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1. Introduction.

In this paper, we prove quantifier elimination for the theory of Algebraically Closed
Valued Fields in the 2-sorted language LΓ . We will present the necessary model
theoretic tools for this purpose. We will omit some technical details that are nec-
essary for a proper construction, but that are well documented in various sources.
In general, we follow the notations and approach used in [TZ12] and [PD11], where
the interested reader also can find more details about model theory in general.

1



2 VICTOR LISINSKI

2. Languages and structures.

Definition 2.1. Let S be a set. A language of sort S is a set consisting of the
following distinct symbols:

(1) Logical symbols: ¬ (not) ∧ (and) ∀ (for all) .
= (equals).

(2) Variables: For any s ∈ S, a collection of symbols xsi with i ∈ N.

(3) Relation symbols: For any n ∈ N and any s̄ = (s1, . . . , sn) ∈ Sn, a col-
lection of symbols Rs̄i with i ∈ Is̄, where Is̄ is an arbitrary, possibly empty,
index set.

(4) Function symbols: For any n ∈ N and any s̄ = (s1, . . . , sn, s) ∈ Sn+1,
a collection of symbols fs̄j with j ∈ Js̄, where Js̄ is an arbitrary, possibly
empty, index set.

(5) Constant symbols: For any s ∈ S a collection of symbols csk, with
k ∈ Ks, where Ks is an arbitrary, possibly empty, index set.

(6) Punctuation: , ) (

In this situation, we call S a set of sorts and we say that the variables, the relation
symbols, the function symbols and the constant symbols are the sorted symbols of
the language L. The tuple (s1, . . . , sn) ∈ Sn associated to any sorted symbol s, as
described above, is the called the sort of s.

There are slight variations on how to define a language, and we use the notation in
[PD11]. The reason for using .

= instead of = is to emphasise the difference between
a formal expression and assigning using equality in the naive way. For example, if
we want to say that ϕ is the string xs1

.
= xs2, we write ϕ = xs1

.
= xs2.

What distinguishes two languages of the same sort are their relation symbols, func-
tion symbols and constant symbols. Hence, we will denote a language of sort S
by

L = {Rs̄i, fs̄j , csk | s ∈ S, s̄ ∈ Sn, n ∈ N}.
For simplicity, we will often write just L = {Rs̄i, fs̄j , csk}. We will only consider
languages where the cardinality of S is finite. If |S| = n, we say that L is an
n-sorted language.

It is often convenient to use different letter for variables of different sorts. For
example, for a 2-sorted language of sort S = {s, t} we will often write (xi)i∈N
instead of (xsi)i∈N and (yi)i∈N or (ξ)i∈N instead of (xti)i∈N. By convention, we will
write x0 6

.
= x1 for ¬(x0

.
= x1).

The reader might have noticed that we excluded the commonly used symbols ∨,
→, ↔ and ∀ from the logical symbols. This is only for convenience when making
inductive proofs, and we will soon see that these symbol can also be introduced as
an abbreviation.
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Definition 2.2. Fix a language L = {Rs̄i, fs̄j , csk}. An L-structure M is given
by

(1) A set of non-empty sets {s(M) | s ∈ S).

(2) For each relation symbol R ∈ L of sort (s1, . . . , sn), a subset

RM ⊂ s1(M)× · · · × sn(M),

called the interpretation of R in M.

(3) For each function symbol of sort (s1, . . . , sn, s), a function

fM : s1(M)× · · · × sn(M)→ s(M).

called the interpretation of f in M.

(4) For each c ∈ C of sort S, an element cM ∈ S(M).

The disjoint union ∐
s∈S

s(M)

is called the universe of M.

We will use the convention to write structures of a language with curly letters, and
their corresponding universes with normal letters. For example, if M and N are
structures of some language of sort S, we write

M =
∐
s∈S

s(M) and N =
∐
s∈S

s(M).

We will denote an L-structure by M = (M,fMi , RM
j , c

M
k | i ∈ I, j ∈ J, k ∈ K).

Example 2.3. Let LG = {·, 0} be a language of sort {G}, where · is a binary
function symbol and 1 is a constant symbol. Then any group H gives a natural
LG-structure H = (H, ·H, 1H), where ·H is the group operation on H and 1H is
the identity element of H.

Example 2.4. Let LR = {+,−, ·, 0, 1} be a language of sort {R}, where +, − and
· are binary function symbols, and 0 and 1 are a constant symbol. Then any ring
S has a natural L-structure.

Example 2.5. Consider the set of sorts {R,G} and let LM = LRtLGt{Φ}, with
LR and LG being as above, and Φ being a function symbol of sort (R,G,G). Then
LM is a 2-sorted language of sort {G,R}. For any ring S and any S-module A, we
then have that A gives an LM structure by interpreting Φ as the action of S on A.

Example 2.6. As we will see in Section 8, there is a natural way to consider
Algebraically Closed Valued Fields as structures of a 2-sorted language.
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We will now use the logical symbols and the symbols of a language L to express
properties of a given L-structure. Properties are expressed by finite strings of
symbols, which we will define inductively.

Definition 2.7. Fix a language L of sort S. The terms of L, or L-terms, and
their sorts are defined inductively by:

(1) For each s ∈ S, the variables xsi with i ∈ N are terms of sort s.

(2) For each s ∈ S, the constant symbols csk are terms of sort s.

(3) For each s̄ = (s1, . . . , sn, s) ∈ Sn+1, each function symbol fs̄j with j ∈ J
and all terms t1, . . . , tn with ti having sort si, we have that fs̄j(t1, . . . , tn)
is a term of sort s.

Given a term t, we will write t(x1, . . . , xm) to indicate that the variables occurring
in t are among x1, . . . , xm. In this case, we also write t as t(x̄).

Definition 2.8. Fix a language L. The formulas of L, or L-formulas, are
defined inductively by:

(1) If t1 and t2 are L-terms, then t1
.
= t2 is an L-formula

(2) If t1, . . . , tn are terms of sorts s1, . . . , sn respectively and R is a relation
symbol of sort (s1, . . . , sn), then R(t1, . . . , tn) is an L-formula.

(3) If ϕ is an L-formula, then ¬ϕ is an L-formula.

(4) If ϕ1 and ϕ2 are L-formulas, then (ϕ1 ∧ ϕ2) is an L-formula.

(5) If ϕ is an L-formula and if x is a variable, then ∃xϕ is an L-formula.

Formulas of the form t1
.
= t2 or R(t1, . . . tn) are called atomic.

We will use the abbreviations

(1) (ϕ1 ∨ ϕ2) for ¬(¬ϕ1 ∧ ϕ2)

(2) (ϕ1 → ϕ2) for ¬(ϕ1 ∧ ¬ϕ2)

(3) (ϕ1 ↔ ϕ2) for (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)

(4) ∀xϕ for ¬∃x¬ϕ.

Definition 2.9. Let x be a variable. We define that x is free in a formula ϕ
inductively as follows:
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(1) x is free in t1
.
= t2 if x occurs in t1 or t2.

(2) x is free in R(t1, . . . , tn) if x occurs in one of the ti.

(3) x is free in ¬ϕ if x is free in ϕ

(4) x is free in (ϕ1 ∧ ϕ2) if x is free in ϕ1 or if x is free in ϕ2.

(5) x is free in ∃yϕ if x 6= y and x is free in ϕ.

Variables in a formula that are not free are called bound. We write ϕ(x1, . . . , xn) or
ϕ(x̄) to indicate that the only free variables of ϕ are among x1, . . . , xn. A formula
without free variables is called a sentence.

Remark 2.10. Note that the expressions t(x1, . . . , xn) in Definition 2.7 ϕ(x1, . . . , xn)
in Definition 2.9 is not uniquely determined by t or ϕ. For example, let t1 = x1,
t2 = x2 and ϕ = t1

.
= t2. Then we can write t1(x1), t2(x2) and ϕ(x1, x2) or

t1(x1, x2), t2(x2, x3) and ϕ(x1, x2, x3) or even t1(x1, x2, . . . , xn), t2(x1, x2, . . . , xn)
and ϕ(x1, x2, . . . , xn).

Example 2.11. Let LG = {·, 1}. Then
ϕ = ∀x∀y(x · y = y · x)

is a formula.

Example 2.12. Let LR = {+,−, ·, 0, 1}. Then
ϕn = 1 + · · ·+ 1︸ ︷︷ ︸

n times

.
= 0

is a formula.

Example 2.13. Let LR = {+,−, ·, 0, 1}. Then∧
n∈N>0

1 + · · ·+ 1︸ ︷︷ ︸
n times

6 .= 0

is not a formula, since it is an infinite string.

3. Satisfaction.

When we do mathematics, we often use intuitively what it means for a formula
to be satisfied by some elements in a structure. For example, consider the LG-
formula ϕ(x1) = ∃x2(x2 · x2

.
= x1), with LG being the language of groups defined

in Example 2.3. This formula expresses the statement that an element is a square,
which we know is true for any element in the LG-structure (R, ·), but not only for
certain elements in the LG-structure (Q, ·). In this section, we will make this notion
precise.



6 VICTOR LISINSKI

We fix a language L and an L-structure M. If t(x1, . . . , xn) is a term of sort s with
each xi having sort si, then by composition of functions, we can define a function

tM :
n∏
i=1

si(M)→ s(M).

By Remark 2.10, the function tM is not canonical. This is however not a problem,
as the choice of such a function does not change the definition below.

Definition 3.1. Let M be an L structure. For L-formulas ϕ of a given sort
(s1, . . . , sn) and ā = (a1, . . . , an) ∈

∏n
i=1 si(M), we define the relation

M |= ϕ[ā]

inductively as follows:

(1) If t1(x1, . . . , xn) and t2(x1, . . . , xn) are terms and if tM1 [ā] = tM2 [ā], then
M |= (t1

.
= t2)[ā]

(2) If R is a relation symbol of sort s1, . . . , sn, if t1, . . . , tn are terms of sorts
s1, . . . , sn respectively and if RM(tM1 [ā], . . . , tMm [ā]), then M |= R(t1, . . . , tm)[ā]

(3) If it is not the case that M |= ϕ[ā], then M |= ¬ϕ[ā]. We also write
M 6|= ϕ[ā].

(4) If M |= ϕ1[ā] and M |= ϕ2[ā], then M |= (ϕ1 ∧ ϕ2)[ā].

(5) If there exists an element b ∈ M such that M |= ϕ
[
ā bx

]
, where ā bx =

(a0, . . . , ai−1, b, ai+1, . . . , an) if x = xi, then M |= ∃xϕ.

Example 3.2. Again, let LG = {·, 1}, where · is a binary function symbol and 1
is a constant symbol. Let ϕ(x) be the formula ∀y(y · x .

= y). If H is a group, then
we have that H |= ϕ[1H ], hence H |= ∃xϕ.

Example 3.3. As in Example 2.11, consider the language LG-formula

ϕ = ∀x∀y(x · y = y · x).

Let H be a group and consider H as an LG-structure. It can be verified, using
Definition ?? and the fact that ∀ is in fact an abbreviation as described after
Definition 2.8 that H |= ϕ if and only if H is commutative.

Example 3.4. Let LR and ϕn be as in Example ??. Let A be a ring and consider
A as an LR-structure. It follows from Definition ?? that A |= ϕn if and only if A
has characteristic a divisor of n. Therefore, a ring A has characteristic zero if and
only if A |= ¬ϕn for all n ∈ N>0. With this in mind, it might be tempting to say
that a ring A has characteristic zero if and only if A |=

∧
n∈N>0

¬ϕn. However, this
is not well defined since

∧
n∈N>0

¬ϕn is not a formula, as noted in Example ??. One
might ask if it is possible to find another sentence ψ such that A |= ψ if and only
if A has characteristic 0. In section 5, we will see that this cannot be done when A
is an algebraically closed fields.
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Definition 3.5. Let L be a language of sorts S and let M and N be L-structures.
A map g : M → N is called an L-homomorphism if for all (s1, . . . , sn, s) ∈ S and
all (a1, . . . , an) ∈

∏n
i=1 si(M),

g(cM) = cN

g(fM(a1, . . . , an)) = fN(g(a1), . . . , g(an))

RM(a1, . . . , an)⇒ RN(g(a1), . . . , g(an))

where c is any constant symbol, f is any function symbol of sort (s1, . . . , sn, s)
and R is any relation symbol of sort (s1, . . . , sn). When g : M → N is an L

homomorphism, we write
g : M→ N.

If in addition g is injective and

RM(a1, . . . , an)⇔ RN(g(a1), . . . , g(an))

we say that g is an L-embedding. If g is a surjective embedding, we say that g is
an L-isomorphism, and we write

h : M→̃N.

Definition 3.6. Let L be a language and let M and N be L-structures. If M ⊂ N
and the natural inclusion is an embedding of L-structures, we say that M is a
substructure of N. In this case, we call N an extension of M.

Definition 3.7. Let L and let M and N be L-structures. We say that M is an
elementary substructure of N, and that N is an elementary extension of M,
if for any formula ϕ(x1, . . . , xn) and any (a1, . . . , an) ∈Mn, we have

M |= ϕ[ā]⇔ N |= ϕ[ā].

Example 3.8. Consider the language L = {+, <}, where + is a binary function
and < is a binary relation. We view Z and Q as L-structures, with + interpreted
as the usual addition and < interpreted as the usual ordering. Then the inclusion
i : Z ↪→ Q is an L-embedding, so (Q,+, <) is an extension of (Z,+, <). However,
it is not an elementary extension. To see this, let ϕ(x, y) be the formula

∃z(x < z ∧ z < y).

Then we have that Z 6|= ϕ[0, 1], but Q |= ϕ[0, 1].

Example 3.9. It is difficult to prove that an L-embedding is an elementary em-
bedding, since a priori we have to consider all possible formulas L-formulas. We
will see in Section 5 a general situation where elementary extensions naturally arise.
This will allow us to show that C is an elementary extension of the algebraic closure
of Q, viewed as LR-structures.
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4. Theories.

