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Introduction

In his famous paper [Art69], M. Artin was able to provide a new proof of the following theorem:

Let (A,m) be an henselian local ring and let X be a finitely presented, proper scheme over
S = Spec(A). Then the functor − ×S S0, where S0 = Spec(A/m), induces an equivalence of
categories between the category of finite étale schemes over X and the category of finite étale
schemes over X0 = X ×S S0

This was first shown by Artin himself, A. Grothendieck and J. L. Verdier in [SGAIV]. The
importance of this theorem comes from the fact that it is the main ingredient for the proof of
the Proper Base Change theorem in étale cohomology. Our ultimate goal is to face the nonlocal
case. In fact, since we have a definition which generalizes that of henselian ring to the nonlocal
case, it is reasonable to ask ourselves what happens if we consider a ring that is not local. This
question appears, for example, in [EGA IV.4, Remarks 18.5.16 (i)]. In the case where (A,m)
is an henselian pair and X = S the theorem still holds. This is a consequence of the work R.
Elkik in [Elk] and of O. Gabber in [Gab].

The key ingredient in Artin’s proof is a theorem which, roughly speaking, tells us that
henselizations at a prime ideal of algebras of finite type over a field or over an excellent discrete
valuation ring have a certain approximation property. This means that, under some hypothesis,
for any structure over the completion Â of the given ring A, we can find a structure over A
which approximates the given one. This idea was made precise by Artin in [Art69].

By means of D. Popescu’s characterization of regular homomorphisms between noetherian
rings, it is possible to generalize Artin’s theorem to the nonlocal case. This allows us to adapt
Artin’s proof of the theorem stated above to the case where (A,m) is an henselian pair.

This theorem has some implications on the level of étale cohomology. In particular, it tells
us that a statement which was conjectured in [SGAIV, Exposé XII, Remarks 6.13] holds under
certain assumptions.

Outline

This thesis is divided into six chapters. In the first one we treat henselian local rings, which
had been introduced by G. Azumaya and play a central role in Algebraic Geometry.

We follow the exposition given by M. Raynaud in [Ray] and we investigate the main prop-
erties of this class of local rings. We also give a number of characterizations of henselian rings.
Then we introduce a particularly important algebra associated to any finite free A-algebra B,
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where A is any ring. It is a representative of the functor which associates to any A-algebra C
the set of idempotent elements of B ⊗A C. At the end of the chapter we describe an universal
way to associate an henselian local ring to any local ring.

In Chapter 2 we introduce the class of henselian pairs. Also in this part we mainly follow
Raynaud’s exposition [Ray]. It will be immediately clear that the definition of henselian local
ring we give does not generalize to the nonlocal case. Anyway, considering the local case as a
guideline and using the characterizations we prove in Chapter 1, it is possible to give a satis-
factory definition of henselian pair. We will see that in this context it is convenient to work
with idempotents. For this reason, we prove an important theorem which deals with liftings of
idempotents. This result is useful to give several characterizations of henselian pairs. In the
last part of this chapter, similarly to what we do for local rings, we give an universal way to
associate an henselian pair to any pair.

Chapter 3 is devoted to the investigation of projective limits in the category of schemes. In
particular, if X = lim←−Xj , we focus on results of the kind

X has the property P if and only if there exists some j such that Xj has the same property

We investigate modules over X which come from a family of modules over the Xj . We also
study morphisms between such modules.
These results are of particular interest to us as they play a crucial role both in Artin’s proof
of the theorem cited above and in its generalization to the nonlocal setting. In this chapter we
follow the exposition given in [EGA IV.3, §8].

Chapter 4 starts with a brief account on the class of excellent rings, which play a central
role in Artin’s paper [Art69] and in Algebraic Geometry in general. We do not enter into the
details of the theory, but we try to underline the main reasons which led to its introduction
instead. We give the precise definition of what an excellent ring is and we state some of the
most important properties of this class of noetherian rings.

Then we expose Artin’s approximation in some detail. The main idea is to consider a pair
(A, I) and its I-adic completion Â. Then, given some structure X̂ over Â, we wonder if there
exists a structure over A that approximates X̂ in some sense. With some assumptions, it is
possible to reduce this abstract problem to a very concrete one:

Given a finite number of polynomial equations with coefficients in A, a solution ŷ in Ân,
and an integer N , can we find a solution y in An such that

y ≡ ŷ mod IN?

Artin in [Art69] was able to answer this question in the local setting, putting some restrictions
on A. He also conjectured that the answer is always positive if A is an excellent henselian
local ring. Moreover, some years later and precisely in [Art82], he conjectured an even stronger
result. We discuss this second conjecture and Popescu’s theorem, which provides an answer.
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We also show how this theorem allows us to generalize Artin’s answer to the question above, in
the setting we are interested in.

This chapter’s references include [EGA IV.2], [Mats], [Rot], [Eis] for the section on excellent
rings. Moreover, we refer to [Art69], [Art82], [Rot] for the second section an to [Pop85], [Pop86],
[Pop90], [Rot] and [Swan] for the last one.

In the fifth chapter we give the proof of the theorem stated above in the case where (A,m)
is an henselian pair. This is done in two steps:

1. we use the results and techniques of Chapter 3 to reduce ourself to the case where (A,m)
is the henselization of a finitely generated Z-algebra.

2. we prove essential surjectivity and fully faithfulness of the functor −×Spec(A) Spec(A/m)
using Artin’s approximation and [EGA IV.3, Theorem 18.3.4], which is a consequence of
Grothendieck’s existence theorem.

In the last chapter we introduce the more general notion of henselian couple, which coincides
with that of henselian pair in the affine case. In particular, we show that couples (X,X0) which
arise as in the theorem stated above are henselian. Finally, we use this fact to give an answer to
a question which appears in [SGAIV, Exposé XII, Remarks 6.13] in a particular case, namely
when the given henselian couple (X,X0) is such that X is proper over a noetherian ring A and
X0 = X ×Spec(A) Spec(A/I) for some ideal I ⊆ A. The affine case is a consequence of the work
of R. Elkik and of O. Gabber.
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Chapter 1

Henselian rings

In this chapter we introduce the class of henselian local rings. We give a number of character-
izations of these rings and we study some of their fundamental properties. Finally, we prove
that there is a universal way to associate an henselian ring to any local ring.

1.1 Henselian Local Rings

Definition 1.1.1. A local ring A is said to be henselian if every finite A-algebra is decomposed,
i.e. it is a product of local rings.

Remark 1.1.2. It is immediate to observe that if A is henselian, every finite local A-algebra is
henselian.

Proposition 1.1.3. Let (A,m) denote a local ring and let k be its residue field. Let B be a
finite A-algebra and set B̄ = B/mB ∼= B ⊗A k. Then B is a semilocal ring whose maximal
ideals are the prime ideals which lie over m.

Proof. Let n ⊆ B be a maximal ideal. Set p = ϕ−1(n), where ϕ : A→ B denotes the structure
homomorphism. Then we have a commutative diagram

A B

A/p B/n

................................................................................................................. ............
ϕ

............................................................................................................
.....
.......
.....

............................................................................................................
.....
.......
.....

.................................................................................................. ............
ϕ̄

Moreover, since B is finite over A, also B/n is finite over A/p. By the Going up/Going down
theorems we get that Spec(B/n) −→ Spec(A/p) is surjective. This means that A/p is a field,
that is to say, p is the maximal ideal m of A. This proves that every maximal ideal of B lies
over A.
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Conversely, let q be a prime ideal of B lying over m. As above, we have a commutative diagram

A B

k B/q

................................................................................................................. ............
ϕ

............................................................................................................
.....
.......
.....

............................................................................................................
.....
.......
.....

.......................................................................................................... ............
ϕ̄

and since B is finite over A, the integral domain B/q is finite over k. Then B/q is a field and
q is a maximal ideal.
Moreover, let us notice that B/mB is a finite dimensional k-vector space. Consider n1, n2, . . .
maximal ideals of B. Then we have a chain of k-vector subspaces of B/mB

n1/mB ⊃ (n1 ∩ n2)/mB ⊃ (n1 ∩ n2 ∩ n3)/mB ⊃ . . .

Then there exists an integer s ≥ 1 such that

(n1 ∩ · · · ∩ ns)/mB = (n1 ∩ . . . ns+1)/mB

Thus, we get n1∩ · · ·∩ns = n1∩ · · ·∩ns+1. Then ns+1 ⊆ n1∪ · · ·∪ns and by [AM, Proposition
1.11] we have ns+1 ⊆ nj for some j ∈ {1, . . . , s}. Since ns+1 is maximal, we necessarily have
ns+1 = nj . Therefore, B has only finitely many maximal ideals.

In what follows, we will label I = {n1, . . . , ns} the set of maximal ideals of the finite A-
algebra B.

Proposition 1.1.4. The canonical map

B̄ → Πi∈IB̄n̄i

is an isomorphism.

Proof. It suffices to observe that B̄ is a finite k-algebra. Hence, it is an artinian ring. In
particular, by the structure theorem, B̄ is isomorphic to the product of the localizations in its
maximal ideals, which are

n̄i = ni/mB

Proposition 1.1.5. Let B be a finite algebra over the local ring (A,m). The following state-
ments are equivalent:

1. B is decomposed

2. the canonical morphism
B −→ Πi∈IBni

is an isomorphism
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3. the decomposition of B̄ lifts to a decomposition of B

Proof. 1.⇒ 2. We assume that
B ∼= Πj∈JBj

where each Bj is a local ring. Let mj be the maximal ideal of Bj for each j. Then,

nj = mj ×Πk ̸=jBk

is a maximal ideal of B. Conversely, every maximal ideal of B has such shape. Therefore, J is
a finite set and there exists a bijection f : I → J such that ni ∼= nf(i) for every i ∈ I. Finally,
observe that there are isomorphisms

Bnj
∼= Bj

2. ⇒ 3. Consider the given isomorphism

B ∼= Πi∈IBni

Applying the functor −⊗A A/m we obtain isomorphisms

B̄ ∼= B ⊗A A/m ∼= (Πi∈IBni)⊗A A/m ∼= Πi∈I(Bni ⊗A A/m) ∼= Πi∈IB̄n̄i

3. ⇒ 1. There is nothing to show.

Notation: For any ring R, we shall label Id(R) the set of idempotent elements of R.
The following proposition gives us a criterion to recognize when a finite A algebra is decomposed.

Proposition 1.1.6. Let (A,m) be a local ring and let B be a finite A-algebra. Set B̄ = B/mB.
The function induced by the natural projection

Id(B) −→ Id(B̄)

is injective. Moreover, it is a bijection if and only if B is decomposed

Proof. Let e ∈ Id(B). It is obvious that ē lies in Id(B̄). Therefore, our function is well defined.
Let e and f be two idempotent elements of B such that their images in B̄ coincide. Let
x = e− f ∈ mB. Then,

x3 = (e− f)3 = e3 − f3 − 3e2f + 3ef2 = e− f = x

and
x(1− x2) = 0

Moreover, as mB is contained in the Jacobson ideal of B, 1− x2 is a unit in B, i.e. x = 0.
Assume now that B is decomposed,

B ∼= Πi∈IBni

Fact: A local ring has no nontrivial idempotents: let g be an idempotent element in a local
ring. If it lies in the maximal ideal, 1− g is a unit; since g(1− g) = 0, we obtain g = 0. If g is
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a unit instead , we obtain g = 1.

Let e ∈ Id(B). Its image via the canonical map πi : B → Bni is an idempotent element of
Bni . Hence, it is either 0 or 1. In particular we can describe explicitly the idempotent element
e:

e = (e1, . . . , es) with ei ∈ {0, 1}

Similarly, any idempotent element of B̄ has the same shape. Therefore, we have that the
function Id(B)→ Id(B̄) is surjective.
Conversely, assume that the above function is a bijection. We have

B̄ ∼= Πi∈IB̄n̄i

Let ēi = (0, . . . , 1, . . . , 0) be the idempotent element with all but the i-th coordinate equal to
zero. Let ei ∈ Id(B) be an idempotent of B which maps to ēi. Then Bni

∼= Bei is a direct
factor of B as

B ∼= Bei ×B1−ei

Remark 1.1.7. In order to show that Id(B) −→ Id(B̄) is injective we only used the fact that
(A,m) is a pair (see Definition 2.1.1) with m contained in the Jacobson ideal of A.

Our next aim is to give several characterizations of henselian rings. First we need a lemma.

Lemma 1.1.8. Let C be a finite A-algebra, where A is a local ring. Assume that C̄ = C/mC ∼=
k[X]/(Q̄) for some monic polynomial Q̄ of degree n. Let X̄ be the image of X in C̄ and let
x ∈ C such that X̄ = x +mC. Then x generates C and is a root of a monic polynomial Q of
degree n such that Q+m[X] = Q̄.

Proof. Label I the ideal generated by 1, x, x2, . . . , xn−1 in C. Then

I +mC = C

and therefore, by Nakayama’s lemma, I = C. Write

xn = a0 + a1x+ · · ·+ an−1x
n−1

and consider the polynomial

Q = −a0 − a1X − · · · − an−1X
n−1 +Xn ∈ C[X]

Then x is a root of Q and Q+m[X] is a multiple of Q̄. Since deg(Q) = deg(Q̄) = n and both
the polynomials are monic, we have Q̄ = Q+m[X].

Remark 1.1.9. Notice that we only need that m ⊂ A is an ideal contained in the Jacobson
radical. The local hypothesis is not needed.

We are now able to give a first result on some characterizations of henselian local rings.
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Theorem 1.1.10. Let (A,m) be a local ring. The following statements are equivalent:

1. A is henselian

2. Every finite free A-algebra is decomposed

3. For every monic polynomial P ∈ A[X], A[X]/(P ) is decomposed

4. Every monic polynomial P ∈ A[X] such that P̄ (X) ∈ k[X] has a decomposition P̄ = Q̄R̄,
where Q̄ and R̄ are monic polynomials in k[X] and (Q̄, R̄) = k[X] admits a decomposition
P = QR, where Q and R are monic polynomials in A[X] and their reductions modulo
mA[X] are Q̄ and R̄ respectively.

Proof. The implications 1. ⇒ 2. ⇒ 3. are trivial.
3. ⇒ 4. Let P be a polynomial in A[X] and let P̄ = Q̄R̄ be a decomposition of its reduction
modulo mA[X] into the product of two monic polynomials which generate the unit ideal. Let
x be the image of X in A[X]/(P ). Notice that

(Q̄R̄) = (Q̄) ∩ (R̄)

In fact, (Q̄) ∩ (R̄) = (Q̄R̄/S̄), where S̄ is the greatest common divisor of the two polynomials.
But, as they generate the unit ideal, S̄ is a unit and therefore (Q̄) ∩ (R̄) = (Q̄R̄). By the
Chinese Remainder Theorem, we thus get

k[X]/(P̄ ) ∼= k[X]/(Q̄)× k[X]/(R̄)

By Proposition 1.1.5, the decomposition of k[X]/(P̄ ) lifts to a decomposition of A[X]/(P )

A[X]/(P ) ∼= B1 ×B2

Each Bi, i = 1, 2, is a finite A-algebra such that the hypothesis of the previous lemma are
verified. Then B1 is generated by the an element x1 over X + Q̄, which is a root of some monic
polynomial Q ∈ B1[X], with deg(Q) = deg(Q̄) and Q+m[X] = Q̄. Similarly, B2 is generated
by an element x2 over X+ R̄, which is a root of a monic polynomial R ∈ B2[X], with deg(R) =
deg(R̄) and R +m[X] = R̄. We can also choose x1 and x2 such that x = (x1, x2). Therefore,
x is a root of QR. In particular, we get that QR is a multiple of P . Since deg(P ) = deg(QR)
and both polynomials are monic, we actually have an equality P = QR.
4. ⇒ 3. Let P be a monic polynomial in A[X]. Let P̄ = Πi∈I P̄i ∈ k[X] be the decomposition
of P̄ in powers of irreducible monic polynomials pairwise coprime. Then

P = Πi∈IPi

where each Pi is monic. Consider the morphism

u : A[X]/(P )→ Πi∈IA[X]/(Pi)

The induced morphism ū is surjective. Therefore, by Nakayama’s lemma, we get that u is
surjective as well. Moreover, since deg(P ) =

∑
i∈I deg(Pi), it follows that A[X]/(P ) and
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Πi∈IA[X]/(Pi) are two free A-modules of the same rank. Hence, u is also injective.
Notice that each A[X]/(Pi) is a local ring: in fact, it is a finite A-algebra and by Proposition
1.1.3 its maximal ideals are exactly those above m. Therefore, the set of maximal ideals of
A[X]/(Pi) is in bijection with the set of prime ideals of A[X]/(Pi)⊗AA/m ∼= k[X]/(P̄i), which
is an artinian local ring.
3. ⇒ 1. Let B be a finite A-algebra. By Proposition 1.1.6, B is decomposed if and only if

Id(B)→ Id(B̄)

is a bijection. Let ēi be the idempotent element of B̄ corresponding to the maximal ideal ni of
B. Let b ∈ B be such that b +mB = ēi and let P ∈ A[X] be a monic polynomial such that
P (b) = 0. Consider the A-morphism

ϕ : A[X]/(P )→ B

which maps X + (P ) onto b. Set p = ϕ−1(ni). By the choice of ēi, ni is the only prime ideal of
B lying over p. By hypothesis, A[X]/(P ) is decomposed. Let e be the elementary idempotent
element such that e+p = 1. Then ϕ(e) ∈ B is an idempotent element and ϕ(e)+mB = ēi.

Remark 1.1.11. Let (A,m) be a local ring and let Q and R be two polynomials in A[X], with Q
monic, such that their reduction modulo m generate the unit ideal. Then also Q and R generate
the unit ideal. In fact, let J be the ideal in A[X] generated by these two polynomials and set
M = A[X]/J . Then M is a finitely generated A-module, as Q is monic. By the assumptions,
it follows that J +mA[X] = A[X]. This implies that mM =M . Then, by Nakayama’s lemma,
M = 0.
We can apply this fact to see that the factorization P = QR in Theorem 1.1.10 4. is unique.
In fact, if P = UV is another factorization with the same properties, by what we have just
shown, Q and V generate the unit ideal A[X]. Then there exist two polynomials F,G ∈ A[X]
such that FQ+GV = 1. Multiplying by U :

U = UFQ+ UGV = UFQ+GQR

Thus, Q divides U . As both Q and U are monic and they have the same degree, they coincide.

Corollary 1.1.12. Let A be an henselian ring and let J be an ideal. Then A/J is an henselian
ring.

Proof. It is immediate to observe that the ring A/J is a local ring which satisfies property 4.
in Theorem 1.1.10.

The most trivial example of an henselian ring is that of a field.
The following result provides other examples:

Lemma 1.1.13. If I is a locally nilpotent ideal of R, the function

Id(R)→ Id(R/I)

is bijective.
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Proof. injectivity: Let e1, e2 ∈ Id(R) such that e1 + I = e2 + I. Then, e1 − e2 = x ∈ I.
Therefore, there exists an odd integer n ≥ 1 such that xn = 0, i.e.

0 = (e1 − e2)n =
n∑

i=0

(n
i

)
ei1(−e2)n−i = en1 − nen−1

1 e2 + · · ·+ ne1e
n−1
2 − en2 = e1 − e2

surjectivity: let ē = e + I ∈ Id(R/I). Define f = 1 − e. Then ef ∈ I, as ēf̄ = 0 ∈ R/I. Let
k ∈ N such that ekfk = 0. Consider the element x = 1 − ek − fk ∈ I. As x lies in I, it is a
nilpotent element. Hence, 1− x is a unit in R. Let u = (1− x)−1. Then

uek + ufk = u(1− x) = 1

Multiplying by uek we see that
(uek)2 = uek ∈ Id(R)

Moreover, we have that
ūēk = 1̄ēk = ē

As an immediate consequence, we obtain the following corollary:

Corollary 1.1.14. Let A be a local ring. Then A is henselian if and only if Ared is henselian.

In particular, every artinian local ring is henselian.
This allows us to show that complete separate local rings are henselian.

Proposition 1.1.15. If (A,m) is complete and separate with respect to the m-adic topology.
Then A is henselian.

