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1

Introduction

The first person to introduce an L-function was Leonhard Euler, who introduced
the Riemann zeta function as ζ(k) =

∑∞
n=1 n

−k, even if the first one to define a
generalization of this infinite sum and calling it as "L-function" is Dirichlet. In
all these series the variable was real; the first one to use complex variables is B.
Riemann in his studies on the zeta function. After the breakout of class field theory,
Kummer introduced the zeta function of a cyclotomic field (then generalized by
Dedekind to arbitrary algebraic extensions) to study the class number of certain
number fields. The application to class field theory was very effective: Hecke used
the Weber L-function to prove essential results of abelian class field theory.

In 1923 Emil Artin hoped, by introducing his Artin L-function, to get results
similar to those of Hecke but for non-abelian extensions L/K. This is often consid-
ered the first L-function defined as an infinite product instead of as a series. His
plan will not have success, but this was an essential step towards the development
of the Artin reciprocy law.

The L-functions started to be used more and more often in number theory
proofs. For example, in 1880 Kronecker asked if it is possible to determine a num-
ber field from the way its primes split. The first, negative, answer to this ques-
tion is due to Gassmann, even if a more complete theorem was published by Perlis
in 1977: two fields are arithmetically equivalent if and only if their Dedekind zeta
functions are equal. The proof given by Perlis shows another equivalent property:
the Galois groups of the two fields must be in a Gassmann triple. This purely group-
theoretical notion was defined by Gassmann in [7] and it had many applications
to different areas of mathematics. This connection between number theory and
group theory inspired some more results concerning L-functions.

Dedekind zeta functions are a particular instance of ArtinL-functions. An Artin
L-function associated with the Galois extension L/K is L(s, ρ,L/K), where s is a
complex variable and ρ is a representation of the Galois group Gal(L/K). When
the representation ρ is the 1-dimensional trivial representation, we get exactly the
definition of the Dedekind zeta function. As the zeta function doesn’t character-
ize the isomorphism type of the number field, an immediate question is if there
is always an Artin L-function characterizing the field. An answer to this question
has been given by Bart de Smit in the article [5]: for every k ≥ 3 there is a one
dimensional representation χ of order k of the group GK, absolute Galois group
of the field K, such that for every number field L having a character χ′ satisfying
L(χ,K/Q) = L(χ′,L/Q), then K ∼= L. The aim of this work is to generalize this
result, trying to answer the same question when k = 2.

In Chapter 1 we give the basic results that we will use in the rest of the work.
In particular we will prove that the Galois group of the Galois closure of a tower of
extensions can be always embedded in a wreath product of Galois groups. We will
then define the Artin L-functions and we will state their main properties. In the
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end of the chapter we will introduce the definition of Gassmann triple and state
Perlis’ Theorem.

In Chapter 2 we will first prove the main Theorem of B. de Smit, which is the
original beginning of this Thesis. In particular, we will prove a Lemma that will al-
low us to study the problem of L-series in a purely group theoretical way. After the
first section, we will get some new results. The main new Theorem of this section
is the following one:

Theorem. Let K be a number field. Then there are two linear charactersχ1, χ2 ∈ G

∧ab
K

of order 2 such that, if L is a number field with χ′1, χ
′
2 ∈ G

∧ab
L such that LL(χ

′
1) =

LK(χ1) and LL(χ
′
2) = LK(χ2), then L ∼= K.

We will then prove a similar result, with the use of a unique quadratic character
but with the additional condition of the equality of the zeta functions.

In Chapter 3 we will discuss whether it is possible to get the same result as B. de
Smit’s Theorem, so using only one character, but with k = 2. In the first part we will
prove that, under the condition that the Galois group of the Galois closure N of K
has no non-trivial Gassmann triples containing Gal(N/K), it is possible to find an
appropriate character to distinguish the isomorphism class of the number field K
from every other isomorphism class of number fields. With the help of MAGMA we
will prove that, without the hypothesis of having no non-trivial Gassmann triples,
the Theorem would be false:

Theorem. If K = Q[ 8
√
5], for every quadratic character χ of the absolute Galois

group GK there is another number field L, not isomorphic to K, with a character χ′

of GL such that LK(χ) = LL(χ
′).

We will also show that the number field we use in our counterexample is of
minimal possible degree.



Chapter 1

Preliminary Notions

1.1 Galois Closures and Wreath product

In the following chapters we will face the problem of working with the Galois clo-
sures of certain extensions. We will have a number field K of degree n with Galois
closure N; we will then consider an extension Kχ of K of degree k. At priori we don’t
know anything about the degree of the Galois closure M of the compositum of Kχ

and N, the aim of this paragraph is to provide a bound on the degree and to give
a characterization of the Galois group Gal(M/Q). In order to achieve this, we will
need some properties of permutation groups.

A permutation group is a couple (G,X)whereG is a group acting on a setX. We
can define an embedding of permutation groups (G,X) to (G′, X ′) as an injective
group homomorphism G → G′ with a G-equivariant bijection X → X ′. As usual,
there is a natural morphism from G to Sym(X), we will denote by G|X the image
of G under this morphism. Another interesting construction is the wreath prod-
uct of two permutation groups (G,X) and (H,Y ). Define GY = Map(Y,G) as the
group of maps of sets from Y to G. This group acts on X × Y by acting in the first
component: f(x, y) = (f(y)x, y) for all x ∈ X, y ∈ Y, f ∈ GY . The group H acts on
X×Y on the second coordinate and we can also define an action onGY by defining
(h·f)(y) = f(h−1(y)) for all h ∈ H, y ∈ Y and f ∈ GY . It is easy to verify thatGY oH
can act onX×Y by composing these two actions (f, h)(x, y) = (f(h(y))x, h(y)); we
will denote this permutation group as G oH .

Let G act both on Z and Y and suppose we have a surjective map p : Z → Y
of G-sets. Suppose moreover that the action of G on Y is transitive. Define W ≤
Sym(Z) as the group of elements w ∈ Sym(Z) that satisfy these two properties:

• there is a g ∈ G such that for every z ∈ Z we have p(w(z)) = gp(z) (that
means w permutes the fibers of p and the element of Sym(Y ) that it induces
is in G|Y );

• for every y ∈ Y there is g ∈ G such that for every z ∈ p−1(y) we havew(z) = gz
(w acts as a multiplication by an element of G on each fiber).

SuchW is a permutation group acting onZ and it is clear that every element ofG|Z
satisfies both properties, so G|Z is a permutation subgroup of W .

Theorem 1.1.1. In the situation above, fix y0 ∈ Y and let X = p−1(y0) ≤ Z, H ⊆ G
be the stabilizer of y0. The permutation group (W,Z) is isomorphic to (H|X oG|Y , Z)
and the permutation group (G|Z , Z) is isomorphic to a subgroup of this wreath
product.

Proof. First of all, as H stabilizes y0, H acts on X by permuting its elements. We
can now notice that the map f : G → Y given by g → gy0 is surjective as the
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action ofG on Y is transitive, therefore there exists a right inverse s, which satisfies
f(s(y)) = s(y)y0 = y for every y ∈ Y . Define now a map φ : X × Y → Z in this way:
φ(x, y) = s(y)x. The image of the set X × {y} under φ is the set s(y)X, and

p(s(y)X) = s(y)p(X) = s(y)y0 = y,

so φ(X × {y}) ⊂ p−1(y). This is indeed an equality because for every z ∈ p−1(y) we
have p(s(y)−1z) = s(y)−1p(z) = s(y)−1y = y0, so s(y)−1z ∈ X. As pwas surjective, it
follows that φ surjects onZ too. This map is also injective: if φ(x, y) = φ(x′, y′), then
both points are in the same fiber so y = y′ and therefore s(y)x = s(y′)x′ only if x =
x′ too, proving the injectivity. As the wreath product H|X oG|Y of the permutation
groups (H,X) and (G, Y ) acts on X × Y , through the map φ we get a morphism
from H|X oG|Y to Sym(Z).

We check that the image of H|X oG|Y in Sym(Z) is contained in W . Let t ∈ G|Y
and f ∈ Map(Y,H|X). An element w = (f, t) ∈ H|X oG|Y acts on (x, y) ∈ X × Y as
(f, t)(x, y) = (f(ty)x, ty) and this leads to

(f, t)(z) = s(ty)f(ty)x for z = φ(x, y).

To check that the image of H|X o G|Y is a subgroup of W , we verify that every el-
ement of the wreath product satisfies the two conditions of the definition of W .
To check the first one we have to find a g ∈ G such that for every z = φ(x, y) we
have the equality p(w(z)) = p(s(ty)f(ty)x) = gp(s(y)x) = gp(z), but recalling that
p(s(y)x) = y for every x ∈ X, y ∈ Y , as f(ty)x ∈ X, we get ty = gy so the first
condition is satisfied with g = t.

For the second condition, fix y ∈ Y ; we have to prove that there is a g ∈ G such
that for every z ∈ p−1(y) (notice that this implies z = s(y)x for a certain x ∈ X) we
have s(ty)f(ty)x = gs(y)x. Taking g = s(ty)f(ty)s(y)−1 we have that the equality is
satisfied. This g is an element of G independent from x so this is well defined.

We still need to prove that the map from H|X o G|Y to W is surjective. Both
groups surject to G|Y : the first one by considering the quotient by (H|X)Y , the
second by considering the induced element of Sym(Y ) (that by the first part of the
definition of W is in G|Y ) and using that G|Y ≤ W . Looking at the proof that the
wreath product satisfies the first condition of the definition of W , we have as a
consequence that the diagram

H|X oG|Y W

G|Y

π1
π2

commutes, so we only need to prove that the kernel of π2 can be lifted to the kernel
of π1, which is Map(Y,H|X). If w ∈ ker(π2), by the second property of W , fixed any
y ∈ Y there exists a gy ∈ G such that w(s(y)x) = gys(y)x for every x ∈ X. As w is
in ker(π2), we know that the action of w moves the elements of Z within the same
fiber over y so we can write w(s(y)x) = s(y)x′ for x′ ∈ X. We would like to define a
function f ∈ Map(Y,H|X) such that w(s(y)x) = s(y)f(y)x. This equality is clearly
satisfied if we choose f(y) = s(y)−1gys(y), but we have to check that this element
of G is in H , so that it stabilizes y0. This is indeed true as s(y)−1gys(y)y0 = y0 if and
only if gy(s(y)y0) = s(y)y0, that by definition of s is the same as gy(y) = y. This is
true as

gy(y) = gy(p(s(y)x)) = p(gy(s(y)x)) = p(s(y)x′) = y.



1.2. Artin L-functions 5

For every w ∈ ker(π2) we have therefore found an fw ∈ Map(Y,H|X) that acts on Z
in the same way as w. It is now clear that the map is surjective: every element ofW
can be written as gw for g ∈ G and w ∈ ker(π2). The element (fw, g) ∈ H|X o G|Y
goes to gw by definition.

