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Introduction

The arithmetics of elliptic curves is a well-studied topic in mathematics thanks to the multitude

of interesting properties and connections to other topics. Elliptic curves are smooth projective

curves, historically arising from elliptic integrals. In more modern research the study of elliptic

curves arises naturally in many number theory problems, and elliptic curves even have applica-

tions in cryptography. Elliptic curves are interesting also in their own right and in this thesis

we shall study one special case of this.

Let K be a number field, i.e. a finite extension of Q, and let E be an elliptic curve over K.

It is well know that E has an addition of points defined on it and this then gives the curve a

group structure. Let N be a positive integer and denote the set of points of order N , called

N -torsion points, by E[N ]. Then one may define the N -torsion field (also called N -division

field) as the finite extension of K given by adjoining the coordinates of the N -torsion points,

this field is denoted by K(E[N ]).

If N divides M , we have that E[N ] ⊆ E[M ] which then gives K(E[N ]) ⊆ K(E[M ]) for all

elliptic curves E and number fields K. Then taking N,M to be coprime raises the question do

we have K(E[N ]) ⊆ K(E[M ]) for some N,M , and if so what kind of elliptic curves satisfy this

condition.

Take K = Q. One can note that if E/Q has fully rational 2-torsion then we have trivially

that Q(E[2]) ⊆ Q(E[N ]) where N is any integer. Then one can find an elliptic curve E/Q

satisfying

Q(E[2]) ⊆ Q(E[3]) (1)

Moreover, this containment can also happen when the 2-torsion is not fully rational. In partic-

ular the case Q(E[2]) is a degree 6 extension of Q, that is non-abelian, is of interest and there

are elliptic curves satisfying (1) with non-abelian 2-torsion field. Our main goal in this thesis



is to study this phenomenon for the non-abelian 2-torsion field and to understand when this

can happen.

In [1] elliptic curves satisfying (1) with non-abelian 2-torsion field were studied as rational

points on the modular curve X ′(6), and achieved that each of the elliptic curves is isomorphic

to an elliptic curve of the form

E : y2 = x3 + 3t(1− 4t3)x+ (1− 4t3)(
1

2
− 4t3) for some t ∈ Q (2)

This result was expressed as the following theorem.

Theorem 0.1 (Brau, Jones (2014)). Let E be an elliptic curve over Q. Then E is isomorphic

over Q to an elliptic curve E ′ satisfying Q(E ′[2]) ⊆ Q(E ′[3]) if and only if j(E) = 21033t3(1−

4t3) for some t ∈ Q.

It is good to note that the above theorem will give elliptic curves with non-abelian 2-torsion

field, and that there are other cases not included in the theorem, e.g. when the 2-torsion is

fully rational.

However, the proof of the Theorem 0.1 does not provide us with complete understanding of

the j-invariant, in particular, the question where this j-invariant comes from is left open.

One of the ways to approach studying (1) is to note that if a Galois group fixes Q(E[3]),

then it must also fix Q(E[2]). This then suggests that studying Galois action on the torsion

points of E could give us more information on (1), and indeed this is the case. The action of

absolute Galois group of Q, GQ, on sets of torsion points of E defines Galois representations

attached to E. Then studying the image for these representations allows one to show that an

elliptic curve E/Q satisfying (1) is a non-Serre curve. In [8] it was shown that almost all elliptic

curves over Q are Serre curves. Non-Serre curves have been studied as coming from rational

points on modular curves (e.g. in [2]), and this connection to modular curves then motivates

us to look at the moduli space of elliptic curves as the second approach.

A moduli space for elliptic curves is a scheme such that each point on the scheme corresponds

to a isomorphism class of elliptic curves with some extra structure. It can be shown that a

moduli space parametrising elliptic curves with chosen generators for the N -torsion exist for

N ≥ 3. It is known that the modular curve X(N) of level N parametrises elliptic curves with



a chosen basis for the N -torsion. In other words, X(N) is a moduli space for elliptic curves.

Then taking a quotient of X(N) by a group H ⊆ GL2(Z/NZ) allows us to construct a curve

that parametrises elliptic curves with extra conditions. In particular, for a level 6 modular

curve we can have the condition (1), and this gives curve X ′(6) in [1]. Then the group H giving

X ′(6) as quotient of X(6) can be given explicitly. This then allows study of the curve X ′(6)

and one can compute the j-invariant for the desired elliptic curves as given in Theorem 0.1.

The organisation of the thesis is as follows. In Chapter 1 we define Galois representations

attached to elliptic curves and study the image of these representations. Furthermore, we define

Serre curves and establish that an elliptic curve satisfying (1) is not a Serre curve. In Chapter

2 we begin by studying elliptic curves over a scheme and the moduli spaces for them. Then we

focus on the specific moduli problem [Γ(N)], and study the example [Γ(3)] in detail. The final

Chapter 3 consist of two parts.The first part focuses on studying modular curves X(N) and

XH obtained from a quotient of X(N) by a group H. This is then followed by definition, and

studying, of the level 6 modular curve X ′(6) parametrising elliptic curves satisfying (1), and a

description of the computations needed to reach Theorem 0.1.





Contents

1 Galois representations 1

1.1 Galois representations attached to elliptic curves . . . . . . . . . . . . . . . . . . 1

1.1.1 Mod m representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 `-adic representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Full representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Image of the Galois representations . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Serre curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Moduli Spaces 9

2.1 Moduli spaces for curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Moduli space for elliptic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Group structure on E/S . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Weierstrass equation for E/S . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Category of elliptic curves . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.4 Moduli problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Representability of the moduli functor . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Example [Γ(3)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 The modular curve X ′(6) 23

3.1 Modular curve X(N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Quotient curve XH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Galois action on the curve . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.2 j-map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



10 Laura Jakobsson - Elliptic curves with 2-torsion contained in the 3-torsion field

3.3 Modular curve X ′(6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Group H for X ′(6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 More on X ′(6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

References 35



Chapter 1

Galois representations

Let G be a profinite group,i.e. a topologial group tha is isomorphic to a projective limit of finite

groups. Let V be a module over a ring R of rank n. Then a representation of G is continuous

group homomorphism

ρ : G→ Aut(V )

A common case is that V is an n-dimensional vector space over a field k, then after choosing

a basis for V the representation becomes ρ : G→ GLn(k).

Let K be a field and let GK = Gal(K/K) be the absolute Galois group of K. We have that

GK = lim←−Gal(L/K)

where L runs over all finite Galois extensions of K. The maps Gal(L/K)→ Gal(L′/K) for the

inverse limit are given as the restriction of σ to L′ for σ ∈ Gal(L/K) where L′ ⊂ L.

So GK is a profinite group, and we can define a Galois representation simply as a represen-

tation of the group GK .

1.1 Galois representations attached to elliptic curves

Let E be an elliptic curve defined over the number field K. Then one may define Galois

representations attached to the elliptic curve by letting the Galois groups GK act on sets of

torsion points of E.
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1.1.1 Mod m representations

Let σ ∈ GK . Let E/K be an elliptic curve and P = (x, y) a point on E(K). The curve E has

a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

We have that σ acts on P coordinate wise, then P satisfying the equation implies that so does

σ(P ). Then for all P,Q on E we will get σ(P+Q) = σ(P )+σ(Q). Here + is given by a rational

function with all coefficients in K. So σ induces a group homomorphism E(K) → E(K), and

furthermore through this homomorphism σ induces a map E[m]→ E[m].

Choose two points P,Q in E[m] that generate E[m] ∼= (Z/mZ)2. Thus every point in E[m]

can be written as a1P + a2Q with integers a1, a2. Take α ∈ Aut(E(K)). Then α restricts to a

map αm : E[m]→ E[m]. Computing αm for the basis P,Q gives that there are integers a, b, c, d

such that

αm(P ) = aP + bQ and αm(Q) = cP + dQ

It follows that each automorphism of E[m] can be represented by 2× 2 matrix

(
a b
c d

)
. This

then defines a homomorphism

ρE,m : GK → Aut(E[m]) ∼= GL2(Z/mZ)

σ 7→
(
a b
c d

)
Indeed this is a Galois representation, particularly the mod m Galois representation attached

to elliptic curve E.

Note that by the First Isomorphism Theorem we have

ρE,m(GK) ∼= GK/ker(ρE,m) = GK/Gal(K/K(E[m])) = Gal(K(E[m])/K) (1.1)

Due the above fact the representation ρE,m is sometimes written as

ρE,m : Gal(K(E[m]/K))→ GL2(Z/mZ).

