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Abstract

Suppose A is an order of some number field K. In this thesis,
we will present some results related to the Galois group and the
discriminant under some special condition on A. We apply this to
some f ∈ Z[x] with Z[x]/(f, f

′
) cyclic. By studying the trinomial

f = xn + axl + b, we solve some exponential Diophantine equations.
At last, Selmer’s trinomial is used to illustrate our main theorem.

0 Introduction

Definition 0.1. Let K be a number field. Let O be its ring of integers. An
order of K is a subring A ⊂ O of finite index. The ring O is the maximal
order of K.

Definition 0.2. Let K be a field, and K be its algebraic closure. Suppose
f = anx

n + an−1x
n−1 + · · ·+ a0 ∈ K[x], an 6= 0 and αi, i = 1, 2 . . . , n be f ’s

roots in K with mutiplicities. Then the discriminant of f is a2n−2
n

∏
i<j(αi−

αj)
2, denoted as ∆(f).

In this thesis, let Q be the algebraic closure of Q in C. Our main aim is
to present the following theorem.



Theorem 0.3. (Main theorem) Suppose K is an extension over Q of finite
degree n. Let L, O, ∆ respectively be its normal closure in Q, its ring of
integers, and its discriminant over Q. Let A be an order of K, and A† =
{x ∈ K|Tr(xA) ⊂ Z}, where Tr is the trace from K to Q. Suppose A†/A is
a cyclic abelian group. Then we have the following conclusions.
(1) Gal(L/Q) ' Sn, where Sn is n-th symmetric group.
(2) Suppose #(A†/A) = m2d, m, d ∈ Z, and d square free. Then |∆| = d,
and d is odd,
(3) #(A†/A) is odd.

Using the theorem, we get a result for discriminants of some special poly-
nomials in Z[x], which is as follows.

Theorem 0.4. Let f be a monic polynomial in Z[x]. Suppose Z[x]/(f, f
′
) is

a cyclic abelian group, and deg f > 2. Then Z[x]/(f, f
′
) is finite, and |∆(f)|

is odd and not a square.

Inspired by [OSA] and [YAM], we study trinomial f = xn + axl + b, and
get the following conclusion.

Theorem 0.5. Suppose f(x) = xn + axl + b ∈ Z[x], with n > l > 0, n ≥ 3,
and ab 6= 0. Then the abelian group Z[x]/(f, f

′
) is cyclic if and only if both

(1) and (2) hold:
(1) |b| = 1 or l ≤ 2,
(2) (al(n− l), nb) = 1.

Using the above two theorems, we get results about certain exponential
Diophantine equations.

Theorem 0.6. The equation

(XXWX−1 + (1−X)X−1ZX)2 = Y 4,

has no solution X, Y , Z, W ∈ Z with X ≥ 3, ((X − 1)Z, XW ) = 1.

Theorem 0.7. The equation

(±XXV 2(X−2) + 4(X − 2)X−2ZX)2 = Y 4,

has no solution for X, Y , Z, V ∈ Z with X ≥ 3, (2(X − 2)Z, XV ) = 1.

Theorem 0.8. The equation

((X + W )X+W − (ZX)X(±ZW )W )2 = Y 4,

has no solution for X, Y , Z, W ∈ Z with X > 0, W > 0, (XWZ, X +W ) =
1.



Finally we will study Selmer’s trinomials, which yield a good example of
our main theorem. They have the following property.

Theorem 0.9. ([JPS]) For n ∈ N and n ≥ 2, let α be a root of the polynomial
fn = xn−x−1 ∈ Q[x]. Suppose L is the normal closure of Q(α) in Q̄. Then
Gal(L/Q) ' Sn.

1 Cyclicity and discriminant

Definition 1.1. Let L/K be a finite separable field extension, let OK be
a Dedekind domain with K as field of fractions, and let OL be the integral
closure of OK in L. The fractional OL ideal

C = {x ∈ L|Tr(xOL) ⊂ OK}

is called Dedekind’s complementary module, or the inverse different. Its
inverse

DL/K = C−1

is called the different of L over K.

Theorem 1.2. Let L be a finite extension of a number field K. Suppose pL

is a finite prime of L, and pK = pL ∩K. Let e be the ramification index of
pL/pK. Then

ordpL
(DL/K) = e− 1 + u

with u = 0 if pL/pK is tamely ramified and u > 1 if pL/pK is wildly ramified,
and we have u 6 ordpL

(e).