Definition 4.1. Let L be a language. An L-theory is a set of sentences of the lan-
guage L. A model of a theory T is an L-structure M which satisfies all sentences
of T . We write M |= T if M is a model of T . A theory is said to be consistent if
it has a model. A theory which is not consistent is called inconsistent.

The class of all models of a theory T is denoted Mod(T ). If K is a class of L-
structures, then Th(K) denotes the set of all sentences true in all elements of K.
We denote Th({M}) by Th(M). If ϕ is a sentence that holds in all models of a
theory T , then we write T |= ϕ.

Definition 4.2. Two L-structures M and N are said to be elementary equiva-
lent, denoted M ≡ N if Th(M) = Th(N), i.e. if they satisfy the same sentences.
A theory T is complete if given a sentence ϕ, either T |= ϕ or T |= ¬ϕ.

If M is an L-structure and ϕ is a sentence, then M |= ϕ or M 6|= ϕ. The latter
being the same as M |= ¬ϕ by definition, so we have that Th(M) is complete.

Example 4.3. Let LG = {·, 1} and let Tgroup = {ϕ1, ϕ2, ϕ3}, where

ϕ1 = ∀x1∀x2∀x3((x1 · x2) · x3
.
= x1 · (x2 · x3))

ϕ2 = ∀x((1 · x .
= x) ∧ (x · 1 .

= x))

ϕ3 = ∀x1∃x2((x1 · x2
.
= 1) ∧ (x2 · x1

.
= 1)).

Then the models for Tgroup coincide with the category of groups.

Example 4.4. Let LR = {+,−, ·, 0, 1} and let Tfield be the theory consisting of
the field axioms:

(1) ∀x1∀x2∀x3((x1 + x2) + x3
.
= x1 + (x2 + x3))

(2) ∀x1∀x2(x1 + x2
.
= x2 + x1)

(3) ∀x(x+ 0
.
= x)

(4) ∀x(x− x .
= 0)

(5) ∀x1∀x2∀x3((x1 · x2) · x3
.
= x1 · (x2 · x3))

(6) ∀x1∀x2(x1 · x2
.
= x2 · x1)

(7) ∀x(x · 1 .
= x)

(8) ∀x1∃x2((x1 6
.
= 0)→ (x1 · x2

.
= 1))
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Then any field K is a model for Tfield. Furthermore, if

Tclosed =

∀x0 · · · ∀xn∃y

 n∑
i=0

xi · yi = 0

 | n ∈ N>0

 ,

then any algebraically closed field is a model for Tfield ∪ Tclosed, and we call this
theory ACF.

The following theorem is a very important standard result in model theory. We
will not prove it here, but it can be found for example as Theorem 1.5.6 in [PD11].

Theorem 4.5 (Compactness Theorem). Let T be an L-theory. Then T is con-
sistent if and only if it is finitely consistent, i.e. if every finite subset of T is
consistent.

The compactness theorem is very useful to show the existence of models. We will use
it in combination with the following lemma, which we also just state for reference.
See [PD11, p.27] for a proof.

Lemma 4.6. Let T be an L-theory and let ϕ be an L-sentence. Then T |= ϕ if
and only if T ∪ {¬ϕ} is inconsistent.

5. Quantifier elimination.

Definition 5.1. Let L be a language containing a constant symbol. An L-theory
T has quantifier elimination, or eliminates quantifiers, if for any formula
ϕ(x̄) there exists a quantifier free formula ψ(x̄) which is equivalent to ϕ(x̄) modulo
T , i.e. if

T |= ∀x̄(ϕ(x̄)↔ ψ(x̄)).

Note that the latter notation makes sense even if ϕ(x̄) is not a sentence, since all
free variables in ϕ will be bounded in the sentence ∀x̄(ϕ(x̄)↔ ψ(x̄)).

Example 5.2. Consider the language LR of rings and the theory of algebraically
closed fields, ACF from Example 4.4. The formula ϕ(x) = ∃y(y2 .

= x) is true for
all elements in an algebraically closed fields. Hence, we get

ACF |= ∀x(ϕ(x)↔ x
.
= x)

since x .
= x is also true for all elements in an algebraically closed field.

The example above shows that a particular formula is equivalent to a quantifier
free formula modulo ACF. The following well known result, which can be found
for example in [Mar02, p.85], shows that this is true for any formula in ACF:
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Theorem 5.3. The theory of algebraically closed fields, ACF from Example 4.4
eliminates quantifiers.

Example 5.4. The theory of fields, Tfield from Example 4.4 does not eliminate
quantifiers. We justify this by the following counterexamples:

(1) Let ϕ = ∃x(x2 .
= −1). If Tfield would eliminate quantifier, there would exist

a formula ψ without quantifiers such that

Tfield |= ϕ↔ ψ.

In particular, we have that Q 6|= ψ, since Q 6|= ϕ. Since ψ is quantifier free,
it only relates to the characteristic of the field as described in the proof
of 5.7. Hence, we also have that C 6|= ψ and so C 6|= ϕ. But this is a
contradiction, since i ∈ C satisfies x2 .

= −1. This shows that Tfield does not
eliminate quantifiers.

(2) Let ϕ(x) = ∃y(x
.
= y2) and consider the definable set

S = {q ∈ Q | Q |= ϕ[q]},
i.e. the set of all squares in Q. We claim that S is not definable by a
quantifier free formula. To see this, suppose for contradiction that S is
defined by a quantifier free formula ψ(x). Note that ψ then can be written
as

ψ(x) =

k∨
j=1

∧̀
i=1

Pi,j(x) li,j 0

where li,j∈ {
.
=, 6 .=} and Pi,j ∈ Z[X]. Since S is infinite, there must be a j0

such that ∧̀
i=1

Pi,j0(x) li,j0 0

is satisfied by infinitely many elements in Q. Since a polynomial has only
finitely many roots, all li,j0 are equal to 6 .=. Let

V = {ω ∈ C | Pi,j0(ω) = 0 for all i ∈ {1, . . . `}}.
Since V is finite, we can define m = maxω∈V (|ω|). Let N be an integer
strictly larger than m. Then Q |= ψ[−N ], since −N /∈ V . But −N /∈ S, so
S is not defined by a quantifier free formula.

(3) The same argument as in (1) shows that the set of square in R is not defined
by a quantifier free formula.

Example 5.5. Consider the language LR of rings and the theory of algebraically
closed fields. We now return to the question whether the property of having char-
acteristic 0 is expressible by a sentence. Suppose that there is such a sentence,
i.e. a sentence ϕ0 such that K |= ϕ0 if and only if K has characteristic 0, where
K is an algebraically closed field. By quantifier elimination, ϕ0 is equivalent to a
sentence ψ without quantifiers. Let ` be the total number of symbols in ψ, and let
m be the maximal number that can be obtained using ` instances of 1, addition and
multiplication. Since a quantifier free formula in LR can only be finite disjunctions
and conjuctions of equalities involving 1 and 0, ψ can only contain disjunctions and
conjunctions of equalities and inequalities involving 0, 1, . . . ,m. Let p be a prime
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number greater than m. Then any equality and inequality involving 0, 1, . . . ,m is
true in and algebraically closed field of characteristic 0 if and only if it is true in
an algebraically closed field of characteristic p. This contradicts our choice of ϕ0,
so there is no such ϕ0.

Example 5.6. We can use the previous example to show that there is no formula
for the property of a group being torsion free in the language LG. Indeed, suppose
that there is such a formula. Then we can use this formula in the language LR, to
describe that the group (K,+) is torsion free, for a field K. But this means exactly
that K has characteristic zero, so there is no such formula.

The following two theorems are direct applications of quantifier elimination for
algebraically closed fields.

Theorem 5.7. Let P1, . . . , Pm ∈ Q[X1, . . . , Xn]. Then the following are equivalent:

(1) There exists (α1, . . . , αn) ∈ (Qalg)n such that Pi(α1, . . . , αn) = 0 for all
i ∈ {1, . . . ,m}.

(2) There exists (α1, . . . , αn) ∈ Cn such that Pi(α1, . . . αn) = 0 for all i ∈
{1, . . . ,m}.

Proof. Let D be the least common multiple of the denominators of all the coeffi-
cients of all the polynomials Pi. Then DPi ∈ Z[X1, . . . , Xn] and DPi(α1, . . . , αn) =
0 if and only if Pi(α1, . . . , αn) = 0. We can now write each coefficient a of DPi as
±(1 + · · ·+ 1︸ ︷︷ ︸

|a| times

). Hence

∃x̄

 m∧
i=1

DPi(x̄) = 0


is a formula in the language LR. Therefore, it is equivalent to a quantifier free for-
mula ϕ modulo ACF. Since any such formula can only express equalities involving
0 and 1, and both Qalg and C have characteristic zero, we get that if ϕ is true in
one of the fields, it is also true in the other. �

Theorem 5.8. Let K and L be algebraically closed fields such that K is a subfield
of L. Let P1, . . . , Pm ∈ K[X1, . . . , Xn]. Then the following are equivalent:

(1) There exists (α1, . . . , αn) ∈ Kn such that Pi(α1, . . . , αn) = 0 for all i ∈
{1, . . . ,m}.

(2) There exists (α1, . . . , αn) ∈ Ln such that Pi(α1, . . . αn) = 0 for all i ∈
{1, . . . ,m}.

This theorem cannot be proved directly in the same way as Theorem 5.7, as we
cannot write polynomials in K multiplied by an integer as formulas.
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Proof. Let a1, . . . , aN be all the coefficients of the polynomials P1, . . . , Pm. Then
we can write Pi(X1, . . . , Xn) = Qi(X1, . . . , Xn, a1, . . . , aN ) for some polynomial
Qi ∈ K[X1, . . . Xn, Y1, . . . , YN ]. Consider the formula

∃x1, . . . , xn

m∧
i=1

Qi(x1, . . . , xn, y1, . . . , yN ) = 0.

This formula has free variables among y1, . . . , yN . Hence, it is equivalent to a
quantifier free formula ψ(y1, . . . , yN ). That all the Pi:s have a common root x̄ ∈ Ln
is therefore the same as ψ[a1, . . . , aN ] is satisfied by L. But since (a1, . . . , aN ) ∈ KN ,
this means that ψ[a1, . . . , aN ] is also satisfied byK, by the same argument as above,
since K and L have the same characteristic. �

As seen in Theorem 5.7 and Theorem 5.8, rather strong results sometimes follows
almost immediately from quantifier elimination of a theory. In the light of this, it is
not unreasonable to suspect that quantifier elimination can sometimes be difficult
to prove. Indeed, the main point with this whole paper is to prove quantifier
elimination for the theory of Algebraically Closed Valued Fields. For this, we need
to introduce some more model theoretic machinery.

Let L be a language of sort S and let {csα | s ∈ S, α ∈ I} for some index set I be a
set of constant symbols not appearing in L. We then obtain an expanded language
L′ = L ∪ {cα | α ∈ I} of sort S. For any sorted symbol s in L′ we denote by S(s)
the sort of s. Similarly, we denote the sort of an L-term t by S(t). Let sα = S(cα).
If M is an L-structure and

∏
α∈I sα(M) is non-empty, then M can be viewed as an

L′-structure by the interpretation cMα = aα ∈ sα(M).

Definition 5.9. With the notation above, if M is an L-structure and A ⊂
∐
s∈S s(M)

we will denote by L(A) the language obtained by for each a ∈ A adjoining to L a
constant symbol ca with S(ca) = S(a). In this case, M gives an L′ structure as
described, since a ∈ sa(M) for each a ∈ A.

If T is a theory in the language L, we can view T as a theory T ′ in the language
L′, since every L-sentence is also an L′-sentence. If M is a model of T which can
be viewed as a L′-structure in the sense described above, then M induces a model
M′ of T ′. Similarly, any model M′ of T ′ can be viewed as a model M of T .

Lemma 5.10. Let T be a theory in a language L of sorts S and let ϕ(x1, . . . , xm)
be an L-formula. Let c1, . . . , cm be constant symbols not appearing in L and define
L′ = L ∪ {c1, . . . , cm} with ci and xi having the same sort. Denote by T ′ the
theory T viewed as an L′-theory. Then T |= ∀x1 · · · ∀xmϕ(x1, . . . , xm) if and only
if T ′ |= ϕ[c1, . . . , cm].

Proof. Suppose that T |= ∀x1 · · · ∀xmϕ(x1, . . . , xm). Let M′ be any model of
T ′ and let ai = cM

′

i . Let M be the corresponding model of T . Then M |=
∀x1 · · · ∀xmϕ(x1, . . . , xm). In particular, M |= ϕ[a1, . . . , am] and so

M′ |= ϕ[cM
′

1 , . . . , cM
′

m ].
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Conversely, assume that T ′ |= ϕ[c1, . . . , cm]. LetM be a model of T . Let si = S(xi).
Since s(M) is non-empty for each s ∈ S, by 2.2, the set

∏m
i=1 si(M) is non-empty.

Let (a1, . . . , am) be any element in
∏m
i=1 si(M) and let M′ be the L′-structure

obtained by interpreting cM
′

i = ai. As noted before, M′ is a model of T ′, so by
assumption, M′ |= ϕ[cM

′

1 , . . . , cM
′

m ]. Hence, M |= ϕ[a1, . . . , am] and the lemma is
proved. �

Definition 5.11. Let L be a language of sort S and let M be an L-structure. Let
x̄ = (x1, . . . , xn) be a tuple of variables with xi having sort si ∈ S. Let Σ(x̄) be a
set of L-formulas with free variables among the xi. We say that Σ(x̄) is realised
in M if there exists an element ā ∈

∏n
i=1 si(M) such that for each ψ(x̄) ∈ Σ(x̄), we

have
M |= ψ[ā].

In this situation, we write
M |= Σ[ā].

Definition 5.12. Let L, M and Σ(x̄) be as in Definition 5.11. We say that Σ(x̄)
is finitely satisfiable in M if every finite subset of Σ(x̄) is realised in M.

Definition 5.13. Let L be a language and let M be an L-structure. For an infinite
cardinal κ, we say that M is κ-saturated if whenever A is a subset of M such that
|A| < κ and Σ(x̄) is a set of L(A)-formulas (with L(A) being the language defined
in Definition 5.9) which is finitely satisfiable in M, then Σ(x̄) is realised in M.