Example 1.1. Let m = 2 and let ρE,2 be the mod 2 representation attached to an elliptic curve

E over Q.

ρE,2 : GQ → Aut(E[2]) ∼= GL2(Z/2Z)
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As ρE,2(GQ) ∼= Gal(Q(E[2]/Q)), the possible images of ρE,2 and the index of Gal(Q(E[n]/Q))

in GL2(Z/2Z) for different E can be easily determined based on the 2-torsion points.

The torsion for E is given by the set of four points {O, (α, 0), (β, 0), (γ, 0)}. This gives the

n-torsion field Q(E[2]) = Q(α, β, γ).

If all α, β, γ are rational numbers, then Gal(Q(E[2]/Q)) = {1}, and the image of ρE,2 has

index 6.

If two or more of α, β, γ are not in Q, then Gal(Q(E[2]/Q)) can be written as as the groups

Gal(Q(E[2]/Q)) =

{
Z/3Z if α, β 6∈ Q, γ ∈ Q
S3 if α, β, γ 6∈ Q

where S3 denotes the permutation group of three elements.

Using the formula [GL2(Z/2Z) : Gal(Q(E[2]/Q))] = |GL2(Z/2Z)|/|Gal(Q(E[2]/Q))| we can

compute the index of the image of ρE,2. This gives the indices 3 for Z/2Z, 2 for Z/3Z and 1

for S3. Therefore the elliptic curve E has surjective ρE,2 if and only if Gal(Q(E[2]/Q)) = S3.

For the surjectivity of the representation ρE,n we then have the following theorem by Serre

in [13].

Theorem 1.2 (Serre). Let K be an algebraic number field, and E/K an elliptic curve without

complex multiplication. Then for all but finitely many primes p, ρE,p : GK → GL2(Fp) is

surjective.

1.1.2 `-adic representation

Let ` be a prime number. Then an `-adic Galois representation is defined as a continuous

homomorphism

φ : GK → Aut(V )

where V is a finite-dimensional vector space over Q` such that Aut(V ) is an `-adic Lie group.

If T is a free Z`-module of finite rank such that it generates V , then V = T ⊗Z`
Q`. To

define the `-adic representation attached to elliptic curves, let us first recall the definition of

the Tate module of an elliptic curve E

T`(E) = lim←−E[`m]
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where the maps in the inverse limit are given by the multiplication by `, i.e. [`] : E[`n+1] →

E[`n]. The Tate module is a free Z`-module of rank 2, i.e. it has a generating set of 2 linearly

independent elements. Setting V`(E) = T` ⊗Z`
Q` gives a Q`-module with a finite generating

set, thus V`(E) is a finite dimensional vector space over Q`. So we may define

ρE,`∞ : GK → Aut(V`(E)) (1.2)

We can write V` = T`[1/`], this s a localization of T` at 1
`
. Then

V`/T` = T`[1/`]/T` =
⋃
n

`−nT`/T`

Note that we have `−nT`/T` ∼= T`/`
nT` ∼= E[`n]. Thus V`/T` ∼=

⋃
nE[`n].

The above isomorphism induces the map Aut(T`) → Aut(
⋃
nE[`n]), which is also an iso-

morphism. We have the commutative diagram

`−nT`/T` T`/l
nT` E[`n]

`−(n+1)T`/T` T`/l
n+1T` E[`n+1]

[ln] =

[ln+1]

[l] proj

=

[l]

where [`] denotes the multiplication by ` map. We also have the natural inclusion map

`−nT`/T` → `−(n+1)T`/T`, which gives the maps for the direct limit that is V`/T`. Taking the

inverse limit of E[`n] is by definition the Tate module T`, and we also get that lim←−T`/l
nT` = T`.

Then each of these maps induce a map between the automorphisms. We have that both multi-

plication by ` and the inclusion induce the same map Aut(`−(n+1)T`/T`)→ Aut(`−nT`/T`), and

so we get the diagram of automorphism groups with the inverse limits

...
...

...

Aut(`−(n)T`/T`) Aut(T`/l
nT`) GL2(Z/`nZ)

Aut(`−(n+1)T`/T`) Aut(T`/l
n+1T`) GL2(Z/`n+1Z)

...
...

...

Aut(V`/T`) Aut(T`) GL2(Z`)

[ln] ∼

[ln+1]

[l] proj

∼

proj

∼ ∼
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Then it follows that

Aut(T`) ∼= Aut(V`/T`) ∼= Aut(
⋃
n

E[`n]) (1.3)

Let E[`∞] =
⋃
n≥1E[`n]. We then have an `-adic representation

φE,`∞ : GK → Aut(E[`∞]) ∼= GL2(Z`) (1.4)

If one considers GL2(Z`) inside GL2(Q`), then the representations φE,`∞ and ρE,`∞ give the

same representation attached to an elliptic curve E. This follows from the fact that the action

of the Galois group GK on V` is determined by the action on T`. Then the isomorphism (1.3)

implies that we can equivalently consider the action of GK on E[`∞]. We have again a theorem

by Serre for the surjectivity of ρE,`∞ given in [13].

Theorem 1.3. Let K be a number field and E/K be an elliptic curve without complex multi-

plication. Then for all but finitely many primes `, we have ρE,`∞(GK) = Aut(E[`∞]).

1.1.3 Full representation

Let Etors :=
⋃
n≥1E[n] be the group of all torsion points of E. Then one can define

Aut(Etors) := lim←−Aut(E[n]).

Note that we have lim←−Aut(E[n]) ∼= lim←−GL2(Z/nZ) = GL2(Ẑ) where Ẑ = lim←−Z/nZ. The

Galois group GK acts on Aut(E[n]) and thus GK acts continuously on Aut(Etors), giving the

representation

ρE : GK → Aut(Etors) ∼= GL2(Ẑ).

It is useful to notice that GL2(Ẑ) =
∏

`GL2(Z`) where ` is taken over all primes.

1.2 Image of the Galois representations

One of the interesting questions arising from these representations is to understand their image.

Let E be an elliptic curve over K. For ρE,n the Theorem 1.2 tells that ρE,n is surjective in most

cases, and Theorem 1.3 states a similar result for ρE,`∞ . For ρE, there is famous theorem of

Serre, which is the following.
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Theorem 1.4. Let E be an elliptic curve without complex multiplication over a number field K.

Then the image of the representation ρE : GK → Aut(Etors) is an open subgroup of Aut(Etors) ∼=

GL2(Ẑ).

Noting that Aut(Etors) =
∏

` Aut(E[`∞]) and that ρE,`∞ : GK → Aut(E[`∞]) is the `-th

component of ρE implies that the above theorem is equivalent to

1. For all primes `, ρE,`∞(GK) is an open subgroup of Aut(E[`∞]).

2. For all but finitely many primes ` the group ρE(GK) contains the `-th factor Aut(E[`∞])

of Aut(Etors).

holding simultaneously. For the proof of the theorem see [14] and [13].

From now on we assume that all elliptic curves we encounter are without complex multi-

plication. It is easy to see that the above theorem does not provide much information on the

explicit image of ρE. So to compute ρE(GK) explicitly one needs to use other approaches. We

shall follow the one given in [1], which is to consider the map

π : ρE(GK) −→
∏
`

ρE,`∞(GK)

The image of π does project onto each `-adic factor in
∏

` ρE,`∞(GK), however π may not be

surjective but map to a proper subgroup of
∏

` ρE,`∞(GK). For the map π to be surjective

we need that K(E[m1]) ∩ K(E[m2]) for m1 and m2 coprime, has trivial intersection. The

intersection is a Galois extension of K, in fact from Galois theory we know that its Galois

group is given by Gal(K/K(E[m1]))Gal(K/K(E[m2])). If the intersection is non-trivial we

have that the Galois group Gal(K/K(E[m1]))Gal(K/K(E[m2])) is not Gal(K/K), and so π

cannot be surjective. The intersection K(E[m1]) ∩K(E[m2]) for m1 and m2 coprime is called

an entanglement field, and studying these then allows one to understand the image of π.

1.3 Serre curves

Let us consider the case K = Q from now on. Then the image of ρE for E/Q depends on the

entanglement fields Q(E[m1]) ∩Q(E[m2]) over Q.
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It is known that for E/Q we have the containment

Q(ζn) ⊆ Q(E[n]) (1.5)

If the entanglement field is abelian, then we know from the Kronecker-Weber theorem that it is

contained in some cyclotomic fied. This combined with the earlier containment (1.5) gives that

over Q we may have non-trivial entanglement fields, and in fact this is the case. Furthermore

we have the containment

Q(
√

∆E) ⊆ Q(E[2]) ∩Q(ζn) (1.6)

where n = 4|∆E|. Not only can one consider the abelian entanglement fields, but also the

non-abelian case. There is one known example of non-abelian entanglement field, namely

Q(E[2]) ⊆ Q(E[3]). For this to be non-abelian Q(E[2]) must be a degree 6 extension and

Q(E[3]) a degree 48 extension of Q.