With this discussion we have proved that H|X o G|Y ∼= W ; the statement that
(G|Z , Z) can be embedded in the wreath product is now immediate as this permu-
tation group is a permutation subgroup of (W,Z) as we noticed before.

We would like to apply the previous Theorem to Galois groups. If K/F is a field
extension, we will say that N is the normal closure of K over F if N is a normal field
extension of F generated by the images of the K-embeddings F → N; this normal
closure is unique up to isomorphism. In this case we will write GK/F to denote the
Galois group of the normal closure N of K over F. This group acts on the setXK/F :=
HomF(K,N) of the F-embeddings of K into N by permuting them in a transitive
way. If the degree of the extension K/F is finite, it is also equal to the cardinality
of XK/F is equal. We remark that the isomorphism type of the permutation group
(GK/F, XK/F) is not dependant on the choice of N.

Theorem 1.1.2. Let F < K < L be two finite separable field extensions. The Galois
groupGL/F of the normal closure of L over F can be embedded in the wreath product
GL/K oGK/F of the Galois groups of the normal closures of L over K and of K over F.

Proof. Consider M a Galois closure of L over F containing K; now the Galois group
G = Gal(M/F) acts as usual on the set Z = HomF(L,M). The group G acts on the
quotient Y = HomF(K,M) of Z and this action is transitive (as every element of
the Galois group of the Galois closure of K over F can be extended to an element
of G). Let y0 ∈ Y be the inclusion map of K in M and let H ≤ G be its stabilizer.
The fiber X of elements of Z projecting to y0 is the subset of Z fixing K, that is
X = HomK(L,M); we know that in this setting H acts on X. We now want to use
Theorem 1.1.1, remarking that the permutation group (G,Z) is indeed the Galois
group of the Galois closure of L over F. We have indeed that (H|X , X) is the sub-
group of G that fixes K, so this permutation group is isomorphic to GL/K acting
on the same set X. Clearly (G|Y , Y ) is the Galois group of the closure of K over F,
hence we get the statement we wanted to prove just by substitutingGL/K andGK/F
in the previous Theorem.

Remark 1.1.3. Looking at the previous proofs, if n = [K : F], we notice that the right
square of the diagram

1 GnL/K GL/K oGK/F GK/F 1

1 ker(π) GL/F GK/F 1
π

commutes and the two sequences are exact. This is immediate asGL/F is a permuta-
tion subgroup of the wreath product that surjects to GK/F.

1.2 Artin L-functions

From now on, we will often work with representations of groups. For us a represen-
tation ρ of G is a group homomorphism from G to GL(V ) for V finite dimensional



6 Chapter 1. Preliminary Notions

vector space over C, not the underlying vector space V with the G-action. Two
representations are isomorphic if there is a G-equivariant isomorphism between
the two underlying vector spaces; if the group G is topological, we also require
that ρ is continuous. Every representation has an associated character, defined
χρ(g) = Tr(ρ(g)) and it is a well known fact that, if G is finite, two representa-
tions of the same group are isomorphic if and only if their characters are equal.
A charachter χ of G is linear if χ(1G) = 1; it is also well defined the order of the
character, that is the minimal positive integer n such that χ(gn) = χ(1G) for every
g ∈ G. We will often call linear characters of order 2 as "quadratic characters" or
"quadratic representations". For every representation ρ of H , subgroup of G, it is
also well defined the induced representation IndGH(ρ), that is a representation of G
(see [8]).

LetKbe a number field andLbe a finite Galois extension ofKwith Galois group
G. For every representation ρ : G → GL(V ) we will define the Artin L-function
L(s, ρ,L/K). In order to define it, we need some facts on decomposition groups
and inertia groups.

Let p be a prime of K and P a prime of L lying over p. We can define the decom-
position group of P as

DP := {α ∈ G | α(P) = P} ≤ G.

This means that DP is the stabilizer of P under the action of G and, as G acts
transitively on the primes lying over p, by the orbit-stabilizer Theorem, we have
[G : DP] = g, where g is the number of primes of L lying over p.

Lemma 1.2.1. The decomposition groupsDPi of different primes Pi lying over p are
all conjugate in G.

Proof. For every P prime over p we know that, if τ ∈ G,

τ(α(τ−1(P))) = P⇔ α(τ−1(P)) = τ−1(P)

and this implies that τατ−1 ∈ DP if and only if α ∈ Dτ−1(P). This proves that
τ−1DPτ

−1 = Dτ−1(P) so using the transitivity of the G-action on the primes lying
over p we get that all the different decomposition groups of the Pi are conjugate.

The fixed field F := LDP is the smallest field such that P is the only prime lying
over P ∩ F. Indeed, if that prime does not split in an extension L/F′, then it is
stabilized by the whole Gal(L/F′) so this Galois group is contained in DP and thus
F′ ≥ F. Viceversa, the group Gal(L/F) acts transitively on the primes lying over
P ∩ F, but the prime P is stabilized, therefore the orbit is only of one element.

A consequence of this is that e(L/K) = e(L/F), f(L/K) = f(L/F) (all ramifica-
tion and inertia degree are of primes lying over p and they are equal for all these
primes because the extension is Galois). Indeed, g(L/K) = [G : D] = [F : K], so

e(L/F)f(L/F) = [L : F] =
[L : K]

[F : K]
=
e(L/K)f(L/K)g(L/K)

[F : K]
= e(L/K)f(L/K)

and, as e(L/F) ≤ e(L/K) and f(L/F) ≤ f(L/K), we have the equalities we wanted.

Every element ofDP induces an automorphism of Gal(L/K), where L and K are
the residue fields OL/P and OK/p respectively. This is clear as every α ∈ DP fixes
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OL and P. Moreover, every such α fixes pointwise OK and p, hence the automor-
phism α of Gal(L/K) induced by α is well defined.

Lemma 1.2.2. The map φ : DP → Gal(L/K) that sends α to α is a surjective group
homomorphism.

Proof. By easy computations it is clear that the map is a group homomorphism.
To prove the surjectivity, we first reduce to the case where we have only one prime
lying above p.

We have noticed that f(L/K) = f(L/F), so K = F. For this reason we can al-
ways assume that the base field K is equal to F, the field fixed by the decomposition
group, and this group now becomes equal to the whole Galois group of L/F; more-
over the prime p = P ∩ OF has only one prime of L lying over it: the prime P.

Let x be a generator of L/F; x ∈ OL a lift of x to L and p the minimal polynomial
of x over F. Every element of Gal(L/F) is determined by the image of x, that must
be one root y of the minimal polynomial fx of x. In particular fx is a factor of p,
reduction modulo p of p, therefore y is a root of p too. As DP is now the whole
Galois group of L/F, there is always a σ ∈ DP that sends x to y (lifting of y to OL),
other root of p, therefore φ(σ) is an element of Gal(L/K) that sends x to y and this
proves the surjectivity of φ.

Define the inertia group as

IP := {α ∈ G|α(x) ≡ x mod P for all x ∈ OL} ≤ G;

it is clear by the definition that IP ≤ DP. We want to show that IP is the kernel of
the map φ.

At priori ker(φ) = {α ∈ DP|α(x) ≡ x mod P for all x ∈ OL}. If α ∈ GrDP, we
show that it cannot be in ker(φ), hence the equality. If α ∈ G rDP then α(P) 6= P
and so there is an x ∈ P such that α(x) /∈ P and in particular α(x) 6≡ x mod P.

We have then established an exact sequence of groups

1→ IP → DP → Gal(L/K)→ 1

hence the isomorphism DP/IP ∼= Gal(L/K). The extension of finite fields L/K is
Galois, so it is generated by a Frobenius map that sends x to xN(p) for every x ∈ L.
Let FrobP be an element of DP that goes to the Frobenius map under the isomor-
phism DP/IP ∼= Gal(L/K); we will call FrobP the Frobenius element at P and ex-
plicitly it is an element such that

FrobP(x) ≡ xN(p) mod P for all x ∈ OL.

The Frobenius element is defined mod IP, so it is uniquely determined if and only
if p doesn’t ramify in L (so in all but finitely many primes). In the case p not ramified
it is easier to define the corresponding factor of the ArtinL-function because of the
following result.

Lemma 1.2.3. For each α ∈ G we have

Frobα(P) = αFrobP α
−1

and in particular all the Frobenius elements of different primes lying over p are con-
jugate in G.
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Proof. Let α ∈ G and x ∈ OL. We know that FrobP(α−1(x)) − α−1(x) ∈ P and,
letting α act on everything, we have α(FrobP(α−1(x))) − x ∈ α(P). As this is true
for every x ∈ OL we get that αFrobP α

−1 = Frobα(P). To get the last result it suffices
to use that G acts transitively on the primes lying over p.

For this reason in the case p unramified Frobp is well defined, the conjugacy
class of all the Frobenius symbols FrobPi for Pi primes lying over p; the conjugacy
class Frobp is called the Artin symbol of L/K at p. It is easy to define the p-th factor
of the Artin L-function: it is(

det

(
1− ρ(Frobp)

N(p)s

))−1
for s ∈ C.

If the prime p ramifies, the definition is slightly different. Indeed, the Frobenius
symbol is defined only modulo IP, so instead of considering the whole representa-
tion V , we only restrict to the subspace VP ≤ V where the group IP acts trivially. In
this way the representation ρ(FrobP) assumes the same value whatever represen-
tative of the Frobenius symbol we choose. We can say more: the decomposition
groups of different primes P1,P2 lying over p are conjugate and that conjugation
sends IP1 in IP2 . This conjugation sends a representative of the Frobenius FrobP1

to a representative of the Frobenius FrobP2 . As the different inertia groups are all
conjugate inG, the vector space VPi is the same for every Pi lying over p and on this
space the value ρ(FrobPi) is the same for any choice of the prime and any choice
of the Frobenius symbol. We can therefore define the p-th factor of the Artin L-
function, in the case p ramifies, in this way:(

det

(
1−

ρ(FrobP)

N(p)s

∣∣∣∣VP))−1 for s ∈ C.

As we have remarked, it is independent of the choice of P lying over p. We can
define now the Artin L-function of the extension L/K attached to the representa-
tion ρ as

L(s, ρ,L/K) :=
∏

p prime of K

1

det
(
1− ρ(Frobp)

N(p)s

∣∣VP)
that is the product of the p-th factors defined before (If VP = 0 the factor has value
1).

Theorem 1.2.4 (Properties of Artin L-function). The Artin L-function satisfies the
following properties:

1. Convergence: The Euler product of an Artin L function converges for all s ∈ C
such that Re(s) > 1;

2. Additivity: If ρ1, ρ2 are two representations of the Galois group G of L/K, then

L(s, ρ1 ⊕ ρ2,L/K) = L(s, ρ1,L/K)L(s, ρ2,L/K);

3. Inflation: If F < K < L is a tower of Galois extensions, every representa-
tion ρ of Gal(K/F) determines a representation ρ of Gal(L/F) by quotient map
Gal(L/F)→ Gal(K/F). In this setting we have

L(s, ρ,K/F) = L(s, ρ,L/F);
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4. Induction: If F < K < L is a tower of extensions with L/F Galois and G =
Gal(L/F), H = Gal(L/K), then for every ρ representation of H we have

L(s, ρ,L/K) = L(s, IndGH(ρ),L/F).