Proof. Let B be a finite A-algebra, which is free as an A-module. Then also B is complete and
separate with respect to the m-adic topology:

B ∼= lim←−B/m
nB

For every n ∈ N, B/mnB is a finite A/mn-algebra. Note that A/mn is an artinian local ring
and therefore it is henselian. Thus B/mnB is decomposed:

B/mnB = Πi∈I(B/m
nB)n̄i = Πi∈IBni/m

nBni

Applying the functor lim←−, we get an isomorphism

B = lim←−B/m
nB = lim←−Πi∈IBni/m

nBni = Πi∈I lim←−(B/m
nB)n̄i
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1.2 Idempotents of a finite algebra over a local ring

As we have seen in Proposition 1.1.6, in order to study henselian rings (A,m) it is very
important to understand the behavior of idempotent elements of finite A-algebras. Moreover,
thanks to Theorem 1.1.10, it is sufficient to focus to the case where B is a finite free A-algebra.
The aim of this section is to study the obstruction of an idempotent element of B/mB to be
lifted to an idempotent element of B. With this in mind, let B be a finite A-algebra and let
{e1, . . . , er} be an A-basis of B. Let

eiej =
r∑

k=1

µ(i, j, k)ek

be the multiplicative table of B. Pick an element b =
∑r

i=1 aiei ∈ B. Then

b2 =

r∑
i,j=1

aiajeiej =

r∑
i,j=1

aiaj

r∑
k=1

µ(i, j, k)ek =
r∑

k=1

( r∑
i,j=1

aiajµ(i, j, k)
)
ek

Then b is an idempotent element if and only if for every k = 1, . . . , r

r∑
i,j=1

aiajµ(i, j, k) = ak

Define, for k = 1, . . . , r, the polynomials Pk(T1, . . . , Tr) ∈ A[T1, . . . , Tr] as

Pk(T1, . . . , Tr) =
r∑

i,j=1

µ(i, j, k)TiTj − Tk

Then the element b =
∑r

i=1 aiei ∈ B is idempotent if and only if the r-tuple (a1, . . . , ar) satisfies
the system of equations

P1(a1, . . . , ar) = 0
. . .

Pr(a1, . . . , ar) = 0

Set
E(B) = E =

A[T1, . . . , Tr]

(P1, . . . , Pr)
= A[t1, . . . , tr]

Then, we have just shown that there exists a bijection between the sets

HomA(E,A)←→ Id(B)

More generally, let C be an A-algebra. Then, with the same notation we used above, we have
that {e1⊗ 1, . . . , er ⊗ 1} is a C-basis of the C-algebra B⊗A C. Let β =

∑r
i=1 ei⊗ ci ∈ B⊗A C.

Then

β2 =
r∑

i,j=1

eiej ⊗ cicj =
r∑

i,j=1

( r∑
k=1

µ(i, j, k)ek
)
⊗ cicj =
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r∑
k=1

ek ⊗
( r∑
i,j=1

µ(i, j, k)cicj
)

Therefore, β2 = β if and only if the r-tuple (c1, . . . , cr) satisfies the system of equations

P1(c1, . . . , cr) = 0
. . .

Pr(c1, . . . , cr) = 0

Then, the bijection we considered above holds for every A-algebra C:

HomA(E,C)←→ Id(B ⊗A C)

ϕ ↦→
r∑

i=1

ei ⊗ ϕ(ti)

Then, if we define the functor

F : A− algebras −→ Sets

C ↦→ Id(B ⊗A C)

what we have proved so far is that F is represented by the object E (it is easy to see that the
bijection we described above is natural).
In this new setting, the problem of whether or not an idempotent element of B/mB can be lifted
to an idempotent element ofB corresponds to the following question: given anA-homomorphism
ū : E → k = A/m, can we lift it to a A-morphism u : E → A? In other words, can we find an
arrow such that the following diagram commutes?

E A

k

................................................................................................................. ............
u

............................................................................................................................
.
.......
.....

ū

........................................................................................................................
.....
...........
.

Remark 1.2.1. Notice that at this point we just assumed that (A,m) is a pair (see Definition
2.1.1).

Assume that (A,m) is local. Set q = Ker(ū), which is a maximal ideal of E. Then, ū
factors uniquely through a morphism v̄ : Eq → k

E k

Eq

................................................................................................................. ............
ū

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...............
............

v̄

....................................................................................................................
.
.......
.....
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Therefore, we can reformulate the problem as follows: given an A-homomorphism v̄ : Eq → k,
can we lift it to an A-homomorphism v : Eq → A? In general, the answer is no. The main
advantage of the last reformulation is that we can restrict our attention to local homomorphisms
between local rings. Consider the collection of local homomorphisms

ϕi : (A,m)→ (Ai,mi)

such that the residue field extension is trivial and such that, if Bi = B⊗AAi, every idempotent
element of Bi/miBi can be lifted to an idempotent element of Bi. Notice that, since Ai/mi =
A/m, Bi/miBi

∼= B/mB. Therefore, the collection of local A-algebras we are considering is the
one consisting of A-algebras such that, for every ūē : Eq → k corresponding to some idempotent
element ē of B/mB, there exist a lifting arrow vi,ē : Eq → Ai

Eq Ai

k

....................................................................................................................
.
.......
.....

ūē

................................................................................................................. ............
vi,ē

....................................................................................................................
.....
...........
.

We will say that j ≤ i if there exists an A-homomorphism χj,i : Ai → Aj such that, for every
ē ∈ Id(B/mB), the following diagram commutes

Eq

Ai

Aj

k

.......................................................................................................................... ........
....

vj,ē

..................................................................................................................................................................................................................... ............
vi,ē

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..............
............

χj,i
....................................................................................................................................................................................................................................

.
.......
.....

ūē ...................................................................................
.....
.......
.....

................................................................................................................................................................................................................................
.....
...........
.

It is clear that i ≤ i and that i ≤ j, j ≤ k imply i ≤ k. Also assume that

χi,i = idAi

χi,k = χi,j ◦ χj,k ∀ i ≤ j ≤ k

Therefore, we have just defined a diagram

D : Iop → A− algebras

Remark 1.2.2. Let ϕi : A → Ai as above. Each idempotent element ē of B/mB corresponds
uniquely to a r-tuple of elements of (a1,i,ē, . . . , ar,i,ē) ∈ Ai. Consider the A-subalgebra of Ai

generated by those (finitely many, as Id(B/mB) is a finite set) elements. After localizing such
algebra in the maximal ideal corresponding to mi, we obtain a local A-algebra, whose structure
homomorphism is local. Therefore, we can restrict our attention to the algebras Ai which are
localizations of A-algebras of finite type.
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Assume that the limit associated to the diagram we constructed above exists. Then the
following result holds:

Lemma 1.2.3. With the same notation we have used above, B is decomposed if and only if
A ∼= lim←−Ai

Proof. (⇒) If B is decomposed, then A is one of the A-algebras Ai, say A = Ai0 . Notice that in
this case χi,i0 has to be ϕi for every i. Hence, if {ψi : C → Ai} is a collection of A-morphisms
such that for i ≤ j ψi = χi,j ◦ ψj , there exists a unique morphisms ψ such that the following
diagram commutes

C

A

Aj Ai

...................................................................................
.....
.......
.....

ψ

.................................................................................................................................................................................................................................................................
.....
............

ψj

.......................................................................................................................................................................................................................................................................... .......
.....

ψi

..........................................................................................................................................................................
...
............

ϕj

............................................................................................................................................................................. .........
...

ϕi
.................................................................................................................................................................................................................................................................................................................................................. ............

χi,j

Namely, ψ = ψi0 . Therefore, (A, ϕi) satisfies the universal property, whence A ∼= lim←−Ai

(⇐) Let ē be an idempotent element of B/mB and let v̄ : Eq → k be the corresponding A-
morphism. For each i, let vi : Eq → Ai be the lifting of v̄ associated to Ai. By definition, for
every i ≤ j, the following diagram commutes

Eq

lim←−Ai

Aj Ai

..........................................................................................................................................................................................................................................................
.....
............

vj

.................................................................................................................................................................................................................................................................. .......
.....

vi
...............................................................................................................................................................

...
............

.................................................................................................................................................................. .........
...

.................................................................................................................................................................................................................................................................................................................................................. ............
χi,j

and therefore there exists a unique A-morphism v : Eq → lim←−Ai
∼= A. It is immediate to

verify that v is a lifting of v̄. As this holds for every idempotent element of B/mB, we have
Id(B/mB) = Id(B). Hence, B is decomposed.

With this new approach we also find a new proof of Proposition 1.1.15:

Proof. Let A = lim←−A/m
n and let B be a finite free A-algebra. For every A-homomorphism

v̄ : Eq → k = A/m and for every n ≥ 1, there exists a lifting homomorphism vn : Eq → A/mn.
In fact, by Lemma 1.1.13, we have that Id(B/mB) = Id(B/mnB). Moreover, since each of
those arrow is unique, we have that the canonical morphism A/mn+1A → A/mnA make the
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following diagram commutative
Eq A/mn+1

A/mn

...................................................................................................................... ............
vn+1

.....................................................................................................................................................
.....
...........
.

.......................................................................................................................................................
.
.......
.....

vn

In particular, we get an A-homomorphism v : Eq → lim←−A/m
n = A that lifts v̄. As this is

possible for every idempotent element of B/mB, we find out that B is decomposed. This
means that every finite free A-algebra is decomposed. Applying Theorem 1.1.10, we find that
A is henselian.

Remark 1.2.4. Notice that the A-algebra E defined above has the following important property:
for every A-algebra C and for every ideal J in C such that J2 = 0, there is a bijection

Id(C ⊗A B) = HomA(E,C)←→ HomA(E,C/J) = Id(C/J ⊗A B)

Therefore, Spec(E) −→ Spec(A) is a formally étale morphism. Since, by construction, E
is also a finitely presented A-algebra, we find that Spec(E) −→ Spec(A) is actually an étale
morphism, that is to say, E is an étale A-algebra.

1.3 New characterizations of henselian rings

We can extend Theorem 1.1.10 in the following way.

Theorem 1.3.1. Let (A,m) be a local ring. The following statements are equivalent:

1. A is henselian.

2. If P ∈ A[T ] is a monic polynomial and its reduction modulo m has a simple root ā, there
exists a unique simple root a of P such that a+m = ā.

3. If B is an étale A-algebra and n ∈ Spec(B) is an ideal lying over m such that k(n) =
Bn/nBn

∼= k = A/m, then A −→ Bn is an isomorphism.

4. If P1, . . . , Pn ∈ A[T1, . . . , Tn] and ā = (ā1, . . . , ān) ∈ kn is an element such that P̄i(ā) = 0

for every i = 1, . . . , n and det
(
∂P̄i
∂Tj

)
̸= 0, there exists an element a ∈ An which lifts ā and

such that Pi(a) = 0, for every i = 1, . . . , n.

5. Let P ∈ A[T ]. If P̄ factorizes as P̄ = Q̄R̄ in k[T ], with Q̄ monic and Q̄, R̄ coprime in
k[T ], then P factors as P = QR, where Q and R are liftings of Q̄ and R̄ respectively.

Proof. 1. ⇒ 2. Assume that ā is a simple root of the polynomial P̄ = P +m[T ] ∈ k[T ]. Then
P̄ = (T − ā)Q̄ for some monic polynomial Q̄ ∈ k[T ]. Moreover, since ā is a simple root, T − ā
and Q̄ generate the unit ideal k[T ]. Therefore, as A is henselian by hypothesis, there exist
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liftings T − a,Q ∈ A[T ] of T − ā and Q̄ respectively such that P = (T − a)Q. Moreover, a
is necessarily a simple root of the polynomial P , as otherwise ā would be a multiple root of
P̄ . Finally, the element a is unique as the factorization P = (T − a)Q as above is unique (see
Remark 1.1.11).
2. ⇒ 3. We can assume without loss of generality that B =

(A[T ]
(F )

)
Ḡ

is standard-étale (F monic
polynomial, F ′ ∈ B×). As k(n) = k, n corresponds to a root ā of F̄ . Moreover, since F ′ is
invertible in B, ā has to be simple. By hypothesis, we can factor the polynomial F in a unique
way as F = (T − a)Q. Consider the natural morphism

ϕ :
A[T ]

F
−→ A[T ]

(T − a)
× A[T ]

(Q)

Notice that

ϕ
(A[T ]

F

)
+m

( A[T ]

(T − a)
× A[T ]

(Q)

)
=

A[T ]

(T − a)
× A[T ]

(Q)

By Nakayama’s Lemma, therefore, we obtain that ϕ is surjective. As both the A-algebra on
the left and the A-algebra on the right are free A-modules of rank deg(F ), ϕ is also injective.
Whence, n corresponds to a maximal ideal of A[T ]

(T−a)
∼= A. Therefore, Bn

∼= A.
3. ⇒ 1. Let B be a finite free A-algebra and let E be its associated étale A-algebra. By what
we proved in the previous section, B is decomposed if and only if

HomA(E,A) −→ HomA(E, k)

is a bijection.
Let ū ∈ HomA(E, k) and set n = Ker(ū). Then n ∈ Spec(E) is a maximal ideal of E which lies
over m and such that En/nEn = k. Applying the hypothesis, we thus get En

∼= A. Therefore,
we can lift the A-morphism v̄ associated to ū to an A-morphism v : En −→ A:

HomA(En, k) ∼= HomA(A, k) ∼= HomA(A,A) ∼= HomA(En, A)

Composing v with the canonical morphism E −→ En, we obtain a lifting u : E −→ A of ū.
Therefore, B is decomposed.
3. ⇒ 4. Consider the A-algebra

B =
A[T1, . . . , Tn]

(P1, . . . , Pn)

Consider the ideal n of B generated by m and Ti − bi, where b̄i = āi for every i = 1, . . . , n.
Notice that B/n ∼= k. Then the fact that det

(
∂P̄i
∂Tj

)
|(b̄1,...,b̄n) ̸= 0 implies that det

(
∂Pi
∂Tj

)
/∈ n.

Therefore, we can find an element b in B−n such that det
(
∂Pi
∂Tj

)
is invertible in Bb. This means

that Bb is an étale A-algebra. Moreover, the ideal nBb lies over m and Bb/nBb = k. Using
3., we can find a section ψ : Bb −→ A of the structure morphism of Bb. Therefore, setting
ai = ψ(Ti), we find the desired element.
4. ⇒ 5. Let P = anT

n + · · · + a1T + a0. Let r = deg(Q̄), s = n − r and consider the set of
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equations
X0Y0 = a0

X0Y1 +X1Y0 = a1
X0Y2 +X1Y1 +X2Y0 = a0

...
Xr−1Ys + Ys−1 = an−1

Ys = an

(b0, . . . , br−1, c0, . . . , cs) is a solution of this system of equations if and only if

P = (Tn + br−1T
r−1 + · · ·+ b0)(csT

s + · · ·+ c1T + c0)

The Jacobian matrix associated to this set of equations is

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y0 0 . . . X0 0 . . .
Y1 Y0 . . . X1 X0 . . .
Y2 Y1 . . . X2 X1 . . .
...

... . . .
...

...
...

Ys Ys−1 . . . . . . . . . . . .
...

... . . .
...

...
...

0 . . . . . . 0 . . . 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
whose determinant is the resultant res(Q,R) of the two polynomials Q and R defined as

Q = T r +Xr−1T
r−1 + · · ·+X0

R = YsT
s + · · ·+ Y1T + Y0

Moreover, notice that res(Q̄, R̄) ̸= 0 as Q̄ is monic and Q̄, R̄ are coprime. Therefore we can
apply 4. and we find a solution (b0, . . . , br−1, c0, . . . , cs) of the system, which yields the desired
factorization of P .
5. ⇒ 1. Using Theorem 1.1.10, this implication is trivial.

The last theorem gives some algebraic characterizations of henselian rings. However, we can
also characterize henselian rings in geometric terms. This is what we will do in the next result.

Theorem 1.3.2. Let (A,m) be a local ring and let k be its residue field. Let S = Spec(A) and
let s be the closed point of S. The following statements are equivalent:

1. A is henselian.

2. If f : X −→ S is a quasi-finite and separated morphism, then X = X0 ⨿X1 ⨿ · · · ⨿Xn,
where s /∈ f(X0) and Xi = Spec(Bi) is finite over S for every i = 1, . . . n, Bi being a local
ring.

3. If f : X −→ S is étale and x ∈ X is a point such that f(x) = s and k(x) = k(s) = k.
Then f has a section g : S −→ X.
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Proof. 1. ⇒ 2. By Zariski’s Main Theorem, f factorizes as

X S

Y

............................................................................................................................................................................................ ............
f

................................................................................................................................................................................................................
.
.......
.....

j

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...............
............

f ′

where j is an open immersion and f ′ is a finite morphism. In particular, f ′ is an affine morphism
and therefore Y = (f ′)−1(S) is an affine scheme, say Y = Spec(B). Since A is henselian, B can
be written as

B = Πm
i=1Bµi

where µi are its maximal ideals. Then Y =
∐m

i=1 Spec(Bµi). Let µ1, . . . , µn be the closed points
of Y which lie also in X and set Xi = Spec(Bµi).

∐n
i=1Xi is open and closed in X, as it is

open and closed in Y . Therefore, if we set X0 = X −
∐n

i=1Xi,

X = X0 ⨿X1 ⨿ · · · ⨿Xn

and it is immediate to observe that s /∈ f(X0) (Proposition 1.1.3). Finally, as each Bµi is a
quotient of a finite A-algebra, each Xi is finite over S for i = 1, . . . , n.
2. ⇒ 1. Let B be a finite A-algebra. Then f : X = Spec(B) −→ S is a finite morphism. In
particular, it is quasi-finite and separated. Then we can write X as

X = X0 ⨿X1 ⨿ · · · ⨿Xn

with the properties listed above. If X0 ̸= ∅, then it would contain a closed point, as it is
closed in an affine scheme. This is impossible since closed points of B are mapped onto s and
s /∈ f(X0). Therefore,

X = X1 ⨿ · · · ⨿Xn = Spec(B1)⨿ · · · ⨿ Spec(Bn)

that is to say, B ∼= Πn
i=1Bi is decomposed.

1. ⇒ 3. Let f : X −→ S be an étale morphism, x ∈ X a point such that f(x) = s and
k(x) = k. Then there exists an affine open neighborhood U = Spec(B) of x such that A −→ B
is standard étale. Let n be the prime ideal of B corresponding to x. Then, proceeding as in the
proof of the previous theorem, we see that Bn is isomorphic to A and that it is a direct factor
of B. This yields a section

S = Spec(A) ∼= Spec(Bn) −→ Spec(B) −→ X

3. ⇒ 1. Let B be an étale A-algebra and let n be an ideal of B lying over m and such that
Bn/nBn = k. Then the morphism Spec(B) −→ Spec(A) has a section, that is to say, there



CHAPTER 1. HENSELIAN RINGS 16

exists a morphism B −→ A such that, when composed with the structural morphism of B, gives
the identity on A. Moreover, we can find B −→ A in such a way that n is the inverse image of
m (see [StacksProj, Tag 04GH]). Consider the induced morphism

Bn −→ A

and the two compositions
Bn −→ A −→ Bn

A −→ Bn −→ A

which induce the identity on the residue fields. Applying Proposition 1.4.7 below, we imme-
diately see that both compositions have to be the identity.

1.4 Henselization

In this section we will show how to associate in an universal way an henselian ring to a local
ring.

Definition 1.4.1. Let A be a local ring. An henselization of A is a couple (Ah, i), where Ah is
an henselian ring and i : A −→ Ah is a local homomorphism satisfying the following universal
property: for every henselian ring B and for every local homomorphism ϕ : A −→ B, there
exists a unique homomorphism ϕh : Ah −→ B such that ϕ = ϕh ◦ i

A

Ah

B
............................................................................................................................

.
.......
.....

i

................................................................................................................. ............
ϕ

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.................
............

ϕh

Notice that, as a consequence of the universal property, the henselization of A is unique up
to (a unique) isomorphism.

Definition 1.4.2. Let (A,m) be a local ring. We say that an A-algebra is local-étale if it is of
the shape Bn, where B is an étale A-algebra and n is a prime ideal of B which lies over m.

Remark 1.4.3. In general, a local-étale A-algebra is not étale. In fact, it has not to be finitely
presented. Anyway, it is formally étale. Let B be an étale A-algebra and let n be a prime
ideal of B over m. Let C be an A-algebra and J ⊆ C an ideal such that J2 = 0. Consider a
commutative square

A C

Bn C/J

B

................................................................................................................................................................... ............
f

..............................................................................................................................................................
.....
.......
.....

i

.......................................................................................................................................................... ............

g

..............................................................................................................................................................
.....
.......
.....

p

................................................................................................... ........
....

j

...........................................................................................
....
............ ψ
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Since B is an étale A-algebra, there exists a unique A-morphism g′ : B −→ C such that g′◦j = f
and p ◦ g′ = g ◦ ψ. Pick an element x ∈ B − n. We have that p ◦ g′(x) = g ◦ ψ(x) is a unit in
C/J . Let y ∈ C such that g′(x)y + J = 1 + J . Then g′(x)y = 1 + z for some z ∈ J , which
is a nilpotent element. Therefore, g′(x)y is a unit in C, whence the same is true for g′(x). By
the universal property of localization, g′ factorizes through Bn. This means that we can lift
the morphism g to a morphism Bn −→ C. The uniqueness of this map is clear. Thus, Bn is a
formally étale A-algebra.

Definition 1.4.4. Let (A,m) be a local ring. A local ind-étale A-algebra is an inductive limit
of local-étale A-algebras, where the transition maps are local homomorphisms.

Lemma 1.4.5. Let (A,m) be a local ring, B′ a local-étale A-algebra and C ′ a local-étale B′-
algebra. Then C ′ is a local-étale A-algebra.

