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Preface

Noether's normalization lemma is a well known result in commutative
algebra, due to the German mathematician Emmy Noether (1882-1935). It
states that every commutative algebra of �nite type A over a �eld K contains
a subring of polynomials K[X1, ..., Xd] and it is �nite over it. This purely
algebraic result has a very fascinating geometric meaning: any a�ne alge-
braic variety over a �eld is a �nite cover of an a�ne space. Morally speaking
this means that some very common geometric objects can be pushed (or
projected) without too much overlapping over another simpler (the simpliest
possible we can say) geometric object of the same dimension.

There exists a graded version of Noether's normalization lemma, whose
geometric expression is simular to the one stated above: any projective va-
riety is a �nite cover of a projective space. Furthermore, it is possible to
impose some nice conditions on the covers.
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ii PREFACE

The aim of this master thesis is to �rst study the case of projective varieties
over a �eld of the normalization lemma. The second step would be to study
the case of projective schemes over some particular classes of rings.
In Chapter 1 we introduce a foundamental tool to tackle these topics, that
is to say sheaves of modules, aiming to a particular class of them: ample
invertible sheaves. We are also going to provide a very essential list of results
for a special sheaf of module, the sheaf of di�erentials, which plays a central
role in the theory of étale covers.
Chapter 2 is about the Noether's normalization lemma for projective schemes
over a �eld k. After some remarks on the case of a �eld of characteris-
tic zero, we largely talk about the case of a �eld of positive characteristic,
reviewing Noether normalization lemma and imposing some conditions on
projective morphisms, such as étaleness and particular behaviours on closed
subschemes.
Finally, Chapter 3 is devoted to the case of projective schemes over ans a�ne
scheme S, with the property that every �nite scheme over it has a torsion
Picard group.

References and aknowledgments

I started this work basing on aknowledgments achieved during the course
of Introduction to Algebraic Geometry, held by professor Q. Liu in the �rst
semester of the current academic year here in Bordeaux. Hence I am con-
sidering the basics of scheme theory, specially projective shemes, as prereq-
uisites. I am going to try to be as punctual as possible in giving references
about every part which will not be exaustively treated, but, for the cases
where I will not result enough precise, I refer to classical texts on these top-
ics, such as [H] and [L] in particular. Furthermore I recommend the Stacks
Project (http:stacks.math.columbia.edu/), which in more than one oc-
casion helped me in orienteering in the extent of Algebraic Geometry. For
this thesis the theory of schemes morphisms will be fundamental: I am going
to treat projective, a�ne, proper, separated, of �nite type, unrami�ed, étale
and, of course, �nite morphisms, whose de�nitions and properties can be
found in the references above mentioned.

Rewording Fermat, I have discovered truly marvellous people, whom this
margin is too narrow to contain, but in particular this work would not have
been possible without the extraordinary help of my advisor, Professor Qing
Liu: I gratefully thank him for his kind availability to listen and answer to
my uncountable doubts and curiosities.
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Chapter 1

Preliminaries

The theory of sheaves had been developped in about 15 years during the
�rst half of last century. The intuitive idea, which is going to be found-
ing for the sheme theory, is that some geometric objects may carry some
algebraic structures intrisecally connected to their geometric nature. It is
the case of, as an example, rings of functions de�ned over open subsets of
a underlying topological space. In this chapter we are considering richer al-
gebraic structures, such as modules and algebras over a ring. This will let
us enlarge the number of tools for investigating the nature of our geometric
objects. Indeed, considering sheaves over a scheme other than the structure
one, provides us more �exible tools. Especially important it will be the notion
of quasi-coherent sheaves (introduced by Serre), which have some powerful
properties, having a local structure easy to study. This chapter will mainly
follow the work of [L] (Chapter 5 Section 1) and [H] (Chapter II Section 5).

1.1 Sheaves of Modules

1.1.1 De�nition and �rst examples

De�nition 1.1.1. Let (X,OX) be a ringed topological space. A sheaf of
OX-modules (or simply an OX-module) is a sheaf F on X, such that for
every open subset U ⊆ X, F(U) is an OX(U)-module, and for each inclusion
of open sets V ⊆ U , the restriction map F(U) −→ F(V ) is compatible with
the module structure via the ring homomorphism OX(U) −→ OX(V ); i.e.
for every a ∈ OX(U) and every f ∈ F(U), we have (af)|V = a|V f |V .
In an obvious way a morphism of OX-modules F −→ G is a morphism of
sheaves such that, on each open subset U ⊆ X, it de�nes a homomorphism
of OX(U)-modules F(U) −→ G(U).

1



2 CHAPTER 1. PRELIMINARIES

A trivial example of OX-module is the structure sheaf OX itself. Another
example we already know is the sheaf of ideals I, for which every open U ⊆ X
corresponds to an ideal I(U) ⊆ OX(U) (which is an OX(U)-module).
Starting with two OX-modules F ,G, we can use the usual operations on
modules over a ring to construct other OX-modules. For example we de�ne
the tensor product F ⊗OX G to be the sheaf associated to the presheaf1

U 7−→ F(U)⊗OX(U) G(U).

In the same way we can de�ne direct sum of OX-modules, kernel and cokernel
of morphisms of OX-modules. Moreover, the tensor algebra, exterior algebra
and symmetric algebra of F are de�ned in the same way. For example, the
k-th exterior power

∧k F is the sheaf associated to the presheaf

U 7−→
k∧

OX(U)

F(U).

If F is locally free of rank n (i.e. there exists an open covering for which
F|U is isomorphic to a direct sum of copies of OX |U), then

∧nF is called
the determinant line bundle of F , denoted by det(F).

Now we are going to present other more structured examples of OX-modules.

Example 1.1.2. (Inverse image of a sheaf of modules) Let f : X −→ Y be
a morphism of schemes. The homomorphism f# : OY −→ f∗OX induces
a morphism of sheaves of rings f−1OY −→ OX . Given an OY -module G
we de�ne on the ringed topological space (X, f−1OY ) the tensor product of
f−1OY -modules

f ∗G := f−1G ⊗f−1OY OX ,
which can be seen as OX-module via multiplication on the right. It is also
called pull-back of G (notice that f ∗OY = f−1OY ⊗f−1OY OX ∼= OX).
Example 1.1.3. (Quasi-coherent2 sheaf on an a�ne scheme) Let X = SpecA

be an a�ne scheme and let M be an A-module. For any principal open
subset D(f) ⊆ X de�ne the presheaf M̃ as

M̃(D(f)) := Mf

with restriction maps given by the canonical morphism of localization. It
can be easily proved (follow [L] Proposition 2.3.1 with very few adaptations)
that

1Restriction maps are induced by the universal property of tensor product of modules.
2The expression quasi-coherent will be cleari�ed later and the reason we use it in these

cases too (Proposition 1.1.9).



1.1. SHEAVES OF MODULES 3

(i) this indeed de�nes a sheaf (in particular an OX-module),

(ii) M̃p = Mp for every p ∈ SpecA, and

(iii) M̃(X) = M (this easily follows from the de�nition and the fact that
X = D(1) and M1 = M).

Example 1.1.4. (Quasi-coherent sheaf on a projective sheme) Given a graded
ring B = ⊕n≥0Bn, let X = ProjB be a projective scheme and let M =

⊕n∈ZMn be a graded B-module (i.e. BmMn ⊆ Mm+n for every m ≥ 0 and
every n ∈ Z). For any non-nilpotent homogeneous f ∈ B+, de�ne

M(f) =

{
m

fd
∈Mf : m ∈Md deg(f)

}
,

i.e. the sets of elements of Mf of degree 0. It is a B(f)-module (de�ned

replacing M by B) in a natural way. We de�ne a sheaf M̃ on X by glueing

togheter3 the sheaves (̃M(f)) de�ned, as in the previous example, on the a�ne
scheme D+(f) = SpecB(f) for any principal open subset D+(f) ⊆ X. It can

be proved as before that M̃p = M(p), for every p ∈ ProjA, where M(p) is the
set of elements degree 0 of Mp.

This last two examples show us more clearly the connection between
modules over a ring and sheaves on a ringed space.

1.1.2 Quasi-coherent sheaves

Among the OX-modules a central role is played by the quasi-coherent
sheaves. These are sheaves which are in some sense closely linked to the
geometric properties of the underlying space. In particular they have a local
presentation, as the following de�nition can suggest.

De�nition 1.1.5. Let (X,OX) be a ringed topological space and let F be
an OX-module. F is said to be quasi-coherent if for every x ∈ X, there exists
an open neighbourhood U ⊆ X of x and an exact sequence of OX-modules

O(J)
X |U −→ O(I)

X |U −→ F|U −→ 0 ,

for some sets I, J .
We say that F is �nitely generated if for every x ∈ X there exists an open
neighbourhood U ⊆ X, an integer n ≥ 1 and a surjective homomorphism
OnX |U −→ F|U .

3see [L] Exercise 2.2.8.
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A trivial example of quasi-coherent sheaf is the structural sheafOX . Some
authors prefer to highlight the analogy between sheaves of OX-modules and
modules over a ring, de�ning a quasi-coherent sheaf as a sheaf of OX-modules
F , which is isomorphic to a sheaf of the form M̃i (like in Example 1.1.3) on the
open sets of some a�ne covering X =

⋃
i Ui. By considering this de�nition,

it follows immediately that the sheaves de�ned in Example 1.1.3 and 1.1.4
are quasi-coherent. We will show that these de�nitions are equivalent.

Proposition 1.1.6. Let X = SpecA be an a�ne scheme, we have that4

(a) given a family of A-modules {Mi}i, then ⊕̃iMi
∼= ⊕iM̃i;

(b) a sequence of A-modules L −→ M −→ N is exact if and only if the
sequence of OX-modules L̃ −→ M̃ −→ Ñ is exact;

(c) for any A-module M , the sheaf M̃ is quasi-coherent;

(d) given two A-modulesM,N then there is a canonical isomorphism M̃ ⊗A N ∼=
M̃ ⊗OX Ñ .

Proof. For every principal open subset D(f) ⊆ X, by de�nition, we have
⊕̃iMi(D(f)) = (⊕iMi)f = ⊕i(Mi)f = ⊕iM̃i(D(f)); so we get (a). Let us
suppose L −→ M −→ N exact. Then for every p ∈ SpecA, Lp −→ Mp −→
Np is exact (Ap is �at), but this sequence corresponds to L̃p −→ M̃p −→ Ñp

(Example 1.1.3(ii)), so it means that L̃ −→ M̃ −→ Ñ is exact. On the other

hand, consider the exact sequence L̃
α−→ M̃

β−→ Ñ . By Example 1.1.3(ii)(iii),
for every p ∈ SpecA we have the following commutative diagram

L
αX−→ M

βX−→ N

↓ ↓ ↓
Lp

αp−→ Mp
βp−→ Np

where the lower horizontal sequence is exact, since is corresponds to L̃p −→
M̃p −→ Ñp and we are supposing the sequence of OX-modules exact. This
implies that, for all p ∈ SpecA5,(

ker βX
ImαX

)
p

=
(ker βX)p
(ImαX)p

=
ker βp
Imαp

= 0.

4Note that, since X is a�ne, we are considering the construction of Example 1.1.3: not

to confuse the two cases.
5Recalling that Ap is �at, we have that, since 0 −→ kerβX −→ M

βX−→ N is exact,

then 0 −→ (kerβX)p −→ Mp
βp−→ Np is exact as well, thus (kerβX)p = kerβp. The same

argument works for (ImαX)p =Imαp.
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Therefore
ker βX
ImαX

= 0 in M , i.e. L −→M −→ N is exact and we have (b).