The above observation suggests that the map ρE for E/Q is not surjective. Indeed we have

the following proposition given by Serre in [13].

Proposition 1.5. For all elliptic curves E over Q, the image of ρE : GK → Aut(Etors) is

contained in a subgroup of index 2 of Aut(Etors).

This proposition is then equivalent to saying that we have[
GL2(Ẑ) : ρE(GQ)

]
≥ 2 (1.7)

for all elliptic curves E over Q. It can happen that the containment (1.6) is the only thing

preventing ρE from being surjective, in this case one has [GL2(Ẑ) : ρE(GQ)] = 2. This motivates

the following definition.

Definition 1.6. Let E be an elliptic curve over Q. Then E is a Serre curve if [GL2(Ẑ) :

ρE(GQ)] = 2.

The above definition can be also stated as E/Q is a Serre curve if [GL2(Z/nZ) : ρE,n(GQ)] ≤

2 for all n ≥ 1.

It was shown in [8] that almost all elliptic curves over Q are Serre curves, and moreover

that we have the condition E is not a Serre curve if and only if there exists a prime ` ≥ 5 with
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ρE,`(GQ) ( GL2(Z/`Z), or [ρE,36(GQ), ρE,36(GQ)] ( [GL2(Z/36Z), GL2(Z/36Z)], where [G,G]

denotes the commutator subgroup of a group G.

Moreover the non-Serre curves have been studied as coming from rational points on modular

curves (see Chapter 3 for the definition) and the complete family of such curves is given in [1].

Suppose E/Q is an elliptic curve that satisfies Q(E[2]) ⊆ Q(E[3]). In the trivial case that

the 2-torsion of E is rational, we have that [GL2(Z/nZ) : ρE,n(GQ)] = 6 as it was computed in

the example 1.1 that ρE,n(GQ) = {1}. Then clearly such curve is not a Serre curve. However

we are interested in the situation when we have non-abelian extensions, and it can be shown

that any curve satisfying Q(E[2]) ⊆ Q(E[3]) is a non-Serre curve. We show in Chapter 3 that

these curves arise from rational points on a modular curve that parametrises non-Serre curves.



Chapter 2

Moduli Spaces

One of the big and interesting questions in algebraic geometry is to classify objects. One

way of approaching this problem is to look for a scheme that could parametrise the original

objects we are interested in. This then allows one to classify objects or families of objects up

to a selected equivalence, for example isomorphism, by having a one to one correspondence

between the points in the scheme and the equivalence classes. One example of this would be

the j-invariant for elliptic curves. It is well know that the j-invariant divides elliptic curves

into isomorphism classes over algebraically closed fields, moreover it provides a one to one

correspondence between the classes and points in P1, which then is the space parametrising

elliptic curves by isomorphism. By studying the parametrising scheme one can often learn

more about the objects of interest.

At times the problem can be approached in a very concrete way. We now compute an

example for parametrising elliptic curves with a point of order 6 ([16], exercise 8.13)

Example 2.1. Let E be an elliptic curve over a number field K and let P be a point of order

6 with coordinates (u, v). We know that it has a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

Then there is a change of coordinates giving the equation

y2 + sxy + ty = x3 + tx2

satisfying s, t ∈ K, (0, 0) is a point of order 6 and the tangent line to E at (0, 0) is given by

y = 0.
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A point Q of order 6 must satisfy [3]Q = −[3]Q, in particular P = (0, 0) satisfies this.

There exists a formula for computing the addition on elliptic curves and applying this we get

the following equation

s− 1− t = 1 + s2 − 2t− 2s

This simplifies to

t = s2 − 3s+ 2

Now any point on the curve t = s2 − 3s + 2 defines an elliptic curve that has a point of order

6 and Weierstrass equation of the form

y2 + sxy + (s2 − 3s+ 2)y = x3 + (s2 − 3s+ 2)x2 (2.1)

Moreover every elliptic curve with a point of order 6 is isomorphic to a curve of the form (2.1).

2.1 Moduli spaces for curves

The curve in the previous example is called a moduli space, or modular curve. Moduli spaces

arise as solutions to the moduli problem; a problem of parametrising geometric objects. Our

goal is to study elliptic curves so it’s natural to narrow the problem down to parametrising

curves. In this section we provide a short introduction to general moduli spaces of curves

before moving on to considering the case of elliptic curves, for more detailed treatment of

moduli spaces of curves see [11] and [5].

A moduli problem in general consists of objects and equivalences between them, and a

definition for families of these objects over a scheme with equivalences between the families.

Then the scheme would be a space parametrising the objects, with a universal family over the

scheme.

In our case the objects are algebraic curves over fields and the equivalence between curves

is taken to be isomorphism between curves. A family of algebraic curves over a scheme S is

defined as a map

f : C → S

which is a flat proper morphism with every geometric fibre being a smooth curve. Note that

sometimes this is just called an algebraic curve over S, e.g. in [9], and not a family of curves.
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We say that two families f : C → S and g : C ′ → T are isomorphic if there are isomorphisms

h : C → C ′ and h′ : S → T such that the diagram below commutes.

C h //

f
��

C ′

g

��
S

h′ // T

For a scheme M to classify the curves given in the moduli problem it would need to satisfy

the following. M has a family of curves f : C →M such that for any family of curves g : C → S

there is a unique morphism h : S → M satisfying C ∼= h∗C = S ×M C. The curve C is the

universal curve. This is in fact the definition for a fine moduli space. If such moduli space exists

then it is unique up to isomorphism. Let M ′ be another scheme satisfying the conditions and

let f ′ : C ′ →M ′ be a family of curves. Then by the universal property of the moduli space we

have the morphisms h : M ′ → M and h′ : M → M ′. By definition the morphisms are unique,

so h′ is the inverse of h and we get that M ∼= M ′.

An equivalent way of defining the moduli problem is to use the moduli functor

F : Sch → Sets
S 7→ {families of curves over S}/ ∼=

(S → S ′) 7→ (C/S ′ → S ×S′ C)

Then the fine moduli space is a scheme that represents the moduli functor. This means that

there exists a scheme M such that the functor F is isomorphic to the contravariant functor

HomSch(−,M) : Sch→ Sets given by S 7→ HomSch(S,M). Then M represents the functor F .

The problem arising from this definition is that fine moduli spaces for algebraic curves do

not exist due to the automorphisms of the curves. To illustrate this we consider a simple

example of curve over C.

Example 2.2. Let C be a curve over C, such that there exists a non-trivial automorphism

of C, say σ. We can consider the product C × C. Note that Z has an action on C given

by kz = z + 2πik for all z ∈ C and k ∈ Z. Also this can then be used to define an action

of Z on C × C by k(z, P ) = (z + 2πik, σk(P )). Then clearly the action commutes with the

natural projection C × C → C. Now we have that C/2πi ∼= C∗ via the exponential map, then

the quotient (C × C)/Z gives a family of curves over C∗. Moreover each of the fibres in this

family is isomorphic to C. Suppose that M is a fine moduli space and f : C → M is the
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universal curve for it. Then we must have unique morphism h : C∗ →M and an isomorphism

(C × C)/Z ∼= C∗ × C. The last isomorphism cannot hold and so we get that there is no fine

moduli space.

There are different ways to resolve the issue of not having a fine moduli space. These are

defining a coarse moduli space, rigidifying the problem, and using algebraic stacks. We look

at rigidifying the moduli problem, that is adding points to give extra structure, and study this

for the specific case of elliptic curves in the following sections.

2.2 Moduli space for elliptic curves

To define a moduli space for elliptic curves, one needs to first define elliptic curves over an

arbitrary base scheme. In this section and in the following ones this chapter we follow closely

[9] and all the theorems and definitions can be found in it unless otherwise mentioned.

Definition 2.3. Let S be a scheme and define an elliptic curve E over S, denoted by E/S, as

a smooth morphism of schemes

f : E → S

such that each fibre of f is a geometrically connected curve of genus one, and with a chosen

section 0 in E(S).

The sections p in E(S) are points on the curve E, and these two terms are used interchange-

ably.

