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In this paper, we prove quantifier elimination for the theory of Algebraically Closed
Valued Fields in the 2-sorted language L. We will present the necessary model
theoretic tools for this purpose. We will omit some technical details that are nec-
essary for a proper construction, but that are well documented in various sources.
In general, we follow the notations and approach used in [TZ12] and [PD11], where

the interested reader also can find more details about model theory in general.

1



2 VICTOR LISINSKI

2. LANGUAGES AND STRUCTURES.

Definition 2.1. Let S be a set. A language of sort S is a set consisting of the
following distinct symbols:

(1) Logical symbols: = (not) A (and) ¥ (for all) = (equals).

(2) Variables: For any s € S, a collection of symbols x; with i € N.

(3) Relation symbols: ~ For any n € N and any § = (s1,...,8,) € S™, a col-
lection of symbols Rs; with i € I5, where Iz is an arbitrary, possibly empty,
index set.

(4) Function symbols: For anyn € N and any 5 = (s1,...,8n,5) € S"TH,

a collection of symbols fs; with j € Js, where Jg is an arbitrary, possibly
empty, index set.

(5) Constant symbols: For any s € S a collection of symbols csy, with
k € K, where K4 is an arbitrary, possibly empty, index set.

(6) Punctuation: , ) (

In this situation, we call S a set of sorts and we say that the variables, the relation
symbols, the function symbols and the constant symbols are the sorted symbols of
the language £. The tuple (s1,...,8n) € S™ associated to any sorted symbol s, as
described above, is the called the sort of s.

There are slight variations on how to define a language, and we use the notation in
[PD11]. The reason for using = instead of = is to emphasise the difference between
a formal expression and assigning using equality in the naive way. For example, if
we want to say that ¢ is the string x4 = x42, we write ¢ = x4 = Tgo.

What distinguishes two languages of the same sort are their relation symbols, func-
tion symbols and constant symbols. Hence, we will denote a language of sort S
by

L= {Rgi,fgj,csk | seS, s€e S”,n € N}
For simplicity, we will often write just £ = {Rg, f5;, st }. We will only consider
languages where the cardinality of S is finite. If |S| = n, we say that £ is an
n-sorted language.

It is often convenient to use different letter for variables of different sorts. For
example, for a 2-sorted language of sort S = {s,t} we will often write (z;);en
instead of (24;)ieny and (y;)ien or (€);en instead of (24 )ien. By convention, we will
write xg # x1 for =(xg = x1).

The reader might have noticed that we excluded the commonly used symbols V,
—, <> and V from the logical symbols. This is only for convenience when making
inductive proofs, and we will soon see that these symbol can also be introduced as
an abbreviation.
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Definition 2.2. Fiz a language £ = {Rs;, f5;, sk }. An L-structure M is given
by

(1) A set of non-empty sets {s(M) | s € S).

(2) For each relation symbol R € L of sort (s1,...,8,), a subset
RM C 51(M) x -+ x 5,(M),
called the interpretation of R in M.

(3) For each function symbol of sort (s1,...,58n,$), a function
s (M) x - X s, (M) = s(MD).
called the interpretation of f in M.

(4) For each c € C of sort S, an element ™ € S(M).

The disjoint union
[Ts00

is called the universe of M.

We will use the convention to write structures of a language with curly letters, and
their corresponding universes with normal letters. For example, if M and N are
structures of some language of sort .S, we write

M= HS(M) and N = HS(M)

ses seSs

We will denote an L-structure by M = (M, fg"[,Rg‘/[,ckM liel,jeld keK).

Example 2.3. Let Lg = {-,0} be a language of sort {G}, where - is a binary
function symbol and 1 is a constant symbol. Then any group H gives a natural
Lg-structure H = (H,-7 17, where -7¢ is the group operation on H and 17¢ is
the identity element of H.

Example 2.4. Let Lr = {4+, —,+,0,1} be a language of sort {R}, where +, — and
- are binary function symbols, and 0 and 1 are a constant symbol. Then any ring
S has a natural L-structure.

Example 2.5. Consider the set of sorts {R, G} and let Ly = LrULgU{P}, with
L and L being as above, and @ being a function symbol of sort (R, G, G). Then
Ly is a 2-sorted language of sort {G, R}. For any ring S and any S-module A, we
then have that A gives an L), structure by interpreting & as the action of S on A.

Example 2.6. As we will see in Section 8, there is a natural way to consider
Algebraically Closed Valued Fields as structures of a 2-sorted language.
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We will now use the logical symbols and the symbols of a language £ to express
properties of a given L-structure. Properties are expressed by finite strings of
symbols, which we will define inductively.

Definition 2.7. Fizx a language £ of sort S. The terms of £, or L-terms, and
their sorts are defined inductively by:

(1) For each s € S, the variables xs; with i € N are terms of sort s.
(2) For each s € S, the constant symbols cg, are terms of sort s.
(3) For each 5 = (s1,...,5n,8) € S"T1, each function symbol fs; with j € J

and all terms ti,...,t, with t; having sort s;, we have that fs;(t1,...,tn)
s a term of sort s.

Given a term t, we will write t(x1,...,x,,) to indicate that the variables occurring
int are among x1,...,Tm. In this case, we also write t as t(T).

Definition 2.8. Fiz a language L. The formulas of L, or L-formulas, are
defined inductively by:
(1) Ifty and ty are L-terms, then t1 = ts is an L-formula

(2) If t1,...,t, are terms of sorts si1,...,s, respectively and R is a relation
symbol of sort (s1,...,8n), then R(t1,...,t,) is an L-formula.

(3) If ¢ is an L-formula, then —p is an L-formula.
(4) If p1 and o are L-formulas, then (o1 A p2) is an L-formula.

(5) If v is an L-formula and if x is a variable, then 3z is an L-formula.
Formulas of the form t1 =ty or R(ty,...t,) are called atomic.
We will use the abbreviations

(1) (1V p2) for =(=p1 A @2)

(2) (p1 = p2) for =(p1 A p2)

(3) (p1 <> w2) for (o1 — w2) A (P2 = »1)

(4) Vzp for =Jz—ep.

Definition 2.9. Let x be a variable. We define that x is free in a formula ¢
inductively as follows:
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(1) x is free in t; = to if © occurs in t1 or ta.
(2) x is free in R(t1,...,t,) if x occurs in one of the t;.
(3) z is free in —p if x is free in @
(4) x is free in (p1 A wa) if x is free in @1 or if © is free in @s.
(5) x is free in Jyp if x £y and x is free in p.

Variables in a formula that are not free are called bound. We write (1, ...,zy,) or
©(Z) to indicate that the only free variables of ¢ are among x1,...,T,. A formula
without free variables is called a sentence.

Remark 2.10. Note that the expressions ¢(x1, . .., 2, ) in Definition 2.7 (21, ..., z,)
in Definition 2.9 is not uniquely determined by t or . For example, let t; = 1,
ts = a9 and ¢ = t; = t3. Then we can write t1(x1), t2(z2) and p(z1,22) or
t1(x1,x2), ta(xe, z3) and @(z1, T2, x3) or even t1(x1,x2,...,Tn), to(x1, T2, ..., 2y)
and ©(1,%2,...,%p)-

Example 2.11. Let £ = {-,1}. Then
p=Vavy(z-y=y-x)

is a formula.

Example 2.12. Let Lp = {+,—,-,0,1}. Then
on=14+---+1=0
—_———
n times

is a formula.

Example 2.13. Let Lr = {+,—,-,0,1}. Then

N\ L+--+1#0

nEN>0  p times

is not a formula, since it is an infinite string.

3. SATISFACTION.

When we do mathematics, we often use intuitively what it means for a formula
to be satisfied by some elements in a structure. For example, consider the Lg-
formula ¢(x1) = Jza(xs - 2 = 1), with L being the language of groups defined
in Example 2.3. This formula expresses the statement that an element is a square,
which we know is true for any element in the £g-structure (R, -), but not only for
certain elements in the Lg-structure (Q, -). In this section, we will make this notion
precise.
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We fix a language £ and an L-structure M. If ¢(z1,...,z,) is a term of sort s with
each x; having sort s;, then by composition of functions, we can define a function

M ﬁsz(M) — s(M).

By Remark 2.10, the function M is not canonical. This is however not a problem,
as the choice of such a function does not change the definition below.

Definition 3.1. Let M be an L structure. For L-formulas ¢ of a given sort
(815...,8n) and @ = (ay,...,a,) € [[—; 8:(M), we define the relation

M = pla]
inductively as follows:
(1) If ty(x1,...,2,) and ty(zy1,...,2,) are terms and if t?'[a] = t)'[a], then
M= (t = t2)[a]
(2) If R is a relation symbol of sort s1,...,8n, if t1,...,t, are terms of sorts

S1,...,8, respectively and if R™ (] al, ..., t)a)), then M |= R(ty,. .., tm)[a]

(3) If it is not the case that M = ola], then M = —pla]. We also write
M plal.

(4) If M |= p1]a] and M = p2[a], then M = (o1 A p2)]al.

(5) If there exists an element b € M such that M = ¢ [d%}, where &% =
(agy .-y @i—1,b,Gi41,...,an) if T = x;, then M = Jzp.

Example 3.2. Again, let L& = {-,1}, where - is a binary function symbol and 1
is a constant symbol. Let ¢(x) be the formula Vy(y - = y). If H is a group, then
we have that H |= ¢[ly], hence H = Jzp.

Example 3.3. As in Example 2.11, consider the language £ g-formula
p=VaVy(z -y =y- ).
Let H be a group and consider H as an Lg-structure. It can be verified, using

Definition 77 and the fact that V is in fact an abbreviation as described after
Definition 2.8 that H |= ¢ if and only if H is commutative.

Example 3.4. Let L and ¢, be as in Example 7?7. Let A be a ring and consider
A as an L g-structure. It follows from Definition ?? that A = ¢, if and only if A
has characteristic a divisor of n. Therefore, a ring A has characteristic zero if and
only if A = —¢p, for all n € N5y. With this in mind, it might be tempting to say
that a ring A has characteristic zero if and only if A = /\nEN>0 —pn. However, this
is not well defined since /\nEN>0 -, is not a formula, as noted in Example ?7. One
might ask if it is possible to find another sentence ¥ such that A = v if and only
if A has characteristic 0. In section 5, we will see that this cannot be done when A
is an algebraically closed fields.
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Definition 3.5. Let £ be a language of sorts S and let M and N be L-structures.
A map g: M — N is called an L-homomorphism if for all (s1,...,5,,5) € 8 and
all (aq,...,an) € TT1; si(M),

M) N

g(c") =c

g(fM(ah ) an)) = fN(g(al)’ o 7g(an))

RM(ala cee an) = RN(g(al)v cee ag(an))
where ¢ is any constant symbol, [ is any function symbol of sort (s1,...,Sn,s)
and R is any relation symbol of sort (si,...,8,). When g : M — N is an L
homomorphism, we write

g:M—=N.
If in addition g is injective and
RM(alv s 7an) g RN(g(al)a s ag(an))

we say that g is an L-embedding. If g is a surjective embedding, we say that g is
an L-isomorphism, and we write

h : M>N.

Definition 3.6. Let £ be a language and let M and N be L-structures. If M C N
and the natural inclusion is an embedding of L-structures, we say that M is a
substructure of N. In this case, we call N an extension of M.

Definition 3.7. Let £ and let M and N be L-structures. We say that M is an
elementary substructure of N, and that N is an elementary extension of M,
if for any formula p(z1,...,z,) and any (a1,...,a,) € M™, we have

M [ pla] & N E plal.

