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S’io avessi le rime aspre e chiocce,

come si converrebbe al tristo buco

sovra ’l qual pontan tutte l’altre rocce,

io premerei di mio concetto il suco

più pienamente; ma perch’io non l’abbo,

non sanza tema a dicer mi conduco;

ché non è impresa da pigliare a gabbo

discriver fondo a tutto l’universo,

né da lingua che chiami mamma o babbo.

Ma quelle donne aiutino il mio verso

ch’aiutaro Anfione a chiuder Tebe,

sì che dal fatto il dir non sia diverso.

(Dante, Inferno C. XXXII, vv. 1-12)
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Notation and prerequisites

The main prerequisite in order to be able to understand the work in this

thesis is some familiarity with p-adic analysis.

For obvious reasons, this is not the place to give a treatment of such a topic.

The reader not familiar with p-adic analysis is invited to have a look at [Kob84].

Some familiarity with algebraic geometry (for example at the level of the

first two chapters of [Har77]) would help appreciating more some of the results

in chapter 1, but it is not essential for the general understanding of this thesis.

Let m ∈ Z≥1. We denote by µm
∞ the usual Lebesgue measure on Rm and by

‖x‖ := max
i∈{1,...,m}

|xi| (x = (x1, . . . , xm) ∈ Rm), (i)

the sup-norm of the components in Rm.

Similarly, for any prime number p we denote µm
p the Haar measure on Qm

p

normalized in such a way that µm
p (Z

m
p ) = 1. We denote by vp the p-adic valuation

on Qp and | · |p the p-adic absolute value, both with their standard normalizations.

Also, we denote

‖x‖p := max
i∈{1,...,m}

|xi|p (x = (x1, . . . , xm) ∈ Rm), (ii)

the sup-norm of the components in Qm
p .

If Kp is a finite extension of Qp, then the absolute value | · |p extends uniquely

to an absolute value on Kp, with respect to which Kp is complete (cf. [Neu99]). If

the extension Kp/ Qp is fixed in the context, then we may denote the extended

absolute value still by | · |p without any risk of confusion.
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Recall that if v is a local uniformizer for Kp, then one has

|v|p = p1/ep , (iii)

where ep denotes the ramification index of the extension Kp/ Qp.

The ring of adeles of Q is the subset A ⊆ ∏v Qv (v running over all places of

Q) of all tuples (xv)v such xv ∈ Zv for all but finitely many places v (convention-

ally Z∞ := R). The ring structure and the topology on A are inherited from the

product. We denote by µm the restriction to Am of the product measure
⊗

v µm
v .

As a general rule, we always omit the superscript (specifying the dimension)

from the notation when m = 1. Clearly µm
v = µ⊗m

v for any place v of Q and an

easy computation shows that µm = µ⊗m.

For polynomials f ∈ Z[X1, . . . , Xm], we also introduce the notation

Vf (B, M) := {x ∈ Rm : |x| ≤ B, | f (x)| ≤ M} (B, M ∈ R>0) (iv)

and

Nh( f ) := #{x ∈ Zm /h Zm : f (x) ≡ 0 mod h} (h ∈ Z>1). (v)

Additional (and more classical) notation used in the thesis is listed below.

• Approximations of x ∈ R by integers:

– bxc := largest integer ≤ x (floor of x),

– dxe := smallest integer ≥ x (ceiling of x),

– {x} := x− bxc (mantissa of x).

• Vinodograv symbols:

– f � g (for f ∈ O(g)),
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– f � g (for g ∈ O( f )),

– f � g (for f ∈ O(g) ∧ g ∈ O( f )).

When a subscript is present, it specifies the parameters the implied con-

stants depend on.

• Localization of Z at a prime p:

Z(p) := {x/pk : x ∈ Z, k ∈ Z≥0} ⊆ Q.

• Subspaces of a vector space:

If V is a vector space over a field K, then the notation W ≤ V means that W

is a K-vector subspace of V.

• Algebraic geometry:

– We use the notation Spec and Proj to refer to the corresponding usual

costructions in algebraic geometry (see [Har77]).

– By the term variety, we always mean a separated integral scheme of

finite type over a field.



iv
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Chapter 0

Introduction

Let S be a finite non-empty set of primes. For any y ∈ Z 6=0, let

|y| = ∏
p

pvp(y) (1)

be the prime factorization of |y|, where p runs over the set of all prime numbers.

The S-part of y is defined by

[y]S := ∏
p∈S

pvp(y). (2)

In the present work, we are interested in comparing the S-parts of (non-zero)

values of univariate polynomials and decomposable forms with small powers of

their absolute values.

For univariate polynomials, the first general result in this direction was

established by Gross and Vincent in [GV13] as a generalization of a result of

Stewart ([Ste84]).

Theorem ([GV13]). Let f (X) ∈ Z[X] be a polynomial with at least two distinct roots

and let S be a finite, non-empty set of primes. Then there exist effectively computable

constants κ1, κ2 > 0, depending only on f and S, such that, for any x ∈ Z with

f (x) 6= 0, one has

[ f (x)]S < κ2| f (x)|1−κ1 .

In [BEG18], Bugeaud, Evertse and Győry proved the following ineffective

version of the result of Gross and Vincent for polynomials of non-zero discrimi-

nant.

1



2 CHAPTER 0. INTRODUCTION

Theorem ([BEG18, Theorem 2.1]). Let f (X) ∈ Z[X] be a polynomial of degree n ≥ 2

and non-zero discriminant, and let S be a non-empty finite set of primes. Then, for any

δ > 0 and any x ∈ Z with f (x) 6= 0, one has

[ f (x)]S � f ,S,δ | f (x)|(1/n)+δ.

Furthermore, the exponent 1/n is the best possible, in the sense that there exist infinitely

many primes p and infinitely many x ∈ Z such that f (x) 6= 0 and

[ f (x)]{p} � f ,p | f (x)|1/n.

If ε ∈
(

0, 1
n

)
, then the set of integers x such that 0 < | f (x)|ε ≤ [ f (x)]S may

be infinite (in fact it is every time f has a root in Zp for some p ∈ S). However, as

one may expect, such a set has natural density zero, i.e.

lim
B→∞

#{x ∈ Z : |x| ≤ B, 0 < | f (x)|ε ≤ [ f (x)]S}
B

= 0. (3)

A natural question that arises concerns the exact growth rate of the quantity

N( f , S, ε, B) := #{x ∈ Z : |x| ≤ B, 0 < | f (x)|ε ≤ [ f (x)]S} (4)

as B→ ∞.

Bugeaud, Evertse and Gyõry considered this problem and proved the fol-

lowing result.

Theorem ([BEG18, Theorem 2.3]). Let f (X) ∈ Z[X] be a polynomial of degree n ≥ 2

and non-zero discriminant ∆ 6= 0. Let S be a finite set of primes and let S′ ⊆ S be the

subset of all p ∈ S such that f has a root in Zp. Suppose that s′ := #S′ ≥ 1. Then, for

any ε ∈
(

0, 1
n

)
, one has

N( f , S, ε, B) � f ,S,ε B1−nε(log B)s′−1 as B→ ∞.

A preliminary version of [BEG18] dating back to August 2017 contained the

remark that the limit

lim
B→∞

N( f , S, ε, B)
B1−nε(log B)s′−1 (5)
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may not exist.

The reason behind such remark was, in our opinion, that in the case s′ = 1 it

is easy to construct sequences (Bl)l , (B′l)l along which the limits

lim
l→∞

N( f , S, ε, Bl)

B1−nε
l

, lim
l→∞

N( f , S, ε, B′l)

B′l
1−nε

(6)

exist but differ from each other.

However, the construction of such sequences deeply relies on the fact that if

S′ = {p}, then the quotient of two consecutive elements of the set {pk : k ∈ Z≥0}
in the increasing order is constant, so it does not generalize to general s′. This is

due to the fact that if S′ = {p1, . . . , ps′}, with s′ ≥ 2, and (hl)l is the sequence of

the elements of the set

NS′ := {pk1
1 . . . pks′

s′ : (k1, . . . , ks′) ∈ Zs′
≥0} (7)

in increasing order, then equidistribution theory tells us that hl+1/hl → 1+ as

l → ∞.

This led us to the idea of using equidistribution theory to study the limit (5)

in the case s′ ≥ 2. Thanks to a result of Everest ([Eve92, Theorem 1]) in this field,

we managed to refined the result of Bugeaud, Evertse and Győry to an exact

asymptotic.

Theorem I. Let f (X) ∈ Z[X] be a polynomial of degree n ≥ 2 and non-zero discrimi-

nant, and let ε ∈
(

0, 1
n

)
. Also, let S be a finite set of primes and let S′ ⊆ S be the subset

of all p ∈ S such that f has a root in Zp. Suppose that s′ := #S′ > 1. Then there exists

a constant C( f , S, ε) > 0 such that

N( f , S, ε, B) ∼ C( f , S, ε) · B1−nε(log B)s′−1 as B→ ∞.

An explicit formula for C( f , S, ε) is given in chapter 3, from which the precise

dependence on f , S and ε can be clearly read off.

In fact, Everest’s result does not need the elements of S′ to be prime num-

bers, but only that the set S′ is Q-multiplicatively independent (i.e. that the
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set {log p1, . . . , log ps′} is Q-linearly independent). We can thus consider, more

generally, Q-multiplicatively independent subsets Σ = {q1, . . . , qs} of R>1, with

s ≥ 2. We denote

NΣ := {qk1
1 . . . qks

s : (k1, . . . , ks) ∈ Zs
≥0} (8)

For each h ∈ NΣ the numbers vq1(h), . . . , vqs(h) ∈ Z≥0 are uniquely deter-

mined by the writing

h = q
vq1 (h)
1 . . . qvqs (h)

s . (9)

Let α, α′ ∈ R>0, ν1, . . . νs ∈ Z≥1 and L ∈ R>1. Combining Everest’s result

with some elementary analytic considerations, we determine in chapter 2 the

asymptotic rate as L→ ∞ of sums of the form

∑
h∈NΣ

vq1(h)
ν1−1 . . . vqs(h)

νs−1 min{hα, Lα+α′h−α′}. (10)

Besides yielding results which are interesting on their own right, the results

from chapter 2 lead to fruitful applications to the study of S-parts of values of

polynomials with zero discriminant and decomposable forms. The bridge is

given by the theory of Igusa local zeta functions, which constitute the topic of

chapter 1 of this thesis.

For general univariate polynomials we prove the following result in chapter

3.

Theorem II. Let f (X) ∈ Z[X] be a polynomial of degree n ≥ 1, let S be a finite set of

primes and let S′ ⊆ S be the subset of all p ∈ S such that f has a root in Zp. Suppose

that s′ := #S′ ≥ 1 and denote by R( f ) the maximum multiplicity of a root of f in an

algebraic closure of Q. Then for any ε ∈
(

0, 1
n

)
one has

N( f , S, ε, B) � f ,S,ε B1−(nε)/R( f )(log B)s′−1 as B→ ∞.

In the case of decomposable forms F ∈ Z[X1, . . . , Xm] (m ≥ 2), that is

homogeneous polynomials that can be written as product of linear forms over
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algebraic closure of Q, given the homogeneity constraint, we restrict to values at

primitive points in Zm, i.e. x = (x1, . . . , xm) ∈ Zm with gcd(x1, . . . , xm) = 1. We

denote Zm
prim the subset of all primitive points of Zm and for any ε, B, γ ∈ R>0

we define

N(F, S, ε, B) := #{x ∈ Zm
prim : ‖x‖ ≤ B, 0 < |F(x)|ε ≤ [F(x)]S}. (11)

Clearly all binary forms F ∈ Z[X, Y] are decomposable. For binary forms of

non-zero discriminant Bugeaud, Evertse and Győry proved the following result.

Theorem ([BEG18]). Let F(X, Y) ∈ Z[X, Y] be a binary form of degree n > 2 and

non-zero discriminant. Also, let S be a finite set of primes and let S′ ⊆ S be the subset of

all p ∈ S such that F has a non-trivial zero in Z2
p. Suppose that s′ := #S′ > 0. Then,

for any ε ∈
(

0, 1
n

)
, one has

N(F, S, ε, B) �F,S,ε B1−nε(log B)s′−1 as B→ ∞.

A notion of discriminant for general decomposable forms has been intro-

duced by Evertse and Győry in [EG92]. In chapter 4, we generalize the above

result to any decomposable form of non-zero discriminant.

Theorem III. Let F ∈ Z[X1, . . . , Xm] (m ≥ 2) be a decomposable form of degree

n > m and non-zero discriminant. Also, let S be a finite set of primes and let S′ ⊆ S be

the subset of all p ∈ S such that F has a non-trivial zero in Zm
p . Suppose s′ := #S′ ≥ 1.

Then, for any ε ∈
(

0, 1
n

)
, one has

N(F, S, ε, B) �F,S,ε Bm−nε(log B)ν−1 as B→ ∞

for some

ν ∈ Z ∩ [s′, (m− 1)s′]

More generally, for a decomposable form F = Lr1
1 . . . Lrl

l ∈ Z[X1, . . . , Xm],

with L1, . . . , Ll ∈ C[X1, . . . , Xm] linear forms with distinct support, we denote

rk(F) := rk(L1, . . . , Ll), (12)
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L(F) :=
{

W ≤ Cn : ∃I ⊆ {1, . . . , r}, W =
⋂
i∈I

{Li = 0}
}

(13)

and

q(F) := max
W∈L(F)

1≤codim W≤min{rk(F),m−1}

∑Li⊇W ri

codim W
. (14)

We say that a form F ∈ Z[X1, . . . , Xm] is of finite type if

vol(F) := µm
∞{x ∈ Rm : |F(x)| ≤ 1} < ∞. (15)

For decomposable forms of finite type, we prove in chapter 4 the following

result.