Proof. By definition, B′ = Bn, with B étale over A and n ∈ Spec(B) an ideal over m. Moreover,
C ′ = Cp, where C is an étale Bn-algebra and p ∈ Spec(B) is an ideal which lies over nBn. By
the local structure of étale morphisms, there exists an element f ∈ C − p such that Cf is a
standard étale Bn-algebra, say

Cf
∼=

(Bn[T ]

(F )

)
Ḡ

where F is a monic polynomial and F ′ is a unit in Cf . As Cp
∼= (Cf )pCf

, we can assume without
loss of generality that C is a standard étale Bn-algebra. Let h ∈ B − n such that F,G lie in
Bh[T ], with F monic and F ′ a unit in D =

(
Bh[T ]
(F )

)
Ḡ
. Since D is a (standard) étale Bh-algebra

and Bh is an étale A-algebra, D is an étale A-algebra. Now, we have two morphisms

ϕ : D −→ C ψ : C −→ Cp

Let q be the prime ideal of D which corresponds to p. Consider a morphism χ : D −→ E such
that for every x /∈ q, χ(x) ∈ E×. If b ∈ B − n, then b /∈ q (as q lies over n). Hence, there exists
an homomorphism χ′ : C −→ E such that χ′ ◦ ϕ = χ. Every element of C − p maps to a unit
via χ′, providing a unique homomorphism Cp −→ E. Hence, Cp

∼= Dq and C ′ is a local-étale
A-algebra.

In order to prove the next proposition, we will need a lemma.

Lemma 1.4.6. Let B be an unramified A-algebra and C any A-algebra. Let p ∈ Spec(C) and
π : C −→ C/p = k(p) the canonical projection. Let u, v ∈ HomA(B,C) such that π ◦ u = π ◦ v.
Then there exists an element f ∈ C−p such that the compositions of u and v with the canonical
morphism C −→ Cf coincide.

Proof. Let S = Spec(A), X = Spec(B), Y = Spec(C) and let u∗, v∗ : Y −→ X be the
morphisms of S-schemes which corresponds to u and v respectively. Label y ∈ Y the point
which corresponds to p. Let ∆ : X −→ X ×S X denote the diagonal morphism. It is an open
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immersion as X is unramified over S. Let W be the fiber product of X and Y over X ×S X

W X

Y X ×S X

................................................................................................................. ............

............................................................................................................
.....
.......
.....

i

............................................................................................................
.....
.......
.....

∆

................................................................................. ............
u∗ × v∗

As ∆ is an open immersion, i is an open immersion as well. W is the biggest subscheme of Y
on which u∗ and v∗ coincide. Moreover, y ∈W . Therefore, there exists a principal open subset
y ∈ D(f) ⊆W ⊆ Y . This concludes the proof of the lemma.

Proposition 1.4.7. Let (A,m) be a local ring, (B,n) a local ind-étale A-algebra and (C, p) a
local A-algebra whose structure morphism is local. Set k(A) = A/m, k(B) = B/n, k(C) = C/p
and Homloc

A (B,C) = {ϕ ∈ HomA(B,C) : ϕ is local}.

1. Homloc
A (B,C) = HomA(B,C)

2. Φ : HomA(B,C) −→ Homk(A)(k(B), k(C)) is injective. It is also surjective if C is
henselian.

Proof. 1. Let f ∈ HomA(B,C). We need to show that f−1(p) = n. Since

HomA(B,C) = HomA(lim−→Bi, A) = lim←−HomA(Bi, C)

we can assume without loss of generality that B is a local-étale A-algebra. Therefore, Let
B = (B′)n′ , where B′ is an étale A-algebra and n′ lies over m. Clearly, we have

HomA(B,C) = {ϕ ∈ HomA(B
′, C) : ϕ−1(p) = n}

Therefore, it is sufficient to show that if q is another ideal of B′ which lie over m, there are no
inclusion relations between n and q. This can be seen as follows : since B′ is étale over A, the
fiber of m is a finite product of finite separable extensions of k(A). Therefore, neither q ⊆ n or
n ⊆ q. In particular,

Homloc
A (B,C) = HomA(B,C)

2. Let B = lim−→Bi. Then k(B) = lim−→ k(Bi). We have that

HomA(B,C) = lim←−HomA(Bi, C)

and, similarly,
Homk(A)(k(B), k(C)) = lim←−Homk(A)(k(Bi), k(C))

This means that we can assume without loss of generality that B is a local-étale A-algebra. Let
B′ be an étale A-algebra and let B = (B′)n′ . As B′ is étale over A, A/m −→ B′/mB′ is an étale
morphism. In particular, there are only finitely many prime ideals of B′, n′ = n′0, n

′
1, . . . , n

′
s

which lie over m. There exists an element f /∈ n′ which lies in n′i for every i = 1, . . . , s.
Interchanging B′ with B′

f , we can therefore assume that n′ is the only point in the fiber of m.
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Let u : B′ −→ C be an A-homomorphism. As u−1(p) lies over m, we have that it coincides
with n′. Therefore,

HomA(B
′, C) = HomA(B

′
n′ , C)

Moreover, it is also true that

Homk(A)(k(B), k(C)) = Homk(A)(B
′/mB′, k(C))

Hence, we can replace B with B′. So far, we reduced to the case where B is an étale A-algebra.
Let u, v ∈ HomA(B,C) such that the induced morphisms ū, v̄ : B −→ k(C) coincide. By the
previous lemma, there exists an element f ∈ C − p such that the compositions of u and v with
the canonical morphism C −→ Cf coincide. As C is a local ring with maximal ideal p, C ∼= Cf

and therefore u = v.
Assume that C is henselian. Set D = B⊗AC. Then HomA(B,C) = HomC(D,C). In a similar
way, Homk(A)(k(B), k(C)) = HomA(B, k(C)) = HomC(D, k(C)). The set HomC(D, k(C))
can be identified with the prime ideals q of D which lie over p and such that k(q) = k(C). By
the characterization theorem of henselian rings we proved above (Theorem 1.3.1), any such
ideal is such that Dq

∼= C. Therefore, any homomorphism ū : D −→ k(C) with q := Ker(ū)
can be lifted to an homomorphism u : D −→ C.

The last proposition is the key result which is used to prove the next important result.

Corollary 1.4.8. Let (A,m) be an henselian ring. Consider the functors

F : {finite étale local A− algebras} −→ {finite separable extensions of k(A)}

G : {finite étale A− algebras} −→ {finite étale k(A)− algebras}

both defined by B ↦→ B ⊗A k(A). Then F and G are equivalences of categories.

Proof. Let us start with the local case: let B and C be two local finite étale A-algebras. In
particular, we have that B is local ind-étale algebra and C is henselian. Therefore, it is an
immediate consequence of the previous proposition that

HomA(B,C) = Homk(A)(k(B), k(C))

which means that F is a fully faithful functor. To show essential surjectivity, consider a finite
separable extension L of k(A). By the primitive element theorem, there exists a monic sepa-
rable polynomial F̄ (T ) ∈ k(A)[T ] such that L ∼= k(A)[T ]/(F̄ (T )). Let F (T ) ∈ A[T ] be any
polynomial such that its reduction modulo m coincides with F̄ (T ) and set B = A[T ]/(F (T )).
Since F̄ (T ) is separable, we have

F ′(T )B +mB = B

Therefore, Nakayama’s lemma implies that F ′(T )B = B, i.e. F ′(T ) is a unit in B. This implies
that B is a finite étale algebra. Moreover, we know that the maximals ideals of B are those
which lie over m. As B ⊗A k(A) = L, B is local. This shows that F is an equivalence of
categories.
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Let us now show that also G is an equivalence of categories. Let B and C be two finite étale
A-algebras. Then they decompose in the product of finite local A-algebras (A is henselian)

B =
m∏
i=1

Bi C =
n∏

j=1

Cj

By the universal property of the direct product we get

HomA(B,C) =

n∏
j=1

HomA(B,Cj)

Furthermore, we have that

C̄ =

n∏
j=1

C̄j =

n∏
j=1

k(Cj)

and

Homk(A)(B̄, C̄) =

n∏
j=1

Homk(A)(B̄, k(Cj))

Hence, we can assume without loss of generality that C is local. In particular, C is henselian.
Moreover, we have bijections

HomA(B,C)←→ HomSpec(A)(Spec(C), Spec(B)) =

HomSpec(A)(Spec(C),
m∐
i=1

Spec(Bi))

As Spec(C) is connected, we have that

HomSpec(A)(Spec(C),
m∐
i=1

Spec(Bi)) =
m∐
i=1

HomSpec(A)(Spec(C), Spec(Bi))

Similarly,

HomSpec(k(A))(Spec(k(C)),
m∐
i=1

Spec(k(Bi))) =
m∐
i=1

HomSpec(k(A))(Spec(k(C)), Spec(k(Bi)))

Therefore, using the previous result, we get

HomA(B,C) =
m∐
i=1

HomA(Bi, C) =

m∐
i=1

Homk(A)(k(Bi), k(C)) = Homk(A)(B/mB, k(C))

and G is a fully faithful functor. Let L be a finite étale k(A)-algebra. Thus, it is isomorphic to
a finite product of finite separable extensions of k(A): L = L1 × · · · × Ls. Let Bi be a finite,
local étale A-algebra such that F (Bi) = Li. Set B = B1 × · · · ×Bs. It follows that G (B) = L.
This shows that also G is an equivalence of categories.
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In the last part of this section, we will show that an henselization of a local ring always
exists.

Proposition 1.4.9. Let (A,m) be a local ring.

1. There exist a set Λ and a family {Aλ} of local-étale A-algebras such that every local-étale
A-algebra is isomorphic to Aλ for some λ. For every λ ∈ Λ, let us denote with mλ the
maximal ideal of Aλ.

2. Let I = {λ ∈ Λ : Aλ/mλ = A/m}. For i, j ∈ I we will write i ≤ j if there exists a local
homomorphism ϕji : Ai −→ Aj. Then ≤ is a order relation and I is a directed set with
respect to such relation.

Proof. 1. Put

Λ0 = {(P, q) ∈ A[T ]× Spec(A[T ]) : P is monic, q lies over m,P ′ /∈ q}

For λ0 = (P, q) ∈ Λ0, set Bλ0 = A[T ]/(P (T )) and Aλ0 = (Bλ0)q. Then the local structure
theorem of étale morphisms implies that every local-étale A-algebra is isomorphic to Aλ0 for
some λ0 ∈ Λ0. Define the equivalence relation ∼ on Λ0: λ0 ∼ µ0 if and only if Aλ0

∼= Aµ0 . set
Λ = Λ0/ ∼. This set verifies the properties listed in 1.
2. It is clear that the relation ≤ is reflexive and transitive. Let i ≤ j and j ≤ i. The composition
ϕij ◦ϕji maps to idk(Ai) when we consider the induced map on the residue fields. Since the map
Φ of Proposition 1.4.7 is injective, we see that ϕij ◦ ϕji = idAi . In a similar way we can show
that ϕji ◦ ϕij = idAj . Therefore Ai

∼= Aj , that is to say, i = j. It remains to be shown that
I is directed. Let i, j ∈ I and let Ai, Aj be the corresponding local-étale A-algebras. By the
definition of local-étale A-algebras

Ai
∼= (Bi)ni Aj

∼= (Bj)nj

where Bi and Bj are étale A-algebras and ni, nj are ideals over m. Moreover, by definition of
the set I, the residue fields of Ai and Aj are equal to k(A). As a consequence

(Ai ⊗A Aj)⊗A k(A) ∼= (Ai ⊗A k(A))⊗k(A) (Aj ⊗A k(A)) ∼= k(A)⊗k(A) k(A) ∼= k(A)

i.e. there exists a unique prime ideal of Ai ⊗A Aj which lies over m. Let A′ be the localization
of Ai ⊗A Aj in such ideal. It is clear that we have two local homomorphisms Ai −→ A′

and Aj −→ A′. Finally, since Ai and Aj are localizations of the étale A-algebras Bi and Bj

respectively, A′ is a localization of the étale A-algebra Bi ⊗A Bj . Finally A′ ∼= Ak for some
k ∈ I and i, j ≤ k.

We are finally able to prove the existence of an henselization of a local ring. We will use the
same notation as above.

Theorem 1.4.10. Set Ah = lim−→Ai and let i : A −→ Ah be the canonical local homomorphism.
Then (Ah, i) is an henselization of the local ring A.
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Proof. First of all, we need to show that Ah is an henselian ring. We will show that if B is
an étale A-algebra and n is a point of Spec(B) which lies in the special fiber and determine a
trivial extensions of the residue fields, then Bn

∼= A. Without loss of generality, we can assume
that B is a standard étale A-algebra, say

B =
(
Ah[T ]/(F (T ))

)
Ḡ

For a sufficiently large i, the coefficients of F (T ), G(T ) and of the inverse of F ′ come from Ai.
Set

Bi =
(
Ai[T ]/(F (T ))

)
Ḡ

Then we have a cocartesian diagram

Bi B

Ai Ah

................................................................................................................. ............

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..............

............

................................................................................................................. ............

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...............

............

Label ni the prime ideal of Bi corresponding to n. Clearly, we have that the residue field of
(Bi)ni is k(A) and (Bi)ni is a local-étale Ai-algebra. By lemma 1.4.5, it is also a local-étale
A-algebra. Therefore, there exists an index j ≥ i such that (Bi)ni

∼= Aj . Let Bj be the Aj-
algebra Bi ⊗Ai Aj and label nj the ideal of Bj corresponding to n. Define S = Spec(Ai) and
X = Spec(Bi). Since Bi is unramified over Ai, the diagonal morphism ∆ : X −→ X ×S X is
both an open and a closed immersion. If we set T = Spec(Aj), then we have an S-morphism
s : T −→ X corresponding to Bi −→ (Bi)ni −→ Aj . Consider the cartesian square

X ×S X X ×S T

X T

................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..............

............

∆

............................................................................................................................. s

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..............

............

f

Then f is an open and closed immersion and (Bj)nj is a direct factor of Bj and is isomorphic
to Aj . By base change Aj −→ Ah, we find that Bn

∼= Ah

To show that (Ah, i) owns the desired universal property, notice that Ah is local ind-étale and
that k(Ah) = k(A). Thus, applying Proposition 1.4.7, we have that for any henselian ring B,

HomA(A
h, B) = Homk(A)(k(A

h), k(B))

consists of only one morphism.
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Chapter 2

Henselian pairs

In this chapter we generalize the notion of henselian rings. In particular, we remove the hy-
pothesis which foresees A to be local.

As we have seen, the main feature of an henselian ring (A,m) is the possibility to decompose
finite algebras over A. This decomposition corresponds to a decomposition of the corresponding
finite A/m-algebra.
If A is not local, we have first of all to choose an ideal I ⊆ A. Moreover, notice that it does not
make sense to consider the same property used to define henselian rings. We define henselian
pairs in terms of their behavior with respect to idempotents instead.

2.1 Lifting of idempotent elements

We take the previous chapter as a guideline.

Definition 2.1.1. 1. a pair (A, I) is a ring A together with an ideal I ⊆ A. We denote with
Ā the quotient ring A/I

2. a morphism of pairs ϕ : (A, I) −→ (B, J) is a ring homomorphism ϕ : A −→ B such that
ϕ(I) ⊆ J

The induced morphism between quotients is denoted with ϕ̄ : Ā −→ B̄

3. a morphism of pairs ϕ : (A, I) −→ (B, J) is strict if ϕ(I)B = J

Definition 2.1.2. Let (A, I) be a pair. An étale neighborhood of (A, I) is a pair (B, J) together
with a strict morphism ϕ : (A, I) −→ (B, J) such that ϕ : A −→ B is an étale ring map and
ϕ̄ : Ā −→ B̄ is an isomorphism.

Similarly, if S is a scheme and S̄ is a closed subscheme, an étale neighborhood of S̄ in S is
an étale morphism T −→ S that induces an isomorphism T ×S S̄ ∼= S̄.

In the local case, following Raynaud’s exposition, we defined a ring to be henselian if every
finite algebra was decomposed. It is clear that it doesn’t make sense to extend this definition to
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the nonlocal case. Anyway, considering what we proved for henselian rings, it seems reasonable
to work with idempotents in an analogous way. In fact, this is exactly what we will do. With
this in mind, it should be self evident that Theorem 2.1.6 below is a key result. In order to
be able to prove it, we need some preliminary results.

The following lemma characterizes the structure of finite, monogenic, torsion free algebras
over normal rings. It was first showed by Hamet Seydi.

Lemma 2.1.3. Let A be an integral normal ring with fraction field K. Let B be a finite,
monogenic, torsion free A-algebra and let x ∈ B be a generator. If P (X) ∈ K[X] is the
characteristic polynomial of x, then P (X) ∈ A[X] and B ∼= A[X]/(P (X)).

Proof. The coefficients of P (X) lie in A since the latter is normal (see [Bou, Chapter V §1,
Corollary 1 to Proposition 17]). Applying Hamilton Cayley Theorem, we get that P (x) ∈
B ⊗A K is zero. Since B is torsion free, this means that P (x) ∈ B is zero. Therefore, the
homomorphism

A[X]/(P (X)) −→ B

is surjective. Consider the following short exact sequence:

0 N
A[X]

(P (X)) B 0............................................................... ............ ........................................... ............ ........................................... ............ ............................................................... ............

Then we get the following exact sequence

0 = TorA1 (B,K)→ N ⊗A K →
A[X]

(P (X))
⊗A K → B ⊗A K → 0

Since A[X]
(P (X)) ⊗A K → B ⊗A K is an isomorphism (it is a surjective morphism between two

K-vector spaces of the same dimension), we have N ⊗AK = 0. But N ⊆ A[X]
(P (X)) is torsion free,

whence N = 0 and B ∼= A[X]
(P (X)) .

Lemma 2.1.4. Let A be a noetherian, reduced ring of finite type over Z. Let I ⊆ A be an ideal
and B a finite, monogenic A-algebra. Assume that

1. B is flat outside V (I) and A is normal outside V (I)

2. The ideal of B whose elements are killed by some power of I is zero

Let ē ∈ Id(B/IB). Then there exist an element t ∈ B which lifts ē, an integer m ≥ 0 and a
monic polynomial P (X) ∈ A[X] such that

P (t) = 0

and
P (X) = (X2 −X)m mod I
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Proof. Let p1, . . . , pr be the minimal prime ideals of A. Set Ai = A/pi and let Ãi be the
normalization of Ai. Moreover, let Ã =

∏r
i=1 Ãi, Ĩ = IÃ, Ĩi = IÃi, B̃i = B⊗AÃi, B̃ =

∏r
i=1 B̃i.

Let Ti be the ideal of B̃i formed by those elements of B̃i that are killed by some power of Ĩi
and let Ci = B̃i/Ti. Let x be a generator of B and let x̃, x̃i, ci be the images of x in B̃, B̃i and
Ci respectively. As A is excellent (see Chapter 4), Ã of finite type over A. Moreover, since A
is normal outside V (I), the morphism Spec(Ã) −→ Spec(A) is an isomorphism outside V (I).
Let C = {a ∈ A : aÃ ⊆ A}. Then C contains a power of I. Thanks to Lemma 1.1.13, we can
substitute I with one of its powers, whence we can assume that C contains I. Then we can
replace I with Ĩ and we can assume that I = Ĩ.
Apply Lemma 2.1.3 to each Ai-algebra Ci to deduce that they are finite and free. Label
mi = rankAiBi. Let t ∈ B an element over ē and set y = t2 − t ∈ IB. Let z = (z1, . . . , zr) ∈
C =

∏r
i=1Ci be its image. In particular, we have that zi ∈ ICi. Therefore, the characteristic

polynomial Pi of zi in the Ai free algebra Bi is a monic polynomial in Ai[X] of degree mi

such that Pi = Xmi mod IAi (because of Hamilton Cayley theorem). Let m = max{mi : i =
1, . . . , r} and Qi = Xm−miPi for every i. Then the polynomials Qi define a monic polynomial
Q ∈ Ã[X] of degree m such that Q = Xm mod Ĩ and such that Q(z) = 0. As Ĩ ⊆ C, Q ∈ A[X]
and Q(z) is killed by some power of I. Then Q(z) = 0 because of the hypothesis. Finally, since
I = Ĩ, we have that

Q = Xm mod I

To conclude, it suffices to choose P (X) = Q(X2 −X).

Finally, we will need the following simple lemma in scheme theory.

Lemma 2.1.5. Let S be a scheme and let X, Y S-schemes. Then

(X ×S Y )red = (Xred ×Sred
Yred)red

Proof. Let T be a reduced scheme and assume we are given a morphism T −→ X×SY . Consider
the following diagram

T Yred

Xred S

X ×S Y Y

X

Sred

........................................................................................................................................................................................................................................................................................................................................... ............

.............................................................................................................................................................................................................................................................................................................................................
.....
.......
.....

........................................................................................................................................................................................................................... ........
....

.................................................................................................................................................
.....
.......
.....

................................................................................................................................................................................................................................................
.....
.........
...

............................................................................................................................................ ............
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

......................
............

...................................................................................... ........
....

........................................................................................................................ ............

.................................................................................................................................................
.....
.......
.....

.................................................................................................................................................
.....
.......
.....

...................................................................................................................................................... ............

