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Introduction

The study of residues and nonresidues of Dirichlet characters dates back to the early
19th century when Gauss used a bound on the smallest x-nonresidues where x is the Leg-
endre symbol (5) and p is a prime = 1(mod8) required for his first proof of the quadratic
reciprocity law.

Later work of Linnik and Vinogradov succeeded in giving a bound ! < p%“ for the
smallest prime quadratic residue [ i.e. x(I) = 1 where x is a quadratic character modulo a

prime p.

In the first section, we give a lower bound for prime residues of quadratic characters
based on an improved version of Burgess’s bound.

As a consequence of Chebotarev’s density theorem, the proportion of rational primes
that split completely in a number field K is given by T@’ where L is the normal closure of
K/Q, hence one could ask for an estimate of the smallest such prime. Following the work
of mathematician Paul Pollack, we prove as a main result in section 3, that in the special
case when K is an abelian number field, we have that p <. D%“, where k = [K : Q]. To
see this, we heavily rely on Siegel’s Theorem on lower bounds for the L-series L(1,x). A
drawback of this is that the constant appearing in Theorem 3.1 is not effective. This can
be improved though if one is allowed to exclude certain bad moduli. For instance, there can
be established a lower bound of the form (logq)~ ") <« L(1,x) after excluding one bad
moduli ¢ in each hyperdyadic range 2100 <q< 100" g ¢ N, which is due to a result
of Landau(see [7], pp. 362-363) By the same reason, we can have effectiveness in Theorem
3.1 if all the characters appearing in the decomposition of (x(s) have odd order, thus not
being real. In particular, this holds true when [K : Q] is odd.



1 Bounds for small prime character residues

1.1 Burgess’s bound
We want to prove the following theorem([12], Theorem 1.3)

Theorem 1.1. Let e > 0 and let A > 0. There is an mg = mq(e, A) with the following
property: If m > mqg and x is a quadratic character modulo m, then there are at least
1
(logm)4 primes | < ma+e with x(I) = 1.

In doing so, we need some some additional results, mainly a modified version of
Burgess’s bound below obtained by Norton([8]). Let x be a Dirichlet character. Then

we define
N+x

Sn(z,x) = Y, X

y=N+1

for any integers N,z with = > 1.

Theorem 1.2. (Burgess) Let n,x be positive integers, let N be any integer and let € be
any positive real number. Let x be a nonprincipal Dirichlet character mod n. Then

S (2, X)| €op 2" TnaEFE (1.1)

for each of the values t = 1,2,3( the implied constant depends at most on € and t). Further-
more, if n is cubefree, then (1.1) holds for any positive integer t.

This theorem has important applications in number theory and as mentioned, we will
prove the following, stronger version of (1.1) that holds for any positive integers n,x,t and
any nonprincipal character y mod n, which actually gives several improved estimates in
questions about the structure of the multiplicative group mod n.

Theorem 1.3. Let n, k, N,x be any integers with n, k,x positive and let x be a nonprin-
cipal character mod n such that x* is principal. Then

SN (2, x)| <eu Rp(n)tz'~inazte 1)

for any positive integer t, where

Ri(n) = min{M(n)%, Q(k)¥}
and
Mmn)y= [ »°
peHn,SEQ
Qk = I »
p°|lk,e>3
In particular, if x > Rk(n)%"‘é for d >0, then
|Sn (2, x)| < gn = (207 (1.3)

We need 2 useful lemmas.

Lemma 1.4. Suppose that n,q, m are positive integers with n = gm and ged(q,m) = 1.
If x is a character mod n, then x admits a unique representation x = 0&, where 0 is a
character mod q and & is a character mod m. Furthermore, x is primitive iff both 6 and &
are primitive.



This lemma is an easy application of the Chinese Remainder Theorem. For details,
see[4], pp.220-221.

Lemma 1.5. Let x be a primitive character mod n, where n is a positive integer greater
than 1. Let N,x,t be any integers with x,t positive. Then
-3

%4’_5

|SN(ac,X)’ Lt M(n)%x na

where M(n) is defined as before.
Proof. Write M (n) = m and let

By the definition of M (n), we have that n = gm, with ged(gq,m) = 1.
Notice that if z < m, then

mi Tl =2 > |Sy (2, Y|

So we may assume that m < x and observe that if m = n, then

t+1

1 t+1 3 1 izl 1
! te s piiptTipae T = par T S > Sy (x, )|

3 q_1 tf1
matxs tnae?
Hence we must have m < n and ¢ > 1. By the previous lemma, x can be represented in an
unique way as a product y = 6¢, where 6 is a primitive character mod ¢ and ¢ is a primitive
character mod m.

Since ged(gq,m) = 1, we have that for any nonzero integer a, there exists a unique
integer b,1 < b < m such that a = —bg(mod m).

Using the decomposition of x we have the following

S )l =1Y Y b@i@l<)y Y o)

a=1 N<a<N+z a=1 N<a<N+z
a=—bg(modm) a=—bg(modm)

Writing @ = ¢m — bq, we have that 6(a) = 0(c)f(m) so

ISn(@ ) <> 1Y 0() (1.4)

a=1 N+bg - .~ Ntbgtz
T Ses TR

Notice the following

220() = S ([ |0

m
N+bg <e< N+bg+x
m = m

By applying Theorem 1.2, we have

IS
—
8
| I
—
|
o+
o«
[
=
+
™

m

x
'SLN“’QJ ( {EJ 79)‘ <t M(q)
Therefore, since g is cubefree, we obtain

z Tyi-t e _
‘SLNMQ quae)‘<<e,t(m) q (

m

Applying this in (1.4) we get

m
el il g1 41 e B 1. g1 41
|Sn (2, X)| et E m i ae e g mtp e e =y o e T e T e

a=1



But

3 1 1 t+1 3 1 t+1 3 1 i+l
mit T w ol T inar T« margt T inae T = M(n)drgt T inae TE

which concludes the proof. O

Lemma 1.6. Let N,z,t be any integers with x,t positive and let x be a nonprincipal
character mod n with conductor f. Then

S (2, X)| <ep 29I M(f) ezt~ Tnie +e (1.5)

where w(n) is the number of distinct prime factors of n.

Proof. Let & be a primitive character mod f which induces x and let

g= ] »

pln,ptd

Then we can decompose x as x = 6¢, where 0 is the principal character mod gq.
Using the representation

0y)= > pule)= > ple)

elged(y,q) ely.elq
where p is the Mobius function, we get the following

N+x

ISn(@, )l =1 D> xWw)l

y=N+1

N+z

=1 Y e

y=N+1
N+x

=1 Y (> ule) &)

y=N+1 ely,elq

So we have that

Sn@@ )l =1 > O nle) &)

Mg Ntz elq
=D uEl-1 > &)
elq Mg Nt

But the last quantity is smaller than

SIY @=XIsx (2] 0l (L6)

N N+x
elg Ny Ntz elq

By the previous lemma, we have

081 (2] 9] s byt g5 (1)



From (1.6) and (1.7) we therefore obtain that

t+1

ISN (2, x)| <et ZM(f)‘%l‘l_%f?*E

elq

and since
Z 1 = ow(a) < gw(n)
elq

we conclude that 3 |
|Sn (2, x)| e 29I M (f)iea?~tnae e

O

Notice that for any divisor d of a positive integer n, we have that M (d)|M(n). This
simply follows from the definition of M (n). Now, since 2¢(n) «_ nf, we remark that we can
get (1.2) from Lemma 1.6 with Ry (n) replaced by M (n)3. More work is required though to
prove the theorem in its entirety.

Let n, k be positive integers and denote (Z/nZ)* by C(n). Let Ci(n) < C(n) be the
subgroup of the kth powers and write v := vi(n) = [C(n) : Ck(n)].

As a straightforward application of the Chinese Remainder Theorem, it can be showed
that vy is multiplicative and therefore the next lemma characterizes v, completely.

Lemma 1.7.

1 ifn=2
vi(n) = < ged(k, o(p®)) if n = p* for p odd prime and a > 1
ged(k,2)ged(k,2°72)  ifn=2%a>2

Proof. Suppose that n = p®, where p is an odd prime and a > 1. Let g be a primitive root
mod p® and let t be a positive integer. Then y = ¢* is a kth power mod p® iff the congruence
t = mk(mod p®) is solvable for the integer m. But a well known result in elementary number
theory, which can be proved for example using Dirichlet’s approximation theorem, tells us
that this congruence has solutions iff d = ged(k, ¢ (p®))|t.

Hence Cy(p?) is represented by the numbers g%, 0 < r < @ so |Cr(p)| = @.