For (c) we notice that for every A-module M we have an exact sequence

K −→ L −→M −→ 0,

where K,L are free A-modules, then by (a),(b) we get the statement needed.
Finally we have that

M̃ ⊗A N(D(f)) = (M ⊗A N)⊗A Af
∼= (M ⊗A Af )⊗Af (N ⊗A Af )

= M̃(D(f))⊗OX(D(f)) Ñ(D(f))

= (M̃ ⊗OX Ñ)(D(f)),

where the last equality comes from our de�nition of tensor product of sheaves
of modules. This is an isomorphism of OX(D(f))-modules compatible with
restriction maps. Since the D(f) form a base for the topology of X, the latter
isomorphism induces the isomorphism of OX-modules stated by (d).

Proposition 1.1.7. Given a noetherian or separated and quasi-compact6

scheme X, let F be a quasi-coherent sheaf on it. Then for any f ∈ OX(X),
the canonical homomorphism

F(X)f = F(X)⊗OX(X) OX(X)f −→ F(Xf ),

where Xf := {x ∈ X : fx ∈ O∗X,x}, is an isomorphism.

We are going to prove a more general form of this Proposition later, for
its proof see [L] Proposition 5.1.6.
Finally we come to the proof of the theorem stated before, which shows the
equivalence of the two de�nition of quasi-coherent sheaf we gave.

Theorem 1.1.8. Let X be a scheme and F an OX-module. Then F is
quasi-coherent if and only if for every a�ne open subset U ⊆ X, we have

F|U ∼= F̃(U).

Proof. Suppose F quasi-coherent. Let U ⊆ X be an a�ne open set, then
by the previous result, for any f ∈ OX(U), F(U)f ∼= F(D(f)). Hence

F̃(U)(D(f)) = F(U)f ∼= F(D(f)) = F|U(D(f)) and, as before, this implies

F|U ∼= F̃(U). Conversely, Proposition 1.1.6(c) tells us that F is quasi-
coherent on open a�nes of X; but the de�nition is given on open neighbour-
hoods of points of X, so F is quasi-coherent on X.

6e.g. a�ne shemes.
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Remark 1.1.9. Given F ,G quasi-coherent sheaves on X, this last result,
togheter with Proposition 1.1.6(d), implies that for every open a�ne sub-
set U ⊆ X,

(F ⊗OX G)(U) = F(U)⊗OX(U) G(U).

Further, we can also say that

(F ⊗OX G)x = ((F ⊗OX G)|U)x

= ( ˜F ⊗OX G)(U))x

= ( ˜F(U)⊗OX(U) G(U))x

= (F(U)⊗OX(U) G(U))⊗OX(U) OX,x
= (F(U)⊗OX(U) OX,x)⊗OX,x (G(U)⊗OX(U) OX,x)
= Fx ⊗OX,x Gx.

Actually this result can be proved in general for any OX-module (see [B]II
Section 6 Proposition 7), in particular if we consider any OX-module G as
in Example 1.1.2, recalling the fact that (f−1G)x = Gf(x) (see [L] Subsection
2.2.1 page 37), then

(f ∗G)x ∼= Gf(x) ⊗OY,f(x) OX,x.

We continue providing some useful examples of quasi-coherent sheaves on
a projective scheme.

Example 1.1.10. (Twisting sheaves) Given a ring A and a graded A-algebra
B, for any n ∈ Z let B(n) be the graded B-module de�ned by B(n)d =

Bn+d (we call it a twist of B). Let X = ProjB, we de�ne the OX-module

OX(n) := B̃(n) (so it follows the construction of Example 1.1.4, do not
confuse this with the a�ne case). We call OX(1) the twisting sheaf of Serre.

Remark 1.1.11. This last example plays a central role in the theory of pro-
jective scheme. We remark some results about it.

(i) For any homogeneous element f ∈ B of degree 1, we have B(n)(f) =

fnB(f). Thus on the open a�ne subsetD+(f) ⊆ X, we haveOX(n)|D+(f) =

fnOX |D+(f).

(ii) By Proposition 1.1.6(d), OX(n)⊗OX OX(m) = OX(m+ n).
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Another important result is provided by the following lemma

Lemma 1.1.12. Let B = A[T0, ..., Td], consider the setting provided by the
previous example, so X = PdS. Then

OX(n)(X) =

{
Bn if n ≥ 0

0 if n < 0
.

In particular
⊕
n∈Z
OX(n)(X) = B.

Proof. We may suppose d ≥ 1. Global sections of OX(n)(X) correspond to
the local sections in OX(n)(D+(Ti)) which coincide on the intersections. By

(ii) of the last remark, OX(n)(D+(Ti)) = T ni OX(D+(Ti)) = T ni A

[
T0

Ti
, ...,

Td
Ti

]
,

further we have OX(n)(D+(Ti) ∩D+(Tj)) = OX(n)(D+(TiTj). Thus we can
consider f ∈ OX(n)(X) as an element of A[T0, ..., Td, T

−1
0 , ..., T−1

d ]. For i > 0,

we have f ∈ OX(n)(D+(Ti)) = T ni A

[
T0

Ti
, ...,

Td
Ti

]
, which implies that T0 does

not �gure as denominator for f . On the other hand f ∈ T n0 OX(D+(T0)),

thus if n < 0 the only possible element of T n0 A

[
T1

T0

, ...,
Td
T0

]
without T0 at

the denominator is f = 0; otherwise if n ≥ 0, then f =
d∑
i=1

∑
k≥0

ai,kT
k
i T

n−k
0

has so T0 at the denominator if and only if k ≤ n, i.e. it is of the form

f =
d∑
i=1

∑
h,k≥0
h+k=n

ai,kT
h
i T

k
0 , that is it belongs to Bn. Conversely any element

of Bn is an element of OX(n)(D+(Ti)) which coincides on the intersections
OX(n)(D+(TiTj)) ⊆ A[T0, ..., Td, T

−1
0 , ..., T−1

d ].

1.2 Invertible Sheaves

Invertible sheaves represent a particular class of quasi-coherent sheaves of
modules, which in some sense generalizes the structure sheaf of a scheme. In
particular we are going to see how they provide us a way to construct a mor-
phism from a scheme X to a projective space (Proposition 1.2.7). Among the
invertible sheaves, very-ample and ample sheaf will be our main tool to ask
more properties to this kind of morphisms in Chapter 2. Further, invertible
sheaves provide a possible de�nition of a ubiquitous object in mathematic:
the group of Picard.
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1.2.1 De�nition and �rst properties

De�nition 1.2.1. Given a scheme X, an OX-module L is invertible is for all
x ∈ X there exists an open neighbourhood U ⊆ X of x and an isomorphism
of OU -modules

OX |U
∼−→ L|U .

In particular an invertible sheaf is quasi-coherent. An example of invert-
ible sheaf is provided by the sheaves OX(n) of 1.1.10, by remark 1.1.11(i).
Given an invertible sheaf L and a global section σ ∈ L(X), we put

Xσ := {x ∈ X : Lx = σxOX,x}.

This is an open subset of X.
The following lemma turns out to be a foundamental tool for our next pour-
poses.

Lemma 1.2.2. Let X be a noetherian scheme, F be a quasi-coherent sheaf
on it and L an invertible sheaf. Given f ∈ F(X) and σ ∈ L(X), then

(a) if f |Xσ = 0, then there exists an integer n > 0 such that f ⊗ σ⊗n = 0 in
F ⊗ L⊗n(X).

(b) given g ∈ F(Xσ), then there exists an integer n0 > 0 such that for all
n ≥ n0, g ⊗ (σ|Xs)⊗n lifts to a global section of F ⊗ L⊗n.

Remark 1.2.3. We notice that this lemma generalizes Proposition 1.1.7. In-
deed if L = OX , then Xσ = {x ∈ X : σx ∈ O∗X,x} and the canonical
morphism

F(X)f = F(X)⊗OX(X) OX(X)f −→ F(Xf )

is injective by (a) and surjective by (b), so it is an isomorphism.

Proof. Let X =
r⋃
i=1

be an open a�ne covering of X such that L|Xi ∼= OX |Xi
for all i = 1, ..., r. In particular for each i we can �nd ei ∈ L(Xi) such that
L|Xi = eiOX |Xi . Then σ|Xi = hiei, for some hi ∈ OX(Xi), and

Xσ ∩Xi = {x ∈ Xi : Lx = (ei)xOX,x = (hi)x(ei)xOX,x = σxOX,x}
= {x ∈ Xi = SpecA : OX,x = (hi)xOX,x}
= {p ∈ SpecA : hi ∈ A∗p}
= {p ∈ SpecA : hi 6∈ p}
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so Xσ ∩Xi ⊆ Xi is the principal open D(hi).
Now suppose f |Xσ = 0, then f |Xσ∩Xi = 0, but this means that f |Xi = 0 in
Ahi , i.e. f |Xihni = 0 for some integer n ≥ 0. Since X is noetherian and we
have a �nite number of a�ne opens, we can choose n such that f |Xihni = 0

for all i = 1, ..., r. Let us consider the isomorphism7

OXi ⊗OXi ...⊗OXi OXi = OXi
·(ei⊗...⊗ei)−−−−−−−→ L|Xi ⊗ ...⊗ L|Xi =: L|⊗nXi ,

which induces another isomorphism

F|Xi ⊗OXi OXi
ϕi,n−→ F|Xi ⊗OXi L|

⊗n
Xi
.

On Xi we have

F|Xi(Xi)
(ϕi,n)Xi−→ F|Xi(Xi)⊗OXi (Xi) L|

⊗n
Xi

(Xi)

f |Xihni 7−→ (f |Xihni )⊗ ei ⊗ ...⊗ ei

and

(f |Xihni )⊗ ei ⊗ ...⊗ ei = f |Xi ⊗ (hiei)⊗ ...⊗ (hiei)

= f |Xi ⊗ σ|Xi ⊗ ...⊗ σ|Xi
= f |Xi ⊗ σ|⊗nXi .

Now, since f |Xihni = 0, then (f ⊗ σ⊗n)|Xi = f |Xi ⊗ σ|⊗nXi = 0. But since
this holds for all i = 1, ..., r, by the axioms of sheaves f ⊗ σ⊗n = 0 in
F(X)⊗ L⊗n(X). So we have (a).
Now consider g ∈ F(Xσ). We have g|Xσ∩Xi ∈ F(Xσ ∩Xi) = F|Xi(D(hi)) =

(F|Xi)hi , so we can write

g|Xσ∩Xi =
fi|Xσ∩Xi
hmi |Xσ∩Xi

with fi ∈ F(Xi) and m ≥ 0.

As before we can choose a representation such that m is the same for all
i = 1, ..., r. Using the notation of the �rst part, we put ti := ϕi,m(fi) ∈
(F ⊗ L⊗m)(Xi). Then we have

ti|Xσ∩Xi = (ϕi,m)Xσ∩Xi(fi)

= fi|Xσ∩Xi ⊗ ei ⊗ ...⊗ ei
= g|Xσ∩Xihmi ⊗ ei ⊗ ...⊗ ei
= g|Xσ∩Xi ⊗ s|⊗mXσ∩Xi .