Proof. See [PSH2], page 36, Theorem 4.9.

Corollary 1.3. Suppose K is a number field and each p|∆K/Q = [OK : DK/Q]
is tamely ramified. Then the abelian group OK/DK/Q (DK/Q is the different)
has a square free exponent.

Proof. By the above theorem, it follows that DK/Q =
∏

pep/p−1, where p

ranges over all finite ramifying primes of K over Q and p ∩ Z = p, with ep/p

as the ramification index of p/p. By Chinese Remainder Theorem, we get

OK/DK/Q w
∏

OK/pep/p−1,

where p ranges over all finite ramifying primes of K over Q. Because pep/p ⊃
pOK , easily we can check that the number T =

∏
p, where p ranges over all

finite ramified primes of Z is an exponent of OK/DK/Q.



Theorem 1.4. Suppose K is an extension over Q of finite degree. Let O, ∆
respectively be its ring of integers, its discriminant over Q. Let O† = {x ∈
K|Tr(xO) ⊂ Z}. If O†/O is a cyclic abelian group, then #(O†/O) = |∆K/Q|
is square free and odd.

Proof. Suppose p is a nonzero prime ideal of O, and wildly ramifying over Q,
with ramification index e > 1 and residue index f over the prime p ∈ Z, and
D is the different of O. Because O†/O is cyclic, O/D is cyclic. By Theorem
1.2, we have a surjective morphism

O/D ³ O/pe

with the right side of cardinality pef > p and annihilated by p, which contra-
dicts that O/D is cyclic. So all the ramifying primes of K over Q are tame.
So by Corollary 1.3, we can see that #(O†/O) = |∆K/Q| is square free.

By Stickelbergler’s discriminant relation, it is known that

#(O†/O) ≡ 0, or ± 1 mod 4,

and is square free, thus we can see the number #(O†/O) = |∆K/Q| is odd.

2 Minkowski’s theorem

Theorem 2.1. (Minkowski) Let K be a number field over Q of degree n,
and let ∆K/Q be the discriminant of K over Q. Suppose |∆K/Q| = 1. Then
K = Q.

Proof. From [PSH] (corollary 5.10, Page 54) we know

|∆K/Q| ≥
(π

4

)2s n2n

n!2
≥

(π

4

)n n2n

n!2
= bn.

In this inequality, s is the number of complex embeddings of K modulo
complex conjugation. We observe that bn+1/bn = π

4
(1 + 1

n
)2n ≥ π

4
· 4 = π,

so bn strictly increases with n. We know b2 = π2

4
> 1, so K = Q when

|∆K/Q| = 1.

Theorem 2.2. A rational prime p ramifies in the ring of integer OK of K
if and only if it divides the discriminant ∆K/Q.

Proof. Using Theorem 1.2.

Definition 2.3. Suppose L, K are number fields, whose rings of integers are
OL, OK respectively, and L/K is Galois with G = Gal(L/K). Let pL be a
maximal ideal in OL, and pK = pL ∩ OK . The decomposition group GpL/pK



consists of those elements σ ∈ G such that σpL = pL. To each σ ∈ GpL/pK
,

we can associate an automorphism σ of OL/pL over OK/pK , and the map
given by

σ → σ

induces a morphism of GpL/pK
to Gal((OL/pL)/(OK/pK)). The kernel of this

morphism is called the inertia group of pL/pK , which is denoted as IpL/pK
.

Proposition 2.4. If L/Q is finite and Galois, then Gal(L/Q) is generated
by the collection of all inertia groups Ip/p with p ranging over the set of finite
primes of L.

Proof. Let OL be the ring of integers of L. Let G be the subgroup of
Gal(L/Q) which is generated by the inertia groups of all finite p. Sup-
pose k = LG and Ok is the ring of integers of k. Let p be a nonzero
prime ideal of OL, suppose p ∩ k = p1, and p ∩ LIp = p2, we can see
that k = LG ⊂ LIp because Ip is a subgroup of G. We have the equality
ep/p2 = ep/p = ep/p2ep1/p2ep1/p, thus ep1/p = 1. Therefore there is no ramifica-
tion in Ok/Z. By Theorem 2.2, we get |∆k/Q| = 1. Finally by Theorem 2.1
we get k = Q. Hence G = Gal(K/Q).

3 Cyclicity and extension over rational num-

bers with symmetric groups

Theorem 3.1. Suppose G is a subgroup of Sn. Suppose G is transitive and
generated by a collection of 2-cycles. Then G = Sn.