2.2.1 Group structure on E/S

For elliptic curves over a field, we know that an elliptic curve E over some field K has addition

of two points defined on it and that E forms a group under this operation. One may also define

this type of a structure on elliptic curve over a scheme.

To use the definition given in [9] we first say what is an ideal sheaf for a point. On a smooth

curve C/S any section s ∈ C(S) defines a relative Cartier divisor by [s]. Recall that D is a

relative Cartier divisor in C/S if it is a closed subscheme D ⊂ C such that D is flat over S and

the ideal sheaf I(D) ⊆ OE is an invertible OE-module. So we can consider the ideal sheaf for
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s ∈ C(S), and in particular in our case, by taking a point P ∈ E(S) we have an ideal sheaf for

the point P , I(P ), given by the ideal sheaf of the relative Cartier divisor [P ].

Theorem 2.4 ([9], Theorem 2.1.2). Let E/S be an elliptic curve over a scheme S. There exists

a structure of commutative group scheme on E/S such that for all S-schemes T , and for any

three sections P,Q,R in E(T ) = ET (T ), we have P + Q = R if and only if there exists an

invertible sheaf L0 on T and an isomorphism of invertible sheaves on ET

I(P )−1 ⊗ I(Q)−1 ⊗ I(0) ∼= I(R)−1 ⊗ f ∗T (L0).

Note that the section 0 behaves as the identity element on the structure defined by the

above theorem.

Points of order N

Now with the above theorem it makes sense to talk about the point NP defined by adding

P to itself N times. Over a field we have that a point P on an elliptic curve has order N if

[N ]P = O, and we want to define an analogy of this for elliptic curves over schemes. In [9]

the points with exact order N are defined via Cartier divisors, but we shall use alternative

definition that is equivalent by Lemma 1.4.4. in [9].

Definition 2.5. Suppose that N is invertible on S. Let P be a point in E(S) satisfying NP = 0,

then P has exact order N if for every geometric point Spec(k) → S of S, the induced point

Pk ∈ E(k) has exact order N in the usual sense, i.e. N is the least positive integer that kills

Pk.

Note that for this definition it follows that if P has exact order N then NP = 0, which

resembles the definition for elliptic curves over fields. The converse is false. For example take

P to be a point of exact order of 2, then 6P = 0 but P is not a point of exact order of 6. For

the multiplication by N map we can get the following theorem.

Theorem 2.6. Let E/S be an elliptic curve over scheme S, and let N ≥ 1 be an integer. Then

the S-homomorphism

[N ] : E → E
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is finite locally free of rank N2. Furthermore if N is invertible on S, then the kernel of the

map, E[N ] is finite etale over S, and locally on S we have E[N ] ∼= (Z/NZ)2
S.

Here the local condition in the theorem is taken to be locally in the étale topology, as

otherwise the isomorphism may not hold.

2.2.2 Weierstrass equation for E/S

For E/S to have a Weierstrass equation we mean that there exists functions x and y embedding

it to P2
S. This then gives a subscheme of P2

S defined by a homogeneous polynomial.

Recall that over a field we know the polynomial is a cubic with one point at ∞. This is

also the case for each fibre of E/S. The fibres are by definition genus 1 curves over a field,

i.e. elliptic curves, so we know that each fibre is given by the usual Weierstrass equation for

elliptic curves. To show that an elliptic curve E/S also has such a polynomial, one can show

that functions x and y exist Zariski locally on S using a similar method to showing an elliptic

curve has Weierstrass equation via the Riemann-Roch theorem. For the details see ([9],§2.2).

For an elliptic curve E/S we cannot use the Riemann-Roch theorem directly as it is not defined

for arbitrary base scheme, however, there exists a generalisation that can be used to establish

that locally there exists functions x and y satisfying the generalised Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (2.2)

with ai ∈ OS(U), where U is the Zariski open covering of S where the the functions x and y

are defined.

The general Weierstrass equation for elliptic curves can also be approached from the other

direction, i.e. first defining a curve as a subscheme of P2
S and then showing that this curve is

indeed an elliptic curve over S. This is followed for example in [7]. We can define a curve C

over S as a closed subscheme of P2
S by the homogeneous polynomial

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3 (2.3)

where ai ∈ OS(S). The polynomial has a discriminant ∆ defined by the same way as for an

elliptic curve over a field with equation given by the form (2.3), see for example [16]. Then we
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can define the discriminant of the curve to be this ∆, and we have ∆ ∈ OS(S) as it is defined

with the coefficients of the equation (2.3).

Choose the point (0 : 1 : 0) in P2
S. This point can be viewed as a section on the curve C

given as a subscheme of P2
S. Then there is the following proposition.

Proposition 2.7. Let S be a scheme and let C be a curve over S given by (2.3). Suppose that

∆ ∈ OS(S)×. Then the curve C with the section (0 : 1 : 0), is a smooth curve over S with each

fibre being a genus 1 curve.

We give an outline of the proof, for the details see ([7],§1.1). One can show that the

morphism C → S is a flat and proper. For each geometric point x of S we can consider the

fibre at that point, given by C ×S Spec(k(x)) where k(x) is the residue field of x. So each

fibre is a curve over the field k(x) given by an equation of the form (2.3), and so we know each

one has genus 1. Lastly to show that ∆ ∈ OS(S)× implies that the curve is smooth we again

consider the fibres at each geometric point of S. We have that the curve C is smooth if and

only if it is smooth on all the fibres. If ∆ = 0 in the fibre, then it is not a smooth curve over a

field, and so we must have that ∆ 6= 0 at the fibres. This then implies that the curve is smooth

if and only if ∆ 6= 0 at every geometric point of S, that is ∆ ∈ OS(S)×.

Hence we have that the subscheme defined by (2.3) is a smooth curve over S such that every

fibre is a curve of genus one and there is a chosen section, and this is precisely our definition of

an elliptic curve. So we get that E/S has a Weierstrass equation given by (2.3).

2.2.3 Category of elliptic curves

Recalling that the definition for a moduli problem requires one to know how to define equiva-

lence between the elliptic curves, we will then need to define what is an isomorphism between

the elliptic curves E/S and E ′/S ′. First we shall define the category of elliptic curves.

Definition 2.8. The category of elliptic curves, E ll, is the category with objects elliptic curves

f : E → S with section 0 over a base scheme S. The morphisms in the category are given by

pairs (h : S ′ → S, g : E ′ → E) such that the following diagram commutes and that E ′ → E×SS ′

is an isomorphism of elliptic curves over S ′.
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E ′
g //

f ′

��

E

f
��

S ′ h // S

Furthermore, one requires that the section 0S′ : S ′ → E ′ induced by 0 equals 0.

The category E ll is sometimes called a modular stack, for example in [3].

In the category of elliptic curves we have a contravariant functor given by

HomEll(−, E/S) : E ll −→ Sets

E ′/S ′ 7→ HomEll(E
′/S ′, E/S)

For each pair (h, g) in HomEll(E
′/S ′, E/S) we can consider the pullback of E by h. This

is given by h∗(E) = E ×S S ′. Then as we have the maps g and f ′ the properties of pull back

imply that there exists a function g′ : E ′ → h∗E that is unique up to isomorphism, satisfying.

E ′

h∗E E

S ′ S

g

f ′

g′

f

h

A fibre for h∗E/S ′ is given by

h∗E ×S′ Spec(k(y)) = E ×S S ′ ×S′ Spec(k(y)) = E ×S Spec(k(y))

where k(y) is the residual field of y ∈ S ′. Then clearly the each fibre is a curve of genus one.

So h∗E is an elliptic curve over S ′.

Note that as both squares in the diagram commute we have that each pair (h, g) defines

unique map g′. On the other hand if we have the maps h and g′, one can construct g. Thus we

may write

HomEll(E
′/S ′, E/S) = {(h, g′) : h : S ′ → S, g′ : E ′ → h∗E}.

2.2.4 Moduli problem

Having defined the category for elliptic curves one may now define the moduli problem.
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Definition 2.9. A moduli problem for elliptic curves is a contravariant functor

P : E ll→ Sets.

For a moduli functor P the set P(E/S) is called a level P structure on E/S.

As with the moduli problem for algebraic curves, we say that the moduli problem P is

representable if it is representable as a functor. That is, there exists an elliptic curve E , and a

scheme M such that P is isomorphic with HomEll(−, E/M) as functors.

Clearly this definition allows to have many different moduli functors for elliptic curves, and

depending on the chosen functor elliptic curves with different properties can be parametrised

with the moduli space. We are interested in studying elliptic curves with chosen N -torsion,

hence we want to study the moduli problem parametrising elliptic curves with a specific N -

torsion points.