Theorem IV. Let F ∈ Z[X1, . . . , Xm] (m ≥ 2) be a decomposable form of degree

n > m and of finite type. Also, let S be a finite set of primes and let S′ ⊆ S be the subset

of all p ∈ S such that F has a non-trivial zero in Zm
p . Suppose s′ := #S′ ≥ 1. Then, for

any ε ∈
(

0, 1
n

)
, one has

N(F, S, ε, B) �F,S,ε Bm−(nε)/q(F)(log B)ν−1 as B→ ∞

for some

ν ∈ Z∩[s′, (m− 1)s′].



Chapter 1

Igusa local zeta functions

Let f (X1, . . . , Xm) ∈ Zp[X1, . . . , Xm]. The Igusa zeta function of f (at p) is the

holomorphic function on the right half-plane defined by

ζ f ,p(s) :=
∫

Zm
p

| f (x)|sp dµm
p (x) (s ∈ C : <(s) > 0). (1.1)

We may write

ζ f ,p(s) = Z f ,p(p−s), (1.2)

where

Z f ,p(T) :=
∞

∑
k=0

µm
p ({x ∈ Zm

p : | f (x)|p = p−k}) Tk ∈ Z(p)JTK. (1.3)

In [Igu74], Igusa proved that Z f ,p(T) is a rational function of T, which implies

that ζ f ,p(s) has a meromorphic extension to C. In fact, Igusa’s result gives also a

list of candidates for the poles of the Dirichlet Z f ,p(p−s) in terms of numerical

data of log-resolutions of singularities of the pair(
Spec

(
Qp[X1, . . . , Xm]

)
, Spec

(
Qp[X1, . . . , Xm]

/
( f )
))

. (1.4)

In section 1.1 we explain the relation between the Igusa local zeta functions

and log resolution of singularities. We also introduce and study the notion of

log-canonical threshold, which is of central importance in this thesis.

In section 1.2 we state Igusa’s theorem and the consequent asymptotic

bounds on the power series coefficients of (1.3).

7



8 CHAPTER 1. IGUSA LOCAL ZETA FUNCTIONS

In section 1.3 we introduce slight variations on Igusa local zeta functions in

the homogeneous context and we prove an important result on decomposable

forms.

1.1 Log-resolutions and log-canonical thresholds

Definition 1.1.1. Let X be a smooth variety of dimension m over a field K. A Weil

divisor D = ∑i∈I Di on X is a simple normal crossing divisor if

1. Di is smooth, irreducible and of codimension one for all i ∈ I, and

2. for any P ∈ Supp(D) there exists independent local parameters x1, . . . , xr ∈ OX,P

such that D is given, around P, by the local equation

x1 . . . xr = 0.

Definition 1.1.2. Let X be a smooth variety over a field K and let D be a Weil divisor on

X. A log-resolution of the pair (X, D) is a proper birational morphism h : Y → X such

that Y is smooth and h∗D = ∑i∈I NiEi (Ni ∈ Z≥1 ∀i ∈ I) for some simple normal

crossing divisor E with irreducible components (Ei)i∈I on Y.

A priori there is no reason why a log-resolutions would exist. Over fields of

characteristic zero their existence is a celebrated result of Hironaka.

Theorem 1.1.3 (Hironaka). Let X be a smooth variety over a field of characteristic zero.

Then for any Weil divisor D on X the pair (X, D) admits a log-resolution.

Let X be a smooth variety over a field K of characteristic zero, let D be

a Weil divisor on X and let h : Y → X be a log-resolution of the pair (X, D),

with h∗D = ∑i∈I NiEi for a simple normal crossing divisor E with irreducible

components (Ei)i∈I on Y. One can show that the relative canonical divisor

KY− h∗KX is numerically equivalent to a divisor ∑i∈I(ki− 1)Ei for some ki ∈ Z≥1

(i ∈ I). The (finite) set of pairs {(Ni, ki)}i∈I is called the numerical data of the

log-resolution h.
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A fundamental property of log-resolutions is that the quantity

lct(X, D) := min
i∈I

ki

Ni
(1.5)

is independent of the choice of the resolution h (see [Laz04]).

The quantity (1.5) is called the log-canonical threshold of the pair (X, D). We

also introduce the following notation.

Definition 1.1.4. Let K be a field of characteristic zero and let f ∈ K[X1, . . . , Xm]. We

define the log-canonical threshold of f over K by

lctK( f ) := lct
(

Spec
(
K[X1, . . . , Xm]

)
, Spec

(
K[X1, . . . , Xm]

/
( f )
))

.

The following result on log-canonical thresholds is very important for our

purposes. Not having found an adequate reference for it, we also include a proof.

Theorem 1.1.5. Let f ∈ Z[X1, . . . , Xm] and let K be any field of characteristic zero.

Then Q embeds in K and one has

lctQ( f ) ≥ lctK( f ).

Moreover, if f is univariate or homogeneous, then the equality holds.

Proof. Since the characteristic of K is zero, one has b · 1K 6= 0 for all b ∈ Z>0.

Therefore we get a well-defined embedding Q ↪→ K by sending a/b to (a · 1K) ·
(b · 1K)

−1 for all a ∈ Z, b ∈ Z>0. Let ι : Q[X1, . . . , Xm] ↪→ K[X1, . . . , Xm] denote

the induced inclusion.

Consider a log-resolution

h : Y → Spec(Q[X1, . . . , Xm])

of the pair
(

Spec(Q[X1, . . . , Xm]), Spec(Q[X1, . . . , Xm]/( f ))
)
.
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We have the cartesian square

YK
hK−−−→ Spec(K[X1, . . . , Xm])

π

y ySpec(ι)

Y −−−→
h

Spec(Q[X1, . . . , Xm]),

where YK := Y×Spec(Q[X1,...,Xm]) Spec(K[X1, . . . , Xm]). It is easy to check that

the birational map

hK : YK → Spec(K[X1, . . . , Xm])

is a log-resolution of the pair
(

Spec(K[X1, . . . , Xm]), Spec(K[X1, . . . , Xm]/( f ))
)
.

Now, suppose that h∗ Spec(Q[X1, . . . , Xm]/( f )) = ∑i∈I NiEi for a simple

normal crossing divisor E with irreducible components (Ei)i∈I on Y. The Ei’s

might not be irreducible anymore after base change, let say they decompose as

Ei ×Spec(Q[X1,...,Xm]) Spec(K[X1, . . . , Xm]) = ∑
j∈Ji

ajE′j,

with aj ∈ Z>0 and E′j irreducible for all j ∈ Ji.

Therefore, if h had numerical data {(Ni, ki)}i∈I , the numerical data of hK are

given by {(N′j , k′j)}j∈J , where

J =
⋃
i∈I

Ji

and

(N′j , k′j) = (ajNi, aj(ki − 1) + 1) if j ∈ Ji.

It follows that

lctK( f ) = min
j∈J

aj(ki − 1) + 1
ajNi

= min
i∈I

( ki

Ni
− 1

Ni
max
j∈Ji

(
1− 1

aj

))
≤ lctQ( f ). (1.6)

It is also clear that the equality in (1.6) holds if and only if aj = 1 for all j ∈ J.

We claim that this is always the case if f is univariate or homogenous.
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If f is univariate, then we may consider its irreducible factorization

f = c gr1
1 . . . grl

l

in Z[X], where the gi’s are irreducible primitive pairwise coprime polynomials

with integer coefficients, c ∈ Z 6=0 and ri ∈ Z>0 for all i ∈ {1, . . . , l}. Then

we see that I = {1, . . . , l} and, for all i ∈ I, Ei is the proper transform of

Spec(Q[X1, . . . , Xm]/(gi)). Since all gi ∈ Z[X] are irreducible over Q (and Q

has characteristic zero), they are also separable. In particular, they cannot have

multiple factors in K[X], from which the claim follows.

If f is homogeneous, then a log-resolution

h : Y → Spec(Q[X1, . . . , Xm])

of the pair
(

Spec(Q[X1, . . . , Xm]), Spec(Q[X1, . . . , Xm]/( f ))
)

can be obtained as

a composition of birational maps

Y
h0→ Proj(Q[X1, . . . , Xm])

pr→ Spec(Q[X1, . . . , Xm]),

where

h0 : Y → Proj(Q[X1, . . . , Xm])

is a log-resolution of the pair
(

Proj(Q[X1, . . . , Xm]), Proj(Q[X1, . . . , Xm]/(F)))
)

and

Proj(Q[X1, . . . , Xm])
pr→ Spec(Q[X1, . . . , Xm])

is the "projection" map from the Proj construction.

The exceptional divisors of h are given by the proper transform (under h0)

of the exceptional divisor of pr and by the exceptional divisors of h0. The former

stays irreducible under the base change induced by the field extension Q ↪→ K

and gives a numerical datum (n, m). On the other hand, the exceptional divisors

of h0 are projective, so, if

h∗0 Proj(Q[X1, . . . , Xm]/( f )) = ∑
i∈I0

NiEi
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for a simple normal crossing divisor E0 with irreducible components (Ei)i∈I0 on

Y, then the Ei’s are smooth, projective and of codimension one by definition of

simple normal crossing divisor. These properties still hold after the base change,

with the consequence that the divisors

Ei ×Proj(Q[X1,...,Xm]) Proj(K[X1, . . . , Xm]) (i ∈ I0)

cannot have multiple irreducible components.

The proof of theorem 1.1.5 incidentally computes the log-canonical thresh-

olds of univariate polynomials.

Corollary 1.1.6. Let f ∈ Z[X] be a univariate polynomial of degree n ≥ 1 and denote

R( f ) the maximum multiplicity of a root of f in an algebraic closure of Q. Then for any

field K of characteristic zero one has

lctK( f ) =
1

R( f )
.

Proof. Clear.

In a homogeneous context, we may give the following "projective" analogue

of definition 1.1.4.

Definition 1.1.7. Let K be a field of characteristic zero and let F ∈ K[X1, . . . , Xm] be a

form. We define the projective log-canonical threshold of F over K by

plctK(F) := lctK

(
Proj

(
K[X1, . . . , Xm]

)
, Proj

(
K[X1, . . . , Xm]

/
(F)
))

.

Corollary 1.1.8. Let F ∈ Z[X1, . . . , Xm] be a form and let K be any field of characteristic

zero. Then

plctQ(F) = plctK(F).

Proof. It follows immediately from the proof of theorem 1.1.5.



1.2. IGUSA’S THEOREM AND ITS CONSEQUENCES 13

1.2 Igusa’s theorem and its consequences

Before stating Igusa’s theorem, let us prove the following result characteriz-

ing the cases in which Z f ,p(T) is a polynomial.

Lemma 1.2.1. Let f ∈ Zp[X1, . . . , Xm]. Then Z f ,p(T) ∈ Z(p)[T] if and only if f has

a zero in Zm
p .

Proof. Note first that, since the polynomial function f : Zm
p → Zp is continous,

so is also the composition | f |p : Zm
p → pZ≤0 ∪ {0}. Consequently, the image of

| f |p is compact.

Now, if f has no zeros in Zm
p , then the image of | f |p is contained in the

discrete subset pZ≤0 , so it is finite. This implies that Z f ,p(T) ∈ Z(p)[T].

On the contrary, if f has a zero in Zm
p , then 0 is an accumulation point for the

image of | f |p. Therefore, there exist infinitely many k ∈ Z≥0 such that the set

{x ∈ Zm
p : | f (x)|p = p−k} (1.7)

is non-empty. Since the set (1.7) is also open, it follows that it has positive measure

and thus Z f ,p(T) 6∈ Z(p)[T].

We are now ready to state Igusa’s theorem.

Theorem 1.2.2 ([Igu74]). Let f ∈ Zp[X1, . . . , Xm] be a polynomial with a zero in Zm
p .

Also, let

h : Y → Spec(Qp[X1, . . . , Xm])

be a log-resolution of the pair
(

Spec(Qp[X1, . . . , Xm]), Spec(Qp[X1, . . . , Xm]/( f ))
)

with numerical data {(Ni, ki)}i∈I . Then there exists a polynomial A ∈ Z(p)[T] such

that

Z f ,p(T) =
A(T)

∏i∈I(1− p−ki TNi)
.

Moreover, the order of a pole s = s0 ∈ C of Z f ,p(p−s) is less or equal than

max
{

#J : J ⊆ I, −
k j

Nj
= <(s0) ∀j ∈ J,

⋂
j∈J

Ej(Qp) 6=
⋃

J(J′⊆I

⋂
j′∈J′

Ej′(Qp)
}

.
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Remark 1.2.3. Using the properties of normal crossing divisors (cf. [Laz04, chapter

4]), it is not difficult to show that

max
{

#J : J ⊆ I, −
k j

Nj
= <(s0) ∀j ∈ J,

⋂
j∈J

Ej(Qp) 6=
⋃

J(J′⊆I

⋂
j′∈J′

Ej′(Qp)
}
≤ m.

We introduce now the two quantities related to the Dirichlet series Z f ,p(p−s)

which are of most interest to us, namely σp( f ) and νp( f ).

Definition 1.2.4. Let f (X1, . . . , Xm) ∈ Zp[X1, . . . , Xm] be a polynomial with a zero

in Zm
p . We denote by σp( f ) the abscissa of convergence of the Dirichlet series Z f ,p(p−s).

From theorem 1.2.2, we see that the real part of any of the poles of the

Dirichlet series Z f ,p(p−s) is a negative rational number and σp( f ) equals the

maximum of the real parts of such poles.

Note also that the log-canonical threshold lctQp( f ) appears in the set

{ ki

Ni
: i ∈ I

}
(1.8)

corresponding to any possible choice of the log-resolution h in theorem 1.2.2. It is

therefore natural to expect that σp( f ) = − lctQp( f ). It is not difficult to show that

this is the case indeed.

Proposition 1.2.5. Let f (X1, . . . , Xm) ∈ Zp[X1, . . . , Xm] be a polynomial with a zero

in Zm
p . Then

σp( f ) = − lctQp( f ).