Then there exists a unique morphism T −→ Xred ×Sred
Yred that fits into the diagram. As T

is reduced, such morphism factors uniquely through (Xred ×Sred
Yred)red. Therefore, we can

conclude by the universal property of (X ×S Y )red.
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Theorem 2.1.6. Let (A, I) be a pair, B a finite A algebra and ē ∈ Id(B̄) an idempotent
element. Then there exists an étale neighborhood (A′, I ′) of (A, I) such that, if B′ = B ⊗A A

′

and ē′ is the idempotent of B̄′ = B′/I ′B′ that corresponds to ē, then ē′ lifts to an idempotent
element e′ of B′.

Proof. Step 1. reduction to the case where B is monogenic.
Let x be any element of B lying over ē. Label C the sub A-algebra of B generated by x. In
particular, C ⊆ B is an integral ring extension. By the Going up/Going down theorems we
deduce that Spec(B) −→ Spec(C) is surjective. Moreover, notice that the following diagram is
cartesian

Spec(B̄) Spec(C̄)

SpecB Spec(C)

........................................................................................................................... ............

.......................................................................................................................................................................................
.....
.......
.....

.......................................................................................................................................................................................
.....
.......
.....

...................................................................................................................................... ............

In fact, we have
B̄ = B ⊗A A/I

B ⊗C C̄ = B ⊗C C/IC = B ⊗C C ⊗A A/I = B ⊗A A/I

Since surjective morphisms are stable under base change (see [StacksProj, Tag 01S1]), also
ϕ̄∗ : Spec(B̄) −→ Spec(C̄) is surjective. As we have a decomposition Spec(B̄) = V (ē)⨿V (1−ē),
we obtain the following decomposition of Spec(C̄):

Spec(C̄) : ϕ̄∗(V (ē))⨿ ϕ̄∗(V (1− ē))

Claim: ϕ̄∗(V (ē)) = V (x̄)

Proof. (Claim) First of all, notice that ϕ̄∗(V (ē)) = V (ϕ−1(ē)), where we denoted ϕ the mor-
phism C̄ −→ B̄ By construction, we have that x̄ ↦→ ē. Therefore, (x̄) ⊆ (ϕ−1(ē)) and
V (ϕ−1(ē)) ⊆ V (x̄). Conversely, if p = ϕ̄∗(q) ∈ V (x̄), then x̄ ∈ p. Hence, ē ∈ q and
ϕ−1(ē) ⊆ p = ϕ̄∗(q), giving us the other inclusion.

In a similar way, we obtain that ϕ̄∗(V (1 − ē)) = V (1 − x̄). This means that Spec(C̄) =
V (x̄) ⨿ V (1 − x̄). Then there exists an idempotent element f̄ in C̄ such that ϕ(f̄) = ē. It is
clear that it suffices to show the theorem for C and f̄ .
Step 2. reduction to the case where A is of finite type over Z.
Step 2.1. reduction to the case where B is finitely presented over A.
Let P (X) be a monic polynomial in A[X] such that P (x) = 0, where x is a generator of B. Set
C = A[X]/(P (X)). Thus B ∼= C/J for some ideal J of C. Write J = lim−→ Ji, where Ji ⊆ J are
finitely generated subideals. Label Ci = C/Ji for each i. Then

B = lim−→Ci

B̄ = B ⊗A A/I = lim−→Ci ⊗A A/I = lim−→(Ci ⊗A A/I) = lim−→ C̄i
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Then ē is the image of an idempotent element ēi ∈ C̄i for some sufficiently large index i. Up to
a substitution of B with Ci, we can assume B to be finitely presented over A.
Step 2.2. reduction to the case where I is finitely generated.
Write I as the direct limit of its finitely generated subideals Ii. Then

B̄ = lim−→B/IiB

and the element ē is the image of an idempotent ēi ∈ B/IiB for a sufficiently large index
i. Suppose we solved our problem for the pair (A, Ii), i.e. we found an étale neighborhood
(A′, I ′i) of (A, Ii) such that the thesis is satisfied. Define I ′ = u(I)A′, where u is the étale
homomorphisms A −→ A′. Notice that I ′i ⊆ I ′. Then A/I −→ A′/I ′ is injective by definition
of I and is surjective since A −→ A′/I ′i is surjective. Therefore, we get an isomorphism

A/I ∼= A′/I ′

that is to say, (A′, I ′) is an étale neighborhood of (A, I) that verifies the thesis. We reduced to
the case when I is finitely generated.
Step 2.3. reduction to the case where A is a Z-algebra of finite type.
Let a1, . . . , ar be a set of generators for I. Write A = lim−→Ai, where each Ai is a subalgebra of
A of finite type over Z containing the set {a1, . . . , ar}. Let Ii be the ideal in Ai generated by
such set. Then

(A, I) = lim−→(Ai, Ii)

Since B is finitely presented over A, we can find a sufficiently large index i such that there exists
a monogenic, finite Ai-algebra Bi verifying B ∼= Bi ⊗Ai A. Up to substituting i with a bigger
index, we can also assume that ē comes from an idempotent element ēi ∈ B̄i = Bi/IiBi. Sup-
pose that we have an étale neighborhood (A′

i, I
′
i) of (Ai, Ii) such that there exists an idempotent

element e′i of Bi ⊗Ai A
′
i mapping to ēi. Then it is easy to see that (A′

i ⊗Ai A, I
′
i(A

′
i ⊗Ai A)) is

an étale neighborhood of (A, I) and the image e′ of e′i in A′
i ⊗Ai A maps to ē′. In this way we

reduced to the case where A is of finite type over Z.

Set S = Spec(A), S̄ = Spec(Ā), X = Spec(B), X̄ = Spec(B̄). Let J be the kernel of the
morphism A −→ B and let Y be the closed subscheme V (J).
Step 3. reduction to the reduced case.
Let us assume that we are able to find an étale neighborhood (A′

0, I
′
0) of (Ared, IAred) that

solves the problem for Bred. Since we have an equivalence

{étale A-algebras} −→ {étale Ared-algebras}

(see [SGAI, Exposé I, Théorème 8.3]) we can lift A′
0 to an étale A-algebra A′.

Claim: (A′, IA′) is an étale neighborhood of (A, I).

Proof. It is clear that (A, I) −→ (A′, IA′) is a strict homomorphism. The morphism A −→ A′

is étale by construction and
A′

0/I
′
0
∼= Ared/IAred
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implies that

(A′/IA′)red ∼= (A′
red ⊗Ared

(A/I)red)red ∼= (A′
0/I

′
0)red

∼= A/
√
I ∼= (A/I)red

Therefore, applying the equivalence cited before with A/I instead of A, we get an isomorphism

A′/IA′ ∼= A/I

Moreover, applying Lemma 2.1.5 once again we obtain that

Id(B ⊗A A
′) = Id((B ⊗A A

′)red) = Id((Bred ⊗Ared
A′

red)red)

= Id(Bred ⊗Ared
A′

red) = Id(Bred ⊗Ared
A′

0)

In fact, since A′
0 is étale over Ared it is reduced (see [SGAI, Exposé I, Proposition 9.2]) and we

have that A′
red = A′

0 by construction. In this way, we can assume that S, X and Y are reduced.
Step 4. reduction to the case when Y is reduced and normal outside V (I) and X is flat over Y
outside V (I).
We make an induction on dimKrull(Y − S̄), i.e. on the dimension of im(X −→ S)− S̄.
Step 4.1. base of the induction.
If dimKrull(Y − S̄) < 0, then Y − S̄ = ∅. Hence, Y ⊆ S̄ and therefore

√
I ⊆
√
J . In this case, it

is immediate to observe that IB ⊆ Nil(B). Therefore, B = Bred = B̄red and

Id(B) = Id(B̄red) = Id(B̄)

Step 4.2. dimKrull(Y − S̄) ≥ 0
We can assume Y reduced because of Step 3. and because V (J) = V (

√
J). Moreover, because of

Step 2, Y is excellent (A is of finite type over Z). Consider the open subscheme U = Y − S̄ ⊆ Y .
Then there exists an open dense subset of U which is normal (see [EGA IV.2, Scholie 7.8.3 (iv)]).
The fact that Y is reduced also implies that X is flat over the generic points of the irreducible
components of U . Then there exists an open dense subset V ⊆ U which is normal and such
that X is flat over V . Let K be the ideal of A defining the following closed subset of S

S̄ ∪ (Y − V ) = S̄ ∪ (U − V )

As S̄ ⊆ S̄ ∪ (Y − V ), we have that K ⊆
√
I. Since A is noetherian, eventually replacing K with

some power, we can assume that K ⊆ I. Let Z be the affine scheme Spec(B/KB). Then, from
the commutativity of the involved cartesian square, it is immediate to observe that the image
of Z in S is Y − V . Therefore,

(Y − V )− S̄ = U − V

By the construction of V , it follows that

dimKrull(U − V ) < dimKrull(U) = dimKrull(Y − S̄)

Thus, we can apply the induction hypothesis: there exists an étale neighborhood (A′, I ′) of
(A, I) such that ē lifts to an idempotent of B′/K ′B′ = (B/KB) ⊗A A

′, where B′ = B ⊗A A
′
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and K ′ = KA′. Let S′ = Spec(A′) and X ′ = Spec(B′). Since X −→ S is a finite morphism, we
get that the image Y ′ of X ′ inside S′ is closed. Moreover, we also have that Y ′ = Y ×S S

′. By
definition, Y is normal outside V (K) and therefore Y ′ is normal outside V (K ′) = V (K)×S S

′.
By the same argument, we also get that X ′ is flat outside V (K ′).
To conclude this reduction step, notice that an étale neighborhood of (A′,K ′) provides us an
étale neighborhood of (A′, I ′) as K ′ ⊆ I ′, and an étale neighborhood of (A′, I ′) is an étale
neighborhood of (A, I). Finally, eventually replacing A with A′ and I with K ′, we can assume
that Y is reduced, normal outside V (I) and X is flat over Y outside V (I).
Step 5. reduction to the case where the ideal T of elements of B killed by some power of I is
zero.
Set C = B/T and let f̄ be the image of ē inside C̄ = C/IC. Suppose we are able to lift f̄ to
an idempotent element f of C. We are assuming to work with noetherian rings, therefore we
can apply Artin-Rees Lemma: there exists an integer k > 0 such that

InB ∩ T = In−k(IkB ∩ T )

Therefore, choosing a sufficiently large l ∈ N, we have

I lB ∩ T = 0

Eventually replacing I with one of its powers, we can assume IB ∩ T = 0 (remember that
Id(B/IB) = Id(B/IrB) for every r). With this assumption, we have the following commutative
diagram, where the lines are exact:

0 T B C 0

0 T B̄ C̄ 0





............................................................................................................
.....
.......
.....

=

............................................................................................................
.....
.......
.....

............................................................................................................
.....
.......
.....

Let e ∈ B such that e+ T = f :

e2 − e = t ∈ T ∩ IB = 0

Then ē lifts to an idempotent element of B. It is then sufficient to show the problem in the
case when T = 0.
Step 6. reduction to the case where B is a finite free A-algebra.
Let R be the ring A/J , i.e. the image of A inside B. Then we can apply Lemma 2.1.4 to R,
IR and B: there exists x ∈ B which lifts ē and an integer m such that x is a root of some
monic polynomial P (X) ∈ R[X] which verifies

P (X) = (X2 −X)m mod IR

Let Q(X) ∈ A[X] be a monic polynomial over P (X) such that

Q(X) = (X2 −X)m mod I
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Let D = A[X]/(Q(X)) and label ψ the natural morphism D −→ B. Notice that D̄ = D/ID =
Ā[X]/(X2 −X)m. Denote the unique idempotent of D̄ = D/ID which is zero in V (X) and 1
in V (1−X) with ḡ. Then it is clear that ψ̄(ḡ) = ē and it is sufficient to consider the case when
B is a finite free A-algebra.
Step 7. end of the proof.
Let E be the étale A-algebra which represents the idempotent elements of B that we introduced
in Chapter 1 §2. Then ē corresponds to an Ā-homomorphism

ū : E/IE = Ē −→ Ā

In particular, ū is surjective. Moreover, as idS̄ : S̄ −→ S̄ is étale and Spec(Ē) −→ S̄ is
unramified, S̄ −→ Spec(Ē) is étale. Therefore, the image of S̄ in Spec(Ē) is both closed and
open. Then, it corresponds to an idempotent element of Ē which takes value 0 over points in
the image of S̄ and 1 elsewhere. Let h ∈ E be any element over h̄. Then (Eh, IEh) is an étale
neighborhood of (A, I). By the characterizing property of E, the canonical morphism E −→ Eh

corresponds to an idempotent element of B ⊗A Eh which lifts ē. This concludes the proof of
the theorem.

Lemma 2.1.7. Let A be a ring and let B be an A-algebra of finite type. Let ϕ : Spec(B) −→
Spec(A) be the structure morphism. Let

U = {p ∈ Spec(B) : p is isolated in ϕ−1(ϕ(p))}

Then U is an open subset of Spec(B).

Proof. Let p ∈ U and let A′ be the integral closure of A in B. By [Ray, Chapitre IV, Théorème
1] there exists an element f ∈ A′, f /∈ p such that A′

f
∼= Bf . Write

A′ = lim−→Ai Ai subalgebra ofA′ finite overA

Since tensor products commute with direct limits, we have that

Bf
∼= A′

f
∼= lim−→(Ai)f

As Bf is of finite type over A, Bf
∼= (Ai)f for a sufficiently large index i. Then Bf is a

localization of a finite A-algebra, whence Spec(Bf ) −→ Spec(A) is a quasi-finite morphism.

Corollary 2.1.8. Let S be an affine scheme, S̄ ⊆ S a closed subscheme and X an affine scheme
of finite type over S such that X̄ = X ×S S̄ is finite over S. Then there exists a commutative
diagram

Z X

S′ S

............................................................... ............

..........................................................
.....
.......
.....

..........................................................
.....
.......
.....

............................................................... ............

with the following properties

1. S′ is an étale affine neighborhood of S̄ in S
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2. Z is an étale neighborhood of X̄ in X

3. Z is finite over S′

Proof. Since X̄ is finite over S, X is quasi-finite over S in every point of X̄. Applying the previ-
ous lemma, we can find an element f ∈ OX(X) invertible over X̄ such that Xf = Spec(OX(X)f )
is quasi-finite over S. Eventually replacing X with Xf , we can thus assume that X is quasi-
finite over S.
By Zariski’s Main Theorem, we can find a scheme Y which is finite over S and such that X
is an open subscheme of Y . Let Ȳ be the scheme Y ×S S̄. Then X̄ is an open subscheme
of Ȳ . Moreover, since X̄ is finite over S̄ (as X̄ is finite over S and S̄ −→ S is separated),
we get that X̄ is a finite Ȳ -scheme (Ȳ −→ S̄ is finite, whence separated). Then X̄ is both
an open and a closed subset of Ȳ . Let ē be the idempotent element of OȲ (Ȳ ) that is 1 over
X̄ and zero elsewhere. By Theorem 2.1.6, there exists an étale affine neighborhood S′ of S
such that ē lifts to an idempotent element e′ in OY×SS′(Y ×S S

′). Let Y ′ = Y ′
1 ⨿ Y ′

2 be the
corresponding decomposition, where Y ′ = Y ×S S

′. Then X ′ = X ×S S
′ is an open subset

of Y ′ and X̄ ′ = X̄ ×S S
′ = Y ′

1 ×S S̄ because of the choice of e′. Consider the closed subset
Y ′
1 −X ′ ⊆ Y ′

1 . Then its image in S′ is a closed subset (since Y ′
1 is finite over S′) that does not

meet S̄′ = S̄ ×S S
′. Eventually replacing S′ with S′

f , where f is a suitable element in OS′(S′)

invertible over S̄′, we can assume that Y ′
1 ⊆ X ′. Then we can take Z = Y ′

1 , which is an étale
neighborhood of X̄ in X, and the corollary is proved.

2.2 Henselian pairs

Let (A, I) be a pair and let S be the multiplicative system in A formed by elements of the form
1 + x, x ∈ I. Then it is clear that the ideal IS−1A is contained in the Jacobson radical.
Notation: We will denote the pair (S−1A, IS−1A) with (AS , IS).
Inspired by the local case, we give the following definition:

Definition 2.2.1. A pair (A, I) is henselian if I is contained in the Jacobson radical and if for
every finite A-algebra B, given an idempotent element ē ∈ B⊗AA/I, there exists an idempotent
element e ∈ B which maps onto ē.

In order to give some characterizations of henselian pairs, we will need the following prelim-
inary result.

Lemma 2.2.2. Let (A′, I ′) be an étale neighborhood of (A, I). There exist an integer m ≥ 0
and a monic polynomial P (X) ∈ A[X] such that

1. P (X) = (X2 −X)m mod I

2. If E is the étale A-algebra which represents the idempotent elements of A[X]/(P (X)),
then there exists some h ∈ E such that (Eh, IEh) is an étale neighborhood of (A, I) and
the structure morphism A −→ Eh factors through A′.
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Proof. Proceeding as in the proof of Theorem 2.1.6, we can reduce to the case when A is a
finitely generated Z-algebra.

Therefore, A is a quotient of Z[T1, . . . , Tn] for a suitable n. Let J denote the inverse image
of I in Z[T1, . . . , Tn]. Let S = Spec(Z[T1, . . . , Tn]), S̄ = Spec(Z[T1, . . . , Tn]/J) = Spec(A/I),
X = Spec(A′). Notice that X is quasi finite over S (as A −→ A′ is an étale morphism) and it
is finite over S̄ (as (A′, I ′) is an étale neighborhood of (A, I)). We can apply Corollary 2.1.8:
there exists a commutative diagram

Z X

S′ S

................................................................................................................. ............

............................................................................................................
.....
.......
.....

............................................................................................................
.....
.......
.....

................................................................................................................. ............

where

1. S′ is an étale affine neighborhood of S̄ in S

2. Z is an étale neighborhood of X̄ in X

3. Z is finite over S′

Moreover, looking at the proof of such result, we also see that we can assume Z to be an
open and closed subscheme of X ′ = X ×S S

′. Let T = Spec(A). Notice that T is a closed
subscheme of S which contains S̄. Let T ′ and S̄′ denote the inverse images in S′ of T and S′

respectively. With our notation, X is an étale neighborhood of S̄ in T . As Z is open in X ′, it
is an étale neighborhood of S̄′ in T ′. Being finite over S′, Z is finite over T ′. Then Z −→ T ′

is an isomorphism in a neighborhood of S̄′. Eventually replacing S′ with a convenient affine
neighborhood of S̄′, we can assume that Z −→ T ′ is an isomorphism. Then T ′ dominates X
and to prove the lemma we can replace A′ with OT ′(T ′). In this way, we reduced to the case
where A′ lifts to an étale neighborhood B′ of B = Z[T1, . . . , Tn] where B is normal. Therefore,
it suffices to show the lemma for the étale neighborhood B′ of B.
Let us assume that A is a normal integral domain with fraction field K. Let K ′ = K⊗AA

′ and
let B′ be the normalization of A in K ′. Label S, X, Y the spectra of A, A′ and B′ respectively.
Zariski’s Main Theorem implies that B′ −→ A′ corresponds to an open immersion X −→ Y
(since A′ is normal). Let S̄ = Spec(A/I), X̄ = X ×S S̄ and Ȳ = Y ×S S̄. Then X̄ is an open
subscheme of Ȳ . It is also closed since X̄ is finite over S̄. Let ē be the idempotent element
of B̄′ = B′/IB′ that is 1 over X̄ and 0 elsewhere. Let t be any element of B′ over ē and
let y = t2 − t. Notice that y = 0 mod IB′. Label q(X) the characteristic polynomial of y
in A[X]. By Hamilton-Cayley, we know that q(X) = Xm mod I (where m is the rank of B′

over A). Then p(X) = q(X2 − X) is a monic polynomial of degree m, killed by t, such that
p(X) = (X2 −X)m mod I. Then we have an A-homomorphism

C = A[X]/(p(X)) −→ B′

X ↦→ t
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If f̄ is the idempotent element of C̄ = C/IC that has the same image of X in C̄red, it is clear
that f̄ ↦→ ē ∈ B̄′. Let E be the étale A-algebra which represents idempotent elements of C
and label ū : Ē = E/IE −→ Ā the Ā-homomorphism corresponding to f̄ . Then Spec(ū) :
Spec(Ā) −→ Spec(Ē) is an immersion both closed and open. After we replace E with Eh, for
a convenient element h ∈ E, we can assume that ū is an isomorphism. In this case, (E, IE)
is an étale neighborhood of (A, I). Furthermore, it comes from the definition of E that the
idempotent f̄ ∈ C̄ lifts to an idempotent in C ⊗A E. Then ē lifts to an idempotent element of
B′ ⊗A E. From this, we deduce that E dominates A′.

We are now able to provide some characterizations of henselian pairs.

Theorem 2.2.3. Let (A, I) be a pair such that I is contained in the Jacobson radical. The
following statements are equivalent.

1. (A, I) is henselian.

2. For every finite free A-algebra B, every idempotent of B̄ = B/IB lifts to an idempotent
of B.

3. For every A-algebra B = A[X]/(p(X)), where p(X) is a monic polynomial such that
p(X) = (X2−X)m mod I, every idempotent element in B̄ = B/IB lifts to an idempotent
element of B.