We will use, but not prove, the following result which can be found for example as
Theorem 2.5.2 in [PD11].

Theorem 5.14. Let L be a language and denote by κL the cardinality of L. Let
M be an L-structure. Then, for any cardinal κ > κL, there exists an elementary
extension N of M such that N is κ-saturated.

Remark 5.15. We will only consider countable languages, and so the L-structures
we will consider will always have κ-saturated elementary extensions for any κ > ℵ0.

Remark 5.16. Let T be an L-theory, let M be a model of T and let N be an
elementary extension of M. By definition we have that N satisfy exactly the same
sentences as M. In particular, N is also a model of T . Using Theorem 5.14, we get
that for any model M of a theory T , there exists an elementary extension N such
that N is an ℵ1-saturated model of T .

Lemma 5.17. Let T be a theory in a language L of sorts S containing a constant
symbol c. Let ϕ(x̄) be a formula of sort s̄ = (si)1≤i≤m ∈ Sm which is not equivalent
to a quantifier free formula modulo T . Then, there exists two models M and N of T
and ā ∈

∏m
i=1 si(M), b̄ ∈

∏m
i=1 si(N) such that ā and b̄ satisfy the same quantifier

free formulas while M |= ¬ϕ(ā) and N |= ϕ(b̄).
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We follow the proof by Anand Pillay in [Pil, p.22].

Proof. Let Σ(x̄) be the set of quantifier free formulas ψ(x̄) such that

T |= ∀x
(
ϕ(x̄)→ ψ(x̄)

)
.

Note that if ψ1(x̄), . . . , ψn(x̄) ∈ Σ(x̄), then
∧n
i=0 ψi(x̄) ∈ Σ(x̄). Also note that

ϕ(x̄) is not false, since c 6= c is quantifier free L-formula. So if ψ(x̄) ∈ Σ(x̄) then
¬ψ(x̄) /∈ Σ(x̄). Define the language L′ = L ∪ {c1, . . . , cm} where c1, . . . , cm are
new constant symbols of sorts s1, . . . , sm respectively and let Σ[c̄] be the set of
L′-sentences obtained by replacing xi for ci. Denote the theory T viewed as an
L′-theory by T ′.

Claim 1. The theory T ′ ∪Σ[c̄] ∪ {¬ϕ[c̄]} is consistent.

Proof of Claim 1. If T ′∪Σ[c̄]∪{¬ϕ[c̄]} inconsistent, then T ′∪Σ[c̄] |= ϕ[c̄] by Lemma
4.6. Hence, by the compactness theorem, there exists ψ1, . . . , ψn ∈ Σ(x̄) such that
T ′ ∪ {ψ1[c̄], . . . , ψn[c̄]} |= ϕ[c̄] and so T ′ ∪ {ψ1[c̄] ∧ · · · ∧ ψn[c̄]} |= ϕ[c̄]. Writing
ψ1 ∧ · · · ∧ ψn as ψ, we get that T ′ |= ψ[c̄] → ϕ[c̄], so T |= ∀(x̄(ψ(x̄) → ϕ(x̄)) by
Lemma 5.10. But T |= ∀x̄(ϕ→ ψ) by definition of Σ(x̄), so T |= ∀x̄(ψ ↔ ϕ). This
contradicts ϕ not being equivalent to a quantifier free formula, hence the claim.

Let M′ be a model of T ′ ∪Σ(c̄) ∪ {¬ϕ(c̄)} and denote by M be the corresponding
model of T . Let ā = c̄M

′ ∈
∏m
i=1 si(M). Then M |= ¬ϕ(ā) and M |= ψ(ā) for all

ψ ∈ Σ. Let ∆(x̄) be the set of quantifier free formulas ψ(x̄) of sort s̄ such that
M |= ψ[ā] and let ∆[c̄] be the set of corresponding L′-sentences. By definition,
Σ(x̄) ⊂ ∆(x̄). If ψ ∈ ∆, then ¬ψ /∈ ∆ since, by definition, M |= ¬ψ[ā] if and only
if M 6|= ψ[ā]. Note also that if ψ(x̄) is a quantifier free formula of sort s̄ and ψ /∈ ∆,
then M 6|= ψ[ā] and so M |= ¬ψ[ā] by definition. Hence ¬ψ ∈ ∆. This implies that
∆ is maximal in the sense that for any quantifier free formula of sort s̄, either ψ or
¬ψ is in ∆.

Claim 2. The theory T ′ ∪∆[c̄] ∪ {ϕ[c̄]} is consistent.

Proof of Claim 2. We prove this by contradiction. Suppose that T ′ ∪∆[c̄] ∪ {ϕ[c̄]}
is not consistent. Then by Lemma 4.6

T ′ ∪∆[c̄] |= ¬ϕ[c̄].

By the compactness theorem, there are ψ1, . . . , ψn ∈ ∆(x̄) such that

T ′ ∪ {ψ1[c̄], . . . , ψn[c̄]} |= ¬ϕ[c̄].

Hence, letting ψ =
∧n
i=1 ψi we get

T |= ∀x̄(ψ → ¬ϕ).

So by Boolean calculus we have

T |= ∀x̄(ϕ→ ¬ψ).

By definition of Σ(x̄), we get that ¬ψ ∈ Σ(x̄). Since Σ(x̄) ⊂ ∆(x̄) we then have
¬ψ ∈ ∆(x̄). By the same argument as for Σ(x̄) we have that ∆(x̄) is closed under
finite conjunction, so ψ ∈ ∆. This is a contradiction, as we have shown that not
both ψ and ¬ψ can be in ∆, which proves the claim.

By Claim 2, there is a model N′ of T ′∪∆[c̄]∪ϕ[c̄]. Denote the corresponding model
of T by N and let b̄ = c̄N

′ ∈
∏n
i=1 si(N). Then N |= ∆[b̄] and N |= ϕ[b̄]. Since ∆ is
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maximal, the quantifier free formulas satisfied by b̄ in N is exactly the formulas in
∆. Hence, ā and b̄ satisfy the same quantifier free formulas, namely the formulas
in ∆(x̄) while M |= ¬ϕ(ā) and N |= ϕ(b̄). �

Remark 5.18. Let L be a language of sorts S and let M be an L-structure. If
(Nα)α∈I is a family of substructures of M having at least one common element,
then we get a substructure N of M, defined as follows:

(1) For each s ∈ S, define s(N) :=
⋂
α∈I s(Nα).

(2) For each relation symbol R ∈ L, define RN =
⋂
α∈I R

Nα .

(3) For each function symbol f ∈ L of sorts (s1, . . . , sn, s), define

fN = s1(N)× · · · × sn(N)→ s(N)

as the restriction of fM to s1(N)× · · · × sn(N).

(4) For each constant symbol c ∈ L, define cN := cM.

We denote this substructure N by
⋂
α∈I Nα.

Definition 5.19. Let L be a language and let M be an L-structure. Let A ⊂ M
and let (Nα)α∈I be the family of substructure of M such that A ⊂ Nα. We denote
by 〈A〉L the substructure of M generated by A, i.e. the substructure of M⋂

α∈I
Nα,

as defined in Remark ??.

The substructure 〈A〉L can be constructed inductively in the following way:

Proposition 5.20. Let L be a language of sorts S and let M and A be as in
Definition 5.19. For any subset B ⊂ M , we denote s(B) = B ∩ s(M). For any
sorted symbol s ∈ L, denote by S(s) the sort of s. Let C be the set of constant
symbols in L and let F be the set of function symbols in L. Let

A0 = A ∪ {cM | c ∈ C}.
For any function symbol f , denote by D(f) the domain of fM and let

Ai+1 = Ai ∪ {fM(a1, . . . , an) | f ∈ F, (a1, . . . , an) ∈ D(f) ∩Ani }.
Then 〈A〉L =

⋃
i∈NAi

Proof. See Proposition 1.2 in ??. �

Example 5.21. Let LR be the language of rings, as in Example 2.4. Let K be a
field and let A be a subset of K. Then 〈A〉LR is the subring of K generated by the
elements in A. For example, if K = Q, and A = {0,

√
2}, then 〈A〉LR = Z⊕ Z

√
2.
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Lemma 5.22. Let T be a theory in a language L of sorts S containing a constant
symbol. Let M and N be two ℵ1-saturated models of T with universes M and N
respectively. Then the following are equivalent:

(1) The theory T eliminates quantifiers.

(2) Every existence formula with only one quantifier is equivalent to a quanti-
fier free formula.

(3) If A0 ⊂ M and B0 ⊂ N are at most countable subsets and if there exists
an isomorphism f : 〈A0〉L

∼−→ 〈B0〉L of L-structures sending A0 to B0

then for every element a ∈M , there exists an isomorphism of L-structures
g : M′

∼−→ N′ extending f with a ∈M ′, M′ ⊂M and N′ ⊂ N.

(4) If A0 ⊂M and B0 ⊂ N are finite subsets and if there exists an isomorphism
f : 〈A0〉L

∼−→ 〈B0〉L of L-structures sending A0 to B0 then for every
element a ∈M , there exists an isomorphism of L-structures g : M′

∼−→ N′

extending f with a ∈M ′, M′ ⊂M and N′ ⊂ N.

Proof. (1) ⇔ (2):
The implication (1)⇒ (2) is immediate. The other direction is proved by induction
on the formulas. Intuitively, the idea is to remove one quantifier at the time. For
the details, we refer to Lemma 3.2.4 in [TZ12].

(1) ⇒ (3) and (1) ⇒ (4):
Let A0, B0, f and a be as in (3). Denote A = 〈A0〉L and B = 〈B0〉L. If A0

and B0 are countable, define L′ = L ∪ {c0, c1, . . .} with ci being new constant
symbols. Fix ϕA0

: N ∼−→ A0. If A0 and B0 are finite of cardinality n, define
instead L′ = L ∪ {c0, . . . , cn} and ϕA0

: {1, . . . , n} ∼−→ A0. Let M′ be the L′

structure having the same universe as M, with the interpretation cM
′

i = ϕA0
(i), as

described before Definition 5.9. Let ϕB0 = f ◦ ϕA0 and let N′ be the L′-structure
having the same universe as N, with the interpretation cN

′

i = ϕB0(i). Let ΣA0 be
the set of quantifier free L′-sentences ψ such that M′ |= ψ and let ΣB0

be the set
of quantifier free L′-sentences ψ such that N′ |= ψ. Denote by C the set of new
constant symbols added to L to obtain L′.

Claim 1. In the situation above, we have that ΣA0 = ΣB0 .

Proof of Claim 1. Let ψ(x1, . . . , xk) be an L-formula such that ψ[ci1 , . . . , cik ] ∈ ΣA0
,

where ci1 , . . . , cik ∈ C. By definition, M |= ψ[ā], where ā = (ϕA0
(ij)1≤j≤k). Since

A is a substructure of M, we have that A |= ψ[ā]. Since f is an isomorphism of
L-structures, this implies that B |= ψ[f(ā)] and consequently that N |= ψ[f(ā)].
By definition, we then have that N′ |= ψ, so ψ ∈ ΣB0 . The same argument gives
that ΣB0

⊂ ΣA0
, by noting that f−1 ◦ϕB0

= ϕA0
and that f−1 is an isomorphism.

This proves the claim.

Let Σa be the set of all L′-formulas satisfied by a in M ′ = M . By definition,
Σa is closed by finite conjunction. Also, Σa is maximal in the sense that if ϕ
is an L′-formula of the same sort as a, then either M′ |= ϕ(a) or M′ |= ¬ϕ(a),
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so either ϕ ∈ Σa or ¬ϕ ∈ Σa. Furthermore, we can write all elements in Σa
as ϕ[c0, . . . , cn, x], with ϕ being an L-formula. We will use the notation ϕc̄(x).
Since M′ |= ∃xϕc̄(x) we get from quantifier elimination that M′ |= φc̄ for some
quantifier free L′-sentence φc̄ with constant symbols among c0, . . . , cn. Hence φc̄ is
in ΣA0

and ΣB0
, which gives that N′ |= φc̄ and so N′ |= ∃xϕc̄(x). By definition

of the interpretation of c0, . . . , cn in N′, we thus get that N |= ∃xϕ[f(ā), x]. By
ℵ1-saturation of N and since Σa is closed under conjunction, we get that Σa is
realised in N′, i.e. there exists an element b in N satisfying all formulas in Σa. Let
Σb be the set of all L′-formulas satisfied by b in N ′ = N . By maximality of Σa,
we get that Σa = Σb. Now consider the language L̃ = L′ ∪ {c}, where c is a new
constant symbol of the same sort as the elements a and b. If we regard M′ and N′

as L̃-models M̃ and Ñ by interpreting cM̃ = a and cÑ = b, we get that M̃ and Ñ

satisfy the same quantifier free L̃-formulas.

Now, note that any element in A can be written as t[ā, a] with t being a term and
ā = (a1, . . . , an) ∈ An0 . Similarly, any element in B can be written as t[b̄, b] with
b̄ = (b1, . . . , bn) ∈ Bn0 . We define the map

h : A −→ B

t[ā, a] 7−→ t[g(ā), b].

To see that it is well-defined and injective, note that t1[ā, a] = t2[ā, a] if and only
if M̃ satisfy the quantifier free L̃-formula t1[c̄, c]

.
= t2[c̄, c]. This is equivalent to

the fact that Ñ satisfy the same formula. Hence, t1[ā, a] = t2[ā, a] if and only
if t1[g(ā), b] = t2[g(ā), b] ∈ N , which shows that h is well-defined and injective.
It is surjective by construction, since g maps A0 onto B0. To see that h is an
isomorphism of L-structures we need to verify that

RA(t1[ā, a], . . . , tn[ā, a])⇔ RB(t1[g(ā), b], . . . , tn[g(ā), b])

for any relation symbols R of L But since R(t1[c̄, c], . . . , tn[c̄, c]) is a quantifier free
L̃-formula, this follows from the fact that M̃ and Ñ satisfy the same quantifier free
L̃-formulas.