An essential remark is that, for every extension with K base field, for the induc-
tion property we can consider the Artin L-series with the top field equal to K, the
algebraic closure. In this case every representation ρ of the group Gal(K/K) is can
be factored through the quotient Gal(K/K)/ ker(ρ), that is a finite group because
the kernel is always an open subgroup of finite index. Let L its fixed field; we will
write LK(s, ρ) in place of L(s, ρ,K/K) = L(s, ρ,L/K).

One interesting result is that, if ρ = 1 the trivial representation, then we have

L(s,1,L/K) = L(s,1,K/K) =
∏

p prime ofOK

1(
1− 1

N(p)s

) = ζK(s)

where the first equality is because of the inflation property and the last one is ex-
actly the definition of the Dedekind zeta function.

Corollary 1.2.5. If K/F is a finite Galois extension, we have the following decompo-
sition

ζK(s) = ζF(s)
∏
ρ 6=1

L(s, ρ,K/F)dim(ρ)

where the product is over all non-trivial irreducible representations ofG = Gal(K/F)
(up to isomorphism).

Proof. Let G be the Galois group of K/F and ρreg be the regular representation of
G. By basic representation theory we have the equalities

IndGGal(K/K)(1) = ρreg =
⊕

ρdim(ρ)

where the sum goes though all the irreducible representations of G up to isomor-
phism. Using the additivity property and this decomposition, we get

ζK(s) = L(s,1,K/F) = L(s,
∑
ρ

ρdim(ρ),K/F) =

=
∏
ρ

L(s, ρ,K/F)dim(ρ) = ζF(s)
∏
ρ 6=1

L(s, ρ,K/F)dim(ρ)

where the last equality is due to the fact that L(s,1,L/K) = ζK(s), as remarked
before.

1.3 Characterizing number fields with Dedekind zeta func-
tions

After the definition of the Dedekind zeta function, it is clear that for two isomorphic
number fields K and L we have that ζK(s) = ζL(s). Every isomorphism of number
fields gives a bijection on the set of primes which is norm-preserving, hence the
equality of the zeta functions is straight-forward.
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An immediate question is if the converse is true or, if not, to what extent the
Dedekind zeta function characterizes the extension. The complete answer to this
question has been given by Perlis in the articles [12] and [16].

Definition 1.3.1 (Gassmann Triple). Let G be a finite group and H,H ′ two sub-
groups ofG. We can say that the triple (G,H,H ′) is Gassmann if, for every conjugacy
class C of elements of G, we have |C ∩H| = |C ∩H ′|.

Notice that, if (G,H,H ′) is a Gassmann triple, the index of H and H ′ must be
equal (because G is the union of all its conjugacy classes) and will be called the
index of the Gassmann triple. If H and H ′ are conjugate in G, then they will form a
Gassmann triple; all such triples will be called trivial Gassmann triples.

Definition 1.3.2 (Arithmetically and Split equivalent fields). Let K and L be two
number fields. We will say K and L are split equivalent if, for every prime p ∈ Z there
is a bijection φp between the set of primes of OK lying above p and the set of primes
ofOL lying above p.

We will say K and L are arithmetically equivalent if they are split equivalent and
the bijection φp is degree preserving for every prime.

Theorem 1.3.3 (Perlis). Let K and L be number fields and let N be the normal clo-
sure of the compositum. Let G = Gal(N/Q), H = Gal(N/K), H ′ = Gal(N/L). The
following are equivalent:

• ζK(s) = ζL(s);

• K and L are arithmetically equivalent;

• K and L are split equivalent;

• (G,H,H ′) form a Gassmann triple.

Sketch of the proof. We will only show the equivalence between the first and last
property.

Recalling that ζK(s) = LK(s,1), by Lemma 2.1.2 (that will be proved in the next
chapter, without using Perlis’ Theorem) we have that the first condition is equiv-
alent to the fact that IndGH(1) = IndGH′(1). This condition is clearly equivalent to
(G,H,H ′)being a Gassmann triple: when we compute the induced character of the
trivial representation ofH on an element g ∈ Gwe get IndGH(1)(g) = |CG(g)||H∩C|,
where C is the conjugacy class of g in G. As this is true for H ′ too, we get that the
characters of the two induced representations are equal if and only if |H ∩ C| =
|H ′∩C| for every conjugacy class C ofG, so if and only if (G,H,H ′) is Gassmann.

Corollary 1.3.4. In the notation of the previous Theorem, if K is Galois, then K is
equal to L.

Proof. By Perlis’ Theorem (G,H,H ′) form a Gassmann triple, but ifK is Galois then
H is normal in G. The only Gassmann triple containing H a normal subgroup of
G is (G,H,H): H is a union of conjugacy classes so every subgroup H ′ for which
|C ∩ H| = |C ∩ H ′| is true for every C conjugacy class of elements of G must be
indeed equal toH . This implies not only an isomorphism but also an equality of K
and L.

By studying the transitive groups on n elements, Perlis noticed that there are
no non-trivial Gassmann triples if n ≤ 6, so in this case the Dedekind zeta function
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characterizes the isomorphism class of the number field. In the article [3] by de
Smit and Bosma there is the explicit list of all possible non-trivial Gassmann triples
of transitive groups on n elements if n ≤ 15. In particular we remark that there are
no non-trivial Gassmann triple for n ≤ 6, there is a single Gassmann triple for n = 7
(of the group PSL(3, 2) of order 168) and for n = 8 there are two groups with non-
trivial Gassmann triples (a group of order 32 and one of order 64).
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Chapter 2

The two characters case

2.1 Characterizing number fields with one character

In order to study induced representations, we define a monomial structure on a
vector space of a representation.

Definition 2.1.1 (Monomial structure). Let ρ : G→ GL(V ) be a representation of a
group G. A monomial structure of G on V is a set L of 1-dimensional subspaces of
V which is G-stable (i.e. gL ∈ L for all g ∈ G, L ∈ L ) and such that V =

⊕
L∈L L.

We say that two monomial structures L and M of the groupG are isomorphic if the
two sets are isomorphic as G-sets.

We remark that, once we choose a basis of V by picking a non-zero vector from
each subspace of L , we can see that the action of any g ∈ G on V is given by
a matrix with exactly one non-zero entry in each row and column, usually called
generalized permutation matrix or monomial matrix. Moreover, if we have a 1-
dimensional representation χ of H with H subgroup of G of index n, then we have
a monomial structure on IndGH(χ): by the construction, the induced representa-
tion acts on n copies of the original 1-dimensional vector space and every g ∈ G
permutes these copies (in the same way it permutes cosets G/H) while acting in-
ternally on each one of them. This monomial structure is therefore isomorphic to
G/H as a G-set. In particular, if χ1, χ2 are two 1-dimensional representations of H
subgroup of G, then IndGH(χ1) and IndGH(χ2) give rise to two monomial structures,
on two different vector spaces, which are both isomorphic to G/H as G-sets.

We remark that a 1-dimensional representation of a group G is a character of
the abelianized group Gab. As usual, these characters form a group, denoted by

G

∧ab
. We will use this notation, usually withG = GK = Gal(K/K) an absolute Galois

group of a number field K.

Lemma 2.1.2.

• Let ρ, ρ′ be two representations ofGQ; then LQ(ρ) = LQ(ρ
′) if and only if ρ ∼= ρ′;

• If K,L ≤ Q number fields, if χ ∈ G

∧ab
K , χ′ ∈ G

∧ab
L and LK(χ) = LL(χ

′), then we
have an isomorphism of the two induced representations

Ind
GQ
GK

(χ) ∼= Ind
GQ
GL

(χ′)

and the two fixed fields Kχ of χ and Lχ′ of χ′ have the same normal closure
over Q.

Proof. If ρ ∼= ρ′ then clearly LQ(ρ) = LQ(ρ
′).
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Let now ρ : GQ → GL(V ), ρ′ : GQ → GL(V ′) be two representations of the
absolute Galois group GQ such that LQ(ρ) = LQ(ρ

′). We want to take K a finite
Galois extension of Q such that there are two maps φ : G → GL(V ), φ′ : G →
GL(V ′) (with G = Gal(K/Q)) that make the following diagram commute.

GL(V )

GQ G

GL(V ′)

ρ

ρ′

φ

φ′

Such a G always exists because there is always an open subgroup of GQ of finite
index contained in the kernels of the two representations, that are open normal
subgroups of finite index.

We will now use one of the consequences of Chebotarev Density Theorem (see
[15]): for every conjugacy class C of G the natural density of primes of Q satisfying
Frobp ∈ C is equal to |C|/|G| and in particular it is greater than zero. As there is only
a finite number of ramified primes in the extension K/Q, we can assume that every
conjugacy class ofG contains a Frobenius element of an unramified prime. We can
now split the definition of the Artin L-function (with base field Q) in two factors.

L(s, ρ,K/Q) :=
∏

p prime
ramified

1

det
(
1− ρ(Frobp)

ps

∣∣Vp)
∏

p prime
unramified

1

det
(
1− ρ(Frobp)

ps

) .
We want to study in detail the product for p unramified. Computing the determi-
nant, looking at p−s as an indeterminate, we can get a power series of this form

det

(
1− ρ(Frobp)

ps

)−1
= (1− Tr(ρ(Frobp))p

−s + p−2s(...))−1 =

= 1 + Tr(ρ(Frobp))p
−s + p−2s(...)

and taking the product for all p prime we have that we can write the L-function as
a series

L(s, ρ,K/Q) =
∞∑
n=1

ann
−s

and in particular the coefficient for p prime unramified in K is ap = Tr(ρ(Frobp))
(while for p unramified we cannot conclude anything).

In a similar way we can obtain an expression of the other L-function as a se-
ries L(s, ρ′,K/Q) =

∑∞
n=1 a

′
nn
−s and for the primes unramified in K we still have

a′p = Tr(ρ′(Frobp)). We know that two Dirichlet series are equal if and only if
every coefficient is equal (see for example Chapter 11 of [1]), so Tr(ρ(Frobp)) =
Tr(ρ′(Frobp)) for every p prime unramified in K. Using now Chebotarev’s result,
we know that every conjugacy class of G contains a Frobp for p unramified in K,
therefore Tr(ρ(g)) = Tr(ρ′(g)) for every g ∈ G. In particular the two characters as-
sociated with the two representations are equal, therefore ρ ∼= ρ′, as we wanted to
prove.

The isomorphism of the second point is straightforward combining the first
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point and using the induction property of the L-functions; to complete the proof
we need to check that the Galois closure M of Kχ is equal to the fixed field F of

the kernel of IndGQ
GK

(χ). As F is Galois over Q and contains Kχ (as it is its Galois
closure), then M ≤ F; for the other inclusion notice that every automorphism of
F not fixing M is indeed in the kernel of IndGQ

GK
(χ), because Gal(F/M) is normal in

Gal(F/Q) and fixes Kχ. This proves that M = F and, by the isomorphism of the
induced representations, it is also the normal closure of Lχ′ .