For this purpose we introduce the level N structure on an elliptic curve.

Definition 2.10. Let E/S be an elliptic curve and let N ≥ 1 be an integer. Then a level

N-structure, or Γ(N)-structure on E/S is the homomorphism of group schemes

α : (Z/NZ)2
S → E[N ]

such that α(1, 0) and α(0, 1) are generators for E[N ].

If N is invertible on S then it follows from Theorem 2.6 that α is an isomorphism.

Using the level N -structure we can define a functor that parametrises elliptic curves with

a chosen basis for N -torsion. Let E ll/S denote the category of elliptic curves over S-schemes,

i.e. E/T with T an S-scheme. Then the functor is given as

[Γ(N)] : E ll/S → Sets
E/T 7→ level N-structures α : (Z/NZ)2 → E[N ] on E/T

(2.4)

If one considers S = SpecZ[1/N ], that is the universal base scheme where N is invertible. Let

T be an Z[1/N ]-scheme, then the functor can be expressed as

E/T 7→ {isomorphisms α : (Z/NZ)2 ∼−→ E[N ]}
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Recalling that the first definition for the moduli functor was given as functor from schemes

to sets, this then motivates the definition for the naive functor

FN : Sch/S → Sets
T 7→ isomorphism classes of E/T with a level N structure α

(2.5)

It can be shown that if the functors FN and [Γ(N)] are represented by the same scheme,

if they are taken over the same base scheme, thus they can be considered to give the same

moduli problem. We have that if [Γ(N)] is representable by E/M then FN is representable by

M . Conversely, if FN is represented by a scheme M then [Γ(N)] is represented by E/M with E

being the universal curve.

We then have the diagram of functors

E ll [Γ(N)]//

f
��

Sets

id
��

Sch
FN // Sets

where f is taken to be the functor given by E/T 7→ T .

2.3 Representability of the moduli functor

Naturally one would like to ask the question when is the moduli problem [Γ(N)] representable.

To answer this question we introduce the concept of being relatively representable.

Definition 2.11. Let P be a moduli problem for elliptic curves. P is said to be relatively

representable over E ll if for every E/S the functor (Sch/S)→ Sets given by T 7→ P(E/T ) is

representable by an S-scheme.

We say that P is affine if the S-scheme representing the functor (Sch/S)→ Sets is affine.

It can be shown that [Γ(N)] satisfies this property, and the functor in the definition is F ,

F : Sch/S → Sets
T 7→ level N-structures α : (Z/NZ)2 → E[N ] on E/T

(2.6)

for the moduli problem [Γ(N)], and that the scheme representing F is affine.

Theorem 2.12. Let N ≥ 1. The functor [Γ(N)] is represented by a finite S-scheme, i.e.

[Γ(N)] is relatively representable. Moreover [Γ(N)] is finite etale over S.
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Furthermore we have that for N ≥ 3, [Γ(N)] is rigid, which means it satisfies the following

definition.

Definition 2.13. Moduli problem P is rigid if for any E/S and any level P structure α the

pair (E/S, α) has no non-trivial automorphisms.

With the two above definitions in mind we can now formulate the necessary and sufficient

condition for a moduli problem to be representable.

Theorem 2.14. Let P be a relatively representable and affine moduli problem over E ll/S. Then

P is representable if and only if it is rigid.

If the moduli problem P is also etale, then the moduli space M is a smooth affine curve

over S.

Finally we state the theorem describing the representability of the [Γ(N)]- functor when N

is invertible in the base scheme S.

Theorem 2.15. Let [Γ(N)] the functor given by (2.4). [Γ(N)] is representable for N ≥ 3 and

its moduli scheme is smooth affine curve over SpecZ[1/n]

This results follows from Theorem 2.14 and from that [Γ(N)] is relatively representable and

rigid for N ≥ 3.

2.3.1 Example [Γ(3)]

Let [Γ(3)] be functor for the level 3 moduli problem given for Z[1/3]-schemes. We have seen

that to compute the moduli space we may consider the functor given by

E/S → {isomorphisms α : (Z/3Z)2 → E[3]}

Let S be a Z[1/3]-scheme, and take (E/S, α) be an elliptic curve with a level 3 structure.

Define the sections P = α(1, 0) and Q = α(0, 1) in E(S). As seen earlier these sections can

be considered to be points on the curve E.

In the section 2.2.2 we saw that on a Zariski open cover U of S there are functions x and y

on E, and these functions give a generalised Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6
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with the coefficients ai ∈ OS(U). Similar to Example 2.1 we can simplify the Weierstrass

equation with a coordinate change. The coordinates of the point P are given by functions

x(P ), y(P ) on S. Then changing x and y by subtracting the functions x(P ) and y(P ) will give

P = (0, 0) and the equation takes the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x (2.7)

We can considering that the tangent line at P for the affine equation. Then this line is given

by an equation a3y = a4x. P corresponds to a point of order 3 in each fibre, which are elliptic

curves over a field given by the equation (2.7). If the tangent line at P is given by a4x = 0,

then it is so in each fibre. For elliptic curves over field we know that tangent line parallel to

the y-axis corresponds to a point of order 2, but P is a point of order 3 so it is not possible to

have tangent line parallel to the y-axis at P . This then tells a3 6= 0 in any of the fibres, and

so is invertible in S. Changing the function y by subtracting (a4/a3)x from y will remove the

coefficient a4 from the Weierstrass equation. Then the tangent line at P will have the equation

y = 0.

Note that as P is a point of order 3 we have that the tangent line must intersect at P with

multiplicity 3. This can be seen by considering the fibres again. Intersection of multiplicity 3 at

a point of order 3 is known for elliptic curves over a field, in particular this means that in each

fibre the tangent line has intersection of multiplicity 3. This implies that a2 must also be 0 in

each fibre. So now we can deduce that the tangent line at P must intersect with multiplicity 3

as P is a point of order 3, and moreover we get an equation of the form

y2 + a1xy + a3y = x3 (2.8)

Furthermore computing the discriminant ∆ = a3
3(a3

1−27a3) of E, we find that a3 and a3
1−27a3

are invertible as the discriminant must be invertible. This again follows from that if ∆ = 0 in

some fibre, then this fibre is not an elliptic curve, and so ∆ 6= 0 in all fibres implying that it

must be invertible in S.

Let Q = (u, v). The coordinates u and v are invertible functions on S. This is because if

u = 0 then (2.8) would give v = 0 or −a3, so Q = ±P which is not possible as P and Q form

a basis for E[3]. Now if v = 0 then we would get that u is also 0 and that P = Q.
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Considering the tangent line at Q we can compute a1 and a3 in terms of u and v. Let

y = c − bx be the tangent line to E at Q. The line intersects E with multiplicity 3 at Q due

to Q being a point of order 3. Combining this with that x− u is a local parameter then we get

the equation

x3 − (c− bx)2 − a1x(c− bx)− a3(c− bx) = (x− u)3

The coefficients of powers of x give the following system of equations
3u = b2 − a1b
3u2 = 2bc− a1c+ a3b
u3 = c2 + a3c

(2.9)

For (u, v) to be a point of order 3 it must satisfy the above equations. The first equation gives

that b must be invertible as u is invertible. This then implies we can adjust x and y such that

we get a tangent line x+ y = c where c = u+ v. So now one can write the equations (2.9) as
3u = 1− a1

3u2 = 2(u+ v)− a1(u+ v) + a3

u3 = (u+ v)2 + a3(u+ v)

The first two equations can be used to express a1 and a3 in terms of u and v, which gives

a1 = 1− 3u, a3 = −3uv− u− v. Then from the remaining equation we get u2 + 3uv+ 3v2 = 0.

Now define the ring R = Z[u, v][1/3, 1/∆, 1/u]/(u2+3uv+3v2), where ∆. Then M := SpecR

is the moduli space with universal curve

E : y2 + a1xy + a3y = x3

with a1, a3 given by the above equations in u and v, and the points P3 = (0, 0), Q3 = (u, v)

giving the level 3 structure α3 : (Z/3Z)2
S → E [3].