Proof. Let a ∈ Zm
p be a zero of f and consider the polynomial

g(X) := f (X+ a) ∈ Zp[X],

where we denote X := (X1, . . . , Xm). It is easy to check that σp( f ) = σp(g) and

lctQp( f ) = lctQp(g). Then the result follows from [VZG08, Theorem 2.7].
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Another fact that is clear from theorem 1.2.2 is that poles of the Dirichlet

series Z f ,p(p−s) with the same real part are of the same order, which makes the

following definition meaningful.

Definition 1.2.6. We denote by νp( f ) the order of any pole of Z f ,p(p−s) on the line

<(s) = σp( f ).

Using standard techniques from analytic combinatorics ([FS09, Theorem

IV9]) one can deduce from theorem 1.2.2 an asymptotics on the power series

coefficients of (1.3). See [Seg11] for the detailed computation.

Corollary 1.2.7. Let f (X1, . . . , Xm) ∈ Zp[X1, . . . , Xm] be a polynomial with a zero in

Zm
p . Then

µm
p ({x ∈ Zm

p : | f (x)|p = p−k})� f ,p kνp( f )−1 pσp( f )·k as k→ ∞

and

µm
p ({x ∈ Zm

p : | f (x)|p = p−kl})� f ,p kνp( f )−1
l pσp( f )·kl as l → ∞

for some arithmetic progression (kl)l .

1.3 Primitive Igusa local zeta functions

In a homogeneous setting, we introduce the following slight variations on

Igusa local zeta functions. Let F(X1, . . . , Xm) ∈ Zp[X1, . . . , Xm] be a form (i.e. a

homogeneous polynomial). We define the primitive Igusa zeta function of F (at p)

to be the holomorphic function on the right half-plane defined by

ζ∗F,p(s) :=
∫
{x∈Zm

p : ‖x‖p=1}
|F(x)|sp dµm

p (x), (1.9)

with associated power series

Z∗F,p(T) :=
∞

∑
k=0

µm
p ({x ∈ Zm

p : ‖x‖p = 1, |F(x)|p = p−k}) Tk ∈ Z(p)JTK. (1.10)
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Note that

ZF,p(T) = Z∗F,p(T) +
∞

∑
k=0

µm
p ({x ∈ p Zm

p : |F(x)|p = p−k}) Tk

= Z∗F,p(T) + p−mTn · ZF,p(T)

(1.11)

and thus

Z∗F,p(T) = (1− p−mTn) ZF,p(T). (1.12)

We deduce from (1.12) that the power series Z∗F,p(T) is of the same form as

in theorem 1.2.2 and thus the whole discussion in section 1.2 has an immediate

analogue for Z∗F,p(T).

By an argument similar to the one in [VZG08], one can prove that Z∗F,p(T) ∈
Z(p)[T] if and only if F has no non-trivial zeros in Zm

p .

Definition 1.3.1. Let F(X1, . . . , Xm) ∈ Zp[X1, . . . , Xm] be a form with a non-trivial

zero in Zm
p . We denote by σ∗p (F) the abscissa of convergence of the Dirichlet series

Z∗F,p(p−s) and by ν∗p(F) the order of any pole of Z∗F,p(p−s) on the line <(s) = σ∗p (F).

From (1.12), we see that

• if σp(F) 6= −m
n , then σ∗p (F) = σp(F) and ν∗p(F) = νp(F);

• if σp(F) = −m
n and νp(F) ≥ 2, then σ∗p (F) = σp(F) and ν∗p(F) = νp(F)− 1;

• if σp(F) = −m
n and νp(F) = 1, then, because of the assumption Z∗F,p(T) 6∈

Z(p)[T], the Dirichlet series ZF,p(p−s) has a pole of real part different from

−m
n . In this case, one has

σ∗p (F) = max
{
<(ξ) : ξ is a pole of ZF,p(p−s) and <(ξ) 6= −m

n

}
and ν∗p(F) is the order of any pole of ZF,p(p−s) on the line <(s) = σ∗p (F).

In the homogeneous setting, Igusa’s theorem can be improved as follows.
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Theorem 1.3.2. Let F ∈ Zp[X1, . . . , Xm] be a form with a non-trivial zero in Zm
p . Also,

let

h0 : Y → Proj(Qp[X1, . . . , Xm])

be a log-resolution of the pair
(

Proj(Qp[X1, . . . , Xm]), Proj(Qp[X1, . . . , Xm]/(F))
)

with numerical data {(Ni, ki)}i∈I0 . Then there exists a polynomial A ∈ Z(p)[T] such

that

Z∗F,p(T) =
A(T)

∏i∈I0
(1− p−ki TNi)

.

Moreover, the order of a pole s = s0 ∈ C of Z∗F,p(p−s) is less or equal than

max
{

#J : J ⊆ I0, −
k j

Nj
= <(s0) ∀j ∈ J,

⋂
j∈J

Ej(Qp) 6=
⋃

J(J′⊆I

⋂
j′∈J′

Ej′(Qp)
}

.

Proof. As discussed in the proof of theorem 1.1.5, we can obtain a log-resolution

h : Y → Spec(Qp[X1, . . . , Xm])

of the pair
(

Spec(Qp[X1, . . . , Xm]), Spec(Qp[X1, . . . , Xm]/(F))
)

by taking the com-

position

Y
h0→ Proj(Qp[X1, . . . , Xm])

pr→ Spec(Qp[X1, . . . , Xm]),

where

Proj(Qp[X1, . . . , Xm])
pr→ Spec(Qp[X1, . . . , Xm])

is the "projection" map from the Proj construction. The numerical datum of h

corresponding to proper transform (under h0) of the exceptional divisor of pr is

given by (n, m).

By Igusa’s theorem, there exists a polynomial A ∈ Z(p)[T] such that

ZF,p(T) =
A(T)

(1− p−mTn)∏i∈I0
(1− p−ki TNi)

and thus

Z∗F,p(T) =
A(T)

∏i∈I0
(1− p−ki TNi)

.
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Remark 1.3.3. Due to the projectivity of the Ei’s, the bound in remark 1.2.3 can be

strengthened to

max
{

#J : J ⊆ I0, −
k j

Nj
= <(s0) ∀j ∈ J,

⋂
j∈J

Ej(Qp) 6=
⋃

J(J′⊆I

⋂
j′∈J′

Ej′(Qp)
}
≤ m− 1.

We can also prove an analogue of [VZG08, Theorem 2.7] for primitive local

Igusa zeta functions.

Proposition 1.3.4. Let F(X1, . . . , Xm) ∈ Zp[X1, . . . , Xm] be a form with a non-trivial

zero in Zm
p . Then

σ∗p (F) = −plctQp
(F).

Proof. It is enough to repeat the argument in the proof of [VZG08, Theorem 2.7]

(in a neighborhood of a non-trivial zero of F in Zm
p ) for ζ∗F,p(s) in place of ζF,p(s).

The details are left to the reader.

The analogue of corollary 1.2.7 for primitive Igusa local zeta functions reads

as follows.

Corollary 1.3.5. Let F ∈ Zp[X1, . . . , Xm] be a form with a non-trivial zero in Zm
p .

Then

µm
p ({x ∈ Zm

p : ‖x‖p = 1, |F(x)|p = p−k})�F,p kν∗p(F)−1 pσ∗p (F)·k as k→ ∞.

and

µm
p ({x ∈ Zm

p : ‖x‖p = 1, |F(x)|p = p−kl})�F,p kν∗p(F)−1 pσ∗p (F)·kl as l → ∞

for some arithmetic progression (kl)l .

In the rest of the chapter, we prove our result on σ∗(F) and ν∗(F) for mul-

tivariate (m ≥ 2) decomposable forms F ∈ Z[X1, . . . , Xm], that is homogeneous

polynomials that can be written as product of linear forms over an algebraic

closure of Q.
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For a decomposable form F = Lr1
1 . . . Lrl

l ∈ Z[X1, . . . , Xm], with L1, . . . , Ll ∈
C[X1, . . . , Xm] linear forms with distinct support, we denote

rk(F) := rk(L1, . . . , Ll), (1.13)

L(F) :=
{

W ≤ Cn : ∃I ⊆ {1, . . . , l}, W =
⋂
i∈I

{Li = 0}
}

(1.14)

and

q(F) := max
W∈L(F)

W 6∈{0,Cm}

∑Li⊇W ri

codim W
. (1.15)

The fact that rk(F), L(F) and q(F) do not depend on the choice of the

factorization should be apparent.

Definition 1.3.6. We say that a decomposable form F ∈ Z[X1, . . . , Xm] of degree n is

of finite type if

vol(F) := µm
∞({x ∈ Rm : |F(x)| ≤ 1}) < ∞

and strongly of finite type if

q(F) <
n
m

.

Lemma 1.3.7. Let F ∈ Z[X1, . . . , Xm] be a decomposable form of degree n.

1. If F is of finite type, then n > m.

2. If F is strongly of finite type, then F is of finite type.

3. If F is of finite type and the splitting field of F over Q is totally real, then F is

strongly of finite type.

Proof. All the three statements follow immediately from [Thu01, Proposition on

page 771].
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The fundamental assumption that we will need to impose later on in order

to obtain the results we are aiming at on the S-part of decomposable forms (cf.

chapter 4) is that the forms under consideration must be of finite type. The role

of this condition will be clear in the next chapter.

Theorem 1.3.8. Let F ∈ Z[X1, . . . , Xm] be a decomposable form and let p be a prime

number such that F has a non-trivial zero in Zm
p . Then one has

σ∗p (F) = − 1
q(F)

, ν∗p(F) ≤ min{rk(F), m− 1}.

Proof. In [Tei08], Teitler described how to construct a log-resolution

h : Y → Spec(C[X1, . . . , Xm])

of the pair
(

Spec(C[X1, . . . , Xm]), Spec(C[X1, . . . , Xm]/(F))
)

(in the notation of

Teitler’s paper Y := VL(F)\{Cm}).

Each W ∈ L(F) \ {Cm} is dominated by a unique smooth irreducible one

codimensional divisor EW in Y. The irreducible components of the normal

crossing divisor associated to h are given by these divisors EW for W ranging in

all of L(F) \ {Cm} (cf. [Tei08, Lemma 2.1]).

Therefore

lctC(F) = min
W∈L(F)
W 6=Cm

codim W
∑Li⊇W ri

. (1.16)

If rk(F) < m, then the expressions (1.15) and (1.16) agree and one has

1
q(F)

= lctC(F) ≤ rk(F)
n

<
m
n

,

which implies

σ∗p (F) = σp(F) = − 1
q(F)

.

and

ν∗p(F) = νp(F) ≤ rk(F),
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the last inequality being an immediate consequence of Igusa’s theorem (and the

construction of log-resolutions in [Tei08]).

If rk(F) = m, then the log-resolution is of the form considered in the proof

of theorem 1.3.2 and one has

1
q(F)

= plctC(F).

Threfore

σ∗p (F) = − 1
q(F)

by proposition 1.3.4 and

ν∗p(F) ≤ m− 1

by theorem 1.3.2 and remark 1.3.3.

Remark 1.3.9. In [Tei08], Teitler also proved that the log-resolution that we have used

in the proof of theorem 1.3.8 can be considerably refined. In fact, a "minimal" log-

resolution also happens to exist. To a theoretical extent, this is not particularly important

for us. However, as explained in [Tei08], using the minimal log-resolution in place of

our "naïve" one may drastically decrease the computation complexity of a brute-force

numerical computation of q(F).



22 CHAPTER 1. IGUSA LOCAL ZETA FUNCTIONS



Chapter 2

Pure and mixed power sums over

NΣ

Let

Σ = {q1, . . . , qs} (s ≥ 1) (2.1)

be a Q-multiplicatively independent subset of R>1 (i.e. {log q1, . . . , log qs} is a

Q-linearly independent subset of R>0). We denote

NΣ := {qk1
1 . . . qks

s : (k1, . . . , ks) ∈ Zs
≥0}. (2.2)

For each h ∈ NΣ the numbers vq1(h), . . . , vqs(h) ∈ Z≥0 are uniquely deter-

mined by the writing

h = q
vq1 (h)
1 . . . qvqs (h)

s . (2.3)

Note that if S = {p1, . . . , ps} is a finite non-empty set of primes, then vpi is

the usual pi-adic valuation for all i ∈ {1, . . . , s}.

Let α, α′ ∈ R>0, ν1, . . . νs ∈ Z≥1 and L ∈ R>1. In this chapter we study the

asymptotic behaviour, as L→ ∞, of sums of the form

∑
h∈NΣ

vq1(h)
ν1−1 . . . vqs(h)

νs−1 min{hα, Lα+α′h−α′}. (2.4)

We call a sum of this form a pure power sum over NΣ if ν1 = · · · = νs = 1

and a mixed power sum otherwise. We are able to determine the asymptotic rate

in general.

23
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Theorem 2.0.1. Let Σ = {q1, . . . , qs} (s ≥ 1) be a Q-multiplicatively independent

subset of R>1, α, α′ ∈ R>0 and ν1, . . . , νs ∈ Z≥0. Then one has

∑
h∈NΣ

vq1(h)
ν1−1 . . . vqs(h)

νs−1 min{hα, Lα+α′h−α′} �Σ,α,α′,ν1,...,νs Lα(log L)ν1+···+νs−1

as L→ ∞.

In the pure case, we can describe the asymptotic behaviour in a much more

precise way.

If Σ = {q} for some q ∈ R>1, then it is easy to see that the limit

lim
L→∞

1
Lα ∑

h∈N{q}

min{hα, Lα+α′h−α′} (2.5)

does not exist. In fact, with an elementary computation, we can even determine

the exact values of the lim inf and the lim sup.

Theorem 2.0.2. Let q ∈ R>1 and α, α′ ∈ R>0. One has

lim inf
L→∞

1
Lα ∑

h∈N{q}

min{hα, Lα+α′h−α′} =
(

1 +
α

α′

)qαα′/(α+α′)

qα − 1

(α′

α

qα − 1
qα′ − 1

)α/(α+α′)

and

lim sup
L→∞

1
Lα ∑

h∈N{q}

min{hα, Lα+α′h−α′} =


1− 1

qα−1 +
1

qα′−1
α ≥ α′,

1− 1
qα′−1

+ 1
qα−1 α ≤ α′.

