = +∞,

we deduce that the first term of the right hand side of (2.3) is unbounded for s −→ 1+. Thus
it would suffice to prove that l(s, χ) is bounded as s −→ 1+ for any nonprincipal character
χ.

For s ∈ R, with |s| < 1, we have the Taylor expansion

−log(1− s) =
∞∑

n=1

sn

n

Hence
e−

∑∞
n=1

sn

n = 1− s ∀ s ∈ R, |s| < 1

But then, by analytic continuation, the corresponding complex power series gives a well
defined logarithm for s ∈ C with |s| < 1.

Moreover, we have that
lim

Re(s)→+∞
L(s, χ) = 1
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which implies that there exists r > 0 such that for Re(s) > r, we have that |1−L(s, χ)| < 1,
thus

el(s,χ) = L(s, χ) for Re(s) > r (2.4)

Similarly, by analytic continuation, (2.4) holds true whenever both sides are well-defined
analytic functions which is the case for all s ∈ C with Re(s) > 1.

It is well known that for any nonprincipal character χ, the Dirichlet series for L(s, χ)
is convergent on Re(s) > 0. Now, since by Corollary 2.10, L(1, χ) ̸= 0, from the above, we
obtain

L(1, χ) = lim
s→1

L(s, χ) = lim
s→1

el(s,χ)

Since L(s, χ) is analytic and L(1, χ) ̸= 0, there exists a small open disk around L(1, χ) not
containing the origin, whence we can choose a branch of the logarithm such that logL(s, χ) is
well-defined on the preimage of that disk so in particular on a small open disk D around s =
1. Consequently, logL(1, χ) is a well-defined complex number and since any two logarithms
of the same analytic function coincide modulo a constant C = 2nπi, a multiple of 2πi , we
have that

l(s, χ) = logL(s, χ) + 2nπ onD

Therefore, l(s, χ) is bounded as s→ 1+ for any nonprincipal character χ ̸= χ0.
We conclude that Pa(s) is unbounded as s→ 1+, hence for real values s > 1, we have

lim
s→1+

Pa(s) =
∑
p∈Pa

1

p
=∞

So Pa is infinite, hence there are infinitely many primes p ≡ a(modn).

2.4 Conductor-Discriminant Formula

For a Dirichlet character χ of conductor f , consider the Gauss sum

τ(χ) =

f∑
k=1

χ(k)e
2πik

f (2.5)

and let δχ be defined as 0 if χ(−1) = 1 and 1 if χ(−1) = −1. Then the functional equation
for the L-series L(s, χ) is

(
f

π
)

s
2Γ(

s+ δ

2
)L(s, χ) = Wχ(

f

π
)

1−s
2 Γ(

1− s+ δ

2
)L(1− s, χ) (2.6)

where Wχ = τ(χ)√
fiδχ

.

We now show that |Wχ| = 1, which will be used to prove the Conductor-Discriminant
formula. The result on Wχ follows from the next two lemmas.

Lemma 2.12. Let χ be a Dirichlet character of conductor f and consider the Gauss
sum τ(χ) as in (2.5). Then for any a ∈ Z

f∑
k=1

χ(k)e
2πiak

f = χ(k)τ(χ)

Proof. If gcd(a, f) = 1, since everything depends only on residue classes mod f , by making
a change of variables c ≡ ab(mod f), the result follows.

Let now gcd(a, f) = d > 1. Then both sides vanish. Indeed, this is clear for the right
hand side. For the left, notice that if χ(y) = 1∀q ≡ 1(mod f

d ) with gcd(y, f) = 1, then χ

would be defined mod f
d , thus contradicting the definition of the conductor f . Therefore
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∃y ≡ 1(mod f
d ) with gcd(y, f) = 1 such that χ(y) ̸= 1.

Since dy ≡ d(mod f) and ay ≡ a(mod f), we have

f∑
k=1

χ(k)e
2πiak

f =

f∑
k=1

χ(k)e
2πiaky

f = χ(y)

f∑
k=1

χ(k)e
2πiak

f

Then since χ(y) ̸= 1, we must have that

f∑
k=1

χ(k)e
2πiak

f = 0

Lemma 2.13. Let χ be a Dirichlet character of conductor f and let τ be a Gauss sum
as in (2.5). Then |τ(χ)| =

√
f .