To show that the curve u2 +3uv+3v2 indeed parametrises elliptic curves we show that E/M

represents the functor [Γ(3)]. Recall that for E/M to represent the functor we must have the

natural isomorphism between the functors [Γ(3)] and HomEll(−, E/M). That is the diagram

HomEll(E/S, E/M)
φE/S //

f ′

��

[Γ(3)](E/S)

f

��
HomEll(E

′/S ′, E/M)
φE′/S′

// [Γ(3)](E ′/S ′)
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Let E/S be an elliptic curve over some scheme S, then from section 2.2.3 we know that

HomEll(E/S, E/M) can be written as {(h, g) : h : S → M, g : E → h∗E}. Next we want to

define a map φE/S : HomEll(E/S, E/M)→ [Γ(3)](E/S). To do this we need the pullback of α3

by h. We know that h∗E is an elliptic curve, so we can define the pullback of α3

h∗α3 : (Z/3Z)2
S → h∗(E [3])

Note that this map is an isomorphism. Now we can define the map

φE/S : HomEll(E/S, E/M) −→ [Γ(3)](E/S)

(h, g) 7→ g−1 ◦ h∗α3

We want to show that the map φE/S is an isomorphism. The map h in the pair (h, g) is

locally a morphism of affine schemes, so it can be defined in terms of the map between the

rings. Let S = SpecA locally, then we have a map φ : R→ A. We define this map by sending

u, v ∈ R to the functions u and v on S associated to a level 3-structure α : (Z/3Z)2
S → E[3].

Now we have a Zariski open cover
⋃
i Ui od S and a morphism Ui → SpecR for each i defined

by the functions u and v. On an intersection Ui ∩ Uj for some i and j we have two maps to

SpecR. A point x ∈ Ui ∩ Uj is being mapped to two elliptic curves over S. Considering the

fibre at the point x we have that both elliptic curves must have the same fibre. Thus we get

that the elliptic curves over S coming from x are in the same isomorphism class and thus the

morphism Ui → SpecR and Uj → SpecR give the same morphism on the intersection. This

then gives a glueing for the local morphism and we will have a map S →M .

Then E is given by the Weierstrass equation (2.8), and furthermore so is h∗E . Thus the

map g : E → h∗E is a canonical isomorphism that satisfies g ◦ α = h∗α3. The equality of

level 3-structures follows from that g induces a map between E[3] and h∗E [3], which is an

isomorphism as g is an isomorphism. It follows that the map φE/S is bijective.

Set φ−1
E/S(α) = (h, g). This then gives the inverse for φE/S, and so it follows that it defines

an isomorphism for all E/S ∈ E ll.

The isomorphism shows that E/M represents the functor [Γ(3)], and hence the curve u2 +

3uv + 3v2 parametrises elliptic curves with a chosen basis for the 3-torsion.



Chapter 3

The modular curve X ′(6)

From the results of the previous chapter we know that we can parametrise elliptic curves with a

chosen basis for the n-torsion points with smooth affine curves. However this does not provide

enough information on our problem of parametrising elliptic curves E with Q(E[2]) ⊆ Q(E[3]).

Studying modular curves as moduli spaces for elliptic curves provides information on elliptic

curves with a level structure together with some extra conditions. One can show that the

modular curve X(N) is the moduli space corresponding to the moduli problem [Γ(N)] given in

the previous chapter.

3.1 Modular curve X(N)

Let H = {z ∈ C : =(z) > 0} be the upper half plane, and let Γ(N) be the subgroup of SL2(Z)

given by {γ ∈ SL2(Z) : γ ≡
(

1 0
0 1

)
(mod N)}. There is an action of Γ(N) on H given by(
a b
c d

)
z =

az + b

cz + d

for all z ∈ H. So one can look at the set Y (N) = H \ Γ(N). Then Y (N) is a non-compact

Riemann surface, and one can compactify it by adding finitely many points. Namely these

points are P1(Q) \ Γ(N), the cusps of Γ(N).

Let us define X(N) := H \ Γ(N) ∪ P1(Q) \ Γ(N) as the modular curve. Note that it is

also common to define X(N) as H∗ \ Γ(N), where H∗ is the extended upper half plane, i.e.

H ∪ P1(Q). One can easily see that these two definitions for X(N) are the same.

Studying X(N) as an analytic space, it can be shown that X(N) is a compact Riemann

surface of dimension 1 (see for example [4]). A compact Riemann surface of dimension one can
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be viewed as an algebraic curve. Thus we may study X(N) as an algebraic curve instead of a

Riemann surface.

The curveX(N) has a natural structure as a curve over C from the definition. By considering

the function field C(X(N)) for X(N) one can show that the field of definition for X(N) as an

algebraic curve is in fact Q(µN) where µN is the group of N -th roots of unity.

First consider the function field for X(1). The function field C(X(N)) is generated by the

modular invariant j : H → C, which is holomorphic on H and surjective. So we have that

C(X(N)) = C(j). As we have one to one correspondence between points in H and lattices

in C, it is easy to see that this modular invariant j is in fact the usual j-invariant for elliptic

curves over C.

As we have a canonical projection X(N)→ X(1) we get that the function field of X(N) is

an extension of C(j). The functions in C(X(N)) are modular functions of level N on H. One

can express the different types of functions in terms of points of finite order of an elliptic curve.

Let EL be an elliptic curve over C given by

y2 = 4x3 − g2(L)− g3(L)

where L is the lattice Zω1 +Zω2 in C. The points of finite order on EL are given by the formula(
℘(a

[
ω1

ω2

]
;L), ℘′(a

[
ω1

ω2

]
;L)

)
Here ℘ denotes the Weierstrass ℘ function relative to lattice L and a is a row vector in Q2.

Recall that ℘(z;L) = 1
z2

+
∑

ω∈L
ω 6=0

(
1

(z−ω)2
− 1

ω2

)
. Then one can define the function fa on H

fa(z) =
g2(L)g3(L)

∆(L)
℘(a

[
ω1

ω2

]
;L)

Then we have the following

Proposition 3.1. For every positive integer N ,

C(j, fa|a ∈ ((Z/NZ)2 − (0, 0))/± 1)

is the function field for X(N).
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For proof see [15] Proposition 6.1.

It can be shown that adjoining the functions fa given in Proposition 3.1 also adjoins the

x-coordinates of the N -torsion points of the elliptic curve Ej (see [4] for details). Here Ej is an

elliptic curve over C such that it has j(Ej) = j. This elliptic curve is given by the equation

Ej : y2 + xy = x3 − 36

j − 1728
x− 1

j − 1728
(3.1)

Then we get the following Proposition describing the function field of X(N).

Proposition 3.2. Let Ej be an elliptic curve over C, given by the equation (3.1), so the j-

invariant of E is j. Then the field of meromorphic functions on X(N) is given by

C(X(N)) = C(j, x(Ej[N ]))

The field C(j, Ej[N ]) can be decomposed to C ⊗ Q(j, Ej[N ]), and so we can consider the

function field over Q. The field Q(j, x(Ej[N ])) gives all the rational functions on X(N), and

moreover the field Q(j, x(Ej[N ])) defines X(N) as a curve over Q(µN).

Now that we know X(N) to be an algebraic curve defined over the field Q(exp(2πi/N)), we

may also consider it as a curve over the scheme Spec(Z[1/N ]). Then it has been shown in [3]

that X(N) represents the functor FN : Sch/S → Sets given by FN(T ) = isomorphism classes

of elliptic curves over T with a level N structure α such that ζ(α) = exp(2πi/N). The map

ζ(α) is given by ζ(α) = eN(α−1(1, 0), α−1(0, 1)) and eN is the usual Weil pairing for elliptic

curves. In the section 2.3 we saw that the moduli problem [Γ(N)] was representable if and only

if the naive moduli problem FN is representable, and more over that they correspond to the

same moduli space. From this we have that as a scheme X(N) is the moduli space for [Γ(N)].

As the moduli spaces are unique up to isomorphism it follows that X(N) is the moduli space

parametrising elliptic curves with the chosen basis for N -torsion.

The above also implies that the curve in the Example 2.3.1, SpecZ[u, v][1/3, 1/∆, 1/u]/(u2 +

3uv + 3v2) is the modular curve Y (3), and thus we know that Y (3) has a defining equation

u2 + 3uv + 3v2.

It is worth noting that the modular curves X1(N) and X0(N) are often studied as they

also parametrise elliptic curves. These curves are defined by taking the quotient of H∗ by the
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groups Γ1(N) = {γ ∈ SL2(Z) : γ ≡
(

1 ∗
0 1

)
(mod n)} and Γ0(N) = {γ ∈ SL2(Z) : γ ≡(

∗ ∗
0 ∗

)
(mod n)} respectively. Then X1(N) parametrises elliptic curves with a chosen point

of order N and X0(N) parametrises elliptic curves with an subgroup of order N2.