This Lemma allows us to study the problem of studying equalities ofL-functions
in a completely group theoretical way, as we only have to consider isomorphisms
of induced representations. The second part reduces the study to finite groups: we
need to consider only the Galois group of the Galois closure of Kχ, without dealing
with the whole absolute Galois group.

To prove the main theorem of this section, we need a Proposition on the exis-
tence of certain fields with a chosen Galois group. In the Section 1.1 we proved that
certain Galois groups were subgroups of a wreath product; the first step we have to
do is to prove that there is always a quadratic extension such that the Galois group
of the normal closure is the whole wreath product (that we will write in the more
explicit form of semidirect product).

Proposition 2.1.3. Let C be a finite cyclic group. Given a number field K of degree
n, contained in a Galois extension N of Q, there exists a Galois extension M of Q
containing N such that

Gal(M/Q) = Cn oG Gal(M/K) = Cn oH Gal(M/N) = Cn

where G = Gal(N/Q) and H = Gal(N/K). In the semidirect product Cn o G, an
element g ∈ G acts on Cn as a permutation of the cyclic subgroups, in the same way
as g permutes the left cosets of G/H by left multiplication. The group Cn oH is the
subgroup of Cn oG that is generated by Cn and H .

M

Nσ1 · · · Nσn

Kχ N

K

Q

Proof. Let p 6= 2be a prime totally split inN and let p1, ..., pn be the primes ofK lying
over p. As p 6= 2, for a consequence of Grünwald-Wang Theorem (see Theorem 5
Chapter 10 of [2]) we know that there is a Galois extension K̃ of K with Gal(K̃/K) =
C where the prime p1 is inert and all the other primes lying over p are totally split.

DefineX as the set of field homomorphisms from K to N; asG acts on N we can
define an action of G on X as (g · σ)(k) = g(σ(k)) for all g ∈ G, σ ∈ X, k ∈ K. Using
that G is the Galois group of N over Q, the action of G on X is transitive; moreover,
the only automorphisms that stabilize the natural inclusion map ι ∈ X of K in N (it
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depends on the choice of N) are the automorphisms which fix the whole K, that is
the group H . By the orbit-stabilizer Theorem, the set X is isomorphic as G-set to
G/H .

Define, for every σ ∈ X, Ñσ := K̃⊗K,σN; we look at N as aK-algebra through the
field homomorphism σ. The two fields K̃ and N are linearly disjoint as p1 is inert
in K̃ but splits completely in N, therefore Ñσ is indeed a field extension of N. The
group C acts on K̃, so we can define an action of C on Ñσ by letting every element
of C act on the first component. This action fixes N and C acts faithfully. This tells
us that we have |C| different automorphisms of Ñσ/N and therefore this extension
is Galois and the Galois group is indeed C.

Define Pσ as the set of primes of N containing σ(p1). The primes of Pσ are in-
ert in Ñσ, on the contrary all the primes outside Pσ are totally split both in K̃ and
in N, so they are totally split in Ñσ too. Now G acts on the set of primes over p by
permuting them: as N is Galois over Q this action is free (because p is totally split)
and transitive; moreover the primes in Pι consist of the primes over p1, therefore
it is a single H-orbit. By definition of the sets Pσ, we have clearly that Pgσ = gPσ.
We want to prove that the sets Pσ are disjoint for σ ∈ X. Suppose q ∈ Pσ ∩ Pτ for
σ, τ ∈ X; as the action of G is transitive on X we can assume τ = ι. By the tran-
sitivity of the action, there is a g ∈ G such that gσ = ι and therefore gq ∈ Pι. But
therefore q, gq are both primes of N lying over p1 and, as H = Gal(N/K), there is
h ∈ H such that hq = gq. The action of G on the primes is free, so h = g and in
particular σ ∈ Hι = {ι} (H is the stabilizer of ι), so the sets Pσ are disjoint. Now to
prove that the Ñσ form a linearly disjoint family of C-extensions of N we need the
following claim.

Claim 2.1.4. Let L1, L2 be two Galois extensions of a number field L. Suppose that
there exists a prime p of L such that it is inert in L1 and totally split in L2. Then the
two extensions L1 and L2 are linearly disjoint over and so L1L2 = L1 ⊗L L2.

Proof of the Claim. Let q be a prime of L1L2 lying over p and let q1, q2 be the in-
tersections of q with L1, L2, respectively. As the residue degree is multiplicative in
towers of number fields, we have that

f(q/p) = f(q/q1)f(q1/p) = f(q/q2)f(q2/p)

As f(q1/p) = [L1 : L], f(q2/p) = 1 and 1 ≤ f(q/q2) ≤ [L1 : L] we immediately get
that f(q/q2) = [L1 : L], therefore [L1 : L] = [L1L2 : L2] and we have proved the
linear disjointness. The other assertions of the claim are always true for linearly
disjoint field extensions.

We can now continue the proof of Theorem 2.1.3. As we know that the sets Pσ
are disjoint for σ ∈ X and that the primes in Pσ are inert in Ñσ and totally split in all
the other Ñτ for τ 6= σ, we can apply the claim to the family {Ñσ : σ ∈ X} (formally,
we would apply it several times adding each extension one by one; to apply the
claim more times we use the fact that if a prime is totally split in two extensions it
is also totally split in the compositum) and taking the tensor product over N we can
construct an extension M =

⊗
σ∈X Ñσ of N with Galois group

∏
σ∈X C = Cn.

We already have an action of G on N by y 7→ gy for all g ∈ G, we can extend it
for every σ ∈ X to g̃σ : Ñσ → Ñgσ as g · (x ⊗ y) = x ⊗ gy. All these maps are field
isomorphisms because g̃σ−1 g̃σ is the identity, so we can define an action ofG letting
g ∈ G act on each factor Ñσ as g̃σ. We have an action ofCn and ofG on M. By direct
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computation it is clear that the action of C commutes with every g̃σ; moreover, we
know thatG permutes the factors of M in the same way it permutes the elements of
X, or equivalentlyCn is isomorphic toG/H asG-set. This proves that the subgroup
of Aut(M) generated by Cn and G is Cn o G, but the order of this group is [M : Q]
indeed. This implies that the extension M/Q is Galois with Gal(M/Q) = Cn o G.
The action ofCnoH fixes K and since the order of this subgroup is exactly [M : K],
we have Gal(M/K) = Cn oH .

From now on we will write Cn for the cyclic group of order n (seen as the set of
complex n-th root of unity). Using the previous Proposition we get this Theorem
of Bart de Smit.

Theorem 2.1.5 (B. de Smit). Let K be a number field and k ≥ 3 an integer. There is

a linear character χ ∈ G

∧ab
K of order k such that, if L is a number field with χ′ ∈ G

∧ab
L

satisfying LL(χ
′) = LK(χ), then L ∼= K.

Proof. First of all we want to prove that we can define a χ ∈ G

∧ab
K such that IndGQ

GK
(χ)

has a single monomial structure.
Let C = 〈ζ〉 for ζ = e2πi/k, and n, N, G, H as in Proposition 2.1.3; the same

Proposition assures us that there exists an extension M of K inside Q such that
G̃ = Cn o G = Gal(M/Q) and such that H̃ = Cn o H = Gal(M/K). As the action
ofH on the cosetsG/H always fixes the coset corresponding toH , we can assume,
up to reordering the Cn, that H fixes the first C and so the morphism ϕ : H̃ → C
(looking at C as a subset of C×) defined ϕ(a1, ..., an, h) = a1 is well defined and
surjective.

The map φ is a representation of Gal(M/K) = H̃ so we can extend this to a 1-
dimensional representation χ of GK (for every σ ∈ GK we define χ(σ) := ϕ(σ|M))
so the induced representation ρ := Ind

GQ
GK

(χ) is of dimension n. As by construction
χ surjected on C and the absolute Galois group GM is in the kernel, the induced
representation ρ can be factored through the group GQ/GM ∼= Gal(M/Q) ∼= G̃ and

on this group the representation ρ acts as IndG̃
H̃
(ϕ), so it gives rise to a monomial

structure L = {L1, ..., Ln}. The G-action on the set L and the G-action on the n
cyclic factors are both isomorphic to the natural G-action on the cosets G/H , so
we can choose the indices of the Li in a way that the two actions (on the lines and
on the cyclic factors) are compatible.

It is really easy to describe the action of an element a = (a1, ..., an) ∈ Cn on
Li ∈ L : we have a ·Li = aiLi, so L is the set ofCn-submodules of the vector space
on which ρ acts (the so called character eigenspaces for the action of ρ(Cn)). For
a precise proof of this statement we have to use the algebraic construction of the
induced representation: considering the representation ρ, seen as a group homo-
morphisms from G̃ toGL(W ), we can writeW =

⊕n
i=1 Vi, where Vi are copies of the

vector space V ∼= C on which G acts (through χ). As we have chosen L to be the
monomial structure associated with the induced representation, clearly Vi = Li. In
general every g ∈ G̃ acts as a permutation σ on the cosets oh G̃/H̃ therefore, after
choosing a set of representatives si of the cosets, we can always write gsi = sσ(i)hi

for a certain hi ∈ H̃ . For such g ∈ G̃, the construction of the induced representa-
tion is based on the identity

g ·

(
n∑
i=1

li

)
=

n∑
i=1

χ(hi)lσ(i)
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where li ∈ Li. The computation of this for g = a = (a1, ..., an) ∈ Cn is easier: we
can choose the representatives si of the form si = (1, ..., 1, gi), adding the condition
that the identity is the representative of H̃ . Then we have

a · si = (a1, ..., an, 1)(1, ..., 1, gi) = (aτ(1), ..., aτ(n), gi) =

= (1, ..., 1, gi)(aτ(1), ..., aτ(n), 1)

for τ the permutation associated to gi. As a consequence σ(i) = i for every i =
1, ..., n (this was clear as the elements of Cn don’t permute the cyclic factors) and
that χ(hi) = χ(aτ(1), ..., aτ(n), 1) = aτ(1) = ai, as we wanted to prove.

If there was another monomial structure ofGQ on ρ then, factoring again through
the quotient GQ/GM, it would give rise to another monomial structure M of G̃; we
will prove that G̃ has a unique monomial structure onW , soGQ has a single mono-
mial structure on W too.

Given the two monomial structures L = {L1, ..., Ln} and M = {M1, ...,Mn} on
W , then the trace of ρ(g) for g ∈ G̃ (which is the character of the representation) is
the same when computed using L or M as basis. We remark that for any choice
of non-zero vectors vi ∈ Li, (resp. wi ∈Mi) the trace is the same, so considering L
(resp. M ) as basis and not only sets of lines is not ambiguous.