Proof. Define [n] = {1, 2, ..., n}. For i, j ∈ [n], we define i ∼ j if and only if
the transposition (ij) ∈ G or i = j. Easily we can check it is an equivalence
relation. Suppose H = {σ ∈ G| for all i ∈ [n], σi ∼ i}. Thus H is a subgroup
of G containing all transpositions in G, which implies H = G. So for all
σ ∈ G, for all i ∈ [n], one has σi ∼ i. Because G is transitive, we have for
all i, j ∈ [n], i ∼ j, so (ij) ∈ G, which tells us G = Sn.

Theorem 3.2. Let L be a finite field extension of a number field K, M the
normal closure of L over K, and p a finite prime of K, we set G = Gal(M/K)
and H = Gal(M/L) ⊂ G, and let G act in natural way on the set Ω of left
cosets of H in G. Suppose we are given integers ei, fi for i = 1, 2, . . . , t.
Then the following two statements are equivalent.
(1) the prime p has t distinct extensions q1, q2, . . . , qt to L with ramification
indices e(qi/p) = ei and residue class field degrees f(qi/p) = fi;
(2) for every decomposition group GP ⊂ G of a prime P above p in M/K,
there are t distinct GP-orbits Ωi ⊂ Ω of length #Ωi = eifi such that under



the action of the inertia group IP ⊂ GP on Ωi, there are fi orbits of length
ei each.

Proof. Let P be a prime of M over p with restriction q to L, and write ΩP for
the GP-orbit of the coset H ∈ Ω. The length of this orbit is [GP : GP ∩H],
and this is equal to [Lq : Kp] = e(q/p)f(q/p) since we have a tower of
complete extensions

MP ⊃ Lq ⊃ Kp

in which Gal(MP/Kp) = GP contains a subgroup HP = H ∩GP correspond-
ing to Lq. An arbitrary GP-orbit in Ω, say of the residue class gH, can be
written as

GP · gH = g ·Gg−1PH = g · Ωg−1P,

so the length of such an orbit equals e(q
′
/p)f(q

′
/p) with q

′
the restriction of

g−1P to L. We do obtain a bijection between p to L and GP-orbits in Ω:
g−1
1 P ∩ L = g−1

2 P ∩ L ⇐⇒ ∃h ∈ H : hg−1
1 P = g−1

2 P ⇐⇒ ∃h ∈ H : g2hg−1
1 ∈

GP ⇐⇒ ∃h ∈ H : GP · g2h = GP · g1 ⇐⇒ GP · g2H = GP · g1H.
The inertia group IP of P is a normal subgroup of GP, so all IP-orbits inside
a single GP-orbit have the same length. Inside the orbit ΩP this length is
equal to the group index [IP : IP ∩ H] = [IP : IP ∩ HP] = [IPHP : IP]. In
the extension MP/Kp, this corresponds to a subextension Lq/Tq, with Tq the
inertia field of q in Lq/Kp. It follows that the length of the IP-orbits in ΩP is
[Lq : Tq] = e(q/p) as asserted. The identity IP · gH = g · Ig−1PH now shows
that the length of the IP-orbits in GP-orbit corresponding to a prime q

′
of L

equals to e(q
′
/p).

Corollary 3.3. Keep the notation in the above theorem. We suppose that
{q/p|e(q/p) > 1} = {q′}, where p is any ramified finite prime of OK and
q
′

is a finite prime of OL. If the unique q
′

that ramifies over p satisfies
e(q

′
/p) = 2, f(q

′
/p) = 1, then IP/p acts as a 2-cycle, where P is a prime of

OM and P ∩ L = q
′
.

Proof. Apply the above theorem.

Theorem 3.4. Suppose K is an extension over Q of finite degree n. Let
L, O, ∆ respectively be its normal closure in Q, its ring of integers, its
discriminant over Q. Let O† = {x ∈ K|Tr(xO) ⊂ Z}. If O†/O is cyclic as
an abelian group, then Gal(L/Q) ' Sn.