Therefore
vp(p®) = [C(p*) : Cr(p®)] = d = ged(k, p(p*))

It is known that for a > 3, C/(2%) ~ Z/2Zx /227 =< ~1,5 >. So any element z € C(2%)
can be written uniquely as
z = (—1)%5° (mod 2¢)

where a € {0,1} and 8 € {0,1,...,2972 — 1}. Notice that this also holds for a = 2 since
C4)=1{1,3} =< —1>.
In the same manner as before, we easily get that

v (2%) = ged(k, 2)ged(k,2°72) fora > 2
Finally, vi(2) = [C(2) : Cx(2)] = 1. O
We now give the proof of Theorem 1.3

Proof. Consider the prime decomposition of n:

— a1 a
n=p -...'prr



where r > 1,a; > 1Vi € 1,7 and p1, ..., p, are primes with p; < ... < p,.
Moreover, write
k Ky
k=pit-.. pirk

where k; € N Vi € 1,7 and k¥’ > 1 such that (k’,p; - ... - p,) = 1. Now, for each i € 1,7,
define
_Jmin{a;, k; + 1} if p; is odd
e {min{ai, ki +2} ifp,=2
Furthermore, let
2 if n is even and k is odd

1 otherwise

A= Ag(n) = {

and define i,
ng = Hp;ﬂ
i=A

with the convention that n; = 1 if the product is empty. Let d be the conductor of y. We
show that d|ns. Indeed, since n = p{* - ... - p%r, we can write

X = X1 X

where ; is a character mod p{* Vi € 1,r. By the definition of the conductor, we have that

fx = Hin
i=1

where fy denotes the conductor of the character 6. Also notice that x* is principal Vi € T,7.

Let y be a positive integer such that 37 € 1,7 such that p; { y. Then y is a kth power
mod p}* iff y is a kth power mod p]*. To see this, observe that if p; 1 y, then there exists
a positive integer ¢ such that y = g*, where g is a primitive root mod p{’. Hence, as in the
proof of Lemma 1.7, y = ¢" is a kth power mod p{* if and only if d = ged(k, o(pi?))|t.

Similarly, y = ¢* is a kth power mod p]" if and only if the congruence ¢ = m'k(mod p]")
is solvable for the integer m’ iff ' = ged(k, p(p]"))]t.

So from the above, it suffices to show that d|t < d'|t. It can be easily seen that for
a, b, ¢ non-zero integers with ged(b,c¢) = 1 we have that

ged(ab, ¢) = ged(a, c) (1.8)
Now we have the following

d = ged(k, p(pi*))
= gcd(pll’Cl - ~pl,frk:’,p?i_l(pi —-1))

k o
= ged - pl T (= 1)

K2

ind ks s — k
= pyihne 1}ng(Tivpi -1
D;
S k
=p]" " ged(—-,pi — 1)
p;
But then, putting a = 4=, b = pric=p; —1in (1.8) yields
p;

k koo
ng(]ﬁ,Pi -1)= QCd(]prﬂpi — 1) = ged(k,pi — 1)
i i



Sod= piﬁlgcd(k,pi -1).
On the other hand
d' = ged(k, p(p]*))

= ged(k,pl" "' (pi — 1))
= p?in{ki’wil}gcd(k,pi — 1)
But, by definition, v; < k; + 1 so 7; — 1 < k; and therefore

d' = p}'"ged(k,p; — 1)

So d = d' and this shows that y is a kth power mod p{“iff y is a kth power mod p)". It
follows that if y = 1(modp;*) then x;(y) = 1 so by the definition of the conductor we get
that f,,|p;".

Now, if py = 2 and k is odd, then by Lemma 1.7, any odd y is a kth power mod p]* so
X1 is principal and f,, = 1.

Combining these results we get that f, = d|ny.

For another way to prove this fact using the number Q(d) of primitive characters
x(mod d) such that x* is principal, see [8].

Since d|ny, it follows that M(d) < M(nx). Also, observe that w(n) < w(nk) + 1 since
A< 2.
By applying Lemma 1.6 for the character y and using the fact that 2™ <. m® for
a positive integer m we obtain

3 11 ote

|Sn (2, x)| <ex M(ng)¥a' v} vVt e N (1.9

Nlw

Clearly ng|n and therefore M (ny)|M(n). Let us prove that M(ng) < 8Q(k)z.
To show this, consider the two possible cases:

Case 1. n is odd or n is even and k is odd.

Then for each i € \,r and v; > 3, we must have that p; is odd and k; > 2. But
~vi = min{a;, k; + 1} so

3
'Yiéki‘i’lgiki since k; > 2
Hence . )
ski kiy 2
Hpe:M(nk)Ssz? :(le )2
P°Ink A<i<r A<i<r
e>3 ki>2 ki>2

But by the definition of Q(k), we have that

M) < (TTpf)% < Qk)? (1.10)
A

Case 2. n and k are both even.

Then A =1 and p; = 2. If 77 < 3, we have that

M(ng) = [[pe =[] p*

pl|ng 2<i<r
e>3 vi=>3



and as in the first case we obtain that
M(ni) < Q(k)? (1.11)

If 4 = 3, then

=Ipe=2"-TTw <2 T/ = s([[pf)? <s@u?  (L12)

pl|nk 2<i<lr 2<i<r 2<i<lr
e>3 ~i>3 k>3 ¥i>3

If v = min{ay, ki + 2} > 4, then ky > 2, hence 1 + %fl = f1+ (% +1)>fi+2>m.
Therefore we obtain

3.
M(ng) =27 - [y <230 Tet™ =22 < 200)2 (1.13)
2<i<r 2<i<r 1<i<r
vi>3 k;>2 ki>2

From (1.10), (1.11),(1.12) and (1.13) we conclude that

M (ny) < 8Q(k)? (1.14)

So we have that s s .
M(ng)t < 81Q(k)*
and since nj, < n and M(ny,) < M(n), by setting Ry,(m) = min{M(n)%,Q(K)5} and using
(1.9) we obtain
1 t+1
[ (r, )| e Ri(m) Pt~ Enid +
which is precisely the main statement of Theorem 1.3.
As for the remaining part of the theorem, observe that if x > Rk(n)niw for some

6> 0, then Ry(n) < zn~i9 and from (1.2) we get

|Sn (@, x)| <ept (xn_%_é)%xl_%n%“ —gnarte @t — ppartet
So
|Sn (2, x)| <ep an DT
where f: (0,400) — R, f(t) = 1z — %
Since the derivative of f is
) 1 20t — 1
!
= — — — =
F®) 2 213 t3
we have that f is increasing for ¢ > % so for t = [%W we have
1 1
6 < Flom+1) = -
26 4-(1+5)? 1+
B 52 B 262
C(2604+1)2 25+1
02 —20%(26+1)
(20 +1)2
5%(46 +1 6%(26 +1

26 +1)2 ~ (20 + 1)

So we have that

S )| e a0

and (1.3) follows for an appropriate choice of € = £(9). O



Corollary 1.8. Let ¢ > 1,x a primitive character modulo q of order dividing k and let
§ € (0,L]. Then, for x > qi+®, we have that

’3
> x(n)

n<zx

s p 1t (1.15)

Proof. Applying Theorem 1.3 with N = 0 reads

> x(n)

1<n<z

t+1

g "rgnEtt VteNt>1

‘SQ(Q?,X)’ =

Hence

> x(n)

n<z

Since = > ¢i*¢, we have that
q )

Thus

1 1
<<6,t,k xl tq zte =xr-x 1

> x(n)

n<z

Since this holds for any ¢ € N,¢ > 1 and for any € > 0, choosing ¢t = {%], e = g—g and

keeping in mind that ¢ € (0, 1], we have that

t<i+1_1(1+6)<1(1+1) 3
26 852 —5\2 3/ 66
Hence 1§ 11 1,6 5 _ 665 3
e Ry R e L
42 ¢ t<4t T t\2 2t — 25 5
50 ) 52 7
1 3
_ 7 _752 7__752
4t2 t+ - 5 +60 12
But then, since + +6 < 4 + 1 = T we have that
s
ﬁ_?+6 —(52
1 i
7+0
which completes the proof. O

This corollary is a very important consequence of Burgess’s bound as it is heavily used
in the third section to obtain the main result of this paper.
We continue with an application of Theorem 1.3

Theorem 1.9. Let x be a nonprincipal character mod n. Let m,h be any integers with
h positive and suppose that x is constant on {ylm < y < m+ h and ged(y,n) = 1}.Then
h <. nite,

This theorem generalizes a result of Burgess who obtained the bound hi log p for the
particular case when n = p is a prime and also a result of Norton on consecutive power
residues(see[9], Theorem 4).

10



Proof. Let x be a nonprincipal character mod n of order k& which satisfies the condition in
the hypothesis and let p be a prime factor of k.