If s ≥ 2, then the situation becomes more interesting and requires more

sophisticated tools. Using a result from equidistribution theory due to Everest

([Eve92]), we get in this case an exact asymptotics.

Theorem 2.0.3. Let Σ = {q1, . . . , qs} be a Q-multiplicatively independent subset of

R>1, α, α′ ∈ R>0 and ν1, . . . , νs ∈ Z≥0. Suppose s ≥ 2. Then there exists a constant

c(Σ) > 0 such that for any α, α′ ∈ R>0 one has

∑
h∈NΣ

min{hα, Lα+α′h−α′} ∼ c(Σ) ·
(1

α
+

1
α′

)
Lα(log L)s−1 as L→ ∞.
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The chapter is organized as follows. In section 2.1 we prove a preliminary

easy result from discrete calculus. In sections 2.2, 2.3 and 2.4 we prove theorems

2.0.2, 2.0.3 and 2.0.1 respectively. Finally, in section 2.5 we will apply the the-

ory developed in the previous paragraphs to the description of the asymptotic

behaviour of certain sums that will play a central role in the rest of the thesis.

2.1 A result from discrete calculus

In this section we prove an elementary result (proposition 2.1.3 below). Such

a result can probably be found in many introductory books in discrete calculus.

However, in order to save reader’s time, we give here a self-contained proof.

Definition 2.1.1. The (forward) difference operator ∆ on the collection of function from

Z≥0 to R is the operator transforming a function f : Z≥0 → R into the function

∆ f : Z≥0 → R defined by ∆ f (t) := f (t + 1)− f (t).

Lemma 2.1.2 (Summation by parts). For any f , g : Z≥0 → R, t0, t1 ∈ Z≥0, t0 < t1,

we have

t1

∑
t=t0

f (t)∆g(t) =
(

f (t1)g(t1 + 1)− f (t0)g(t0)
)
−

t1−1

∑
t=t0

g(t + 1)∆ f (t).

Proof. A straightforward computation yields

t1

∑
t=t0

f (t)∆g(t) =
t1

∑
t=t0

f (t)g(t + 1)−
t1

∑
t=t0

f (t)g(t)

=
t1

∑
t=t0

f (t + 1)g(t + 1)−
t1

∑
t=t0

g(t + 1)∆ f (t)−
t1

∑
t=t0

f (t)g(t)

=
(

f (t1 + 1)g(t1 + 1)− f (t0)g(t0)
)
−

t1

∑
t=t0

g(t + 1)∆ f (t)

=
(

f (t1)g(t1 + 1)− f (t0)g(t0)
)
−

t1−1

∑
t=t0

g(t + 1)∆ f (t).
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Summation by parts is the only tool we need for the proof of the result we

are aiming at.

Proposition 2.1.3. Let β ∈ R>1, α ∈ R>0, r ∈N. Then

(a)
T

∑
t=0

βαttr =
1

βα − 1
βα(T+1)Tr +Oα,β(βα(T+1)Tr−1) as T → ∞,

(b)
∞

∑
t=T

β−αttr =
1

βα − 1
β−α(T+1)Tr +Oα,β(β−α(T+1)Tr−1) as T → ∞.

Proof. (a) We proceed by induction on r. If r = 0, then

T

∑
t=0

βαt =
βα(T+1) − 1

βα − 1
=

1
βα − 1

βα(T+1) +Oα,β(1)

and the claim follows a fortiori.

Suppose r > 0. Then summation by parts gives us

T

∑
t=0

βαttr =
1

βα − 1

T

∑
t=0

∆(βαt)tr

=
1

βα − 1

(
βα(T+1)Tr − βα ·

T−1

∑
t=0

βαt∆(tr)

)
.

On the other hand ∆(tr) is a polynomial of degree r − 1 in t, so by the

induction hypothesis

T−1

∑
t=0

βαt∆(tr) �α,β βαTTr−1 as T → ∞.

Therefore
T

∑
t=0

βαttr =
1

βα − 1

(
βα(T+1)Tr − βα ·

T−1

∑
t=0

βαt∆(tr)

)
=

1
βα − 1

βα(T+1)Tr +Oα,β(βα(T+1)Tr−1).

(b) The argument follows exactly the same lines as in (a), using induction and

summation by parts. If r = 0, then
∞

∑
t=T

β−αt =
1

1− β−α
− 1− β−αT

1− β−α
=

1
βα − 1

β−α(T+1)



2.2. PURE POWER SUMS (S = 1) 27

and the claim follows a fortiori.

Suppose r > 0. Then summation by part gives us

Z

∑
t=T

β−αttr = − 1
1− β−α

Z

∑
t=T

∆(β−αt)tr

= − 1
1− β−α

((
β−α(Z+1)Zr − β−αTTr)− β−α ·

Z−1

∑
t=T

β−αt∆(tr)

)
for any Z > T.

Letting Z → ∞ we get
∞

∑
t=T

β−αttr =
1

1− β−α

(
− β−αTTr − β−α ·

∞

∑
t=T

β−αt∆(tr).
)

We can then conclude as in (a).

2.2 Pure power sums (s = 1)

Let q ∈ R>1. As already mentioned pure power sums over N{q} do not

admit an exact asymptotics.

A straightforward computation shows that for any α, α′ ∈ R>0 one has

∑
h∈N{q}

h≤L

hα =

blogq Lc

∑
k=0

qkα =
qα(blogq Lc+1) − 1

qα − 1
(2.6)

and thus

∑
h∈N{q}

h≤L

hα =
qα(1−{logq L})

qα − 1
Lα +Oq,α(1) as L→ ∞. (2.7)

Also, for any L ∈ R>1 one has

∑
h∈N{q}

h>L

h−α′ =
∞

∑
k=blogq Lc+1

q−kα′ =
1

1− q−α′
− 1− q−α′(blogq Lc+1)

1− q−α′
(2.8)
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and thus

∑
h∈N{q}

h>L

h−α′ =
q−α′(blogq Lc+1)

1− q−α′
=

qα′{logq L}

qα′ − 1
L−α′ ∀L ∈ R>1 . (2.9)

Summing (2.8) and (2.9), we obtain

∑
h∈N{q}

min{hα, Lα+α′h−α′} =
(

qα(1−{logp L})

qα − 1
+

qα′{logq L}

qα′ − 1

)
Lα +Oq,α,α′(1) (2.10)

as L→ ∞.

Now, since the map R→ [0, 1), L 7→ {logq L} is clearly surjective, we deduce

from (2.10) that

lim inf
L→∞

1
Lα ∑

h∈N{q}

min{hα, Lα+α′h−α′} = inf
u∈[0,1)

L(u) (2.11)

and

lim sup
L→∞

1
Lα ∑

h∈N{q}

min{hα, Lα+α′h−α′} = sup
u∈[0,1)

L(u). (2.12)

where L : R→ (0, ∞) is defined by

L(u) :=
A1−u

A− 1
+

Aρu

Aρ − 1
(A := qα, ρ := α′/α). (2.13)

Theorem 2.0.2 follows then from the following result on the function L.

Lemma 2.2.1. In the notation above, one has

(a) inf
u∈[0,1)

L(u) =
(

1 +
1
ρ

) A
A− 1

A−1/(1+ρ)
(ρ(A− 1)

Aρ − 1

)1/(1+ρ)
,

(b) sup
u∈[0,1)

L(u) =

1− 1
A−1 +

1
Aρ−1 if ρ ≤ 1,

1− 1
Aρ−1 +

1
A−1 if ρ ≥ 1.

Proof. The function L is convex, so it has a unique stationary point u∗ ∈ R, at

which L assumes its global minimum over R. A straightforward computation

shows that

u∗ =
1

α(1 + ρ)

(
α− logq

(ρ(A− 1)
Aρ − 1

))
.
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If we consider the function f : R→ R defined by

f (x) = 1− A−x − x(A− 1) (x ∈ R).

then we see that

f ′(x) = (log A)
(

A−x − A− 1
log A

)
< 0 ∀x > 0,

which implies

1− A−ρ − ρ(A− 1) = f (ρ) < f (0) = 0,

and thus
ρ(A− 1)

Aρ − 1
> A−ρ,

This proves that

u∗ < 1. (2.14)

Similarly, for the function g : R→ R defined by

g(x) = A(Ax − 1)− x(A− 1) (x ∈ R),

we compute

g′(x) = (log A)
(

A1+x − A− 1
log A

)
> 0 ∀x > 0,

from which we deduce

A(Aγ − 1)− γ(A− 1) = g(γ) > g(0) = 0

and thus
γ(A− 1)

Aγ − 1
< A.

This gives us

u∗ > 0. (2.15)

From (2.14) and (2.15), we conclude that

u∗ ∈ (0, 1),
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which implies

inf
u∈[0,1)

L(u) = L(u∗) (2.16)

and

sup
u∈[0,1)

L(u) = max{L(0),L(1)}. (2.17)

The claims (a) and (b) in the lemma follow from 2.16 (by evaluating L at the

u∗) and from 2.17 (by evaluating L at 0 and 1) respectively.

2.3 Pure power sums (s ≥ 2)

In this section we consider pure power sums over NΣ in the case s ≥ 2.

The key ingredient in the proof of theorem 2.0.3 is the study of the asymptotic

behaviour, as t→ ∞, of the number of integer points in the regions of Rs defined

as follows.

Definition 2.3.1. Let Σ = {q1, . . . , qs} be a Q-multiplicatively independent subset of

R≥1 with s ≥ 2. For any β ∈ R>1, t ∈ Z≥0, we define

Mβ
t (Σ) :=

{
x ∈ Rs :

xi ≥ 0 ∀i ∈ {1, . . . , s},
t < x1 logβ q1 + · · ·+ xs logβ qs ≤ t + 1

}
.

If β = e, then we drop the superscript.

These regions give rise to a partition

NΣ \{1} =
∞⋃

t=0

{
h ∈NΣ : (vq1(h), . . . , vqs(h)) ∈ M

β
t (Σ)

}
, (2.18)

according to which we may split the pure power sums under consideration.

Note that the partition (2.18) becomes finer and finer as β→ 1+. Moreover,

the ratio between the maximum and the minimum of the summand on each

Mβ
t (Σ) tends to 1 as β → 1+. Therefore we expect that the estimates (for fixed

β) on the sums we are considering would yield, in the limit β → 1+, a precise

description of the asymptotic behaviour.
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Lemma 2.3.2. Let Σ = {q1, . . . , qs} be a Q-multiplicatively independent subset of R≥1

with s ≥ 2. Then there exists a constant c(Σ) ∈ R>0 such that for any β ∈ R>1 one has

#(Zs ∩Mβ
t (Σ)) = c(Σ) · (log β)sts−1 + oβ(ts−1) as t→ ∞.

Proof. Let

Bβ
t (Σ) :=

{
x ∈ Rs :

xi ≥ 0 ∀i ∈ {1, . . . , s},
x1 logβ q1 + · · ·+ xs logβ qs ≤ t

}
. (2.19)

From [Eve92, Theorem 1], it follows that there exist constants c′(Σ), c′′(Σ) ∈
R>0 such that for any β ∈ R>1 one has

#(Zs ∩Bβ
t (Σ)) = c′(Σ) · (log β)sts + c′′(Σ) · (log β)s−1ts−1 + oβ(ts−1)

as t→ ∞.

The claim follows then, with c(Σ) := c′(Σ) · s, from the fact thatMβ
t (Σ) =

Bβ
t+1(Σ) \ B

β
t (Σ) for all t ∈ Z≥0 (clear from (2.19)).

Theorem 2.0.3 follows immediately from the following proposition.

Proposition 2.3.3. Let Σ = {q1, . . . , qs} be a Q-multiplicatively independent subset of

R≥1 with s ≥ 2. For any α ∈ R>0 one has

(a) ∑
h∈NΣ
h≤L

hα ∼ c(Σ)
α

Lα(log L)s−1 as L→ ∞,

(b) ∑
h∈NΣ
h>L

h−α ∼ c(Σ)
α

L−α(log L)s−1 as L→ ∞.

Proof. (a) Estimating every h ∈ NΣ such that logβ h ∈ Mβ
t (Σ) (with any

t ∈ Z≥0) with βt from below and with βt+1 from above, proposition 2.1.3(a)
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yields

∑
h∈NΣ
h≤L

hα ≤ 1 +
dlogβ Le−1

∑
t=0

βα(t+1) · #(Zs ∩Mβ
t (Σ))

= 1 +
dlogβ Le−1

∑
t=0

βα(t+1) ·
(
c(Σ) · (log β)sts−1 + oα,β(ts−1)

)
= c(Σ) · (log β)s

( dlogβ Le−1

∑
t=0

βα(t+1)ts−1
)
+ oα,β(Lα(log L)s−1)

=
c(Σ)(log β)s

βα − 1
· βα(1+dlogβ Le)(logβ L)s−1 + oα,β(Lα(log L)s−1)

≤ β2α log β

βα − 1
· c(Σ) · Lα(log L)s−1 + oα,β(Lα(log L)s−1)

and thus

lim sup
L→∞

1
Lα(log L)s−1 ∑

h∈NΣ
h≤L

hα ≤ c(Σ) · lim
β→1+

β2α log β

βα − 1
=

c(Σ)
α

.

Similarly

∑
h∈NΣ
h≤L

hα ≥
blogβ Lc−1

∑
t=0

βαt · #(Zs ∩Mβ
t (Σ))

≥ log β

β2α(βα − 1)
· c(Σ) · Lα(log L)s−1 + oβ(Lα(log L)s−1)

and thus

lim inf
L→∞

1
Lα(log L)s−1 ∑

h∈NΣ
h≤L

hα ≥ c(Σ) · lim
β→1+

log β

β2α(βα − 1)
=

c(Σ)
α

.