7Hereafter we are going to indicate it as ·e⊗ni .
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This means that on some open sets ti does not depend by fi, in particular
ti|Xσ∩Xi∩Xj − tj|Xσ∩Xi∩Xj = 0 for all i, j. Then, by (a) applied to the scheme
Xi ∩ Xj, there exists p ≥ 0 such that (ti|Xi∩Xj − tj|Xi∩Xj) ⊗ s|⊗pXi∩Xj = 0

in ((F ⊗ L⊗m) ⊗ L⊗p)(Xi ∩ Xj) (Notice that the equality still holds for
integers greather than p). This means that for all n ≥ m + p, the sections
ti ⊗ σ|⊗(n−m)

Xi
∈ (F ⊗ L⊗n)(Xi) coincide on Xi ∩Xj. Then, by the axioms of

sheaves, there exists a section t ∈ (F ⊗ L⊗n)(X), whose restriction to Xi is
ti ⊗ σ|⊗(n−m)

Xi
. Then

(t|Xσ)|Xσ∩Xi = t|Xσ∩Xi
= (t|Xi)|Xσ∩Xi
= (ti ⊗ σ|⊗(n−m)

Xi
)|Xσ∩Xi

= ti|Xσ∩Xi ⊗ σ|
⊗(n−m)
Xσ∩Xi

= g|Xσ∩Xi ⊗ s|⊗mXσ∩Xi ⊗ σ|
⊗(n−m)
Xσ∩Xi

= g|Xσ∩Xi ⊗ s|⊗nXσ∩Xi
= (g ⊗ σ|⊗nXσ)|Xσ∩Xi ,

so, by the axioms of sheaves on the open covering Xσ =
⋃
i(Xσ ∩ Xi), we

have t|Xσ = g ⊗ σ|⊗nXσ, thus we have (b).

This result assures that for a quasi-coherent sheaf F , once we found a
section over an open set of the form Xσ, we can extend it to a global section
modulo passing to a sheaf which keeps some a�nities with the starting one
(consider, for example, the case in which F equals L itself). Now we are
going to introduce an important property, shared by all the quasi-coherent
sheaves over a scheme.

De�nition 1.2.4. Let X be a scheme. An OX-module F is generated by its
global sections if there exist a family of global sections {σi ∈ F(X)}i∈I , such
that Fx is generated as OX,x-module by the images of the σi, for all x ∈ X.

Remark 1.2.5. Note that the de�nition is equivalent to the fact that there
exists a surjective morphism of sheaves O(I)

X −→ F (de�ned indeed by the
generating sections). In particular this means that every quasi-coherent sheaf
over a scheme X is generated by its global sections.

Remark 1.2.6. For an invertible sheaf L, it follows immediately that X =⋃d
i=1Xσi if and only if L is generated by σ0, ..., σd. Indeed, since an invertible

sheaf is locally of rank 1, the two conditions are both equivalent to the fact
that for all x ∈ X there exists i = 1, ..., d such that Lx = (σi)x · OX,x
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An important morphism. The next result shows the relation between
morphism to a projective space and invertible sheaves: it will be fundamental
for our pourposes. Before starting we point out the following fact. Let L
be an invertible sheaf on X. Let σ ∈ L(X). Since, for every x ∈ Xσ, by
de�nition σx is a basis of Lx over OX,x, the multiplication by σ induces an
isomorphism

OX |Xσ
·σ−→ σ · OX |Xσ = L(Xσ).

In particular, for τ ∈ L(Xσ) we can write, without ambiguity, τ/σ as an
element of OX(Xσ).

Proposition 1.2.7. Let A be a commutative ring and X be a scheme over
it, considering the projective space PdA =ProjA[T0, ..., Td],

(a) given a morphism of A-schemes f : X −→ PdA, then f ∗OPdA
(1) is an

invertible sheaf over X generated by d+ 1 global sections;

(b) given any invertible sheaf L on X generated by d + 1 global sections
σ0, ..., σd ∈ L(X), then there exists an A-morphism f : X −→ PdA, such
that L ∼= f ∗OPdA

(1).

Proof. Let us prove the �rst point. We put P = PdA. The twisting sheaf of
Serre OP (1) is generated by the global sections T0, ..., Td (see Lemma 1.1.12).

These sections canonically induce global sections of f ∗OP (1) via the canoni-
cal morphism

OP (1) −→ f ∗OP (1) = f−1OP (1)⊗f−1OP OX .

Being σ0, ..., σd ∈ f ∗OP (1) such global sections, for x ∈ X and y = f(x) ∈ PdA
we have

(f ∗OP (1))x = OP (1)y ⊗OP,y OX,x
=
∑
i

(Ti)yOP,y ⊗OP,y OX,x

=
∑
i

(σi)xOX,x,
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i.e. f ∗OP (1) is invertible8 generated by the global sections σ1, ..., σd.
For part (b), we know by remark 1.2.6, that the open subsets Xσi cover X.
For i = 0, ..., d de�ne the morphism fi : Xσi −→ D+(Ti) corresponding to

OP (D+(Ti)) −→ OX(Xσi)

Tj/Ti 7−→ σj/σi
,

which is well de�ned by what we said at the beginning of this paragraph. It
remains to show that the morphisms fi glue to a morphism f : X −→ P ,
but this is easy since on D+(TiTj) we have that fi is de�ned by

ThTk
TiTj

7−→ σhσ
−1
i σkσ

−1
i

σjσ
−1
i

=
σhσk
σiσj

,

while fj is de�ned by

ThTk
TiTj

7−→
σhσ

−1
j σkσ

−1
j

σiσ
−1
j

=
σhσk
σiσj

.

Further we have by remark 1.1.9 that

(f ∗OP (1))x ∼= OP (1)f(x) ⊗OP,f(x) OX,x
∼= (Ti)f(x)OP,f(x) ⊗OP,f(x) OX,x
∼= (σi)xOX,x
∼= Lx,

which implies f ∗OP (1) ∼= L.

Remark 1.2.8. Note that the latter morphism behaves like

X 3 x 7−→ (σ0(x) : ... : σd(x)) ∈ PdA.

1.2.2 Very ample and ample sheaves

De�nition 1.2.9. Let f : X −→SpecA be a scheme over a ring A and let
i : X −→ PdA be an immersion. The sheaf OX(1) := i∗OPdA

(1) is called a very
ample sheaf (relative to f). In general we put OX(n) := i∗OPdA

(n).
Given a quasi-coherent sheaf F , we denote F(n) := F ⊗OX OX(n).

8Recalling remark 1.1.9, given a morphism f : X −→ Y and an invertible sheaf L on

Y , then for all x ∈ X,

(f∗L)x ∼= Lf(x) ⊗OY,f(x)
OX,x = ex · OY,f(x) ⊗OY,f(x)

OX,x ∼= (f∗e)x · OX,x,

i.e. (f∗L) is invertible.
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The sheaf OX(1) := i∗OPdA
(1) is invertible (see the proof of Proposition

1.2.7) and depends on i. By Proposition 1.2.7, the case Y =SpecA is the
same thing as saying that OX(1) admits a set of global sections such that
the corrisponding morphism X −→ PdA is an immersion.
A more �exible notion than that of a very ample sheaf is the following.

De�nition 1.2.10. Let X be a quasi-compact scheme. An invertible sheaf
L is ample if for any �nitely generated quasi-coherent sheaf F on X, there
existes an integer n0 ≥ 1 such that for every n ≥ n0, F ⊗ L⊗n is generated
by its global sections.

We underline the fact that, while in the de�nition of very ample sheaf the
base scheme plays an important role (it de�nes the projective space where X
immerges), the de�nition of ample sheaf is somehow an "absolute" notion.
As the terminology may suggest, on projective schemes over a ring, every
very ample sheaf is ample.

Theorem 1.2.11. Let X be a projective scheme over a ring A. Then for
any �nitely generated quasi-coherent sheaf F , there exists an integer n0 ≥ 0

such that F(n) is generated by its global sections for every n ≥ n0.

Proof. It su�ces to prove the statement for X = PdA (see [L] Theorem
1.27). Consider Ui = D+(Ti), then F(Ui) is generated by a �nite num-
ber of elements9 σij, j = 1, ...,m, where m can be taken the same for all
i = 1, ..., d. We have that σij ∈ F(XTi) (Ui = XTi), where Ti ∈ OX(1)(X)

(see Lemma 1.1.12) is a global section of an invertible sheaf on X. Then by
Lemma 1.2.2(b) there exists n0 ≥ 0 such that σij ⊗ T ni is the restriction of a
global section of (F ⊗ OX(n))(X) = F(n)(X), for all n ≥ n0. In particular
F(n)(Ui) = (F⊗OX(n))(Ui) = F(Ui)⊗T ni OX(Ui), therefore on Ui the sheaf
F(n) is generated by {σij ⊗ T ni }j and this immediately implies that F(n) is
generated by the global sections we found.

On the other hand, an ample sheaf always provides a very ample sheaf.

9Cover Ui with a �nite number of principal open subset Vk such that there exist an

exact sequence Onk

X |Vk
−→ FVk

, given by the de�nition of �nitely generated sheaf. By

Proposition 1.1.6, OX(Vk)nk −→ F(Vk) is exact. Thus F(Vk) is �nitely generated as OX -
module. Note that F(Vk) = F(Ui)⊗OX(Ui) OX(Vk), by Proposition 1.1.7, so we can �nd

a �nitely generated submodule M of F(Ui), such that F(Vk) = M ⊗OX(Ui) OX(Vk) for

every k. The sequence M̃ −→ F|Ui
−→ 0 is exact, since it is exact on every Vk. Therefore

M −→ F(Uk) is surjective and we are done.
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Proposition 1.2.12. Let f : X −→ SpecA be a morphism of �nite type and
suppose X Noetherian. Given an ample sheaf L on X, then there exists an
m ≥ 1, such that L⊗m is very ample for f .

Remark 1.2.13. Let L be an invertible sheaf over a scheme X and consider
a global section σ ∈ L(X). Then Xσ = Xσ⊗n , since σxOX,x = Lx if and only
if (σ⊗n)xOX,x = L⊗nx .

Proof. First of all, we show that for any point x ∈ X there exists an inte-
ger n = n(x) and a global section σ ∈ L⊗n(X) such that Xσ is an a�ne
neighbourhood of x. Consider an open a�ne neighbourhood of x such that
L|U ∼= OX |U . So X − U is closed. Let J be the sheaf of ideals de�nining it,
i.e. X − U = V(J ). For any y ∈ X, Ly is free, hence �at, so for any n ≥ 1

(J ⊗ L⊗n)y = Jy ⊗ L⊗ny ∼= JyL⊗ny = (JL⊗n)y ⊆ L⊗ny , i.e. J ⊗ L⊗n can be
identi�ed with JL⊗n ⊆ L⊗n. Since L is ample we can choose n such that
J ⊗ L⊗n = JL⊗n is generated by its global sections. So that there exists
σ ∈ (JL⊗n)(X) ⊆ L⊗n(X) such that σx is base of JxL⊗nx =10L⊗n and in
particular x ∈ Xσ ⊆ 11U . Let us write L|U = e · OU , so that σ|U = eh for
some h ∈ OX(U). Then, as in Lemma 1.2.2, Xσ = DU(h), principal open in
U a�ne. Thus Xσ is a�ne (= SpecOX(U)h).
For now on, we won't use the fact that L is ample.
Since X is quasi-compact, it can be covered by a �nite number of open sub-
sets of the form Xσi , with σi ∈ L⊗n(X) and n can be choosen to be the same
for all i. The fact that f : X −→ SpecA is of �nite type means that on
a�ne schemes (like SpecA) and on every a�ne open subset of f−1(SpecA)

(like Xσi) the morphism

OSpecA(SpecA) = A −→ OX(Xσi)

in a ring homomorphism of �nite type, i.e. OX(Xσi) = A[fi1, ..., fimi ], for a
�nite number of fij ∈ OX(Xσi). Since fij ∈ OX(Xσi), where σi ∈ L⊗n(X)

(L⊗n invertible and OX quasi-coherent), by Lemma 1.2.2, there exists n0 ≥ 1

such that for every r ≥ n0 the section fij ⊗ σ⊗ri lifts to a global section
σij ∈ (OX ⊗ L⊗rn)(X) = L⊗rn(X). We can choose a common r for all i, j.
Now, since {Xσi}i cover X, then {σ⊗ri }i generate12 L⊗rn(X) and the same
holds for {σ⊗ri , σij}i,j ⊂ L⊗rn(X). With the latter set of global sections, let
us de�ne the morphism

π : X −→ P := ProjA[Si, Sij]i,j

10x 6∈ V(J ) = X − U , so Jx = OX,x
11If y ∈ V(J ), then σy ∈ JyL⊗ny 6= L⊗ny ; hence σyOX,y ⊆ JyL⊗ny 6= L⊗ny , i.e. y 6∈ Xσ
12see remark 1.2.13 and 1.2.6
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as in Proposition 1.2.7. Put Ui := D+(Si), so that Xσi = π−1(Ui) and the
morphism

OP (Ui) = A

[
Sj
Si
,
Sij
Si

]
−→ OX(Xσi) = A[fij]

is surjective, because Sij/Si 7−→ fij, since, on Xσi ,
σij
σ⊗ri

=
fij ⊗ σ⊗ri
σ⊗ri

= fij.