Consider 6, the principal character mod n and define a character £ mod n, £ = x%.
Then £ has order p and it must be constant on {y|m <y < m+ h and ged(y,n) = 1}. But
then

Sm(h,&) = Sp(h,0) (1.16)

By the representation of 6 used in the proof of Lemma 1.6, we have

m-+h

Sm(h,0) = Y 0(y)
y=m+1
m-+h

= > > u)

y=m-+1 dly.din

m+h m+h
=2 D ud+d Y uld)
y=m+1 dly,d|n y=m+1 d|y,d|n
ged(y,n)=1 ged(y,n)>1
m-+h m+h
=Y 1+ > > (1.17)
y=m+1 y=m+1 d|gcd(y,n)

ged(y,n)=1 gecd(y,n)>1

Since there are ¢(n) numbers relatively prime to n in any length n interval [kn+1, (k4 1)n],
we can estimate the first term in (1.17) by Zop(n).
As for the second one, we have that

Z p(d) < Z 1 = gw(ged(y,n))

d|ged(y,n) d|ged(y,n)
So
m-+h m-+h
Z Z p(d) < Z gw(ged(y,n))
y=m+1d|ged(y,n) y=m+1
ged(y,n)>1 ged(y,n)>1

and this can be bounded in terms of n® for any € > 0.
Hence we have the estimate

S (h,0)] = Zom) + 0.(n%)
On the other hand, Theorem 1.3 gives us
S (y€)| <oy " Pn 52T Vi€ N*
So from these last results and (1.15) we get that

B o) <oy i
n

Hence -
ht oqmi e
So -
h <oy n'ie et = pitarte
Choosing t as an appropriate function of €, we get the desired result. O

Theorem 1.9 can be generalized as follows:

11



Theorem 1.10. Let K be a real valued function on the positive integers such that
1< K(n)<.n® VneN*

Let x be a nonprincipal character mod n of order k. Let m,h be any integers with h positive
and suppose that x takes at most min{k — 1, K(n)} distinct values on the set {ylm <y <
m + h and ged(y,n) = 1}. Then h <. nite,

For details of the proof of this theorem, see [10].

1.2 Dirichlet’s hyperbola method

Let f,g,h be multiplicative functions such that f = g x h, where * denotes the
Dirichlet convolution of g and h i.e.

(g+h)(n) = 3 g(dh(5) = > gla)h(b)
d|

ab=n

where the sum extends on all positive divisors of n or equivalently over all pairs (a,b) of
positive integers whose product is n. For more on the Dirichlet convolution also known as
Dirichlet product, see [5].

Dirichlet’s hyperbola method ( typically shortened to hyperbola method ) is a way to
compute ) __ f(n) using the Dirichlet convolution f = g« h.

Theorem 1.11. (Dirichlet’s hyperbola method). Let f,g,h be multiplicative functions
as above and write

GX)= Z gn) and H(X)= Z h(n)

1<n<X 1<n<X
Then
Y. fm= > (gxh)(n)
1<n<X 1<n<X
= X s@aG)+ T MGG -GAE) Yisysx (119
<a<y 1<b< X

where the sum is over the set
M = {(a,b) € (N*)?|ab < X}

The name of the method comes from the fact that M is the set of positive integer pairs
under the hyperbola zy = X.

Let 1 <y < X and (a,b) € M. Then we must have a < y or b < %, otherwise ab > X.
Hence we can write M = M; U My where

My ={(a,b) € (N*)?[ab < X and a <y}

12



X
Mz ={(a,b) € (N")?|ab < X and b< =}
Y
Therefore, by the inclusion-exclusion principle we have

> g(@h®) = g(a)h(b)

(a,b)eM (a,b)EM1UMo

= gla)h(b) + > g(a)h(b) = > gla)h(b)

(a,b)eM;y (a,b)eMo (a,b)eMiNMo
But x

My N My = {(a,b) € (N*)*|ab < X,a < y,b < 5}
X
={(a,b) € (N*)?la < y,b < 5}

Finally

Y g@h)= > > glahb)+ Y > gla)h(b) - g(a)h(b)

(a,b)eM ab<X a<y ab<X bg% a<lw bg%
=Ygt Ym0+ 30 0) Y o)~ Y gl) 3 HE)
asy <X b< X a<X a<ly b< X
= Y @ H(G)+ 3 HHGE) — GwHE)
asy b<Z

Using the hyperbola method, a nice and quite straightforward result can be obtained
on 7(n), the divisor function, namely

Theorem 1.12. For any X > 1 we have
Z 7(n) = Xlog X + (27 — )X + O(X?)
1<n<X
where v is the Euler-Mascheroni constant.
Given a character x, we define ry : Z — C, ry(n) = 3_,,, x(d). It follows then that
re(n) = [T 0+ x@) + - + x(2)°) (1.19)
pelin

so ry is multiplicative.
Notice that for a quadratic character x, (1.19) tells us that 7, (n) > 0 Vn € Z and in
fact we can give a complete characterization of r,:

0 if 3 prime p | n such that v,(n) is odd and x(p) = —1
ry(n) =< 7(n)  if all the primes p | n are residues

7(L), otherwise
m

Here 7(n) represents as usual, the number of divisors of n, v,(n) is the valuation of n at p
and



Proposition 1.13. For any € > 0,if x is a quadratic character mod m and x > m%“,
then there exists a constant n = n(e) > 0 such that

Z ro(n) = L(1, x)z + O (z'77)

n<zx

+

=
INo| o0

Proof. Let a = € (0,1) and let y = 2*. Then

i
+
m

Y= % > (mi+5)a = mi"’%

Put z = 5 and remark that from the definition of r, and of the Dirichlet convolution, we
have that 7, = x % 1. But then, by Dirichlet’s hyperbola method, putting g = x and h =1
n (1.18) gives us

Yo=Y 0D = x(@Y 1 +Y > xa) - x(a)Y 1 (1.20)

n<z n<zx a<ly b< 2 b<za<l¥ a<ly b<z

Observe that by putting k& = 2 in Theorem 1.3, we have that 1 < Ry(m) < Q(2)5 = 1 since
2 is cubefree. Hence, by using (1.2), we get the following estimate

T1
Z X(d) e wlmimaTte Yw,t positive integers
d<w

Consider now an integer w > y. Since y > mit5 we have that w > mi+% so for big enough
t there is a constant § = 0(¢) > 0 such that

> xd) <cw'? Vw>y (1.21)
d<w

Notice that if 1 <b< 2z = % then y < ¥, so we can apply (1.21) for the second double sum
in (1.20) and get

Z Z ) <. Z Z)l—e — 10 Zbe_l <gl=0. 5. 071 = 2(2)9—1 _ x(g)e — y~°

b<za<l¥% b<z b<z

Similarly, applying (1.21) for the third double sum in (1.20) we get

dox(@)) 1<z x(a) <2yt =y

a<y b<z a<y

For the first double sum in (1.20) we have

> x(@ Y 1= x(@)( +0(1)

a<y b<2Z a<y
)4 0y Y wia)
- X9 4 o)

= zL(1,x) + O:(zy~?) + O(y)

From these 3 estimations of the double sums in (1.20) we deduce that

> ry(n) = 2L(1, x) + O(zy™") + O(y)

n<z
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=zL(1,x) + O:(x -2~ +
=zL(1,x) + O (') + O(x)
Letting n = min{af, 1 — a}, we have that

maz{z® z1 70} = max{xl_(l_a), im0y

— xl—mzn{(w,l—a}

= xn
Hence this and the last estimate yield
S () = L(1, ) + O:(a177)
n<lz

O

Together with Corollary 1.8, the following result of Siegel is used to prove both the
final results of this section as well as the main result of the paper. The downside of using
this theorem is that the constant appearing in the statement is generally non-effective.

1.3 Siegel’s Theorem

Theorem 1.14. (Siegel) For any € > 0, there exists a constant C(g) > 0 such that
C(e)g~® <|L(1,x)]| for any primitive character x modulo q.

Proof. Let x1 # x2 be primitive non-principal real characters modulo ¢; and ¢ respectively.
Define

s
—~
»
=
|
A
—~
@
SN~—
~
—~
»
>
—

)LE&Xz)L(S,xmz . )
“I(-5) (-57) (=57 (-5)

We can thus write

e} an
F(s)=> %
n=1 n
with ag = 1 and a,, > 0Yn > 2. Notice that F(s) has a simple pole at s = 1 with
Ress—1F(s) = L(1,x1)L(1, x2) L(1, x1x2) = A

and it is regular on C\ {1}. We show that 3a € (0,1) and A, B, C > 0 such that

BA
F(s) > A= (@)™ (1.22)

holds for any s € (a, 1).
Since F'(s) has nonnegative Dirichlet series, its Taylor expansion at so = 2 is

(b —N)(2—-5)F VsecC

NE

F(s) =

VAR

where by = F'(2) > 1 and by, > 0Vk
s =1 so we have

0. F is entire except for a simple pole of residue A at

F(s)—sil => (bk—N(2-5)" VseC
k=

(=)
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Consider this equality on the circle |s—2| = % The trivial bounds L(s, x1) < g1, L(s, x2) <
g2, L(s, x1x2) < q1¢2 and the fact that ((s) is bounded on |s — 2| = 3 give us that F(s) <
(¢192)?, hence the same holds for F/(s) — -2;. Thus

- < (5) (@)
Then
© M
3 - Nz- 9t < (0052~ o)

for any s € (a, 1), where o € (%, 1) is fixed. Consequently, since by > 1 and by > 0Vk, we
have

A M—1 2 2 M
F(s) = =27 2 1=2+ (1= D)2 =8) 4+ (bar1 = (2= = O((@102)) (52— )
Hence

)= 221204 @ 9) 4+ 2= M) - O(me)) (G2 - o)
%0 A (2-s)M -1 oy (2 M
F(s) = 25 2 1-A"22 =~ 0((qe)) (52 - o)

Let M be the largest integer such that the error estimate is < % Then

A 2-sM -1 1 1 A M
Fs)>» —+1 -\ — — = — — 2 —
()>s—3+ 1—s 3= 32 1279
But
(2 _ S)M _ eN[log(Z—s) < €M(2_s_1)
and since

M < (q1g2)°W

this concludes the proof of (1.22).