(b) The proof follows exactly the same lines as (a), using 2.1.3(b) in place of

2.1.3(a).
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2.4 Mixed power sums

In order to prove our claim for mixed power sums, we need a deeper insight

in the distribution of integer points in the setsMt(Σ) as t→ ∞. In fact, the key

idea in the proof of theorem 2.0.1 in the mixed case is noticing that, as t→ ∞, the

points k = (k1, . . . , ks) with integer coordinates tend to distribute insideMt(Σ)

in such a way that the quantities ki log qi (i = 1, . . . , s) all grow with order t.

Lemma 2.4.2 below formalizes this idea.

Definition 2.4.1. Let Σ = {q1, . . . , qs} be a Q-multiplicatively independent subset of

R>1 with s ≥ 2. For any function ω : [0, ∞)→ [0, ∞) and any t ∈ Z≥0, we define

Mt(Σ, ω) :=

{
x ∈ Rs :

xi ≥ ω(t)/ log qi ∀i ∈ {1, . . . , s},
t < x1 log q1 + · · ·+ xs log qs ≤ t + 1

}
.

Lemma 2.4.2. Let Σ = {q1, . . . , qs} be a Q-multiplicatively independent subset of R>1

with s ≥ 2. Suppose that ω : [0, ∞)→ [0, ∞) satisfies

lim sup
t→∞

ω(t)
t

< c(Σ) ·
( s

∑
j=1

c(Σ \ {qj})
log qj

)−1

,

where c(Σ) is the constant that appears in lemma 2.3.2 if s > 1 and

c({q}) := 1 +
1

log q
∀q ∈ R≥1 .

Then one has

#(Zs ∩Mt(Σ, ω)) �Σ,ω ts−1 as t→ ∞.

Proof. Clearly #(Zs ∩Mt(Σ, ω)) ≤ #(Zs ∩Mt(Σ, ω)) �Σ,ω ts−1 as t → ∞. We

want to prove that one also has

lim inf
t→∞

#(Zs ∩Mt(Σ, ω))

ts−1 > 0.
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Since

lim inf
t→∞

#(Zs ∩Mt(Σ, ω))

ts−1

≥ lim
t→∞

#(Zs ∩Mt(Σ))
ts−1 − lim sup

t→∞

#(Zs ∩(Mt(Σ) \Mt(Σ, ω)))

ts−1

= c(Σ)− lim sup
t→∞

#(Zs ∩(Mt(Σ) \Mt(Σ, ω)))

ts−1 ,

it is enough to show that

lim sup
t→∞

#(Zs ∩(Mt(Σ) \Mt(Σ, ω)))

ts−1 < c(Σ).

Write

Zs ∩(Mt(Σ) \Mt(Σ, ω)) =
s⋃

j=1

dω(t)/ log qe−1⋃
k j=0

Zs ∩At,j(k j),

with

At,j(k j) :=

{
x ∈ Rs :

xi ≥ 0 ∀i, xj = k j,

t− k j log qj < ∑i 6=j xi log qi ≤ t + 1− k j log qj

}
.

If s = 2, then

#(Z2 ∩At,1(k1)) ≤ 1 +
1

log q2
and #(Z2 ∩At,2(k2)) ≤ 1 +

1
log q1

for all k1 ∈ {0, . . . , dω(t)/ log q1e − 1}, k2 ∈ {0, . . . , dω(t)/ log q2e − 1}, from

which it follows that

#(Z2 ∩(Mt(Σ) \Mt(Σ, ω)))

≤
2

∑
j=1

dω(t)/ log qje−1

∑
k j=0

#(Zs ∩At,j(k j))

≤
(

1 +
1

log q1

)( ω(t)
log q2

+ 1
)
+
(

1 +
1

log q2

)( ω(t)
log q1

+ 1
)

=
( 1

log q1
+

1
log q2

+
2

(log q1)(log q2)

)
ω(t) +

(
2 +

1
log q1

+
1

log q2

)
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and thus

lim sup
t→∞

#(Z2 ∩(Mt(Σ) \Mt(Σ, ω)))

t

=
( 1

log q1
+

1
log q2

+
2

(log q1)(log q2)

)
lim sup

t→∞

ω(t)
t

< c(Σ).

Suppose now s ≥ 3. Then s− 1 ≥ 2 and so

#(Zs ∩At,j(k j)) = c(Σ \ {qj}) · ts−2 + oΣ(ts−2) as t→ ∞

by lemma 2.3.2.

It follows that

lim sup
t→∞

Zs ∩(Mt(Σ) \Mt(Σ, ω))

ts−1 ≤
( s

∑
j=1

c(Σ \ {qj})
log qj

)
lim sup

t→∞

ω(t)
t

< c(Σ).

We need now the following easy technical lemma.

Lemma 2.4.3. Let f , g : (0, ∞) → (0, ∞) be two functions, with f (t) � g(t) as

t → ∞. Suppose that there exists c > 0 such that f (t) � ξ(t) as t → ∞ for all

functions ξ : (0, ∞)→ (0, ∞) satisfying

lim inf
t→∞

ξ(t)
g(t)

= 0 and lim sup
t→∞

ξ(t)
g(t)

< c.

Then one has

f (t) � g(t) as t→ ∞.

Proof. Let

l := lim inf
t→∞

f (t)
g(t)

, L := lim sup
t→∞

f (t)
g(t)

.
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Since by assumption L < ∞, we only need to prove that l > 0.

We show first that L > 0. If by contradiction L = 0, then for

ξ0 : (0, ∞)→ (0, ∞), t 7→ ( f (t)g(t))1/2

we see that

lim
t→∞

ξ0(t)
g(t)

= lim
t→∞

( f (t)
g(t)

)1/2
= 0

and

lim sup
t→∞

ξ0(t)
f (t)

= lim sup
t→∞

( g(t)
f (t)

)1/2
= ∞,

which contradicts our assumptions.

Now, suppose by contradiction that l = 0. Because L > 0, we may consider

the function

ξ : (0, ∞)→ (0, ∞), t 7→ c
2L1/2 ( f (t)g(t))1/2.

Since

lim inf
t→∞

ξ(t)
g(t)

=
c

2L1/2 lim inf
t→∞

( f (t)
g(t)

)1/2
= 0,

lim sup
t→∞

ξ(t)
g(t)

=
c

2L1/2 lim sup
t→∞

( f (t)
g(t)

)1/2
=

c
2
< c

and

lim sup
t→∞

ξ(t)
f (t)

=
c

2L1/2 lim sup
t→∞

( g(t)
f (t)

)1/2
= ∞,

we reach a contradiction.

Lemma 2.4.4. Let Σ = {q1, . . . , qs} (s ≥ 2) be a multiplicatively independent subset of

R>1 and ν1, . . . νs ∈ Z≥1. Suppose that ν1 + · · ·+ νs > s. Then

∑
k∈Zs ∩Mt(Σ)

kν1−1
1 . . . kνs−1

s �Σ,ν1,...,νs tν1+···+νs−1 as t→ ∞.
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Proof. By the inequality between the arithmetic and the geometric mean and by

lemma 2.4.2, we have

∑
k∈Zs ∩Mt(Σ)

kν1−1
1 . . . kνs−1

s

=
1

(log q1)ν1−1 . . . (log qs)νs−1 ∑
k∈Zs ∩Mt

(k1 log q1)
ν1−1 . . . (ks log qs)

νs−1

≤
( s

∏
i=1

1
(log qi)νi−1

)( maxi νi − 1
ν1 + · · ·+ νs − s

)ν1+···+νs
(t + 1)ν1+···+νs−s#(Zs ∩Mt(Σ))

�Σ,ν1,...,νs tν1+···+νs−1 as t→ ∞,

from which the upper bound follows.

Now, let ξ : (0, ∞)→ (0, ∞) be any function such that

lim inf
t→∞

ξ(t)
tν1+···+νs−1 = 0

and

lim sup
t→∞

ξ(t)
tν1+···+νs−1 <

(
c(Σ) ·

( s

∑
j=1

c(Σ \ {qj})
log qj

)−1)ν1+···+νs−s

.

We consider the function ω : (0, ∞)→ (0, ∞) defined by

ω(t) :=
( ξ(t)

ts−1

)1/(ν1+···+νs−s)
.

Since

lim sup
t→∞

ω(t)
t

=
(

lim sup
t→∞

ξ(t)
t

)1/(ν1+···+νs−s)
< c(Σ) ·

( s

∑
j=1

c(Σ \ {qj})
log qj

)−1

,

lemma 2.4.2 tells us that

∑
k∈Zs ∩Mt(Σ)

kν1−1
1 . . . kνs−1

s ≥ ∑
k∈Zs ∩Mt(Σ,ω)

kν1−1
1 . . . kνs−1

s

≥ ω(t)ν1+···+νs−s

(log q1)ν1−1 . . . (log qs)νs−1 · #(Z
s ∩Mt(Σ, ω))

�Σ,ν1,...,νs (log β)ν1+···+νs ξ(t) as t→ ∞.

The desired lower bound follows then from lemma 2.4.3.
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Theorem 2.0.1 follows immediately from the following proposition.

Proposition 2.4.5. Let Σ = {q1, . . . , qs} (s ≥ 1) be a multiplicatively independent

subset of R>1, α ∈ R>0 and ν1, . . . , νs ∈ Z≥1. Then one has

(a) ∑
h∈NΣ
h≤L

vq1(h)
ν1−1 . . . vqs(h)

νs−1hα � Lα(log L)ν1+···+νs−1 as L→ ∞,

(b) ∑
h∈NΣ
h>L

vq1(h)
ν1−1 . . . vqs(h)

νs−1h−α � L−α(log L)ν1+···+νs−1 as L→ ∞.

Proof. If s = 1, then the claim follows immediately from proposition 2.1.3.

If s ≥ 2 and νi = 1 ∀i ∈ {1, . . . , s}, then the result is just a weak version of

theorem 2.3.3.

If s ≥ 2 and ν1 + · · ·+ νs > s, then the proof of the claim follows the same

line as that of theorem 2.3.3, using lemma 2.4.4 in place of lemma 2.3.2.

2.5 Applications

In this section, we apply the results obtained above to the study of the

asymptotic behaviour of certain sums that will play important roles in the next

chapters.

Recall that, for any f ∈ R[X1, . . . , Xm] and B, M ∈ R>0, we denote

Vf (B, M) := {x ∈ Rm : | f (x)| ≤ M}. (2.20)

Definition 2.5.1. Let f ∈ Z[X], B, γ, ε ∈ R>0, σ ∈ R<0 and let Σ = {q1, . . . , qs} be

a Q-multiplicative independent subset of R>1. We define

U( f , Σ, ε, B, γ, σ) := ∑
h∈NΣ

µ∞(Vf (B, (γh)1/ε)) · hσ

The results from section 2.3, together with a careful use of the polynomial
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growth, lead us to the following precise description of the asymptotic behaviour

of U( f , S, ε, B, γ, σ) as B→ ∞.

Definition 2.5.2. For q ∈ R>1, ε ∈ R>0, σ ∈ R<0, we denote

(a) λ−(n, σ, q, ε) := − 1
σnε

q−σ(1+σnε)

q1/(nε)+σ − 1

(
− σ

1/(nε) + σ

q1/(nε)+σ − 1
q−σ − 1

)1+σnε

,

(b) λ+(n, σ, q, ε) :=

1− 1
q1/(nε)+σ−1

+ 1
q−σ−1 ε ≤ − 1

2σn ,

1− 1
q−σ−1 +

1
q1/(nε)+σ−1

ε ≥ − 1
2σn .

Proposition 2.5.3. Let f ∈ Z[X] be a polynomial of degree n ≥ 1 and leading coefficient

c f . Let also γ ∈ R>0, σ ∈ R<0, ε ∈
(

0,− 1
nσ

)
and let Σ = {q1, . . . , qs} (s ≥ 1) be a

Q-multiplicative independent subset of R>1.

(a) If Σ = {q}, then one has

lim inf
B→∞

U( f , {q}, ε, B, γ, σ)

B1+σnε
= λ−(n, σ, q, ε) · |c f |σεγ−σ,

lim sup
B→∞

U( f , {q}, ε, B, γ, σ)

B1+σnε
= λ+(n, σ, q, ε) · |c f |σεγ−σ.

(b) If s ≥ 2, then

U( f , Σ, ε, B, γ, σ) ∼ 2 · c(S) ·
|c f |σεγ−σ

−σ(1 + σnε)
· B1+σnε(log B)s−1 as B→ ∞.

Proof. For any δ ∈ (0, 1/2) there exists Bδ > 1 such that for all x ∈ R with

|x| ≥ Bδ one has

(1− δ)|c f ||x|n ≤ | f (x)| ≤ (1 + δ)|c f ||x|n.

It follows that for any δ ∈ (0, 1/2) one has

lim inf
B→∞

Uδ( f , Σ, ε, B, γ, σ)

B1+σnε(log B)s−1 ≤ lim inf
B→∞

U( f , Σ, ε, B, γ, σ)

B1+σnε(log B)s−1

≤ lim inf
B→∞

U−δ( f , Σ, ε, B, γ, σ)

B1+σnε(log B)s−1
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and

lim sup
B→∞

Uδ( f , Σ, ε, B, γ, σ)

B1+σnε(log B)s−1 ≤ lim sup
B→∞

U( f , Σ, ε, B, γ, σ)

B1+σnε(log B)s′−1

≤ lim sup
B→∞

U−δ( f , Σ, ε, B, γ, σ)

B1+σnε(log B)s−1 ,

where

U±δ( f , Σ, ε, B, γ, σ) := ∑
h∈NS

2 min
{

B, ((1± δ)−ε|c f |−εγh)1/(nε)
}
· hσ.