Proof. Thus by Theorem 1.4, it follows #(O†/O) is square free, and we know
that

O†/O ∼= OK/DK/Q ∼=
∏

OK/pep/p−1+up/p ,

where p ranges over all finite ramifying primes of K over Q. Because O†/O
is cyclic, if a rational prime p has ramification in K, then there exists exactly



one prime in K that ramifies over p and it follows that e(p/p) = 2 and
f(p/p) = 1 for all ramifying p over p. Because L is a normal closure of
an extension of Q of degree n, the group Gal(L/Q) can be considered as a
subgroup of Sn, and acts transitively on Ω (using L, Q[x]/(fn), Q to replace
M , L, K in Theorem 3.1). By Theorem 2.4 we know Gal(L/Q) is generated
by all inertia groups. Using corollary 3.3, we know each inertia group is a
2-cycle or trivial. Finally through Theorem 3.1, the proof is concluded.

4 Main theorem

Theorem 4.1. (Main theorem) Suppose K is an extension over Q of finite
degree n. Let L, O, ∆K/Q respectively be its normal closure in Q, its ring
of integers, and its discriminant over Q. Let A be an order of K, and A† =
{x ∈ K|Tr(xA) ⊂ Z}, where Tr is the trace from K to Q. If A†/A is cyclic,
we have the following conclusions
(1) Gal(L/Q) ' Sn,
(2) Suppose #(A†/A) = m2d, m, d ∈ Z, and d square free. Then |∆K/Q| = d,
and d is odd,
(3) #(A†/A) is odd.

Proof. Because A†/A is cyclic, and A ⊂ O ⊂ O† ⊂ A†, then O†/O is cyclic.
By Theorem 3.4, we get (1) is true. By duality, we have

O/A ' A†/O†.

By Theorem 1.4, we can see (2) is true.
Suppose #(A†/A) is even. Because #(A†/A) = #(O/A)2|∆K/Q|, the number
#(O/A) is even. Let A

′
= A + 2O which has index 2 in O. Suppose

f = {x ∈ K|xO ⊂ A
′} is the conductor of A

′
. Then we have inclusions

f ⊂ A
′ ⊂ O ⊂ O† ⊂ A

′†.

Because f is the kernel of the natural surjective morphism

A
′ ³ Hom(O/A

′
,O/A

′
) ' F2,

then we have
2O ⊂ f, A

′
/f ' F2, N(f) = 4.

Suppose (2) = fg, where g is an ideal of O. By (2), we know 2 is unramified
in O. Therefore we have (f, g) = 1. So we get

A
′
/2O ⊂ O/2O ∼= O/f×O/g



Suppose β ∈ O and
β ≡ 1 mod f, β ≡ 0 mod g.

At the same time we can get

A′ = A
′
/2O ∼= F2 ×O/g

We can see that A′ · β = {0, β}. Suppose

Tr : O/2O −→ F2

which is the natural morphism induced by trace from K to Q. Then Tr(β) =
0. Therefore it follows that TrK/Q(A

′
β) ⊂ 2Z. Thus β

2
∈ A

′† and β
2

/∈ O.

Hence we have O ⊂ O + Zβ
2
⊂ A

′† and β ∈ A
′
. We can see that A

′ ⊂ O ⊂
O + Zβ

2
, and (O + Zβ

2
)/A

′
is cyclic of order 4, which contradicts that it is

annihilated by 2. Hence #(A†/A) is odd.

Corollary 4.2. Let f ∈ Z[x] be irreducible, and of degree n > 1. Suppose
Z[x]/(f, f

′
) is cyclic, and #(Z[x]/(f, f

′
)) = m2d, where m, d ∈ N, and d is

square free. Let K = Q(α), where α is a root of f , and L be the normal
closure of K. Then
(1) Gal(L/Q) = Sn

(2) |∆K/Q| = d, and d is odd.
(3) m is odd. In particular, #(Z[x]/(f, f

′
)) is odd and not a square.

Proof. It is known that Z[α]† = 1
f ′ (α)

Z[α], so Z[α]†/Z[α] = Z[x]/(f, f
′
) which

is cyclic. Then by the above theorem and Minkowski’s Theorem, we obtain
the corollary.

5 Cyclicity and non-square discriminants for

polynomials

Theorem 5.1. Let f be a monic polynomial in Z[x]. Suppose Z[x]/(f, f
′
) is

a cyclic abelian group, and deg f > 2. Then Z[x]/(f, f
′
) is finite, and |∆(f)|

is odd and not a square.

Proof. If Z[x]/(f, f
′
) is infinite, then under an isomorphism ϕ, we have

Z[x]/(f, f
′
) ' Z. Suppose ϕ(x) = a ∈ Z. Then (x − a)2|f . So we can

construct a natural surjective morphism Z[x]/(f, f
′
) ³ F2[x]/((x − a)2).