4. If p(X) ∈ A[X] is a monic polynomial such that its reduction modulo I p̄(X) can be
factored as the product of two monic polynomials q̄(X), r̄(X) that generate the unit ideal
in Ā[X], there exist two monic polynomials q(X), r(X) ∈ A[X] over q̄(X) and r̄(X)
respectively such that p(X) = q(X)r(X).

5. If (A′, I ′) is an étale neighborhood of (A, I), there exists an A-homomorphism A′ −→ A.

Proof. 1. ⇒ 2.: obvious.
2. ⇒ 3.: obvious.
3. ⇒ 4.: Let p(X) ∈ A[X] as in 4. and set B = A[X]/(p(X)). Then B̄ = Ā[X]/(q̄(X)) ⊕
Ā[X]/(r̄(X)). Applying 3., we get an idempotent e of B corresponding to (1, 0). Let B =
B1 ⊕ B2 be the corresponding decomposition. Applying Lemma 1.1.8 and Remark 1.1.9, we
get that

B1 = A[X]/(q(X)) where q(X) is a monic polynomial over q̄(X)

with deg(q(X)) = deg(q̄(X))

B2 = A[X]/(r(X)) where r(X) is a monic polynomial over r̄(X)

with deg(r(X)) = deg(r̄(X))

It is easy to see that X + (p(X)) is a root of q(X)r(X). Therefore, q(X)r(X) is a multiple of
p(X). Since they are both monic polynomials of the same degree, they coincide.
4. ⇒ 3.: it suffices to notice that (Xm, (1−X)m) = (1).
3. ⇒ 5.: it follows immediately from the previous lemma.
5. ⇒ 1.: let B be a finite A-algebra and let ē be an idempotent element of B̄ = B/IB.



CHAPTER 2. HENSELIAN PAIRS 34

Theorem 2.1.6 provides us an étale neighborhood (A′, I ′) of (A, I) such that ē lifts to an
idempotent e′ ∈ B ⊗A A

′. Then by the hypothesis we have an A-homomorphism A′ −→ A.
Then the image of e′ in B = B ⊗A A is an idempotent element over ē.

Proposition 2.2.4. 1. Let (A, I) be an henselian pair and let B be an integral A-algebra.
Then (B, IB) is an henselian pair.

2. If {(Ai, Ii)} is an inductive system of henselian pairs, then (lim−→Ai, lim−→ Ii) is an henselian
pair.

Proof. 2. Label A = lim−→Ai and I = lim−→ Ii. Let B = A[X]/(p(X)), where p(X) ∈ A[X] is a
monic polynomial such that p(X) = (X2 − X)m mod I. Let ē be an idempotent element of
B̄ = B/IB. There exists a sufficiently large index i such that the coefficients of p(X) lie in Ai

and p(X) = (X2 − X)m mod Ii. Thus, we can consider the Ai-algebra Bi = Ai[X]/(p(X)).
Moreover, we can also assume that ē comes from an idempotent element ēi ∈ B̄i = Bi/IiBi.
Let ei be the idempotent element in Bi over ēi. Its image e ∈ B = A⊗Ai Bi is an idempotent
over ē. Therefore, (A, I) is an henselian pair.
1. It is clear from the definition that, if B is a finite A-algebra, then (B, IB) is an henselian
pair.
Let B be an integral A-algebra and write it as an inductive limit B = lim−→Bi, where Bi are
subalgebras of B finite over A. By the previous remark, {(Bi, IBi)} form an inductive system
of henselian pairs. Therefore,

(B, IB) = (lim−→Bi, lim−→ IiBi)

is an henselian pair by 2.

2.3 Henselization

As in the case of local henselian ring, it would be desirable to have a universal way to associate
to each pair (A, I) an henselian pair (Ah, Ih). We will take the local case as a guideline once
again.

Definition 2.3.1. Let (A, I) be a pair. An henselization of (A, I) is a pair (Ah, Ih) endowed
with a morphism ϕ : (A, I) −→ (Ah, Ih) having the following universal property: for any
henselian pair (B, J) together with a morphism ψ : (A, I) −→ (B, J), there exists a unique
morphism ψ̃ : (Ah, Ih) −→ (B, J) such that ψ = ψ̃ ◦ ϕ

(A, I)

(Ah, Ih)

(B, J)
...............................................................................................................

.
.......
.....

ϕ

............................................................................. ............
ψ

......
......
......
......
......
......
......
......
......
................
............

ψ̃

Remark 2.3.2. It is a formal consequence of the universal property that, if it exists, an henseliza-
tion is unique up to (a unique) isomorphism.
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Remark 2.3.3. Since we want Ih ⊆ Jac(Ah), it is clear that a morphism (A, I) −→ (Ah, Ih)
factors through (S−1A, IS−1A), where S is the multiplicative system {1+x : x ∈ I}. Therefore,
we can assume that I ⊆ Jac(A).

Definition 2.3.4. Let (A, I) be a pair with I ⊆ Jac(A). A local-étale neighborhood of (A, I) is
a pair (B, J) isomorphic to the localization in 1+ I ′ of an étale neighborhood (A′, I ′) of (A, I).

The next theorem guarantees the existence of henselizations. Its proof is similar to the local
case (Theorem 1.4.10).

Theorem 2.3.5. Let (A, I) be a pair with I ⊆ Jac(A).

1. There exists a set {(Aj , Ij)}j∈J of local-étale neighborhoods of (A, I) such that every local-
étale neighborhood (A′, I ′) of (A, I) is isomorphic to a unique (Aj , Ij).

2. J is filtrant with respect to the order relation

j ≤ k iff Ak dominates Aj

3. (Ah, Ih) = (lim−→Aj , lim−→ Ij) endowed with the canonical morphism (A, I) −→ (Ah, Ih) is an
henselization of (A, I).

The previous theorem can be improved as follows:

Theorem 2.3.6. The henselization process is left adjoint to the inclusion functor

Henselian Pairs −→ Pairs

Proof. See [StacksProj, Tag 0A02].

Remark 2.3.7. The same result is valid in the local case, see [StacksProj, Tag 0A03].

Remark 2.3.8. If (A, I) is a pair and (A, I) is its henselization, then A −→ Ah is flat, Ih = IAh

and A/In −→ Ah/InAh is an isomorphism for all n. For a proof, see [StacksProj, Tag 0AGU]
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Chapter 3

Projective limits of schemes

The aim of this chapter is to introduce the concept of projective limits of schemes. We also
study some of their fundamental properties. These will be crucial in the following part, when
we will use the results and the strategies of this chapter to make some fundamental reduction
steps. We will follow the exposure given in [EGA IV.3, §8].

3.1 Introduction

Assume we are given an inductive system of rings (Ai, ϕji), indexed by the set I. Let A = lim−→Ai

be the inductive limit in Rings. Moreover, assume we are also given an Ai-scheme Xi, for some
index i ∈ I. Then we can form a projective system in Schemes/Ai as follows:

Xj = Xi ×Spec(Ai) Spec(Aj) for every j ≥ i

define gi,j : Xj −→ Xi as

Xj Spec(Aj)

Xi Spec(Ai)

........................................................................... ............

............................................................................................................
.....
.......
.....

gij

............................................................................................................
.....
.......
.....

............................................................................. ............

Moreover, let
X = Xi ×Spec(Ai) Spec(A)

Notice that X = Xj ×Spec(Aj) Spec(A) for every j ≥ i. Then we can define the morphisms
gj : X −→ Xj as

X Spec(A)

Xj Spec(Aj)

................................................................................. ............

............................................................................................................
.....
.......
.....

gj

............................................................................................................
.....
.......
.....

........................................................................... ............
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The first important result that we will prove is the following

X = lim←−Xj in Schemes and in Schemes/Ai

This agrees with the specific case where Xi is the spectrum of an Ai-algebra, which is a conse-
quence of the equivalence

Ringsop −→ Affine Schemes

Given such isomorphism, it is natural to ask if there exist hypothesis on the Aj and Xj that
guarantee that X has some property P if and only if, for some sufficiently large index j, Xj

has the same property P.
Furthermore, we will see that, for every finitely presented A-scheme X, there exists some index
j >> 0 and a finitely presented Ai-scheme such that

X = Xj ×Spec(Aj) Spec(A)

This kind of results have a broad field of application. We will be mainly interested in the
following one: assume we want to study some property of a finitely presented Y -scheme, local
on Y . Then we can suppose that Y = Spec(A) is affine. Write A = lim−→Ai as the direct limit
of its subalgebras Ai that are finitely generated over Z. The results of this chapter allow us
to reduce to the case when A is a finitely generated Ai-algebra. As we will see, this will be
extremely important for our purpose.

3.2 Projective limits of schemes

3.2.1 Existence of inductive limits in the category of

Let S0 be a ringed space and let (A, ϕji)i∈I be a direct system of OS0-algebras. Then we
can consider them as OS0-modules. We know that a limit A = lim−→Ai exists in OS0-modules.
Label ϕi : A −→ Ai the morphisms of OS0 − modules that make A a colimit. For every
i ∈ I, let mi : Ai ⊗OS0

Ai −→ Ai be the homomorphism of OS0 − modules which defines
the multiplication on Ai. Then {mi}i∈I is a direct system of morphisms of OS0 − modules.
Since ⊗OS0

commutes with colimits, m = lim−→mi is an homomorphism of OS0 −modules too.
Taking limits of diagrams which express associativity of mj , existence of a unit in Ai and
commutativity, we get that m endows A with the structure of an OS0 − algebra. Moreover, it
turns out that ϕi : Ai −→ A are morphisms of OS0 − algebras, for every index i. Furthermore,
(A , ϕi) = lim−→Ai in OS0 − algebras, i.e. for every OS0-algebra B, we have a bijection

HomOS0
−alg(A ,B) −→ lim←−HomOS0

−alg(Ai,B)

f ↦→ (f ◦ ϕi)

In fact, it we know that

HomOS0
−alg(A ,B) ⊆ HomOS0

−mod(A ,B) = HomOS0
−mod(Ai,B)
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and therefore the above map is injective.
If {fi}i∈I ∈ lim←−HomOS0

−alg(Ai,B), the following diagrams commute

Ai ⊗Ai Ai

B ⊗B B

.............................................................................................................................................................. ............
mi

.......................................................................................................................................................................................
.....
.......
.....

fi ⊗ fi

.......................................................................................................................................................................................
.....
.......
.....

fi

................................................................................................................................................................... ............

Applying the lim−→ functor, we get the commutative square

A ⊗A A

B ⊗B B

................................................................................................................................................................ ............
m

.......................................................................................................................................................................................
.....
.......
.....

f ⊗ f

.......................................................................................................................................................................................
.....
.......
.....

f

................................................................................................................................................................... ............

This means that f = lim−→ fi is a morphism of OS0-algebras, and the above map is also surjective.

3.2.2 Projective limits of schemes

Let us consider the following situation:

(†) S0 a scheme and Ai a quasi-coherent OS0-algebras. Then also A = lim−→Ai

is quasi-coherent. Put Si = Spec(Ai), S = Spec(A ),

ui,j : Sj −→ Si corresponding to ϕi,j : Ai −→ A for i ≤ j

ui : Spec(A ) −→ Spec(Ai) corresponding to ϕi : Ai −→ A

Remark 3.2.3. 1. (Si, uji)i∈I form a projective system in Schemes/S0

2. uji and ui are affine morphism, whence quasi-compact and separated (see [EGAII, Propo-
sition 1.6.2])

Having in mind the affine case, it is natural to ask whether

A = lim−→Ai = lim←−Si

This follows immediately from the next general lemma.

Lemma 3.2.4. Let C be a category and let T be an object. Label C/T the slice category over
T . Let (Si, uji)i∈I be a projective system in C/T . Then every limit of such system in C/T is
also a limit in C and reciprocally.
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Proof. Assume (S, ui) is a limit of (Si, uji)i∈I in C/T . Let fi : Si −→ T and f : S −→ T be the
structure morphisms of Si and T respectively. Then the following diagram commutes:

Sj Si

S

T

....................................................................................................................................................................................................................................................................... ............
uij

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

..........................

uj
............................................................................................................................................................................................................................................................................................

.
.......
.....

fj

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..............
............

ui

............................................................................................................................................................................................................................................................................................
.....
...........
.

fi............................................................................................................
.....
.......
.....

f

Let (gi : R −→ Si)i∈I be a collection of morphisms such that the following condition holds

(⋆) gi = uij ◦ gj ∀ i ≤ j

Sj Si

S

T

R

............................................................................................................................................................................................................................................................................................................................................................................................................................. ............
uij

.......................................................................................................................................................................................
..

............

uj

.......................................................................................................................................................................................................................... .........
...

fj

......................................................................................................................................................................................... ..........
..

ui

.......................................................................................................................................................................................................................
...
............

fi

...................................................................................................................
.....
.......
.....

g

................................................................................................................................................................................................................................................................................................................................
.....
............

gj

........................................................................................................................................................................................................................................................................................................................................ .......
.....

gi





From the equalities fj = fi ◦ uij and (⋆) we see can R can be endowed in a natural way with
the structure of a T -scheme

fi ◦ gi : R −→ T

By the hypothesis we get an unique T -morphism g : R −→ S. In particular, ui ◦ g = gi for
every index i. If g′ : R −→ S also has this property, then we have that it is a T -morphisms
which fits into the upper diagram. By the universal property of S in C/T , we obtain g = g′.
Conversely, if S is a projective limit of the given system in C, it is straightforward to verify
that it is also a projective limit in C/T .

In what follows we will keep the notation we fixed in (†).

Proposition 3.2.5. (S, ui) is a projective limit of (Si, uji) in Schemes/S0. Moreover, if a
morphism h : S0 −→ T is given, we can endow every S0-morphism with the structure of a
T -scheme. Then (S, ui) is a projective limit of (Si, uji) in the category of T -schemes.
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Proof. Let q : X −→ S0 be an S0-scheme. We have that (see[Bosch, p. 288-289])

HomS0(X,S) = HomS0(X,Spec(A )) = HomS0(A , q∗OX) =

HomOS0
−alg(lim−→Ai, q∗OX) = lim←−HomOS0

−alg(Ai, q∗OX) = lim←−HomS0(X,Si)

The second statement follows from the previous lemma.

The next step is to understand whether the nice result we have just found for spectra of
quasi-coherent algebras can be generalized. Namely, assume that we are given an Si-scheme Xi.
Put Xj = Xi ×Si Sj for every i ≤ j, X = Xi ×Si S = Xj ×Sj S, vjk : Xk −→ Xj = idXi × ujk
and uj : idXi × uj . It is clear that (Xj , ujk)j≥i form a projective system in the category of
Xi-schemes. Then it would be desirable to have that

X ∼= lim←−Xj

This is a consequence of the following general lemma.

Lemma 3.2.6. Let C be a category with pullbacks, q : T ′ −→ T a morphism in C and C/T ,
C/T ′ the slice categories over T and T ′ respectively. Let (Si, uij)i∈I be a projective system in
C/T . For every index i, label S′

i = Si×T T
′ and u′ij = uij×idT ′. Then (S′

i, u
′
ij)i∈I is a projective

system in C/T ′. Assume a limit (S, ui) of (Si, uij) exists in C/T . Then, if S′ = S ×T T
′ and

u′i = ui × idT ′, (S′, u′i) is a limit of (S′
i, u

′
ij) in C/T ′.

Proof. Let (g′i : R −→ S′
i)i∈I be a collection of T ′-morphisms such that, for every i ≤ j, the

following diagram commutes

R

S′
j S′

i

Sj T ′ Si

T T

.............................................................................................................
.....
...........
.

g′j

.....................................................................................................................
.
.......
.....

g′i

................................................................................................................. ............
u′ij

.....................................................................................................
.....
...........
.

.................................................................................................................
.
.......
.....

.................................................................................................................
.....
...........
.

.................................................................................................................
.
.......
.....

....................................................................................................................
.
.......
.....

..................................................................................................... ................................................................................................................. ............
uij

........................................................................................................................
.....
...........
.

q

............................................................................................................................
.
.......
.....

q

....................................................................................................................
.....
...........
.

................................................................................................................. ............
idT



gj



gi

where gi is the composition of g′i with S′
i −→ Si for every i. Then (gi)i∈I form a projective

system of morphisms in C/T and therefore there exists a unique T -morphism g : R −→ S such
that gi = ui ◦ g, for all i ∈ I. It is clear from the previous diagram and from the universal
property of S′ that there exists a unique morphism g′ : R −→ S′ such that g′i = u′i ◦ g′ for all
i ∈ I.
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In particular, this applies to the situation we are interested in.

Proposition 3.2.7. (X, vj)j≥i is a projective limit of (Xj , vjk)j≥i in Schemes/Xi.

Remark 3.2.8. It follows from Lemma 3.2.4 that X = lim←−Xj in the category of schemes too.
Remark 3.2.9. Let S be any ringed space. Inductive limits with respect to any preordered set
always exist in OS − algebras. In fact, we showed that inductive limits exist when we consider
filtrant ordered sets. If (Ai) is any collection of OS-algebras indexed by a preordered set, we
can always add to such collection the algebras Ai ⊗Aj . It is clear that in this way we obtain a
collection of algebras indexed by a directed set.
In particular, if S is a scheme, inductive limits always exist in the category of quasi-coherent
OS-algebras, due to the fact that if A , B, C are quasi-coherent, then also B ⊗A C is also
quasi-coherent.

3.3 Finitely presented modules over projective limits

3.3.1 Morphisms between finitely presented modules over projective limits

Let us keep notation (†) we introduced in §3.2.2
Remark 3.3.2. We can assume without loss of generality that S0 is one of the schemes Si.

Let (F )i∈I be a collection of objects where each Fi is a OSi-module, such that

Fj = u∗ijFi ∀ i ≤ j

Let F = u∗iFi. Notice that F does not depend on the choice of i ∈ I, because of the congruence
conditions imposed to the Fi: if i, j ∈ I, there exists some k ∈ I with i ≤ k, j ≤ k. Then, as
ui = uik ◦ uk and uj = ujk ◦ uk,

u∗iFi = (uik ◦ uk)∗Fi = u∗k(u
∗
ikFi) = u∗kFk = · · · = u∗jFj

Assumption: in this section, it will be implicitly assumed that all collections (Fi)i∈I of
OSi-modules verify the consistency property considered above.

Let (Fi)i∈I and (Gi)i∈I be two families of OSi-modules. For every couple of indexes i ≤ j,
uij : Sj −→ Si induces an homomorphism in Z−modules.

u∗ij : HomOSi
−mod(Fi,Gi) −→ HomOSi

−mod(Fj ,Gj)

Then (HomOSi
−mod(Fi,Gi), uij∗)i∈I form a projective system in Z−modules. Furthermore, if

we put F = lim−→Fi and G = lim−→Gi, the morphisms

u∗i : HomOSi
−mod(Fi,Gi) −→ HomOS−mod(F ,G )

verify the equalities
u∗i = u∗j ◦ u∗ij ∀ i ≤ j

which induce a canonical morphism

uF ,G : lim−→HomOSi
−mod(Fi,Gi) −→ HomOS−mod(F ,G )
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Remark 3.3.3. If Fi = OSi for all i ∈ I, then the coherence condition above is verified and

uF ,G = uG : lim−→HomOSi
−mod(Fi,Gi) = lim−→Gi(Si) −→ HomOS−mod(F ,G ) = G (S)

Our aim is now to prove that under some hypothesis on S0, Fi and Gi, the homomorphism
uF ,G is an isomorphism. In a first place, we will investigate the affine case.

Lemma 3.3.4. Let A0 be a ring and let (Ai)i∈I be an inductive system of A0-algebras. Let
A be the inductive limit lim−→Ai. Consider two A0-modules M0 and N0. For all indexes i let
Mi = M0 ⊗A0 Ai, Ni = N0 ⊗A0 Ai, M = lim−→Mi and N = lim−→Ni. If M0 is an A0-module of
finite type (resp. of finite presentation), then

uM,N : lim−→HomAi(Mi, Ni) −→ HomA(M,N)

is injective (resp. bijective).

Proof. First assume that M0 = A0. Then Mi = Ai for every i and we have canonical isomor-
phisms

HomAi(Ai, Ni) ∼= Ni

HomA(A,N) ∼= N

Moreover, the functors HomAi(−, Ni), HomA(−, N) and lim−→ commute with finite sums. There-
fore, the lemma is valid if M0

∼= Ar
0 for any r ∈ N.

Assume that M0 is a A0-module of finite type. Let (fi) ∈ lim−→HomAi(Mi, Ni) be an element
such that uM,N ((fi)) = 0. Consider a surjection

Ar
0 −→M0 −→ 0

Then also
Ar

i −→Mi −→ 0

Ar −→M −→ 0

are exact and we find the following commutative diagram,

0 lim−→HomAi(Mi, Ni) lim−→HomAi(A
r
i , Ni)

0 HomA(M,N) HomA(A
r, N)

...................................................................................................................................................................... ............ ....................................................................... ............

..................................................................................................................................................................................................... ............ .................................................................................................................................. ............