Consider the element c = (ζ, 1, ..., 1) ∈ Cn; clearly by the previous discussion
Tr(c) = n − 1 + ζ when computed with the basis L . When we compute this trace
with the basis M , we need to recall that the elements on the diagonal could be
either zero or a k-th root of unity. Suppose there is an index i such that cMi 6=
Mi; then, as by definition of monomial representation every row and column have
exactly one non-zero entry, we must have at least another index j 6= i such that
cMj 6= Mj so the trace of c can be sum of at most n − 2 k-th root of unity, so its
absolute value can be at most n − 2. Using the base L we had that the trace was
n − 1 + ζ, whose absolute value is strictly greater than n − 2 (in this inequality we
use the fact that k ≥ 3), but this is a contradiction so cMi = Mi for all i = 1, ..., n
and the action of c on M is trivial. Since by conjugating c by elements of G we
can move the root ζ to any of the n cyclic groups, we have that the conjugates of
c generate the whole Cn. Therefore the whole group Cn acts trivially on M and,
as L is the set of character eigenspaces for the action of ρ(Cn), we must have that
M ⊂ L . As they are both sets with n elements, we have that M = L and so L is
the only monomial representation of ρ. We have constructed out representation χ
such that its induced representation onGQ has an unique monomial structure, the
one given by the induction.

Now if LL(χ
′) = LK(χ) for a certain χ′ ∈ G

∧ab
L , then by Lemma 2.1.2 we know

that IndGQ
GK

(χ) ∼= Ind
GQ
GL

(χ′) as representations of GQ and so we have two monomial
structures on W , vector space underlying both induced representations: the one
we had from Ind

GQ
GK

(χ) (with a GQ action isomorphic to the one of GQ/GK) and the

one that IndGQ
GL

(χ′) induces through this isomorphism (with a GQ action isomor-

phic toGQ/GL). Now we know that ρ = Ind
GQ
GK

(χ) has a unique monomial structure
so, as GQ-sets, we have GQ/GK ∼= GQ/GL.

The subgroupGK ofGQ is the stabilizer of the cosetGK ofGQ/GK, so it stabilizes
also a coset gGL of GQ/GL. This is possible only if g−1GKg ⊆ GL and, as GK and
GL have the same index n in GQ, they are conjugate. To end the proof we use that
two subgroups of a Galois group are conjugate in the common Galois closure if and
only if the two extensions are isomorphic.
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In the theorem, to prove the uniqueness of the monomial structure, we have
used that k 6= 2. There are indeed counterexamples to this statement if k = 2.
One example is the group C2

2 o C2
∼= D4, the dihedral group on 4 elements. The

groupD4 has an irreducible 2-dimensional representation and we can identify this
group to the group of simmetries of a square. Defining D4 = 〈a, b|a4 = b2 = abab =
1〉, the action of a is a rotation of π/2 around the origin and the action of b is the
reflection through one axis A1 of the plane. Let A2 be the line through the origin
orthogonal to A1 and let B1, B2 be the two diagonals. The sets L1 = {A1, A2} and
L2 = {B1, B2} are two distinct monomial structures for D4, with a different D4-
action: the reflexion b fixes each one of the lines A1, A2 but swaps the two lines
B1, B2.

This proves that the method of the proof doesn’t work if k = 2 andK is any num-
ber field of degree 2. Our aim is to determine if and how it is possible to generalize
the results of the previous Theorem under the hypothesis of k = 2.

2.2 Characterizing number fields with two quadratic char-
acters

The first extension of Theorem 2.1.5 is by using two quadratic characters instead of
one. We will see that this stronger assumption will allow us to use the same method
of proof as the uniqueness of the monomial structure is guaranteed by the second
representation.

The first step is to extend Proposition 2.1.3 to the case where we replace the
cyclic group by the Klein group V = C2×C2. We will often look at this group as the
subset 〈−1〉 × 〈−1〉 of C2.

Proposition 2.2.1. Let V = C2×C2. Given K number field of degree n, contained in
a Galois extension N of Q, there exists a Galois extension M of Q containing N such
that

Gal(M/Q) = V n oG Gal(M/K) = V n oH Gal(M/N) = V n

where G = Gal(N/Q) and H = Gal(N/K). In the semidirect product V n o G, an
element g ∈ G acts on V n as a permutation of the different Klein subgroups, in the
same way as g permutes the left cosets of G/H by left multiplication. The group
V n oH is the subgroup of V n oG that is generated by V n and H .

Proof. The idea of the proof is the same as the Proposition 2.1.3, but to prove
the existence of an extension of K with Galois group V it is not necessary to use
Grünwald-Wang Theorem. Let p, q 6= 2 be two prime numbers which are totally
split inN (there exists infinitely many for Chebotarev Density Theorem) and p1, ..., pn
and q1, ..., qm the primes of K lying over p and q respectively. As all the ideals pi, qj
are pairwise coprime, we can apply the Chinese Remainder Theorem to these ide-
als. As p, q 6= 2 we know that in the domains OK/pi; OK/qj there are elements
which are not a square so we can find two elements x, y ∈ OK such that x is not
a square modulo p1 and it is a square modulo p2, ..., pn, q1, ..., qm and similarly y
is not a square modulo q1 and it is a square modulo p1, ..., pn, q2, ..., qm. Defining
K1 = K[

√
x] and K2 = K[

√
y], by the claim in the proof of Proposition 2.1.3 we

know that these two extensions are linearly disjoint and that the compositum K̃ is
Galois with Galois group C2 × C2 = V . By construction, the prime p1 is inert in K̃
and all the other primes p2, ..., pn, q1, ..., qm are totally split in K1 and similarly the
prime q1 is inert in K̃ and all the other primes p1, ..., pn, q2, ..., qm are totally split in
K2.
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Let X be the set of field homomorphisms from K to N. In the same way as in
the previous Proposition, we can get a transitive action of G on X by composition
and this action is isomorphic to G/H as G-set. We can consider the extensions
Ñσ := K̃⊗K,σ N, with N that has a structure of K-algebra through the embedding σ.
We let V act on the first coordinate; this action fixes N and every element acts "in a
different way“so the extension Ñσ/N is Galois with Galois group V . Every extension
Ñσ of N is of degree 4 contains two quadratic sub-extensions Ñ1

σ := K1 ⊗K,σ N and
Ñ2
σ := K2 ⊗K,σ N, these fields are the one fixed by the action of each one of the two

factors C2 of V . Equivalently, Ñ1
σ = N[

√
σ(x)] and Ñ2

σ = N[
√
σ(y)]. Define Pσ as

the primes of N containing σ(p1) and Qσ as the set of primes of N containing σ(q1).
All the primes in Pσ are inert over Ñ1

σ (resp. all the primes in Qσ are inert over Ñ2
σ)

whereas all the other primes of N lying over p, q are totally split in Ñ1
σ(resp. Ñ2

σ). The
groupG acts on the primes over p and q in a free and transitive way and the primes
over p1 are exactly the primes in Pι. As Pgσ = gPσ, we have that the sets Pσ are
disjoint. In the same way we prove that the sets Qσ are also disjoint.

By these remarks, we can apply the claim we proved in Proposition 2.1.3 and we
get that all the extensions Ñ1

σ, Ñ2
σ are linearly disjoint over N for σ ∈ X. In particular

the compositum M of these fields has degree 22n over N. The field M is also the
compositum of the fields Ñσ and so its Galois group over N is V n = C2n

2 .
We can extend the G-action on N to a G-action on M in the same way we did

in the previous proposition: define, for every g ∈ G, σ ∈ X, a field isomorphism
g̃σ : Ñσ → Ñgσ by letting g act on the second coordinate. We define the action of
g on M as the map that acts on each Ñσ as g̃σ. By direct computation every g̃σ is
V -equivariant, so the subgroup of AutQ(M) generated by V n and G is V n o G. For
cardinality reasons this is the whole of AutQ(M) and M/Q is Galois. The action of
g ∈ G on V n permutes the factors in the same way g permutes the elements of X,
or equivalently in the same way g permutes the cosetsG/H . To conclude, it suffices
to notice that the fixed field V n oH is indeed K.

We can finally get an analogous of Theorem 2.1.5 with k = 2.

Theorem 2.2.2. LetK be a number field. There are two linear charactersχ1, χ2 ∈ G

∧ab
K

of order 2 such that, if L is a number field with χ′1, χ
′
2 ∈ G

∧ab
L satisfying LL(χ

′
1) =

LK(χ1) and LL(χ
′
2) = LK(χ2), then L ∼= K.

Proof. Let n,G,H,N be as in Proposition 2.2.1 and let V = C2 × C2. By the same
proposition we know that there exists an extension M of K, with M ≤ Q, such that
Gal(M/Q) = G̃ = V n o G, Gal(M/K) = H̃ = V n o H . The action of G and H
on V n permutes the factors V in the same way the multiplication by G permutes
the left cosets G/H . We order the n copies of V in a way such that the action of H
fixes a group V (that we can assume to be the first one) and thus we get two group
morphisms ϕ1, ϕ2 : H̃ → 〈−1〉 ⊂ C× such that

ϕ1((a1, b1), ..., (an, bn), h) = a1 ϕ2((a1, b1), ..., (an, bn), h) = a2

for all a1, bi ∈ 〈−1〉, h ∈ H . For i = 1, 2 we can extend φi to a representation

χi ∈ G

∧ab
K and consider ρi = Ind

GQ
GK

(χi) : G → GL(Wi). These induced represen-

tations factor over G̃ = Gal(M/Q) so we get naturally two monomial structures
L 1 = {L1

1, ..., L
1
n} and L 2 = {L2

1, ..., L
2
n} on W1 and W2 respectively. We can re-

order the indices of the L1
i , L

2
i in a way that makes the G-action on the number-

ing compatible to the G-action on the Klein subgroups. On L 1 we have that an
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element a = ((a1, b1), ..., (an, bn)) ∈ V n acts on L1
i by scalar multiplication by ai,

whereas on L 2 the same element a acts on L2
i by scalar multiplication by bi. The

proofs of these statements are done in the same way as in Theorem 2.1.5 and this
proves that L 1 (resp. L 2) is the set of character eigenspaces for the action of V n

on the vector space W1 (resp W2).
The equalities of theL-series imply that IndGQ

GK
(χ1) ∼= Ind

GQ
GL

(χ′1) and Ind
GQ
GK

(χ2) ∼=
Ind

GQ
GL

(χ′2). As the absolute Galois groupGM is contained in the kernel of IndGQ
GK

(χ1)

and Ind
GQ
GK

(χ2), these representations factor through GQ/GM = Gal(M/Q) = G̃. In

the same way Ind
GQ
GL

(χ′1) and Ind
GQ
GL

(χ′2)must factor throughGQ/GM too; let M 1 and

M 2 be the two monomial structures that are induced on W1 and W2 by Ind
GQ
GL

(χ′1)

and Ind
GQ
GL

(χ′2) respectively. The two monomial structures are both isomorphic to
GQ/GL as GQ-sets, so M1

∼= M2 as GQ sets.
Let M 1 = {M1

1 , ...,M
1
n} be a monomial structure onW1 and M 2 = {M2

1 , ...,M
2
n}

be a monomial structure on W2; we want to prove that M 1 = L 1. Consider the
element c = ((−1, 1), (1, 1), ..., (1, 1)) ∈ V n; clearly by definition of the action on
L 1, L 2 we have that Tr(c) = n − 2 on W1 and Tr(c) = n on W2. Suppose by
contradiction that the action of c moves some lines of M 1. When we consider the
action of c on W2, whose corresponding matrix has trace n, the only possibility is
that c is the identity on W2 also in the base M 2. This leads to a contradiction: M 1

and M 2 are both isomorphic as G̃-sets, so it cannot be that c fixes every line of M 2

but not of M 1, therefore c must fix all the lines of M 1 too. Now we can consider
the element d = ((1,−1), (1, 1), ..., (1, 1)) ∈ Cn. The trace of d computed with the
basis L 1 of ρ1 is clearly n, so d must act as the identity on every line M1

i of M1 too.
Therefore M 1 is stabilized by the subgroup generated by the conjugates by G of c
and d, that is the whole V n. This proves that M 1 ⊂ L 1 and for cardinality reasons
M 1 = L 1.