(3) ⇒ (2) and (4) ⇒ (2):
Suppose there exists a formula ∃xϕ(ȳ, x) of sorts (S1, . . . , Sn, S) which is not equiv-
alent modulo T to a formula without quantifiers. Then, by Lemma 5.17, there are
models M, N of T and elements

ā = (a1, . . . , an) ∈
n∏
i=1

Si(M) and b̄ = (b1, . . . , bn) ∈
n∏
i=1

Si(N)

with ā and b̄ satisfying the same quantifier free formulas but M |= ∃xϕ(ā, x) while
N |= ∀x¬ϕ(b̄, x).

As every model has an ℵ1-saturated elementary extension, we may assume that
M and N are ℵ1-saturated. Now consider the substructure A = 〈ā〉L ⊂ M and
B = 〈b̄〉L ⊂ N. Every element in A is on the form t[ā], with t being an L-term. We
define the homomorphism

g : A→ B

inductively on the elements tM[ā] ∈ A by

(1) g(ai) = bi for i ∈ {1, . . . , n}.
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(2) If t is a constant symbol, then g(tM) = tN.

(3) If tM[ā] = fM(α1, . . . , αn) with αi ∈ A, then

g(tM[ā]) = fM(g(α1), . . . , g(αn)).

That g is well defined and in fact an isomorphism follows by construction and from
the fact that ā and b̄ satisfy the same quantifier free formulas. This is verified in
the same way as for the morphism h in the previous part of the proof.

Let a ∈M be such thatM |= ϕ(ā, a). But, then there is no isomorphism h extending
g, having a in its domain and its image contained in N , as g(〈ā, a〉L) |= ϕ(b̄, h(a))
but N 6|= ϕ(b̄, g(a)). This contradicts (3) and (4), and so ∃ϕ(ȳ, x) is equivalent to a
quantifier free formula modulo T . �

6. Valued Fields

Let (Γ,<) be an ordered abelian group. Consider the set Γ ∪ {∞}. We extend
< to this set by letting γ < ∞ for all γ ∈ Γ . Furthermore, we extend the group
operation of Γ to Γ ∪ {∞} by letting ∞+∞ = γ +∞ =∞+ γ =∞ for all γ ∈ Γ .

We say that a field K is a non-Archimedean valued field with value group Γ
if there exists a surjective mapping

ν : K −→ Γ ∪ {∞}

satisfying the following properties:

(1) ν(a) =∞ if and only if a = 0.

(2) ν(ab) = ν(a) + ν(b).

(3) ν(a+ b) ≥ min(ν(a), ν(b)).

We call the map ν a valuation on K. We recall the following important properties,
that can be found for example in [EP05].

(1) ν(1) = 0.

(2) ν(a−1) = −ν(a) for all a ∈ K∗.

(3) ν(a) < ν(b)⇒ ν(a+ b) = ν(a).

(4) The set Oν := {a ∈ K | ν(a) ≥ 0} is a valuation ring of K, i.e. a subring
of K such that a ∈ Oν or a−1 ∈ Oν , for all a ∈ K∗.

(5) The units of Ov is given by {a ∈ K | ν(a) = 0} and Mν := {a ∈ K | ν > 0}
is the only maximal ideal of Oν . The field Oν/Mν is called the residue
field of ν.
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(6) For any valuation ring O of K, there exists a valuation ν on K such that
Oν = O.

The following result, found for example as Theorem 3.2.15 in [EP05] will be an
important tool when we look at the model theory of Algebraically Closed Valued
Fields in the next section.

Theorem 6.1. Suppose that K is a valued field with valuation ring OK and that
L/K is a normal extension of K. Let OL and O′L be valuation rings in L, such that
OL ∩K = O′L ∩K = OK . Then, there exists an automorphism σ ∈ Aut(L/K) with
σ(OL) = O′L.

We will particularly look at algebraically closed valued fields. In that case we have
that the value group Γ is a divisible group. That is, for any α ∈ Γ and any n ∈ N,
there exists an element β ∈ Γ such that β + · · ·+ β︸ ︷︷ ︸

n times

= nβ = α. We write β = α/n.

To see this, let a ∈ K be such that ν(a) = α. Since K is algebraically closed, there
exists an element b ∈ K such that bn = a. By properties of the valuation, we get
that nν(b) = ν(bn) = ν(a) = α and ν(b) = α/n. Furthermore, for any two element
α, β ∈ Γ with α < β, the element α+β

2 ∈ Γ . Since α < α+β
2 < β, we have that <

is a dense order on Γ .

Also, if K is algebraically closed it follows that the residue field k is algebraically
closed. Indeed, let

P̄ (X) = Xn +

n−1∑
i=0

āiX
i ∈ k[X],

and consider a lift

P (X) = Xn +

n−1∑
i=0

aiX
i ∈ Oν [X].

Let b ∈ K be a root of P . Since bn = −
∑n−1
i=0 aib

i and ν(ai) ≥ 0, we have by the
strong triangle inequality that

nν(b) ≥ min
0≤i≤n−1

{ν(ai) + iν(b)} ≥ min
1≤i≤n−1

{iν(b)}.

If nν(b) = min1≤i≤n−1{iν(b)}, then nν(b) = iν(b) for some i < n, so ν(b) = 0. If
the inequality is strict, then n

n−1ν(b) > ν(b), so ν(b) > 0. So in any case, we have
that b ∈ Oν , and so b̄ ∈ k is a root of P̄ .

Let K be an algebraically closed valued field with value group Γ . With < being
the order on Γ , we equip the group Γ ⊕Q with an order l, defined by

(γ1, q1) l (γ2, q2) :⇔

{
γ1 < γ2 or
γ1 = γ2 and q1 < q2.

It is immediate from the definition that (Γ ⊕ Q, <) is a totally ordered divisible
abelian group. If we regard Γ as a subgroup of Γ ⊕ Q under the embedding γ 7→
(γ, 0), we get that the order defined on Γ ⊕Q extends the order on Γ . Furthermore,
we have that (0, 0) < (0, q) < (γ, 0) for all γ ∈ Γ . We will denote the element
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(0, 1) by $ and write Γ ⊕Q$ for the totally ordered group divisible abelian group
(Γ ⊕Q, <). Similarly, we will denote by

Γ

n⊕
i=1

Q$i

the totally ordered abelian group obtained by repeating the above construction n
times. That is, Γ

⊕n
i=1 Q$i := (Γ

⊕n−1
i=1 Q$i)⊕Q with the order l defined above.

Proposition 6.2. Let G be a torsion-free abelian group. Let

QG = {(g, n) | g ∈ G, n ∈ N>0}/ ∼

where ∼ is the equivalence relation defined by

(g, n) ∼ (h, n) :⇔ mg = nh.

Then the following hold:

(1) The set QG together with the operation [(g, n)] + [(h, n)] = [(mg+nh,mn)]
is a divisible abelian group, and i : G ↪→ QG; g 7→ [(g, 1)] is an embedding.

(2) If H is a divisible group and j : G ↪→ H is an embedding, then there exists
an embedding h : QG ↪→ H such that j = h ◦ i.

Proof. The first part verified just as when one construct the rational numbers. For
the second part, one can verify that h : QG ↪→ H; [(g, n)] 7→ j(g)/n is an embedding
satisfying j = h ◦ i. For a complete proof, see Lemma 3.1.8 in [Mar02]. �

Lemma 6.3. Let K be a valued field with valuation νK and value group Γ . Let ν′K
be an extension of νK to an algebraic closure Kalg of K. Then νK(Kalg) ∼= QΓ ,
with QΓ being as in Proposition 6.2

Proof. Let Γ ′ be the value group of Kalg. Since Γ ′ is divisible and Γ is a subgroup
of Γ ′, we have that QΓ embeds in Γ ′. For the remainder of the proof, we identify
QΓ with its image under this embedding in Γ ′. It rests to show that Γ ′ ⊂ QΓ . For
contradiction, suppose that this does not hold. Then, there exists an element β ∈ Γ ′
such that β /∈ QΓ . Let b ∈ Kalg be such that ν′K(b) = β. Then P (b) = 0 for some
P (X) =

∑n
i=1 aiX

i ∈ K[X]. We get that b = −
∑n
i=1 aib

i. Since νL(aib
i)νL(ai)+iβ

for any i ∈ {1, . . . , n} and since β /∈ QΓ , we have that νL(aib
i) 6= νL(ajb

j) for
any distinct i and j in {1, . . . , n}. By the strong triangle inequality, we get that
β = min1≤i≤n(νL(aib

i)) = νL(ai0) + i0β for some i0 ∈ {1, . . . , n}. This implies that
β = νL(ai0)/(1 − i0). But since QΓ is divisible, we get that β ∈ Γ ⊕ Q$. This
contradicts our choice of β, so Γ ′ ⊂ QΓ , and we are done. �

Lemma 6.4. Let K be an algebraically closed valued field with value group Γ and
let Γ ⊕Q$ be the totally ordered abelian group defined above. Then, there exists an
algebraically closed valued field extension L/K such that L has value group Γ⊕Q$.
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This lemma can be proved by constructing such a valuation explicitly. However,
since this text focuses on the applications of Model Theory to Valued Fields, we
will give a Model Thoeretic proof instead.

Proof. Let (K,Γ ) be a model of ACVF and denote by κ be the cardinality ofK. Let
(K̃, Γ̃ ) be a model of ACVF such that (K̃, Γ̃ ) is a κ-saturated elementary extension
of (K,Γ ). Let A = Γ>0 and let Σ(γ) be the set of L(A)-formulas defined as

Σ(γ) = {0 < γ ∧ γ < β | β ∈ A}.

Since Γ is divisible, we have that Σ(γ) is finitely satisfiable in (K̃, Γ̃ ). Since A
has cardinality less than κ and since (K̃, Γ̃ ) be κ-saturated, there is an element
$ ∈ Γ̃ such that 0 < $ < α, for all α ∈ Γ>0. Let a ∈ K̃ be an element such that
νK̃(a) = $. Denote by ν′K the restriction of νK̃ to K(a). This is a valuation which
extends νK . Denote by Γ ′ value group of K(a). We have that Γ ′ is contained in
Γ ⊕ Q$ and it contains $. Hence, it follows that QΓ ′ ∼= Γ ⊕ Q$. Denote by L
the algebraic closure of K(a) and extend ν′K to a valuation νL on L. Denote by ΓL
the value group of (L, νL). By Lemma 6.3, we get that ΓL ∼= Γ ⊕Q$, which proves
the lemma. �

7. Definable sets.

Definition 7.1. Let L be a language of sort S and let M be an L-structure. Let
ϕ(x̄, ȳ) be a formula, with x̄ = (x1, . . . , xn) and ȳ = (y1, . . . , ym). We allow the
situation n = 0, in this case ϕ has no free variables among the xi. Suppose that
the sort of each variable xi is si and that the sort of each variable yi is s′i. Let
ā ∈

∏n
i=1 si(M). Then the set

B =
{
b̄ ∈Mm |M |= ϕ[ā, b̄]

}
is called a definable set. We also say that B is defined over ā by ϕ[ā, ȳ], or that
it is ā-definable. In this situation, ā is called a parameter of ϕ[ā, ȳ]. If ϕ has no
free variables among the xi, we say that B is defined without parameters.

Example 7.2. Consider Q as a model of the LR-theory Tfield, as described in
Example 4.4. Then the empty set is a definable set in Q, defined for example by
the formula ϕ(x) = (x2 .

= 1 + 1). That is, we have that

∅ = {q ∈ Q | Q |= ϕ[q]}.
If we let ψ(x) be the formula x2 .

= −1, we also have that

∅ = {q ∈ Q | Q |= ψ[q]}.
If we now consider R as a model of Tfield, we have that

∅ = {r ∈ R | R |= ψ[r]} 6= {r ∈ R | R |= ψ[r]}.
This shows that two formulas that define the same set in a model of some theory T ,
does not in general define the same set in an extension of that model. The following
result however will show that in a theory which admits quantifier elimination, two
formulas define the same set in a model if and only if they define the same set in
every extension of that model.
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Lemma 7.3. Let L be a language of sorts S and let T be an L-theory which admits
quantifier elimination. Let M be a model of T and let ϕ(x̄, ȳ) be an L-formula with
x̄ = (x1, . . . , xm) and ȳ = (y1, . . . , yn). Denote by si the sort of xi and denote by s′i
the sort of yi. For ā = (a1, . . . , am) ∈

∏m
i=1 si(M), we denote by ϕā the set defined

over ā by ϕ, i.e.

ϕā(M) :=

b̄ ∈
n∏
i=1

s′i(M) |M |= ϕ[ā, b̄]

 .

Then, the following are equivalent:

(1) ϕā(M) = ∅

(2) For every model M′ of T which is an extension of M, we have that

ϕā(M′) = ∅.

Proof. Suppose that ϕā(M) = ∅ and let M′ be an extension of M which is a model
of T . Define the formula ψ(ȳ) := ∃x̄ϕ(x̄, ȳ). By quantifier elimination, we have
that ψ is equivalent to a quantifier formula χ modulo T . Hence, ψ[ā] is an L(ā)-
sentence which is equivalent to a quantifier free L(ā)-sentence modulo T ′, where T ′
is the theory T regarded as an L(ā)-theory. Since M′ is an extension of M, we have
that any L(ā)-sentence is true in M′ if and only if it is true in M. In particular,
M |= ψ[ā] if and only if M′ |= ψ[ā]. Since M |= ψ[ā] if and only if ϕā(M) 6= ∅ and
M′ |= ψ[ā] if and only if ϕā(M′) 6= ∅, it follows that ϕā(M′) = ∞. Hence, (1) ⇒
(2). The other implication is immediate since M is an extensions of itself. �

Corollary 7.3.1. Let L be a language of sorts S and let T be an L-theory which
admits quantifier elimination. Let M be a model of T and let x̄, ȳ and ā be as
in Lemma 7.3. Let ϕ(x̄, ȳ) be an L-formula and let ψ(x̄, ȳ) be a quantifier free
L-formula such that ϕā(M) = ψā(M). Let M′ be an extension of M. Then

ϕā(M′) = ψā(M′).