Therefore π induces a closed immersion from X to U := ∪iUi. Hence π is an
immersion and, again by Proposition 1.2.7, L⊗rn is the inverse image of the
twisting sheaf of Serre, hence it is very ample.

1.2.3 Picard Group

Consider the following proposition.

Proposition 1.2.14. Let X be any scheme.

(a) If L,L′ are invertible sheaves on X, so it is L ⊗ L′.

(b) If L is any invertible sheaf on X, then there exists an invertible sheaf
L−1 on X, such that L ⊗ L−1 ∼= OX .

Proof. The �rst statement comes from the fact that locally (L ⊗ L′)x =

Lx ⊗ L′x = e · OX,x ⊗ f · OX,x ∼= ef · OX,x. For (b), take L−1 to be the so
called dual sheaf Hom(L,OX) de�ned from the presheaf

U 7−→ HomOX(U)(L(U),OX(U)).

Then we have the canonical morphism

L ⊗ Hom(L,OX) −→ OX ,

which locally gives the homomorphism Lx⊗Hom(Lx,OX,x) ∼= OX,x given by
ex ⊗ (f : Lx → OX,x) 7−→ f(ex) ∈ OX,x.

This allows us to give the following de�nition.

De�nition 1.2.15. For any scheme X the Picard group of X, PicX, is the
group of isomorphism classes of invertible sheaves on X endowed with the
operation ⊗, which makes it a group in virtue of the previous proposition.



16 CHAPTER 1. PRELIMINARIES

1.3 Sheaves of di�erentials

De�nition 1.3.1. Given a ring A, Let B be an A-algebra and M a B-
module. An A-derivation of B into M is an A-linear map d : B −→M such
that for any b1, b2 ∈ B is veri�ed the Leibniz rule

d(b1b2) = b1db2 + b2db1.

We denote the set of derivations by DerA(B,M).

It comes out that DerA(B,M) is an A-module.

Remark 1.3.2. An immediate consequence of the Leibniz rule is that da = 0,
for every a ∈ A. Indeed, since d is A-linear, da = ad(1), thus we can prove
the statement for a = 1. Now

d(1) = d(1 · 1)

= d(1) · 1 + 1 · d(1)

= 2 · d(1),

implies that d(1) = 0.

De�nition 1.3.3. Let B be an A-algebra. The module of relative di�erential
forms of B over A is a B-module Ω1

B/A endowed with an A-derivation d :

B −→ Ω1
B/A having the following universal property: for any B-module M

and any A-derivation d′ : B −→M , there exists a unique homomorphism of
B-modules φ : Ω1

B/A −→M such that d′ = φ ◦ d.

Consider the free B-module F generated by the symbols db for all b ∈ B
and take the quotient on the submodule generated by all the expressions of
the form d(b + b′) − db − db′, d(bb′) − bdb′ − b′db for b, b′ ∈ B and da for
a ∈ A. Calling such quotient Ω1

B/A and de�ning d : B −→ Ω1
B/A by b 7−→ db,

it comes out that the pair (Ω1
B/A, d) satisties the above de�nition. Thus we

see that the module of relative di�erential forms exists. Furthermore it is
unique up to isomorphism. Indeed if we suppose there exists another pair
(D, d′) satisfying the above de�nition, then the universal property gives us
two unique morphisms φ : Ω1

B/A −→ D and φ′ : D −→ Ω1
B/A, such that

φ ◦ d = d′ and φ′ ◦ d′ = d. But again we have two unique morphisms f, f ′

such that f ◦ d = d and f ′ ◦ d′ = d′, but both φ′ ◦ φ and the identity map
satisfy the �rst equation and both φ ◦ φ′ and the identity map satisty the
second equation. By the uniqueness of f and f ′ it must be φ′ ◦φ = 1Ω1

B/A
and

φ ◦ φ′ = 1D, therefore φ and φ′ are isomorphisms, one inverse of the other.
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Remark 1.3.4. For any B-module M , we have the map

HomB(Ω1
B/A,M) −→ DerA(B,M)

φ 7−→ φ ◦ d .

We note the fact that, by the universal property of the module of di�erential
forms, this map is an isomorphism of A-modules.

We need to prove some properties of Ω1
B/A, in particular, consider the

following remark.

Remark 1.3.5. Given an homomorphism of A-algebras f : B −→ C, we
introduce two canonical morphisms of C-modules.

α : Ω1
B/A ⊗B C −→ Ω1

C/A

db⊗ c 7−→ c · df(b)

and
β : Ω1

C/A −→ Ω1
C/B

dc 7−→ dc
,

where we underline the fact that dc is considered in two di�erent class of
equivalence, in particular β(df(b)) = 0.

Proposition 1.3.6. Let B be an A-algebra.

(a) For any A-algebra A′, let B′ = B ⊗A A′, then there exists a canonical
isomorphism of B′-modules Ω1

B′A′/A′
∼= Ω1

B/A ⊗B B′.

(b) Given f : B −→ C, homomorphism of A-algebras and α, β as above,
then we have an exact sequence

Ω1
B/A ⊗B C

α−→ Ω1
C/A

β−→ Ω1
C/B −→ 0.

(c) Given a multiplicative subset S of B, S−1Ω1
B/A
∼= Ω1

S−1B/A.

(d) If C is the quotient of B by an ideal I, then we have an exact sequence

I/I2 δ−→ Ω1
B/A ⊗B C

α−→ Ω1
C/A −→ 0,

where for any b ∈ I, δ(b+ I2) := db⊗ 1.

See the proof in [L] Proposition 6.1.8.

We now carry the de�nition of the module of di�erentials to schemes and
thus de�ne the sheaf of relative di�erentials.
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Proposition 1.3.7. Let f : X −→ Y be a morphism of schemes. Then there
exists a unique quasi-coherent sheaf Ω1

X/Y on X, such that for any a�ne open
subset V ⊆ Y and U ⊆ f−1(V ) and for any x ∈ U we have

Ω1
X/Y |U ∼= ˜Ω1

OX(U)/OY (V ) and (Ω1
X/Y )x ∼= Ω1

OX,x/OY,f(x) .

The proof can be found in [L] Proposition 6.1.17.

This result allow us to write the following de�nition.

De�nition 1.3.8. Let f : X −→ Y be a morphism of schemes. The quasi-
coherent sheaf Ω1

X/Y is called the sheaf of relative di�erentials of degree 1 of
X over Y .

We conclude with the following proposition, which translates Proposition
1.3.6 in the setting of morphism of schemes.

Proposition 1.3.9. Let f : X −→ Y be a morphism of schemes.

(a) For any Y -scheme Y ′, consider the projection p : X ×Y Y ′ −→ X,
then there exists a canonical isomorphism of OX′-modules Ω1

X×Y Y ′/Y ′
∼=

p∗Ω1
X/Y .

(b) Given Y −→ Z, morphism of schemes, then we have an exact sequence

f ∗Ω1
Y/Z −→ Ω1

X/Z −→ Ω1
X/Y −→ 0.

(c) Given an open subset U ⊆ X, then Ω1
X/Y |U ∼= Ω1

U/Y and in particular,
for any x ∈ X we have (Ω1

X/Y )x ∼= Ω1
OX,x/OY,f(x).

(d) If Z ⊆ X is a closed subscheme, de�ned by a quasi-coherent sheaf of
ideals I, then we have an exact sequence

I/I2 δ−→ Ω1
X/Y ⊗OX OZ −→ Ω1

Z/Y −→ 0.

1.4 Projective space bundles

A de�nition of sheaf of OX-algebras comes naturally from the de�nition
on OX-modules asking that on the open sets the sheaf de�nes an algebra.
Sheaves of algebra provides a way to construct some particular classes of
schemes. In this section we present a generalization of the Proj construction,
replacing the ring S with a sheaf of algebras S. The result is a scheme which
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might be thought of as a fribration of Proj's of rings.

Given a Noetherian scheme X, let S be a sheaf of graded OX-algebras. It is
a sheaf with a direct sum decomposition

S =
⊕
d≥0

Sd,

where each Sd is an OX-module such that for every open subset U ⊆ X,
S(U) is an OX(U)-algebra and the resulting direct sum decomposition

S(U) =
⊕
d≥0

Sd(U)

is a grading of this algebra as a ring. We assume furthermore that S is a
quasi-coherent sheaf, S0 = OX , S1 is a coherent sheaf and that S is locally
generated by S1 as OX-algebra.

For each open a�ne subset U ⊆ X we can consider ProjS(U) and the canon-
ical map πU :ProjS(U) −→ U , corresponding to the inclusion of OX(U) into
S(U). It can be shown that these data can be glued togheter over each inter-
section of two open a�nes, de�nining a scheme that we indicate as Proj(S)
togheter with a morphism π :Proj(S) −→ S such that for each open a�ne
U ⊆ X, π−1(U) ∼=ProjS(U).
Furthermore the invertible sheaves OX(1) on each ProjS(U) are compati-
ble under this construction (here we use the hypotesis on S1), so they glue
togheter to give an invertible sheaf on Proj(S), which we indicate as OX(1).

We can consider a particular graded OX-algebra. Let E be a locally free
quasi-coherent sheaf on a scheme X. Consider the symmetric algebra of E
S :=

⊕
d>0 S

d(E) de�ned in the �rst section.
Then S is a sheaf of graded OX-algebra satisfying the assumpions we did for
the previous construction.

De�nition 1.4.1. Let X be a Noetherian scheme and E be a locally free
quasi-coherent sheaf on it. Let S be a symmetric OX-algebra as before, we
de�ne the projective space bundle associated to E as P(E) :=ProjS. As such,
it comes with a projection morphism π : P(E) −→ X and an invertible sheaf
O(1).

We remark that, since E is locally free (suppose of rank n+ 1), if we take
an open a�ne cover of X, such that, when restricted to each open U , E is
free over OX(U), then

P(E)|π−1(U)
∼= PnU .
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Example 1.4.2. We have in particular that the symmetric product of Or+1
S

equals the algebra of polynomials OS[T0, ..., Tr]. So that

P(Or+1
S ) = PrS.



Chapter 2

Projective schemes over a �eld...

Recall what the Normalization Lemma says for projective varieties.

Theorem. Every projective variety X of dimension d over a �eld k is a
�nite covering of a projective space Pdk.