But the right side is not cyclic, so we can conclude that Z[x]/(f, f
′
) is finite.

If f is irreducible, then by corollary 4.2, the theorem is correct. Suppose
f is not irreducible, then there exists a nonconstant polynomial g ∈ Z[x],



monic and irreducible, such that f = gh, with h ∈ Z[x] and deg h > 0.
Thus we see that Z[x]/(f, f

′
) ³ Z[x]/(g, g

′
), which implies that Z[x]/(g, g

′
)

is cyclic. Suppose p is a prime number in Z and p|(∆(g), ∆(h)). Suppose g,
h ∈ F[x] and

g = (g mod p);

h = (h mod p).

Therefore there exist nonconstant G,H ∈ Fp[x] such that G2|g, H2|h. Thus
we can find a surjective morphism

Z[x]/(f, f
′
) ³ Fp[x]/(GH),

and the right side is not cyclic, a contradiction. Hence (∆(h), ∆(g)) = 1. We
have

∆(f) = ∆(h)∆(g)R(g, h)2,

where R(g, h) is the resultant of g and h. If f =
∏t

i=1 gi, and gi ∈ Z[x] monic
and irreducible, then by induction, we will get

∆(f) =

(
t∏

i=1

∆(gi)

)
·m2

and m ∈ N, with

(∆(gi), ∆(gj)) = 1, 1 ≤ i 6= j ≤ t.

If |∆(f)| is a square, by corollary 4.2, we can see each gi is linear and
monic. Because deg f > 2, which means f has at least 3 linear factors, we
suppose they are x− a, x− b, and x− c ∈ Z[x]. Without loss of generality,
we can suppose

a ≡ b mod 2,

so in F2[x], (x− a)2|f and (x− a)2|f ′ , then there is a morphism

Z[x]/(f, f
′
) ³ F2[x]/((x− a)2).

This is a contradiction because the right side is not cyclic. Finally we can
say that ∆(f) is not a square.

If 2|∆(f), then f is not separable in F2[x], we can use the above method
to get a contradiction. So ∆(f) is odd.



6 Case of some trinomials and induced Dio-

phantine equations

For the polynomial f(x) = xn + axl + b ∈ Z[x], with n > l > 0, n ≥ 3, and
ab 6= 0, we give a criterion to judge whether R = Z[x]/(f, f

′
) is cyclic.

Here we suppose that Z(n) = Z[1/n], where 0 6= n ∈ Z.
When |b| 6= 1 and l ≥ 3, if prime p|b, we will have a morphism R ³

Fp[x]/(x2) as abelian group, with the right side is not cyclic. So we separate
the rest of trinomials of this form into 3 cases.

Case 1 : l = 1. Now we have

f = xn + ax + b, f
′
= nxn−1 + a.

(1) If there exists a prime p|(a, n), it follows that R ³ Fp[x]/(xn + b),
and the right side is not cyclic. So (a, n) = 1.

(2) If there exists a prime p|(a, b), because (a, n) = 1, we will see a
morphism

R ³ Fp[x]/(xn, nxn−1) = Fp[x]/(xn−1)

with the right side is not cyclic. So (a, b) = 1.
(3) If there exists a prime p|(n − 1, b), then there is a morphism R ³

Fp[x]/(f, f ′). Because nf = xf ′ in Fp[x], and p - n, then Fp[x]/(f, f ′) =

Fp[x]/(f ′), which is not cyclic. So (n− 1, b) = 1.
So (1), (2), (3) is equivalent to that (a(n− 1), bn) = 1.
Conversely, suppose (a(n−1), bn) = 1. Because nf−xf

′
= a(n−1)x+bn,

then we have

R ' Z[x]/(f, f
′
, a(n−1)x+bn) ' Z(a(n−1))/(f(−bn/a(n−1)), f

′
(−bn/a(n−1)))

with x = −bn
a(n−1)

. We get the right side is a cyclic abelian group, because

(f(−bn/a(n− 1)), f
′
(−bn/a(n− 1))) is not trivial in Z(a(n−1)) as a result of

n
(

−bn
a(n−1)

)
)n−1 6= a.

Case 2: l = 2, then

f = xn + ax2 + b, f
′
= nxn−1 + 2ax.