Proof. If ϕā(M) ⊂ ψā(M), then ϕā(M)\ψā(M) = ∅. Hence, (ϕ∧¬ψ)ā(M) = ∅, and
by Lemma 7.3, (ϕā ∧ ¬ψ)ā(M′) = ∅ and ϕā(M′) ⊂ ψā(M′). The same argument
with (ψ ∧ ¬ϕ)ā instead of (ϕ ∧ ¬ψ)ā shows the inclusion ψā(M′) ⊂ ϕā(M′). �

8. Quantifier Elimination of Algebraically Closed Valued Fields

Consider the 2-sorted language

LΓ = {+R,−R, ·, 1, 0R} ∪ {0Γ ,+Γ ,−Γ , <,∞} ∪ {ν}

of sorts R and Γ , where {+R,−R, ·, 1, 0R} is the language of rings, {0Γ ,+,−R, Γ,<}
is the language or ordered abelian monoids, the symbol ∞ is a constant symbol of
sort Γ and ν is a function symbols of sort (R,Γ ). We use t1 ≤ t2 as an abbreviation
for t1 < t2 ∨ t1

.
= t2. When it is clear from context, we will omit the subscripts

indicating the sort of the symbols +R, +Γ , 0R and 0Γ .
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Any valued field K is an LΓ -structure. Furthermore, we can define the theory
ACVF of Algebraically Closed Valued Fields by the following sentences together
with the theory of algebraically closed fields, where we use the notation x, y for
variables of sort R and α, β, γ for variables of sort Γ :

(1) ∀α∀β(α+ β
.
= β + α)

(2) ∀α(∞+ α =∞)

(3) ∀α(α 6 .=∞→ ∃β(α+ β
.
= 0))

(4) ∀α∀β(α ≤ β ∨ β ≤ α)

(5) ∀α∀β((α ≤ β ∧ β ≤ α)→ α
.
= β)

(6) ∀α∀β∀γ((α ≤ β ∧ β ≤ γ)→ α ≤ γ)

(7) ∀x(ν(x)
.
=∞↔ x

.
= 0)

(8) ∀x∀y(ν(xy)
.
= ν(x) + ν(y))

(9) ν(x+ y) ≥ min{ν(x), ν(y)}.

It is also possible to formulate the theory of ACVF in a one-sorted language Ldiv

which consists of the language of ring and a binary relation symbol div. In this
language we interpret a div b ⇔ as ν(a) ≤ ν(b). It is well documented, see for
example [PD11], that the theory of ACVF eliminates quantifiers in this one-sorted
language. However, this language is not sufficient for the application we want to
consider further on EXPLAIN HOW FURTHER ON, and we therefore prove that
quantifier elimination holds also for the 2-sorted language described above. The
proof of this is an adaptation of the proof for the one-sorted case found in [PD11].

Theorem 8.1. The theory ACVF admits quantifier elimination in the language
LΓ .

Proof. We will show that ACVF admits quantifier elimination by proving the equiv-
alent statement (4) in Lemma 5.22. To do this, let (K,ΓK) and (L, ΓL) be ℵ1-
saturated models of ACVF in LΓ . Such models exists due to Theorem 5.14. Let
A0 ⊂ K, B0 ⊂ L, ΓA0 ⊂ ΓK and ΓB0 ⊂ ΓL all be finite subsets. Denote by (A,ΓA)
and (B,ΓB) the LΓ -structures generated by (A0, ΓA0) and (B0, ΓB0) respectively
and suppose that g : AtΓA → BtΓB is an LΓ -isomorphism such that g(A0) = B0

and g(ΓA0
) = ΓB0

. Now let a ∈ K. To show that (4) in Lemma 5.22 holds, we first
need to show that g extends to an LΓ -isomorphism h : A′ t ΓA′ → B′ t ΓB′ where
a ∈ A′ ⊂ K, ΓA ⊂ ΓA′ , ΓB ⊂ ΓB′ and B′ ⊂ L.

First, we assume that A and B are fields. This can be done since the extension of
g to the quotient fields of A and B respects the ordering on ΓA. Note however that
(A,ΓA) and (B,ΓB) are not necessarily valued fields, in the sense that νK : A→ ΓA
and νL : B → ΓB are not necessarily surjective. As a first step, we will show that
the existence of g induces an isomorphism of valued fields containing (A,ΓA) and
(B,ΓB) as substructures.
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If we denote by h the restriction of g to the LΓ -structure (A, νK(A)) we get an
isomorphism of valued fields

h : A t νK(A) −→ B t νL(B).

Let a ∈ K and suppose that a is algebraic over A. Let Aalg and Balg be the algebraic
closures of A and B respectively and extend h to an isomorphism between Aalg and
Balg. Then h(OAalg) is a valuation ring of Balg such that h(OAalg)∩B = OB . Hence,
h(OAalg) defines a valuation ν′L on Balg that extends νL on B. By Theorem 6.1,
there exists σ ∈ Aut(Balg/B) such that ν′L = νL ◦ σ. Hence, for c ∈ Aalg we have

νK(c) ≥ 0⇔ c ∈ OAalg ⇔ h(c) ∈ Oν′
L
≥ 0

⇔ ν′L(h(c)) ≥ 0⇔ νL ◦ σ ◦ h(c) ≥ 0.

This shows that the isomorphism σ◦h respects the ordering on νK(Aalg). Therefore,
we can assume that A and B are algebraically closed. Let S = {α0, . . . , αn} ⊂ ΓA0

be the set of elements such that αi /∈ νK(A) and let βi = g(αi). If βi ∈ νL(B) then

g(αi) = βi = νL(g(c)) = g(νK(c))

for some c ∈ A, where the last equality follows from the fact that g is an isomorphism
of LΓ -structures. This contradicts αi /∈ νK(A), so βi /∈ νL(B). Let ai ∈ K be such
that νK(ai) = αi. Then ai is transcendental over A, since A is assumed to be
algebraically closed. Similarly, there are elements bi ∈ L such that νL(bi) = βi
which is transcendental over B. We thus get that h extends to an isomorphism of
LΓ -structures

h : A(an) t νK(A(an)) −→ B(bn) t νL(B(bn)).

Again taking the algebraic closures of A(an) and B(bn), we can extend h to an
isomorphism between these algebraically closed valued fields, with value groups
containing αn and βn respectively. Thus, we can assume that S = {α0, . . . , αn−1}.
By induction, we can then assume that S = ∅, i.e. that νK |A and νL|B are surjective.
This means that we only have to consider the case where g : AtΓA → BtΓB is an
isomorphism of algebraically closed valued fields. In this situation, we will regard
three different cases.

(1) The value group ΓA(a) := νK(A(a)) is not equal to ΓA.

(2) The residue field kA(a) is not equal to kA.

(3) All other cases, i.e. ΓA(a) = ΓA and kA(a) = kA.

Case 1. In this case, there exists element c ∈ A(a) such that γ := νK(c) /∈ ΓA.
Since A and B are algebraically closed, the value groups ΓA and ΓB are divisible.
Furthermore, we have that

νK(A(c)×) = ΓA ⊕ 〈γ〉.
Let S− = {α ∈ ΓA | γ > α} and let S+ = {α ∈ ΓA | γ < α}. Consider now the set
of LΓ (ΓA)-formulas

Σ(ξ) = {ξ > α | α ∈ S−} ∪ {ξ < α | α ∈ S+}
and its image under g of LΓ (ΓB)-formulas

Σg(ξ) = {ξ > g(α) | α ∈ S−} ∪ {ξ < g(α) | α ∈ S+}.
Recall that we have obtained B by taking the algebraic closure of the quotient field
of a finitely generated ring. Thus, B is countable, and so is ΓB since it is the image
of B under νL. The set Σg(x) is finitely satisfiable in (L, ΓL), since ΓL is dense



QE OF ACVF 25

linearly ordered without endpoints. Thus, by ℵ1-saturation, there exists an element
δ ∈ ΓL satisfying all formulas in Σg(ξ) since ΓB is countable. Note that δ /∈ ΓB .

We now extend the isomorphism g on the value groups to g : ΓA⊕〈γ〉 −→ ΓB⊕〈δ〉
by setting g(γ) = δ. To see that this is indeed an isomorphism of ordered groups,
let α+mγ,α′ +m′γ ∈ ΓA ⊕ 〈γ〉 and suppose that α+mγ < α′ +m′γ. If m = m′,
then α < α′ and g(α) +mδ < g(α′) +m′δ. If m 6= m′ we get

α+mγ < α′ +m′γ ⇐⇒ α− α′

m−m′
< γ.

Since ΓA is divisible, α−α′

m−m′ ∈ ΓA. By definition of Σg(x) we then get that

g

(
α− α′

m−m′

)
=
g(α)− g(α′)

m−m′
< δ,

which is equivalent to
g(α) +mδ < g(α′) +m′δ.

Hence, g preserves the ordering. Using this, we also get that g is injective since any
non-zero element is mapped to a non-zero element.

Let a0, . . . , an ∈ A. Suppose that νK(aic
i) = νK(ajc

j) for some i 6= j. Then

νK(ai)− νK(aj) = (j − i)γ.

This contradicts that γ /∈ ΓA, since ΓA is divisible. Therefore we have

νK

 n∑
i=1

aic
i

 = min
1≤i≤n

{νK(ai) + iγ}.

By the same reasoning as above, we get that

νL

 n∑
i=0

bid
i

 = min
1≤i≤n

{
νL(bi) + iδ

}
.

Let a0, . . . , an ∈ A and

νK

 i∑
i=0

aic
i

 = aj + jγ.

This is then equivalent to νK(ai) + iγ > νK(aj) + jγ for all i in {0, . . . , n} \ {j},
which is equivalent to

νK(ai)− νK(aj)

j − i
> γ.

Since ΓA is divisible, we have that (νK(ai)− νK(aj))/(j− i) ∈ ΓA. By definition of
Σ(ξ) and Σg(ξ), we thus get

νL(g(ai))− νL(g(aj))

j − i
> δ ⇐⇒ νL(g(ai)) + iδ > νL(g(aj)) + jδ

for all such i. This gives

νL

 i∑
i=0

g(ai)d
i

 = νL(g(aj)) + jδ

and so the extension of g which sends c to d is an isomorphism of valued rings
h : A[c]→ B[d]. By extending again to the quotient fields, we get an isomorphism
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of valued fields h : A(c)→ B(d). Using the same argument as above, we can extend
g to an isomorphism between A(c)alg and B(c)alg. Since c ∈ A(a), we have that

c =
P (a)

Q(a)

for P (a) ∈ A[a] and Q(a) ∈ A[a] \ {0}. So c · Q(a) − P (a) = 0 and a is a root of
the polynomial c · Q(X) − P (X) ∈ A(c). Hence, a ∈ A(c)alg and we have proved
the existence of h in Case 1.

Case 2. Suppose there exists an element c ∈ OA(a) such that res(c) /∈ kA. Since kA
is algebraically closed, this means that res(c) is transcendental over kA. Consider
the set of LΓ (OL)-formulas

Σ(x) =
{
ν(x)

.
= 0} ∪ {ν(x− b) .

= 0 | b ∈ OB
}
.

By definition, an element d ∈ L satisfying Σ(x) is a unit in OB such that res(d) 6=
res(b) for all b ∈ OL. This set is finitely satisfiable in L, since kL is infinite (SHOW
THIS). So by ℵ1-saturation it is realisable in (L, ΓL). Since kB is algebraically
closed, res(d) is transcendental over kB .

Let a0, . . . , an ∈ A. We will show that νK
(∑n

i=1 aic
i
)

= mini{νK(ai)}. Suppose
that all νK(ai) are equal. Then νK(ai/a1) = 0 and ai/a1 ∈ OK . We get that

res

 n∑
i=1

ai
a1
ci

 =

n∑
i=1

res

(
ai
a1

)
res(c)i.

This element is not zero, since res(c) is transcendental over kA. Hence
n∑
i=1

ai
a1
ci /∈MK

and

νK

 n∑
i=1

aic
i

 = νK

a1

n∑
i=1

ai
a1
ci

 = νK(a1) + νK

 n∑
i=1

ai
a1
ci

 = νK(a1).

If not all νK(ai) are equal, we write
n∑
i=1

aic
i =

∑
i∈Iα1

aic
i + · · ·+

∑
i∈Iαk

aic
i

with Iα = {i | νK(ai) = α}. Then, as we have just shown,

νK

∑
i∈Iα

aic
i

 = α

and so, due to the ultrametric inequality,

νK

∑
i∈Iα1

aic
i + · · ·+

∑
i∈Iαk

aic
i

 = min
1≤j≤k

{αj} = min
1≤i≤n

{νK(ai)}.

By the same reasoning,

νL

 n∑
i=1

bid
i

 = min
i

{
νL(bi)

}
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for b0, . . . , bn ∈ B. This shows that the ring isomorphism h : A[c] → B[d] that
extends g and sends c to d is an isomorphism of valued rings, since g preserves
the order on A. The isomorphism h extends uniquely to an isomorphism of valued
fields A(c) → B(d). Since a is algebraic over A(c), as shown in Case 1, the result
of the theorem follows by extending g to the algebraic closure of A(c) in the same
way as above.

Case 3. Suppose that kA(a) = kA and ΓA(a) = ΓA. Let I = {νK(a − c) | c ∈ A}.
If νK(a − c) ∈ I and νK(d) < νK(a − c), then νK(a − c + d) = νK(d) and so
νK(d) ∈ I. Let e ∈ A such that νK(e) = νK(a− c). Then νK((a− c)/e) = 0. Since
kA(a) = kA, there exists an element d ∈ OA such that res((a−c)/e) = res(d). Hence
(a− c)/e− d ∈MA(a) and νK((a− c)/e− d) > 0. This gives

νK(a− c− de) = νK((a− c)/e− d) + νK(a− c) > νK(a− c),
and so I has no maximal element.