Proof. Using Lemma 2.12, we have that

φ(f)|τ(χ)|2 =

f∑
a=1

|χ(k)τ(k)|2

=

f∑
a=1

f∑
b=1

χ(k)e
2πiab

f

f∑
c=1

χ(c)e
−2πiac

f

Therefore

φ(f)|τ(χ)|2 =

f∑
b=1

f∑
c=1

χ(b)χ(c)

f∑
a=1

e
2πia(b−c)

f

=

f∑
b=1

χ(b)χ(b)f = fφ(f)

since

χ(b)χ(b) =

{
1 if gcd(a, f) = 1

0 otherwise

Hence |τ(χ)|2 = f so |τ(χ)| =
√
f as desired.

Corollary 2.14. Let χ be a Dirichlet character of conductor f and τ as in (2.5). Then
|Wχ| = 1.

Theorem 2.15. (Conductor-Discriminant Formula) Let K be a number field associated
to the group X of Dirichlet characters. Then the discriminant of K is given by

|disc(K)| =
∏
χ∈X

fχ

Proof. Let ζK(s) be the Dedekind zeta function of K. Theorem 2.9 gives us the decompo-
sition

ζK(s) =
∏
χ∈X

L(s, χ)

Then substituting in the functional equation (2.1) of ζK(s), we have that

AsΓ(
s

2
)r1Γ(s)r2

∏
χ∈X

L(s, χ) = A1−sΓ(
1− s

2
)r1Γ(1− s)r2

∏
χ∈X

L(1− s, χ) (2.7)

30



where r1 is the number of real embeddings of K and r2 is the number of pairs of complex
embeddings. Since K/Q is Galois, either r1 = 0 or r2 = 0.

If r1 = 0, then r2 = k
2 , where k = [K : Q]. In this case, half the characters are even and

half of them are odd. Taking the product over all even characters, the functional equation
(2.6) for the L-series gives

Γ(
s

2
)

k
2

∏
χ∈X

χ(−1)=1

(
fχ
π
)

s
2L(s, χ) = Γ(

1− s

2
)

k
2

∏
χ∈X

χ(−1)=1

(
fχ
π
)

1−s
2 WχL(1− s, χ)

Similarly, for the odd characters, we have

Γ(
s+ 1

2
)

k
2

∏
χ∈X

χ(−1)=−1

(
fχ
π
)

s
2L(s, χ) = Γ(

2− s

2
)

k
2

∏
χ∈X

χ(−1)=1

(
fχ
π
)

1−s
2 WχL(1− s, χ)

From the above two equations, thus taking the sum over all χ ∈ X, we have

(Γ(
s

2
)Γ(

s+ 1

2
))

k
2

∏
χ∈X

(
fχ
π
)

s
2L(s, χ) = (Γ(

1− s

2
)Γ(

2− s

2
))

k
2

∏
χ∈X

(
fχ
π
)

1−s
2 WχL(1− s, χ) (2.8)

Using the duplication formula

Γ(s)Γ(s+
1

2
) = 21−s

√
πΓ(2s)

(2.8) becomes

(21−s
√
πΓ(s))

k
2

∏
χ∈X

(
fχ
π
)

s
2L(s, χ) = (2s

√
πΓ(1− s))

k
2

∏
χ∈X

(
fχ
π
)

1−s
2 WχL(1− s, χ)

Since r1 = 0, equation (2.7) reads

AsΓ(s)
k
2

∏
χ∈X

L(s, χ) = A1−sΓ(1− s)
k
2

∏
χ∈X

L(1− s, χ)

Comparing the last two equations, we must have that

2
k(1−s)

2 (
∏

χ∈X
fχ
π )

s
2

As
=

2
ks
2 (
∏

χ∈X
fχ
π )