In this chapter we want to develop such result asking that the �nite
morphism X −→ Pdk statis�es a condition of étaleness over an a�ne space
Ad
k contained in Pdk.

2.1 ... of characteristic 0

In characteristic 0 the condition above is really hard to have. Indeed it
can be proved that for char k = 0, the a�ne space Ad

k is simply connected.
Thus every étale cover of the a�ne space is trivial, c'est-à-dire it is a disjoint
union of copies of Ad

k. So only in few cases we have this kind of result.

2.2 ... of positive characteristic

For this part we are going to present and develop the results of [K]. Given
a projective scheme X on a �eld k of positive characteristic, we are going
to prove �rst a projective version of Noether's normalization lemma, by us-
ing the theory of invertible sheaves presented in Chapter 1. Then we add
some properties to the morphism X −→ Pnk , such as being étale away from
an hyperplane of the projective space and controlling the behaviour of some
subschemes in X. We underline what we did for Proposition 2.2.8: clari-
fying Lemma 6 of [K], we found out the need of adding an hypothesis of
separability for the residue �eld of some points of X, in order to avoid some

21
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contradictions in the original result.

2.2.1 Review of Noether normalization lemma

Firstly we point out the following fact

Remark 2.2.1. Given an invertible ample sheaf L over a projective scheme
X over a �eld k and a global section σ ∈ L(X), we have that

Xσ := {x ∈ X : σxOX,x = Lx}

is a�ne. Indeed, since L is ample, there exists an integer m0 > 0, such that
L⊗m0 is very ample and in particular L⊗m0(X) ∼= OX(1)(X) (see Proposition

1.2.12). Writing X =Proj
k[T0, ..., TN ]

I
for some homogeneus ideal I, by Serre

vanishing theorem1 there exists n0 such that the morphism

OPNk
(n0)(PNk ) −→ OX(n0)(X)

is surjective. Hence σ⊗m0n0 ∈ (L⊗m0)⊗n0(X) = OX(n0)(X) can be seen as an
homogeneous polynomial f0 (of degree n0). Now it's easy to see (see remark
1.2.13) that Xσ = Xσ⊗m0n0 = D+(f0), which is a�ne ([L] Proposition 2.3.38).

Lemma 2.2.2. Let X be a projective scheme over a �eld k and L be an
ample invertible sheaf on it. If L is generated by global sections σ0, ..., σd,
then we have a �nite morphism X −→ Pdk.

Proof. By Proposition 1.2.7 we have that the global sections induce f : X −→
Pdk, which behaves as

Xσi ⊆ X −→ Ui := Speck[T0
Ti
, ..., Td

Ti
] ⊆ Pdk

σj/σi ←−p Tj/Ti,
.

1It states that given a coherent sheaf F on a projective S−scheme X, where S is

a�ne and Noetherian, there exists a positive integer n0 such that for all n ≥ n0 the

cohomology group H1(X,F(n)) is trivial (see [L] Theorem 5.3.2 and chapter 5 for more

general considerations on Cech Cohomology). Now if we put J ⊂ OPN
k
to be the sheaf of

ideals de�ning X, for any n > 0 we have the canonical short exact sequence

0 −→ J (n) −→ OPN
k

(n) −→ OX(n) −→ 0 ,

whose associated long exact sequence in cohomology produce the following

OPN
k

(n0)(PNk ) −→ OX(n0)(X) −→ H1(PNk ,J (n0)) ,

and, for n0 su�ciently large, H1(PNk ,J (n0)) = 0.
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So we just need to prove that it is �nite. Since by remark 2.2.1 all the
f−1(D+(Ti)) = Xσi are a�ne and cover X, f is an a�ne morphism. Further
Pdk −→ k is projective, hence separated ([L] Corollary 3.3.10), and composed
with f gives X −→ k, which is projective by hypotesis. This means (see [L]
Corollary 3.3.32(e)) that f is projective. Being projective, hence proper by
[L] Theorem 3.3.30, and a�ne, the morphism X −→ Pdk is �nite ([L] Lemma
3.3.17).

2.2.2 Some avoidance lemmas

Now we need some avoidance lemmas. This is a classical problem in alge-
braic geometry and it provides a nice example of a geometric problem solved
in its algebraic aspect. The idea is the following: given a closed subset D
of a projective variety and a �nite number of points S not contained in D,
we want to �nd an hypersurface containing D, but not meeting any of the
points. If the projective variety corresponds to a graded ring B, the closed
subset is an homogeneus ideal J ⊆ B not containing B+ and we have a �nite
number of prime homogeneus ideals (the points of S) p1, ..., ps, such that
J 6⊂ pi, for all i. Then we have to prove that there exists a homogeneus
element σ ∈ J (of some degree l > 0), such that σ 6∈ pi for all i, so that the
hypersurface de�ned by the zeroes of σ contains D and avoids the points of
S.
To prove this result we may assume there are no inclusions among the pi and
consider �rstly the case of just one point, where the statement is obvious.
Assuming the result holds for r− 1 points, we can pick σ ∈ J homogeneus of
positive degree such that σ 6∈ pi for all i = 1, ..., r − 1. Assume σ ∈ pr (oth-
erwise we are done). If Jp1...pr−1 ⊂ pr, since we are assuming pr to be prime
not containing any of the other pi, we have J ⊂ pr, which is a contradiction.
So we can pick τ ∈ Jp1...pr−1, not in pr. Then σdeg(τ) + τdeg(σ) satis�es the
statement.

We are going to consider a more "modern" form of the lemma, but not
so distant from the previous intuitive description.

Lemma 2.2.3. Let X be a projective scheme over a �eld k and L an ample
invertible sheaf on it. Given a closed subscheme D ⊆ X and another one
S ⊆ X of dimension2 0, such that their intersection is empty, then there
exists an integer l > 0 and a global section of L⊗l vanishing3 along D, but
without any zeroes on S.

2Recall that a Noetherian scheme of dimension 0 is discrete, in particular it is �nite.
3Given a global section σ ∈ L(X), the zero locus V(σ) is given by those points x ∈ X
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Proof. As in remark 2.2.1, we can choose a power of L such that it is very

ample on X =ProjB, where B =
k[T0, ..., TN ]

I
. Therefore we have an homo-

geneus ideal J ⊆ B and a �nite family of primes p1, ..., pm, corresponding
to D and the points of S, and we have that J 6⊂ pi for all i. As we proved
before, we can �nd an homogeneus polynomial σ ∈ B of degree l > 0, such
that σ ∈ J and σ 6= pi for all i, i.e. V(σ) ⊃ D and V(σ) ∩ S = ∅. Now, by
Lemma 1.1.12, the homogeneus polynomial σ corresponds to a global section
of some power of L and we are done.

Now we are considering a sort of "dual" of the previous problem: to �nd
some hypersurfaces with no common intersections with a given closed subset,
but all passing throught a �nite set of points. We also add some new elements
to the problem as the reader can note.

Lemma 2.2.4. Let X be a projective scheme of dimension n over a �eld
k and L an ample invertible sheaf on it. Let S ⊂ X be a subscheme of
dimension dimS = 0 and be D ⊆ X a closed subscheme not meeting S.
Given D1, ..., Dm, 0 ≤ m ≤ n, closed subschemes of codimension 1, suppose
they are such that for any nonempty subset T ⊆ {1, ...,m} the set D∩

⋂
t∈T Dt

has codimension at least #T in D. Then there exists an integer l > 0 such
that there exist σ1, ..., σn ∈ L⊗l global sections with no common zero on D,
vanishing on S and such that σi vanishes along Di for i = 1, ...,m.

Remark 2.2.5. The hypothesis on the Di means that given any intersection
of some of them in D, its intersection with any other Di gives a subset of
codimensions increased at least by one.

Proof. Consider the following statement:'

&

$

%

For i = 1, ..., j there exist integers li > 0 and sections σ′i ∈ L⊗li(X),
such that4

(a) σ′i vanishes on S for any i;

(b) if i ≤ min{j,m}, then σ′i vanishes along Di;

(c) for any subset T ⊆ {j + 1, ...,m}, the subset

Yj,T = D ∩
j⋂
i=1

V(σ′i) ∩
⋂
t∈T

Dt

has codimension in D at least j + #T .

for which σx ∈ mxLx.
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We want to prove it by induction on j. First suppose it is true for j > 0.
With the σ′i as above, let Zj ⊆ D −Dj+1

5 be a zero-dimensional subscheme
such that it meets each irreducible components of Yj,T ′ of codimension j+#T ′

in D, for each subset T ′ ⊆ {j + 2, ...,m}. We notice that none of this
components is actually contained in D ∩Dj+1, indeed we have that

D ∩Dj+1 ∩
j⋂
i=1

V(σ′i) ∩
⋂
t∈T ′

T ′⊆{j+2,...,m}

Dt

has codimensions in D at least j + #T ′ + 1 by (c) (the +1 is given by the
fact that actually we enlarge T by one element each time). Now we apply
Lemma 2.2.3 to �nd a section σ′j+1 ∈ L⊗lj+1(X), for a suitable lj+1 > 0, such
that

(i) it vanishes along S ∪Dj+1 and

(ii) it has no zeroes on Zj.

The �rst point tells us that conditions (a), (b) are satis�ed also for the case
j + 1. For condition (c) we can notice that

D∩
j+1⋂
i=1

V(σ′i)∩

 ⋂
t∈T

T⊆{j+2,...,m}

Dt

 = D ∩
j⋂
i=1

V(σ′i) ∩

 ⋂
t∈T

T⊆{j+2,...,m}

Dt


︸ ︷︷ ︸

codim≥j+#T

∪V(σ′j+1)

and σ′j+1 does not vanish on the components of codimension j + #T by (ii),
so the intersection must have codimension at least j + 1#T , which satis�es
condition (c) for the case j + 1.
For j = 1 we apply the same strategy. Note that, in this case, our hypotesis
on the Di substitutes (c) in assuring that we can construct Z0 ⊆ D.
By induction, conditions (a),(b),(c) can be satis�ed for the case j = n. Let
l be a common multiple of the li, then since raising a section to some power
does not a�ect its zeroes, we can consider σi = (σ′i)

⊗l\li ∈ L⊗l(X), which
satisfy the thesis.

5as before, for indices greather than m we do not consider any subvariety Dt
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2.2.3 Étale condition on �nite morphism

Recall the last result of the previous section. If in particular we consider
the zero locus of a global section σ as closed subset D ⊆ X, the latter result,
togheter with Lemma 2.2.2, allows us to construct a �nite morphism from
X to a projective space. We want to request some more properties to this
morphism, such as étaleness and the possibility to control the image of some
closed subscheme. We recall the de�nition of unrami�ed and étale morphism.

De�nition 2.2.6. Let f : X −→ Y be a morphism of �nite type of locally
noetherian schemes. Let x ∈ X and y = f(x) ∈ Y . We say that f is
unrami�ed at x if

� the homomorphism OY,y −→ OX,x veri�es myOX,x = mx and

� the (�nite) extension of residue �elds k(y)→ k(x) is separable.

We say that f is étale at x if it is unrami�ed and �at6 at x.

We also need the de�nition of transverse intersection.

De�nition 2.2.7. Let X be an a�ne scheme of dimension n. Given some
hypersurfaces V(f1), ...,V(fm), m ≤ n, we say that they intersect transversely
at a point x ∈ X if there existe fm+1, ...fn ∈ OX(X) such that f1, ..., fn form
a complete system of parametres, c'est-à-dire their images in the cotangent
space mx/m

2
x is a base. In the case of a general scheme we have to check the

de�nition on an open a�ne subset containing x.