Consider now the set of LΓ (B)-formulas

Σ(x) = {ν(x− g(c)) = ν(f(d)) | c, d ∈ A, νK(a− c) = νK(d)}.
This set is finitely satisfiable in L. Indeed, let (c1, d1), . . . , (cn, dn) ∈ A2 be such
that νK(a − c) = νK(d) and let e ∈ A such that νK(e − a) > νK(a − ci) for all
i ∈ {1, . . . , n}. Then

νK(e− ci) = νK(e− a+ a− ci) = νK(a− ci).
Since g is an LΓ -isomorphism, we have that g(e) satisfies νL(x− g(ci)) = νL(g(di))
for all i ∈ {1, . . . , n}. By ℵ1-saturation of (L, ΓL), there is therefore an element
b ∈ L satisfying Σ(x). Note that this element is not in B, since otherwise we would
have that b satisfies the formula

ν(x− g(g−1(b)) = ν(g(d))

with νK(a − g−1(b)) = νK(d). But then νL(g(d)) = ∞ and so νK(d) = ∞, which
contradicts that I has no maximal element. Hence, b is transcendental over B, since
B is algebraically closed. We get that g|A extends to an isomorphism h : A(a) →
B(b) sending a to b.

It now rests to show that h is an isomorphism of valued fields. Let P (T ) ∈ A[T ] be
a polynomial. Since A is algebraically closed, we can write

P (T ) = c

n∏
i=1

(T − ai)

with c, ai ∈ A. Consequently,

νK
(
P (a)

)
= νK(c) +

n∑
i=1

νK(a− ai).

We get that

νL(h(P (a)) = νL

h(c)

n∏
i=1

h(a− ai)

 = νL(g(c)) +

n∏
i=1

νL(b− g(ai))

= g(νK(c)) +

n∑
i=1

g(νK(a− ai)),

where the last equality follows from the fact definition of Σ(x). This shows that h
is an isomorphism of valued fields, since ΓA(a) = ΓA, which concludes Case 3.
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We have now finished to construct an isomorphism h extending g, with the element
a in its domain and its image contained in (L, ΓL). Note however that showing this
is not enough to show the condition (4) in Lemma 5.22 since the condition for the
lemma is that a is an arbitrary element from the universe of (K,ΓK). Since we are
working in a 2-sorted language, we will also have to consider the case where the
element is taken from ΓK . However, if α ∈ ΓA, then there exists an element a ∈ K
such that νK(a) = α. Thus, by extending g : A t ΓA → B t ΓB to an isomorphism
h : A′ t ΓA′ → B′ t ΓB′ with a ∈ A′ as we have done above, we get that α ∈ ΓA′ ,
and so h satisfies condition (4) in Lemma 5.22. This concludes the proof. �

9. Definable sets in the value group

Lemma 9.1. Let (K,ΓK) be a model of ACVF. Let a1, . . . , am ∈ K∗ and let D ⊂
ΓnK be a non-empty set defined in (K,ΓK) by a formula φ(x̄, ξ̄) over a1, . . . , am ∈ K,
with x̄ = (x1, . . . , xm) having sort R and x̄ = (ξ1, . . . , ξn) having sort Γ in LΓ . Then
there exists a quantifier free formula of the form

ψ(x̄, ξ̄) =

k∨
i=1

∧̀
j=1

ϕi,j(x̄, ξ̄) ./i,j 0

for some k, ` ∈ N, where ϕi,j [ā, ξ̄] =
∑n
s=1ms,i,jys + Ci,j(ā) with ms,i,j ∈ Z,

Ci,j(ā) ∈ Γ and ./i,j∈ {<,≤} such that

D = {γ̄ ∈ ΓK | (K,ΓK) |= ψ[ā, ξ̄]}.

Proof. First, note that a quantifier free formula ψ(x̄, ξ̄) in LΓ can be written as

ψ(x̄, ξ̄) =

k∨
i=1

∧̀
j=1

φRi,j(x̄) ∧ φΓi,j(x̄, ξ̄)

where the variables x̄ have sort R and the variables ξ̄ have sort Γ and where φRi,j
and φΓi,j are atomic formulas, or negation of atomic formulas, such that all terms in
φKi,j have sort K and all terms in φΓi,j have sort Γ . That φΓi,j can have free variables
among the x̄ is because the function symbol ν has sort Γ but takes terms of sort
K as arguments. So by quantifier elimination in ACVF, we have that

D =

k⋃
i=1

⋂̀
j=1

{γ̄ ∈ ΓnK | (K,ΓK) |= φRi,j(ā) ∧ φΓi,j(ā, ȳ)},

for some φRi,j and φΓi,j as described. Without loss of generality, we assume that

Di :=
⋂̀
j=1

{γ̄ ∈ ΓnK | (K,ΓK) |= φRi,j(ā) ∧ φΓi,j(ā, ȳ)}

is non-empty for each i, since we can simply omit every i for which the corresponding
set Di is empty.

By considering the possible atomic formulas in the language LΓ , we have that the
formulas φRi,j can be written as

Pi,j(x̄) li,j 0

where Pi,j ∈ Z[x̄] and li,j∈ {
.
=, 6 .=}.
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Now consider

ψ[ā, ξ̄] =

k∨
i=1

∧̀
j=1

φRi,j [ā] ∧ φΓi,j [ā, ξ̄].

If (K,ΓK) 6|= φRi,j [ā], then (K,ΓK) 6|= φRi,j [ā] ∧ φΓi,j [ā, γ̄] for any γ̄ ∈ ΓnK . That is,

{γ̄ ∈ ΓnK | (K,ΓK) |= φRi,j [ā] ∧ φΓi,j [ā, γ̄]} = ∅.

In particular, this implies that Di = ∅, which contradicts the assumption above.
So we get that (K,ΓK) |= φRi,j [ā]. By definition, (K,ΓK) |= φRi,j [ā]∧φΓi,j [ā, ξ̄] if and
only if (K,ΓK) |= φRi,j [ā] and (K,ΓK) |= φΓi,j [ā, γ̄] so we have

D =

k⋃
i=1

⋂̀
j=1

{γ̄ ∈ ΓnK | (K,ΓK) |= φΓi,j [ā, γ̄]}.

Furthermore, we have that φΓi,j can be written as
n∑
s=1

ms,i,jξs + ν(ti,j(x̄)) ./i,j 0 or
n∑
s=1

ms,i,jξs + ν(ti,j(x̄)) ./i,j ∞

where ms,i,j ∈ Z, ./i,j∈ {<,≤} and ti,j is a term of sort K, i.e. a polynomial in
Z[x̄]. Suppose that

φΓi,j =

n∑
s=1

ms,i,jξs + ν(ti,j(x̄))+ ./i,j ∞

and that νK(ti,j [ā]) =∞. Then for any γ̄, we have that (K,ΓK) |= φΓi,j [ā, γ̄] if and
only if ./i,j is equal to ≤. Since we can assume that {γ̄ ∈ ΓnK | (K,ΓK) |= φΓi,j [ā, γ̄]}
is non-empty, we get that ./i,j is equal to ≤, and therefore φΓi,j [ā, ȳ] is satisfied by
all γ̄ ∈ Γ . Hence, φΓi,j is equivalent in (K,ΓK) to the formula 0 ≤ 0, which is on
the form we want. If

φΓi,j =

n∑
s=1

ms,i,jys + ν(ti,j(x̄))+ ./i,j ∞

but νK(ti,j [ā]) <∞, then φΓi,j is still satisfied by all γ̄ ∈ ΓnK , and φΓi,j is equivalent
in (K,ΓK) to 0 ≤ 0.

Hence, in any case we get that φΓi,j is equivalent in (K,ΓK) to a formula of the form
n∑
s=1

ms,i,jys + ν(ti,j(x̄)) ./i,j 0

which is what we wanted to prove. �

Definition 9.2. Let (K,ΓK) be a totally ordered divisible abelian group. A pavé
of dimension d of ΓnK is a definable set of the form

A

 d∏
i=1

(ri, Ri)× {γd+1, . . . , γn}


where ri, Ri, γj ∈ Γ and ri < Ri and A ∈ GLn(Q).
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Definition 9.3. Let (K,ΓK) be a model of ACVF and let D ⊂ ΓnK be a non-empty
definable subset. We define the dimension of D to be the largest number d such
that D contains a pavé of dimension d.

Remark 9.4. Let D ⊂ ΓnK be a definable set of dimension d, defined over ā ∈ Km

by a formula ϕ(x̄, ξ̄), with x̄ = (x1, . . . , xm) having sort R and ξ̄ = (ξ1, . . . , ξn)
having sort Γ . Let A ∈ GLn(Q) and define the set

AD = {Aγ̄ | γ̄ ∈ D}.

Let A = (qi,j)1≤i,j≤n with qi,j ∈ Q and let m be the least common multiple of all
the the qi,j . Let mi,j := mqi,j ∈ Z. Then, Aγ̄ ∈ AD if and only if mγ̄ ∈ (mA)D.
Hence, AD is a definable set, defined over ā by the formula

ψ(x̄, ζ̄) = ∃ξ1 · · · ∃ξn

ϕ(x̄, ξ̄) ∧
n∧
i=1

mζi .= n∑
j=1

mi,jξj


 ,

with ζ̄ = (ζ1, . . . , ζn) having sort Γ . Since the dimension of a pavé is not changed
by multiplying it with a matrix in GLn(Q), we have that the dimension of D is
equal to the dimension of AD.

Lemma 9.5. Let (K,ΓK) be a model of ACVF and let D ⊂ ΓnK be a definable set
and let P ⊂ D be a pavé of dimension d in D, given by

P = A

 d∏
i=1

(ri, Ri)× {γd+1, . . . , γn}


for some A ∈ GLn(Q). Let (L, ΓL) be a valued algebraically closed extension of
(K,ΓK). Then the pavé

P (ΓL) = A

 d∏
i=1

(ri, Ri)× {γd+1, . . . , γn}

 ⊂ ΓnL
is contained in D(ΓL).

Proof. From the description of AD as a definable set in Remark 9.4, we can see
that (AD)(ΓL) = AD(ΓL). So, P (ΓL) is a pavé in D(ΓL) if and only if A−1P (ΓL)
is a pavé in A−1D(ΓL), and we can assume that

P =

d∏
i=1

(ri, Ri)× {γd+1, . . . , γn}

Let ρ̄ = (ρ1, . . . , ρd), P̄ = (P1, . . . ,Pd), ξ̄ = (ξd+1, . . . , ξn) and ζ̄ = (ζ1, . . . , ζn) be
variables of sort Γ . Define the formula

ψ(ρ̄, P̄, ξ̄, ζ̄) =

d∧
i=1

(ρi < ζi ∧ ζi < Pi)

n∧
i=d+1

(
ζi
.
= ξi

)
Then we have that P is a definable set given as

P = {ᾱ ∈ ΓnK | (K,ΓK) |= ψ[r̄, R̄, γ̄, ᾱ]},
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with r̄ = (r1, . . . , rd), R̄ = (R1, . . . , Rd) and γ̄ = (γd+1, . . . , γn). Similarly, we get
that

P (ΓL) = {ᾱ ∈ ΓnL | (L, ΓL) |= ψ[r̄, R̄, γ̄, ᾱ]}.

Now, let ϕ(x̄, ζ̄) be a formula defining D over some parameters ā. Since P is in D,
we have that

P = {ᾱ ∈ ΓnK | (K,ΓK) |= ψ[r̄, R̄, γ̄, ᾱ] ∧ ϕ[ā, ᾱ]}.

Hence, by Corollary 7.3.1, we have that P (ΓL) is also defined by ψ ∧ ϕ, i.e. P (ΓL)
is contained in D(ΓL). �

Lemma 9.6. Let (K,ΓK) be a model of ACVF and let D ⊂ ΓnK be a definable set
of dimension d and let (L, ΓL) be a valued algebraic extension of (K,ΓK). Then
D(ΓL) has dimension d.

Proof. If P ⊂ D is a pavé of dimension d in D, then P (ΓL) is a pavé of dimension
d in D(ΓL), by Lemma 9.5. So D(ΓL) has dimension at least d. Suppose that

P = A

 c∏
i=1

(ri, Ri)× {γc+1, . . . , γn}

 ⊂ D(ΓL)

is a pavé of dimension c > d. We will show that this implies that there is a pavé of
dimension c in D. By Remark 9.4 So, we can assume that A is the identity matrix.

Let D be defined by the formula ϕ(x̄, ζ̄) over ā = (a1, . . . , am) ∈ (K t ΓK)m,
with ζ̄ = (ζ1, . . . , ζn), x̄ = (x1, . . . , xm) and xi having the same sort as ai. Let
ρ̄ = (ρ1, . . . , ρc), P̄ = (P1, . . . ,Pc) and ξ̄ = (ξc+1, . . . , ξn) be variables of sort Γ . We
note that D(ΓL) contains a pavé of the form

c∏
i=1

(ri, Ri)× {γc+1, . . . , γn} ⊂ D(ΓL)

if and only if the formula ψ(x̄) defined as

∃ρ̄ ∃P̄ ∃ξ̄ ∀ζ̄


 c∧
i=1

ρi < Pi

 ∧

 c∧
i=1

ρi < ξi ∧ ξi < Pi

n∧
i=c+1

ζi
.
= ξi

→ ϕ(x̄, ζ̄)




is satisfied over ā in (L, ΓL), i.e. if and only if (L, ΓL) |= ψ[ā]. But since (L, ΓL) is
an elementary extension of (K,ΓK), we have that (K,ΓK) |= ψ[ā], so D contains a
pavé of the form

c∏
i=1

(r′i, R
′
i)× {γ′c+1, . . . , γ

′
n},

with r′i, R′i, γ′j ∈ ΓK for i ∈ {1, . . . , c} and j ∈ {c+ 1, . . . , n}. So D contains a pavé
of dimension c, which is what we wanted to prove. �
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10. Some Algebraic Geometry

Definition 10.1. Let K be an algebraically closed field. An affine algebraic set
of Kn is the zero set of a finite number of polynomials in K[X1, . . . , Xn].