1−s
2

∏
χ∈X Wχ

A1−s

Hence

2
k(1−s)−ks

2 (
∏
χ∈X

fχ
π
)

2s−1
2 = A2s−1

∏
χ∈X

Wχ

So

(
1

2k

∏
χ∈X

fχ
π
)

2s−1
2 = A2s−1

∏
χ∈X

Wχ

Since the left hand side of the above equation is a positive real number, we must have that∏
χ∈X Wχ ∈ R+, but Corollary 2.14 tells us that |Wχ| = 1 ∀χ ∈ X so we must have that∏
χ∈X Wχ = 1. Thus

1

2k

∏
χ∈X

fχ
π

= A2

and since
A = 2−

k
2 π− k

2

√
|disc(K)|
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we obtain ∏
χ∈X

fχ
π

= π−k|disc(K)|

Hence |disc(K)| =
∏

χ∈X
fχ
π as desired.

Consider now the second case when r2 = 0. Then K is a totally real number field of
degree k and all the characters are even. So taking the product over all characters χ ∈ X,
the functional equations for the L-series read

Γ(
s

2
)k
∏
χ∈X

(
fχ
π
)

s
2L(s, χ) = Γ(

1− s

2
)k
∏
χ∈X

(
fχ
π
)

1−s
2 WχL(1− s, χ)

Moreover, (2.7) becomes

AsΓ(
s

2
)k
∏
χ∈X

L(s, χ) = A1−sΓ(
1− s

2
)k
∏
χ∈X

L(1− s, χ)

Comparing the last two equations, we get that

(
∏

χ∈X
fχ
π )

s
2

As
=

(
∏

χ∈X
fχ
π )

1−s
2

∏
χ∈X Wχ

A1−s

Thus

(
∏
χ∈X

fχ
π
)

2s−1
2 = A2s−1

∏
χ∈x

Wχ

As in the previous case, we have that
∏

χ∈X Wχ = 1 and therefore

A2 =
∏
χ∈X

fχ
π

Since r2 = 0, we have that

A = π− k
2

√
|disc(K)|

whence substituting A in the last equation completes the proof.
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3 Smallest completely splitting prime in an abelian num-
ber field

3.1 First estimate for Theorem 3.1

In this section, we prove our main result:

Proposition 3.1. Let K be an abelian number field of degree k. Then, for any ε > 0,
the smallest prime p that splits completely in K satisfies

p≪ε,k D
1
4+ε

where D = |disc(K)|, the absolute value of the discriminant.

Let K/Q be a nontrivial abelian extension of degree k and let X = {χ1, ..., χk} be
the associated group of Dirichlet characters, where χ1 ≡ 1 is the trivial character. For each
χi ∈ X, let qi = fχi , the conductor of χi. In particular, q1 = 1. Then Theorem 2.9 tells us
that the Dedekind zeta function of K decomposes as

ζK(s) = ζ(s)

k∏
i=2

L(s, χi) (3.1)

We can assume that ε ∈ (0, 2
3 ). Let D = |disc(K)|. Then, by the conductor-discriminant

formula, we have that
D = q1q2 · · · qk = q2 · · · qk

For each i ∈ 2, k let

yi = max{q
1
4+

ε
2

i , D
ε
2k }

and set

y =
k∏

i=2

yi

Then we have that

D
1
4+

ε
2 = (q2 · · · qk)

1
4+

ε
2 ≤

k∏
i=2

yi = y

On the other hand, if i1, ..., ir are the indexes for which yi = q
1
4+

ε
2

i where r ∈ 0, k − 1 then

y = yi1 · · · yirD
ε
2k (k−1−r)

= qi1 · · · qirD
ε
2k (k−1−r) (3.2)

But then y < D
1
4+ε. Indeed, from (3.2), this is equivalent to proving

(qi1 · · · qir )
1
4+

ε
2 < D

1
4+ε− ε

2k (k−1−r) = D
1
4+ε− ε

2+ε r+1
2k

= D
1
4+ε+ε r+1

2k

And this is clear since
D = q2 · · · qk ≥ qi1 · · · qir

and ε r+1
2k > 0.
By definition, we can write

ζK(s) =
∞∑

n=1

an
ns

where an = {I ⊆ OK ideal |NK/Q(I) = n}.
The main idea in proving Theorem 3.1 is to estimate the sum

∑
n≤y an in two different

ways.
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Proposition 3.2. Assume that every prime that splits completely in K exceeds D
1
4+ε.