..............................................................................................................................................................
.....
.......
.....

uM,N

..............................................................................................................................................................
.....
.......
.....

uAr,N

where rows are exact. Then, as uAr,N is an isomorphism, it is immediate to notice that uM,N

is injective.
Let M0 be a finitely presented A0-module. Then there exists a finite presentation

As
0 −→ Ar

0 −→M0 −→ 0
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Since the functors −⊗A0 Ai and ⊗A0A are right exact, we obtain finite presentations of Mi and
M

As
i −→ Ar

i −→Mi −→ 0

As −→ Ar −→M −→ 0

We thus obtain the commutative diagram

0 lim−→HomAi(Mi, Ni) lim−→HomAi(A
r
i , Ni)

0 HomA(M,N) HomA(A
r, N)

lim−→HomAi(A
s
i , Ni)

HomA(A
s,M)

.................................................................. ............ ....................................................................... ............

................................................................................................. ............ .................................................................................................................................. ............

..............................................................................................................................................................
.....
.......
.....

uM,N

..............................................................................................................................................................
.....
.......
.....

uAr,N

........................................................................ ............

.............................................................................................................................. ............

..............................................................................................................................................................
.....
.......
.....

uAs,N

with exact rows. Both uAr,N and uAr,N are isomorphisms and we can conclude that uM,N is
also an isomorphism with the 5-lemma.

In order to generalize this result to the non-affine case, our strategy will be to cover the
scheme with open affine subsets and try to extrapolate global data from a collection of local
ones. For this kind of approach, it seems unlikely to avoid some finiteness assumptions. In fact,
in order to guarantee good properties of the map uF ,G , we will need to assume that the scheme
has properties such as quasi-compactness and quasi-separability. On the other hand, for the
OS0-modules involved, it will be sufficient to consider the analogue concepts of the finite type
and finite presentation conditions.

Theorem 3.3.5. Let S0 be quasi-compact (resp. quasi compact and quasi-separated). Assume
that there exists an index i such that

1. Fi is a quasi-coherent OS0-module of finite type (resp. of finite presentation).

2. Gi is a quasi-coherent OS0-module.

Then uF ,G is injective (resp. bijective).

Proof. Notice that we can assume without loss of generality that S0 is one of the Si. In fact, the
morphisms u0,i : Si −→ S0 are affine, whence quasi-compact and separated (see [StacksProj,
Tag 01S7]). Therefore, if S0 is quasi-compact (resp. quasi-compact and quasi-separated), then
the same is true for Si.
Step 1. Assume that S0 = Spec(A0) is an affine scheme. Then the assertion follows from
Lemma 3.3.4.
Step 2.1. Assume that S0 is quasi-compact and that i is an index such that Fi is a quasi-
coherent OS0-algebra of finite type and Gi is a quasi-coherent OS0-algebra. Consider an open
affine cover (Uλ) of S0. Since u0i is affine, Ui,λ = u−1

0i (Uλ) form an open affine cover of Si.
Similarly, Vλ = u−1

i (Uλ) form an open affine cover of S. Let fi : Fi −→ Gi be a representative
of an element in the kernel of uF ,G , i.e. such that f = u∗i (fi) = 0. We need to show that there
exists an index j ≥ i such that fj = u∗ij(fi) = 0. By the affine case, for every λ there exists
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an index iλ such that fj|Uλ
= 0 for all j ≥ iλ. As there are finitely many λ and as the set I is

directed, we can certainly choose j so large such that fj|Uλ
= 0 for all λ, i.e. fj = 0.

Step 2.2. Let us add to the hypothesis of Step 2.1. the assumption that S0 is quasi-separated
and that Fi is finitely presented. Let f ∈ HomOS

(F ,G ). Let us keep he notation of Step 2.1.
The affine case implies that, for every index λ, we can find a morphism

f
(λ)
iλ

: F
λ|Uλ

−→ G
λ|Uλ

such that
u∗iλ(fiλ) = f|Uλ

As before, we can assume that the index iλ = i does not depend on λ. Then Si is quasi-compact
and quasi-separated and Fi is quasi-coherent and finitely presented. As Si −→ S0 is quasi-
separated, for every couple of indexes λ, µ Ui,λµ = Ui,λ ∩ Ui,µ is quasi-compact. We also have
that

u∗i (f
(λ)
i|Ui,λµ

) = u∗i (f
(µ)
i|Ui,λµ

) = f|Vλ∩Vµ

For each couple (λ, µ) we can find an index iλµ such that

u∗ij(f
(λ
i|Ui,λµ

)) = u∗ij(f
(µ
i|Ui,λµ

)) for all j ≥ iλµ

With the same argument used above, we can assume that i = iλµ does not depend on (λ, µ).
Then, for j ≥ i, we find a morphisms f (λ)j : Fj|Uj,λµ

−→ G|U,λµ
such that

u∗ij(f
(λ)
j|Uj,λµ

) = u∗ij(f
(µ)
j|Uj,λµ

)

Then the collection of maps (f
(λ)
j ) define a homomorphism fj : Fj −→ Gj and it is clear that

u∗j (fj) = f .

Corollary 3.3.6. Let S0 be a quasi-compact scheme. Let Fi be a quasi-coherent OS0-module of
finite type and let Gi be a quasi-coherent finitely presented OS0-module. Consider a morphism
fi ∈ HomOSi

(Fi,Gi). Then f = u∗i (fi) is an isomorphism if and only if fj = u∗ij(fi) is an
isomorphism for some j ≥ i.

Proof. We can assume without loss of generality that S0 = Si. Moreover, the property of being
an isomorphism is a local one. As S0 is quasi-compact and I is filtrant, we can therefore assume
that S0 is affine. In particular, S0 is quasi-compact and quasi-separated.
(⇐) obvious.
(⇒) as G is finitely presented, there exists some j ≥ i and some gj ∈ HomOSi

−mod(Gi,Fi) such
that u∗j (gj) = g = f−1. As both uF ,G and uG ,F are injective, we can conclude that

gj ◦ fj = ifFj
fj ◦ gj = idGj
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Corollary 3.3.7. Let S0 be a quasi-compact and quasi-separated scheme. Consider two finitely
presented OSi-modules Fi and Gi. Then F ∼= G if and only if there exists some index j ≥ i
such that Fj

∼= Gj. Moreover, given any isomorphism f : F −→ G , there exists a sufficiently
large index j ≥ k and an isomorphism fk : Fk −→ Gk such that u∗k(fk) = f .

Proof. (⇐) : obvious.
(⇒) : it follows from Theorem 3.3.5 and from Corollary 3.3.6.

3.3.8 Representation of finitely presented modules over a projective limit
of schemes

As we have seen, a set (Fi)i∈I of compatible (in the sense of §3.3.1) OSi-modules produces an
OS-module F . In this subsection we face the inverse problem. Namely, given an OS-module
F , can we find and index i and an OSi-module Fi such that F = u∗iFi? Or, equivalently, can
we find a collection of compatible OSi-modules that produce F?
As usual, we start with the study of the affine case.

Lemma 3.3.9. Let A0 be a ring and let (Ai)i∈I be an inductive system of A0-algebras. Consider
a finitely presented A-module, where A = lim−→Ai. There exists an index i and a finitely presented
Ai-module Mi such that M =Mi ⊗Ai A.

Proof. As M is finitely presented over A, there exists an exact sequence

Am An M 0.............................................................................................................. ............
π

................................................................................................................. ............ ................................................................................................................. ............

The homomorphism π is determined by π(ej) = (aj,1, . . . , aj,n) ∈ An, where e1, . . . , em is the
canonical basis of Am and j goes from 1 to m. We can pick i so large that every element
aj,s comes from and element a(i)j,s ∈ Ai. Then we can define πi : Am

i −→ An
i by πi(ej) =

(a
(i)
j,1, . . . , a

i
j,n). It is clear that Mi = coker(πi) is a finitely presented Ai-module and, as πi ⊗Ai

A = π, we have that M =Mi ⊗Ai A.

Theorem 3.3.10. Let S0 be a quasi-compact and quasi-separated scheme. For every quasi-
coherent finitely presented OS-module F , there exists an index i ∈ I and a quasi-coherent
finitely presented OSi-module Fi such that F = u∗i (Fi).

Proof. Step 1. assume that S0 is affine. Then the assertion of the theorem is equivalent to
Lemma 3.3.9.
Step 2. let us make no further assumptions on S0 other than the ones in the statement of
the theorem. Consider an open affine finite cover (Uλ) of S0 and let Uj,λ = u−1

j (Uλ) and
Vλ = u−1

0 (Uλ). For each j ∈ I, (Uj,λ) is a finite open affine cover of Sj . We deduce from
the local case that for every λ there exist an index iλ and a quasi-coherent finitely presented
OSiλ

-module F
(λ)
iλ

such that u∗iλ(F
(λ)
iλ

) = F|Uλ
. With the same argument we used several times

before, we can assume without loss of generality that i = iλ does not depend on λ. For all
couples of indexes λ, µ, let Uj,λµ = Uj,λ ∩ Uj,µ. Applying Corollary 3.3.7, we see that for all
couples λ, µ there exists an index iλµ and an isomorphism

Θλµ : u∗i,iλµ(F
(λ)
i|Ui,λµ

) −→ u∗i,iλµ(F
(µ)
i|Ui,λµ

)
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with
u∗iλµ(Θλµ) = idF|Vλ∩Vµ

as the pullbacks of F
(λ)
i|Ui,λµ

and F
(µ)
i|Ui,λµ

in OS −modules (via u∗iλµ) both coincide with FVλ∩Vµ .
Once again, we can assume that j = iλµ does not depend on λ, µ.
For every triplet of indexes λ, µ, η and for every k ∈ I label Uk,λµη the intersection Uk,λµ ∩
Uk,λη∩Uk,µη and label Vλµη the intersection Vλµ∩Vλη∩Vµη. Resorting to Corollary 3.3.7 once
again, let

Ψλµ : u∗i,j(F
(λ)
i|Ui,λµη

) −→ u∗i,j(F
(µ)
i|Ui,λµη

)

Ψλη : u∗i,j(F
(λ)
i|Ui,λµη

) −→ u∗i,j(F
(η)
i|Ui,λµη

)

Ψµη : u∗i,j(F
(µ)
i|Ui,λµη

) −→ u∗i,j(F
(η)
i|Ui,λµη

)

be the isomorphisms corresponding to Θλµ|Ui,λµη
, Θλη|Ui,λµη

and Θµη|Ui,λµη
respectively. There

exists l ≥ j such that
u∗jl(Ψλµ ◦Ψµη) = u∗jl(Ψλη)

Therefore, the isomorphisms

u∗jl(Ψλµ) : u
∗
jl(F

λ
j|Uj,λµ

) −→ u∗jl(F
µ
j|Uj,λµ

)

define a finitely presented quasi-coherent OSj -module Fl such that u∗l (Fl) = F .

An immediate consequence of Theorem 3.3.5 is the following result (see 3.3.3).

Corollary 3.3.11. Let S0 be a quasi-compact and quasi-separated scheme. If G is a quasi-
coherent OS-module, then the map uG is a bijection.

Proposition 3.3.12. Let S0 be a quasi-compact scheme. Let Fi be a finitely presented quasi-
coherent OSi-module. Then F is locally free (resp. locally free of rank n) in and only if there
exists some j ≥ i such that Fj is locally free (resp. locally free of rank n).

Proof. (⇐) : obvious.
(⇒) : Let (Vλ) be a finite open affine cover of S such that F|Vλ

∼= Oni

S|Vλ
(resp. On

S|Vλ
) for all

λ. By [EGA IV.3, Corollaire 8.2.11]), there exists some j ≥ i and a quasi-compact open subset
Uj,λ for each λ such that the equality Vλ = u−1

j (Uj,λ) holds for every λ. As Sj is quasi-compact,
it can be covered by finitely many open affine subsets. Then we are reduced to the case where
S0 is affine and F ∼= Oni

S (resp. Oni
S ). Then we conclude by Corollary 3.3.7.

3.4 Finitely presented schemes over projective limits

Let us keep notation (†) we introduced in §1.2.
Assume that for some index i we are given two Si schemes Xi and Yi. Let Xj = Xi ×Si Sj ,
Yj = Yi×SiSj , X = Xi×SiS and Y = Yi×SiS. Moreover, let vjk = idXi×ujk, wjk = idYi×ujk,
vj = idXi × uj and wj = idYi × uj . Notice that for every i ≤ j ≤ k we have a map

ejk : HomSj (Xj , Yj) −→ HomSk
(Xk, Yk)

fj ↦→ fk = fj × idSk
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Remark 3.4.1. It is immediate to observe that (HomSj (Xj , Yj), ejk) form an inductive system
in the category of sets. Notice also that the morphisms

ej : HomSj (Xj , Yj) −→ HomS(X,Y )

are compatible with the ejk. Therefore, they induce a canonical map

e : lim−→HomSj (Xj , Yj) −→ HomS(X,Y )

that is functorial in Sj , Xj and Yj .

It is natural to ask whether there exist conditions on Si, Xi and Yi which guarantee that e
is a bijection. Let us consider the affine case first.

Lemma 3.4.2. Let A0 be a ring and let (Aj)j∈J be an inductive system in
A0−algebras. Label A the corresponding colimit. Let Bi and Ci be two Ai-algebras and assume
that Ci is of finite type (resp. of finite presentation). Then the canonical homomorphism

lim−→HomAj (Ci ⊗Ai Aj , Bi ⊗Ai Aj) −→ HomA(Ci ⊗Ai A,Bi ⊗Ai A)

is injective (resp. bijective).

Proof. We have canonical isomorphisms

• HomAj (Ci ⊗Ai Aj , Bi ⊗Ai Aj) ∼= HomAi(Ci, Bi ⊗Ai Aj)

• HomA(Ci ⊗Ai A,Bi ⊗Ai A)
∼= HomAi(Ci, Bi ⊗Ai A)

Hence, it suffices to show that

lim−→HomAi(Ci, Bi ⊗Ai Aj) −→ HomAi(Ci, Bi ⊗Ai A)

is injective (resp. bijective).
Assume that Ci is of finite type over Ai and let c1, . . . , cn be a set of generators. Let (fi)
and (gi) be two compatible systems of morphisms in lim−→HomAi(Ci, Bi ⊗Ai Aj) such that f =
lim−→ fi = lim−→ gi = g. It is immediate to deduce from the following commutative diagram

Ci

Bi ⊗Ai A

Bi ⊗Ai Aj Bi ⊗Ai Ak

....................................................................................................................................................................................................................................................................................
.....
...........
.

gj

.........................................................................................................................................................................................................................................................................................
.
.......
.....

gk

............................................................................................................
.....
.......
.....

f = g

.......................................................................................................................................................
....
............

θj

........................................................................................................................................................... ........
....

θk

.................................................................................................................................................................................. ............
θkj

...............................................................................................................................................................................................................................................................................................................................
.....
.......
.....

fj

...............................................................................................................................................................................................................................................................................................................................
.....
.......
.....

fk
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that there exists an index j >> 0 such that fj(cs) = gj(cs) for all s = 1, . . . , n, whence
(fi) = (gi).
Assume that Ci is a finitely presented Ai-algebra, say

Ci = Ai[T1, . . . , Tn]/(F1, . . . , Fm)

Let f ∈ HomAi(Ci, Bi ⊗Ai A). It is uniquely determined by n elements x1, . . . , xn such that

Ft(x1, . . . , xn) = 0 for all t = 1, . . . ,m

Choosing j sufficiently large, we can assume that every xs is the image of some xj,s ∈ Aj .
Furthermore, we can also assume that

Ft(xj,1, . . . , xj,n) = 0 for all t = 1, . . . ,m

Then xj,1, . . . , xj,n determine an element in HomAi(Ci, Bi ⊗Ai Aj) that maps onto f .

Theorem 3.4.3. Let Xi be a quasi-compact scheme (resp. quasi-compact and quasi-separated).
Assume that Yi is locally of finite type (resp. locally of finite presentation) over Si. Then

e : lim−→HomSj (Xj , Yj) −→ HomS(X,Y )

is injective (resp. bijective).

Proof. Step 1. reduction to the case where Xi = Si.
Let Zi = Xi ×Si Yi and Zj = Zi ×Si Sj = Xj ×Sj Yj for all j ≥ i. Let Z = Zi ×Si S = X ×S Y .
Notice that Zi is of finite type (resp. locally of finite presentation) over Xi. For every i ≤ j ≤ k
we have a commutative diagram

HomSj (Xj , Yj) HomSk
(Xk, Yk) HomS(X,Y )

HomXj (Xj , Zj) HomXk
(Xk, Zk) HomX(X,Z)

........................................ ............ .................................................... ............

................................ ............ .............................................. ............

............................................................................................................
.....
.......
.....

∼=

............................................................................................................
.....
.......
.....

∼=

............................................................................................................
.....
.......
.....

∼=

where vertical arrows are bijections. Hence we can assume that Xi = Si.
Step 2. reduction to the case where Xi is affine.
Since Xi is quasi-compact, we can cover it by finitely many open affine subsets. As I is filtrant,
we can assume that Xi is affine.
Step 3. treatment of the case where Yi is of finite type over Si.
Let (fi) and (gi) be two compatible systems of morphisms Xi −→ Yi such that f = lim−→ fi =
lim−→ gi = g ∈ HomS(X,Y ). As Xi is quasi-compact, fi(Xi) ∪ gi(Xi) ⊆ Yi is quasi-compact.
Moreover, Yi is of finite type over Xi, fi(Xi) ∪ gi(Xi) can be covered by finitely many affine
open subsets Ui,λ ⊆ Yi that are of finite type over Xi. Let

Vi,λ = f−1
i (Ui,λ) Wi,λ = g−1

i (Ui,λ) Oi,λ = Vi,λ ∩Wi,λ Oi = ∪λOi,λ
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Considering the following commutative diagram

Xi Yi

X Y

............................................................................................................................................................................................ ............

gi

............................................................................................................................................................................................ ............
fi

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...................

............

vi

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...................

............

wi

............................................................................................................................................................................................ ............
f = g

it is immediate that

v−1
i (Vi,λ) = v−1

i (f−1
i (Ui,λ)) = v−1

i (g−1
i (Ui,λ)) = v−1

i (Wi,λ) = g−1(w−1
i (Ui,λ))

As (Vi,λ) is a cover of fi(Xi)∪gi(Xi), we have that v−1
i (Oi) = f−1(Y ) = X. Moreover, since Xi

is quasi-compact and every open subscheme of Xi is ind-constructible, by [EGA IV.3, Corollaire
8.3.4] we get an index j ≥ i such that the Oj,λ = v−1

ij (Oi,λ) form a cover of Xj . Hence, we can
assume without loss of generality that (Oi,λ) is a cover of Xi.
For every x ∈ Xi, there exists an open affine neighborhood Nx ⊆ Ui,λ for some λ, i.e. both f|Nx

and g|Nx
map Nx inside Vi,λ. As Xi is quasi compact, we can cover it with finitely many affine

open subsets of type Nx, say Nx1 , . . . , Nxh
. Since I is filtrant, we can take a j so large that

fj|v−1
ij (Nxs )

= gj|v−1
ij (Nxs )

for all s = 1, . . . , h

i.e. fj = gj .
Step 4. Assume that Xi is quasi-compact and quasi-separated and that Yi is locally of finite
presentation over Si. Let f ∈ HomS(X,Y ).
Remark: the reduction we made in Step 1. is still valid.
As X is quasi-compact (Xi being quasi-compact), f(X) ⊆ Y is quasi-compact. Therefore,
there exists an open quasi-compact subset Y ′ ⊆ Y which contains f(X). By [EGA IV.3,
Corollaire 8.2.11]), there exists some j ≥ i and an open quasi-compact subset Y ′

j ⊆ Yj such that
Y ′ = w−1

j (Y ′
j ). Therefore, we can assume without loss of generality that Yi is quasi-compact.

Consider a finite open affine cover Vλ. Then X =
⋃
f−1(Vλ). Now, every point of X has an

open quasi-compact neighborhood contained in one of the f−1(Vλ). As X is quasi-compact,
we can thus assume that, for every λ, Vλ = w−1

i,λ (Vi,λ), where (Vi,λ) is an open affine cover of
Yi. Therefore, X =

⋃
f−1(Vλ). Every point in X has an open quasi-compact neighborhood

contained in one of the f−1(Vλ). We can cover X with finitely many such neighborhoods;
eventually repeating some of the Vλ, we can also assume that the number of such neighborhoods
equals the number of the Vλ. Using [EGA IV.3, Corollaire 8.2.11] once again, we can assume
without loss of generality that Uλ = v−1

i (Ui,λ), where Ui,λ ⊆ Xi is an open quasi-compact subset.
Moreover, using ([EGA IV.3, Corollaire 8.3.4]), we can also assume without loss of generality
that (Ui,λ) is a cover of Xi. Then it suffices to show that there exist some j ≥ i and a morphism
fj,λ : Ui,λ −→ Vi,λ such that lim−→ fj,λ = f|Uλ

(here Uj,λ = v−1
ij (Ui,λ) and Vj,λ = w−1

ij (Vi,λ)).
As Xj is quasi-separated, Uj,λ ∩ Uj,µ are quasi-compact (see [Bosch, Remark 6.9.8 (i)]). By
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what we showed above, it suffices to show that there exists some k ≥ j such that all fk,λ and
fk,µ coincide on the intersections of their domains. In this way, we can assume that Yi is affine.
Furthermore, as we can assume that the image of each Vi,λ in Si is contained in an open affine
subset, we can also assume that Si is affine. Let Si = Spec(Ai) and Yi = Spec(Ci), where Ci is
an Ai-algebra of finite presentation. set A = lim−→Ai, C = lim−→Cj = lim−→Ci ⊗Ai A, S = Spec(A)
and Y = Spec(C). Then

HomS(X,Y ) = HomA(C,OX(X)) = HomAi(Ci,OX(X))

HomSj (Xj , Yj) = HomAj (Cj ,OXj (Xj)) = HomAi(Ci,OXj (Xj))

Since Xi is quasi-compact and quasi-separated, by [EGA IV.3, Corollaire 8.5.4] it follows that
OX(X) = lim−→OXj (Xj) and we can apply Lemma 3.4.2.