On the other hand, one has

lim inf
B→∞

U±δ( f , {q}, ε, B, γ, σ)

B1+σnε
= 2 · λ−(n, σ, q, ε) · (1± δ)−σε|c f |σεγ−σ,

lim sup
B→∞

U±δ( f , {q}, ε, B, γ, σ)

B1+σnε
= 2 · λ+(n, σ, q, ε) · (1± δ)−σε|c f |σεγ−σ,

by theorem 2.0.2, and

lim
B→∞

U±δ( f , Σ, ε, B, γ, σ)

B1+σnε(log B)s−1 = 2 · c(Σ) ·
(1± δ)−ε|c f |σεγ−σ

−σ(1 + σnε)

when s ≥ 2, by theorem 2.0.3.

Both claims (a) and (b) in the proposition follow now by taking the limit

δ→ 0+.

For the next definition we recall that a form F ∈ Z[X1, . . . , Xm] is said to be

of finite type if

vol(F) := µm
∞({x ∈ Rm : |F(x)| ≤ 1}) < ∞. (2.21)

Definition 2.5.4. Let F ∈ Z[X1, . . . , Xm] (m ≥ 2) be a form of finite type, B, γ, ε ∈
R>0, σ ∈ R<0, ν1, . . . , νs ∈ Z≥1 and let Σ = {q1, . . . , qs} be a multiplicative indepen-

dent subset of R>1. We define

U(F, Σ, ε, B, γ, σ, ν1, . . . , νs) := ∑
h∈NΣ

µm
∞(VF(B, (γh)1/ε))

( s

∏
i=1

vqi(h)
νi−1
)
· hσ.
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Proposition 2.5.5. In the above setting, suppose ε ∈
(

0,− 1
σn

)
. Then

U(F, Σ, ε, B, γ, σ, ν1, . . . , νs) � Bm+σnε(log B)ν1+···+νs−1 as B→ ∞.

Proof. Because of homogeneity we have

µm
∞({x ∈ Rm : |F(x)| ≤ M}) = vol(F) · Mm/n, ∀M ∈ R>0,

which implies

µm
∞(VF(B, M)) ≤ min{(2B)m, vol(F) · Mm/n} ∀B, M ∈ R>0 .

It follows that

U(F, Σ, ε,B, γ, σ, ν1, . . . , νs)

≤ ∑
h∈NΣ

min{(2B)m, vol(F) · (γh)m/(nε)}
( s

∏
i=1

vqi(h)
νi−1
)
· hσ

� Bm+σnε(log B)ν1+···+νs−1 as B→ ∞

by proposition (2.4.5(a)).

On the other hand, letting

CF := max
‖x‖=1

F(x),

we see that

µm
∞(VF(B, M)) = (2B)m ∀M > CFBn

and thus

U(F, Σ, ε,B, γ, σ, ν1, . . . , νs)

≥ ∑
h∈NΣ

h>γ−1(CF Bn)ε

µ∞(VF(B, (γh)1/ε))
( s

∏
i=1

vqi(h)
νi−1
)
· hσ

= (2B)m ∑
h∈NΣ

h>γ−1(CF Bn)ε

vp1(h)
ν1−1 . . . vps(h)

νs−1hσ

� Bm+σnε(log B)ν1+···+νs−1 as B→ ∞

by proposition (2.4.5(b)).



42 CHAPTER 2. PURE AND MIXED POWER SUMS OVER NΣ



Chapter 3

Univariate polynomials

Let f ∈ Z[X] be a polynomial of degree n ≥ 1, S a finite set of primes,

ε ∈
(

0, 1
n

)
, γ, B ∈ R>0.

In this chapter, we study the asymptotic behaviour of the quantity

N( f , S, ε, B, γ) := #{x ∈ Z : |x| ≤ B, 0 < | f (x)|ε ≤ γ · [ f (x)]S} (3.1)

as B→ ∞.

3.1 Translation into the adelic setting

Adjusting an idea from [Liu15, chapter 1], we interpret the set

{x ∈ Z : |x| ≤ B, 0 < | f (x)|ε ≤ γ · [ f (x)]S} (3.2)

as the set of integer point in the adelic region

A( f , S, ε, B, γ) :=

{
(xv)v ∈ A :

|x∞| ≤ B, |xv|v ≤ 1 ∀v 6= ∞

0 < | f (x∞)|ε ∏p∈S | f (xp)|p ≤ γ

}
, (3.3)

and we approximate (3.1) with the normalized Haar measure of (3.3) as B→ ∞.

An upper bound on the asymptotic rate of the difference∣∣#(Z∩A( f , S, ε, B, γ))− µ(A( f , S, ε, B, γ))
∣∣ (3.4)

as B → ∞ by a power of log B can be given in a similar fashion to the proof of

[Liu15, Proposition 1.4.6].

43
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Lemma 3.1.1. Let f (X) ∈ R[X]. For any a ∈ R and λ, B, M ∈ R>0 one has∣∣∣∣#((a + λ Z) ∩Vf (B, M))−
µ∞(Vf (B, M))

λ

∣∣∣∣ ≤ 2(n + 1).

Proof. Note that the set Vf (B, M) can be written as a disjoint union of N ≤ n + 1

intervals, say

Vf (B, M) =
N⋃

j=1

Ij,

from which it follows that∣∣∣∣#((a + λ Z) ∩Vf (B, M))−
µ∞(Vf (B, M)

λ

∣∣∣∣
≤

N

∑
j=1

∣∣∣∣#((a + λ Z) ∩ Ij)−
µ∞(Ij)

λ

∣∣∣∣
=

N

∑
j=1

∣∣∣∣#(Z∩
(
− a

λ
+

1
λ

Ij

))
− µ∞

(
− a

λ
+

1
λ

Ij

)∣∣∣∣
≤ 2N

≤ 2(n + 1)

The desired upper bound on the rate of (3.4) as B→ ∞ reads as follows.

Proposition 3.1.2. Let f ∈ Z[X] be a polynomial of degree n ≥ 1 and splitting field K

over Q, and denote by n0 the number of distinct roots of f in K. Let S be a finite set of

primes, with s := #S > 0. Then for any ε ∈
(

0, 1
n

)
and γ ∈ R>0 one has∣∣#(Z∩A( f , S, ε, B, γ))− µ(A( f , S, ε, B, γ))
∣∣� f ,S (log B)n0s as B→ ∞,

with implied constant independent of γ and ε.

Proof. Let us first fix once an for all a numbering for the roots α1, . . . , αn the root

of f in K. This defines an equivalence relation on {1, . . . , n}, namely

∀i, j ∈ {1, . . . , n}, i ∼ j def⇐⇒ αi = αj. (3.5)
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Let

{1, . . . , n} = A1 ∪ · · · ∪ An0 ,

be the equivalence class decomposition for the equivalence relation (3.5). We

have then the factorization

f (X) = c f (X− α1) . . . (X− αn) = c f

n0

∏
i=1

∏
α∈Ai

(X− α)

in K[X], for some c f ∈ Z 6=0 (leading coefficient of f ).

Now, let p ∈ S and let p be a prime of K above p. Since K is Galois over Q,

the ramification index e(p/p) does not depend on the particular choice of p, so

we can denote it by ep without creating any confusion. We also denote by αpj the

image of αj under the embedding K ↪→ Kp for any j ∈ {1, . . . , n}.

We denote

J0 := {(p, j) : p ∈ S, j ∈ {1, . . . , n}}

and we write the set A( f , S, ε, B, γ) as a disjoint union

A( f , S, ε, B, γ) =
⋃

k∈K(B)

V(k; B),

where we define

V(k; B) :=

{
(xv)v ∈ A( f , S, ε, B, γ) :

|xp − αpj|p = p−kpj/ep

∀(p, j) ∈ J0

}

for any k ∈ ZJ0 and we denote

K(B) := {k ∈ ZJ0 : V(k; B) 6= ∅}.

Note that, if k ∈ K(B) and (xv)v ∈ V(k; B), then one has

p−kpj/ep ≤ max
{
|xp|p, |αpj|p

}
≤ max

{
1, max

j∈{1,...,n}
|αpj|p

}
∀(p, j) ∈ J0
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and thus

kpj ≥ −dp ∀(p, j) ∈ J0,

where

dp := ep · logp

(
max

{
1, max

j∈{1,...,n}
|αpj|p

})
∈ Z≥0 .

It follows that

K(B) ⊆ H :=

{
k ∈ ZJ0 :

kpj ≥ −dp ∀j ∈ {1, . . . , n},
kpi = kpj if i ∼ j

}
for all B ∈ R>0 and thus

#
{
k ∈ K(B) : ∏

(p,j)∈J0

pkpj/ep = h
}

≤ #
{
k ∈ H :

n

∑
j=1

kpj = vp1/ep (h) ∀p ∈ S
} (3.6)

for all B ∈ R>0 and h ∈NΣ, where

Σ := {p1/ep : p ∈ S}.

One can show, with an elementary combinatorial argument, that there exists

a constant C ∈ R≥0 (independent of B) such that for all h ∈ NΣ with vq(h) ≥
1 ∀q ∈ Σ the quantity on the right-hand side of (3.6) is less or equal than

C ·∏
q∈Σ

vq(h)n0−1.

Now, using the obvious inequality

µ(V(k; B)) ≤ 2B ·
(

∏
(p,j)∈J

p−kpj/ep
)1/n

and the fact that, for B big enough (depending on f , S, ε, γ), one has

Z∩V(k; B) = ∅ ∀k ∈ K(B) \ K′(B),
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where

K′(B) :=
{
k ∈ K(B) : ∑

(p,j)∈J0

kpj

ep
≤ 2n · log B

}
,

we deduce from proposition 2.4.5 that, for B big enough (depending on f , S, ε, γ),

one has

∑
k∈K(B)\K′(B)

∣∣#(Z∩V(k; B))− µ(V(k; B))
∣∣

= ∑
k∈K(B)\K′(B)

µ(V(k; B))

≤ ∑
h∈NΣ

h>B2n

∑
k∈K(B)

∏(p,j)∈J0
pkpj/ep=h

µ(V(k; B))

� f ,S B · ∑
Σ′⊆Σ

∑
h∈NΣ\Σ′

vq(h)≥1 ∀q∈Σ′

h>B2n

(
∏
q∈Σ′

vq(h)n0−1
)

h−1/n

� f ,S B−1(log B)n0s−1 as B→ ∞,

with implied constants independent of γ and ε.

This proves that

∑
k∈K(B)

∣∣#(Z∩V(k; B))− µ(V(k; B))
∣∣

= ∑
k∈K′(B)

∣∣#(Z∩V(k; B))− µ(V(k; B))
∣∣+O f ,S(B−1(log B)n0s−1)

(3.7)

as B→ ∞.

Let k ∈ K′(B). For each subset J ⊆ J0, we consider the subset V(k,J ; B)

of V(k; B) defined by the inequalities|xp − αpj|p < p−kpj/ep ∀(p, j) ∈ J ,

|xp − αpj|p ≤ p−kpj/ep ∀(p, j) ∈ J0 \ J .

Since

V(k; B) = V(k, ∅; B) \
⋂
J⊆J0
#J=1

V(k,J ; B),
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the inclusion-exclusion principle yields

µ(V(k; B)) =
ns

∑
l=0

(−1)l ∑
J⊆J0
#J=l

µ(V(k,J ; B)) (3.8)

and

#(Z∩V(k; B)) =
ns

∑
l=0

(−1)l ∑
J⊆J0
#J=l

#(Z∩V(k,J ; B)). (3.9)

If V(k,J ; B) = ∅, then clearly #(Z∩V(k,J ; B)) = µ(V(k,J ; B)) = 0. If

on the contrary the set V(k,J ; B) is non-empty, then it is of the form

Vf (B, M)×∏
p∈S

(αp + pκp Zp)

for some M ∈ R>0, κp ∈ Z≥0, αp ∈ {0, . . . , pκp − 1} (p ∈ S), with

κp ≥ max
j∈{1,...,n}

kpj

ep
.

Combined with the Chinese remainder theorem, this implies that, letting

h0 := ∏
p∈S

pκp ,

one has1

Z∩V(k,J ; B) = (α + h0 Z) ∩Vf
(

B, M
)

(3.10)

for some α ∈ {0, . . . , h− 1}. From lemma 3.1.1, it follows then that∣∣#(Z∩V(k,J ; B))− µ(V(k,J ; B))
∣∣ ≤ 2(n + 1) ∀k ∈ K(B), J ⊆ J0, (3.11)

Combining (3.11) with (3.8) and (3.9), we get∣∣#(Z∩V(k; B))− µ(V(k; B))
∣∣ ≤ 2ns+1(n + 1) ∀k ∈ K(B). (3.12)

1Even if we do not use a different notation (in order not to make it too heavy), it is important to

understand that in (3.10) the intersection symbols on the left- and right-hand side have different

meanings. On the left-hand side, Z is embedded diagonally into A and the set-theoretic inter-

section is taken in the universe A. On the right-hand side, Z is embedded into R via the usual

inclusion and the set-theoretic intersection is taken in the universe R (embedded diagonally in A).
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Now, an elementary combinatorial computation shows that

#K′(B)� f ,S (log B)n0s as B→ ∞,

which, combined with (3.12), implies

∑
k∈K′(B)

∣∣Z∩A( f , S, ε, B, γ)− µ(A( f , S, ε, B, γ))
∣∣

� f ,S (log B)n0s as B→ ∞,
(3.13)

with implied constant independent of γ and ε.

From (3.7) and (3.13), we deduce that∣∣#(Z∩A( f , S, ε, B, γ))− µ(A( f , S, ε, B, γ))
∣∣

≤ ∑
k∈K(B)

∣∣#(Z∩A( f , S, ε, B, γ))− µ(A( f , S, ε, B, γ))
∣∣

� f ,S (log B)n0s as B→ ∞,

with implied constant independent of γ and ε, which is what we wanted to

prove.

3.2 Asymptotic behaviour of the (candidate) main term

Needless to say, proposition 3.1.2 says something interesting about the

asymptotic behaviour of N( f , S, ε, B, γ) as B → ∞ only if one can also prove

that µ(A( f , S, ε, B, γ)) grows faster that the upper bound on the rate of the (can-

didate) error term (3.4) as B→ ∞.