We notice that the latter condition implies that every V(fi) is regular at
x. In particular they are irreducible in a neighbourhood of x.

We recall the fact that a certain property is said to be geometrically if it
holds for the base change to the algebraic closure of k.

Proposition 2.2.8. Let X be a geometrically reduced7 projective scheme
over a �eld k of (pure) dimension n and L an ample invertible sheaf on it.
Let S ⊆ X be a subscheme of dimension dimS = 0, whose points are smooth
and with residue �eld separable over k. Consider a global section σ ∈ L(X)

whose zero locus D has no intersections with S. Then for some integer l > 0

there exist δ1, ..., δn ∈ L⊗l(X), such that

6Recall that f : X −→ Y is �at at x if f#x : OY,f(x) −→ OX,x is a �at homomorphism.

See [L] Section 4.3.1 for more details.
7This hypothesis is needed for having each irreducible component generically smooth,

which is a necessary condition for the existence of a unrami�ed morphism, see remark

2.2.11 for more details.
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(a) σ⊗l, δ1, ..., δn has no common intersection

(b) the �nite morphism g : X −→ Pnk , induced by the sections of the previous
point, sends S in rational points and it is unrami�ed on S.

Furthermore, given D1, ..., Dm subscheme of codimension 1, such that any
intersection among them in D produces a subset of codimension at least the
number of Di considered (as in Lemma 2.2.4), if they have transversal inter-
section at each point of S, then we can also ensure that, for i = 1, ...,m, δi
vanishes on Di.

Remark 2.2.9. Recalling the de�nition of an unrami�ed morphism of schemes,
we have that for such an g as in (b), for any s ∈ S we have a �nite separable
extensions of residue �elds

k(g(s)) −→ k(s).

So the hypothesis on the residue �elds for the points of S is necessary (in
particular we are going to construct a morphism such that k(g(s)) = k).

Remark 2.2.10. Furthermore if k(s) is separatble over k(g(s)), proving that
a morphism g is unrami�ed on the point s needs only to check that ms =

mg(s)OX,s. By the Nakayama lemma, this is equivalent to check that

ms = mg(s)OX,s + m2
s

i.e. the canonical map

mg(s)

m2
g(s)

⊗k(g(s)) k(s) −→ ms

m2
s

is surjective (actually we can prove it is an isomorphism since we are consid-
ering schemes of the same dimension and we are considering smooth points).

Proof. Since L is ample, by remark 2.2.1, we have that U := X − D is
a�ne. Each divisors corresponds to a sheaf of ideals on X, in particular
Di = V(Ii) ⊂ U , for some ideal Ii ⊆ OX(U). This means that we can �nd
fi ∈ OX(U) vanishing on Di for each i = 1, ...,m. By de�nition of transversal
intersection, for each s ∈ S we can choose fs,i = fi for i = 1, ...,m, such that
there exist fs,m+1, ..., fs,n ∈ OX(U) and fs,1, ..., fs,m, fs,m+1, ..., fs,n form a

complete system of parameters, i.e. their images in
ms

m2
s

form a k(s)-base
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(recall that s is smooth, so the cotangent space has dimension n).
Now consider the surjective morphism

OX(U) −→ OX(U)

m2
s

.

In particular, given two distinct points s, t ∈ S we have that m2
s + m2

t =

OX(U), since V(m2
s+m2

t ) = V(m2
s)∩V(m2

t ) = V(ms)∩V(mt) = {s}∩{t} = ∅.
Then, by the chinese remainder theorem, the canonical morphism

OX(U) −→
⊕
s∈S

OX(U)

m2
s

(2.1)

is surjective as well and moreover it induces another surjective map

Ii −→
⊕
s∈S

Ii
Iim2

s

, for i = 1, ...,m (2.2)

Then for any i = 1, ...,m, consider the element fs,i ∈ Ii −m2
s. In particular8

it is in Ii − Iim
2
s, so we can consider (fs,i)s∈S ∈

⊕
s∈S

Ii
Iim2

s

and we can �nd

fi ∈ Ii which is mapped in it9 by (2.2). In the same way, by (2.1), for

i = m+ 1, ..., n we can �nd fi ∈ OX(U) mapped in (fs,i)s∈S ∈
⊕
s∈S

OX
m2
s

. Thus

we found f1, ..., fn ∈ OX(U) vanishing on Di for i = 1, ...,m, such that their
images in the cotangent space of each s ∈ S form a base.
Now since U = X −D = Xσ, by Lemma 1.2.2 applied to the coherent sheaf
OX , there exists an integer r > 0 such that fi ⊗ (σ|XU )⊗r lifts to a global
section βi ∈ L⊗r(X) (N.B. OX ⊗ L⊗r ∼= L⊗r).
Now by Lemma 2.2.4 we can choose global sections σ1, ..., σn ∈ L⊗l for some
integer m > 0, such that σi vanishes along Di for i = 1, ...,m, for any
i = 1, ..., n σi vanishes on S and they have no common zeroes on D.
Now we de�ne for i = 1, ..., n

δi = βi ⊗ σ⊗(2l−r) + σ⊗2
i ∈ L⊗(2l).

We have that on D = V(σ) the �rst addendum vanishes and what remains
(σ⊗2

i ) has no common zeroes on D, so the same holds for δi. Furthermore
the map g induced by σ⊗2l, δ1, ..., δn, on U = Xσ behaves like

U −→ Speck[T1, ..., Tn]
δi
σ⊗2l

←−p Ti

8Iim
2
s ⊆ m2

s
9Supposing fi ∈ Ii such that fi = fs,i + Iim

2
s; if fs,i 6∈ m2

s, then fi 6∈ m2
s
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and on s ∈ S (we avoid the notation for the stalk, but keep in mind that on
these points βi = fi ⊗ σ⊗r)10

δi
σ⊗2l

=
βi
σ⊗r

+
( σi
σ⊗l

)⊗2

= fi +
( σi
σ⊗l

)2

.

The class in the cotangent space corresponds to fs,i, since the second ad-
dendum is a square. So the associated cotangent map is an isomorphism
for any s ∈ S, since we choosed fs,1, ..., fs,n to be a base for the cotan-
gent space. Moreover δi vanishes on S, this means that for all s ∈ S,
g(s) = (σ⊗(2l)(s) : δ1(s) : ... : δn(s)), which corresponds to the point11

(1 : 0 : ... : 0), whose residue �eld is k. This last remark, together with
remark 2.2.10, implies that the morphism g is unrami�ed.

Now we can prove the main result of this chapter, we highlight that, as far
as these previous results are concerned, we didn't suppose any hypothesis on
the characteristic of the �eld k, but this condition is going to be foundamental
for what follows. We point out a little remark before stating the theorem.

Remark 2.2.11. Recall that a morphism of k−schemesX
f−→ Y is unrami�ed

on a point x ∈ X if and only if Ω1
X/Y,x = 0 (see [L] Corollary 6.2.3). If we

consider the canonical exact sequence12

f ∗Ω1
Y/k −→ Ω1

X/k −→ Ω1
X/Y −→ 0 ,

which becomes on the stalk on x (recall that (f ∗Ω1
Y/k)x = Ω1

Y/k,f(x))

Ω1
Y/k,f(x)

df−→ Ω1
X/k,x −→ Ω1

X/Y,x︸ ︷︷ ︸
=0

−→ 0
,

we can deduce that f is unrami�ed in x if and only if the canonical morphism
df : Ω1

Y/k,f(x) −→ Ω1
X/k,x is surjective. Moreover if X (resp. Y ) is smooth

over k at x (resp. f(x)), the morphism df is an isomorphism if and only if it
is étale at x (see [L] Proposition 6.2.10).

10For the last equality:
βi
σ⊗r

∈ OX,s, hence the tensor product becomes the standard

product
11Recall that σ⊗(2l)(s) 6= 0.
12For the part relative to the sheaf of di�erentials we refer to the theory developped in

[L] Chapter 6 Section 2.
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Theorem 2.2.12. Let X be a geometrically reduced projective variety of
(pure) dimension n over a �eld k of characteristic p > 0 and let L be an
invertible sheaf on it. Suppose there are the closed subschemes D ⊆ X of
dimension less than n and S ⊆ Xsmooth (subscheme of smooth points of X)
zero-dimensional, whose points have residue �elds separable over k. Assume
that D and S have empty intersection. Then there exists a �nite k−morphism
f : X −→ Pnk such that:

(a) f is étale away from the hyperplane at in�nity H = V(T0) ⊂ Pnk ;

(b) f(D) ⊆ H;

(c) f(S) does not meet H.

We notice that the hypothesis of being geometrically reduced is needed
for having each irreducible component of X generically smooth. This last
condition is given for any scheme admitting a generically étale map to a
smooth scheme13.

Proof. Without loss of generality we may enlarge S so that it meets each
irreducible component of X. By Lemma 2.2.3, we can replace L with a
suitable tensor power, such that there exists a global sections σ ∈ L(X)

vanishing alongD but with no zeroes on S. Proposition 2.2.8 assures that, for
some integerm > 0, we can �nd global sections σ1, ..., σn ∈ L⊗m(X) such that
they have no common zeroes on V(σ) and the �nite morphism g : X −→ Pnk ,
induced by σ⊗m, σ1, ..., σn (Lemma 2.2.2), is unrami�ed at each point of S.
Consider the subset of X − V(σ) where g is unrami�ed: it is open and its
intersection with each irreducible component of X is nonempty, since g in
unrami�ed on S meeting each of them; let E be the complement of such open
set in X. By applying Lemma 2.2.3 to the closed subset E and S, we have a
global section τ ∈ L⊗rm(X), for some r > 0, vanishing on E but nowhere on
S. By Lemma 2.2.4 applied to the closed subset V(τ) (no zero-dimensional
subscheme needed), we can �nd global sections τ1, ..., τn ∈ L⊗lrm(X), for
some integer l, which can be assumed greather than 2, such that they have
no common zeroes on V(τ). Now we leave temporarily the notation of tensor
product and we adopt the more light notation of simple product. We put{

γ0 = τ pl

γi = σiσ
m(pr−1)τ p(l−1) + τ pi i = 1, ..., n.

13Given f : X −→ Y étale for all points outside of a closed subscheme, with Y smooth

and dimX =dimY = d. Then by remark 2.2.11, for any x ∈ X such that f is étale at x,

d =dimY =rankΩ1
Y/k,f(x) =rankΩ1

X/k,x. Thus X is smooth at x
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Then V(γ0) = V(τ), while for i = 1, ..., n we have V(γi|V(τ)) = V(τ pi |V(τ)),
since the �rst addendum vanishes, but the τi have no common zeroes on V(τ),
hence

⋂
i 6=0 V(γi|V(τ)) is empty. So γ0, γ1, ..., γn have no common zeroes, thus

they de�ne a �nite morphism f : X −→ Pnk by Lemma 2.2.2.
Now we prove that f satis�es (a),(b),(c).
First of all, since V(γ0) = V(τ) ⊇ E ⊇ D, we have (b) and since V(τ)∩S = ∅,
we have (c). Let us now consider Z := V(σ) ∪ V(τ). For a point y ∈ X − Z,
the map g in unrami�ed at y; c'est-à-dire if we consider the linear morphism

Ω1
Pnk/k,f(y)

df−→ Ω1
X/k,y

d
(
Ti
T0

)
f(y)

7−→ d
(
σi
σm

)
y

,

by remark 2.2.11, it is surjective, thus d = rank Ω1
Pnk/k,f(y) ≤ rank Ω1

X/k,y. By

Nakayama Lemma, rank Ω1
X/k,y = dim(Ω1

X/k,y ⊗ k(y)) ≥ dimxX = d, thus
Ω1
X/k,y is of rank d and df is an isomorphism. Therefore we can state that

the di�erentials at y of the regular functions σ1/σ
m, ..., σn/σ

m ∈ OX(X −Z)

are a basis. On the other hand

d
γi
γ0

= d
σiσ

m(pr−1)τ p(l−1)

τ pl
+ d

τ pi
τ pl

= d

[
σi
σm

(
σmr

τ

)p]
+ d

[( τi
τ l

)p]
=

(
σmr

τ

)p
d
σi
σm

,

where the last equality holds by applying Leibnitz rule and keeping in mind
that we are working on a �eld of characteristic p. Now (σmr/τ)p is invertible
on X −Z, therefore the di�erentials at y of the regular functions γi/γ0 are a
basis, i.e. f is étale at y.