The following results follow from the theorem.

Corollary 3.4.4. Let S0 be a quasi-compact scheme, Xi be a finitely presented Si-scheme and
let Yi be a quasi-separated Si-scheme of finite type. Let fi : Xi −→ Yi be an Si-morphism,
f = lim−→ fj : X −→ Y is an isomorphism if and only there exists j ≥ i such that fj : Xj −→ Yj
is an isomorphism.

Proof. (⇐) : obvious.
(⇒) : let g : Y −→ X be the inverse of f . We have that

e : lim−→HomSj (Yj , Xj) −→ HomS(Y,X)

is a bijection. Then there exists (gk) ∈ lim−→HomSj (Xj , Yj) with g = lim−→ gk. In particular, as
both Xi and Yi are of finite type, for some k >> 0,

fk ◦ gk = idYk
gk ◦ fk = idXk

Corollary 3.4.5. Let S0 be quasi-compact and quasi-separated, Xi and Yi of finite presentation
over Si. Then X ∼= Y if and only if there exists some j ≥ i with Xj

∼= Yj. Moreover, for every
S-isomorphism f : X −→ Y there exist some k ≥ j ≥ i and an isomorphism fk : Xk −→ Yk
with f = fk × idS.

Proof. (⇐) obvious.
(⇒) by the theorem, we get that f = fj × idS for some j ≥ i and some fj : Xj −→ Yj . Then
fj is an isomorphism by the previous corollary.

Theorem 3.4.6. Let S0 be quasi-compact and quasi-separated, X a finitely presented S-scheme.
Then there exist some index j ∈ I, a finitely presented Sj-scheme Xj and an S-scheme isomor-
phism

X −→ Xj ×Sj S
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Proof. Step 1. assume that S0 = Spec(A0) and X = Spec(B), with

B = A[T1, . . . , Tn]/(F1, . . . , Fm) F1, . . . , Fm ∈ A[T1, . . . , Tn]

We can choose j ≥ i so large that all coefficients of all Fs come from Aj . Then

Bj = Aj [T1, . . . , Tn]/(F1, . . . , Fm)

is such that Bj ⊗Aj A = B.
Step 2.let S0 and X be as in the statement of the theorem. Notice that S is quasi-compact and
quasi-separated. Since X −→ S is a finitely presented morphism and u0 : S −→ S0 is an affine
morphism, there exists a finite open affine cover (Xr) such that, for all r, the image of Xr in S
is contained in Wλr = u−1

0 (Uλr).

Remark 3.4.7. OX(Xr) is a finitely presented OS(Wλr)-algebra, for all r
By Step 1. and the fact that I is filtrant, there exist a j ≥ i and an affine scheme Zj,k such

that gr : Zj,r×Sj S = Xr is an isomorphism, with Zj,r finitely presented over Wj,λr = u−1
0j (Uλr).

Let Zrs = g−1
r (Xr ∩ Xs); Zrs is quasi-compact as X is quasi-separated (see [Bosch, Remark

6.9.8 (i)]). Let g′rs = grs|Zrs
: Zrs

∼= Xr∩Xs. Corollary 3.4.5 implies that there exists an index
k ≥ j and, for every couple (r, s), an opne quasi-compact subscheme Zk,rs ⊆ Zk,r = v−1

jk (Zj,r)
such that Zrs is the inverse image of Zk,rs. As Sk is quasi-separated and Wk,λr ⊆ Sk is open
and quasi-compact, every Zk,rs is finitely presented over Sk. For every pair (r, s) consider the
isomorphism

hrs = g−1
sr ◦ grs : Zrs −→ Zsr

By Corollary 3.4.4 there exists l ≥ k and, for every pair (r, s), an isomorphism hl,sr : Zl,rs −→
Zl,sr such that hsr = hl,sr × idS . For every triplet (r, s, t), let h′sr = hsr|Zrs∩Zrt

. Then

h′sr : Zrs ∩ Zrt
∼= Zsr ∩ Zst

and h′ts ∼= h′sr = h′tr. Theorem 3.4.2 guarantees the existence of an index m ≥ l such that , for
every (r, s, t),

h′m,ts ◦ h′m,sr = h′m,tr

Then we can glue the schemes (Xr) and we obtain an Sm-scheme Xm such that X = Xm×Sm S.
Moreover, the Zm,r are finitely presented over Sm. If we identify them with open subsets of Xm,
Zm,r ∩ Zm,s

∼= Zm,rs are quasi-compact. Then Xm is finitely presented over Sm (see [EGAI,
§6.3]).

As we mentioned at the beginning of this chapter, at this point we can ask whether good
properties of morphisms are preserved under e : lim−→HomSj (Xj , Yj) −→ HomS(X,Y ). One
direction is given by permanence of good properties under base change. Anyway, for reduction
purposes, it would be useful to know the converse, i.e. if, given an S-morphism f : X −→ Y
with some property P, there exists a sufficiently large index j such that f = fj × idS and
fj : Xj −→ Yj has the same property P. It comes out that e behaves extremely well. For the
convenience of the reader, we will state the theorem we will use later on. For a proof, consult
[EGA IV.3, §8.10].
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Theorem 3.4.8. Let S0 be quasi compact and Xi, Yi two finitely presented Si-schemes. Let
fi : Xi −→ Yi be an Si-morphism. Let P be one of the following properties:

1. being an isomorphism

2. being a monomorphism

3. being an immersion

4. being an open immersion

5. being a closed immersion

6. being separated

7. being surjective

8. being purely inseparable

9. being affine

10. being quasi-affine

11. being finite

12. being quasi-finite

13. proper

Then f has P if and only if there exists an index j ≥ i such that fj has the property P.
Moreover, if in addition S0 is also quasi-separated, the same is true also for the properties of
being projective and quasi-projective.
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Chapter 4

Artin’s approximation

In the first part of this chapter we briefly define excellent rings, trying to explain why they were
introduced. In the second part we discuss Artin’s approximation. Finally, we state Popescu’s
theorem and we prove that it implies that henselian pairs (A, I), with A a G-ring, satisfy Artin’s
approximation property.

4.1 Excellent rings

4.1.1 Introduction

There are some properties of noetherian rings which are not preserved under some fundemental
constructions in Commutative Algebra and Algebraic Geometry. For example, the normaliza-
tion of a noetherian ring is not always noetherian. Another example was found by M. Nagata,
who showed a normal noetherian local domain whose completion is not reduced (see [Nag62]).
This motivated the attempt to define a new class of noetherian rings with additional properties.
The first question one should ask is the following: which are the good properties we want our
class of rings to have? As in Algebraic Geometry we work with algebras of finite type over
a field, it seems reasonable to take them as a prototype. Then the following question arises:
which are the main properties that characterize affine rings? In the case we are working over
an algebraically closed field, it is known that the subset of singular points in an affine variety is
closed (see [Liu, Proposition 4.2.24]). Nagata, in his paper On the closedness of the singular loci
(see [Nag59]) studied the conditions that a noetherian ring has to satisfy in order to guarantee
that the singular locus of any finitely generated extension is closed. He proved that this class
of noetherian rings is well behaved under certain fundamental operations such as formation of
finitely generated extensions. Moreover, he provided an example of a noetherian ring that does
not belong to this class. It is remarkable to notice that his counterexample satisfies a number of
hypothesis. Anyway, Nagata’s rings fail in other desirable properties. This led A. Grothendieck
to define a new class of notherian rings. As it is stated in [EGA IV.2, §7.8], one might want
that good properties of a noetherian (local) ring are inherited by its completion. Grothendieck
studied the formal fibers of the canonical morpihism

Spec(Â) −→ Spec(A)
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and found that good properties of the fibers correspond to results of the form

A has the property P if and only if Â has the same property

This is the reason why he introduced the theory of G-rings.
Another desirable property of a ring is that the locus of points of Spec(A) for which Ap has
a nice property is open. As we said above, Nagata showed that if the property involved is
regularity, this is not always the case. Finally, if A is a noetherian integral domain, one may
ask if, given a finite extension L of Frac(A), the integral closure of A in L is a finitely generated
A-algebra. In general, the answer is no.
The noetherian rings which have all the desirable properties listed above were called excellent
by Grothendieck. In the remaining part of this paragraph, we briefly give the definition of
excellent ring and we state the main properties of this class of noetherian rings. For more
detailed discussions on excellent rings, see [EGA IV.2, §7.8], [Mats] and [StacksProj]. A very
nice and readable exposition on excellent rings can be found in [Rot].

4.1.2 The class of excellent rings

First of all, let us recall that a chain of prime ideals of a ring A

p1 ⊆ p2 ⊆ . . . pr

is saturated if there are non prime ideals between two terms of the chain. Equivalently, one
could say that pi+1/pi is a minimal prime ideal in A/pi for every i.

Definition 4.1.3. A ring A is catenary if for any prime ideals p, q ⊆ A with p ⊆ q, there exists
a saturated chain starting from p and finishing in q. Moreover, any two such chains have the
same (finite) length.

Definition 4.1.4. A ringA is universally catenary if it is noetherian and every finitely generated
A-algebra is catenary.

Excellent rings will be required to be universally catenary as this reflects good properties in
terms of dimension.
If (A,m) is a local noetherian ring and Â is its completion, for any p ∈ Spec(A) the formal fibre
of A in p is Â⊗A k(p)

Definition 4.1.5. A noetherian ring A that contains a field k is geometrically regular if for any
finite field extension k ⊆ l, A⊗k l is a regular ring.

Definition 4.1.6. An homomorphism ϕ : A −→ B between two noetherian rings is regular if
it is flat and if, for every p ∈ Spec(A), B ⊗A k(p) is a geometrically regular ring over k(p).

At this point we can introduce the first class of rings introduced by Grothendieck.

Definition 4.1.7. A noetherian ring A is a G-ring (Grothendieck ring) if for any p ∈ Spec(A)
the canonical morphism

Ap −→ Âp

is regular.
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Finally, we are able to define excellent rings.

Definition 4.1.8. A noetherian ring A is excellent if

1. A is universally catenary

2. A is a G-ring

3. for any finitely generated A-algebra B, the locus of regular points Reg(B) ⊆ Spec(B) is
open

Some very important properties of excellent rings are collected in the next lemma.

Lemma 4.1.9. Excellent rings are closed under localizations, quotients and finitely generated
extensions.

Finally, the next proposition tells us that most of the rings we encounter in algebraic geom-
etry and in number theory are excellent.

Proposition 4.1.10. The following rings are excellent:

1. complete noetherian local rings.

2. Dedekind domains with fraction field of characteristic zero.

3. extensions of finite type of the rings above.

4.2 Artin’s approximation

4.2.1 Introduction to the main idea

In his celebrated paper [Art69], Artin treats a method which leads to approximations of struc-
tures over Â with structures over A. We will see that, after Popescu’s theorem, we can generalize
this method to pairs.
In order to be precise, assume that the kind of structure we are interested in is classified by a
functor:

F : A-algebras −→ Sets

B ↦→ F (B) = set of isomorphism classes of structures over B

If A is given together with an ideal, i.e. if we are given a pair (Definition 2.1.1) (A, I), then
for every n ∈ N we can consider the following arrows, where Â is the I-adic complition of A:

F (A) F (Â)

F (A/In) = F (Â/În)

..................................................................................................................................................................................
...
.......
.....

................................................................................................................................................................................
.....
.........
...
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Definition 4.2.2. We say that ξ ∈ F (A) and ξ̂ ∈ F (Â) are congruent modulo In if they have
the same image in F (A/In). In this case we write

ξ ≡ ξ̂ mod IN

The first question that comes to the mind is the following one:

Question 4.2.3. Given F as above, a positive integer n ∈ N and an element ξ̂ ∈ F (Â), does
there exist some ξ ∈ F (A) such that ξ ≡ ξ̂ mod In?

4.2.4 Reduction to solutions of a system of equations

It is natural to put some restriction condition on the functor F . In particular, we will require
it to be well behaved with respect to inductive limits.

Definition 4.2.5. Let A be a ring and consider a functor

F : A-algebras −→ Sets

We say that F is locally of finite presentation if for every filtering inductive system of A-algebras
{Bi}, the canonical map

lim−→F (Bi) −→ F (lim−→Bi)

is bijective.

Assume that the functor which classifies the structures we are interested in is locally of finite
presentation. Any A-algebra B can be written as

B = lim−→Bi with Bi finitely presented over A

If ξ ∈ F (B) = lim−→(F (Bi)), then there exists some ξi ∈ F (Bi) such that Bi −→ B induces

F (Bi) −→ F (B)

ξi ↦→ ξ

If Bi =
A][T1,...,Tn]
(f1,...,fm) , we have a canonical bijection

HomA(Bi, C) = {(c1, . . . , cn) ∈ Cn : fi(c) = 0 for every i}

for every A-algebra C. Summarizing, we obtained

Corollary 4.2.6. Let F : A-algebras −→ Sets be locally of finite presentation. If B is any
A-algebra and ξ ∈ F (B), there exist:

1. a finite system of polynomials f = (f1, . . . , fm) ∈ A[T1, . . . , Tn]m.

2. a functorial rule which associates to every solution of f in an A-algebra C an element of
F (C).
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3. a solution of f in B, so that the functorial rule applied to that solution yields ξ.

Proof. With the notation used above, take f as the polynomials which identify Bi. Then the
functorial rule is just

F (ψ) : F (Bi) −→ F (C)

ξi ↦→ F (ψ)(ξi)

where ψ : Bi −→ C is the A-homomorphism that corresponds to the given solution of f . Finally,
the solution of f in B is given by the images of the residue classes T1 + (f1, . . . , fm), . . . , Tn +
(f1, . . . , fm) in Bi via the canonical map.

With this in mind, it is clear that in order to answer positively to Question 4.2.3 it suffices
to answer positively to the following question:

Question 4.2.7. Let f = (f1, . . . , fm) ∈ A[T1, . . . , Tn]
m and let ŷ = (ŷ1, . . . , ŷn) ∈ Ân be a

solution. Given some N ∈ N, does there exist a solution y = (y1, . . . , yn) ∈ An of f such that

yi ≡ ŷi mod IN for every i = 1, . . . , n ?

This is exactly the meaning of the following result.

Corollary 4.2.8. Let (A, I) be a pair and assume that Question 4.2.7 has a positive answer
for every system of polynomial equations f = (f1, . . . , fm) in A[T1, . . . , Tn], for every solution
ŷ = (ŷ1, . . . , ŷn) in Ân and for every integer N . If F is a functor locally of finite presentation
and if ξ̂ ∈ F (Â), then for every N ∈ N there exists some ξ ∈ F (A) such that

ξ ≡ ξ̂ mod IN

Proof. By Corollary 4.2.6 there exist a system of polynomials

f = (f1, . . . , fm) ∈ A[T1, . . . , Tn]m

and a solution
ŷ = (ŷ1, . . . , ŷn) ∈ Ân

of f such that the functiorial rule mentioned in Corollary 4.2.6 gives ŷ ↦→ ξ̂. By our assump-
tions, there exists a solution of f

y = (y1, . . . , yn) ∈ An

such that
yi ≡ ŷi mod IN for every i = 1, . . . , n

Let ξ ∈ F (A) be the element that corresponds to y via the functorial rule. As y ≡ ŷ mod IN ,
they induce the same element η ∈ F (A/IN ), i.e.

ξ ≡ ξ̂ mod IN
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Then the new problem is to find out when Question 4.2.7 has a positive answer. This is
what Artin does in the main result of [Art69].

Theorem 4.2.9. Let R be a field or an excellent Dedekind domain and let A be the henselization
of an R-algebra of finite type at a prime ideal. Let I be a proper ideal of A. Given an arbitrary
system of polynomial equations

f(T ) = (f1(T1, . . . , Tn), . . . , fm(T1, . . . , Tn))

in A[T ] = A[T1, . . . , Tn], a solution

ŷ = (ŷ1, . . . , ŷn)

in Ân and an integer N , there exists a solution

y = (y1, . . . , yn)

in An such that
yi ≡ ŷi mod IN for every i = 1, . . . , n

Then Corollary 4.2.8 provides us the following important result:

Theorem 4.2.10. Keep the notation and the assumptions of Theorem 4.2.9. Let F be a
functor which is locally of finite presentation. Given any ξ̂ ∈ F (Â) and any N ∈ N, there exists
an element ξ ∈ F (A) such that

ξ ≡ ξ̂ mod IN

Moreover, Artin conjectured in [Art69] that Question 4.2.7 has an affirmative answer for
any excellent henselian ring.

4.3 Popescu’s Theorem

4.3.1 Artin’s second conjecture

In his later work [Art82], Artin conjectured an even stronger result. In this section we will
briefly discuss this. The reason why this second conjecture was introduced is the following: let
(f1, . . . , fm) be an ideal in A[T1, . . . , Tn]. Then a solution of the system of equations f given by
such ideal in Â corresponds uniquely to a morphism ψ : A[T1, . . . , Tn]/(f1, . . . , fm) −→ Â that
fits into the diagram

A Â

A[T1,...,Tn]
(f1,...,fm)

................................................................................................................. ............

.............................................................................................................
.
.......
..... .......

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...................
............

ψ
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Assume that ψ factorizes through a smooth A-algebra D of finite type. As we are assuming
that A is henselian, it can be shown that there exists an A-morphism D −→ A

A Â

A[T1,...,Tn]
(f1,...,fm) D

................................................................................................................. ............

.........................................................................................................
.....
.......
..... .........

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..............
............

ψ
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.............
............

........................................................................... ............

......
......

......
......

......
......

......
......

......
......

......
......

......
......

..............................

Then it is clear that the solution of f in Â lifts to a solution in A. Therefore, one can ask
whether the smooth A-algebra of finite type D always exists when A is an excellent henselian
ring. This can be regarded as a property of the canonical morphism A −→ Â. Then Artin’s
second conjecture takes the following shape:

Let ϕ : A −→ B be a regular morphism between noetherian rings. Is B a direct limit of
smooth A-algebras of finite type?

4.3.2 Popescu’s Theorem

An answer to Artin’s second conjecture was given by D. Popescu with a series of articles
published in the period from 1985 to 1990. He gave a characterization of regular homomorphisms
between noetherian rings.

Theorem 4.3.3 (Popescu). Let f : A −→ B be an homomorphism of noetherian rings. Then
f is regular if and only if B is a filtered colimit of smooth A-algebras.

In the remaining part of this section we discuss a generalization of Theorem 4.2.9 to the
nonlocal case. We give the result that can be found in [StacksProj, Tag 0AH5].

Proposition 4.3.4. Let (A, I) be an henselian pair with A noetherian. Assume that one of the
following hypothesis is verified:

1. A −→ Â is a regular ring map.

2. A is a noetherian G-ring.

3. (A, I) is the henselization of a pair (B, J), where B is a noetherian G-ring.

Let f1, . . . , fm ∈ A[T1, . . . , Tn] and let ŷ = (ŷ1, . . . , ŷn) be a solution of the system in Â. Let N
be any positive integer. Then there exist a solution y = (y1, . . . , yn) of the system of polynomials
equations f1, . . . , fm in A such that

yi ≡ ŷi mod IN for every i = 1, . . . , n

Proof. By [StacksProj, Tag 0AH3], we see that 3.⇒ 2. and by [StacksProj, Tag 0AH2] we see
that 2.⇒ 1. Then it suffice to show the proposition assuming that we are in situation 1.
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Popescu’s theorem (Theorem 4.3.3) implies that we can find a smooth A-algebra B and ele-
ments b1, . . . , bn ∈ B such that the canonical morphism

A −→ Â

factors through B and such that

fi(b1, . . . , bn) = 0 for all i = 1, . . . , n

Let σ : B −→ Â −→ A/IN . By [StacksProj, Tag 07M7], there exists an étale ring map A −→ A′

which induces an isomorphism
A/IN ∼= A′/INA′

and an A-algebra homomorphism τ : B −→ A′ which lifts σ. By [StacksProj, Tag 09XI] there
exists an A-homomosphism ρ : A′ −→ A. Then the elements

ai = ρ(τ(bi)) for every i = 1, . . . , n

have the desired property.

In particular, applying Corollary 4.2.8, we can reformulate Theorem 4.2.10.