In this section, we prove general results on the asymptotic behaviour of

N( f , S, ε, B, γ) as B → ∞ by combining proposition 3.1.2 with the study of the

asymptotic behaviour of the (candidate) main term µ(A( f , S, ε, B, γ)) as B→ ∞.

Let us start by writing A( f , S, ε, B, γ) as a disjoint union

A( f , S, ε, B, γ) =
⋃

h∈NS

Ah( f , S, ε, B, γ), (3.14)
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where for any h ∈NS we denote

Ah( f , S, ε, B, γ) :=
{
(xv)v ∈ A( f , S, ε, B, γ) : ∏

p∈S
| f (xp)|p = h−1

}
. (3.15)

If h = ∏p∈S pkp , then it follows immediately from (3.15) that

µ(Ah( f , S, ε, B, γ))

= µ∞(Vf (B, (γh)1/ε)) ∏
p∈S

µp({x ∈ Zp : | f (x)|p = p−kp}). (3.16)

Let S′ ⊆ S be the subset of all p ∈ S such that Z f ,p(T) 6∈ Z(p)[T] (equivalently,

f has a root in Zp). For each p ∈ S \ S′, we denote by up( f ) the largest positive

integer u such that µp({x ∈ Zp : | f (x)|p = p−u}) > 0.

Defining

H0 := ∏
p∈S\S′

pup( f ), Ch0( f ) := ∑
h′0|H0h−1

0

µ(h′0)
Nh0h′0

( f )
h0h′0

(h0|H0), (3.17)

it follows from (3.14) that

µ(A( f , S, ε, B, γ)) = ∑
h0|H0

Ch0( f ) · µ(A( f , S′, ε, B, γh0)). (3.18)

From corollary 1.1.6, lemma 1.2.5 and proposition 2.5.3, we deduce the

following result.

Theorem 3.2.1. Let f ∈ Z[X] be a polynomial of degree n ≥ 1 and leading coefficient

c f . Denote by R( f ) maximum multiplicity of a root of f . Let S be a finite set of primes

and let S′ ⊆ S be the subset of all p ∈ S such that f has a root in Zp. Suppose that

s′ := #S′ > 0. Then for all ε ∈
(

0, 1
n

)
one has

N( f , S, ε, B, γ) � f ,S
|c f |−ε/R( f )γ1/R( f )

R( f )− nε
· B1−(nε)/R( f )(log B)s′−1 as B→ ∞,

with implied constants independent of γ and ε.
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Proof. In light of proposition 3.1.2, it is enough to prove that

µ(A( f , S, ε, B, γ)) � f ,S
|c f |−ε/R( f )γ1/R( f )

R( f )− nε
· B1−(nε)/R( f )(log B)s′−1 (3.19)

Because of (3.18), we may assume without loss of generality that S = S′.

From corollary 1.1.6 and proposition 1.2.7, it follows that there exist C ∈ R>1

(independent of ε and γ) and ap, Np ∈ Z≥1 (dependent only on f and p) for each

p ∈ S, such that, for any h = ∏p∈S pkp ∈NS, one has

µ(Ah( f , S, ε, B, γ)) = µ∞(Vf (B, (γh)1/ε)) ∏
p∈S

µp({x ∈ Zm
p : | f (x)|p = p−kp})

≤ C · µ∞(Vf (B, (γh)1/ε)) · h−1/R( f )

and for any h̃ = ∏p∈S pNp k̃p ∈NS̃ one has

µ(Ah∗ h̃( f ,S, ε, B, γ))

= µ∞(Vf (B, (γh∗h̃)1/ε)) ∏
p∈S

µp({x ∈ Zm
p : | f (x)|p = pap+Np k̃p})

≥ 1
C
· µ∞(Vf (B, (γh̃)1/ε)) · (h̃)−1/R( f ),

where we denote

h∗ := ∏
p∈S

pap , S̃ := {pNp : p ∈ S}.

In the notation from chapter 2, this proves that

µ(A( f , S, ε, B, γ)) ≤ C ·U
(

f , S, ε, B, γ,−1/R( f )
)

(3.20)

and

µ(A( f , S, ε, B, γ)) ≥ 1
C
·U
(

f , S̃, ε, B, γ,−1/R( f )
)

(3.21)

The claim (3.19) follows now from (3.20), (3.21) and proposition 2.5.3.

Remark 3.2.2. If S′ = ∅, then N( f , S, ε, B, γ) is eventually constant as B→ ∞.
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3.3 The non-zero discriminant case

Theorem 3.2.1 generalizes [BEG18, Theorem 2.3] to univariate polynomials

of possibly zero discriminant. Indeed, if f ∈ Z[X] has discriminant ∆ 6= 0,

then R( f ) = 1. Moreover, the definition of S′ agrees with the one given in

[BEG18, Theorem 2.3] under the assumption of that theorem. This follows from

a result of Stewart ([Ste91]), according to which for a polynomial f ∈ Z[X] of

degree n ≥ 2 and discriminant ∆ 6= 0 one has

Npk( f ) = Npvp(∆)+1( f ) ∀k ≥ vp(∆) + 1. (3.22)

If

x ≡ aj mod pk (j = 1, . . . , Npk( f )) (3.23)

is the complete solution of the congruence f (x) ≡ 0 mod pk, then

µp({x ∈ Zp : | f (x)|p ≤ p−k}) =
Npk ( f )

∑
j=1

µp(aj + pk Zp) =
Npk( f )

pk
(3.24)

and thus

µp({x ∈ Zp : | f (x)|p = p−k})

=
pNpk( f )− Npk+1( f )

pk+1

=
(

1− 1
p

)
NpvP(∆)+1( f ) · p−k ∀k ≥ vp(∆) + 1,

(3.25)

which shows that

Z f ,p(T) = P(T) +

(
1− 1

p

)
NpvP(∆)+1( f )

1− p−1T
, (3.26)

for some polynomial P ∈ Z(p)[T] of degree less or equal to vp(∆), from which

the equivalence of the two definitions for S′ is clear.

In this section we explain how to combine (3.22) with proposition 2.5.3 in

order to improve the asymptotics given in [BEG18, Theorem 2.3].
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In what follows we denote

H := ∏
p∈S′

pvp(∆)+1. (3.27)

Lemma 3.3.1. Let f (X) ∈ Z[X] be a polynomial of degree n ≥ 2 and discriminant

∆ 6= 0. Let S be a finite set of primes with s := #S ≥ 2 and such that the congruence

f (x) ≡ 0 mod pvp(∆)+1 is solvable for all p ∈ S. Then for any ε ∈
(

0, 1
n

)
one has∣∣∣∣µ(A( f , S, ε, B, γ))−

(
∏
p∈S

(
1− 1

p

))NH( f )
H

·U( f , S, ε, B, γH,−1)
∣∣∣∣

� f ,S,ε γ · B1−nε(log B)s−2 as B→ ∞.

Proof. By (3.22) and the Chinese Remainder Theorem, one has

∏
p∈S

µp({x ∈ Zp : | f (x)|p = |Hh|p}) = ∑
h′∈NS

µ(h′)
NHhh′( f )

Hhh′

=

(
∏
p∈S

(
1− 1

p

))NH( f )
Hh

for all h ∈NS.

Therefore∣∣∣∣µ(A( f , S, ε, B, γ))−
(

∏
p∈S

(
1− 1

p

))NH( f )
H

·U( f , S, ε, B, γH,−1)
∣∣∣∣

=

∣∣∣∣∣ ∑
h∈NS

H 6|h

(
∑

h′∈NS

µ(h′)
Nhh′( f )

h′

)
µ∞(Vf (B, (γh)1/ε))

h

∣∣∣∣∣
≤ ∑

p∈S

vp(∆)+1

∑
a=0

Npa( f )
pa ∑

h∈NS\{p}

Nh( f )
h
· µ∞(Vf (B, (γh)1/ε))

� f ,S ∑
p∈S

U( f , S \ {p}, ε, B, γ,−1)

� f ,S,ε γ · B1−nε(log B)s−2 as B→ ∞.

Note that we have used (3.22) and the Chinese Remainder Theorem again to

get that Nh( f ) = O f ,S(1).
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Theorem 3.3.2. Let f ∈ Z[X] be a polynomial of degree n ≥ 2, leading coefficient c f

and discriminant ∆ 6= 0. Let S be a finite set of primes and let S′ denote the subset of

all p ∈ S such that the equation f (x) ≡ 0 mod pvp(∆)+1 is solvable. Suppose that

s′ := #S′ ≥ 2. Then one has

N( f , S, ε, B, γ) ∼ 2 · C( f , S)NH( f )
1− nε

· γ |c f |−ε · B1−nε(log B)s′−1 as B→ ∞,

with

C( f , S) :=
(

∑
h0|H0

Ch0( f )
)(

∏
p∈S′

(
1− 1

p

))
c(S′),

where c(S′) is the constant appearing in lemma 2.3.2.

Proof. Because of proposition 3.1.2, it suffices to prove that

µ(A( f , S, ε, B, γ)) ∼ 2 · C( f , S)NH( f )
1− nε

· γ |c f |−ε · B1−nε(log B)s′−1 (3.28)

as B→ ∞.

By (3.18) and lemma 3.3.1, we see that

µ(A( f , S, ε, B, γ)) = 2 · C( f , S)NH( f )
1− nε

· γ |c f |−ε · 1
H
·U( f , S, ε, B, γH,−1)

+O f ,S,ε,γ(B1−nε(log B)s−2) as B→ ∞.

The claim (3.28) follows then from proposition 2.5.3.

If the set S′ has only one element, then we do not have an exact asymptotics,

i.e.
N( f , S, ε, B, γ)

B1−nε
(3.29)

does not admit a limit as B→ ∞.

In the case S = S′ = {p} we are even able to explicitly compute the exact

lim inf and lim sup of the quantity (3.29) as B→ ∞.
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Theorem 3.3.3. Let f ∈ Z[X] be a polynomial of degree n ≥ 2, leading coefficient c f

and discriminant ∆ 6= 0. Let S be a finite set of primes and let S′ denote the subset of all

p ∈ S such that the equation f (x) ≡ 0 mod pvp(∆)+1 is solvable. If S′ = {p}, then

lim
B→∞

N( f , S, ε, B, γ)

B1−nε
does not exist.

In the case S = S′ = {p}, we compute

lim inf
B→∞

N( f , {p}, ε, B, γ)

B1−nε
= λ−(n,−1, p, ε) · |c f |−εγ ·

Npvp(∆)+1

pvp(∆)+1
,

lim sup
B→∞

N( f , {p}, ε, B, γ)

B1−nε
= λ+(n,−1, p, ε) · |c f |−εγ ·

Npvp(∆)+1

pvp(∆)+1
,

where the quantities λ±(n,−1, p, ε) are as in definition 2.5.2.

Proof. Suppose S′ = {p}. The fact that the quantity µ(A( f ,S,ε,B,γ))
B1−nε does not admit

a limit as B → ∞ (and so neither does N( f ,S,ε,B,γ)
B1−nε because of proposition 3.1.2)

can be easily checked for example by taking the limits along the sequences Bl =

(|c f |−εγHpl)1/(nε), B′l = (|c f |−εγHqpl)1/(nε). A straightforward computation

shows that both limits exist but they are different.

If S = S′ = {p}, then we see that

µ(A( f , {p}, ε, B, γ)) =
1

pvp(∆)+1
U( f , {p}, ε, B, γ,−1) +O f ,p,ε,γ(1) (3.30)

by (3.22).

From (3.30) and proposition 2.5.3, we get that

lim inf
B→∞

µ(A( f , {p}, ε, B, γ))

B1−nε
= λ−(n,−1, p, ε) · |c f |−εγ ·

Npvp(∆)+1( f )

pvp(∆)+1
,

and

lim sup
B→∞

µ(A( f , {p}, ε, B, γ))

B1−nε
= λ+(n,−1, p, ε) · |c f |−εγ ·

Npvp(∆)+1( f )

pvp(∆)+1
.

The claims of the theorem follow now from 3.1.2.
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For the sake of completeness, we include the proof of a refinement of propo-

sition 3.1.2 in the non-zero discriminant case.

Proposition 3.3.4. Let f ∈ Z[X] be a polynomial of degree n ≥ 2 and discriminant

∆ 6= 0. Let S be a finite set of primes and let S′ denote the subset of all p ∈ S such that

the equation f (x) ≡ 0 mod pvp(∆)+1 is solvable. Then one has

∣∣#(Z∩A( f , S, ε, B, γ))− µ(A( f , S, ε, B, γ))
∣∣� f ,S (log B)s′ as B→ ∞,

with implied constant independent of γ and ε.

Proof. For any h, h′ ∈NS we denote

N̂h,h′( f , S, ε, B, γ) := #{x ∈ Z : |x| ≤ B, | f (x)| ≤ (γh)1/ε, f (x) ≡ 0 mod hh′}.

Let

x ≡ aj mod pk (j = 1, . . . , Npk( f ))

be the solution of the congruence

f (x) ≡ 0 mod pk,

with aj ∈ {0, . . . , pk − 1} for all j’s. Lemma 3.1.1, together with the fact that

Nh( f ) = O f ,S(1), yields

N̂h( f , S, ε, B, γ) =
Nh( f )

∑
j=1

#((aj + h Z) ∩Vf (B, (γh)1/ε))

=
Nh( f )

h
µ∞(Vf (B, M)) +O f ,S(1) as B→ ∞,

with implied constant independent of h.



3.3. THE NON-ZERO DISCRIMINANT CASE 57

The inclusion-exclusion principle, together with lemmas 3.1.1, gives us that

#(Z∩Ah( f , S, ε, B, γ))

= ∑
h′∈NS

µ(h′)N̂h,h′( f , S, ε, B, γ)

=
(

∑
h′∈NS

µ(h′)
Nhh′( f )

hh′
)

µ∞(Vf (B, γh1/ε)) +O f ,S(1)

= µ∞(Vf (B, γh1/ε)) ∏
p∈S

µp({x ∈ Zp : | f (x)|p = p−vp(h)}) +O f ,S(1)

= µ(Ah( f , S, ε, B, γ)) +O f ,S(1) as B→ ∞.