Example 3.8. Consider the language £ = {+, <}, where + is a binary function
and < is a binary relation. We view Z and Q as L-structures, with + interpreted
as the usual addition and < interpreted as the usual ordering. Then the inclusion
1:7Z — Q is an L-embedding, so (Q,+, <) is an extension of (Z,+, <). However,
it is not an elementary extension. To see this, let ¢(x,y) be the formula

Jz(x < 2Nz <y).
Then we have that Z = ¢[0, 1], but Q = ¢[0,1].

Example 3.9. It is difficult to prove that an L-embedding is an elementary em-
bedding, since a priori we have to consider all possible formulas £-formulas. We
will see in Section 5 a general situation where elementary extensions naturally arise.
This will allow us to show that C is an elementary extension of the algebraic closure
of Q, viewed as L g-structures.
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4. THEORIES.

Definition 4.1. Let £ be a language. An L-theory is a set of sentences of the lan-
guage L. A model of a theory T is an L-structure M which satisfies all sentences
of T. We write M =T if M is a model of T. A theory is said to be consistent if
it has a model. A theory which is not consistent is called inconsistent.

The class of all models of a theory T' is denoted Mod (7). If X is a class of £-
structures, then Th(X) denotes the set of all sentences true in all elements of X.
We denote Th({M}) by Th(M). If ¢ is a sentence that holds in all models of a
theory T', then we write T |= .

Definition 4.2. Two L-structures M and N are said to be elementary equiva-
lent, denoted M = N if Th(M) = Th(N), i.e. if they satisfy the same sentences.
A theory T is complete if given a sentence @, either T |= ¢ or T = —p.

If M is an L-structure and ¢ is a sentence, then M = ¢ or M [ ¢. The latter
being the same as M |= —¢ by definition, so we have that Th(M) is complete.

Example 4.3. Let Lo = {-,1} and let Tgroup = {¢1, P2, p3}, where

Y1 = VxngVa:g((xl . (EQ) + X3 = €Iy - (£C2 . (Eg))
po=Vz((l-z=2)A(z-1=2))
w3 = Vo1 dra((z1 - 22 = 1) A (22 - 21 = 1)).

Then the models for Tgroup coincide with the category of groups.

Example 4.4. Let Lr = {+,—,-,0,1} and let Theq be the theory consisting of
the field axioms:

(1) VaiVao¥as((@y + 22) + 25 = 21 + (22 + 73))
(2) VaiVao (2, + 9 = 25 + 1)

(3) Va(z+0 = z)

(4) Va(z —a = 0)

(5) Va1 Vao¥as((21 - 72) - 3 = 21 - (2 - 73))

(6) Va1 Vao(zy - 22 = 72 - 21)

(7) Va(z 1= 2)

(8) leﬂxg((ail 7é 0) — (.’L‘l STy = 1))
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Then any field K is a model for Tgeq. Furthermore, if

n
Telosed = § Vg - - Vxnﬂy Z Zi - yi =0 | neNsgp,
i=0
then any algebraically closed field is a model for Thelg U Telosed, and we call this
theory ACF.

The following theorem is a very important standard result in model theory. We
will not prove it here, but it can be found for example as Theorem 1.5.6 in [PD11].

Theorem 4.5 (Compactness Theorem). Let T be an L-theory. Then T is con-
sistent if and only if it is finitely consistent, i.e. if every finite subset of T 1is
consistent.

The compactness theorem is very useful to show the existence of models. We will use
it in combination with the following lemma, which we also just state for reference.
See [PD11, p.27] for a proof.

Lemma 4.6. Let T be an L-theory and let ¢ be an L-sentence. Then T = ¢ if
and only if T U {—p} is inconsistent.

5. QUANTIFIER ELIMINATION.

Definition 5.1. Let £ be a language containing a constant symbol. An L-theory
T has quantifier elimination, or eliminates quantifiers, if for any formula
©(Z) there exists a quantifier free formula ¥ (T) which is equivalent to ©(Z) modulo
T, i.e if

T =V (p(T) < ¥(T)).

Note that the latter notation makes sense even if ¢(Z) is not a sentence, since all
free variables in ¢ will be bounded in the sentence VZ(¢(Z) <> ¢(Z)).

Example 5.2. Consider the language L of rings and the theory of algebraically
closed fields, ACF from Example 4.4. The formula ¢(z) = Jy(y? = ) is true for
all elements in an algebraically closed fields. Hence, we get

ACF = Va(p(z) <> x = x)

since x = z is also true for all elements in an algebraically closed field.

The example above shows that a particular formula is equivalent to a quantifier
free formula modulo ACF. The following well known result, which can be found
for example in [Mar02, p.85], shows that this is true for any formula in ACF:
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Theorem 5.3. The theory of algebraically closed fields, ACF from Example 4.4
eliminates quantifiers.

Example 5.4. The theory of fields, Tgeq from Example 4.4 does not eliminate
quantifiers. We justify this by the following counterexamples:

(1) Let p = Jx(a? = —1). If Teq would eliminate quantifier, there would exist
a formula ¢ without quantifiers such that

Theld = @ <> 1.

In particular, we have that Q - v, since Q = . Since 9 is quantifier free,
it only relates to the characteristic of the field as described in the proof
of 5.7. Hence, we also have that C [~ ¢ and so C [£ ¢. But this is a
contradiction, since i € C satisfies 22 = —1. This shows that Tgeiq does not
eliminate quantifiers.

(2) Let o(z) = Jy(xr = y?) and consider the definable set

S={qeQ|QFk g},

i.e. the set of all squares in Q. We claim that S is not definable by a
quantifier free formula. To see this, suppose for contradiction that S is
defined by a quantifier free formula ¥ (x). Note that 1 then can be written

as
kot
=V APuy@) =0
j=1i=1
where =; ;€ {=,#} and P, ; € Z[X]. Since S is infinite, there must be a jo
such that

¢
N\ Pijo(x) =ij, 0
=1

is satisfied by infinitely many elements in Q. Since a polynomial has only
finitely many roots, all =; ;, are equal to #. Let

V={weC|P,(w)=0forallie{l,...0}}.

Since V is finite, we can define m = max ey (Jw|). Let N be an integer
strictly larger than m. Then Q = ¢[—N], since —N ¢ V. But —N ¢ S, so
S is not defined by a quantifier free formula.

(3) The same argument as in (1) shows that the set of square in R is not defined
by a quantifier free formula.

Example 5.5. Consider the language L of rings and the theory of algebraically
closed fields. We now return to the question whether the property of having char-
acteristic 0 is expressible by a sentence. Suppose that there is such a sentence,
i.e. a sentence g such that K |= ¢¢ if and only if K has characteristic 0, where
K is an algebraically closed field. By quantifier elimination, ¢¢ is equivalent to a
sentence 1 without quantifiers. Let ¢ be the total number of symbols in 1, and let
m be the maximal number that can be obtained using ¢ instances of 1, addition and
multiplication. Since a quantifier free formula in £ can only be finite disjunctions
and conjuctions of equalities involving 1 and 0, ¢ can only contain disjunctions and
conjunctions of equalities and inequalities involving 0,1,...,m. Let p be a prime
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number greater than m. Then any equality and inequality involving 0,1,...,m is
true in and algebraically closed field of characteristic 0 if and only if it is true in
an algebraically closed field of characteristic p. This contradicts our choice of g,
so there is no such ¢g.

Example 5.6. We can use the previous example to show that there is no formula
for the property of a group being torsion free in the language L. Indeed, suppose
that there is such a formula. Then we can use this formula in the language Ly, to
describe that the group (K, +) is torsion free, for a field K. But this means exactly
that K has characteristic zero, so there is no such formula.

The following two theorems are direct applications of quantifier elimination for
algebraically closed fields.

Theorem 5.7. Let Py, ..., Py, € Q[Xy,...,X,]. Then the following are equivalent:

(1) There ezists (a1, ...,0an) € (Q8)" such that P;(aq,...,a,) = 0 for all
ie{l,...,m}.

(2) There exists (a1,...,an) € C" such that Pi(ay,...an) = 0 for all i €
{1,...,m}.

Proof. Let D be the least common multiple of the denominators of all the coeffi-
cients of all the polynomials P;. Then DP; € Z[X;, ..., X,] and DP;(ay,...,a,) =
0 if and only if P;(aq,...,a,) = 0. We can now write each coefficient a of DP; as
+(1+4---+1). Hence

—_————

|a| times
3z | )\ DPi(z) =0
i=1

is a formula in the language £ . Therefore, it is equivalent to a quantifier free for-
mula ¢ modulo ACF. Since any such formula can only express equalities involving
0 and 1, and both Q*# and C have characteristic zero, we get that if ¢ is true in
one of the fields, it is also true in the other. O

Theorem 5.8. Let K and L be algebraically closed fields such that K is a subfield
of L. Let Py,..., P, € K[X1,...,X,]. Then the following are equivalent:

(1) There exists (a,...,an) € K™ such that Pj(oq,...,an) = 0 for all i €
{1,...,m}.

(2) There exists (aq,...,a,) € L™ such that Pi(ay,...apn) = 0 for all i €

{1,...,m}.

This theorem cannot be proved directly in the same way as Theorem 5.7, as we
cannot write polynomials in K multiplied by an integer as formulas.
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Proof. Let aq,...,ayn be all the coeflicients of the polynomials P, ..., P,. Then
we can write P;(Xy,...,X,) = Qi(X1,...,X,,a1,...,ay) for some polynomial
Q; € K[X1,...X,,Y1,...,Yy]. Consider the formula

m
Elmlv"'vx’n/\Qi(xlv"‘vl'naylv"‘vyN) :0
i=1

This formula has free variables among yi,...,yn. Hence, it is equivalent to a
quantifier free formula ¢ (y1,...,yn). That all the P;:s have a common root z € L™
is therefore the same as [a1, . . . , ay]| is satisfied by L. But since (ay,...,ay) € KV,
this means that ¢[aq, ..., an] is also satisfied by K, by the same argument as above,
since K and L have the same characteristic. U

As seen in Theorem 5.7 and Theorem 5.8, rather strong results sometimes follows
almost immediately from quantifier elimination of a theory. In the light of this, it is
not unreasonable to suspect that quantifier elimination can sometimes be difficult
to prove. Indeed, the main point with this whole paper is to prove quantifier
elimination for the theory of Algebraically Closed Valued Fields. For this, we need
to introduce some more model theoretic machinery.

Let £ be a language of sort S and let {cso | s € S, € I'} for some index set I be a
set of constant symbols not appearing in £. We then obtain an expanded language
L'=LU{cq | a €I} of sort S. For any sorted symbol s in £’ we denote by S(s)
the sort of 5. Similarly, we denote the sort of an L-term ¢ by S(t). Let so = S(cq).
If M is an L-structure and [] ., 5o (M) is non-empty, then M can be viewed as an
L'-structure by the interpretation ¢) = a, € 5,(M).

[0}

Definition 5.9. With the notation above, if M is an L-structure and A C [] g s(M)
we will denote by L(A) the language obtained by for each a € A adjoining to L a
constant symbol ¢, with S(c,) = S(a). In this case, M gives an L' structure as
described, since a € s,(M) for each a € A.

If T is a theory in the language £, we can view T as a theory 7" in the language
L', since every L-sentence is also an L’-sentence. If M is a model of T' which can
be viewed as a L’-structure in the sense described above, then M induces a model
M of T'. Similarly, any model M’ of T” can be viewed as a model M of T.