Fix ¢ > 0. Then, Siegel’s Theorem is trivial if there is no modulus ¢. and real character
Xe mod ¢. such that L(s, x.) has a zero in (1 — 55 1). So we can assume that L(s, x.) has
a zero fBc. Then, for ¢. = g2, xc = X2, let 5 be a zero of L(s, x2), hence F(8) = 0.

Then (1.22) reads

B\
A— — c(1-p)
0> 1-3 (q192)

Thus

A > %(1 — B)(q1q2) 1P
Therefore |
L(1,x1)L(1, x2)L(1, x1x2) > E(l — B)(qrge) " C=H)
Using the trivial bounds L(1, x2) < log g2, L(1, x1Xx2) < log ¢1¢2 we obtain
1 1

L(1 Mg 07—
(Lxa) > May log g1 log q1 g2

and since log q; € 0(q?), log q1g2 € 0((q1g2)°) V& > 0, we conclude that

L(17X1) > ql_s
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Definition 1.15. For a positive integer n, we define PT(n) to be the largest prime factor
of m, with the convention that P(1) = 1. We say that n is y — smooth or y — friable if

Pt(n) <y.

For z > y > 2 define the de Bruijn function ¥(z,y) = [{n < z|P"(n) < y}|. A result
of de Bruijn([1]) states that for a fixed # > 1 we have that

U(z,, (logz)?) = 2ot g p s 0o (1.23)

1.4 Proof of Theorem 1.1

Let € € (0, 1) and let x be a quadratic character mod n. Let # = mite and set

q=]]r

p prime
p<zx

x(p)=1

Then it suffices to prove that w(q) > (logm)?. Suppose then that w(q) < (logm)*.
Choose S C [1,z] such that Supp(ry) C S on [1,z] and let M = maz{r,(n)|n € S}.
As seen before, 7, (n) > 0 Vn € N* so we have that

0< ) ry(n) < [S|M

n<x

But from our characterization of r,, we can choose S = {n < z|p||n = p|mq}. Now, each
element n of S can be written as a product n = ninsy of a squarefree divisor n; of mq and
a squarefull divisor no of mgq. Notice that the number of elements of S for which ny > z2
is O(z%) and let us consider the remaining elements of S.

Given ng, we have at most d choices for n;, where d is the number of squarefree
integers in [1, ;=] composed of the first w(mgq) primes. Since w(q) < (log m)4 and w(mq) <
w(m) + w(q), we get that w(mq) < w(m) + (logm)4.

But = mite, so

w(mg) < w(m) + (log(z°)"

here ¢ =
where ¢ = }1+

Since 290" «_ m® < ¢, we therefore obtain
w(mq) < logy(z*) + c*log® z = 4elog, = + ¢*log™x

Hence, for large enough z, all the first w(mq) primes are < (logz)4*! so the number of
choices of n; for a fixed ns is at most ¥(;%, (log x)A*Y . But then, from (1.23) for § = A+1
we get

U(a, (log ) 1) = ot ol

Since .
(z, (log ) *1) > W(-—, (log x)**)
n2
and keeping in mind that ;> > z2 for large enough = we have

T x
UL (log z)A+1) < 1=
<n2,<ogm> )< ()

So we have that , .
IS| < 7 +a' A < 2®
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where o = maz{3,1 - ﬁ} Let 8 =1 — a. Then we have that

B
2

rm) =) x(d) <Y 1=7(n) <
d| d|

Hence
B 1—a a41
2

=x X 2 =T 2

D ry(n) < [SIM < 2

n<z

But then, by Proposition 1.13, this implies
zL(1,x)+ O (') <z 2

So we obtain
L(l,x) < =7

where v = 221 < 0 since o < 1, which contradicts Siegel’s theorem. Therefore we conclude

2
that w(q) > (logm)? as desired.

In the same setup as Theorem 1.1, but for primes character residues smaller than m

we have

Proposition 1.16. Let x be a quadratic character mod m. Then

1 1
525 Liog(PM 11, ) togm) + 0(1)
p 2 m
p<m
x(p)=1

To prove this, we need the following lemma,

Lemma 1.17. Let f be a non-negative multiplicative function which for suitable con-

stants A, B satisfies
(1)) f(p)logp < Ay Yy >0

p<y
(2) Z Z f(ze) logp® < B
p e>2 p
Then .
X n
;S;f(n) < (A+B+1)@n§cT Ve > 1
Proof. Let
S@) =3 f(n) and L@)=3 @
n<lx n<w
Clearly S(z) < zL(x). Furthermore
S(z)logz =Y _ f(n)logx
n<z
=Y fm)log =+ f(m)logn
n<x n<z

=Y fm)log =+ 3 f(n) Y logp+y_ f(n

n<z n<xz pl|n n<lx

18
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For 1 <n < z, we have that log & < = hence
T x
> fn)log— <> f(n)— =zL(x)
n<z n<zx

Writing n = mp where p is a prime divisor of n and using the first condition in the statement
we have that

S logp=Y Y f@)logp< Y Fm)A= < 3 f(m)A— < mL(x)A— = AzL(x)

n<lx plin m<z p< - m<x m<x
ptm
Finally
x
D) logpt =D f(p)logp - Y f(m) < DD f(p) log pS(=)
n<z p¢lIn p e>2 mgp% p e>2 p
e=2 pim

Summing up the results we conclude that
S(xz)logz < (A4 B+ 1)zL(z)

Hence

Zf(n)S(AJrBH)lozxzf(nm Va > 1

n<zx

n<zc

Proof of Proposition 1.16
Let us consider the function that we introduced earlier,

r=ryn)=> x(d) =Y (1+x(p)+..+x@))
d|n

pe||n

Then r satisfies the conditions of Lemma 1.17, hence, for some constants A, B we have that

So

Proposition 1.13 gives us

Thus



So it suffices to show that

L = )

p<m
p prime

x(p)=1

We have that

But for s — 17, we have that ((s) ~ ﬁ Indeed, for k > 1, set

1 bodt
ak(s) E—/kiltfs

Then, by Taylor’s formula to order 2, we have that
S o
a(s) ~ 5]@ !

as s — 400, hence ), ., ai(s) converges for s > 0. For s > 1 we have

1 > dt
> ak(s) s s
k>2 k>2 1
1
= — 1 _—
() —1- —
Since the series on the left converges normally for s > ¢ > 0, by analytic continuation of
¢(s), it follows that the equality holds for all s > 0.
Using the Taylor expansion of a; around sy = 1, we obtain the following power series
ins—sg=s5—1:

_1\m o m o m+1 __ o _ m—+1
ak(s)zzo(m? ((1 gkk) (1 gk) mifk 1) )(S—l)m

Thus, by absolute convergence, we can reorder the terms of the double sum ), -, ax(s) and

get
Z ak — Z 'YTn - 1)m

k>2 m>0

where we define

logk)™  (logk)™t! — (logk — 1) !
%:ZCg)f(g) (loghk — 1) )

k> m+1
N logk _ (log N)™+!
:NLHEOO(Z m+1 )

Notice that in particular, 79 = v—1, where ~ is the Euler-Mascheroni constant. Furthermore,
by the Euler-MacLaurin summation formula, the limit defining ~,, exists, hence

)=+ e

s—1
m>0

1
—;""Y"’-O(S—l)
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Therefore

Lo )¢(5) ~ 2N

as s — 1T,
Using Perron’s formula we have

1 etico 20 r(n), x
Z ) = 5 / N (; T g

1 C+iOO xs

= L(s,x)¢(s)—ds

2T Jo—ioo s

1ot L1 s
_ 7/ 1x)2°
27 Jorioo S—1 8
1 c+i00 J)S
=L(1,v)— d
(LX)55 /C_m ss—1)"
~ L(1,x)z (1.24)

Moreover, Abel summation gives us

where R(z) =3, ., r(n). But from (1.24), we have that

[ g = [ wasone

n<t

= L(1,x)logz

Hence

3 rn) L(1,x)logz (1.25)

Now, the Prime Number Theorem gives the following

ZENCZ%NCloglogx

pﬁmp p<m
p prime p prime
x(p)=1

with C = ﬁ, which combined with (1.25) gives us the desired estimate.
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2 The Dedekind zeta function

2.1 Preliminaries

In this section, we explain how the Dedekind zeta function associated to a number
field decomposes, which is of vital importance to prove the main theorem in section 3.