Now, let C > 0 be such that | f (x)| ≤ C(1 + |x|)n for any x ∈ R. It follows

that Z∩Ah( f , S, ε, B, γ) = ∅ for any h > C(1 + B)n. Therefore

∣∣∣∣#(Z∩A( f , S, ε, B, γ))− ∑
h∈NS

h≤C(1+B)n

µ(Ah( f , S, ε, B, γ))

∣∣∣∣
≤ ∑

h∈NS
h≤C(1+B)n

∣∣#(Z∩Ah( f , S, ε, B, γ))− µ(Ah( f , S, ε, B, γ))
∣∣

= ∑
h0|H

∑
h∈NS′

hh0≤C(1+B)n

∣∣#(Z∩Ahh0( f , S, ε, B, γ))− µ(Ahh0( f , S, ε, B, γ))
∣∣

� f ,S ∑
h0|H

#{h ∈NS′ : hh0 ≤ C(1 + B)n}

� f ,S (log B)s′ as B→ ∞.

The claim follows then by noticing that

∑
h∈NS

h>C(1+B)n

µ(Ah( f , S, ε, B, γ))� f ,S ∑
h∈NS

h>C(1+B)n

B
h

� f ,S B1−n(log B)s′−1 as B→ ∞.
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Chapter 4

Decomposable forms of finite type

Let F ∈ Z[X1, . . . , Xm] be a decomposable form of degree n > m and of finite

type, S a finite set of primes, ε ∈
(

0, 1
n

)
, γ, B ∈ R>0.

In this chapter, we study the asymptotic behaviour of the quantity

N(F, S, ε, B, γ) := #{x ∈ Zm
prim : ‖x‖ ≤ B, 0 < |F(x)|ε ≤ γ · [F(x)]S} (4.1)

as B→ ∞.

The reasonings in this context are very similar to the ones in the context of

univariate polynomials in chapter 3. We interpret the set

{x ∈ Zm
prim : ‖x‖ ≤ B, 0 < |F(x)|ε ≤ γ · [F(x)]S} (4.2)

as the set of integer point in the adelic region

A(F, S, ε, B, γ) :=

{
(xv)v ∈ Am :

‖x∞‖ ≤ B, ‖xv‖v = 1 ∀v 6= ∞

0 < |F(x∞)|ε ∏p∈S |F(xp)|p ≤ γ

}
. (4.3)

As in chapter 3, we give first an upper bound on the asymptotic rate of the

(candidate) error term∣∣#(Zm ∩A(F, S, ε, B, γ))− µm(A(F, S, ε, B, γ))
∣∣ (4.4)

as B→ ∞.

In this case, the desired upper bound follows from [Liu15, Proposition 1.4.6]

by means an elementary computation.
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Proposition 4.0.1. Let F ∈ Z[X1, . . . , Xm] (m ≥ 2) be a decomposable form of degree

n > m and of finite type. Let S be a finite set of primes, with s := #S ≥ 1. Then, for all

ε ∈
(

0, 1
n

)
and γ ∈ R>0, one has

∣∣#(Zm ∩A(F, S, ε, B, γ))− µm(A(F, S, ε, B, γ))
∣∣�F,S,ε Bm−1(log B)ns+δ

as B→ ∞, with implied constant is independent of γ, where

δ =

1 if m = 2,

0 if m ≥ 3.

Proof. Let us first introduce the notation

Am
S∪{∞} := Rm×∏

p∈S
Zm

p , µm
S∪{∞} :=

⊗
v∈S∪{∞}

µm
v ,

in accordance with the notation used in [Liu15]. We also denote

AF,S∪{∞}(γ, B; ε) :=

{
(xv)v ∈ Am

S∪∞ :
‖x∞‖ ≤ B, ‖xp‖p = 1 ∀p ∈ S,

0 < |F(x∞)|ε ∏p∈S |F(xp)|p ≤ γ

}
(4.5)

and

E(γ, B; ε) :=
∣∣#(Zm ∩AF,S∪{∞}(γ, B; ε))− µm

S∪{∞}(AF,S∪{∞}(γ, B; ε))
∣∣.

Note that AF,S∪{∞}(γ, B; 1) is the set denoted by AF,S∪{∞}(γ, B) in [Liu15].

Going through the proof of [Liu15, Proposition 1.4.6], one realizes that the whole

argument would work exactly in the same way if one replaces AF,S∪{∞}(γ, B; 1)

with AF,S∪{∞}(γ, B; ε) for any ε ∈
(

0, 1
n

)
.

The outcome is the upper bound

E(γ, B; ε)�F,S,ε Bm−1(log B)ns as B→ ∞. (4.6)
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A straightforward application of the inclusion-exclusion principle gives us

#(Zm ∩A(F, S, ε, B, γ))

= #{x ∈ Zm : ‖x‖ ≤ B, ‖x‖p = 1 ∀p ∈ S, 0 ≤ |F(x)|ε ≤ γ · [F(x)]S}

= ∑
(d,p)=1 ∀p∈S

d≤B

µ(d) · #
{
y ∈ Zm :

‖y‖ ≤ B/d, ‖y‖p = 1 ∀p ∈ S,

0 ≤ dnε|F(y)|ε ≤ γ · [F(y)]S

}

= ∑
(d,p)=1 ∀p∈S

d≤B

µ(d) · #(Zm ∩AF,S∪{∞}(γd−nε, B/d; ε))

and

µm(A(F, S, ε, B, γ)) =

(
∏
p 6∈S

(
1− 1

pm

))
· µS∪{∞}(AF,S∪{∞}(γ, B; ε))

= ∑
(d,p)=1 ∀p∈S

µ(d)
dm · µS∪{∞}(AF,S∪{∞}(γ, B; ε))

= ∑
(d,p)=1 ∀p∈S

µ(d) · µS∪{∞}(AF,S∪{∞}(γd−nε, B/d; ε)).

Therefore, we get∣∣#(Zm ∩A(F, S, ε, B, γ))− µm(A(F, S, ε, B, γ))
∣∣

≤ ∑
(d,p)=1 ∀p∈S

|µ(d)| ·E(γd−nε, B/d; ε)
(4.7)

Now, if m ≥ 3, then the combination of (4.6) and (4.7) yields∣∣#(Zm ∩A(F, S, ε, B, γ))− µm(A(F, S, ε, B, γ))
∣∣

�F,S,ε ∑
(d,p)=1 ∀p∈S

|µ(d)| ·
(B

d

)m−1(
log

B
d

)ns

≤ ζ(m− 1) · Bm−1(log B)ns as B→ ∞.

In the case m = 2, we see that instead

∑
(d,p)=1 ∀p∈S

d≤B

|µ(d)| ·E(γd−nε, B/d; ε)�F,S,ε

(
∑

d≤B

|µ(d)|
d

)
· B(log B)ns

�F,S,ε B(log B)ns+1 as B→ ∞
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and

∑
(d,p)=1 ∀p∈S

d>B

|µ(d)| · µ2
S∪{∞}(AF,S∪{∞}(γd−nε, B/d; ε))

=

(
∑

(d,p)=1 ∀p∈S
d>B

|µ(d)|
d2

)
· µ2

S∪{∞}(AF,S∪{∞}(γ, B; ε))

≤ B2 · ∑
d>B

|µ(d)|
d2

� B as B→ ∞.

It follows that

∑
(d,p)=1 ∀p∈S

|µ(d)| ·E(γd−nε, B/d; ε)�F,S,ε B(log B)ns+1 as B→ ∞

and thus ∣∣#(Zm ∩A(F, S, ε, B, γ))− µm(A(F, S, ε, B, γ))
∣∣

�F,S,ε B(log B)ns+1 as B→ ∞.

by (4.7).

Lemma 4.0.2. If F ∈ Z[X1, . . . , Xm] (m ≥ 2) is a decomposable form of finite type,

then rk(F) = m.

Proof. Suppose rk(F) = t < m and let W be the maximal linear subspace of Rm

at which all the linear factors of F vanish.

Replacing the linear factors of F by their real and imaginary parts, we get a

new system of linear forms of the same rank and the same set of common zeros, so

W has dimension m− t. It follows that there exist an orthogonal transformation

U of Rm that maps {x ∈ Rm : xt+1 = ... = xm = 0} into W.

Consider the decomposable form

G(X) := F(X tU),
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where we denote X := (X1, . . . , Xm).

We see that G = L′1 . . . L′n for linear forms L′i are linear forms depending only

on the variables X1, . . . , Xt. Note that

vol(F) = |det U| · vol(G) = vol(G)

by the change of variables formula.

For sufficiently small δ > 0, if |xi| ≤ δ for i ∈ {1, . . . , t}, then

|L′i(x)| ≤ 1 ∀i ∈ {1, . . . , n}.

So the set of x ∈ Rm with |G(x)| ≤ 1 contains the set of x ∈ Rm with

|xi| ≤ δ for i ∈ {1, . . . , t} and xt+1, . . . , xm arbitrary, which has infinite Lebesgue

measure.

Theorem 4.0.3. Let F ∈ Z[X1, . . . , Xm] (m ≥ 2) be a decomposable form of degree

n > m and of finite type. Let S be a finite set of primes and let S′ be the subset of all

p ∈ S such that F has a non-trivial zero in Zm
p . Suppose s′ := #S′ ≥ 1. Then, for all

ε ∈
(

0, 1
n

)
and γ ∈ R>0, one has

N(F, S, ε, B, γ) �F,S,ε γ1/q(F) · Bm−(nε)/q(F)(log B)ν∗S(F)−1 as B→ ∞,

with implied constants independent of γ, where

ν∗S(F) := ∑
p∈S′

ν∗p(F) ∈ Z∩[s′, (m− 1)s′].

Proof. The proof follows exactly the same line as the proof of theorem 3.2.1,

using theorem 1.3.8, corollary 1.3.5, proposition 2.5.5 and proposition 4.0.1 in

place of corollary 1.1.6, corollary 1.2.7, proposition 2.5.3 and proposition 3.1.2

respectively.

Remark 4.0.4. If S′ = ∅, then N(F, S, ε, B, γ) is eventually constant as B→ ∞.
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Recall that a decomposable form F ∈ Z[X1, . . . , Xm] has non-zero discrimi-

nant (cf. [EG92]) if and only if there exists a factorization F = L1 . . . Ln for some

linear forms with coefficients over an algebraic closure of Q such that, for any

I = {i1, . . . , il} ⊆ {1, . . . , n} with 1 ≤ #I ≤ m, the linear forms Li1 , . . . , Lil are

linearly independent over Q.

Corollary 4.0.5. Let F ∈ Z[X1, . . . , Xm] (m ≥ 2) be a decomposable form of degree

n > m and non-zero discriminant. Let S be a finite set of primes and let S′ be the subset

of all p ∈ S such that F has a non-trivial zero in Zm
p . Suppose s′ := #S′ ≥ 1. Then, for

all ε ∈
(

0, 1
n

)
and γ ∈ R>0, one has

N(F, S, ε, B, γ) �F,S,ε γ · Bm−nε(log B)ν∗S(F)−1 as B→ ∞,

with implied constants independent of γ, where

ν∗S(F) := ∑
p∈S′

ν∗p(F) ∈ Z∩[s′, (m− 1)s′].

Proof. From the fact that F has non-zero discriminant, it follows immediately that

rk(F) = m and q(F) = 1.

Corollary 4.0.6. Let F ∈ Z[X, Y] be a binary form of degree n > 2 and splitting field

K over Q. Let S be a finite set of primes and let S′ be the subset of all p ∈ S such that F

has a non-trivial zero in Z2
p. Suppose s′ := #S′ ≥ 1 and denote by R(F) the maximum

multiplicity of a linear factor of F in K[X, Y]. Then, for all ε ∈
(

0, 1
n

)
and γ ∈ R>0,

one has

N(F, S, ε, B, γ) �F,S,ε γ1/R(F) · B2−(nε)/R( f )(log B)s′−1 as B→ ∞,

with implied constants independent of γ.

Proof. If L1, L2 ∈ C[X, Y] are two linear forms not multiple of each other, then the

intersection of their support is {0}. Therefore q(F) = R(F) for any binary form

F ∈ Z[X, Y].
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A final comment

We want to conclude this chapter, and the whole thesis, by pointing out that,

in the theoretical perspective, decomposability plays a fundamental role only in

the proof of proposition 4.0.1.

Indeed, for any (non necessarily decomposable) form F ∈ Z[X1, . . . , Xm]

(m ≥ 2), the definition of A(F, S, ε, B, γ) still makes sense, and, if F is of finite

type, then the results from chapters 1 and 2 yield

µm(A(F, S, ε, B, γ)) �F,S,ε γplctC(F) · Bm−plctC(F)·nε(log B)ν∗S(F)−1 (4.8)

as B → ∞ (with implied constants independent of γ), where plctC(F) denotes

the projective log-canonical threshold of F as of definition 1.1.7, and ν∗S(F) =

∑p∈S ν∗p(F).

Of course, the quantity plctC(F) is very difficult to compute in general, so

Teitler’s result makes the formulation of (4.8) much more practical in the case of

decomposable forms (of finite type). Neverthess, the existence of an asymptotic

extimate of the form (4.8) does not rely on decomposability.

On the other hand, going through Liu’s thesis, one immediately realizes that

the upper bound on the asymptotic rate of the difference∣∣#(Zm ∩A(F, S, ε, B, γ))− µm(A(F, S, ε, B, γ))
∣∣ (4.9)

as B → ∞ that we gave in the case of decomposable forms F ∈ Z[X1, . . . , Xm]

strongly relies on decomposability.

The question whether (or when) the quantity (4.9) is neglegible with respect

to µm(A(F, S, ε, B, γ)) as B→ ∞ for non-decomposable forms F is certainly very

interesting. It seems, however, that addressing such a question would require a

significantly different approach.
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