Lemma 5.10. Let T be a theory in a language L of sorts S and let o(x1,...,Tm)
be an L-formula. Let cq,...,cn be constant symbols not appearing in £ and define
L= LU{cr,...,em} with ¢; and x; having the same sort. Denote by T’ the
theory T viewed as an L'-theory. Then T = Vxq---Vepme(x1,...,zn) if and only

if T E oler, ... em]

Proof. Suppose that T | Vry- -Vane(z1,...,2,). Let M’ be any model of
T’ and let a; = ¢™'. Let M be the corresponding model of 7. Then M [

?

Vay - Veme(y, ..., Tm). In particular, M = ¢laq, . .., a,] and so

M E et ..., e

rm
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Conversely, assume that T = @[cy, ..., ). Let M be amodel of T'. Let s; = S(x;).
Since s(M) is non-empty for each s € S, by 2.2, the set [[~, s;(M) is non-empty.
Let (ai,...,am) be any element in []", s;(M) and let M’ be the L’-structure
obtained by interpreting cgw = a;. As noted before, M’ is a model of T, so by
assumption, M’ = o[ ... ). Hence, M = ¢lai,...,an] and the lemma is

proved. O

Definition 5.11. Let £ be a language of sort S and let M be an L-structure. Let
Z = (x1,...,%,) be a tuple of variables with x; having sort s; € S. Let X(Z) be a
set of L-formulas with free variables among the x;. We say that X(Z) is realised
in M if there exists an element @ € [, s;(M) such that for each ¢(z) € X(z), we
have

M = wlal.
In this situation, we write

M = Xlal.

Definition 5.12. Let £, M and X(Z) be as in Definition 5.11. We say that X(Z)
is finitely satisfiable in M if every finite subset of X(Z) is realised in M.

Definition 5.13. Let £ be a language and let M be an L-structure. For an infinite
cardinal k, we say that M is k-saturated if whenever A is a subset of M such that
|A| < k and X(Z) is a set of L(A)-formulas (with L(A) being the language defined
in Definition 5.9) which is finitely satisfiable in M, then X(Z) is realised in M.

We will use, but not prove, the following result which can be found for example as
Theorem 2.5.2 in [PD11].

Theorem 5.14. Let £ be a language and denote by kg the cardinality of L. Let
M be an L-structure. Then, for any cardinal kK > kg, there exists an elementary
extension N of M such that N is k-saturated.

Remark 5.15. We will only consider countable languages, and so the L-structures
we will consider will always have k-saturated elementary extensions for any « > Ng.

Remark 5.16. Let T be an L-theory, let M be a model of T and let N be an
elementary extension of M. By definition we have that N satisfy exactly the same
sentences as M. In particular, N is also a model of T'. Using Theorem 5.14, we get
that for any model M of a theory T, there exists an elementary extension N such
that N is an N;-saturated model of T'.

Lemma 5.17. Let T be a theory in a language L of sorts S containing a constant
symbol c. Let p(T) be a formula of sort 5 = (8;)1<i<m € S™ which is not equivalent
to a quantifier free formula modulo T. Then, there exists two models M and N of T
and @ € [[i~, s;(M), b € [Ti~, s;(N) such that @ and b satisfy the same quantifier
free formulas while M |= —p(a) and N = o(b).
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We follow the proof by Anand Pillay in [Pil, p.22].

Proof. Let X(Z) be the set of quantifier free formulas ¢ (Z) such that
T = Vz (p(z) = ¢(2)) .

Note that if ¥1(Z),...,¢,(T) € X(z), then A]_,v¢;(z) € X(z). Also note that
»(Z) is not false, since ¢ # ¢ is quantifier free L-formula. So if ¥ (z) € X(z) then
-(z) ¢ X(Z). Define the language L' = L U {c1,...,cn} where c1,..., ¢y are
new constant symbols of sorts si,...,s,, respectively and let X[¢] be the set of
L’-sentences obtained by replacing x; for ¢;. Denote the theory T viewed as an
L'-theory by T".

Claim 1. The theory 7" U X[¢] U {—¢][¢]} is consistent.

Proof of Claim 1. If T"UX[c]U{—y[c]} inconsistent, then T’UZ[ c] E ¢[c] by Lemma
4.6. Hence, by the compactness theorem, there exists 91, ...,1%, € X(Z) such that
T U{e,...,¥nlc]} E ¢lc] and so T’ U {w1fe] A - A 1/)"[6]} E ¢[¢]. Writing

P Ao Aty as B, we get that T/ = $[d — [d], so T k= Y(#((T) — (7)) by
Lemma 5.10. But T' = VZ(¢ — 1) by definition of X(Z), so T = VZ(y <+ ¢). This
contradicts ¢ not being equivalent to a quantifier free formula, hence the claim.

Let M’ be a model of 77U ¥(¢) U {—¢(¢)} and denote by M be the corresponding
model of T. Let a = é™ ¢ [T, si(M). Then M = —p(a) and M = ¢(a) for all
1 € X. Let A(Z) be the set of quantifier free formulas )(Z) of sort § such that
M = ¢la] and let A[¢] be the set of corresponding L’-sentences. By definition,
X(@) C A(Z). If ¢ € A, then —p ¢ A since, by definition, M = —[a] if and only
if M}~ ¢p[a]. Note also that if ¢(Z) is a quantifier free formula of sort § and ¢ ¢ A,
then M F£ ¢[a] and so M |= —¢)[a] by definition. Hence —) € A. This implies that
A is maximal in the sense that for any quantifier free formula of sort s, either 1 or
- is in A.

Claim 2. The theory T" U A[¢] U {¢[¢c]} is consistent.

Proof of Claim 2. We prove this by contradiction. Suppose that 77U Ale] U {p[c]}
is not consistent. Then by Lemma 4.6

T'U Ale] E —ld].
By the compactness theorem, there are 91, ..., 1, € A(Z) such that

T U{¢ale],. ... Pnle]} = —ole]-

Hence, letting ¢ = A, 1; we get

T EVZ(Y = ).
So by Boolean calculus we have

T =VYZ(e = ).
By definition of X (Z), we get that -t € X(Z). Since X(z) C A(Z) we then have
-9 € A(Z). By the same argument as for X'(Z) we have that A(Z) is closed under

finite conjunction, so » € A. This is a contradiction, as we have shown that not
both 1 and — can be in A, which proves the claim.

By Claim 2, there is a model N’ of 7"U A[¢]Up[¢]. Denote the corresponding model
of T by N and let b= & € [[_, s:(N). Then N |= A[b] and N = [b]. Since A is



QE OF ACVF 15

maximal, the quantifier free formulas satisfied by b in N is exactly the formulas in
A. Hence, a and b satisfy the same quantifier free formulas, namely the formulas
in A(z) while M |= —¢(a) and N = ¢(b). O

Remark 5.18. Let £ be a language of sorts S and let M be an L-structure. If
(No)acer is a family of substructures of M having at least one common element,
then we get a substructure N of M, defined as follows:

(1) For each s € S, define s(N) := (¢ 5(Na).

(2) For each relation symbol R € £, define RN = ., RNe.

(3) For each function symbol f € £ of sorts (s1,...,Sn,s), define
N =51(N) x -+ x 8,(N) = s(N)
as the restriction of fM to 51 (N) x -+ x 5, (N).

(4) For each constant symbol ¢ € £, define N := M.

We denote this substructure N by (1, c; Na-

Definition 5.19. Let £ be a language and let M be an L-structure. Let A C M
and let (Ny)aer be the family of substructure of M such that A C N,. We denote
by (A) s the substructure of M generated by A, i.e. the substructure of M

() N

acl
as defined in Remark 77.

The substructure (A); can be constructed inductively in the following way:

Proposition 5.20. Let £ be a language of sorts S and let M and A be as in
Definition 5.19. For any subset B C M, we denote s(B) = BN s(M). For any
sorted symbol s € L, denote by S(s) the sort of s. Let C be the set of constant
symbols in L and let F be the set of function symbols in L. Let

Ag=AU{M™M|ceel.
For any function symbol f, denote by D(f) the domain of f™ and let
Aigr = AU {fMay,...,a,) | fET, (a1,...,a,) € D(f) N AT},
Then (A)c = ;e A

Proof. See Proposition 1.2 in ?7. O
Example 5.21. Let Ly be the language of rings, as in Example 2.4. Let K be a

field and let A be a subset of K. Then (A)., is the subring of K generated by the
elements in A. For example, if K = Q, and A = {0,v/2}, then (A);, = Z & ZV/2.
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Lemma 5.22. Let T be a theory in a language L of sorts S containing a constant
symbol. Let M and N be two Ry-saturated models of T with universes M and N
respectively. Then the following are equivalent:

(1) The theory T eliminates quantifiers.

(2) Every existence formula with only one quantifier is equivalent to a quanti-
fier free formula.

(3) If Ay C M and By C N are at most countable subsets and if there exists
an isomorphism f : (Ag)e — (Bo)e of L-structures sending Ay to By
then for every element a € M, there exists an isomorphism of L-structures
g: M 5N extending f with a € M', M’ € M and N C N.

(4) If Ap C M and By C N are finite subsets and if there exists an isomorphism
f i {Ao)e = (Bo)g of L-structures sending Ay to Bg then for every
element a € M, there exists an isomorphism of L-structures g : M/ — N
extending f with a € M', M’ C M and N' C N.

Proof. (1) < (2):

The implication (1) = (2) is immediate. The other direction is proved by induction
on the formulas. Intuitively, the idea is to remove one quantifier at the time. For
the details, we refer to Lemma 3.2.4 in [TZ12].

(1) = (3) and (1) = (4):

Let Ao, Bo, f and a be as in (3). Denote A = (Ag) and B = (By)c. If A
and By are countable, define £’ = £ U {cp,c1,...} with ¢; being new constant
symbols. Fix pa, : N =5 Ag. If Ag and By are finite of cardinality n, define
instead £ = L U {co,...,cn} and @a, : {1,...,n} — Ag. Let M’ be the L’
structure having the same universe as M, with the interpretation ¢ = @4, (), as
described before Definition 5.9. Let ¢p, = f o ¢4, and let N’ be the L’-structure
having the same universe as N, with the interpretation CZN/ = B, (7). Let X4, be
the set of quantifier free L£’-sentences 1 such that M’ |= ¢ and let Xp, be the set
of quantifier free £'-sentences ¢ such that N’ = ¢. Denote by € the set of new

constant symbols added to £ to obtain L.
Claim 1. In the situation above, we have that Y4, = X'p,.

Proof of Claim 1. Let ¢(x1, ..., xy) be an L-formula such that ¢[c;,, ..., ¢, ] € Xa,,
where ¢;,,...,¢;,, € C. By definition, M |= ¢[a], where @ = (¢a,(¢;)1<j<k). Since
A is a substructure of M, we have that A | ¢[a]. Since f is an isomorphism of
L-structures, this implies that B = ¢[f(a)] and consequently that N = ¢[f(a)].
By definition, we then have that N |= ¢, so ¢ € Y'g,. The same argument gives
that Yp, C Xa,, by noting that f~*opp, = ¢4, and that f~! is an isomorphism.
This proves the claim.