Definition 2.1. Let K be a number field and Ok its ring of integers. The Dedekind
zeta function of K, (i (s) is defined to be the analytic continuation of the series

1
2 (Nx/o(l))®

ICOK

where I ranges over all non-zero integral ideals of K and Ngo(I) = |Ok : I| is the norm
of I.

(i converges for Re(s) > 1 and has a meromorphic continuation to the whole plane
with a unique simple pole at s = 1. Furthermore, if kK = [K : Q], r1 is the number of real
embeddings and ro is the number of pairs of complex embeddings of K, then (i satisfies
the following functional equation

AT (3G (5) = AT ()T = )71~ 5) (2.1)

where X
A=2""1"2/|disc(K)|

For details of this result, see [6], p. 254.

Assume that K is a non-trivial abelian extension of Q with D > 1, where D = |disc(K)|
is the absolute value of the discriminant. Let k = [K : Q] and consider (x (s), the Dedekind
zeta function of K. Then, by the Kronecker-Weber theorem, there exists an integer n(which
we choose minimal) such that K C Q(&,,), the n-th cyclotomic field.

Let G = Gal(Q(&,)/Q) and let x : G — C* be a Dirichlet character. Then the kernel
of x determines a fixed subfield of Q(&,) and for any field K as above, there is a group X of
Dirichlet characters of G such that K is equal to the intersection of the fixed fields by the
kernels of all x € X. Moreover, |X| =k and X ~ Gal(K/Q).

Conversely, given X a finite group of Dirichlet characters of conductors fy ..., fy.,
where k = |X|, let n = lem(fy,, ..., fy.)- Then X is a subgroup of the characters of
Gal(Q(£n)/Q) and let H = (), ¢ Ker(x). If K is the fixed field of H, then X coincides
with the set of homomorphisms Gal(K/Q) — C*.

If G is a finite abelian group, let G be the group of multiplicative homomorphisms
from G to C*.

Lemma 2.2. If G is a finite abelian group, then G ~ é(noncanomcally).

Proof. By the divisors theorem, G decomposes as

Hence

For x € Z//\diZ, we have that x(1) determines x since Z/d;Z additive and cyclic, so since
X(1) can be any m-th root of unity, it follows that the lemma holds true for any Z/mZ,
hence for G. O
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Corollary 2.3. G ~ G (canonically).

Proof. Let g € G and suppose x(g) = 1Vx € G. Let H =< g > . Then G acts as a set
of distinct characters of the quotient G/H. But by the previous lemma, there are at most
|G/H| of these, hence H = {1} which yields ¢ = 1. Therefore G injects into G and the

conclusion follows since |G| = |G| = |G. O
Let H be subgroup of G . Then we define
H*+ ={x € G|x(h) =1VYh € H}
Clearly, there is an isomorphism H* ~ (T/?I .
Lemma 2.4. H ~ G/HL.

Proof. By restriction, there exists a map G — H whose kernel is H*.
On the other hand,

[HH| = |G/H| = |G/H| = 1
|H|
Hence R
5 G| _ 1G]
H - H = =
which gives us the surjectivity as well. O

Another straightforward result is
Lemma 2.5. (HY)t =H.

The previous three results hold true for locally compact abelian groups as well, but
the proofs are harder since we cannot use counting arguments.

Consider the pairing R
GxG—C"

(9,x) — x(9)

Notice that if x(g) = 1Vx € G, then g = 1. But then, if x(g) = 1Vg € G, then clearly x = 1.
Therefore the pairing is nondegenerate.

Let K be a field and X its associated group of Dirichlet characters. Let L be a subfield
of K and let

Y ={x € X|x(o) =1Vo € Gal(K/L)}
Then
Y = Gal(L/K)*
= Gal(K/Q)/Gal(K/L)

—

= Gal(L/Q)

Conversely, if Y C X is a subgroup and L the fixed field of Y+ = {g € Gal(K/Q)|x(g) =
1Vx € Y}, then by Galois theory, we have that Y+ = Gal(K/L). So

Y = (Y4)* = Gal(K/L)* = Gal(L/Q)
Therefore there is a one to one correspondence between subgroups of X and subfields of K

given by
Gal(K/L)* +— L
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Y +— fixed field of Y-

whence a one to one correspondence between groups of Dirichlet characters and subfields of
cyclotomic fields.
Since Gal(L/Q) is a finite abelian group, Lemma 2.2 tells us that

Y = Gal(L/Q) ~ Gal(L/Q)
although not canonically, thus the preference for the natural nondegenerate pairing Gal(L/Q)x
Y — C*.

Let n = Hle p;" be the prime decomposition of a positive integer n > 2. By the
Chinese Remainder Theorem we know that

k
(Z/nZ)* H Z/pX L)

Then given a character x mod n, decompose it as

k
x =1
i=1

where x,, is a Dirichlet character defined mod pg*.
For a group X of Dirichlet characters, define

xE€X}Vielk

Xp: = {Xpi

Theorem 2.6. Let X be a group of Dirichlet characters and K its associated field. If p
is a prime number with ramification index ey, in K, then e, = | Xp|.

Proof. Let n = lem(fy)yex, where f, denotes as usual, the conductor of the character x.
Then K C Q(¢,). Decompose n as n = p*m, with ged(p, m) = 1 and consider the composite
field L = K((n) = KQ(Gm)- Let

Y = {x|x character of (Z/nZ)* with ged(fy,p) =1}

Notice that Y consists in fact of the characters mod m. Then the group of characters of L
is generated by X and Y. Hence the group of characters of L is given by the direct product
of X, with the characters of Q((p,). So

the compositum of Q((,,) with the field FF C Q((p«) associated to X,.

Observe that the ramification index e, of p in K is the same as for p in L since p
is unramified in Q({,,). But p is unramified in L/F, hence e, is equal to the ramification
index of p in F' which is deg(F/Q) = | X,|. O

Corollary 2.7. Let x be a Dirichlet character and K its associated field. Then a prime
p ramifies in K < x(p) = 0. More generally, given a group X of Dirichlet characters, if L
is its associated field, then p is unramified in L/Q <= x(p) # 0Vx € X.

Proof. By the previous theorem, we have that p ramifies in L <= X, # 1 <= dx € X
with x, # 1 <= Jx € X such that p|f, <= Ix € X such that x(p) = 0. O
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Theorem 2.8. Let X be a group of Dirichlet characters, K its associated field and p a
rational prime. Let

X1 ={x € X|x(p) # 0}
Xy ={x € X|x(p) =1}

Let e, be the ramification indez of p in K and f, the residue class degree. Then e, = [X : X;]
and fp, = [ X1 : Xo|. In fact, X/ X1 =~ the inertia group and X1/Xs is cyclic of order f,.

Proof. Let L C K be the subfield associated to X;. Corollary 2.7 tells us that L is the
maximal subfield of K in which p is unramified. Then L is the fixed field of the inertia group,
hence the inertia group is Gal(K/L). Considering the pairing Gal(K/Q) x X — C*, by the
Galois correspondence between subgroups and subfields, we have that X; = Gal(K/L) .
Therefore

X/ X1 = Gal(K/Q)/Gal(K/L)*

= Gal(K/L)
~ Gal(K/L)
where we made use of Lemma 2.2 and Lemma 2.4.
Since e, = |Gal(K/L)|, the order of the inertia group, we therefore have that e, =
| X/ X4
Consider now the extension L/Q which has X; as its group of characters. Let n =
lem(fy)xex,. Since p is unramified in L, we have that p{n and L C Q((,). Since

Gal(Q(¢n)/Q) = (Z/nZ)*

we obtain
Gal(L/Q) = (Z/nZ)* [(Gal(Q(¢n)/ L)
Notice that o,, the Frobenius map for L/Q is just the coset of p in Gal(L/Q). Since
for x € X1 we have that x(o0) = 0Vo € Gal(Q({,)/L), we get that x(o,) = x(p) so
x(op) =1 < x(p) = 1, hence X =< 0, >+ under the pairing Gal(L/Q) x X; — C*,
where | < 0, > | = f,. Consequently, Lemma 2.4 gives us the isomorphism
X1 /Xy~ <o, >

But since < 0, > ~< 0, > , we obtain

|X1/X2|:|<Up>|:fp
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2.2 Decomposition of the Dedekind zeta function

Theorem 2.9. Let K C Q((,) be a number field and let X be the associated group of
Dirichlet characters mod n. Then

Cel(s) = ] Lis,

x€X

Proof. Recall the Euler product expansion of the Dedekind zeta function of K

e = T 0= o)™

p€EO0K

We compare the product expansions for each integer prime p. Let pOx = [[_; pf be the
prime factorization of p in K, where each p; has residue class degree f and thus N(p;) =
pfViel,y.