3.2 Quotient curve XH

We know that there is a natural surjective projection

X(n)→ X(1) (3.2)

that gives the field extension C(X(N)) of C(j). As we have that C(X(N)) = C(j, Ej[N ]), it is

not hard to see that the field extension C(X(N))/C(j) is a finite extension, moreover it is a Ga-

lois extension. The Galois group for this covering is given by Γ(1)/Γ(n) ∼= SL2(Z/nZ)/{±1}.

In the previous section we have seen that the function field can be taken over Q. The exten-

sion Q(j, Ej[N ])/Q(j) is also a Galois extension, however the Galois group is isomorphic to

GL2(Z/NZ).

Taking a normal subgroup of G ⊂ SL2(Z/nZ) will correspond to intermediate Galois cov-

ering XG of X(n) → X(1) with XG
∼= X(n)/G. This follows from the theory for Galois

coverings, as normal subgroups of the Galois group correspond to intermediate field extensions

of the function fields. Let H ⊂ GL2(Z/nZ) and set H0 = H ∩ SL2(Z/nZ). Let us denote by

XH the quotient curve X(n)/H0.

As a curve over C, XH is defined by the groupH0. The non-cuspidal points ofXH correspond

to pairs of C-isomorphism classes of of elliptic curves E and H0-orbit of level N -structures.

Furthermore, from the fact that X(N) is a curve defined over the field Q(µN), XH is defined

as an algebraic curve over the field Q(µN)detH . Here Q(µN)detH denotes the subfield of Q(µN)

fixed by the action of detH ⊆ (Z/NZ)×. Note that Gal(Q(µN)/Q) ∼= (Z/nZ)×. Thus if

det : H → (Z/nZ)× is surjective then XH is a curve defined over Q with a function field

corresponding to the group H. Conversely, if K is a function field of an algebraic curve, then

the Galois group H corresponding to the field K satisfies detH = (Z/NZ)×. This gives the

following proposition, for the proof see [4].
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Proposition 3.3. Let H ⊆ GL2(Z/NZ) and let K be the subfield of Q(j, Ej[N ]) corresponding

to H. Then det : H → (Z/NZ)× is surjective if and only if K is a function field of an algebraic

curve over Q.

For X(N) we have the intermediate coverings from the modular curves X1(N) and X0(N),

and it can be shown that the groups corresponding to these curves are{
±
(

1 b
0 1

)
: b ∈ Z/NZ

}
and

{
±
(
a b
0 c

)
: a, b, c ∈ Z/NZ

}
as subgroups of GL2(Z/NZ)/± I and that they have the function fields

Q(j, f1) and Q(j, jN)

where f1 = f(0,1) and jN(τ) = j(Nτ).

The function field for the XH is then the fixed field of C(j, Ej[N ]) under the action of H.

3.2.1 Galois action on the curve

Let H ⊂ GL2(Z/NZ), and suppose that detH = (Z/NZ)× and −I ∈ H from now on. Let XH

be the quotient curve as defined earlier, then XH indeed corresponds to an algebraic curve over

Q by Proposition 3.3.

The group GL2(Z/NZ) is the automorphism group for (Z/NZ)2, so then H ⊆ GL2(Z/NZ)

has an action on the group of level N -structures through the action on (Z/NZ)2. We can define

a level H structure on an elliptic curve E as the H-orbit of level N structures. In the notation

of [3] this is given as Hom((Z/NZ)2, E[N ])/H. Then we have the following proposition

Proposition 3.4. Let k be a field of characteristic p and H ⊂ GL2(Z/NZ). Suppose that p

does not divide N . Then every non-cuspidal point x ∈ XH(k) is defined by an elliptic curve E

over k with a level H structure.

The absolute Galois group Gk for a field k also acts on the points of XH(k). Then the points

in XH(k) are fixed under the action of Gk. In particular this means that we get an action of

Gk on the pairs E/k and level H structure, and that Gk preserves the isomorphism classes.

Gk acts on the level N structure α via E[N ]. Recall that in Chapter 1 we obtained that the
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action on E[N ] is described with the representation ρE,N : Gk → Aut(E[N ]) ∼= GL2(Z/NZ).

Then we have that the action of Gk on the set of level N structures can be described with the

ρE,N(Gk) orbits of level N structures. So if Gk fixes the isomorphism classes then the ρE,N(Gk)

orbit of level N structure α must be contained in the H orbit of α. And thus we get that

ρE,N(Gk) ⊆ g−1Hg for some g ∈ GL2(Z/NZ).

3.2.2 j-map

Recall that the j-map from X(1) to P1(C) is the analytic isomorphism given by τ 7→ j(C/Λτ ),

with C/Λτ being the elliptic curve defined by the lattice Λτ . For the modular curve X(n) we

have the j-map given by

j : X(n)→ X(1)→ P1 (3.3)

where the first map is the natural projection, which is then followed by the usual j-map. Let

ϕ : Q(j) → Q(X(N)) induce map of function fields. This map is just the inclusion so we

have ϕ(Q(j)) = Q(j). Then the degree of j is given by deg j = [Q(X(N)) : ϕ(Q(j))]. As

Q(X(N))/Q(j) is a Galois extension we have that the degree of it is equal to |GL2(Z/NZ)|.

As −I is in H, we get that the map X(N) → X(1) ∼= P1 factors through XH , so we get the

map

j : X(N)→ XH → P1

The map X(N)→ XH is given by mapping the point x ∈ X(N)(k), corresponding to a isomor-

phism class of the pair E/k and a level N structure α, to the point y ∈ XH(k) corresponding to

the isomorphism class of the pair E/k with level H structure given by the H orbit of α. Then

from this it is easy to see that (E,α) and (E, β) map to the same point in XH if and only if α

and β are in the same H-orbit. This is then |H| to one map, and thus gives that the degree of

X(N)→ XH is |H|.

So then we get that the degree of the j-map for XH , that is j : XH → X(1) ∼= P1 is given

by |GL2(Z/NZ)|/|H| = [GL2(Z/NZ) : H].

We may summarise the discussed properties of the quotient curve XH in to the following

statement as given in [2].
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Proposition 3.5. Let H ⊂ GL2(Z/nZ), H0 = H ∩ SL2(Z/nZ) with det : H → (Z/nZ)×

surjective and −I ∈ H. Then

1. The curve XH = X(n)/H0 is defined over Q.

2. A non-cuspidal point of XH(Q) corresponds to elliptic curve E over Q with

Gal(Q(E[n])/Q) ⊆ g−1Hg

for some g ∈ GL2(Z/nZ).

3. The j-map j : XH → P1 defines a morphism of degree [GL2(Z/nZ) : H] over Q.

From this it follows that to describe the modular curve parametrising elliptic curves with

the 2-torsion in the 3-torsion field it suffices to find the subgroup H.

3.3 Modular curve X ′(6)

We want to find the curve X(n)/H to parametrise elliptic curves E/Q with Q(E[2]) ⊆ Q(E[3]).

We have a natural choice n = 6, as both 2- and 3-torsion points are contained in the 6-torsion

points.

By definition the curve X(6) is given by H∗ \ Γ(6). From Theorem 2.15 and that X(N) is

a moduli space we have that X(6) is a smooth curve over SpecZ[1/6]. We also know that the

function field of X(6) is given by K6 = C(j, Ej[6]). The function field K6 can be used to get the

explicit equation for X(6), this was done by Ishida in [6]. The approach uses the generators t

and s of K6 to get a polynomial F6(X, Y ) ∈ Z[ζ6][X, Y ] with F6(s, t) = 0, and this polynomial

is Y 3 − X2 + 1 and it gives the curve X(6). The method given in [6] works for X(N) with

N ≥ 6. There exist other approaches to computing the equation for a modular curve X(N),

for example in [18] Yang uses more analytic approach with the η-function to get the defining

equations for the modular curves. One can also consider the genus of X(6), it is known to be

1 and this is easy to see from its defining equation.

Let H ⊂ GL2(Z/6Z) with det : H → (Z/6Z)× surjective and −I ∈ H. Then the quotient

curve X(6)/H defines a modular curve of level 6. We denote this modular curve by X ′(6).
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3.3.1 Group H for X ′(6)

Recall that we have the following diagram of field extensions

Q(E[6])

Q(E[2]) Q(E[3])

Q

�
�
��

Q
Q
QQ

Q
Q
Q
Q

�
�
�
�

It follows from the Galois theory for finite extensions that as Q(E[6])/Q is a Galois extension,

then so are Q(E[6])/Q(E[2]) and Q(E[6])/Q(E[3]). The Galois groups of Q(E[6])/Q(E[2]) and

Q(E[6])/Q(E[3]) correspond to normal subgroups of Gal(Q(E[6])/Q). Then by Galois theory

Q(E[2]) ⊆ Q(E[3]) if and only if Gal(Q(E[6])/Q(E[3])) ⊆ Gal(Q(E[6])/Q(E[2])).