If K is an algebraically closed field and X is an affine algebraic set of Kn, then the
set

AX := {P ∈ K[X1, . . . , Xn] | P (a1, . . . , an) = 0 for all (a1, . . . , an) ∈ X}

is an ideal of K[X1, . . . , Xn].

Definition 10.2. Let K be an algebraically closed field and let X be an affine
algebraic set. We define the coordinate ring K[X] to be the ring

K[X1, . . . , Xn]/AX.

If K[X] is an integral domain, i.e. if AX is a prime ideal, we say that X is an
affine variety. In this case, the fraction field of K[X], denoted K(X), is called
the function field of X.

Definition 10.3. Let K be an algebraically closed field and let B be an integral
domain which is a finitely generated K algebra and let L be the quotient field of B.
We define the dimension of B to be the transcendence degree of L over K, i.e.
the largest cardinality of an algebraically independent subset of K(X) over K. If
X is an affine variety, we define the dimension of X to be the dimension of the
coordinate ring K[X].

Definition 10.4. Let K be an algebraically closed field. We define the algebraic
torus of dimension n over K to be (K∗)n. An algebraic subset of (K∗)n is a set
X ⊂ (K∗)n such that X is the zero set in (K∗)n of some polynomials P1, . . . , Pm ∈
K[X1, X

−1
1 , . . . , Xn, X

−1
n ].

Remark 10.5. If K is an algebraically closed field and X is an algebraic subset of
K(∗)n defined by the polynomials

Pi(X1, X
−1
1 , . . . , Xn, X

−1
n ) ∈ K[X1, X

−1
1 , . . . , Xn, X

−1
n ]

for i ∈ {1, . . . ,m}, we can consider X as a subset of K2n, satisfying the polynomials
Pi(X1, Y1, . . . , Xn, Yn) ∈ K[X1, Y1, . . . , Xn, Yn] for i ∈ {1, . . . ,m} and XjYj − 1 for
j ∈ {1, . . . , n}. Hence, X can be considered as an affine algebraic set. We will
say that X is a subvariety of (K∗)n if X is an affine variety and we refer to the
dimension of X as its dimensions as an affine variety.

Lemma 10.6. Let X be a subvariety of (K∗)n and let L/K be an algebraically
closed extension. Let a1, . . . , an ∈ X(L) and define K ′ := K(a1, . . . , an). Then
trdeg(K ′/K) ≤ dim(X).
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Proof. Let ā := (a1, . . . , an) and let Aā ⊂ K[X1, . . . , Xn] be the ideal of all poly-
nomials vanishing at ā. Then AX ⊂ Aā, so we have a natural projection

π : K[X] = K[X1, . . . , Xn]/AX −→ K[X1, . . . , Xn]/Aā.

Since K ′ is isomorphic to the quotient field of K[X1, . . . , Xn]/Aā, we have that
trdeg(K ′/K) = dim(K[X1, . . . , Xn]/Aā).

Suppose that trdeg(K ′/K) > dim(X). By Theorem 1.8A in [Har77]), we have that
the dimension of a ring B which is a finitely generated K-algebra is given by the
maximum number n ∈ N such that there exists a chain

p0 ⊂ · · · ⊂ pn

of distinct prime ideals of B. But since π is surjective, any chain of distinct prime
ideals

p0 ⊂ p1 ⊂ · · · ⊂ pn ⊂ K[X1, . . . , Xn]/Aā

gives a chain of distinct prime ideals

π−1(p0) ⊂ · · · ⊂ π−1(pn) ⊂ K[X].

Hence, dim(K[X1, . . . , Xn]/Aā) ≤ dim(X), and we are done. �

Definition 10.7. Let K be an algebraically closed field. An isogeny of the alge-
braic torus is a map

ΦM : (K∗)n −→ (K∗)n

(a1, . . . , an) 7−→ (ām̄1 , . . . , ām̄n)

where m̄i = (m1,i, . . . ,mn,i) ∈ Zn, ā = (a1, . . . , an), ām̄i = a
m1,i

1 · · · amn,in and
M =

(
m̄1 · · · m̄n

)
∈ GLn(Q).

Remark 10.8. If K is an algebraically closed valued field with valuation ν and
value group Γ , and ΦM is an isogeny on (K∗)n, then ΦM induces a map on Γn,
which we will also denote by ΦM , as follows

ΦM : Γn −→ Γn

γ̄ 7−→ (m̄1γ̄, . . . , m̄nγ̄)

where the m̄i ∈ Zn are as in Definition 10.7 and m̄iγ̄ = m1,iγ1 + · · · + mn,iγn.
We extend ν to (K∗)n by setting ν(a1, . . . , an) = (ν(a1, . . . , ν(an)) and note that
ν ◦ΦM = ΦM ◦ν by construction. By Remark 9.4, we have that an isogeny preserve
the dimension of a definable set D ⊂ Γn.

Lemma 10.9. Let X be a subvariety of (K∗)n. And let ΦM be an isogeny of (K∗)n.
Then ΦM (X) is a subvariety of (K∗)n and dim(X) = dim(ΦM (X)).

Proof. We won’t prove this in detail, but the idea is to use that an isogeny is a
finite morphism, so in particular a closed map [Har77]. This implies that the image
of a subvariety under an isogeny will be a subvariety. The dimension of ΦM (X)
follows from the fact that the restriction of ΦM to X is also a finite morphism, and
a finite surjective morphism preserves dimension. �
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Definition 10.10. Let K be an algebraically closed field and let X be a subvariety
of (K∗)n, defined by the polynomials P1, . . . , Pm ∈ K[X1, . . . , Xn, X

−1
1 , . . . , X−1

n ].
If L is an algebraically closed extension of K, we define

X(L) :=

b̄ ∈ (L∗)n |
m∧
i=1

Pi(b̄) = 0

 .

Remark 10.11. (1) Consider the language LR and the theory ACF as in Ex-
ample 4.4. Let X ⊂ (K∗)n be a subvariety defined by the polynomials

P1, . . . , Pk ∈ K[X1, . . . , Xn, X
−1
1 , . . . , X−1

n ].

We identify X with the affine algebraic set in (K∗)2n defined by the poly-
nomials

P̃i := Pi(X1, . . . , Xn, Y1, . . . , Yn) ∈ K[X1, . . . , Xn, Y1, . . . , Yn]

with i ∈ {1, . . . ,m} and the polynomials XjYj − 1 with j ∈ {1, . . . , n}.
Let a1, . . . , am ∈ K be the coefficients of all the polynomials P1, . . . , Pk ∈
K[X̄, Ȳ ] and let Qi ∈ K[T1, . . . , Tm, X1, . . . , Xn, Y1, . . . , Yn] be such that

P̃i = Qi(a1, . . . , am, X1, . . . , Xn, Y1, . . . , Yn).

Let ψ(x̄, ȳ, z̄) be the LR-formula
k∧
i=1

Qi(x̄, ȳ, z̄)
.
= 0

n∧
i=1

yi · zi
.
= 1

with x̄ = x1, . . . , xm, ȳ = y1, . . . , yn and z̄ = z1, . . . , zn. Then

X = {(b̄, c̄) ∈ (K∗)2n | K |= ψ[ā, b̄, c̄]

so X is a definable set, defined over ā. By Corollary 7.3.1, this shows that
X(L) in Definition ?? is well defined, since the theory ACF admits quan-
tifier elimination.

(2) IfK is an algebraically closed valued field, with valuation νK and with value
group ΓK , then νK naturally gives a map from (K∗)n to Γn, by sending
(a1, . . . , an) to (νK(a1), . . . , νK(an)). We will denote this map by νK as
well. Let X be a subvariety of (K∗)n, viewed as a subset of (K∗)2n defined
over ā by ψ(x̄, ȳ, z̄), as above. Let ϕ(z̄, w̄) be the formula

n∧
i=1

zi
.
= ν(wi)

and let
φ(x̄, w̄) = ∃ȳ∃z̄(ψ(x̄, ȳ, z̄) ∧ ϕ(ȳ, w̄)).

We then get

νK(X) = {γ̄ ∈ ΓnK | (K,ΓK) |= φ[ā, γ̄]},
so νK(X) is a definable set. Furthermore, if (L, ΓL) is a valued algebraically
closed extension of (K,ΓK), we have that

νL(X(L)) = {γ̄ ∈ ΓnL | (L, ΓL) |= φ[ā, γ̄]}
so νL(X(L)) = νL(X)((L, ΓL)). This shows that any formula defining
νK(X) also defines νL(X(L)), by Corollary 7.3.1.
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Definition 10.12. Let (K,ΓK) be a model of ACVF and let D ⊂ Γn be a definable
set in (K,ΓK), defined over ā by an LΓ -formula ϕ(x̄, ȳ). If L is an algebraically
closed valued extension of K with value group ΓL, we define

D(ΓL) :=
{
γ̄ ∈ ΓnL | (L, ΓK) |= ϕ[ā, ȳ]

}
.

Remark 10.13. In the situation of Definition 10.12, let ψ(x̄, ȳ) be a quantifier free
formula such that ϕ and ψ both define the set D over ā. By Corollary 7.3.1, we
then have that D(ΓL) is also defined by ψ over ā.

11. The Bieri-Groves Theorem

Definition 11.1. Let Γ be a totally ordered divisible abelian group. A Γ -polyhedron
is a subset P ⊂ Γn for some n ∈ N such that

P =

m⋂
i=1

{
γ̄ ∈ Γn | ϕi(γ̄) ≤ ci

}
where ci ∈ Γ and ϕ1, . . . , ϕm are functions on the form

ϕi : Γn −→ Γ

(γ1, . . . , γn) 7−→
n∑
j=1

ai,jγj

with ai,j ∈ Z. An R-polyhedron is called a real polyhedron.

Remark 11.2. For a totally ordered set, in particular a totally ordered divisi-
ble abelian group Γ , the order topology is the topology generated by the open
intervals

(α, β) = {γ ∈ Γ | α < γ < β}
and the open rays

(α,∞) = {γ ∈ Γ | α < γ} and (−∞, α) = {γ ∈ Γ | γ < α}

for α, β ∈ Γ . This topology coincides with the usual topology on Rn.

The order topology gives a topology on Γn by using the product. It follows from
the definition that a Γ -polyhedron is closed under this topology.

Lemma 11.3. Let Γ be a non-zero totally ordered divisible abelian subgroup of R.
Then Γ is dense in R with respect to the order, i.e. for any α, β ∈ R with α < β,
we have that (α, β) ∩ Γ 6= ∅.

The proof is completely analogous to the standard proof that Q is dense in R,
using the Archimedean property of R, i.e. that for any ξ ∈ R, there exists a natural
number N such that N > ξ.
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Proof. Let α, β ∈ R such that α < β and let γ ∈ Γ>0. Let N ∈ N be such that
N > γ

β−α . Define the set

A =

{
mγ

N
| m ∈ N

}
⊂ Γ.

We claim that A ∩ (a, b) 6= ∅. Assume that A ∩ (a, b) = ∅ and let m1 ∈ N be the
greatest positive integer such that m1γ

N < α. Such an integer exists due to the
well ordering principle. Since m1+1

N γ ∈ A, we then get that m1+1
N γ > β. But this

implies

β − α < m1 + 1

N
γ − m1

N
γ =

γ

N
< β − α.

This is a contradiction, so A ∩ (α, β) 6= ∅, which proves the lemma. �

Theorem 11.4. Let K be an algebraically closed valued field with a valuation νK
and value group ΓK. Let X be an algebraic variety over the algebraic torus and
let d be the dimension of X. Then νK(X) is a finite union of ΓK-polyhedra and
dim(νK(X)) ≤ d.

This theorem appears in a more general setting as Theorem 1.2 A) in [Duc12], and
we follow the proof given there.

Proof. Since νK(X) is a definable set in ΓK , we have by 9.1 that

νK(X) =

k⋃
i=1

⋂̀
j=1

{γ̄ ∈ ΓnK | ϕi,j(γ̄) ./i,j 0}

where ./i,j∈ {<,≤}. We assume that
⋂`
j=1{γ̄ ∈ ΓnK | ϕi,j(γ̄) ./i,j 0} is non-empty

for each i. Since ϕi,j(γ̄) ./i,j 0 implies that ϕi,j(γ̄) ≤ 0, we only need to show that
k⋃
i=1

⋂̀
j=1

{γ̄ ∈ ΓnK | ϕi,j(γ̄) ≤ 0} ⊂
k⋃
i=1

⋂̀
j=1

{γ̄ ∈ ΓnK | ϕi,j(γ̄) ./i,j 0}.

To do this, it is enough to show that⋂̀
j=1

{γ̄ ∈ ΓnK | ϕi,j(γ̄) ≤ 0} ⊂
⋂̀
j=1

{γ̄ ∈ ΓnK | ϕi,j(γ̄) ./i,j 0}

for each i ∈ {1, . . . , k}.

For the remaining part, we fix i ∈ {1, . . . , k} and write ϕj and ./j instead of ϕi,j
and ./i,j . Let ᾱ = (α1, . . . , αn) be an element in Γn satisfying ϕj(ᾱ) ≤ 0 for all j.
We will show that ϕj(ᾱ) ./j 0 for all j, which proves the first part of the theorem.
Let

P :=
⋂̀
j=1

{γ̄ ∈ ΓnK | ϕj(γ̄) ./j 0} ⊂ νK(X).

By assumption, it is non-empty. We define the function

d : P −→ ΓK

(γ1, . . . , γn) 7−→ max
1≤i≤n

(αi − γi, γi − αi).
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Note that d(P ) is a definable set in ΓK , since maxi(αi − γi, γi − αi) is the element
satisfying the formula with parameters ᾱ and γ̄:

ψ[x, ᾱ, γ̄] =

n∧
i=1

(αi − γi ≤ x)

n∧
i=1

(γi − αi ≤ x).