Then the Euler factors of (x(s) corresponding to p are just (1 —
L-series, the Euler product expansion is

Lis.x) = [0 - X&)

s
» p

p}s )~9. For the

The terms corresponding to p are in this case

[Ta- X2

S
XEX p

Let X1 = {x € X|x(p) # 0} and X» = {x € X|x(p) = 1}. Then only the x € X; will
contribute to the product.

By Theorem 2.8, X;/X2 is cyclic of order f and let xo € X; such that its image
generates X1 /Xs. Clearly xo(p) = (¢, a primitive f-th root of unity. Thus

f-1 ; f-1 i
_X%)(p)fl_ _Ciffl_ _Lfl
[To-257 = Tlo- 0" —a-7)

Notice though that taking the product over all x € X is the same as taking it over all y € X;
and since x(p) = 1Vx € X, and the image of x( generates X;/Xs, it is the same as taking
it g times over the powers of xg.

We therefore conclude that the Euler factor at any integer prime p for the product of
L-series is (1 — #)*9, the same as for (x (s), which completes the proof of the theorem. [

Corollary 2.10. L(1,x) # 0.

Proof. Let K be the associated field to x and let k be the order of x. Then, by Theorem
2.9, we have that

k-1 k—1
Cre(s) = [T L(s,x) = ¢(o) [T Lsix)
i=0 i=1

Since ((s) has only a simple pole at s = 1, none of the factors L(s, x*) can vanish at s = 1,
which yields the desired result. O
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2.3 Application to Dirichlet’s Theorem on arithmetic progressions

As a popular application of this corollary, we give a proof of Dirichlet’s theorem on
arithmetic progressions.

Theorem 2.11. Let a,n be relatively prime positive integers. Then there are infinitely
many primes p = a(modn).

Proof. Let P, be the set of primes p = a(modn), hence we need to show that P, is infinite.
Consider the function

PEP,

defined for complex s with Re(s) > 1. It suffices then to show that for real s we have that
lim,_,1+ Pa(s) = 4o0.
Define the function
1,:Z —{0,1}

the characteristic function of the congruence class a(modn) given by

Lo (k) =

1 if k= a(modn)
0 otherwise

Then for all k € Z, we have

XEX(n)

where X (n) denotes the group of Dirichlet characters mod n.
Indeed, since x is completely multiplicative, we have that

MO = LS

o) o) A

XEX(n)

But by the orthogonality property of characters, we have that

Z x(a k) = {SO(TL) if a='k = 1(modn)

exXn) 0 otherwise

which gives us the formula for 1,.
Then the corresponding identity for P,(s) is

extn M p*

Now let )

X(P)\—

L(s,x) = [Ja =)
p
P
Taking the logarithm, we obtain
log L(s, x) Zlog )

By Taylor expansion, we have

log L(s, x) = ZZ
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Define 1 )
_ 1 XDP)\n
PO

Observe that the n = 1 contribution to I(s, x) gives us the sum appearing in (2.2). We show
that we can disregard all the other terms of (s, x) coming from n > 2. For this, separate
I(s,x) as follows:

Let
x(p)
and
I>2(s,x) ZZ nlps
n>2 p
Then
I(s,x) = l1(s,x) + I>2(s, x)
and )
a
x(a)~ L (5 x)
(n)
XEX(n)

We have then that
1yn _
a0l < 23— < 3300 Z;JE&'ET
n<2 p p n>2 P

So

ED ST Lt B TLEE) DP-Te

ppp P n>1

Hence [>2(s, ) is absolutely convergent at s = 1 so it is bounded as s — 1*. Consequently,
we can disregard the I>2(s, x) part of (s, x) and write

l(s,x) +0(1)

Let xo be the principal character mod n. Then we can rewrite

P.(s) = LZ% + ) U(s,x) +0(1) (2.3)

(P(TL) pin p X#Xo

Since Zmn = is up to a finite number of terms, just the sum Z p and since Z = 400,
we deduce that the first term of the right hand side of (2.3) is unbounded for s — 1+ Thus
it would suffice to prove that I(s, x) is bounded as s —s 17 for any nonprincipal character
X-

For s € R, with |s| < 1, we have the Taylor expansion

—log(1—s) = i%

Hence n
X =1-5 VseR,|s|<1

But then, by analytic continuation, the corresponding complex power series gives a well
defined logarithm for s € C with |s| < 1.
Moreover, we have that
lim L(s,x) =1

Re(s)—+o0
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which implies that there exists r > 0 such that for Re(s) > r, we have that |1— L(s, x)| < 1,
thus
e!X) = I(s,x) for Re(s) >r (2.4)

Similarly, by analytic continuation, (2.4) holds true whenever both sides are well-defined
analytic functions which is the case for all s € C with Re(s) > 1.

It is well known that for any nonprincipal character x, the Dirichlet series for L(s, x)
is convergent on Re(s) > 0. Now, since by Corollary 2.10, L(1, x) # 0, from the above, we
obtain

L(1,x) = lim L(s, x) = lim €'
s—1 s—1

Since L(s, x) is analytic and L(1, x) # 0, there exists a small open disk around L(1, x) not
containing the origin, whence we can choose a branch of the logarithm such that log L(s, x) is
well-defined on the preimage of that disk so in particular on a small open disk D around s =
1. Consequently, log L(1, x) is a well-defined complex number and since any two logarithms
of the same analytic function coincide modulo a constant C' = 2n7i, a multiple of 273 , we
have that

I(s,x) =log L(s,x) + 2nm onD

Therefore, I(s,x) is bounded as s — 1 for any nonprincipal character y # xo.
We conclude that P,(s) is unbounded as s — 17, hence for real values s > 1, we have

lim P,(s) = Z 1:oo

s—1t =y p
So P, is infinite, hence there are infinitely many primes p = a(modn). O

2.4 Conductor-Discriminant Formula

For a Dirichlet character x of conductor f, consider the Gauss sum

f "
() = > x(k)e T (2.5)

and let 0, be defined as 0 if x(—1) =1 and 1 if x(—1) = —1. Then the functional equation
for the L-series L(s, ) is

Lyir:

000 = Wy Erd =t

)T

VL(1 — s,%) (2.6)

where W, = \};Z%)X )
We now show that |[W, | = 1, which will be used to prove the Conductor-Discriminant
formula. The result on W, follows from the next two lemmas.

Lemma 2.12. Let x be a Dirichlet character of conductor f and consider the Gauss
sum 7(x) as in (2.5). Then for any a € Z

f -
S X(k)e ™ = x (k)7 (%)

k=1

Proof. If ged(a, f) = 1, since everything depends only on residue classes mod f, by making
a change of variables ¢ = ab(mod f), the result follows.

Let now ged(a, f) = d > 1. Then both sides vanish. Indeed, this is clear for the right
hand side. For the left, notice that if x(y) = 1Vg = 1(mod 5) with ged(y, f) = 1, then x

would be defined mod 5, thus contradicting the definition of the conductor f. Therefore
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Jy = 1(mod %) with ged(y, f) = 1 such that x(y) # 1.
Since dy = d(mod f) and ay = a(mod f), we have

O

Lemma 2.13. Let x be a Dirichlet character of conductor f and let T be a Gauss sum
as in (2.5). Then |T(x)| = Vf.

Proof. Using Lemma 2.12, we have that

!
P(NITCAIP =D Ix(k)r (k)P

a=1
f f 2miab f —2miac
= 3BT Y K
a=1b=1 c=1
Therefore
Fod ! 2mia(b—c)
(IO =D_D xb)x(e)> e
b=1 c=1 a=1
f
=> xOXO)f = fo(f)
b=1
since
—y )1 ifged(a, f) =1
X(b)x() = {O otherwise
Hence |7(x)|?> = f so |7(x)| = V/J as desired. O

Corollary 2.14. Let x be a Dirichlet character of conductor f and T as in (2.5). Then
|WX| =1

Theorem 2.15. (Conductor-Discriminant Formula) Let K be a number field associated
to the group X of Dirichlet characters. Then the discriminant of K is given by

disc(K)| = ] f

xXEX

Proof. Let (i (s) be the Dedekind zeta function of K. Theorem 2.9 gives us the decompo-
sition
C(s) =[] L(s:x)
xXEX

Then substituting in the functional equation (2.1) of (x(s), we have that
1-s

ASF(g)”F(s)” [T L) = AT ()T -9 [[ LA -sx) (27
xXEX XEX
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where r; is the number of real embeddings of K and ry is the number of pairs of complex
embeddings. Since K/Q is Galois, either r1 = 0 or ro = 0.