For non-cuspidal points of a level 6 modular curve X ′(6), we have that the elliptic curves

E associated to the points satisfy Gal(Q(E[6])/Q) ⊆ g−1Hg by Proposition 3.5. Then for

Gal(Q(E[6])/Q(E[3])) ⊆ Gal(Q(E[6])/Q(E[2])) to hold, the subset of g−1Hg fixing points of

order 3 must be contained in the subset of g−1Hg fixing points of order 2.

So we want to find H ⊆ GL2(Z/6Z) with detH = (Z/6Z)× and −I ∈ H, and satisfy-

ing the above condition. We also know that H should give a curve parametrising non-Serre

curves defined in Chapter 1. Recall that we have the condition E is not a Serre curve if and

only if there exists a prime ` ≥ 5 with ρE,`(GQ) ( GL2(Z/`Z), or [ρE,36(GQ), ρE,36(GQ)] (

[GL2(Z/36Z), GL2(Z/36Z)]. In [1] it was shown that this is implies that H must be the image

of a maximal subgroup G in GL2(Z/36Z) for the map π36,6 : GL2(Z/36Z)→ GL2(Z/6Z) with

G satisfying detG = (Z/36Z)×, [G,G] ( [GL2(Z/36Z), GL2(Z/36Z)] and for all d ∈ {2, 3}

π36,d(G) = GL2(Z/dZ). From this it then follows that H is a index 6 subgroup of GL2(Z/6Z).

Define N ⊂ GL2(Z/3Z) as the subgroup given by

N = {
(
x −y
y x

)
: x2 + y2 ≡ 1 mod 3} t {

(
x y
y −x

)
: x2 + y2 ≡ −1 mod 3} (3.4)

N is the only index 6 normal subgroup in GL2(Z/3Z). There is an exact sequence

1→ N → GL2(Z/3Z)
θ→ GL2(Z/2Z)→ 1 (3.5)
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The map θ : GL2(Z/3Z) → GL2(Z/2Z) is a surjective group homomorphism. The existence

of θ, and hence the existence of (3.5), is purely group theoretic. Also this then explain why

there are no other coprime integers n and m satisfying Q(E[n]) ⊆ Q(E[m]) as we do not have

a surjective map between the groups GL2(Z/mZ)→ GL2(Z/nZ).

Using the Chinese remainder theorem the graph of θ can be viewed as a subgroup of

GL2(Z/6Z).

Set H to be the graph of θ, i.e.

H = {(g2, g3) ∈ GL2(Z/2Z)×GL2(Z/3Z) : θ(g3) = g2} (3.6)

Clearly −I is in H. Note that H is not a normal subgroup of GL2(Z/6Z).

Let E be an elliptic curve associated to a non-cuspidal point of X ′(6). Then the groups

Gal(Q(E[6])/Q(E[3])) and Gal(Q(E[6])/Q(E[2])) are contained in some subgroups of g−1Hg.

Gal(Q(E[6])/Q(E[2])) fixes the 2-torsion elements. Let G2 ⊆ g−1Hg be the elements fixing

2-torsion, then G2 must have g2 = id. Moreover θ(g3) = id implies that G2 is a conjugate of

{id} × N . This is a normal subgroup, and thus G2 = {id} × N .

Similarly let G3 ⊆ g−1Hg be the elements fixing 3-torsion, then G3 must have g3 = id.

Then it follows that g2 = θ(id) = id, too. Thus G3 = {id} × {id}.

Clearly G3 ⊆ G2, which implies that

Gal(Q(E[6])/Q(E[3])) ⊆ Gal(Q(E[6])/Q(E[2]))

Hence Q(E[2]) ⊆ Q(E[3]).

This shows that for the elliptic curves given by the non-cuspidal points of X ′(6)(Q) the

condition Gal(Q(E[6])/Q) ⊆ g−1Hg for some g ∈ GL2(Z/nZ) is equivalent to Q(E[2]) ⊆

Q(E[3]).

There are other subgroups G of GL2(Z/6Z) that give a modular curve X(6)/G that can

parametrise elliptic curves with Q(E[2]) ⊆ Q(E[3]), but then they do not have non-abelian

2-torsion for every curve and hence not the curves we are interested in.

3.3.2 More on X ′(6)

Studying the map X ′(6) → X(1) gives further information on the curve X ′(6), in particular

we can find the genus and cusps of X ′(6). The map is given as the natural projection in the
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j-map. Thus from Proposition 3.5 (3) we know that it has degree 6.

We may use the Riemann-Hurwitz formula to compute the genus of the curve. The formula

is given for a morphism between curves φ : C1 → C2 with degree d, and let g(C1) and g(C2)

denote the genus of each curve, then

2g(C1)− 2 = d(2g(C2)− 2) +
∑
P∈C1

(eP − 1) (3.7)

where eP is the ramification index at P . So in our case we know that g(X(1)) = 0 and d = 6,

then the formula becomes

2g(X ′(6)) = −10 +
∑

P∈X′(6)

(eP − 1)

The ramification index is 1 for all but finitely many points, so now we would like to compute the

index for those points in X ′(6) where the map is ramified. X ′(6)→ X(1) is part of the j-map,

so then the points have same ramification index as j. The only point where eP is not 1 are the

points correspnding to elliptic curves with j-invariant 0 or 1728, and at ∞. The ramification

indices for these points can be computed and they are 3,2 and 6 respectively. See [12] for the

computation details. Hence we get that
∑

P∈X′(6)(eP − 1) = (3 − 1)(2 − 1)(6 − 1) = 10 and

g(X ′(6)) = 0.

The cusps of X ′(6) are given by the preimage of the cusps in X(1). It is known that X(1)

has only one cusp, ∞. As ∞ has ramification index 6 for the map X ′(6) → X(1), and the

degree of the map is also 6 we have that the preimage of ∞ contains only one point. Therefore

X ′(6) has only one cusp.

Cusps in a modular curve are by definition orbits in P1(Q), so we have that the absolute

Galois group GQ acts on them. The curve X ′(6) only has one cusp, so it must be fixed under

the action of GQ and hence it is a rational point on the curve.

We are interested in the elliptic curves parametrised by this curve X ′(6) and one way to

describe both the curve and the elliptic curves it parametrises is to find an explicit expression

for the j-map. First step in this would be to find the function field Q(X ′(6)) for X ′(6). From

earlier sections we know that it is the fixed field of Q(j, Ej[6]) under the action of H. Moreover

as X ′(6) has genus 0, the function field has one generator and can be written as Q(t) for some

uniformizer t.
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The uniformizer t has degree 1, and as all the other maps can be written as polynomials in

t with rational coefficients we have that j is a polynomial of degree 6 in t. Viewing j as the

modular invariant we know that it can be expressed as 1728f , where f is a modular function

of degree 6 on X ′(6), which then implies that the coefficients of the polynomial in t must be

multiples of 1728.

Supposing that one can compute the function field Q(X ′(6)) explicitly, then a uniformizer

t can be found with the aid of computational software. And then it follows that if one knows

t one can compute the polynomial for j. The values of the coefficients may vary depending on

the choice of t. So then with the right choice of t, one should get the following result

Theorem 3.6 ([1], Theorem 1.4). There exists a uniformizer t : X ′(6) → P1 such that j =

21033t3(1− 4t3) where j : X ′(6)→ P1 is the j-map.

We know from section 3.3.1 that a non-cuspidal point x ∈ X ′(6)(Q) corresponds to an

isomorphism class of an elliptic curve E over Q satisfying Q(E[2]) ⊆ Q(E[3]). For the curve

E we also have j(E) = j(x), so the above theorem is equivalent to the following given in the

introduction.

Theorem 3.7 (Brau and Jones, 2014). Let E be an elliptic curve over Q. Then E is isomorphic

over Q to an elliptic curve E ′ satisfying Q(E ′[2]) ⊆ Q(E ′[3]) if and only if j(E) = 21033t3(1−

4t3) for some t ∈ Q.

Unfortunately we were not able to do the explicit computations given above to verify the the-

orems. The suggested approach for computations arises naturally from studying the background

theory, nevertheless there are likely to be also other possible approaches to the computation

that can give the desired explicit result.
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