Let X, be the set of all £’'-formulas satisfied by a in M’ = M. By definition,
XY, is closed by finite conjunction. Also, X, is maximal in the sense that if ¢
is an L’-formula of the same sort as a, then either M’ = ¢(a) or M’ = —¢(a),
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so either p € X, or =p € XY,. Furthermore, we can write all elements in X,
as @[co, ..., Cn, ], with ¢ being an L-formula. We will use the notation ¢z(x).
Since M’ = Jrpz(x) we get from quantifier elimination that M’ = ¢z for some
quantifier free £’-sentence ¢z with constant symbols among cy, ..., c,. Hence ¢; is
in X4, and Xp,, which gives that N’ = ¢; and so N’ = Jzps(z). By definition
of the interpretation of cg,...,c, in N', we thus get that N = Jxyp[f(a),z]. By
Ni-saturation of N and since X, is closed under conjunction, we get that X, is
realised in N, i.e. there exists an element b in N satisfying all formulas in X,. Let
X be the set of all £'-formulas satisfied by b in N’ = N. By maximality of X,
we get that X, = X,. Now consider the language £ = £’ U {c}, where ¢ is a new
constant symbol of the same sort as the elements a and b. If we regard M’ and N’
as £-models M and N by interpreting M =@ and N = b, we get that M and N
satisfy the same quantifier free L-formulas.

Now, note that any element in A can be written as t[a, a] with ¢ being a term and

a=(ay,...,a,) € Ay. Similarly, any element in B can be written as t[b,b] with
b= (b1,...,by) € Bj. We define the map
h:A— B

tla, a] — t[g(a), b].

To see that it is well-defined and injective, note that ¢1[a,a] = t2[a, a] if and only
if M satisfy the quantifier free L-formula ¢1[¢,c] = ts]é,¢]. This is equivalent to
the fact that N satisfy the same formula. Hence, t1]d,a] = ts]a,a] if and only
if t1]g(a),b] = ta[g(a),b] € N, which shows that h is well-defined and injective.
It is surjective by construction, since g maps Ay onto By. To see that h is an
isomorphism of L-structures we need to verify that

RA(t[a,al,. .. tula,a]) & R®(t1[g(@),b],. .., talg(@),d])

for any relation symbols R of £ But since R({1[¢, c], ..., 1n[¢, c]) is a quantifier free
L formula, this follows from the fact that M and N satlsfy the same quantifier free
L-formulas.

(3) = (2) and (4) = (2):

Suppose there exists a formula Jzp(g, ) of sorts (S, ..., Sy, S) which is not equiv-
alent modulo T to a formula without quantifiers. Then, by Lemma 5.17, there are
models M, N of T" and elements

a:(al,...,an)GHSi(M) and b= (by,...,b, EHS

with @ and l__) satisfying the same quantifier free formulas but M = Jxp(a, ) while
N = Va—p(b, ).

As every model has an Nj-saturated elementary extension, we may assume that
M and N are Rj-saturated. Now consider the substructure A = (@), C M and
B = (b)s C N. Every element in A is on the form t[a], with ¢ being an £-term. We
define the homomorphism

g:A—>B

inductively on the elements t™[a] € A by

(1) g(a;) =b; fori € {1,...,n}.
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(2) If t is a constant symbol, then g(t™) = .

(3) If t"[a] = fM(ay,...,a,) with a; € A, then

g(tM[d]) = fM(g(al)7 <o 7g(an)>'

That g is well defined and in fact an isomorphism follows by construction and from
the fact that @ and b satisfy the same quantifier free formulas. This is verified in
the same way as for the morphism h in the previous part of the proof.

Let a € M be such that M = (@, a). But, then there is no isomorphism h extending
g, having a in its domain and its image contained in N, as g({a,a)s) = ¢(b, h(a))

but N F~ (b, g(a)). This contradicts (3) and (4), and so Jp(7, x) is equivalent to a
quantifier free formula modulo T'. O

6. VALUED FIELDS

Let (I, <) be an ordered abelian group. Consider the set I' U {oo}. We extend
< to this set by letting v < oo for all v € I'. Furthermore, we extend the group
operation of I" to I' U {oo} by letting co+ 0o =v+00 =00+ =oc forall y € I'.

We say that a field K is a non-Archimedean valued field with value group I'
if there exists a surjective mapping

v:K— I'U{o}
satisfying the following properties:
(1) v(a) = oo if and only if a = 0.
(2) v(ab) =v(a) + v(b).

(3) v(a+b) > min(v(a),v(b)).

We call the map v a valuation on K. We recall the following important properties,
that can be found for example in [EP05].

(1) v(1)=0.
(2) v(a=t) = —v(a) for all a € K*.
(3) v(a) <v(b) = v(a+b) =v(a).

(4) The set O, :={a € K | v(a) > 0} is a valuation ring of K, i.e. a subring
of K such that a € O, or a= ' € O,, for all a € K*.

(5) The units of O, is given by {a € K | v(a) =0} and M, :=={a € K | v > 0}
is the only maximal ideal of O,. The field O,/Mv is called the residue
field of v.
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(6) For any valuation ring O of K, there exists a valuation v on K such that
0, =0.

The following result, found for example as Theorem 3.2.15 in [EP05| will be an
important tool when we look at the model theory of Algebraically Closed Valued
Fields in the next section.

Theorem 6.1. Suppose that K is a valued field with valuation ring Ok and that
L/K is a normal extension of K. Let Or, and O be valuation rings in L, such that
OLNK =07 NK = Og. Then, there exists an automorphism o € Aut(L/K) with
O'(OL) = O/L

We will particularly look at algebraically closed valued fields. In that case we have
that the value group I is a divisible group. That is, for any o € I" and any n € N,
there exists an element 8 € I" such that 8+ ---+ 8 = nf = a. We write 8 = a/n.
n times

To see this, let a € K be such that v(a) = «. Since K is algebraically closed, there
exists an element b € K such that b = a. By properties of the valuation, we get
that nv(b) = v(b™) = v(a) = a and v(b) = a/n. Furthermore, for any two element
a, € I' with a < 3, the element O‘Tw € I'. Since a < a—;ﬁ < B, we have that <
is a dense order on I'.

Also, if K is algebraically closed it follows that the residue field k is algebraically
closed. Indeed, let

n—1

P(X)=X"+) aX"€k[X],
i=0
and consider a lift
n—1
P(X)=X"+) a; X" € 0,[X].
i=0

Let b € K be a root of P. Since b = — "~ L a;b’ and v(a;) > 0, we have by the
strong triangle inequality that

nv(b) > min {v(e;)+iv(b)} > min {iv(b)}.

0<i<n—1 1<i<n—1

If nv(b) = mini<;<n—1{iv(b)}, then nv(b) = iv(b) for some i < n, so v(b) = 0. If

the inequality is strict, then —25v(b) > v(b), so v(b) > 0. So in any case, we have
that b € O,, and so b € k is a root of P.

Let K be an algebraically closed valued field with value group I'. With < being
the order on I', we equip the group I" ® Q with an order <, defined by

M <72 or

(71, q1) < (72, q2) &
71 =" and q; < qo.

It is immediate from the definition that (I" ® Q, <) is a totally ordered divisible
abelian group. If we regard I as a subgroup of I' & Q under the embedding v —
(7,0), we get that the order defined on I' ®Q extends the order on I'. Furthermore,
we have that (0,0) < (0,q) < (v,0) for all v € I'. We will denote the element
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(0,1) by w and write I" ® Qw for the totally ordered group divisible abelian group
(I' ® Q, <). Similarly, we will denote by

Fé(@wi
=1

the totally ordered abelian group obtained by repeating the above construction n
times. That is, I' @7, Qw; := (I' P!~} Qw;) ®Q with the order < defined above.

Proposition 6.2. Let G be a torsion-free abelian group. Let

QG ={(g,n) g € G, n € N5}/ ~
where ~ is the equivalence relation defined by
(g,n) ~ (h,n) :& mg = nh.
Then the following hold:

(1) The set QG together with the operation [(g,n)]+ [(h,n)] = [(mg+ nh,mn)]
is a divisible abelian group, and i : G = QG; g+ [(g,1)] is an embedding.

(2) If H is a divisible group and j : G — H is an embedding, then there exists
an embedding h : QG — H such that j = ho1.

Proof. The first part verified just as when one construct the rational numbers. For
the second part, one can verify that h : QG < H; [(g,n)] — j(g)/n is an embedding
satisfying j = h o4. For a complete proof, see Lemma 3.1.8 in [Mar02]. (]

Lemma 6.3. Let K be a valued field with valuation vk and value group I'. Let v},
be an extension of vk to an algebraic closure K& of K. Then vi(K*8) = QI,
with QI" being as in Proposition 6.2

Proof. Let I be the value group of K. Since I'" is divisible and I” is a subgroup
of I'", we have that QI" embeds in I”. For the remainder of the proof, we identify
QI" with its image under this embedding in I". It rests to show that I" C QI". For
contradiction, suppose that this does not hold. Then, there exists an element 3 € I’
such that 8 ¢ QI'. Let b € K*8 be such that v} (b) = 8. Then P(b) = 0 for some
P(X)=>",a,X" € K[X]. Weget thatb=—>""_, a;b". Since v (a;b")v;(a;)+i
for any ¢ € {1,...,n} and since 3 ¢ QI', we have that v, (a;b") # vi(a;b’) for
any distinct ¢ and j in {1,...,n}. By the strong triangle inequality, we get that
B = mini<;<n(vy(a;b')) = v(a;,) +1ioB for some ig € {1,...,n}. This implies that
B = vi(ai,)/(1 —ip). But since QI is divisible, we get that § € I’ ® Qw. This
contradicts our choice of 3, so I'" C QI', and we are done. O

Lemma 6.4. Let K be an algebraically closed valued field with value group I' and
let I'®Qw be the totally ordered abelian group defined above. Then, there exists an
algebraically closed valued field extension L/ K such that L has value group I' ® Q.
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This lemma can be proved by constructing such a valuation explicitly. However,
since this text focuses on the applications of Model Theory to Valued Fields, we
will give a Model Thoeretic proof instead.

Proof. Let (K, I') be a model of ACVF and denote by « be the cardinality of K. Let
(K, TI') be amodel of ACVF such that (K, I") is a s-saturated elementary extension
of (K, I'). Let A= 1TIs and let X(v) be the set of L(A)-formulas defined as

) ={0<yAy<pB|BeA}

Since I' is divisible, we have that X() is finitely satisfiable in (K, I"). Since A
has cardinality less than s and since (IN( ,f) be k-saturated, there is an element
@ € I such that 0 < @ < a, for all o € I'sy. Let a € K be an element such that
v(a) = w. Denote by v} the restriction of vz to K(a). This is a valuation which
extends vi. Denote by I value group of K(a). We have that I'' is contained in
I' ® Qw and it contains w. Hence, it follows that QI = I ® Qw. Denote by L
the algebraic closure of K(a) and extend v} to a valuation v;, on L. Denote by I,
the value group of (L,v;). By Lemma 6.3, we get that I', = I'® Qwo, which proves
the lemma. (|

7. DEFINABLE SETS.

Definition 7.1. Let £ be a language of sort S and let M be an L-structure. Let
o(Z,7) be a formula, with T = (z1,...,2,) and § = (Y1,...,Ym). We allow the
situation n = 0, in this case @ has no free variables among the x;. Suppose that

the sort of each variable z; is s; and that the sort of each variable y; is s,. Let
a €[l si(M). Then the set

B={beM™ | Mg ola,b)
is called a definable set. We also say that B is defined over a by pla,y|, or that

it is a-definable. In this situation, a is called a parameter of pla,y]. If ¢ has no
free variables among the x;, we say that B is defined without parameters.