Now with the same argument as in the proof of Theorem 2.1.5 we have that
the isomorphism of the two monomial structures implies that, for every L number

field with χ′1, χ
′
2 ∈ G

∧ab
L such that LL(χ

′
1) = LK(χ1) and LL(χ

′
2) = LK(χ2), we have

L ∼= K.

2.3 The different order case

We have just proved that it is always possible to characterize the isomorphism type
of a number field with two quadratic characters, whereas we still don’t know if it
is possible only with one. We also knew, by Theorem 1.3.3 that the equality of the
zeta functions is not sufficient. We could then ask if the equality of one quadratic
character in addition to the two fields being arithmetically equivalent is a sufficient
condition.

Theorem 2.3.1. Let K be a number field of degree n. There is a linear character

χ ∈ G

∧ab
K of order 2 such that, if L is a number field with χ′ ∈ G

∧ab
L satisfying LL(χ

′) =
LK(χ) and ζK(s) = ζL(s), then L ∼= K.

Proof. We follow the proof of Theorem 2.1.5 word by word, using k = 2, until the
paragraph when we want to prove that L has a unique monomial structure. To
recall, G = Gal(N/Q) with N normal closure of K, and there is a number field M
such that Gal(M/Q) = Cn2 o G = G̃. We have a monomial structure L on the
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vector space V on which ρ acts and the G-action of those lines is the same as the
G̃-action on the cosets of G̃/H̃ .

Let M = {M1, ...,Mn} be another monomial structure on V , induced by the

isomorphism IndG̃
H̃
(χ) ∼= IndG̃

H̃′
(χ′). As it is induced by an induced character, the

G̃-action on the lines of M is equal to the G̃-action on the cosets G̃/H̃ ′.
We want to compute, for each g ∈ G̃, the number of fixed points of the action

of G̃, both on G̃/H̃ and on G̃/H̃ ′. We recall that, as ζK(s) = ζL(s), then (G̃, H̃, H̃ ′) is
a Gassmann triple, and in particular |C ∩ H̃| = |C ∩ H̃ ′| for every conjugacy class C
of elements of G̃. Let now C be the conjugacy class in G̃ of an element g ∈ G̃. We
have the equalities

|{a ∈ G̃ : gaH̃ = aH̃}| = |{a ∈ G̃ : a−1ga ∈ H̃}| = |C
G̃
(g)||H̃ ∩ C| =

= |C
G̃
(g)||H̃ ′ ∩ C| = |{a ∈ G̃ : gaH̃ ′ = aH̃ ′}|

The number of elements which are fixed by the action of g on the cosets G̃/H̃ is
equal to the first term of the equality divided by |H̃|. In the same way, g fixes a
number of cosets of G̃/H̃ ′ equal to the last term of the equality divided by |H̃ ′|. As
the indices of H̃ and H̃ ′ in G̃ are both n, the number of fixed points by the actions
of every g ∈ G̃ on the two different sets of cosets G̃/H̃ and G̃/H̃ ′ is equal.

In particular, we know that the action of c = (−1, 1, ..., 1, 1G) fixed every line of
L , therefore the action of the same c fixes all cosets of G̃/H̃ ′ and so all the lines of
of M too. As the G-conjugates of c generate the whole Cn, we have that M is fixed
pointwise by every element of Cn and therefore, as L is the set of Cn-submodules
of V , we have M ⊆ L . The equality is then obvious by cardinality reasons.

We have proved that the monomial structure on IndG̃
H̃
(χ) is the unique one that

can be induced by subgroups corresponding to L, so we can conclude as in Theo-
rem 2.1.5 that K ∼= L.
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Chapter 3

The single character case

3.1 Characterizing number fields with one quadratic char-
acter

As we have remarked in the previous chapter, we cannot generalize Theorem 2.1.5
to the case k = 2 using the same proof. In this section we will study if it is anyway
possible to get the same result, but with some different types of proofs.

In this chapter we fix a number field K of degree nwith Galois closure N and we
write G = Gal(N/Q), H = Gal(N/K).

Question 3.1.1. Is there a linear character χ ∈ G

∧ab
K of order 2 such that, if L is a

number field with χ′ ∈ G

∧ab
L such that LL(χ

′) = LK(χ), then L ∼= K?

To answer this question, by Lemma 2.1.2 we have to determine all the possible
groups G̃ which have G as a quotient subgroup and study their representations.
We clearly can assume that the extension L has degree n (otherwise the induced
representation of a 1-dimensional representation would have a dimension differ-
ent from n and by Lemma 2.1.2 this is not possible) and, by Lemma 2.1.2, that L is
the fixed field of a subgroup of G̃ of index n.

In the previous chapter we used the groupD4 as a counterexample to the unique-
ness of monomial structures but, studying the different characters of this group,
we immediately realize that we cannot use it to get a negative answer for Ques-
tion 3.1.1.

The group D4 has three different conjugacy classes of subgroups of index 4; let
H1, H2, H3 three representatives. For each of these subgroups (all cyclic of order
2), there is a conjugacy class of elements of G that intersects this subgroup but not
the other two subgroup. Once we take χ1, χ2, χ3 the only 1-dimensional represen-
tations of order 2 of H1, H2, H3 respectively, the induced representation will have a
nonzero value one conjugacy class and for that reason the induced representation
cannot be obtained as induced representation of other subgroups of index 4. These
three representations give an affirmative answer to Question 3.1.1 for G = D4. We
provide the character table of these four induced representations.

D4 {1} {a2} {a, a3} {b, ba2} {ba, ba3}
IndD4

H1
(χ1) 4 -4 0 0 0

IndD4
H2

(χ2) 4 0 0 -2 0
IndD4

H3
(χ3) 4 0 0 0 -2

The idea of proof for D4 can be generalized also to other groups G, it suffices
the assumption that there are no Gassmann triples containing the subgroup H .
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Proposition 3.1.2. If G = Gal(N/Q) has no non-trivial Gassmann triples (G,H,H ′)
of index n containingH = Gal(N/K), then Question 3.1.1 has an affirmative answer.

Proof. Let G̃ := C2×G, H̃ := C2×H ; we know that there exist a field extension M/N
such that G̃ := Gal(M/Q) andC2 = Gal(M/N). Let χ be the one dimensional repre-
sentation of degree 2 of H̃ which is the extension of the non-trivial representation
ofC2. Suppose that there is another field L with a linear character χ′ of its absolute
Galois group such that LL(χ

′) = LK(χ) (by Lemma 2.1.2 it must be contained in
M). We know that this is equivalent to say that H̃ ′ := Gal(M/L) is a subgroup of

index n of G̃, not conjugate to H̃ , such that IndG̃
H̃
(χ) = IndG̃

H̃′
(χ′).

The first claim is that H̃ ′must be of the form H̃ ′ = C2×H ′ for a certain subgroup
H ′ of G.

The usual formula to compute the character χ of a representation induced on
G by a subgroup H of G is the following:

ψ(x) =
1

|H|
∑
g∈G

χ◦(g−1xg)

where χ◦(t) =

{
χ(t), for t ∈ H
0 for t /∈ H . Let ψ be the induced character on G̃ of the 1-

dimensional representation χ and ψ′ the induced character of χ′ and let c be the
embedding in G̃ of the generator of C2; this element is central so we can easily
compute ψ(c) = −n. As LK(χ) = LL(χ

′), we know ψ(x) = ψ′(x) for every x ∈ G̃, so
ψ′(c) = −n and in particular c ∈ H̃ ′ (otherwise ψ′(c) would be zero). As H̃ ′ contains
the first factor of the direct product, by taking the quotient we get H̃ ′ = C2 × H ′
withH ′ a subgroup ofG. Notice that the index ofH ′ inG is equal to the index of H̃ ′

in G̃, so it is equal to n, hence proving the claim.
Now, suppose for a contradiction that K and L are not isomorphic, so H and

H ′ cannot be conjugate and by hypothesis they are not in a Gassmann triple. This
implies that there is a conjugacy class C of elements ofG such that |C∩H| > |C∩H ′|.
We can lift every element g ∈ G to an element of G̃ in the obvious way; moreover
this lift preserves conjugacy classes, so our conjugacy class C is lifted to a conjugacy
class C̃ of G̃ of the same order. In particular |C̃ ∩ H̃| > |C̃ ∩ H̃ ′|.

We can compute directly the character ψ of G̃ induced by χ for every x ∈ C̃ (to
simplify we can assume x ∈ C̃ ∩ H̃):

ψ(x) =
1

|H̃|

∑
g∈G̃

χ◦(g−1xg) =
1

|H̃|
χ(x)|C̃ ∩ H̃||C

G̃
(x)| = 1

|H̃|
|C̃ ∩ H̃||C

G̃
(x)|

because χ(x) = 1 and each one of the values of C̃ ∩ H̃ is taken exactly |C
G̃
(x)| times

by the function χ◦. In a similar way

ψ′(x) =
1

|H̃ ′|
χ′(y)|C̃ ∩ H̃ ′||C

G̃
(y)|
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where y ∈ C̃ ∩ H̃ ′. Now |χ′(y)| = 1, |H̃ ′| = |H̃| and |C
G̃
(y)| = |C

G̃
(x)|. As we noticed

|C̃ ∩ H̃| > |C̃ ∩ H̃ ′| so we have

1

|H̃|
|C̃ ∩ H̃||C

G̃
(x)| = |ψ(x)| = |ψ′(x)| =

=
1

|H̃ ′|
|χ′(y)||C̃ ∩ H̃ ′||C

G̃
(y)| < 1

|H̃|
|C̃ ∩ H̃||C

G̃
(x)|

and this is a contradiction. We have proved that the assumption that K and L are
not isomorphic is wrong, so K ∼= L as we wanted to prove.

Using this Proposition we can rule out a lot of groups from our study. Using the
bounds in the article [3] we have an answer to Question 3.1.1 for all the number
fields of degree less than or equal to 6, but also for some infinite families of groups.