(1) If 2|n, we get a morphism R ³ F2[x]/(f)
(2) If 2|b, then we get another morphism R ³ F2[x]/(x2) Both (1) and (2)
contradict the fact that R is cyclic, so b, n are odd.
(3) Suppose there exists a p|(a, n), then there is a surjective morphism R ³
Fp[x]/(f), with the right side not cyclic, so (a, n) = 1.
(4) If there exists a prime p|(a, b), we can see that R ³ Fp[x]/(xn−1). But
Fp[x]/(xn−1) is not cyclic for n ≥ 3. So it tells us that (a, b) = 1.



(5) By the argument similar to (3) of case 1, for nf = 2xf ′ in Fp[x], we get
(n− 2, b) = 1.

Easily we can say (1), (2), (3), (4), (5) are equivalent to (2a(n−2), nb) = 1.
Conversely, If (2a(n− 2), nb) = 1, by

nf − xf
′
= (n− 2)ax2 + nb, f ′ = 2ax + nxn−1,

We can construct a natural surjective morphism

Z(2(n−2)a) ³ R with x = −n
2a

(
−nb

(n−2)a

)n−1
2

. By an argument similar to case 1,

it follows that R is cyclic.
Case 3: b = ±1, then

f = xn + axl + b, f
′
= nxn−1 + alxl−1.

(1) If there exists a prime p|(al, n), then there is a surjective morphism
R ³ Fp[x]/(f), which contradicts to R is cyclic. So (al, n) = 1.

(2) By (1), we can see (n − l, n) = 1. We can see that (1) and (2) are
equivalent to (l(n− l)a, nb) = 1.

Conversely, we suppose (l(n− l)a, nb) = 1. Because f = xn + axl + b and
b ∈ R∗, then x ∈ R∗. Because nf − xf

′
= a(n − l)xl + bn = 0 ∈ R and

(l(n− l)a, nb) = 1, then we get a(n− l), n ∈ R∗. Using the universal property
of Z((n−1)a), we get a morphism ϕ: Z((n−1)a) → R. Suppose R0 is the image
of ϕ. Easily we find that xl = −bn

a(n−1)
∈ R0. For (n, l) = 1, therefore there

exist t, s ∈ Z, such that tn + sl = 1. So

x = xtnxsl = (−axl − b)t(xl)s

which implies x ∈ R0, and it follows that R0 = R. Easily we can check that
Kerϕ is not trivial, so we get R is cyclic.
We generalize the above cases to get the following theorem.

Theorem 6.1. Suppose f(x) = xn + axl + b ∈ Z[x], with n > l > 0, n ≥ 3,
and ab 6= 0. The abelian group Z[x]/(f, f

′
) is cyclic if and only if both (1)

and (2) hold:
(1) |b| = 1 or l ≤ 2,
(2) (al(n− l), nb) = 1.

The following is a theorem about the discriminant of the trinomial in
[SWAN].

Theorem 6.2. Let n > l > 0, d = (n, l), and n = n1d, l = l1d. Then

∆(xn + axl + b) = (−1)n(n−1)/2bl−1[nn1bn1−l1 + (−1)n1+1(n− l)n1−l1ll1an1 ]d.



Using Theorem 5.3 and Theorem 6.1, we get three theorems of three
diophantine equations for the above 3 cases.

Theorem 6.3. The equation

(XXWX−1 + (1−X)X−1ZX)2 = Y 4,

has no solution X, Y , Z, W ∈ Z with X ≥ 3, ((X − 1)Z, XW ) = 1.

Proof. By Theorem 6.2, it follows that

|∆(f)| = |nnbn−1 + (−1)n+1(n− 1)n−1an|,

where f = xn + ax + b ∈ Z[x], and n > 3, ab 6= 0. When (a(n− 1), nb) = 1,
by Theorem 5.1 and Theorem 6.1, we get that |∆(f)| is not a square. Then
we replace n, a, b by X, Z, W respectively, and the proof is concluded.

Theorem 6.4. The equation

(±XXV 2(X−2) + 4(X − 2)X−2ZX)2 = Y 4,

has no solution for X, Y , Z, V ∈ Z with X ≥ 3, (2(X − 2)Z, XV ) = 1.

Proof. By Theorem 6.2, it follows that

|∆(f)| = |b[nnbn−2 + (−1)n+1 · 4(n− 2)n−2an]|,

where f = xn +ax2 + b ∈ Z[x], and n > 3, ab 6= 0. When (2a(n−2), nb) = 1,
by Theorem 5.1 and Theorem 6.1, we get that |∆(f)| is not a square. Then
we replace n, a, b by X, Z, V 2 (or −V 2) respectively, and the proof is
concluded.