Example 7.2. Consider Q as a model of the Lg-theory Tgelq, as described in
Example 4.4. Then the empty set is a definable set in Q, defined for example by
the formula ¢(x) = (2% =1+ 1). That is, we have that

0={q€Q|QF ¢ld}

If we let ¥(x) be the formula 2% = —1, we also have that

0={qeQ|QE ¥}

If we now consider R as a model of Tge1q, we have that

d={reR|REYI]} #{reR|RE Y]}
This shows that two formulas that define the same set in a model of some theory T,
does not in general define the same set in an extension of that model. The following
result however will show that in a theory which admits quantifier elimination, two
formulas define the same set in a model if and only if they define the same set in
every extension of that model.
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Lemma 7.3. Let £ be a language of sorts S and let T be an L-theory which admits
quantifier elimination. Let M be a model of T and let ¢(Z,y) be an L-formula with
T=(x1,...,Tm) and § = (y1,...,Yn). Denote by s; the sort of x; and denote by s
the sort of y;. Fora = (ay,...,am) € [[i~, s:i(M), we denote by ¢, the set defined
over a by v, i.e.

Then, the following are equivalent:

(1) wa(M) =0

(2) For every model M of T which is an extension of M, we have that
Pa (Ml) = w

Proof. Suppose that pz(M) = @) and let M’ be an extension of M which is a model
of T. Define the formula ¢(y) := IZp(Z,y). By quantifier elimination, we have
that 1 is equivalent to a quantifier formula y modulo T'. Hence, [a] is an £(a)-
sentence which is equivalent to a quantifier free £(a)-sentence modulo 7", where T’
is the theory T regarded as an £(@)-theory. Since M’ is an extension of M, we have
that any £(a)-sentence is true in M’ if and only if it is true in M. In particular,
M k= [a] if and only if M’ = +[a]. Since M = +[a] if and only if ¢z (M) # 0 and
M = ¢la] if and only if oz (M) # 0, it follows that ¢z(M’) = co. Hence, (1) =
(2). The other implication is immediate since M is an extensions of itself. O

Corollary 7.3.1. Let £ be a language of sorts S and let T be an L-theory which
admits quantifier elimination. Let M be a model of T and let T, § and a be as
in Lemma 7.3. Let o(Z,y) be an L-formula and let ¥(Z,y) be a quantifier free
L-formula such that pz(M) = 15z(M). Let M’ be an extension of M. Then

Pa(M') = a(M).

Proof. If ¢a(M) C 15(M), then gz (M) \ 1z (M) = @. Hence, (9 A—1)z(M) = 0, and
by Lemma 7.3, (pz A —)z(M') = 0 and ¢z(M’) C 1z(M'). The same argument
with (¢ A —p)a instead of (¢ A =) shows the inclusion 1z (M’) C g (M). O

8. QUANTIFIER ELIMINATION OF ALGEBRAICALLY CLOSED VALUED FIELDS

Consider the 2-sorted language
LF = {+R7_R7'7170R} U {OF5+F7_Fa<aOO} U {V}

of sorts R and I', where {+r, —r, -, 1,0r} is the language of rings, {Op, + —g, I, <}
is the language or ordered abelian monoids, the symbol oo is a constant symbol of
sort I" and v is a function symbols of sort (R, I"). We use t; < t3 as an abbreviation
for t1 < to Vt; = to. When it is clear from context, we will omit the subscripts
indicating the sort of the symbols +g, +, Og and 0.
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Any valued field K is an Lp-structure. Furthermore, we can define the theory
ACVF of Algebraically Closed Valued Fields by the following sentences together
with the theory of algebraically closed fields, where we use the notation x,y for
variables of sort R and «, (3, for variables of sort I":

(1) VavB(a+ B =B+ a)

(2) Va(oo + a = o)

(3) Va(a # oo — If(a+ 5 =0))

(4) Yav¥B(a < BV B < a)

(5) Va¥B((a < fAB<a) > a=[)
(6) VavpYy((a < BAB<v) = a<7)
(7) Va(v(z) = oo+ x =0)

(8) Vavy(v(zy) = v(z) + v(y))

(9) v(z +y) > min{v(z),v(y)}.

It is also possible to formulate the theory of ACVF in a one-sorted language Lgiy
which consists of the language of ring and a binary relation symbol div. In this
language we interpret adivd < as v(a) < v(b). It is well documented, see for
example [PD11], that the theory of ACVF eliminates quantifiers in this one-sorted
language. However, this language is not sufficient for the application we want to
consider further on EXPLAIN HOW FURTHER ON, and we therefore prove that
quantifier elimination holds also for the 2-sorted language described above. The
proof of this is an adaptation of the proof for the one-sorted case found in [PD11].

Theorem 8.1. The theory ACVF admits quantifier elimination in the language
Lr.

Proof. We will show that ACVF admits quantifier elimination by proving the equiv-
alent statement (4) in Lemma 5.22. To do this, let (K, I'x) and (L,I) be X;-
saturated models of ACVF in L. Such models exists due to Theorem 5.14. Let
Ao C K, By CL, I'a, C I'x and I'g, C I, all be finite subsets. Denote by (A, I'4)
and (B, I'p) the L£p-structures generated by (Ao, I'a,) and (By, ['s,) respectively
and suppose that g : AUT'4 — BUI'g is an £ p-isomorphism such that g(Ap) = By
and g(I'a,) = I'p,. Now let @ € K. To show that (4) in Lemma 5.22 holds, we first
need to show that ¢ extends to an £ p-isomorphism h: A’ U T4 — B’ U I'g where
a€A CK, '4Clsy,IgCIp and B'C L.

First, we assume that A and B are fields. This can be done since the extension of
g to the quotient fields of A and B respects the ordering on I'4. Note however that
(A, I'y) and (B, I'g) are not necessarily valued fields, in the sense that vx : A — ['s
and vy : B — I'g are not necessarily surjective. As a first step, we will show that
the existence of ¢ induces an isomorphism of valued fields containing (A, '4) and
(B, I'g) as substructures.
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If we denote by h the restriction of g to the £ p-structure (A,vg(A)) we get an
isomorphism of valued fields

h AUVK(A) — BUVL(B)

Let a € K and suppose that a is algebraic over A. Let A*& and B*® be the algebraic
closures of A and B respectively and extend h to an isomorphism between A€ and
B8 Then h(O 4a1¢) is a valuation ring of B8 such that h(O 4a1s)NB = Op. Hence,
h(O ga1e) defines a valuation v on B*2 that extends v, on B. By Theorem 6.1,
there exists o € Aut(B*8/B) such that v, = v, o 0. Hence, for ¢ € A*® we have

vi(€) 2 0 ¢ € Ogae < h(c) €0y, 20
< v, (h(c)) >0& vy,000h(c) > 0.

This shows that the isomorphism o oh respects the ordering on v (A*#). Therefore,
we can assume that A and B are algebraically closed. Let S = {«ag,...,an} C L4,
be the set of elements such that «; ¢ vk (A) and let 8; = g(«). If §; € v,(B) then

9(ai) = Bi = vr(g(c)) = g(vk(c))
for some ¢ € A, where the last equality follows from the fact that g is an isomorphism
of L p-structures. This contradicts a; ¢ vi(A), so B; ¢ v, (B). Let a; € K be such
that vx(a;) = «;. Then a; is transcendental over A, since A is assumed to be
algebraically closed. Similarly, there are elements b; € L such that v;(b;) = f;
which is transcendental over B. We thus get that h extends to an isomorphism of
L p-structures

b Aan) Uvic(A(an)) — B(by) U vy (B(by)).

Again taking the algebraic closures of A(a,) and B(b,), we can extend h to an
isomorphism between these algebraically closed valued fields, with value groups
containing «,, and f,, respectively. Thus, we can assume that S = {ag,...,a,—1}.
By induction, we can then assume that S = 0, i.e. that vx|4 and v |p are surjective.
This means that we only have to consider the case where g : AUy — BUI'p is an
isomorphism of algebraically closed valued fields. In this situation, we will regard
three different cases.

(1) The value group I's(q) := vk (A(a)) is not equal to I'4.
(2) The residue field k44 is not equal to k4.
(3) All other cases, i.e. I's(q) = I'a and ka(q) = ka.

Case 1. In this case, there exists element ¢ € A(a) such that v := vk (c) ¢ I'a.
Since A and B are algebraically closed, the value groups I'4 and I'p are divisible.
Furthermore, we have that
vi(A(e)) = Ta & (7).

Let S ={a €Ty |y>a}landlet Sy ={a € '4]|~vy < a}. Consider now the set
of L (I's)-formulas

YO ={>alaeS_}U{¢<alacS;}
and its image under g of £ (I'p)-formulas

D9€) = {€ > gla) |a € S_}U{E < ga) | a € Sy ).
Recall that we have obtained B by taking the algebraic closure of the quotient field

of a finitely generated ring. Thus, B is countable, and so is I'g since it is the image
of B under vy. The set X9(z) is finitely satisfiable in (L, I7), since I, is dense
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linearly ordered without endpoints. Thus, by R;-saturation, there exists an element
§ € I'p, satisfying all formulas in X9(§) since I'p is countable. Note that § ¢ I's.

We now extend the isomorphism g on the value groups to g : I'a ® () — I's ® ()
by setting g() = ¢. To see that this is indeed an isomorphism of ordered groups,
let a« +m~y,a’ + m'y € I'y @ () and suppose that o + my < o' +m'y. i m = m/,
then a < o’ and g(«@) + md < g(a’) + m’é. If m # m/ we get

oa—ao

a+my <o +my = <.

m—m/

Since I'y is divisible, T‘j‘;“/ € I'y. By definition of X9(x) we then get that

m/’

g(a—a/) _ gl0) —g(@)

m—m/ m—m

<6,

which is equivalent to
g(a) +md < g(a’) +m's.

Hence, g preserves the ordering. Using this, we also get that g is injective since any
non-zero element is mapped to a non-zero element.

Let ao, ..., a, € A. Suppose that v (a;c") = vk (a;jc?) for some i # j. Then

vic(ai) —vic(az) = ( —i)7.
This contradicts that v ¢ I'4, since I'4 is divisible. Therefore we have

n
Vi Z;aicl = min {vic(a) +iv}.
1=

By the same reasoning as above, we get that

vy, Zbidi = min {Z/L(bi)+i5}.
i=0

1<i<n

Let ag,...,a, € A and
i
Vi Zaicl =a; +j7v.
i=0

This is then equivalent to vi(a;) + iy > vi(a;) + jv for all 7 in {0,...,n}\ {j},
which is equivalent to
vi(ai) — vi(a;)
J—i
Since I'4 is divisible, we have that (vx(a;) —vk(a;))/(j —i) € I'a. By definition of
X (&) and X9(¢), we thus get

vi(g(ai)) — vir(g(a;))
j—i
for all such . This gives

> .

> <= vi(g(ai)) +1i6 > vr(g9(a;)) + 56

v | D glad | = vi(g(ay)) +jo
=0

and so the extension of g which sends ¢ to d is an isomorphism of valued rings
h : Alc] — B[d]. By extending again to the quotient fields, we get an isomorphism
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of valued fields h : A(¢) — B(d). Using the same argument as above, we can extend
g to an isomorphism between A(c)*® and B(c)*#. Since ¢ € A(a), we have that
_ P(a)
Q(a)
for P(a) € Afa] and Q(a) € Ala] \ {0}. So ¢- Q(a) — P(a) = 0 and a is a root of
the polynomial ¢- Q(X) — P(X) € A(c). Hence, a € A(c)*® and we have proved
the existence of h in Case 1.