Then we have ∑
n≤y

an ≪k y
3
4

Proof. Recall the Euler product of the Dedekind zeta function

ζK(s) =
∏
p

(1− 1

pfps
)−gp

where fp is the inertia degree of any prime ideal ℘ of OK lying above p and gp is the number
of such prime ideals. Therefore

∞∑
n=1

an
ns

=
∏
p

(1− 1

pfps
)−gp

Let p ≤ y be a prime that doesn’t split completely in K, hence p|D or fp > 1. From
the above equality, it follows that if n ≤ y and an doesn’t vanish, we can decompose n as
n = n1n2, where n1 is a squarefree divisor of D and n2 is squarefull. But a result of Golomb
on powerfull numbers (see [3]) tells us that

|{n2 ∈ N|2 ≤ y and n2 is squarefull }| ≪ y
1
2

Moreover, since τ(D)≪ε D
ε, we have in particular that τ(D)≪ D

1
32 . Then

Ay = |{n ∈ N|n ≤ y such that an ̸= 0}| ≪ y
1
2D

1
32

We saw that D
1
4+

ε
2 ≤ y, thus D

1
4 < y and therefore

Ay ≪ y
1
2 y

1
8 = y

5
8

On the other hand, the decomposition (3.1) of ζK(s) gives us

an = (1 ⋆ χ2 ⋆ ... ⋆ χk)(n) ∀n ∈ N, n ≥ 1

where ⋆ denotes the Dirichlet convolution. Hence

an ≤ (1 ⋆ 1 ⋆ ... ⋆ 1)(n) = τk(n)

where τk, the convolution of the function 1 with itself for k-times is known in the literature
as the k-fold Piltz divisor function.

Therefore, since
τk(n) ≤ τ(n)k−1 ≪k n

1
8

we conclude that ∑
n≤y

an ≪k y
5
8 y

1
8 = y

3
4
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3.2 Second estimate for Theorem 3.1

Now we give a second estimate for
∑

n≤y an in the following two lemmas.
First, remark that since an = (1 ⋆ χ2 ⋆ ... ⋆ χk)(n) ∀n ∈ N, n ≥ 1, we can write∑

n≤y

an =
∑

d2···dk≤y

χ2(d2) · · ·χk(dk)

⌊
y

d2 · · · dk

⌋
=

∑
d2···dk≤y

χ2(d2) · · ·χk(dk)
( y

d2 · · · dk
−
{ y

d2 · · · dk

})
= y

∑
d2···dk≤y

χ2(d2)

d2
· · · χk(dk)

dk
−

∑
d2···dk≤y

χ2(d2) · · ·χk(dk)
{ y

d2 · · · dk

}
Lemma 3.3. The following holds∑

d2···dk≤y

χ2(d2)

d2
· · · χk(dk)

dk
= L(1, χ2) · · ·L(1, χk) +Oε,k(D

− ε2

20k )

Proof. For each (k − 1)-tuple (d2, ..., dk) with d2 · · · dk ≤ y, let

U(d2,...,dk) = {1 ≤ i ≤ k − 1|yi < di}

and for each U ⊆ 2, k, let

F(U) = {(d2, .., dk)|U(d2,..,dk) = U}

Then we have that∑
d2···dk≤y

χ2(d2)

d2
· · · χk(dk)

dk
=
∑

U⊆2,k

∑
(d2,...,dk)∈F(U)

χ2(d2)

d2
· · · χk(dk)

dk

=
∑

(d2,...,dk)∈F(∅)

χ2(d2)

d2
· · · χk(dk)

dk
+

∑
∅̸=U⊆2,k

∑
(d2,...,dk)∈F(U)