If ry =0, thenry = 2, where k = [K : Q). In this case, half the characters are even and
half of them are odd. Taking the product over all even characters, the functional equation
(2.6) for the L-series gives

NESED ) (ORISR VEE] § (LS
XE€X XEX

x(=1)=1 x(=1)=1

T W, L(1 - s,%)

Pt [T 20 = 155 [ F WL - a0
xXeX XX

x(=1)=-1 x(—1)=1

From the above two equations, thus taking the sum over all x € X, we have
s, 8s+1 & in . -5, 2—5s & fx
O TIEN AL ) = (TS T

xXE€EX xeX

WL - 5,X) (2.8)

Using the duplication formula

1) = 2175/7T'(2s)

T(s)D(s + 5

(2.8) becomes
@=rvare)t [T 50 0 = @ vara - ) [ FwiLa - %)
XEX x€X

Since 1 = 0, equation (2.7) reads

s)gnL(s,X = A7 T(1 —s)2 HLl—sX
xXEX xeX

Comparing the last two equations, we must have that

k(1—s)

s s ks
27 (HXeX f;()z _ 2z (erX 71') erXW
As - Al S
Hence F
k(1—s)—ks 2s—1
9 — JX —_ 2s5—1
(I =a [
XEX xEX
So ) s
X\2-L 4251
(27 H ?) =4 H Wy
XEX XEX

Since the left hand side of the above equation is a positive real number, we must have that
[l ex Wy € Ry, but Corollary 2.14 tells us that [W,|=1Vyx € X so we must have that

YEX W, = 1. Thus ;
1 X 2
g 117 =4
XE€EX
and since L
A=2"271"2/|disc(K)|
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we obtain

11 % =7 F|disc(K)|

xeX

Hence |disc(K)| =], cx f%as desired.

Consider now the second case when r9 = 0. Then K is a totally real number field of
degree k and all the characters are even. So taking the product over all characters x € X,
the functional equations for the L-series read

NG ) (EESEAPN R,

XEX xEX

' X)

Moreover, (2.7) becomes
SkHL(s,X = A" SI‘ HLl—sX
XEX XEX

Comparing the last two equations, we get that

(Myex 2% (yex 2) 7 Mex Wa
As - Alfs
Thus
(H ff)% — A1 H W,
XEX XET

As in the previous case, we have that er x Wy = 1 and therefore
f
A% = X
117
xeX

Since r9 = 0, we have that
k

A =n"24/|disc(K)|

whence substituting A in the last equation completes the proof. O
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3 Smallest completely splitting prime in an abelian num-
ber field

3.1 First estimate for Theorem 3.1
In this section, we prove our main result:

Proposition 3.1. Let K be an abelian number field of degree k. Then, for any e > 0,
the smallest prime p that splits completely in K satisfies

p <<5,k Di+8
where D = |disc(K)|, the absolute value of the discriminant.

Let K/Q be a nontrivial abelian extension of degree k and let X = {x1,..., xx} be
the associated group of Dirichlet characters, where y; = 1 is the trivial character. For each
Xi € X, let ¢; = fy,, the conductor of x;. In particular, ¢; = 1. Then Theorem 2.9 tells us
that the Dedekind zeta function of K decomposes as

k

Cre(s) = C(s) [T L(s, xa) (3.1)

=2

We can assume that ¢ € (0,2). Let D = |disc(K)|. Then, by the conductor-discriminant

3
formula, we have that
D=qqg g =q"
For each i € 2,k let

and set
k
Yy = Hyz
i=2
Then we have that k
pDits — (qz“'Qk)%Jr% = Hy’ =Y
i=2

1, e
On the other hand, if i1, ..., 7, are the indexes for which y; = qi‘*Jr2

where r € 0,k — 1 then
y=yi -y, DFET

=q;, - q;, DTFFEITT) (3.2)

But then y < D3+, Indeed, from (3.2), this is equivalent to proving

(@5, - qi)iT5 < Dite=sR(m1-n) _ pi+e-ges

1 r+1
= DZ+€+E 2k

And this is clear since
D=gqy - -qx > q, - ¢,
.+1
and €5~ > 0.

By definition, we can write
o0

an
Ck(s) = povey
n=1
where a, = {I C Ok ideal [Nk o(I) = n}.
The main idea in proving Theorem 3.1 is to estimate the sum >
ways.

n<y On N tWO different
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Proposition 3.2. Assume that every prime that splits completely in K exceeds Dite,

Then we have .
Z an <L yZ
n<y

Proof. Recall the Euler product of the Dedekind zeta function

1
-

() = [

p

)_!JP

where f, is the inertia degree of any prime ideal p of Ok lying above p and g, is the number
of such prime ideals. Therefore

— On 1
B e
=

p

Let p < y be a prime that doesn’t split completely in K, hence p|D or f, > 1. From
the above equality, it follows that if n < y and a,, doesn’t vanish, we can decompose n as
n = ning, where ny is a squarefree divisor of D and ns is squarefull. But a result of Golomb
on powerfull numbers (see [3]) tells us that

[{n2 € N|2 < y and ny is squarefull }| < y%
Moreover, since 7(D) <. D¢, we have in particular that 7(D) < D32. Then
Ay = |{n € N|n < y such that a,, # 0}| < y? D%

We saw that Dit5 < y, thus Di < y and therefore

oolen

Ay <yrys =y
On the other hand, the decomposition (3.1) of (x(s) gives us
ap=1xx2*...%xxk)(n) YneNn>1
where % denotes the Dirichlet convolution. Hence
ap < (I*x1*...x1)(n) =7k(n)

where 7, the convolution of the function 1 with itself for k-times is known in the literature
as the k-fold Piltz divisor function.
Therefore, since
e(n) < 7(n)*1 <y n®

we conclude that o X
D an <k ySys =yt
n<y
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3.2 Second estimate for Theorem 3.1

Now we give a second estimate for ) y 0n In the following two lemmas.

First, remark that since a, = (1 x x2 % ... x xx)(n) Vn € N,n > 1, we can write

Sa= ¥l | |

n<y da-+di <y
Y Y
= Z X2(d2)"'xk(dk)(d2...dk_{dgu'dk})
da-dp <y
d d
-y 3 XQC(Z;)...X’“;;) - > X2(d2)"'Xk(dk){d2.z.l.dk}
da--dy <y dz--drsy

Lemma 3.3. The following holds

x2(d2)  xk(dk)
do dy,

52
= L(17X2) e L(la Xk:) + OE,k(D*m)
da-dp <y

Proof. For each (k — 1)-tuple (da, ...,dy) with dy---di <y, let
Udy,....dp) =11 <1 <k —1]y; < ds}
and for each U C 2, k, let
FU) = {(d2; -, di)[Uay,...ar) = U}

Then we have that

xa(d2)  xw(dr) _ 3 3 Xa(d2)  xn(di)

d d d d
dydp<y 2 k UCTE (dovodi)EFU) 2 4§

Xk(dk)

2d2 d ng
_ 3 X§2)"'Xkcgkk)+ 3 3 X2(d2)

(d2,...,dr)EF(2) GAUC2E  (d2,....dr)EF(U)
By the definition of F (i), we have that

F(@) ={(da; ..., dr)|D(as.....a) = D}
={(da, .. dp){2 < i < kl|yi < di} = @}
= {(d27 7dk)|d2 < yiVi S 277]{7}

Hence
> xa(d2)  xkl(di) _ = xe(da) - xe(di)
(da,...,dg)EF (D) d i di<yi a2 A

Vi€2,k
k

_ H Z Xi(di)
; d;
1=2d;<y;

Let Si(t) =, <, xi(n) Vi € 2,k. Then, by Corollary 1.8, we have that

2 1, e
Si(N) e N'"T VYN > ¢ "2
1,e e .
and since y; = mawc{qi‘*Jr2 , Dzr }, it follows that

52
Si(t) e t'™T VE>y;
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By using Abel summation we obtain

y; <n<N N Yi Yi
N .
_ Si(N) . Si(yi) Jr/ Si(t) dt
N Yi v 12
Hence % g (4
> ) _ @’) +/ ;g)dt
n>y; Yi Yi

52
since S;(N) <, N'=7T

Therefore o g (4
1 Xz Z Xz z _ (yz) +/ zg )dt
di< Yi yi 1t
SYi

Again, using (1.15), we can dispose of the first term in the right hand side.

term, since

2
ootl—— 4 2

Si(yi 5 (t 2
_Silys) +/ —’g)dt Len ¥y
Yi Yi t

we deduce that

Hence

E2
Z Xz z <<€ky2 =
di<y;

and since by definition, y; > Dzr, we get

23
1 XZ Xl 7, <<E) D 3
d;<y;

which means that IM (e, k) > 0 such that

53
-y XZ M(e, k)D&
di<y;
for large enough D. Thus
Xz _
> _‘ (1,x:)| < M(e, k)D™ 5%
di<y;
Consequently
Xz e3
< |L(1, xi)|+ M (e, k)D™5F = |L(1,x:)| 1+L17
di<y; ‘ ( 7XZ)