Case 2. Suppose there exists an element ¢ € O 4(4) such that res(c) ¢ ka. Since k
is algebraically closed, this means that res(c) is transcendental over k4. Consider
the set of £L(Op)-formulas

Y(x)={v(@) =0} U{v(z—b) =0|becOp}.

By definition, an element d € L satisfying X'(z) is a unit in Op such that res(d) #
res(b) for all b € Or. This set is finitely satisfiable in L, since ky, is infinite (SHOW
THIS). So by Nj-saturation it is realisable in (L, Ip). Since kp is algebraically
closed, res(d) is transcendental over kp.

Let ag,...,a, € A. We will show that vg (Z?:l al-ci) = min;{vk(a;)}. Suppose
that all vx(a;) are equal. Then vg(a;/a;) =0 and a;/a; € O. We get that
- @i - a; i
res —c'| = res [ — | res(c)’.
e | = (i) 0

This element is not zero, since res(c) is transcendental over k4. Hence

=1 a1
and
n n . n .
Vi Zaici =vi | a1 Z Gig| = vic(ar) + vk Z Gig) = vi(ay).
i=1 P -1 M

If not all vk (a;) are equal, we write

n
E a;ct = E a;ct + -+ E a;ct
i=1

i€la, i€la,

with I, = {i | vk (a;) = a}. Then, as we have just shown,

Vi E a;c' | =«

i€1q

and so, due to the ultrametric inequality,

Vi Z aict -+ Z aic' | = min {a;} = min {vg(a;)}.

. . 1<j<k 1<i<n
i€l 1€1a,

By the same reasoning,

vy Z bdt | = miin {I/L(bi)}
i=1
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for bg,...,b, € B. This shows that the ring isomorphism h : A[¢] — B]d] that
extends g and sends c¢ to d is an isomorphism of valued rings, since g preserves
the order on A. The isomorphism h extends uniquely to an isomorphism of valued
fields A(c) — B(d). Since a is algebraic over A(c), as shown in Case 1, the result
of the theorem follows by extending ¢ to the algebraic closure of A(c) in the same
way as above.

Case 3. Suppose that ks, = ka and Iqq) = I'a. Let [ = {vk(a —c) | c € A}.
If vk(a —c¢) € I and vg(d) < vk(a — ¢), then vi(a — ¢ + d) = vi(d) and so
vi(d) € I. Let e € A such that vi(e) = vi(a — ¢). Then vi((a —¢)/e) = 0. Since
ka(a) = ka, there exists an element d € O 4 such that res((a—c)/e) = res(d). Hence
(a—c)/e—d e My and vk ((a —c)/e —d) > 0. This gives

vi(a—c—de) =vig((a—c)/e—d) +vg(a—c)>vig(a—c),

and so I has no maximal element.

Consider now the set of £ (B)-formulas
X(x)={v(x —g(c)) =v(f(d) | c,d € A, vk(a—c) =vk(d)}.
This set is finitely satisfiable in L. Indeed, let (c1,dy), ..., (ca,d,) € A% be such
that vg(a — ¢) = vi(d) and let e € A such that vi(e — a) > vk(a — ¢;) for all
i€{1,...,n}. Then
vile—¢)=vk(le—a+a—c¢)=vg(a—c).

Since g is an £ p-isomorphism, we have that g(e) satisfies vy (z — g(¢;)) = v.(9(d;))
for all i € {1,...,n}. By Ny-saturation of (L, IT]), there is therefore an element

b € L satisfying X'(x). Note that this element is not in B, since otherwise we would
have that b satisfies the formula

v(z —glg~' () = v(g(d))
with vg(a — g71(b)) = vk (d). But then v, (g(d)) = oo and so vk (d) = oo, which
contradicts that I has no maximal element. Hence, b is transcendental over B, since

B is algebraically closed. We get that g|4 extends to an isomorphism h : A(a) —
B(b) sending a to b.

It now rests to show that h is an isomorphism of valued fields. Let P(T) € A[T] be
a polynomial. Since A is algebraically closed, we can write

P(T) =c[[(T - a:)
i=1
with ¢, a; € A. Consequently,
vk (P(a)) = vi(c) + Z vi(a — a;).
i=1

We get that

n

vi(h(P(a)) = vy | A(e) [T hla—ai) | = vilg(e)) + H vi(b—g(a:))

= 9(vk(c)) + ZQ(VK(G - ai)),

where the last equality follows from the fact definition of X(z). This shows that &
is an isomorphism of valued fields, since I'4(,) = I'4, which concludes Case 3.
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We have now finished to construct an isomorphism h extending g, with the element
a in its domain and its image contained in (L, I';). Note however that showing this
is not enough to show the condition (4) in Lemma 5.22 since the condition for the
lemma is that @ is an arbitrary element from the universe of (K, I'x). Since we are
working in a 2-sorted language, we will also have to consider the case where the
element is taken from I'x. However, if o € I'4, then there exists an element a € K
such that vk (a) = a. Thus, by extending g : AU 'y — B U I'p to an isomorphism
h: A Uy — B'UTg with a € A" as we have done above, we get that o € I'y/,
and so h satisfies condition (4) in Lemma 5.22. This concludes the proof. g

9. DEFINABLE SETS IN THE VALUE GROUP

Lemma 9.1. Let (K, I'x) be a model of ACVF. Let ay,...,a, € K* and let D C
' be a non-empty set defined in (K, ') by a formula ¢(%, &) overay,...,an, € K,
with T = (x1,...,Zm) having sort R and T = (&1, ...,&,) having sort I' in L. Then
there exists a quantifier free formula of the form

fg:\//\@z] gN’LJ

i=1j5=1

for some k.0 € N, where ¢; ;[a,€] = S0 maisys + Cij(@) with mes; € Z,
C;(a) € I and ; ;€ {<, <} such that

D={y€eTlk|(K,Ik)[Evacg}

Proof. First, note that a quantifier free formula ¥ (Z,&) in L can be written as

kot
_ R /= Jal=
¥(z,§) = \/ /\ ¢i(Z) N b5 5(2,€)
i=1j=1
where the variables Z have sort R and the variables & have sort I" and where d)R
and qb are atomic formulas, or negation of atomic formulas, such that all terms in

qﬁ have sort K and all terms in ¢! ;,; have sort I'. That ol ;,; can have free variables
among the T is because the function symbol v has sort I" but takes terms of sort
K as arguments. So by quantifier elimination in ACVF, we have that

k ¢
D= Nkl (K I') = of@ nof;@n)},

for some gbf'j and ¢F - as described. Without loss of generality, we assume that

4
:ﬂ (7 e It | (K, Tx) E ¢ (a) A oF5(a,5)}

is non-empty for each 4, since we can simply omit every ¢ for which the corresponding
set D; is empty.

By considering the possible atomic formulas in the language £, we have that the
formulas gbf”j can be written as

P () =50
where P; ; € Z[z]| and =, ;€ {=,#}.
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Now consider
¢
/\ ;la, €.
j=1
If (K, I'x) W= ¢f;]a], then (K, FK) bégéf{[ al A ¢/ ;]a,”) for any 5 € I'jt. That is,

{’VEFKHKaFKH:@,j[@] ”[a A} =0.
In particular, this implies that D; = (), which contradicts the assumption above.
So we get that (K, I'x) |= ¢f[a]. By definition, (K, I'x) |= ¢f;[a] A ¢} ;[a, €] if and
only if (K, I'x) gbfj[&] and (K, I'x) = qﬁ%[c‘z,*‘y] so we have

H<::-

kL
D=J {7 €Ik | (K.Ix) = o] jla. 71}

i=1j=1
Furthermore, we have that ¢!’ ; can be written as

n n
st,i,jfs + l/(ti,j(f)) Ni,j 0 or st,i,jfs + l/(ti,j(f)) Mi,j 0

s=1 s=1

where m; ; € Z, >; ;€ {<,<} and t; ; is a term of sort K, i.e. a polynomial in
Z[z]. Suppose that

=D muigbs + v(tiy(T))+ i 00
s=1

and that v (t; ;[a]) = co. Then for any ¥, we have that (K, I'x) |= ¢{ ;[a,7] if and
only if > ; is equal to <. Since we can assume that {y € I' | (K, I'x) |: &; J[d 1}
is non-empty, we get that <; ; is equal to <, and therefore o [a 7] is satisfied by

all ¥ € I'. Hence, ¢£j is equivalent in (K, I'x) to the formula 0 < 0, which is on
the form we want. If

n
= maijys + v(ti;(T))+ 055 00
s=1

but v (t; j[al) < oo, then gbf:j is still satisfied by all ¥ € I'%, and ¢5j is equivalent
in (K,I'x) to 0 <0.

Hence, in any case we get that (b is equivalent in (K, I'x) to a formula of the form

st,i,ﬂ/s +v(ti,;(Z)) b4, 0

s=1

which is what we wanted to prove. 0

Definition 9.2. Let (K,I'x) be a totally ordered divisible abelian group. A pavé
of dimension d of I'y is a definable set of the form

d

A H(T“ Z) {7d+1;---a7n}

i=1

where r;, R;,v; € I and r; < R; and A € GL,(Q).
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Definition 9.3. Let (K, I'x) be a model of ACVF and let D C I'}: be a non-empty
definable subset. We define the dimension of D to be the largest number d such
that D contains a pavé of dimension d.

Remark 9.4. Let D C I' be a definable set of dimension d, defined over a € K™

by a formula o(z,£), with # = (21,...,%,) having sort R and & = (£,...,&,)
having sort I'. Let A € GL,(Q) and define the set

AD = {A¥ | ¥ € D}.
Let A = (¢55)1<s,j<n With g; ; € Q and let m be the least common multiple of all

the the ¢; ;. Let m; ; := mgq; ;j € Z. Then, Ay € AD if and only if my € (mA)D.
Hence, AD is a definable set, defined over a by the formula

n n

P(7,0) =31+ 36 | (7, 6) A /\ mG; Zmi,jfj ;
=1

i=1 j

with ¢ = ({1,...,¢,) having sort I'. Since the dimension of a pavé is not changed
by multiplying it with a matrix in GL,(Q), we have that the dimension of D is
equal to the dimension of AD.

Lemma 9.5. Let (K, I'x) be a model of ACVF and let D C I'}t be a definable set
and let P C D be a pavé of dimension d in D, given by

d
P=A H(Tlle) X {Vd-‘rla"'a’yn}

i=1

for some A € GL,(Q). Let (L,I) be a valued algebraically closed extension of
(K, I'x). Then the pavé

d
P(FL) = A H(T%Ri) X {r}/d-‘rla ... 77’”} C FE

=1

is contained in D(IL).

Proof. From the description of AD as a definable set in Remark 9.4, we can see
that (AD)(I'L) = AD(I'L). So, P(I'y) is a pavé in D(I'y) if and only if A= P(I7)
is a pavé in A71D(I7), and we can assume that

d
P= H(Tia Rl) X {'Yd-‘rla e a,)/n}
=1

Let p= (pl,...,pd), P = (Ph...,Pd), g: (§d+17'~~7£n) and E = (C17-~~7Cn) be
variables of sort I". Define the formula

d n
V(P60 = Npi <GAG<P) N (G=&)
=1 i=d+1

Then we have that P is a definable set given as

P={acTl}| (K Ik)EY[FR7al},
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with 7 = (r1,...,7q), R = (R1,...,Rq) and ¥ = (Yd41,---,7n)- Similarly, we get
that

P<FL) :{QEFE | (L7FL) '21/1[77’1?”7,54]}-

Now, let ¢ (7, () be a formula defining D over some parameters a. Since P is in D,
we have that

P={aclI'g| (K I'k) E¢[r, R.7,a] Apla, al}.