χ2(d2)

d2
· · · χk(dk)

dk

By the definition of F(U), we have that

F(∅) = {(d2, ..., dk)|∅(d2,...,dk) = ∅}
= {(d2, .., dk)|{2 ≤ i ≤ k|yi < di} = ∅}
= {(d2, ..., dk)|di ≤ yi ∀i ∈ 2, k}

Hence ∑
(d2,...,dk)∈F(∅)

χ2(d2)

d2
· · · χk(dk)

dk
=
∑
di≤yi

∀i∈2,k

χ2(d2)

d2
· · · χk(dk)

dk

=
k∏

i=2

∑
di≤yi

χi(di)

di

Let Si(t) =
∑

n≤t χi(n) ∀i ∈ 2, k. Then, by Corollary 1.8, we have that

Si(N)≪ε,k N1− ε2

4 ∀N ≥ q
1
4+

ε
2

i

and since yi = max{q
1
4+

ε
2

i , D
ε
2k }, it follows that

Si(t)≪ε,k t1−
ε2

4 ∀t ≥ yi
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By using Abel summation we obtain

∑
yi<n≤N

χi(n)

n
=

Si(N)

N
− Si(yi)

yi
−
∫ N

yi

Si(t)
(1
t

)′
dt

=
Si(N)

N
− Si(yi)

yi
+

∫ N

yi

Si(t)

t2
dt

Hence ∑
n>yi

χi(n)

n
= −Si(yi)

yi
+

∫ ∞

yi

Si(t)

t2
dt

since Si(N)≪ε,k N1− ε2

4 .
Therefore

L(1, χi)−
∑
di≤yi

χi(di)

di
= −Si(yi)

yi
+

∫ ∞

yi

Si(t)

t2
dt

Again, using (1.15), we can dispose of the first term in the right hand side. As for the second
term, since ∫ ∞

yi

t1−
ε2

4

t2
dt = − 4

ε2
y
− ε2

4
i

we deduce that

−Si(yi)

yi
+

∫ ∞

yi

Si(t)

t2
dt≪ε,k y

− ε2

4
i

Hence

L(1, χi)−
∑
di≤yi

χi(di)

di
≪ε,k y

− ε2

4
i

and since by definition, yi ≥ D
ε
2k , we get

L(1, χi)−
∑
di≤yi

χi(di)

di
≪ε,k D− ε3

8k

which means that ∃M(ε, k) > 0 such that∣∣∣∣∣L(1, χi)−
∑
di≤yi

χi(di)

di

∣∣∣∣∣ ≤M(ε, k)D− ε3

8k

for large enough D. Thus∣∣∣∣∣ ∑
di≤yi

χi(di)

di

∣∣∣∣∣−
∣∣∣∣L(1, χi)

∣∣∣∣ ≤M(ε, k)D− ε3

8k

Consequently∣∣∣∣∣ ∑
di≤yi

χi(di)

di

∣∣∣∣∣ ≤ ∣∣L(1, χi)
∣∣+M(ε, k)D− ε3

8k =
∣∣L(1, χi)

∣∣(1+ 1∣∣L(1, χi)
∣∣M(ε, k)D− ε3

8k

)
(3.3)

But Siegel’s theorem with ε = ε3

16k reads

q
− ε3

16k
i ≪ε,k

∣∣L(1, χi)
∣∣
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So ∃N(ε, k) > 0 such that for big enough qi we have

q
− ε3

16k
i ≤ N(ε, k)

∣∣L(1, χi)
∣∣

Then from this and (3.3) we have∣∣∣∣∣ ∑
di≤yi

χi(di)

di

∣∣∣∣∣ ≤ ∣∣L(1, χi)
∣∣(1 + M(ε, k)

N(ε, k)
q

ε3

16k
i D− ε3

8k

)
Whence ∑

di≤yi

χi(di)

di
= L(1, χi)

(
1 +Oε,k

(
q

ε3

16k
i D− ε3

8k

))
= L(1, χi)

(
1 +Oε,k

(
D− ε3

16k

))
where the last equality holds since qi ≤ D = q2 · · · qk.