But Siegel’s theorem with € = % reads

23
qi_l k <<6,k: |L(17X2)‘
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So 3N (g, k) > 0 such that for big enough ¢; we have

.3
q; ™ < N(e, k)|L(1, xi)|

Then from this and (3.3) we have

ZXz

M(€7k) i _ 3
L)1+ =22 e p
|L( ,xz)|( T NGR 8k>

di<yi
Whence
(. 3 .
> M) 1) (14 0. (6 D))
d; <yi ¢

=L(1,x;)(1 + Oy (D™ 7o7))

where the last equality holds since ¢; < D =¢g2- - - q.
Then, taking the product over all the characters, we have that

H XZ z ]_ XQ) L(17Xk)(1+057k(D_16k))

i=2d; <y
Using the trivial bound L(1, x;) < logq; Vi € 2,k and the fact that ¢; < D Vi € 2, k, we get
L(1,x2) -+~ L(L, xx) = O(log D*~)
Hence

k

3
II XZ 2 L(1,x2) -+ L(1, xx) + O((log D)~ 1O, (D~ 7%
1=2d; <y;

= L(1,x2) -+ L(1,xx) + O-  ((log D)* "' D~ 7% )
3

since (log D)¥~! is a polylogarithmic function in D and f(x) = o(z°)Ve > 0 and Vf a
polylogarithmic function, i.e f(n) € Z[logn].

Let us estimate now the contribution coming from nonempty /. Fix such an U C 2, k,
let ug € U and set

P = P((ds, ..., duy, ...d Hd
z;éuo

so when we write P, we assume it depends on the (k — 2)-tuple (da, ..., Ju\o, ...dy), where T
means that we omit x. Then the triangle inequality gives

Z Xug (duo)
do -+ - dy,

(dz2,...,dx)EF (U)

xa2(d2)  xk(dk)
Z i i

Z l Xug (duo)
P d

(dz,....,dr) EF (U)

(da,...,dr)EFU)

1
< -
- P

(d2yeesdug serdis)
(dz,....dp)EF(U)

Yug <du0 <% P

Then, using Abel’s summation formula we have
Z Xuo (duo) y( ?) SuO (Yuo ) + /? Squ(t) dt
du, N Y t

Yu
Yug <duy <% ©

ug
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Since % > yu,, (1.15) gives us

Furthermore
P S, (t B 4, 2| 5
Y L Y t :
uQ uo Yuo
Consequently
2
d 17% _&2 _2
Z Xu(zl( uo) ek (]yj> + Yuo* L Yuo
Yug <dug<H o
Thus

1 wo (dy _< 1
Y| T s ys

(d2yeerdug s-esdie) ! Yuo <dug<F (d2,eesug s--rdi)
(d2,...,dix ) EF(U) (da,-...dx) EF(U)

(za

53
D™ (1 +logy)* 2

3

o

IN
>
g

IN

o

|

< D™ & (logeD)*2

Since (logeD)*~2 is polylogarithmic, we have that (logeD)*=2 € o((eD)?)¥§ > 0, so in
3
particular (logeD)*~2 € o((eD)70% ), hence

3

D~ (log eD)F~2 = O, (D~ %)
Combining this and (3.4) gives us the desired bound. O
Lemma 3.4. We have

23
> alde) ] g < D

do---d
dy--dp <y 270k

Proof. Let y' = yD~1. We first show that we can dispose of the (k — 1)-tuples (dz, ..., dy)
such that do -+ -dy, < /.
Indeed, we have that

R e S IERD D

do---di <y’ do--dp <y’
1 k—2
< y'( Z d)
d<y’
<y/(1+logy)*F 2
<yD"i(1+log D)2

where the last inequality holds since ¢y’ < y < D.
As seen in the proof of the previous lemma, we have that (1+1log D)*~2 € o(D?) V§ >

0, so in particular, for § = 55 we obtain that

yD™ (1 +1logD)* 2 <. yD" 20 = yD™5
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Clearly this is negligible compared to our desired bound so we focus on the contribution of
(k — 1)-tuples (ds, ...,dy) with ¢ <dg---di <y. Let

’_ I+ £
Yi = max{ql aDSk}

Then if dy - - - dy > y', we claim that there exists io € 2, k such that d;, > y; .
Suppose this doesn’t occur, hence d; < y!Vi € 2,k. Then

/

y/<d2..dk§y/2.yk

Hence
Vi

yD™% <yh--yh
We saw that DiT5 < y and therefore
Dt < gy,

1,e
its

Let r € 0,k — 1 and 41, ..., i, € 2, k such that y; =¢q ®. Then
lie € (f—1—
Yo vk = (g g, )T EDEETIT)

and since ¢;, - qi. < q2---qr = D, we get that

Diti < pitipsek-1-1)

Hence
r+1
1< D™ =k

which is clearly a contradiction since D > 1. Therefore there is an i € 2,k such that

di, > y;, and taking into account that L J < % for do - - - dy, > v/, similarly to the proof

y
do---dy
of Lemma 3.3, we can group the remaining (k — 1)-tuples (da, ...,dg) with ¥/ < dg---dp <y
as follows:

For each (k — 1)-tuple, let

Uig,,...an) = {2 <i < kly; <d;}
Since we proved that there is an i € 2,k with d;, > yz’-o we have that

di) * O V(dg,,dk)

.....

Then clearly

DR TARECA PR D DEED DR SR Sy

Y <dg--dp<y Um  (da,...,dy)EFU,m)

Fix a pair (U, m), let up € U # @ and consider a (k — 2)-tuple (da, ...,d/u\o, ..,di) such that
(da, ..., di) € F(U,m) for some d,,.
Since up € U, we have that y, < dy,. Furthermore, since (da, ...,dx) € F(U, m), by

the definition of F(U, m), we have that Lpé’ J = m, where we set
uo

k
P = P((dy, ... duy, -, di)) = [ ] di
=2

1=
17éu0
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Hence

Pd,, <m+1
So Y

vo > (m+1)P
Lastly,

since dg - - - dy, > 1y'. Thus if we set

/

M = M((ds, ..., duy, -, di)) = maz{yl,,, ﬁ, yF}
we have that y
M < d,, < P
where the inequality on the right holds since {ﬁJ = m. These are precisely the integers

dy, satisfying the condition imposed on the (k — 2)-tuplets. Consequently, the triangle
inequality gives us

>y 3 x2<d2)"'xk(dk){cﬁ-chc}‘

Um (da,...,dy)EF(U,m)

<3 > {5} (35)

(d2,..,dug,--,dk) M<du, <7t
(d2,...,dx) EF(U)

Y —m
Pd.,

is constant, the function b: N — [0,1), b(n) = {-%} is decreasing on the integers d,, and
it is also nonnegative. Then, using Abel’s inequality, we have

Y
E ; —Z i< E
’ Xzo (duo ) { duop } ‘ — ]\/Igixy Xuo (duo)

M<dy, <% —mPlM<dy, <t

Since

Since

Corollary 1.8 gives us

52
<optiTE

‘ > Xuo(duo)

M<dy, <t
Whence
1 2
T 64 y <2 Y .3
d — —— |M®&a < 2D 512k 3.6
MEiSen, 2 Xul(d) <<5”“( P> = <mP = mP (3.6)
Pl M<d,, <t
since y
Dsr Sy;0§M<du0§ﬁ



From (3.5) and (3.6), we deduce that the contribution of the pairs (U, m) is

Y o2 1
Lo,k %D 512k ; F
(d2,. sdugse»dr)
(d2,...,d) EF(U,m)

y s 1 k-2
< L )T 512k E —
d<y

3
<Y p-sn (1+logy)*—2
m

Finally, summing over all pairs (U, m), we conclude that the upper bound is

53 53
Le )k yD‘m(l + logy)k_2 L ) D500k

since
(1+1logy)*~2 e o(D?) V6>0

Proof of Theorem 3.1
Lemmas 3.3 and 3.4 give us the estimate

.3
Z an = yL(17X2) e L(]-vXk) + Os,k(D_m)

n<y

Assuming that the least prime that splits completely in K is greater than D%“‘E, by Propo-
sition 3.2, we have that
3
Z an L Yy*

n<y
Therefore 5
L(1,x2) -+ L(1, xx) ey 7 + D~ 500%
Since ) )
D1 < Dit: <y
we obtain

53
L(1,x2) -+ L(1, X&) <z, D16 + D~ sli0r
.3
< D™ ook (3.7)

On the other hand, Siegel’s theorem with € = ﬁ gives us

63 JR—
g T <o |L(L,xa)| Vie2k

Hence . .
D™ 0RFT = (go -+ qp,) " 08T < g, |L(1,x2) - L(1, x5)]

which clearly contradicts (3.7)
Therefore the least prime that splits completely in K is <. j Dite,
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