Hence, by Corollary 7.3.1, we have that P(I7) is also defined by ¢ A ¢, i.e. P(IL)
is contained in D(I). O

Lemma 9.6. Let (K, I'x) be a model of ACVF and let D C I'}; be a definable set
of dimension d and let (L,I'L) be a valued algebraic extension of (K,I'x). Then
D(I) has dimension d.

Proof. It P C D is a pavé of dimension d in D, then P(I;) is a pavé of dimension
d in D(I'.), by Lemma 9.5. So D(I'1) has dimension at least d. Suppose that

C

P=A[]]tR) x {ver1,-- -} | € D(I)
i=1

is a pavé of dimension ¢ > d. We will show that this implies that there is a pavé of
dimension ¢ in D. By Remark 9.4 So, we can assume that A is the identity matrix.

Let D be defined by the formula ¢(7,() over a = (a1,...,a,) € (K U k)™,
with ¢ = ((1,...,¢n), T = (21,...,2,,) and z; having the same sort as a;. Let
p=(p1,...,pe), P=(Py1,...,P.)and € = (£11,...,&n) be variables of sort I'. We
note that D(I) contains a pavé of the form

c

H(ri’Ri) X {76+1a s 77774} C D(FL)
i=1

if and only if the formula ¢ (Z) defined as

P E | | Npi<Pi| Al [ Ari<&n&<Pi \ G=6&| =00
i=1 i=1 i=c+1

is satisfied over @ in (L, I), i.e. if and only if (L, I'y) | v[a]. But since (L, I'y) is
an elementary extension of (K, '), we have that (K, I'k) |= 9[a], so D contains a
pavé of the form

TI05 B > (vl

i=1
with 7}, R, v; € I'x fori € {1,...,c} and j € {c+1,...,n}. So D contains a pavé
of dimension ¢, which is what we wanted to prove. O
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10. SOME ALGEBRAIC GEOMETRY

Definition 10.1. Let K be an algebraically closed field. An affine algebraic set
of K™ is the zero set of a finite number of polynomials in K[X1,...,X,].

If K is an algebraically closed field and X is an affine algebraic set of K™, then the
set

Ax ={P e K[X1,...,X,] | P(ay,...,a,) =0 for all (a,...,a,) € X}
is an ideal of K[X7,...,X,].

Definition 10.2. Let K be an algebraically closed field and let X be an affine
algebraic set. We define the coordinate ring K[X] to be the ring

K[X1,...,X,]/Ax.

If K[X] is an integral domain, i.e. if Ax is a prime ideal, we say that X is an
affine variety. In this case, the fraction field of K[X|, denoted K(X), is called
the function field of X.

Definition 10.3. Let K be an algebraically closed field and let B be an integral
domain which is a finitely generated K algebra and let L be the quotient field of B.
We define the dimension of B to be the transcendence degree of L over K, i.e.
the largest cardinality of an algebraically independent subset of K(X) over K. If
X is an affine variety, we define the dimension of X to be the dimension of the
coordinate ring K[X].

Definition 10.4. Let K be an algebraically closed field. We define the algebraic
torus of dimension n over K to be (K*)". An algebraic subset of (K*)" is a set
X C (K*)™ such that X is the zero set in (K*)™ of some polynomials Py, ..., P, €
KX, X' X0, X1,

Remark 10.5. If K is an algebraically closed field and X is an algebraic subset of
K (*)™ defined by the polynomials

Pi(Xy, X7 X, XN e KX, X, X, X

fori € {1,...,m}, we can consider X as a subset of K", satisfying the polynomials
Pi(X1,Y1,...,X,,Y,) € K[X1,Y1,..., X, Y, ] fori € {1,...,m} and X;Y; —1 for
j €{1,...,n}. Hence, X can be considered as an affine algebraic set. We will

say that X is a subvariety of (K*)™ if X is an affine variety and we refer to the
dimension of X as its dimensions as an affine variety.

Lemma 10.6. Let X be a subvariety of (K*)" and let L/K be an algebraically
closed extension. Let ay,...,a, € X(L) and define K' :== K(ay,...,ay,). Then
trdeg(K'/K) < dim(X).
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Proof. Let @ := (aq,...,a,) and let Az C K[X7,...,X,] be the ideal of all poly-
nomials vanishing at a. Then Ax C Az, so we have a natural projection
m: K[X]|=K[X1,...,X,]/Ax — K[X1,...,X,]/As.

Since K’ is isomorphic to the quotient field of K[X7,...,X,]/As, we have that
trdeg(K'/K) = dim(K[ X7, ..., X,]/Aa).

Suppose that trdeg(K’/K) > dim(X). By Theorem 1.8A in [Har77]), we have that
the dimension of a ring B which is a finitely generated K-algebra is given by the
maximum number n € N such that there exists a chain
PoC - Chn
of distinct prime ideals of B. But since 7 is surjective, any chain of distinct prime
ideals
poCp1 C--- Cpn C K[X1,..., Xp]/Aa
gives a chain of distinct prime ideals
7 (po) C -+ C (pn) € K[X].
Hence, dim(K[X1,...,X,]/As) < dim(X), and we are done. O

Definition 10.7. Let K be an algebraically closed field. An isogeny of the alge-
braic torus is a map

Dy (K*)n — (K*)n

(a1,...,a,) — (@™, ...,a™")
where m; = (Myiy...,Mp;) € Z", @ = (a1,...,a,), @™ = a; " ---an™" and
M= (my -+ my) € GL,(Q).

Remark 10.8. If K is an algebraically closed valued field with valuation v and
value group I', and @), is an isogeny on (K*)", then ®j; induces a map on I,
which we will also denote by @), as follows

Py " — T
J = (M1, 7)
where the m; € Z" are as in Definition 10.7 and m;y = mi;v1 + -+ + M,iVn-
We extend v to (K*)™ by setting v(ay,...,a,) = (v(a1,...,v(a,)) and note that

vo®yr = ®@)rov by construction. By Remark 9.4, we have that an isogeny preserve
the dimension of a definable set D C I'™.

Lemma 10.9. Let X be a subvariety of (K*)™. And let @p; be an isogeny of (K*)™.
Then @y (X) is a subvariety of (K*)n and dim(X) = dim (P (X)).

Proof. We won’t prove this in detail, but the idea is to use that an isogeny is a
finite morphism, so in particular a closed map [Har77]. This implies that the image
of a subvariety under an isogeny will be a subvariety. The dimension of ®;(X)
follows from the fact that the restriction of @5, to X is also a finite morphism, and
a finite surjective morphism preserves dimension. O
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Definition 10.10. Let K be an algebraically closed field and let X be a subvariety
of (K*)*, defined by the polynomials Py,..., Py, € K[X1,..., X, X7 5 ..., X1
If L is an algebraically closed extension of K, we define

X(L):={be @) 7\3(5) ~0

Remark 10.11. (1) Consider the language £ and the theory ACF as in Ex-
ample 4.4. Let X C (K*)™ be a subvariety defined by the polynomials

P,...,PpceK[Xy,..., X0, X7, X1

n

We identify X with the affine algebraic set in (K*)?" defined by the poly-
nomials

Pi=Py(X1,..., Xp, Y, V) € K[Xy, .., X, V1,0, Y]
with ¢ € {1,...,m} and the polynomials X,;Y; — 1 with j € {1,...,n}.
Let ai,...,a,, € K be the coefficients of all the polynomials P1,..., P, €
K[X,Y]and let Q; € K[Ty,..., T, X1,...,Xn, Y1,...,Y,] be such that

_ISZ' = Qi(al,...,a,le,...,XmYl,...,Yn).

Let ¥(Z, 7, Z) be the £ g-formula

k n
NQi(@,7.2) =0 N\ yi-z=1
i=1 i=1

withZ=21,...,Zm, y=v1,...,Yn and Z = 21,...,2,. Then
X ={(be) € (K*)* | K |=[a,b,¢
so X is a definable set, defined over a. By Corollary 7.3.1, this shows that

X (L) in Definition ?? is well defined, since the theory ACF admits quan-
tifier elimination.

(2) If K is an algebraically closed valued field, with valuation vy and with value
group Ik, then vy naturally gives a map from (K*)™ to I'™, by sending
(a1,...,an) to (vk(a1),...,vik(a,)). We will denote this map by vx as
well. Let X be a subvariety of (K*)", viewed as a subset of (K*)?" defined
over a by ¥(Z, 7, Z), as above. Let ¢(Z,w) be the formula

/\ z; = v(w;)
i=1

and let
¢(z,w) = FyFz(Y(7,7, 2) A (g, 0)).
We then get
vi(X) = {7 € I’k | (K, I'x) = ¢[a, 7]},
50 vk (X) is a definable set. Furthermore, if (L, I'y) is a valued algebraically
closed extension of (K, '), we have that

vi(X(L) ={y € I'T | (L, I'L) |= ¢[a, 7]}
so v (X(L)) = v (X)((L,IL)). This shows that any formula defining
vi (X)) also defines v, (X (L)), by Corollary 7.3.1.
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Definition 10.12. Let (K, I'x) be a model of ACVF and let D C I'™ be a definable
set in (K, '), defined over a by an Lr-formula o(Z,y). If L is an algebraically
closed valued extension of K with value group I'r,, we define

D(Iy) ={y €Iy | (L I'x) F ¢la, 7]} -

Remark 10.13. In the situation of Definition 10.12, let ¥(Z, §) be a quantifier free
formula such that ¢ and 1 both define the set D over a. By Corollary 7.3.1, we
then have that D(I7,) is also defined by ¥ over a.

11. THE BIERI-GROVES THEOREM

Definition 11.1. Let I" be a totally ordered divisible abelian group. A I'-polyhedron
is a subset P C I'™ for some n € N such that

P=({7er @ <}
i=1
where ¢; € I' and 1, ..., pm are functions on the form

©; - " —r

n
(V15 m) > a7
j=1

with a; ; € Z. An R-polyhedron is called a real polyhedron.

Remark 11.2. For a totally ordered set, in particular a totally ordered divisi-
ble abelian group I', the order topology is the topology generated by the open
intervals

(,B)={vel'|a<y<p}

and the open rays
(yo0)={veTl|la<y} and (—oc,a)={yel|y<a}
for a, 8 € I'. This topology coincides with the usual topology on R™.

The order topology gives a topology on I'™ by using the product. It follows from
the definition that a I'-polyhedron is closed under this topology.

Lemma 11.3. Let I' be a non-zero totally ordered divisible abelian subgroup of R.
Then I' is dense in R with respect to the order, i.e. for any o, € R with a < 3,
we have that (a, 8) N T # (.

The proof is completely analogous to the standard proof that Q is dense in R,
using the Archimedean property of R, i.e. that for any £ € R, there exists a natural
number N such that N > &.
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Proof. Let a, 8 € R such that @« < g and let v € I'>g. Let N € N be such that
N > 5_% Define the set

A{”;V”meN}cf.

We claim that AN (a,b) # 0. Assume that AN (a,b) = 0 and let my; € N be the
greatest positive integer such that "% < «. Such an integer exists due to the
well ordering principle. Since mlTH’y € A, we then get that "“TH'V > (3. But this
implies

m1;17_%7: % < p—a.

This is a contradiction, so AN (a, 3) # @, which proves the lemma. O

b—a<

Theorem 11.4. Let K be an algebraically closed valued field with a valuation vg
and value group I'yy. Let X be an algebraic variety over the algebraic torus and
let d be the dimension of X. Then vi(X) is a finite union of I'x-polyhedra and
dim(vg (X)) < d.