Theorem 6.5. For equation

((X + W )X+W − (ZX)X(±ZW )W )2 = Y 4,

has no solution for X, Y , Z, W ∈ Z with X > 0, W > 0, (XWZ, X +W ) =
1.

Proof. By Theorem 6.2, it follows that

|∆(f)| = |(±1)n−lnn + (−1)n+1(n− l)n−lllan|,

where f = xn +ax2±1 ∈ Z[x], and n > 3, a 6= 0. When (la(n− l), n) = 1, by
Theorem 5.1 and Theorem 6.1, we get that |∆(f)| is not a square. Then we
replace n, a, l by X +W , Z, W respectively, and the proof is concluded.



7 Application to Selmer’s trinomial

7.1 A new version for the irreducibility of Selmer’s
trinomial

Theorem 7.1. ([SEL]) Let n ∈ N and n ≥ 2 , then fn = xn − x − 1 is
irreducible in Q[x].

Proof. Suppose f(x) ∈ Z[x] is monic with nonzero constant term and {xi}deg f
i=1

are its roots with multiplicities, we define

S(f) =
∑ (

xi − 1

xi

)
(7.1)

As a symmetric function of the roots, S is rational, and an integer if the
constant term of f ∈ Z[x] is 1 or −1. In the latter case, if f = gh, and
g, h ∈ Z[x], then S(f) = S(g) + S(h), and S(g), S(h) ∈ Z, since a rational
factor of f must also have a constant term ±1 (Gauss Lemma). Suppose
n ≥ 3, and we write fn as the following :

fn =
n∏

i=1

(x− xi) = xn + an−1x
n−1 + . . . + a1x + a0

and an−1 = 0, a1 = −1, a0 = −1,

S(fn) =
∑ (

xi − 1

xi

)
=

∑
xi −

∑ 1

xi

= −an−1 −
∑ x1 . . . xi−1xi+1 . . . xn

x1 . . . xn

= 0 +
a1

a0

= 1.

Suppose xi is any root of fn, then we get

xi + 1 = xn
i , xi + 1 = xi

n. (7.2)

Thus
(xi + 1)(xi + 1) = xn

i xi
n,

which implies

xi + 1 + xi = xn
i xi

n − xixi

{
> 0, |xi| > 1

6 0, |xi| 6 1
,

so (xi + 1 + xi)(1− 1
xixi

) > 0, which implies that

xi − x−1
i + xi − xi

−1 = (xi + xi)(1− 1

xixi

) > 1

xixi

− 1.



Thus for any factor g of fn:

S(g) =
∑ (

xi − 1

xi

)
≥ 1

2

∑ (
1

|x2
i |
− 1

)
(7.3)

The sum is over all roots of g. On the other hand, the product of the modulus
over the same roots must give unity:

∏
1
|x2

i |
= 1. The geometric mean of all

|x−2
i | is consequently equal to 1. Since this is always at most the arithmetic

mean (again with the equality only for all |xi| = 1), it follows for the sum
in (1.3) that S(g) ≥ 0. Consequently any factorization of fn must yield the
integer partition 1 = 0 + 1. The eqality

1 = |x| = |x + 1| = |xn|

only happens when x = e±2πi/3, which says that fn is reducible can occur
only for the factor g = x2 + x + 1 or fn

g
= x2 + x + 1. Easily we can see that

x2 + x + 1 is not a factor for fn, and this concludes our proof.

7.2 Application

Theorem 7.2. ([JPS]) For n ∈ N and n ≥ 2, let Sn be n-th symmetric group
and α be a root of the polynomial fn = xn − x− 1 ∈ Q[x]. Suppose L is the
normal closure of Q(α) in Q̄. Then
(1) the group Gal(L/Q) ' Sn;
(2) the cardinality of Z[α]†/Z[α] is nn − (1 − n)n−1, and nn − (1 − n)n−1 is
not a square.

Proof. It is known that Z[α]† = 1
f ′n(α)

Z[α], so Z[α]†/Z[α] ∼= Z[x]/(fn, f
′
n)

which is a cyclic abelian group by Theorem 6.1 and has cardinality nn− (1−
n)n−1 by Theorem 6.2. So by our main theorem we conclude our proof.
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