Corollary 3.1.3. If G is an abelian group or G ∼= Sn, then Question 3.1.1 has an
affirmative answer.

Proof. If G is abelian, every subgroup of G is normal so it is itself a union of con-
jugacy classes. The only possible Gassmann triples are then of the type (G,H,H),
and in particular they are trivial, therefore we can always apply Proposition 3.1.2.

Now we would like to study the subgroups of index n of Sn and prove that for
n ≥ 7 they are all isomorphic to Sn−1 (all these subgroups are clearly conjugate in
Sn). By the study of Gassmann triples of small degree of [3], we already know that
our Corollary is true if n ≤ 6.

LetH be a subgroup of Sn of index n ≥ 7. We know that Sn acts by left multipli-
cation on the set of left cosets of H and this action gives rise to a group homomor-
phism Sn → Sym(Sn/H) ∼= Sn. The kernel of this morphism is the normal core of
H defined as

⋂
g∈Sn g

−1Hg, which is the bigger normal subgroup of Sn contained in
H ; the only non-trivial normal subgroup of Sn for n > 4 isAn with index 2 in Sn, so
the kernel is trivial and the morphism is injective (and also surjective by cardinality
reasons). The map we have obtained is an automorphism of Sn and we know that
if n 6= 2, 6 then Aut(Sn) = Inn(Sn) (a self-contained proof can be found in [11]).

When we restrict the previous map toH , we notice that every element ofH fixes
the coset {H}, so we have a morphism fromH to Sym(Sn/Hr{H}) ∼= Sn−1. As this
map is a restriction of the previous one, it is still injective and, as both H and Sn−1
have cardinality (n − 1)!, it is an isomorphism. We have now an automorphism
of Sn (that is a conjugation map because Aut(Sn) = Inn(Sn)), that sends H to a
subgroup isomorphic to Sn−1, so in particular H ∼= Sn−1. Notice that if n = 6 then
[Aut(S6) : Inn(S6)] = 2 and indeed S6 has two non-isomorphic conjugacy classes
of subgroups of index 6. As all subgroups of Sn isomorphic to Sn−1 are conjugate,
we can apply Proposition 3.1.2 and the Corollary is proved also for n ≥ 7.

3.2 A counterexample of minimal degree

As we have noticed in Section 1.3, the number field of smallest degree which admits
a non-isomorphic arithmetically equivalent number field has degree 7 and the Ga-
lois closure of this field has Galois group isomorphic to G = PSL(3, 2) = PSL3(F2).
With the help of MAGMA, we can notice that G has only two conjugacy classes of
subgroups of index 7. We can choose K a number field of degree 7, with N its Ga-
lois closure, such that G = Gal(N/Q) = PSL(3, 2). A proof of the existence of such
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a number field can be found in [3]. We can define H = Gal(N/K). By Proposi-
tion 2.1.3 the group C7

2 o G is the Galois group of an extension M of Q satisfying
Gal(M/K) = C7

2 oH = H̃ , with G acting on the cyclic subgroups in the same way
as it permutes the cosets G/H . Similarly to what we did in Theorem 2.1.5, we can
choose χ to be the quadratic character associated with the "first" cyclic subgroup
of H̃ (the subgroup fixed by the action of H). Let L a subfield of M , of index 7 over
Q, such thatGL has a one dimensional representation χ′ satisfyingLK(χ) = LL(χ

′).
The first thing we want to check is that L is a subfield of N. This is true if and

only if H̃ ′ = Gal(M/L) contains the subgroup C7
2 of G̃. This group is a normal 2-

subgroup of G̃, so it is contained in the intersection of all the 2-Sylow subgroups of
G̃ (usually denoted by O2(G̃)) and therefore in all the 2-Sylow subgroups of G̃. As
H̃ ′ has index 7, it contains a 2-Sylow subgroup of G̃, so L is a subfield of N.

Looking at the structure of the subgroups of G, we notice that (G,H,H ′) is
Gassmann for every H,H ′ subgroups of index 7 of G, therefore K and L are arith-
metically equivalent. With this additional hypothesis we can apply Theorem 2.3.1
and have that K ∼= L.

We remark that we can apply the same argument to any field of odd degree n
such that, if G is the the Galois group of its Galois closure, any two subgroups of
index n of G form a Gassmann triple with G itself.

As we have verified that for n ≤ 7 there are no number fields K of degree n that
give a negative answer to Question 3.1.1, we have to study number fields of degree 8
or more. There are two transitive groups on 8 elements with non-trivial Gassmann
triples and they are of order 32 and of order 48; we will study the first case with the
help of MAGMA. This group is isomorphic to C8 o V and it is encoded in MAGMA
libraries with the code TransitiveGroup(8,15).

Let N be the Galois closure of K, we now define in MAGMA the groups G =
Gal(N/Q), H = Gal(N/K). We fix a quadratic character χ of GK; let Kχ the field
fixed by its kernel. By Theorem 1.1.2, we know that the Galois group over Q of the
common Galois closure M of N and Kχ can be embedded in the wreath product
WG = C8

2oG = C2 oG; we will later use also the subgroups WH = C8
2oH , WH2 = C7

2oH
(the subgroup of WH generated byH and all the cyclic subgroups except the one sta-
bilized by H). We build up a list of all possible subgroups, up to conjugacy, of WG
that surject on G. Notice that we ask the surjection to be through the natural pro-
jection q because of Remark 1.1.3. The last condition is to remove from the list the
group G itself, as this can be easily checked (every induced representation from a
quadratic character ofH can be obtained also from an induced representation of a
character of a subgroup which is in a non-trivial Gassmann triple with H by direct
computation) and it would be an exception to the next tests the program will do.

sage: G:= TransitiveGroup (8 ,15);

sage: d:= Degree(G);

sage: H:= Stabilizer(G,1);

sage: WG, emb , embG , q:= WreathProduct(CyclicGroup (2),G);

sage: N:= Kernel(q);

sage: WH:=sub <WG|embG(H),N>;

sage: WH2:=sub <WG|[emb[i+1]( Sym(2) !((1 ,2))): i in [1..d-1]], embG(H)>;

sage: list :=[s`subgroup: s in Subgroups(WG:OrderMultipleOf :=#G) |

q(s`subgroup) eq G and IsEmpty(Fix(sub <WG|N, embG(H)>

meet s`subgroup))];
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We now want to test if any subgroup G̃ = GG of WG surjecting to G could provide
a negative answer to Question 3.1.1. After having fixed G̃, we will define H̃ , the
subgroup of G̃ fixing K, and H̃χ, the subgroup of G̃ fixing Kχ. For every G̃ we will
define the set badchars, whose elements are all the induced characters of linear
characters of subgroups of index 7 in GG, of course not conjugate to H̃ . We have to

check if the character χ = chi0 of the representation IndG̃
H̃
(χ) is in the set badchars

of characters induced from other subgroups.
In order to explicitly find χ in the easiest way, we will use some properties of the

Artin L-series and of the wreath product. The only two characters of the extension
Kχ/K are the trivial one and χ (because the extension is quadratic), so by the fac-
torization of Remark 1.2.5 we have the equality ζK(s)L(s, χ,Kχ/K) = ζKχ(s). Using
the induction property to "lift" everything with Q as base field, we have

LQ(s, Ind
G̃
H̃
(χ))LQ(s,1G̃

H̃
) = LQ(s,1G̃

H̃χ
)

where 1G̃
H̃

is a short notation for IndG̃
H̃
(1), also denoted as coset character on G̃ from

H̃ . Using the additivity property, we can get the equality

LQ(s, Ind
G̃
H̃
(χ)) = LQ(s,1G̃

H̃χ
− 1G̃

H̃
). (∗)

Notice that the representation on the right hand side is indeed a representation,
not only a virtual one, because of Lemma 2.1.2. Now we need a way to determine
the subgroups H̃ and H̃χ. We recall some structures that we defined in Theorem
1.1.2. The group G̃ acts on the set X1 = HomQ(K,N) of cardinality 8 (this action
factors through the quotient G), but also on the set X2 = HomQ(Kχ,M) of cardi-
nality 16. In this setting H̃ is the stabilizer of the identity map of the set X1 and
H̃χ is the stabilizer of the identity map of X2. We now use that G̃ is a permutation
subgroup of WG = C8

2 oG: in this group the stabilizers of the two identity maps are
respectively WH = C8

2 o H and WH2 = C7
2 o H . This is the reason why we define

H̃ = HH := WH ∩ GG and H̃χ = HH2 := WH2 ∩ GG.

sage: characterizing :=[];

sage: for i in [1..# list] do

GG:=list[i];

HH:= WH meet GG; HH2:=WH2 meet GG;

chi0:= PermutationCharacter(GG,HH2)-PermutationCharacter(GG ,HH);

S:= Subgroups(GG: OrderEqual :=#GG div d);

badchars :={ Induction(chi , GG): chi in LinearCharacters(s`

subgroup),

s in S | not IsConjugate(GG,s`subgroup ,HH)};

characterizing[i]:= not (chi0 in badchars);

sage: end for;

We can now collect in the list char_gps all the G̃ that cannot provide χ as in-
duced character from another subgroup. This list contains four subgroups: two of
order 64, one of order 128 and one of order 512; we will refer to these groups as
"bad groups".

sage: char_gps :=[ list[i]: i in [1..# list] | characterizing[i]];

sage: char_gps;

[Permutation group acting on a set of cardinality 16

Order = 64 = 2^6

(1, 9)(2, 10)(5, 13)(6, 14)

...
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Permutation group acting on a set of cardinality 16

Order = 64 = 2^6

(1, 9)(2, 10)(5, 13)(6, 14)

...

Permutation group acting on a set of cardinality 16

Order = 128 = 2^7

(1, 9)(2, 10)(5, 13)(6, 14)

...

Permutation group acting on a set of cardinality 16

Order = 512 = 2^9

(1, 3, 5, 7, 10, 11, 13, 16, 2, 4, 6, 8, 9, 12, 14, 15)

...]

In general, once we fix a Galois group G = Gal(N/Q), a covering of G is a group
G̃ such that there exists a group homomorphism with imageG (or equivalently that
G is as a quotient subgroup of G̃). We know that this condition is necessary in order
to have a Galois extension M of Q containing N with Galois group G̃. Anyway, this
condition is often not sufficient: in the case that there doesn’t exist any number
field M with Galois group G̃ we will say that the covering G̃ of G is obstructed.

As an example of an obstructed covering, consider N a quadratic extension of
Q which is not contained in R. There cannot be extensions of Q containing N with
Galois group C4: the conjugation map would be the only element of order 2 of C4,
so it would fix the only quadratic field contained in the extension, which must be
N. As N is not real, it cannot be fixed by the conjugation map, so the covering C4 of
Gal(N/Q) = C2 is obstructed.

We would like to determine explicitly a number field such that its Galois group
is G but all the coverings in the list char_gps are obstructed.