This theorem appears in a more general setting as Theorem 1.2 A) in [Ducl2], and
we follow the proof given there.

Proof. Since vk (X) is a definable set in ', we have by 9.1 that

koot
vr(X) = U ﬂ{“? € I'g | ¢i;(7) >, 0}

i=1j=1

where ; ;€ {<, <}. We assume that ﬂgzl{ﬁ € I'f | @i (7)<, 0} is non-empty
for each ¢. Since ¢; ;(¥) > ; 0 implies that ¢; ;(¥) < 0, we only need to show that

k /£ k /£
UNerlem <oy el el lei;() s, 0}

i=1j=1 i=1j=1
To do this, it is enough to show that
¢ ¢
(V{7 € Ik 1 wig(3) <0} € ({7 € Tk | 01 (7) <5 0}
Jj=1 j=1

for each i € {1,...,k}.

For the remaining part, we fix i € {1,...,k} and write ¢; and <; instead of ¢; ;
and pq; ;. Let & = (a1, ..., a,) be an element in I'™ satisfying ¢;(a&) < 0 for all j.
We will show that ¢;(&) p<; 0 for all j, which proves the first part of the theorem.
Let

¢
Pi= ({7 € I% | ¢;(7) >; 0} C vic(X).
j=1
By assumption, it is non-empty. We define the function
d: P— FK

(Y15 -y Ym) — fgfgﬂ(%’ — Vi Vi — ).
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Note that d(P) is a definable set in 'y, since max;(c; — i,y — ;) is the element
satisfying the formula with parameters & and 7:
n

1/}[1‘,0_5,’_)/] = /\(ai -7 < ZE)

i=1 =1

(v —a; < ).

=

More precisely, we have that
¢
d(P)= {7 €Tk [ (K.Ik) EYT | | w0 0] = dl,a,7]
j=1

By Lemma 9.1, we have that d(P) consists of the elements v € 'k satisfying the
disjunction and conjunction of equalities of the form ~ + § > 0 with § € I'x and
n € Z. That is, d(P) is the finite union of intervals (which may be open or closed).
Since d(P) C I}t := {y € I'k | v > 0}, we must have that each of these intervals
have a lower endpoint in ' greater than or equal to 0. Let 5 € I'k be the minimum
of these lower endpoints. Since d(P) is the union of finitely many intervals, § is
well defined. Since 8 is the lower endpoint of an interval contained in d((P) and
since the order < is dense on Iy, we have that for any 8’ € I'k such that 8 < 5,
there is an element v € d(P) such that 5 < v < f’. Le. [ is the greatest lower
bound of d(P). We will show that 5 = 0.

For contradiction, suppose that 5 > 0.

Claim 1. There exists an element § = (01, ...,6,) € I'% such that the following
hold:

(1) For all i we have the inequality —%ﬂ <4 < %B.

(2) There exists an ig such that 5 < §;, or 9;, < —p.

(3) The element (g + 01,...,ay + 6y,) is in P.
Proof of Claim: Let 4 € P. Then for all j we have

o1 (M57) = 5 (et + i) by 0.

Hence &TH € P, which shows that we can find an element in P arbitrarily close to

@. So assume that ¥ = (71,...,79,) € P is such that
-3 3
By < 2
g B<m—ai<p

for all i € {1,...,n}. Now define J; := 7; — a;. Then all §; satisfy condition (1) in
the claim. Note that d(§) = max;(d;, —d;). Since S < d(¥), there exists an iy such
that 8 < §;, or 8 < —¢;,, which is equivalent to (2). Assertion (3) follows directly
from the fact that «; + d; = v; and 7 € P by assumption. This finishes the proof
of the claim.

Let § be as in Claim 1. Then

©; <o7+ ;5) =p; <d+(@+5)> = %(Sﬁj(d)+@j(0_‘+5)) >; 0
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for all j. So a + %5 € P. But then

2 i 2 2

contradicts assertion (1) in Claim 1 and the minimality of 5 since

1 3 1 3
5. < = — 0, < = .
25li4ﬁ<ﬁ and 261746<6

Hence, the assumption 5 > 0 is false, and we have that 5 = 0.

Now, let L be a valued algebraically closed extension of K with value group Iy, :=
I'y ® Quw, with w being an infinitesimal element strictly greater than 0, as in 6.4.

Let
¢

P':=P(In) = ({7 € I | ¢;(7) »4; 0}

j=1
and define the function d as above but with P’ as domain:
d: P — FL
T T gggxn(ai = Yis Vi — ).

We can think of the function d as measuring the distance between an element
4 € P’ and a. With this intuitive idea in mind, we will show that there is an
element 4 € P’ such that 4 which is in a sense infinitely close to @.

By the same argument as above, d(P’) is a definable set of I with greatest lower
bound 0. So, there exists an element § € Qw such that § € d(P’). Indeed, if
g ¢ d(P’') for any ¢ € Q, then w is a lower bound for d(P’) strictly greater
than 0. Let ¥ = (71,...,7) € d~%(8). Then max;(c; — v;, v — ;) = J, and so
Fy—a=6=(61,...,0,) € (Qw)™. Soa+d € P'. Since P’ is a subset of v, (X (L)),
there exists an element @ € X (L) such that v, (a) = & + 9.

Now, identify I''/Qw with 'k by factoring out all the infinitesimal elements. De-
note by 7 the natural projection I” — I'x. We define the map
vy L— 1T
a+— movg(a).
This is a valuation on L, since 7 is a homomorphism. We denote the valued field
(L,vy) by L'. Then X (L) = X(L), since X(L) only depends on the underlying
field. Thus, @ € X(L'). As noted in Remark 10.11, we have that X (L) is defined

by the same quantifier free formula as X and that v} (X (L)) is defined by the same
quantifier free formula as vy (X). This gives

E ¢
vi(@) e v, (X(L) =J ({7 eI | ¢i;(3) b 0}.
i=1j=1
But since v, (@) = @+ J, we have that v/ (@) = @. This shows that @ € v (X),
which was what we wanted to prove.

We will now show that dim(vx(X)) < d. Let P be a pavé of I'} contained in

v (X). Denote by ¢ the dimension of P. We will show that § < d. Since an isogeny
preserves dimension of both P and X, we can assume that

§
P =110 Re) x {vs415 -}
i=1
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with r;, R;,v; € I'x and r; < R;. Let I, be the totally ordered divisible abelian
group
I'n ®Qw; & --- & Qws
as defined in Lemma 6.4 and let L be a valued algebraically closed extension of K
having I'” as value group. Denote by P(I) the pavé of I'!* given by
1)

H(T’ia Rl) X {75-&-15 B afyn} C FlL

i=1
Then P(I', =C v, (X (L)) by Lemma 9.5 and (r1 + w1, ...,7s + s, Vs41s---+7n) €
P(I7), so

(rl +w1; TS +w57'y5+1a cee 7771) c VL(X(L))

Hence, there is a point a = (a1, ...,a,) € X(L) such that

VL(C_E) - (7‘1 +w17'°'7’r5 +W5,’Y5+1,...,’Yn)-

By restricting v, we get a valuation v}, on K’ = K(aq,...,as). Let I'y, be the
corresponding value group. Then r; +w; € 'y for alli € {1,...,}. We now claim
that the aq, ..., as are algebraically independent over K. For contradiction, suppose
that they are algebraically dependent over K. Then, there exists a polynomial
P € K[Xy,...,Xs] such that P(as,...,as) = 0, and so vy (P(ay,...,as)) = oo.
Using multi-index notation, we write

P(Xy,...,X5)= Y b X'
11]=1

with by € K* and m € N. By the strong triangle inequality, we get that
vi(bral) = v (bya’)
for some I # J, since vy, (P(aq,...,as)) would otherwise be equal to

mlin{VL(bIaI)} # 00.

We get that v, (a!) = vy, (a”)+v,, (brby). Since v, (a’) and v, (a”) arein @i = 1°Quw,
we get by the ordering on I'x & @‘;1 Quw that v, (brby) = 0 and v, (al) = v (a”).
But since the v, (a;) = r; +w; are Q-linearly independent, again due to the ordering
on I}, & @le Quw, this contradicts that I # J. Hence, a1, ...,as are algebraically
independent over K, which shows that the transcendence degree of K’ over K is at

least §. Furthermore, from Lemma 10.6 we have that the transcendence degree of K’
over K is bounded above by d. So § < d, which implies that dim(vi (X)) <d. O

From Theorem 11.4, we can now deduce the main result of this section, originally
Theorem A in [BGJ.

Corollary 11.4.1 (Bieri-Groves Theorem). Let K be an algebraically closed valued
field with a real valuation vy and value group I'y C R. Let X be an algebraic variety
over the algebraic torus (K*)™. Then the topological closure of vi(X) in R™ is a
finite union of real polyhedra.

Proof. From Theorem 11.4, we have that vy (X) is a finite union of I'k-polyhedra.
Write

k ¢
ve(X) =P := U ﬂ{w €Iy ei;(¥) <0}
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We claim that the closure of vy (X) in R™ is equal to

k¢
Pei=J ({7 €R" | ¢i;(3) <0}
i=1j=1
Since P C P and Py is closed, the inclusion P C Py is immediate. For the other
inclusion, we will show that any point of Py is a limit point of P.

Let & € Pg and let B.(@) be an open ball of radius € > 0 around & We will show
that Be(@) N P # 0. Let F. be the set consisting of the ¢; ; defining P such that
@i j(@) < 0 and let F_ be the set of p; ; defining P such that ¢; (@) = 0. If
F_ =0, then ¢, ;(§) < 0 for all 4,5. For 6 = (d1,...,6,) € I'%t, we have that

pij(a+0) =@+ Z Mis,i,50s
s=1

for some m; ; € Z. Since ' is dense in R we can pick an arbitrarily small element
0 € R™ such shat @ + 4 € I'™. In particular, we can choose ¢ so that @ +¢ € I'™,
||6 || < e and

n
D mgi bs| < |vis(@)]
s1
for all 7, j. So we get that
i j(@+0) = ¢i;(@) + Z M350

This shows that @+ 6 € Pr and so @+ 6 € B. N P, which is what we wanted to
show.

Suppose that F_ is not empty. The set
Pp={7€R" [ ¢;;(7) =0 forall ¢;; €F_}
is an affine subspace of R™ containing
P :={yelI |y ;(7)=0 forall ¢;; €F_}.

If P; = {a} for some & € R™, then & must be an element in I'}{ and so & is already
in P. One can see this by noting that in this situation, Gaussian elimination on
the system of linear equations ¢; ;(¥) = 0 will yield a unique solution on the form
(prat, .. qnay) = @ with ¢; € Q and «; € I'. Each g is in I since Ik is
divisible, hence & € I'jt. So assume that P’ is an affine subspace of dimension at
least 1. Up to a rigid transformation, P§ can be identified with R™ for some m < n,
and P’ is identified with I"™ under this transformation. Just as above, we can pick
an arbitrarily small 6 € R™ such that & + & € I/, identifying & with its image in
R™. Since rigid transformations preserve distance, we have that there are elements
7 € Py arbitrarily close to & € P. Hence, we can pick an element de Py} such that
a+6 € P, a+d € B(a) and
Pi 5 (64 + g) <0

for all ¢; ; € F.. By construction, & + § € P so we get that P N B.(a) # 0, and
we are done proving the corollary. O
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