Then, taking the product over all the characters, we have that

k∏
i=2

∑
di≤yi

χi(di)

di
= L(1, χ2) · · ·L(1, χk)

(
1 +Oε,k

(
D− ε3

16k

))
Using the trivial bound L(1, χi)≪ log qi ∀i ∈ 2, k and the fact that qi ≤ D ∀i ∈ 2, k, we get

L(1, χ2) · · ·L(1, χk) = O(logDk−1)

Hence

k∏
i=2

∑
di≤yi

χi(di)

di
= L(1, χ2) · · ·L(1, χk) +O((logD)k−1)Oε,k

(
D− ε3

16k

)
= L(1, χ2) · · ·L(1, χk) +Oε,k

(
(logD)k−1D− ε3

16k

)
= L(1, χ2) · · ·L(1, χk) +Oε,k

(
D− ε3

20k

)
(3.4)

since (logD)k−1 is a polylogarithmic function in D and f(x) = o(xε)∀ε > 0 and ∀f a
polylogarithmic function, i.e f(n) ∈ Z[log n].

Let us estimate now the contribution coming from nonempty U . Fix such an U ⊆ 2, k,
let u0 ∈ U and set

P = P ((d2, ..., d̂u0 , ...dk)) =

k∏
i=2
i ̸=u0

di

so when we write P , we assume it depends on the (k − 2)-tuple (d2, ..., d̂u0 , ...dk), where x̂
means that we omit x. Then the triangle inequality gives∣∣∣∣∣ ∑
(d2,...,dk)∈F(U)

χ2(d2)

d2
· · · χk(dk)

dk

∣∣∣∣∣ ≤
∣∣∣∣∣ ∑
(d2,...,dk)∈F(U)

χu0(du0)

d2 · · · dk

∣∣∣∣∣ =
∣∣∣∣∣ ∑
(d2,...,dk)∈F(U)

1

P

χu0(du0)

du0

∣∣∣∣∣
≤
∑

(d2,..,d̂u0 ,..,dk)

(d2,...,dk)∈F(U)

1

P

∣∣∣∣∣ ∑
yu0<du0≤

y
P

χu0(du0)

du0

∣∣∣∣∣
Then, using Abel’s summation formula we have∑

yu0<du0≤
y
P

χu0(du0)

du0

=
Su0(

y
P )

y
P

− Su0(yu0)

yu0

+

∫ y
P

yu0

Su0(t)

t2
dt
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Since u
P > yu0 , (1.15) gives us

Su0(
y

P
)≪ε,k

( y

P

)1− ε2

4

Furthermore ∫ y
P

yu0

Su0(t)

t2
dt≪ε,k

∫ y
P

yu0

t1−
ε2

4

t2
dt = − 4

ε2
t−

ε2

4

∣∣∣∣
y
P

yu0

≪ε,k y
− ε2

4
u0

Consequently ∑
yu0<du0≤

y
P

χu0(du0)

du0

≪ε,k

( y

P

)1− ε2

4

+ y
− ε2

4
u0 ≪ y

− ε2

4
u0

Thus ∑
(d2,..,d̂u0 ,..,dk)

(d2,...,dk)∈F(U)

1

P

∣∣∣∣∣ ∑
yu0<du0≤

y
P

χu0(du0)

du0

∣∣∣∣∣≪ε,k y
− ε2

4
u0

∑
(d2,..,d̂u0 ,..,dk)

(d2,...,dk)∈F(U)

1

P

≤ D− ε3

8k

(∑
d≤y

1

d

)k−2

≤ D− ε3

8k (1 + log y)k−2

≤ D− ε3

8k (log eD)k−2

Since (log eD)k−2 is polylogarithmic, we have that (log eD)k−2 ∈ o((eD)δ) ∀δ > 0, so in

particular (log eD)k−2 ∈ o((eD)
ε3

40k ), hence

D− ε3

8k (log eD)k−2 = Oε,k

(
D− ε3

10k

)
Combining this and (3.4) gives us the desired bound.