As we stated at the beginning of this section, in positive characteristic
we have a morphism which is étale away from an hyperplane of Pdk, hence
it is étale over the a�ne space Ad

k. This result can be improved with the
following Theorem.

Theorem 2.2.13. Given a separated scheme of �nite type over a �eld k

of positive characteristic. Let n be its (pure) dimension and x ∈ X a
smooth point. Suppose D1, ..., Dm be irreducible subscheme of codimension
1 intersecting transversely at x. Then there exist a �nite étale morphism
f : U −→ An

k , for an open dense subset U ⊆ X containing x, such that
D1, ..., Dm are mapped to coordinate hyperplanes.
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Proof. We can replace X by a projective compacti�cation of an a�ne open
neighbourhood of x, so that we can consider S as irreducible and projective.
Furthermore, by blowing up in a suitable way (avoiding x) we can suppose
that for any intersection of the Di, we obtain an irreducible subscheme.
Let us consider an ample invertible sheaf L on X (which is projective). Then
we can repeat the same argument as before, with D = ∅ and S = {x}. Fur-
ther since, for any T ⊆ {1, ...,m}, we arranged the intersection ∩t∈TDt to
be irreducible and it does not lie in V(σ) or V(τ), we can impose the addi-
tional restriction that σi and τi both vanish along Di provided by Proposition
2.2.8.



Chapter 3

Schemes over a ring

Now we want to consider the case of a scheme X −→ S, where S =
SpecR, for some commutative ring R with unity. There are few results in
this case, concerning particular classes of rings.

3.1 Pictorsion Rings

De�nition 3.1.1. The ring R is said to be pictorsion if for any �nite mor-
phism Z −→ S, Pic(Z) is a torsion group.

It is not easy to face interesting examples of such class of rings with the
tools developed in the previous chapters, thus we provide some results with-
out going deeply in the details, which can be found in [GLL] Section 8 and
[CMPT] Sections 1,2,3.

We recall the fact that, since S is a�ne, any �nite morphism of schemes
Z −→ S corresponds to a �nite R-algebra extension R −→ R′.
A zero dimensional ring is pictorsion; a �nitely generated algebra R over
a �eld k is pictorsion if and only if k is algebraic over a �nite �eld and
dim(R) ≤ 1 (e.g. Fp[x]).
We have also the following result (whose proof can be found in [GLL]).

Lemma 3.1.2. Let R be a commutative ring and Rred the quotient of R by
its nilradical. Then R is pictorsion if and only if Rred is pictorsion.

A local-global ring R is a commutative ring with the following property:
whenever f ∈ R[x1, ..., xn] is such that the ideal generated by {f(r) ∈ R :
r ∈ Rn} corresponds to R, then there exists r ∈ Rn such that f(r) ∈ R∗. It
can be proved the following statement (see [GLL]).

33
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Proposition 3.1.3. Let R be a local-global ring. Then every �nite R-algebra
R′ has trivial Picard group. In particular R is pictorsion.

Hereafter we are going to work on a�ne schemes S = SpecR, where R
is a noetherian ring, and morphisms of �nite type X −→ S. Actually a
large part of the following results can be proved for any commutative ring
and any morphism of schemes X −→ S �nitely presented (see [GLL]). Our
choice of a stronger hypothesis is due to the fact that all the examples we
are considering of pictorsion rings are taken among the Noetherian rings, for
which the condition of a �nitely presented morphism as before is equivalent
to a morphism of �nite type.

3.2 Hypersurfaces

Let us consider an invertible sheaf L over a scheme X, given a global
section σ ∈ L(X) we de�ne the closed subset1

Hσ := {x ∈ X : σxOX,x 6= Lx}.

We notice that σOX ⊆ L, so I := σOX ⊗L−1 ⊆ L⊗L−1 = OX (L−1, locally
free, is �at, so it preserves inclusions), so I is a sheaf of ideals on X, which
de�nes2 Hσ, so that the latter can be view as a closed subscheme of X.

De�nition 3.2.1. Given a morphism of schemes X −→ S, let L be an
invertible sheaf on X and σ ∈ L(X) a global section, the closed subscheme
Hσ is called hypersurface (relative to X −→ S), if, for all s ∈ S, Hσ does not
contains any irreducible components of positive dimension of the �ber Xs.

The condition on the �bers poses on a central role the morphismX −→ S.
In particular we want Hσ to be an hypersurface in the usual sense on every
�bers, as the following result states.

Lemma 3.2.2. Given S = SpecR, with R noetherian ring, let X −→ S be
a morphism of �nite type and H := Hσ a hypersurface relative to it, as in
the previous lines. If dimXs ≥ 1, then dimHs ≤ dimXs − 1.
If, moreover, X −→ S is projective, L is ample and H nonempty, then
Hs meets every irreducible component of positive dimension of Xs and, in
particular, dimHs = dimXs − 1.

1Notice that it is the complementary of Xσ.
2Recall that V(I) = {x ∈ X : Ix 6= OX,x} and σxOX,x = Lx if and only if σxOX,x ⊗

(L−1)x = OX,x.
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Proof. Without loss of generality we can considerHs 6= ∅, otherwise dimHs <

0 ≤ dimXs − 1.
As in Lemma 1.2.2, locally, Hs is de�ned by one equation and it does not
contain any irreducible components of Xs of positive dimension. In particu-
lar this means that dimHs ≤ dimXs − 1.
We avoid the proof of the second part (which can be found in [GLL] Lemma
3.2), since it is not useful for our pourposes.

For the next part we need the following result, which can be proved in a
more general setting as Theorem 5.1 in [GLL]. It is another version of the
avoindance lemma presented in Chapter 2.

Theorem 3.2.3. Let S be an a�ne scheme and X −→ S be a projective
morphism of �nite type. Let OX(1) be a very ample invertible sheaf relative
to such morphism and let F ⊆ X be a subscheme of �nite type over S. Then
there exists n0 > 0, such that for all n ≥ n0 there exists a global section
f ∈ OX(n)(X), such that, for all s ∈ S, Hf does not contain any irreducible
component of positive dimension of Fs.

Remark 3.2.4. Suppose X −→ SpecR be a projective morphism, i.e.

X = Proj
R[T0, ..., TN ]

I
for some homogeneous ideal I ⊆ R[T0, ..., TN ].

Then, by Lemma 1.1.12, we can identify global sections f ∈ OX(n)(X) with

homogeneous elements f ′ ∈ R[T0, ..., TN ]

I
of degree n and, in particular,

Hf = V+(f ′). Hereafter we are going to use the same notation for global
sections and homogeneous elements.

3.3 Finite morphisms to projective spaces

Finally in this section we want to guarantee the existence of a �nite S-
morphism X −→ PdS, when X −→ SpecR is projective with R pictorsion and
d := max{dimXs}. We are going to provide a converse of this statement too.

3.3.1 Finite morphisms as necessary condition

Theorem 3.3.1. Let R be a noetherian pictorsion ring and S = SpecR.
Given a projective scheme X over S, consider d := max{dimXs, s ∈ S}.
Then there exists a �nite morphism

r : X −→ PdS.
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In particular if for every s ∈ S dimXs = d, then r is surjective.

Proof. Since X is projective over S, we can consider it as a closed subscheme
of PNS . In particular X −→ S is of �nite type ([L] Corollary 3.3.10).
We have that PNS −→ S is projective and of �nite type and OPNS

(1) is a very
ample sheaf relative to it. Then considering F = X (trivially a subscheme
of �nite type over S), by Theorem 3.2.3, we can �nd n0 > 0 and f0 ∈
OPNS

(n0)(PNS ) such that Hf0 does not contain any irreducible components
of positive dimension of Fs = Xs. Hence, by de�nition, X ∩ Hf0 is an
hypersurface relative to X −→ S (it is V+(f |X) using the notation in remark
3.2.4) and, by Lemma 3.2.2,

dim(X ∩Hf0)s ≤ dimXs − 1 ≤ d− 1, ∀s ∈ S. (3.1)

Applying again Theorem 3.2.3 to PNS −→ S, OPNS
(n0) and F = X ∩Hf0 (it

is of �nite type since it is again projective, as closed in a projective sheme),

we obtain n1 > 0 and f1 ∈
(
OPNS

(n0)
)

(n1)(PNS ) = OPNS
(n0n1)(PNS ) such that

Hf1 does not contain any irreducible components of positive dimension of
Fs = (X ∩Hf0)s and, again by Lemma 3.2.2,

dim(X ∩Hf0 ∩Hf1)s ≤ d− 2, ∀s ∈ S. (3.2)

By continuing the process other d− 2 times, we obtain a family of homoge-
neous polynomials f0, ..., fd−1, such that Y := X ∩Hf0 ∩ ...∩Hfd−1

is a closed
subscheme with �bers of dimension at most 0, as a consequence of continuing
the results (3.1),(3.2). Hence Y −→ S is quasi-�nite (N.B. it is of �nite type)
and projective, as closed subscheme of a projective scheme. Therefore Y is
�nite over S (as in Lemma 2.2.2).
Since Hfi = Hf⊗mi

(remark 1.2.13) for any m > 0, we can suppose, without
loss of generality, that the sections are of the same degree, i.e. f0, ..., fd−1 ∈
OPNS

(n)(PNS ) for some n > 0.
Now S is pictorsion by assumpion and Y −→ S is �nite, thus PicY is a
torsion group. In particular we have that, for any j > 0, OPNS

(nj)|Y ∈ PicY ,
so for some power j > 0, OPNS

(nj)|Y ∼= OY . Let e ∈ OPNS
(nj)|Y (Y ) be a

basis (i.e. ∀y ∈ Y (OPNS
(nj)|Y )y ∼= eyOY,y). We can prove that the canonical

morphism
OPNS

(njk)(PNS ) −→ OPNS
(njk)|Y (Y )

is surjective for k su�ciently large3. Therefore for such k > 0, e⊗k lifts to
a global section fd ∈ OPNS

(njk)(PNS ). Since eyOPNS ,y
= (OPNS

(nj)|Y )y for any

3It is a consequence of Serre's Vanishing Theorem applied to the very ample sheaf OPN
S
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y ∈ Y , then He ∩ Y = ∅ and in particular Hfd ∩ Y = ∅.
As a result we have f⊗jk0 , ..., f⊗jkd−1 , fd ∈ OPNS

(njk)(PNS ) which generateOPNS
(njk)|X ,

since they have no common zeroes on X. Thus their restriction on X induces
a morphism

r : X −→ PdS.