The first property that a covering must satisfy is the one at infinity primes. Let
f be a polynomial whose splitting field over Q is N. If the field N is not contained in
R, the complex roots of f are symmetric with respect to the real axis, so the Galois
groupGmust contain the complex conjugation map. For the same reason, G̃ has a
complex conjugation map which, when restricted to N, must be equal to the con-
jugation map of N. In particular, if σ ∈ G is the complex conjugation and we have
a candidate group G̃which surjects toG, if σ cannot be lifted to an involution of G̃,
then there are no possible extensions of N with Galois group G̃.

We now count all the involutions of G up to conjugation, getting 5 elements
of the Galois group G that could correspond to a complex conjugation map. We
can find the involutions of the different G̃, groups in char_gps, and project these
involutions to the ones of G. We print all the original involutions of G that cannot
be lifted to another involution of GG; in particular the involutions number 4 or 5
cannot be lifted to an involution of the bad groups of order 128 and 512.

The last line provides the number of fixed points of each involution and we
notice that the only involutions with 2 fixed points are indeed the number 4 and 5.

sage: invol :=[c[3]: c in Classes(G) | c[1] eq 2];

sage: print "involutions :", #invol , " not liftable :";

sage: for i in [1..# char_gps] do

GG:= char_gps[i];

liftable :={q(x): x in GG | Order(x) eq 2};

print i, #GG, {j: j in [1..# invol] | not invol[j] in liftable };

sage: end for;

sage: [#Fix(invol[i]): i in [1..# invol ]]

involutions: 5 not liftable:
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1 64 {}

2 64 { 3 }

3 128 { 4, 5 }

4 512 { 1, 2, 4, 5 }

[ 0, 4, 0, 2, 2 ]

The obstruction at the conjugation map is not sufficient to exclude all the four
bad groups at once, therefore we have to use some more obstructions, this time
at finite primes p ∈ Z. Fix p a prime and G an abstract group. We will denote
as p-decomposition couple a couple (g, x) of elements of G satisfying the following
conditions:

• D = 〈g, x〉 is a 2-generated subgroup of G, I = 〈g〉 is a normal subgroup of D
and the quotient D/I is cyclic;

• the order of g is coprime with p;

• the coset xI is a generator of D/I;

• the elements x, g satisfy x−1gx = gp.

We will say that a couple (g, x) (with associated groupsD, I) is equivalent to (g′, x′)
(with associated groups D′, I ′) if there is an y ∈ G such that D′ = Dy, I ′ = Iy (con-
jugation by y sends D to D′ and I to I ′) and then y−1xyI ′ = x′I. This relation is
indeed an equivalence relation on the set of all possible p-decomposition couples
(g, x); let Sp(G) be the quotient of this set by the equivalence relation. With a little
abuse of notation, we will denote a class of elements of Sp(G) in the same way we
denote a p-decomposition couple.

Fix a Galois extension N of Q and a prime p of ON lying over p. We have proved
that there is an exact sequence

1→ Ip → Dp → Gal(N/Fp)→ 1

where Ip, Dp are the inertia and decomposition groups at p of N/Q and N = ON/p.
Suppose that the extension of the completions N/Qp is tamely ramified; in this case
the inertia group Ip is cyclic (see Corollary 5.3 in [14]) and of order coprime with p.
The group Gal(N/Fp) is also cyclic (generated by the Frobenius element) as it is an
extension of finite fields, therefore the decomposition group Dp is 2-generated, by
a generator g of the inertia group and by a lifting Frobp of the Frobenius element.
We also know that for every x ∈ Ip we have Frob−1p xFrobp = xp. It is clear that
(g,Frobp) are a p-decomposition couple of G.

Now, let M be a Galois extension of Q containing N and let P be a prime of M
lying over p (and so lying over p too). If the extension of the completions MP/Qp

is tamely ramified, with the same argument as before we have that the decompo-
sition group DP ≤ Gal(M/Q) is 2-generated. The group DP surjects to Dp: every
element d of DP must fix p so the projection π(d) ∈ G goes to Dp; moreover every
element of Dp can be extended to an element of DP by Galois theory. Aa a con-
sequence, the restriction to N of the two generators of DP must generate Dp. In a
similar way it is possible to show that IP = 〈g̃〉 goes to Ip and FrobP ∈ DP goes
to Frobp ∈ Dp, so the p-decomposition couple (g̃,FrobP) of G̃ must be projected
to a p-decomposition couple of G, and in particular to a p-decomposition couple
equivalent to (g,Frobp).

We can now state in a Lemma the criterion we will use to get obstructions to
extensions at finite primes.
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Lemma 3.2.1. Fix p prime and G = Gal(N/Q), let G̃ be a covering of G. Let D
and I the decomposition and inertia subgroups of G at p, prime of ON lying over
p, x a generator of I and Frob a Frobenius element of D. If there are no couples
of Sp(G̃) such that, once projected to G, are equal to the p-decomposition couple
(x,Frob) ∈ Sp(G), then the covering G̃ of G is obstructed.

We can continue "analyzing the code", where we define two functions pconj

and localgps.
The function pconj, that takes as an input the group G and two lists l1 and l2

of length 2 each, tests if the two couples l1 = (l1[1], l1[2]), l2 = (l2[1], l2[2]) define
the same element of Sp(G). The first step is to check if the inertia subgroups I1 =
〈l1[1]〉 and I2 = 〈l2[1]〉 are conjugate, providing, in case of a positive output, the
element g ∈ G that moves I1 to I2. Then we define y = g−1l1[2] g and check if the
projection of ymodulo I2 is conjugate to the projection of l2[2]modulo I2 (to reduce
the computational cost, we check if the groups are conjugated only by element of
the normalizer). The function pconj has as an output a boolean value telling if l1
and l2 are equivalent inside G.

The other function localgps, taking as input a groupG and a prime p, provides
the set Sp(G), encoded as a list. At first it searches the candidate subgroup I among
all non-trivial cyclic subgroups of G, checking if they are of order coprime with p
(as we want to consider only tamely ramified extensions). In order to "find the
lifting" of the Frobenius element, we take a generator g of I and we check for all
the representatives of the cosets of the quotientN/I, withN normalizer of I inG, if
gp = xgx−1. If we have found such an x, after checking through the function pconj

that the p-decomposition couple (g, x) is not equivalent to any p-decomposition
couple we had found, we add it to the list L. The output is the list Sp(G).

sage: pconj:= function(G,l1,l2)

I1:=sub <G|l1[1]>; I2:=sub <G|l2[1]>;

isc ,g:= IsConjugate(G,I1,I2);

if not isc then return false; end if;

y:=l1[2]^g;

if not sub <G|l1[1]^g> eq sub <G|l2[1]> then

print "Problem "; end if;

Nor:= Normalizer(G,I2);

NNor ,pr:=Nor/I2;

isc , g2:= IsConjugate(NNor , pr(y), pr(l2[2]));

return isc;

sage: end function;

sage: localgps := function(G,p)

L:=[];

for I in [s`subgroup: s in Subgroups(G:IsCyclic :=true)|

(GCD(p, s`order) eq 1) and #s`subgroup ne 1 ] do

for x in Transversal(Normalizer(G,I),I) do

g:=Rep({t: t in I| Order(t) eq Order(I)});

if g^p eq x*g*(x^(-1)) and forall(t){l: l in L |

not pconj(G,l,<g,x>)} then Append (~L,<G!g,G!x>);

end if;

end for;

end for;

return(L);

sage: end function;

We choose p = 5 and we let the function localgps act on G, our original Galois
group, giving the list lg as output. Printing firstly the order of g and then the order
of x in the quotient 〈g, x〉/〈g〉 (that correspond to ramification and residue degree
of the extension with 〈g, x〉, 〈g〉 as decomposition and inertia group respectively)
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for each couple (g, x) of Sp(G), we notice that the only couples where the order of
g (i.e. the ramification degree) is 8 are the couples number 37 and 38.

sage: p:=5;

sage: lg:= localgps(G,p);

sage: for i in [1..# lg] do t:=lg[i];

print i,<#sub <G|t[1]>,Index(sub <G|t[1],t[2]>,sub <G|t[1]>) >;

sage: end for;

1 <2, 1>

2 <2, 4>

3 <2, 2>

4 <2, 2>

5 <2, 2>

...

36 <4, 2>

37 <8, 2>

38 <8, 2>

We now let the function localgps act on each of the bad groups. We project to
G every element of the list localgps(GG,p) with GG a bad group and check what
element of lg corresponds to this projection (so what p-decomposition couples of
G at p can be lifted to p-decomposition couples of the bad groups). For every bad
group, we print the list of elements of lg that cannot be lifted. All decomposition
groups can be lifted in the third and fourth bad group, but in the first two groups
some elements of lg, like number 37 and 38, cannot be lifted.

sage: for i0 in [1..# char_gps] do

GG:= char_gps[i0];

llg:= localgps(GG,p);

sl:=[0: x in lg];

for i in [1..#lg] do for t in llg do

if pconj(G,lg[i],<q(t[1]),q(t[2]) >) then

sl[i]:=sl[i]+1; end if;

end for; end for;

print i0 , [i: i in [1..# lg] | sl[i] eq 0];

sage: end for;

1 [ 26, 27, 30, 36, 37, 38 ]

2 [ 26, 27, 30, 36, 37, 38 ]

3 []

4 []

We are now ready to give a number field providing a negative answer to Ques-
tion 3.1.1. We want to remark that the proof of this Theorem is based on the com-
putations we have done in MAGMA.

Theorem 3.2.2. If K = Q[ 8
√
5], for every quadratic character χ of the absolute Galois

group GK there is another number field L, not isomorphic to K, and a character χ′

of GL such that LK(χ, s) = LL(χ
′, s).

Proof. The field K has degree 8 over Q and the minimal polynomial of 8
√
5 is f(x) =

x8 − 5. With the help of MAGMA it is possible to verify that the Galois closure N
of K has Galois group G = C8 o V . Out of the 8 distinct roots of the polynomial
f(x), two of them are real so the complex conjugation fixes two elements. Looking
back at the discussion of the obstructions to extension at the infinity prime, out of
all the involutions of G, the only two ones with two fixed points are the fourth and
fifth, and in both cases the bad groups of order 128 and 512 are obstructed.

As the Galois group of N over Q is a 2-group (of order 32), the extension of the
completions Np/Qp with respect to the prime p lying over p = 5 is tamely ramified.
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With an easy computation we get that the ramification degree of 5 in the extension
N/Q is equal to 8, so the p-decomposition couple associated with the decompo-
sition group D of the prime p = 5 corresponds to the number 37 or 38 of the list
lg provided before. By the previous discussion, there are no Galois extension of N
with Galois group over Q equal to one of the two bad groups of order 64.

As we have excluded all the bad groups, there exists always a number field L,
non-isomorphic to K, such that every character induced from any character of or-
der 2 ofGK can be induced also from a character ofGL. As a consequence, Question
3.1.1 has a negative answer for G = C8 o V .

One consequence of this Theorem is that the results we have obtained in The-
orems 2.2.2 and 2.3.1 are optimal.
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