Lemma 3.4. We have∑
d2···dk≤y

χ2(d2) · · ·χk(dk)

{
y

d2 · · · dk

}
≪ε,k D− ε3

600k

Proof. Let y′ = yD− ε
4 . We first show that we can dispose of the (k − 1)-tuples (d2, ..., dk)

such that d2 · · · dk ≤ y′.
Indeed, we have that∣∣∣∣ ∑

d2···dk≤y′

χ2(d2) · · ·χk(dk)

{
y

d2 · · · dk

}∣∣∣∣ ≤ ∑
d2···dk≤y′

1

≤ y′
(∑

d≤y′

1

d

)k−2

≤ y′(1 + log y′)k−2

≤ yD− ε
4 (1 + logD)k−2

where the last inequality holds since y′ < y < D.
As seen in the proof of the previous lemma, we have that (1+logD)k−2 ∈ o(Dδ) ∀δ >

0, so in particular, for δ = ε
20 we obtain that

yD− ε
4 (1 + logD)k−2 ≪ε,k yD− ε

4+
ε
20 = yD− ε

5
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Clearly this is negligible compared to our desired bound so we focus on the contribution of
(k − 1)-tuples (d2, ..., dk) with y′ < d2 · · · dk ≤ y. Let

y′i = max{q
1
4+

ε
8

i , D
ε
8k }

Then if d2 · · · dk > y′, we claim that there exists i0 ∈ 2, k such that di0 > y′i0 .

Suppose this doesn’t occur, hence di ≤ y′i ∀i ∈ 2, k. Then

y′ < d2 · · · dk ≤ y′2 · · · y′k

Hence
yD− ε

4 < y′2 · · · y′k
We saw that D

1
4+

ε
2 ≤ y and therefore

D
1
4+

ε
4 ≤ y′2 · · · y′k

Let r ∈ 0, k − 1 and i1, ..., ir ∈ 2, k such that y′i = q
1
4+

ε
8

i . Then

y′2 · · · y′k = (qi1 · · · qir )
1
4+

ε
8D

ε
8k (k−1−r)

and since qi1 · · · qir ≤ q2 · · · qk = D, we get that

D
1
4+

ε
4 ≤ D

1
4+

ε
8D

ε
8k (k−1−r)

Hence
1 ≤ D− r+1

8k

which is clearly a contradiction since D > 1. Therefore there is an i0 ∈ 2, k such that

di0 > y′i0 and taking into account that
⌊

y
d2···dk

⌋
< y

y′ for d2 · · · dk > y′, similarly to the proof

of Lemma 3.3, we can group the remaining (k− 1)-tuples (d2, ..., dk) with y′ < d2 · · · dk ≤ y
as follows:

For each (k − 1)-tuple, let

U(d2,...,dk) = {2 ≤ i ≤ k|y′i < di}

Since we proved that there is an i0 ∈ 2, k with di0 > y′i0 we have that

U(d2,...,dk) ̸= ∅ ∀(d2, ..., dk)

Now, for each ∅ ̸= U ⊆ 2, k and m ∈ N, 1 ≤ m < D
ε
4 = y

y′ , define

F(U ,m) = {(d2, ..., dk)|U(d2,...,dk) = U and

⌊
y

d2 · · · dk

⌋
= m}

Then clearly∑
y′<d2···dk≤y

χ2(d2) · · ·χk(dk)

{
y

d2 · · · dk

}
=
∑
U,m

∑
(d2,...,dk)∈F(U,m)

χ2(d2) · · ·χk(dk)

{
y

d2 · · · dk

}

Fix a pair (U ,m), let u0 ∈ U ̸= ∅ and consider a (k − 2)-tuple (d2, ..., d̂u0 , .., dk) such that
(d2, ..., dk) ∈ F(U ,m) for some du0 .