More precisely, we have that

d(P ) =

γ ∈ ΓK | (K,ΓK) |= ∀γ̄


∧̀
j=1

ϕj(γ̄) ./j 0

→ ψ[γ, ᾱ, γ̄]




By Lemma 9.1, we have that d(P ) consists of the elements γ ∈ ΓK satisfying the
disjunction and conjunction of equalities of the form γ + δ ./ 0 with δ ∈ ΓK and
n ∈ Z. That is, d(P ) is the finite union of intervals (which may be open or closed).
Since d(P ) ⊂ Γ+

K := {γ ∈ ΓK | γ ≥ 0}, we must have that each of these intervals
have a lower endpoint in ΓK greater than or equal to 0. Let β ∈ ΓK be the minimum
of these lower endpoints. Since d(P ) is the union of finitely many intervals, β is
well defined. Since β is the lower endpoint of an interval contained in d((P ) and
since the order < is dense on ΓK , we have that for any β′ ∈ ΓK such that β < β′,
there is an element γ ∈ d(P ) such that β < γ < β′. I.e. β is the greatest lower
bound of d(P ). We will show that β = 0.

For contradiction, suppose that β > 0.

Claim 1. There exists an element δ̄ = (δ1, . . . , δn) ∈ ΓnK such that the following
hold:

(1) For all i we have the inequality − 3
2β ≤ δi ≤

3
2β.

(2) There exists an i0 such that β ≤ δi0 or δi0 ≤ −β.

(3) The element (α1 + δ1, . . . , αn + δn) is in P .

Proof of Claim: Let γ̄ ∈ P . Then for all j we have

ϕj

(
ᾱ+ γ̄

2

)
=

1

2

(
ϕj(ᾱ) + ϕj(γ̄)

)
./j 0.

Hence ᾱ+γ̄
2 ∈ P , which shows that we can find an element in P arbitrarily close to

ᾱ. So assume that γ̄ = (γ1, . . . , γn) ∈ P is such that

−3

2
β ≤ γi − αi ≤

3

2
β

for all i ∈ {1, . . . , n}. Now define δi := γi − αi. Then all δi satisfy condition (1) in
the claim. Note that d(γ̄) = maxi(δi,−δi). Since β ≤ d(γ̄), there exists an i0 such
that β ≤ δi0 or β ≤ −δi0 , which is equivalent to (2). Assertion (3) follows directly
from the fact that αi + δi = γi and γ̄ ∈ P by assumption. This finishes the proof
of the claim.

Let δ̄ be as in Claim 1. Then

ϕj

(
ᾱ+

1

2
δ̄

)
= ϕj

(
ᾱ+ (ᾱ+ δ̄)

2

)
=

1

2
(ϕj(ᾱ)︸ ︷︷ ︸
≤0

+ϕj(ᾱ+ δ̄)︸ ︷︷ ︸
./j0

) ./j 0
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for all j. So ᾱ+ 1
2 δ̄ ∈ P . But then

d

(
ᾱ+

1

2
δ̄

)
= max

i

(
1

2
δi,−

1

2
δi

)
contradicts assertion (1) in Claim 1 and the minimality of β since

1

2
δi ≤

3

4
β < β and − 1

2
δi ≤

3

4
β < β.

Hence, the assumption β > 0 is false, and we have that β = 0.

Now, let L be a valued algebraically closed extension of K with value group ΓL :=
ΓK ⊕Q$, with $ being an infinitesimal element strictly greater than 0, as in 6.4.
Let

P ′ := P (ΓL) =
⋂̀
j=1

{γ̄ ∈ ΓnL | ϕj(γ̄) ./j 0}

and define the function d as above but with P ′ as domain:

d : P ′ −→ ΓL

(γ1, . . . , γn) 7−→ max
1≤i≤n

(αi − γi, γi − αi).

We can think of the function d as measuring the distance between an element
γ̄ ∈ P ′ and ᾱ. With this intuitive idea in mind, we will show that there is an
element γ̄ ∈ P ′ such that γ̄ which is in a sense infinitely close to ᾱ.

By the same argument as above, d(P ′) is a definable set of Γ ′ with greatest lower
bound 0. So, there exists an element δ ∈ Q$ such that δ ∈ d(P ′). Indeed, if
q$ /∈ d(P ′) for any q ∈ Q, then $ is a lower bound for d(P ′) strictly greater
than 0. Let γ̄ = (γ1, . . . , γn) ∈ d−1(δ). Then maxi(αi − γi, γi − αi) = δ, and so
γ̄− ᾱ = δ̄ = (δ1, . . . , δn) ∈ (Q$)n. So ᾱ+ δ̄ ∈ P ′. Since P ′ is a subset of νL(X(L)),
there exists an element ā ∈ X(L) such that νL(ā) = ᾱ+ δ̄.

Now, identify Γ ′/Q$ with ΓK by factoring out all the infinitesimal elements. De-
note by π the natural projection Γ ′ → ΓK . We define the map

ν′L : L −→ Γ

a 7−→ π ◦ νL(a).

This is a valuation on L, since π is a homomorphism. We denote the valued field
(L, ν′L) by L′. Then X(L′) = X(L), since X(L) only depends on the underlying
field. Thus, ā ∈ X(L′). As noted in Remark 10.11, we have that X(L′) is defined
by the same quantifier free formula as X and that ν′L(X(L′)) is defined by the same
quantifier free formula as νK(X). This gives

ν′L(ā) ∈ ν′L(X(L′)) =

k⋃
i=1

⋂̀
j=1

{γ̄ ∈ Γn | ϕi,j(γ̄) ./i,j 0}.

But since νL(ā) = ᾱ + δ̄, we have that ν′L(ā) = ᾱ. This shows that ᾱ ∈ νK(X),
which was what we wanted to prove.

We will now show that dim(νK(X)) ≤ d. Let P be a pavé of ΓnK contained in
νK(X). Denote by δ the dimension of P. We will show that δ ≤ d. Since an isogeny
preserves dimension of both P and X, we can assume that

P =

δ∏
i=1

(ri, Ri)× {γδ+1, . . . , γn}
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with ri, Ri, γj ∈ ΓK and ri < Ri. Let ΓL be the totally ordered divisible abelian
group

ΓK ⊕Q$1 ⊕ · · · ⊕Q$δ

as defined in Lemma 6.4 and let L be a valued algebraically closed extension of K
having Γ ′ as value group. Denote by P(ΓL) the pavé of ΓnL given by

δ∏
i=1

(ri, Ri)× {γδ+1, . . . , γn} ⊂ ΓnL .

Then P(ΓL =⊂ νL(X(L)) by Lemma 9.5 and (r1 +$1, . . . , rδ +$δ, γδ+1, . . . , γn) ∈
P(ΓL), so

(r1 +$1, . . . , rδ +$δ, γδ+1, . . . , γn) ∈ νL(X(L)).

Hence, there is a point ā = (a1, . . . , an) ∈ X(L) such that

νL(ā) = (r1 +$1, . . . , rδ +$δ, γδ+1, . . . , γn).

By restricting νL, we get a valuation ν′K on K ′ = K(a1, . . . , aδ). Let Γ ′K be the
corresponding value group. Then ri +$i ∈ Γ ′K for all i ∈ {1, . . . , δ}. We now claim
that the a1, . . . , aδ are algebraically independent overK. For contradiction, suppose
that they are algebraically dependent over K. Then, there exists a polynomial
P ∈ K[X1, . . . , Xδ] such that P (a1, . . . , aδ) = 0, and so νL(P (a1, . . . , aδ)) = ∞.
Using multi-index notation, we write

P (X1, . . . , Xδ) =

m∑
|I|=1

bIX
I

with bI ∈ K∗ and m ∈ N. By the strong triangle inequality, we get that

νL(bIa
I) = νL(bJa

J)

for some I 6= J , since νL(P (a1, . . . , aδ)) would otherwise be equal to

min
I
{νL(bIa

I)} 6=∞.

We get that νL(aI) = νL(aJ)+νL(bIbJ). Since νL(aI) and νL(aJ) are in
⊕
i = 1δQ$,

we get by the ordering on ΓK ⊕
⊕δ

i=1 Q$ that νL(bIbJ) = 0 and νL(aI) = νL(aJ).
But since the νL(ai) = ri+$i are Q-linearly independent, again due to the ordering
on Γ ′K ⊕

⊕δ
i=1 Q$, this contradicts that I 6= J . Hence, a1, . . . , aδ are algebraically

independent over K, which shows that the transcendence degree of K ′ over K is at
least δ. Furthermore, from Lemma 10.6 we have that the transcendence degree ofK ′
over K is bounded above by d. So δ ≤ d, which implies that dim(νK(X)) ≤ d. �

From Theorem 11.4, we can now deduce the main result of this section, originally
Theorem A in [BG].

Corollary 11.4.1 (Bieri-Groves Theorem). Let K be an algebraically closed valued
field with a real valuation νK and value group ΓK ⊂ R. Let X be an algebraic variety
over the algebraic torus (K∗)n. Then the topological closure of νK(X) in Rn is a
finite union of real polyhedra.

Proof. From Theorem 11.4, we have that νK(X) is a finite union of ΓK-polyhedra.
Write

νK(X) = P :=

k⋃
i=1

⋂̀
j=1

{γ̄ ∈ ΓnK | ϕi,j(γ̄) ≤ 0}.
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We claim that the closure of νK(X) in Rn is equal to

PR :=

k⋃
i=1

⋂̀
j=1

{γ̄ ∈ Rn | ϕi,j(γ̄) ≤ 0}.

Since P ⊂ PR and PR is closed, the inclusion P̄ ⊂ PR is immediate. For the other
inclusion, we will show that any point of PR is a limit point of P .

Let ᾱ ∈ PR and let Bε(ᾱ) be an open ball of radius ε > 0 around ᾱ. We will show
that Bε(ᾱ) ∩ P 6= ∅. Let F< be the set consisting of the ϕi,j defining P such that
ϕi,j(ᾱ) < 0 and let F= be the set of ϕi,j defining P such that ϕi,j(ᾱ) = 0. If
F= = ∅, then ϕi,j(γ̄) < 0 for all i, j. For δ̄ = (δ1, . . . , δn) ∈ ΓnK , we have that

ϕi,j(ᾱ+ δ̄) = ϕi,j(ᾱ) +

n∑
s=1

ms,i,jδs

for some mi,j ∈ Z. Since ΓK is dense in R we can pick an arbitrarily small element
δ̄ ∈ Rn such shat ᾱ + δ̄ ∈ Γn. In particular, we can choose δ̄ so that ᾱ + δ̄ ∈ Γn,∥∥δ̄∥∥ < ε and ∣∣∣∣∣∣

n∑
s1

ms,i,jδs

∣∣∣∣∣∣ < ∣∣ϕi,j(ᾱ)
∣∣

for all i, j. So we get that

ϕi,j(ᾱ+ δ̄) = ϕi,j(ᾱ) +

n∑
s=1

ms,i,jδs < 0.

This shows that ᾱ + δ̄ ∈ PΓ and so ᾱ + δ̄ ∈ Bε ∩ P , which is what we wanted to
show.

Suppose that F= is not empty. The set

P ′R := {γ̄ ∈ Rn | ϕi,j(γ̄) = 0 for all ϕi,j ∈ F=}

is an affine subspace of Rn containing

P ′ := {γ̄ ∈ Γn | ϕi,j(γ̄) = 0 for all ϕi,j ∈ F=}.

If P ′R = {ᾱ} for some ᾱ ∈ Rn, then ᾱ must be an element in ΓnK and so ᾱ is already
in P . One can see this by noting that in this situation, Gaussian elimination on
the system of linear equations ϕi,j(γ̄) = 0 will yield a unique solution on the form
(q1α1, . . . , qnαn) = ᾱ with qi ∈ Q and αi ∈ Γ . Each qiαi is in Γ since ΓK is
divisible, hence ᾱ ∈ ΓnK . So assume that P ′ is an affine subspace of dimension at
least 1. Up to a rigid transformation, P ′R can be identified with Rm for some m < n,
and P ′ is identified with Γm under this transformation. Just as above, we can pick
an arbitrarily small δ̄ ∈ Rm such that ᾱ + δ̄ ∈ ΓmK , identifying ᾱ with its image in
Rm. Since rigid transformations preserve distance, we have that there are elements
γ̄ ∈ P ′Γ arbitrarily close to ᾱ ∈ P . Hence, we can pick an element δ̄ ∈ P ′R such that
ᾱ+ δ̄ ∈ P ′Γ , ᾱ+ δ̄ ∈ Bε(ᾱ) and

ϕi,j(ᾱ+ δ̄) < 0

for all ϕi,j ∈ F<. By construction, ᾱ + δ̄ ∈ P so we get that P ∩ Bε(ᾱ) 6= ∅, and
we are done proving the corollary. �



QE OF ACVF 41

References

[BG] Robert Bieri and J.R.J. Groves. The geometry of the set of characters induced by valua-
tions.

[Duc12] Antoine Ducros. Espaces de Berkovich, polytopes, squelettes et théorie des modèles.
Confluentes Math., 4(4):1250007, 57, 2012.

[EP05] Antonio J. Engler and Alexander Prestel. Valued fields. Springer Monographs in Mathe-
matics. Springer-Verlag, Berlin, 2005.

[Har77] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York-Heidelberg, 1977.
Graduate Texts in Mathematics, No. 52.

[Mar02] David Marker. Model theory, volume 217 of Graduate Texts in Mathematics. Springer-
Verlag, New York, 2002. An introduction.

[PD11] Alexander Prestel and Charles N. Delzell. Mathematical logic and model theory. Univer-
sitext. Springer, London, 2011. A brief introduction, Expanded translation of the 1986
German original.

[Pil] Anand Pillay. Lecture notes - model theory, https://www3.nd.edu/ apil-
lay/pdf/lecturenotes_modeltheory.pdf.

[TZ12] Katrin Tent and Martin Ziegler. A course in model theory, volume 40 of Lecture Notes
in Logic. Association for Symbolic Logic, La Jolla, CA; Cambridge University Press,
Cambridge, 2012.


	1. Introduction.
	2. Languages and structures.
	3. Satisfaction.
	4. Theories.
	5. Quantifier elimination.
	6. Valued Fields
	7. Definable sets.
	8. Quantifier Elimination of Algebraically Closed Valued Fields
	9. Definable sets in the value group
	10. Some Algebraic Geometry
	11. The Bieri-Groves Theorem
	References