Since X −→ S is of �nite type by assumpion and PdS −→ S is separated and
of �nite type ([L] Corollary 3.3.10), the morphism r : X −→ PdS is of �nite
type as well (see [EGA],IV.1.6.2(v)). By using the same argument as Lemma
2.2.2 (where the �nite type condition was easy to check), we can conclude
that r : X −→ PdS is �nite. This means in particular that Xs −→ Pdk(s)

is �nite for all s ∈ S; if in addition dimXs = d for all s ∈ S, then it is
surjective4.

We �rst point out a class of projective morphisms X −→ SpecR, where R
need not to be pictorsion, but they satisfy the thesis of the previous Theorem.

Proposition 3.3.2. Given R connected Noetherian ring of dimension 1. Let
S = SpecR and let E be an OS-module locally free of rank r ≥ 2. Then there
exists a �nite S-morphism

P(E) −→ Pr−1
S .

Proof. Given a locally free sheaf of rank r (on a scheme S) of the form
L1⊕...⊕Lr, with Li invertible for i = 1, ..., r, there exists a �nite S-morphism

P(L1 ⊕ ...⊕ Lr) −→ P(L⊗d1 ⊕ ...⊕ L⊗dr )

for any integer d, de�ned on local trivialization (recall that P(E)|π−1(U)
∼= PnU

on some open sets) by raising the coordinates to the dth tensor power.
In our case S in connected Noetherian of dimension 1, so, by [S] Proposition

on PNS (see remark 2.2.1). We put J ⊂ OPN
S

to be the sheaf of ideals de�ning Y , so we

have the canonical short exact sequence

0 −→ J (njk) −→ OPN
S

(njk) −→ OPN
S

(njk)|Y ∼= e⊗kOY −→ 0 ,

whose associated long exact sequence in cohomology produce the following

OPN
S

(njk)(PNS ) −→ OPN
S

(njk)|Y (Y ) −→ H1(PNS ,J (njk)) ,

and, for k su�ciently large, H1(PNS ,J (njk)) = 0.
4The image of r is of dimension d, because it is a �nite morphism. Since such image

is contained in PdS , which is irreducible and of the same dimension, we have that they are

equal
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7, any locally free OS-module like E can be seen (modulo an isomorphism) as
Or−1
S ⊕L, for some invertible sheaf L. In particular the previous morphism,

with d = r, becomes

P(E) ∼= P(O⊗r−1
S ⊕ L) −→ P((O⊗rS )r−1 ⊕ L⊗r) = P(Or−1

S ⊕ L⊗r).

Now applying again the result above Lr ∼= Or−1
X ⊕L′ for some invertible sheaf

L′. By using the theory of the determinant5, we have that

L⊗r ∼= det(Lr)
∼= det(Or−1

X ⊕ L′)
∼= det(Or−1

X )⊗ detL′
∼= detL′
∼= L′.

Hence Lr ∼= Or−1
X ⊕L′ ∼= Or−1

X ⊕L⊗r. Now P(Lr) is S-isomorphic to P(OrS) =

Pr−1
S (see [EGA]II.4.1.4), thus the �nite morphism above becomes

P(E) −→ P(Or−1
S ⊕ L⊗r) = Pr−1

S

and we are done.

3.3.2 Finite morphisms as su�cient condition

To prove a converse of Theorem 3.3.1 we need the following result.

Proposition 3.3.3. Given S Noetherian connected scheme, E locally free
sheaf on it of rank n+1 and π : P(E) −→ S the canonical projection morphism
(see De�nition 1.4.1).

(a) Any invertible sheaf on P(E) is isomorphic to a sheaf of the form OP(E)(m)⊗
π∗(L); m ∈ Z and L invertible sheaf on S.

(b) If S = SpecR is a�ne, E = On+1
X and it is given a �nite morphism

f : PnS −→ PnS, then f ∗(OPnS(1)) is isomorphic to a sheaf of the form
OPnS(m) ⊗ π∗L; m > 0 and L invertible sheaf on S of �nite order in
PicS.

5In particular the determinant changes direct sums in tensor products and the deter-

minant of an invertible sheaf is the sheaf itself (see [L] Subsection 6.4.1 for more details)
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Proof. For the point (a) see [EGA]II.4.2.7 and in particular [GLL] Proposi-
tion 8.4(a) for a complete proof.
Se we have that f ∗(OPnS(1)) ∼= OPnS(m) ⊗ π∗(L), for some invertible sheaf
L and m ∈ Z. In particular m is positive because over each point s ∈ S

f ∗(OPnS(1))s is isomorphic to OPnS(m)s (locally π∗(L) is trivial) and it is am-
ple, since it is the pullback of the ample sheaf OPnS(1)s via a �nite morphism
(see [L] Remark 5.3.9 based on Exercise 5.2.16).
It remains to prove that L is of �nite order. Let M := L(S), then, by
Lemma 1.1.12 and Example 1.1.3, (π∗L)(m)(PnS) = M ⊗R R[x0, ..., xn]m
(R[x0, ..., xn]m are the homogeneous polynomials of degree m) and the global
sections xi ∈ R[x0, ..., xn]1 = OPnS(1)(PnS) are sent to some elements Fi ∈
M ⊗R R[x0, ..., xn]m. Now M is locally free of rank 1, thus there exist an
a�ne covering S =

⋃t
j=1 D(sj), sj ∈ R, such that6 Msj = M ⊗R R[s−1

j ] has
a basis tj, j = 1, ..., t. Hence in D(sj) we can write Fi = tj ⊗ Gij, with
Gij ∈ R[s−1

j ][x0, ..., xn]m.
Let Res(G0j, ..., Gnj) be the resultant of G0j, ..., Gnj (see [J] 2.3). The mor-
phism fD(sj) := f |D(sj) : PnD(sj)

−→ PnD(sj)
is given by the global sections of

OPnS(1)|D(sj) corresponding to G0j, ..., Gnj ∈ R[s−1
j ][x0, ..., xn]m, hence they

generate OPnS(1)|D(sj) and then they have no common zeroes. This means
that Res(G0j, ..., Gnj) ∈ R[s−1

j ]∗.

Now let us de�ne rj := Res(G0j, ..., Gnj)t
⊗(n+1)mn

j ∈ R[s−1
j ] ⊗R M⊗(n+1)mn ;

since Res(G0j, ..., Gnj) is invertible, rj is a basis. Now it can be proved7

that rj|D(sj)∩D(sk) = rk|D(sj)∩D(sk), so they can be glued to an element r ∈
M⊗(n+1)mn , which results to be a basis. So we can conclude that M⊗(n+1)mn

is free of rank 1, i.e. L⊗(n+1)mn ∼= OS, so L is of �nite order in PicS.

The following example will provide us an useful construction of a projec-
tive morphism X −→ S not admitting a �nite S-morphism to PdS.

Example 3.3.4. Let S be a connected Noetherian a�ne scheme. Suppose
there exists L ∈ PicS of in�nite order (i.e. S is not pictorsion). Let us
assume that L is generated by d + 1 sections, for some d ≥ 0. Then there
exists a projective morphism XL −→ S, with �bers of dimension d, such that
there exists no �nite S-morphisms XL −→ PdS.

6D(sj) = SpecR

[
1

sj

]
.

7There exists a ∈ R[s−1j , s−1k ] such that atj = tk. Then, since tj ⊗Gij = Fi = tk ⊗Gik,
we have that Gij = aGik. Thus Res(G0j , ..., Gnj) = a(n+1)mn

Res(G0k, ..., Gnk) (see [J]

5.11.2) so that rj equals rk in the considered restriction.
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Since L is generated by d + 1 sections, we have a closed S-immersion8 i1 :

S −→ PdS such that i∗1OPdS
(1) = L (by Proposition 1.2.7). Further, consider

the closed S-immersion9

i0 : S −→ U0 ⊆ PdS
0 ←−p Ti/T0

,

so that10 i∗0OPdS
(1) = OS. We de�ne XL to be the scheme de�ned by glueing

two copies of PdS over the closed subschemes =(i0), =(i1), i.e. it is the push-
out

S
i1−→ PdS

i0 ↓ ↓ ϕ0

PdS
ϕ1−→ XL

,

where in particular ϕ0, ϕ1 are closed immersions. Under our hypothesis we
have a separated morphism of �nite type π : XL −→ S (see [A]1.1.5). Fur-
ther, the morphism (ϕ0, ϕ1) : PdS t PdS −→ XL is clearly �nite and sur-
jective, this means that the same holds on each �ber, thus dim(XL)s =

dim(PdS t PdS)s = d for all s ∈ S. Finally, since PdS −→ S is proper (see [L]
Theorem 3.3.30), XL −→ S is proper as well. It can also be proved (see
[GLL] Example 8.5) that π : XL −→ S is a projective morphism.
Now suppose there exists a �nite S-morphism f : XL −→ PdS, then f ◦ ϕi
is �nite as well (recall that a closed immersion is �nite). By Proposition
3.3.3(b) (f ◦ ϕi)∗OPdS

(1) ∼= OPdS
(mi)⊗ πiMi, mi > 0 andMi of �nite order.

Then11

(f ◦ ϕ0 ◦ i0)∗OPdS
(1) = i∗0(f ◦ ϕ0)∗OPdS

(1)

= i∗0OPdS
(m0)⊗ (π0 ◦ i0)∗M0

= O⊗m0
S ⊗M0

=M0

8It is a section, since it is a morphism over S, of the separated morphism PdS −→ S

(The identity is proper, hence i1 is proper by [L] Proposition 3.3.16; further it is a mono,

since it is a section; hence by [EGAIV]18.12.6 it is a closed immersion).
9It corresponds to the morphism s 7−→ (1 : 0 : ... : 0) ∈ Pdk(s).

10We have that i0(S) is contained in D+(T0), hence i∗0(OPd
S
(1)) = i∗0(OPd

S
(1)|D+(T0)).

Now, since OPd
S
(1)|D+(T0)) is free, the same holds for i∗0(OPd

S
(1)).

11Notice that πi ◦ ii = id.
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and

(f ◦ ϕ1 ◦ i1)∗OPdS
(1) = i∗1(f ◦ ϕ1)∗OPdS

(1)

= i∗1OPdS
(m1)⊗ (π1 ◦ i1)∗M1

= L⊗m1 ⊗M1.

But f ◦ϕ0 ◦ i0 = f ◦ϕ1 ◦ i1, soM0 and L⊗m1 ⊗M1 must be isomorphic, but
L has no torsion, therefore such �nite morphism f cannot exist.

Proposition 3.3.5. Let R be a Noetherian ring and S = SpecR. Suppose
that for any d ≥ 0 and any projective morphism X −→ S, such that dimXs =

d for all s ∈ S, there exists a �nite surjective S-morphism X −→ PdS. Then
R is pictorsion.
If R is of �nite Krull dimension, we can weaken our hypothesis. Assume
that for all projective morphism X −→ S, such that dimXs ≤ dimR for all
s ∈ S, there exists a �nite S-morphism X −→ PdimR

S . Then R is pictorsion.

Proof. Consider an invertible sheaf L. For each connected component Si of
S, let di be such that L|Si can be generated by di + 1 global sections. Put
d = max{di} (note that if R is of �nite dimension d ≤ dimR). Suppose the
order of L in PicS is not �nite. Then it must be of in�nite order on some
connected components of S.
For such connected components we can apply the construction of Example
3.3.4 using d global sections generating L|Si . Hence we have a projective
scheme Xi := XL|Si :−→ Si, with �bers of dimension d and not admitting
any �nite morphism Xi −→ PdSi . For connected components of S where L has
�nite order we consider the morphism Xj := PdSj −→ Sj. Now consider the
induced morphism X := tXi −→ tSi = S. It has �bers of dimension d, but
it does not admit a �nite morphism X −→ PdS, which is a contradiction.
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