Since u0 ∈ U , we have that y′u0
< du0 . Furthermore, since (d2, ..., dk) ∈ F(U ,m), by

the definition of F(U ,m), we have that
⌊

y
Pdu0

⌋
= m, where we set

P = P ((d2, .., d̂u0 , .., dk)) =
k∏

i=2
ı̸=u0

di
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Hence
y

Pdu0

< m+ 1

So
du0 >

y

(m+ 1)P

Lastly,

du0 >
y′

P

since d2 · · · dk > y′. Thus if we set

M = M((d2, ..., d̂u0 , .., dk)) = max{y′u0
,

y

(m+ 1)P
,
y′

P
}

we have that
M < du0 ≤

y

mP

where the inequality on the right holds since
⌊

y
d2···dk

⌋
= m. These are precisely the integers

du0 satisfying the condition imposed on the (k − 2)-tuplets. Consequently, the triangle
inequality gives us ∣∣∣∣∑

U,m

∑
(d2,...,dk)∈F(U,m)

χ2(d2) · · ·χk(dk)

{
y

d2 · · · dk

}∣∣∣∣
≤
∑

(d2,..,d̂u0 ,..,dk)

(d2,...,dk)∈F(U)

∣∣∣∣ ∑
M<du0

≤ y
mP

χi0(du0)

{
y

du0P

}∣∣∣∣ (3.5)

Since ⌊
y

Pdu0

⌋
= m

is constant, the function b : N −→ [0, 1), b(n) =
{

y
nP

}
is decreasing on the integers du0 and

it is also nonnegative. Then, using Abel’s inequality, we have∣∣∣∣ ∑
M<du0≤

y
mP

χi0(du0
)

{
y

du0P

}∣∣∣∣ ≤ max
M<t≤ y

mP

∣∣∣∣ ∑
M<du0≤t

χu0
(du0

)

∣∣∣∣
Since

M ≥ y′i0 ≥ q
1
4+

ε
8

i

Corollary 1.8 gives us ∣∣∣∣ ∑
M<du0≤t

χu0(du0)

∣∣∣∣≪ε,k t1−
ε2

64

Whence

max
M<t≤ y

mP

∣∣∣∣ ∑
M<du0≤t

χu0(du0)

∣∣∣∣≪ε,k

(
y

mP

)1− ε2

64

≤
(

y

mP

)
M

ε2

64 ≤ y

mP
D− ε3

512k (3.6)

since
D

ε
8k ≤ y′u0

≤M < du0 ≤
y

mP
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From (3.5) and (3.6), we deduce that the contribution of the pairs (U ,m) is

≪ε,k
y

m
D− ε3

512k

∑
(d2,..,d̂u0 ,..,dk)

(d2,...,dk)∈F(U,m)

1

P

≤ y

m
D− ε3

512k

(∑
d≤y

1

d

)k−2

≤ y

m
D− ε3

512k (1 + log y)k−2

Finally, summing over all pairs (U ,m), we conclude that the upper bound is

≪ε,k yD− ε3

512k (1 + log y)k−2 ≪ε,k D− ε3

600k

since
(1 + log y)k−2 ∈ o(Dδ) ∀δ > 0

.

Proof of Theorem 3.1
Lemmas 3.3 and 3.4 give us the estimate∑

n≤y

an = yL(1, χ2) · · ·L(1, χk) +Oε,k(D
− ε3

600k )

Assuming that the least prime that splits completely in K is greater than D
1
4+ε, by Propo-

sition 3.2, we have that ∑
n≤y

an ≪k y
3
4

Therefore

L(1, χ2) · · ·L(1, χk)≪ε,k y−
1
4 +D− ε3

600k

Since
D

1
4 < D

1
4+

ε
2 ≤ y

we obtain

L(1, χ2) · · ·L(1, χk)≪ε,k D− 1
16 +D− ε3

600k

≪ D− ε3

600k (3.7)

On the other hand, Siegel’s theorem with ε = ε3

600k+1 gives us

q
− ε3

600k+1

i ≪ε,k

∣∣L(1, χi)
∣∣ ∀i ∈ 2, k

Hence

D− ε3

600k+1 = (q2 · · · qk)−
ε3

600k+1 ≪ε,k

∣∣L(1, χ2) · · ·L(1, χk)
∣∣

which clearly contradicts (3.7)

Therefore the least prime that splits completely in K is ≪ε,k D
1
4+ε.
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