Theorem 4.3.5. Let (A, I) be an henselian pair with A noetherian and assume that one of
the hypothesis of Proposition 4.3.4 is satisfied. Let F be a functor which is locally of finite
presentation

A-algebras −→ Sets

Given any ξ̂ ∈ F (Â) and any N ∈ N, there exists an element ξ ∈ F (A) such that

ξ ≡ ξ̂ mod IN
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Chapter 5

Proper base change over henselian
pairs

In this chapter we describe how to adapt Artin’s proof of [Art69, Theorem 3.1] to the nonlocal
case.

5.1 The statement of the theorem

Let X be a proper finitely presented scheme over S = Spec(A), where (A, I) is a pair. Denote
Étf (Z) the category of finite étale coverings of the scheme Z. Then we have a functor

Étf (X) −→ Étf (X0)

induced by − ×S S0, where S0 = Spec(A/I) and X0 = X ×S S0. It is a very important fact
that if (A, I) is an henselian local ring, then the functor above is an equivalence. This was first
proved by Artin, Grothendieck and Verdier in [SGAIV, Exposé XII]. A new (simpler) proof was
later given by Artin in [Art69].
In this chapter we describe how it is possible to generalize the proof due to Artin to the case
where (A, I) is an henselian pair.

Theorem 5.1.1. Let (A, I) be an henselian pair. Let S = Spec(A) and let f : X −→ S be a
proper finitely presented morphism. Let X0 = X ×S S0, where S0 = Spec(A/I). Then

Étf (X) −→ Étf (X0)

Z ↦→ Z ×S S0

is an equivalence of categories.

The main ingredients for the proof are Proposition 4.3.4 and Theorem 4.3.5. We will see
that the original proof of Artin adapts very well to the case of our interest.
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5.2 The proof of the theorem

5.2.1 A reduction step

In this first section we reduce to the case where A is the henselization of a finitely presented
Z-algebra.

Lemma 5.2.2. Let S = Spec(A) and let g : X −→ S be a proper morphism of finite presenta-
tion. Then the functor

F : A-Algebras −→ Sets

B ↦→ {finite étale coverings of Spec(B)×S X}/isomorphism

is locally of finite presentation (Definition 4.2.5).

Proof. See the beginning of the proof of [Art69, Theorem 3.1].

Lemma 5.2.3. Let S = Spec(A) and let g : X −→ S be a proper morphism of finite presenta-
tion. Let Z1 → X and Z2 → X be two finite étale covers of X. Then the functor

G : A-algebras −→ Sets

B ↦→ HomX×SSpec(B)(Z1 ×S Spec(B), Z2 ×S Spec(B))

is locally of finite presentation.

Proof. The lemma is a straightforward consequence of Theorem 3.4.3.

Let (A, I) be an henselian pair and write A as a direct limit lim−→Ai, where each Ai is a
subalgebra of A that is finitely generated over Z. Let (Ah

i , (I ∩ Ai)
h) be the henselization of

(Ai, (I ∩Ai)) for each i. Then by Proposition 2.2.4 lim−→(Ah
i , (I ∩Ai)

h) is an henselian pair. It
is easy to see that

(A, I) = lim−→(Ah
i , (I ∩Ai)

h)

Write Si = Spec(Ah
i ) for every index i. Then

S = lim←−Si

By Theorem 3.4.6 we know that X comes from a finitely presented scheme Xi0 for some index
i0, i.e. X ∼= Xi0 ×Si0

S. Moreover, by Thereom 3.4.8 Xi0 is also proper over Si0 . As the
functor

F : Ah
i0 −Algebras −→ Sets

B ↦→ {finite étale coverings of Spec(B)×Si0
Xi0}/isomorphism

is locally of finite presentation, we have that

F (A) = lim−→F (Ah
i )

Therefore, every finite étale cover of X comes from a finite étale cover of Xi = Si ×Si0
Xi0 for

a suitable index i.
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Remark 5.2.4. All schemes Xi0 ×Si0
Si and X ∼= Xi0 ×Si0

S are quasi-compact and quasi-
separated, as they are proper over affine schemes.

Let Z → X and W → X be two finite étale covers of X. Then we can assume without
loss of generality that they come from two finite étale covers Zi0 → Xi0 , Wi0 → Xi0 . Then by
Lemma 3.4.3 we see that

lim−→HomXi(Zi,Wi) = HomX(Z,W )

It is then clear that we can reduce to the case where (A, I) is the henselization of a pair (B, J),
where B is finitely generated over Z. In particular, B is a G-ring.

5.2.5 End of the proof

Lemma 5.2.6. The functor in Theorem 5.1.1 is essentially surjective.

Proof. Consider a finite étale cover X ′
0 −→ X0. Label Â the completion of A with respect to

the ideal I and let Ŝ = Spec(Â), X̂ = X ×S Ŝ. Notice that Â is a complete separated ring by
Krull’s theorem (see [AM, Theorem 10.17]). By [EGA IV.4, Theorem 18.3.4], we have that the
functor

Étf (X̂) −→ Étf (X0)

Z ↦→ Z ×S S0

is an equivalence of categories. Then there exists some X̂ ′ −→ X̂ ∈ F (Â) such that

X̂ ′ ×Ŝ S0
∼= X ′

0

Keeping the notation of Lemma 5.2.2, we have that

F (A) F (Â)

F (A/I)

............................................................................................................................ .......
.....

.......................................................................................................................
.....
............

and by Theorem 4.3.5 we get that there exists some finite étale cover X ′ −→ X which is
congruent modulo I to X̂ ′ −→ X̂, i.e.

X ′ ×S S0 ∼= X ′
0

It remains only to show that the functor in Theorem 5.1.1 is fully faithful.

Lemma 5.2.7. The functor in Theorem 5.1.1 is fully faithful.
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Proof. Let X ′ and X ′′ be two finite étale schemes over X and let ϕ ∈ HomX(X ′, X ′′). The
morphism ϕ corresponds uniquely to its graph Γϕ : X ′ −→ X ′ ×X X ′′, which is an open
immersion as both X ′ and X ′′ are of finite type over X and as X ′′ is étale over X (see [SGAI,
Corollaire 3.4]). Also notice that Γϕ is a closed immersion (see [Liu, Exercise 3.3.10]). If we
assume thatX ′ is connected and nonempty, ϕ corresponds uniquely to a connected component of
X ′×XX

′′ of degree one over X ′. The degree of such a component can be measured at any point
of X ′. We conclude therefore by applying the next lemma to a component of X ′ ×X X ′′.

Lemma 5.2.8. X is nonempty and connected if and only if the same is true for X0.

Proof. We are given the following cartesian square

X0 X

S0 S

................................................................................................................. ............

............................................................................................................
.....
.......
.....

............................................................................................................
.....
.......
.....

f

................................................................................................................. ............

If X is connected and nonempty, then f(X) ⊆ S is an nonempty closed subset of S (as f is
proper). Let J be an ideal of A that identifies f(X). Let f(x) = p ∈ V (J) be a closed point of
S. As I is contained in the Jacobson radical of A, the prime ideal p lies in S0. Then

X0 X

S0 S

{x}

................................................................................................................. ............

............................................................................................................
.....
.......
.....

............................................................................................................
.....
.......
.....

f

................................................................................................................. ............

......................................................................................................................................................................................................................... ..........
..

......................................................................................................................................................................................................................
..
.......
.....

............................................................ ........
....

In particuar, X0 is nonempty. Furthermore, as this argument can be used for any connected
component of X, if X is disconnected then also X0 is disconnected.
Conversely, assume that X0 is disconnected. Label C0 a nonempty connected component of X0.
As the scheme X0 is quasi-compact, C0 is open and closed in X0. Therefore, C0 −→ X0 is a
finite étale morphism. By Lemma 5.2.6, there exists a finite étale morphism C −→ X which
induces C0 −→ X0. As C0 is connected and nonempty, the same is true for C. The morphism
C −→ X is therefore of degree 1 at every point of C. As it is also finite and étale, it is both an
open and a closed immersion, i.e. C is a connected component of X. If C = X, we would get
C0 = X0, a contradiction. Then X is disconnected. Finally, it is clear that if X0 is nonempty,
X is nonempty too.

Then Theorem 5.1.1 follows immediately from Lemma 5.2.6 and Lemma 5.2.7.
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Chapter 6

Proper base change and henselian
couples

In this chapter we introduce the notion of henselian couple as it is defined in [EGA IV.4]. We
prove that, in the affine case, it coincides with the notion of henselian pair and that Theorem
5.1.1 allows us to prove that a couple (X,X0) which lies over an henselian pair by means of
a proper morphism is henselian. Finally, we discuss a conjecture which appears in [SGAIV,
Exposé XII, Remarks 6.13]. A proof in the affine case was provided by the works of R. Elkik in
[Elk] and of O. Gabber in [Gab].

6.1 Henselian couples

Let (A, I) be an henselian pair. As an immediate consequence of the definition we see that, for
every finite morphism = Spec(B) = X −→ Spec(A), we have a bijection

Id(B) = Of(X) = Of(X0) = Id(B/IB) where X0 = X ×Spec(A) Spec(A/I)

Here Of(Z) denotes the set of subsets of Z which are both open and closed.
This fact suggests the following definition (see [EGA IV.4, Définition 18.5.5]), which is meant
to generalize the notion of henselian pair to the non-affine setting.

Definition 6.1.1. Let X be a scheme and let X0 be a closed subscheme. We say that (X,X0)
form an henselian couple if for every finite morphism Y −→ X we have a bijection

Of(Y ) = Of(Y0)

where Y0 = Y ×X X0.

Remark 6.1.2. If X is locally noetherian, it is a consequence of [EGAI, Proposition 6.1.4] and
[EGAI, Corollaire 6.1.9] that connected sets in Of(X) (resp. Of(X0)) are in bijection with
Π0(X) (resp. Π0(X0)), the set of connected components of X (resp. X0).

Remark 6.1.3. It is a consequence of Lemma 2.1.5 that (X,X0) is an henselian couple if and
only if (Xred, (X0)red) is an henselian couple as well.
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Proposition 6.1.4. 1. Let (X,X0) be an henselian couple and let Y −→ X be a finite
morphisms. Let Y0 = Y ×X X0. Then (Y, Y0) is an henselian couple.

2. Let X =
∐
Xi be a disjoint union of schemes. Let X0 be a closed subscheme of X with

X0 =
∐
Xi,0, where each Xi,0 is a closed subscheme of Xi. Then (X,X0) is an henselian

couple if and only if each couple (Xi, Xi,0) is henselian.

Proof. 1. This follows immediately from the definition. In fact, if Z −→ Y is a finite morphism,
then Z −→ X is finite as well. Moreover, Z0 = Z ×Y Y0 ∼= Z ×X X0. Therefore,

Of(Z) = Of(Z0)

2. (⇒) This is an immediate consequence of 1.
(⇐) A morphism g : Z −→ X is finite if and only if each restriction gi : Zi = g−1(Xi) −→ Xi is
finite. Set Zi,0 = g−1

i (X0,i) for every index i. Then we have a bijection between the set of open
and closed subsets U (resp. U0) of Z (resp. Z0) and the collections of open and closed subsets
(Ui) (resp. (Ui,0)) of Zi (resp. Zi,0).

Remark 6.1.5. It is immediate to observe that if (A, I) is a pair and (Spec(A), Spec(A/I)) is
an henselian couple, then I is contained in the Jacobson radical of A. In fact, if m ⊆ A is a
maximal ideal, then we have a bijection

Of(Spec(A/m)) = Of(Spec(A/m⊗A A/I))

In particular, Spec(A/m ⊗A A/I) can not be the empty scheme. Therefore, as it is a closed
subscheme of Spec(A/m), we must have an equality Spec(A/m) = Spec(A/m⊗AA/I), whence
I ⊆ m. Moreover, if Z −→ Spec(A) is a finite morphism, then Z = Spec(B) is affine and the
corresponding morphism A −→ B is finite. Then we have bijections

Id(B) = Of(Spec(B)) = Of(Spec(B/IB)) = Id(B/IB)

We have just showed that an affine henselian couple is an henselian pair. The converse was
observed at the beginning of the paragraph.

We shall now see an application of Theorem 5.1.1.

Lemma 6.1.6. Let (A, I) be an henselian pair with A noetherian and let X be a proper A-
scheme. Set S = Spec(A), S0 = Spec(A/I) and let X0 = X ×S S0. Then (X,X0) is an
henselian couple.

Proof. First of all, notice that since the base scheme is noetherian, X is finitely presented over
A. Therefore, the hypothesis of Theorem 5.1.1 are verified. Now let Y −→ X be a finite
morphism and label Y0 the fiber product of Y and X0 over X. In particular, Y is proper and
finitely presented over Spec(A), whence we have an equivalence of categories

Étf (Y ) −→ Étf (Y0)

which implies that the set of connected components of Y is in bijection with the set of connected
components of Y0.
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Lemma 6.1.7. Let X be a scheme and let X0 be a closed subscheme. Let A be a noetherian
ring and assume that X is proper over Spec(A). Also assume that X0 = X ×Spec(A) Spec(A/I)
for some ideal I ⊆ A. Put J = ker(B = OX(X) −→ OX0(X0)). If (B, J) is an henselian pair,
then (X,X0) is an henselian couple.

Proof. Let (Ah, Ih) be the henselization of the couple (A, I) given by Theorem 2.3.6. Then
we have the following diagram

(X,X0)

(Spec(Ah), Spec(Ah/Ih)) Spec(A,Spec(A/I))

............................................................................................................
.....
.......
.....

f

......................................................................................................... ............
γ

which induces the following diagram of pairs:

(B, J)

(Ah, Ih) (A, I)
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.................
............

.........................................................................................................................................................

........
........
........

........
........
........

........
........
........

........
........
........

........
............
............

ψ

The morphism ψ is the one induced by the universal property of (Ah, Ih). As

HomRings(A
h, B) = HomSchemes(X,Spec(A

h))

the homomorphism ψ identifies a unique morphism of schemes ϕ : X −→ Spec(Ah). Thus we
get the following commutative diagram

X

Spec(Ah) Spec(A)

........................................................................................................................................................................................
...
............

ϕ

..................................................................................................................... ............
γ

............................................................................................................
.....
.......
.....

f

Moreover, by Remark 2.3.8, we get that

γ−1(Spec(A/I)) = Spec(Ah ⊗A A/I) = Spec(Ah/Ih)

whence
X ×Spec(Ah) Spec(A

h/Ih) = X0

Therefore, the couple (X,X0) lies over the henselian couple (Spec(Ah), Spec(Ah/Ih)). Further-
more, Ah is a noetherian ring (see [StacksProj, Tag 0AGV]). Finally, as f is a proper morphism
and γ is separated, we get that ϕ is proper as well by [Liu, Proposition 3.3.16]. Then we can
conclude that (X,X0) is an henselian couple by the previous lemma.
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The previous lemma tells us that, under some appropriate hypothesis, if the pair

(OX(X), ker(OX(X) −→ OX0(X0)))

is henselian, then (X,X0) is an henselian couple. It is natural to ask if the converse is true, i.e.
if given an henselian couple (X,X0) the associated pair is henselian. An answer is provided by
the next lemma.

Lemma 6.1.8. Let X quasi-compact and quasi-separated scheme and let i : X0 −→ X be a
closed immersion such that (X,X0) is an henselian couple.
Then (B, J) = (OX(X), ker(OX(X) −→ OX0(X0))) is an henselian pair.

Proof. By [StacksProj, Tag 09XI], it is sufficient to show that for every étale ring map B −→ C
together with a B-morphism σ : C −→ B/J , there exists a B-morphism C −→ B which lifts σ.
Let ϕ : B −→ C be an étale ring map and let σ : C −→ B/J be a B-morphism, i.e. σ = π ◦ ϕ,
where π : B −→ B/J is the canonical map.
Consider the cartesian diagram

XC = X ×Spec(B) Spec(C) X

Spec(C) Spec(B)

................................................. ............

.......................................................................................................................................................................................
.....
.......
.....

.......................................................................................................................................................................................
.....
.......
.....

........................................................................................................................... ............

As Spec(C) −→ Spec(B) is étale and separated, the morphism XC −→ X is étale and separated
as well. Then, by [EGA IV.4, Proposition 18.5.4], we have a bijection

Γ(XC/X) −→ Γ(XC ×X X0/X0)

between the sections of XC −→ X and those of XC ×X X0 −→ X0.
Remark 1. The universal property of XC ×X X0 tells us that

Γ(XC ×X X0/X0) = HomX(X0, XC)

Remark 2. Let J ⊆ OX be the sheaf of ideals associated to X0. Then we have a short exact
sequence of OX -modules

0 −→J −→ OX −→ i∗OX0(X0) −→ 0

Applying the global sections functor, we get an exact sequence

0 −→ J = J (X) −→ OX(X) = B −→ OX0(X0)

Hence, we have an homomorphism

B/J −→ OX0(X0)
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Therefore, we get a morphism of schemes

X0 −→ Spec(OX0(X0)) −→ Spec(B/J)

Also notice that the diagram

X0 X

Spec(B/J) Spec(B)

............................................................................................................................................................................................ ............

.......................................................................................................................................................................................
.....
.......
.....

.......................................................................................................................................................................................
.....
.......
.....

........................................................................................................... ............

is commutative.
Now consider the diagram

XC = X ×Spec(B) Spec(C) X

Spec(C) Spec(B)

X0

Spec(B/J)

............................................................................................................................ ............

..................................................................................................................................................................................................................................................................
.....
.......
.....

..................................................................................................................................................................................................................................................................
.....
.......
.....

...................................................................................................................................................................................................... ............


..

.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................. .......
.....


.....
.......
.....

........................................................................................................................................................................ .........
...

∃! α̃

............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
...............
............

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
..............
............

Label α̃ : X0 −→ XC the X-morphism provided by the universal property of XC and let
α : X −→ XC be the corresponding X-morphism in Γ(XC/X).
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Consider the diagram

X XC X

Spec(C) Spec(B)

Spec(B/J)

......................................................................................................................................................................................... ............
α

......................................................................................................................................................................................... ............

............................................................................................................
.....
.......
.....

............................................................................................................
.....
.......
.....

........................................................................................................................... ............

............
............

............
............

............
............

............
............

............
............

............
................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.................

............

................................................................................................................................................................................................. .........
...

......

......

.......
........
.........
............
.................

.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................
.....
.......
.....

idX

and the corresponding commutative diagram in Rings:

B OXC
(XC) B

C B

B/J

............................................................................................................................................................... α
...............................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...................

............

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..............

............

idB

........................................................................................................................................................................................................

ϕ........................................................................................................................................................................................................................ .........
...

σ

............................................................................................................
.....
.......
.....

π

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
..........................

ψ

......

......

.......
........
.........
............
.................

.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................
.....
.......
.....

idB

It is then clear that ψ is the B-morphism we were looking for. This concludes the proof of the
lemma.

Corollary 6.1.9. Let (X,X0) be an henselian couple. Assume that X is proper over a noethe-
rian ring A and that X0 = X×Spec(A) Spec(A/I) for some ideal I ⊆ A. Then (X,X0) is proper
over an henselian pair.

Proof. As X is proper over Spec(A), it is a quasi-compact and quasi-separated scheme. Hence,
by Lemma 6.1.8, (OX(X), ker(OX(X) −→ OX0(X0))) is an henselian pair. Therefore, by the
same construction described in Lemma 6.1.7, we get that (X,X0) is proper over (Ah, Ih).

Corollary 6.1.10. Let (X,X0) be a couple and assume that X is proper over a noetherian ring
A and that X0 = X ×Spec(A) Spec(A/I) for some ideal I ⊆ A. Then (X,X0) is an henselian
couple if and only if (OX(X), ker(OX(X) −→ OX0(X0))) is an henselian pair.
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6.2 A remark on a property of a subclass of henselian couples

In [SGAIV] the proposition which follows is proved (see [SGAIV, Exposé XII, Proposition 6.5]).
We will restate it for the reader’s convenience. For a proof and for the exact definitions of the
objects which are involved, we refer to the original text.

Proposition 6.2.1. Let h : Y −→ X be a morphism between quasi-compact and quasi-separated
schemes.

1. Let I be a set with at least two points. The following statements are equivalent:

(a) For every sheaf of sets F over X, the canonical map

H0(X,F ) −→ H0(Y, h∗F )

is injective (resp. bijective).

(b) For every finite morphism X ′ −→ X, let h′ : Y ′ −→ X ′ be the morphism induced by
h. The canonical map

H0(X ′, IX′) −→ H0(Y ′, IY ′)

induced by h′ is injective (resp. bijective).

(c) With the same notation as in (b), the map U ↦→ (h′)−1(U) : Of(X ′) −→ Of(Y ′) is
injective (resp. bijective).

(d) (If X is locally noetherian) With the same notation as in (b), the map U ↦→ (h′)−1(U) :
Π0(X

′) −→ Π0(Y
′) is surjective (resp. bijective). Equivalently, if X ′ is non-empty

(resp. connected and non-empty), the same is true for Y ′.

Moreover, if these conditions are satisfied, for every sheaf of groups F over X, the functor
P ↦→ h∗P from the category of torsors over F to the category of torsors over h∗F is
faithful (resp. fully faithful). A fortiori, in the case respé, the canonical map

H1(X,F ) −→ H1(Y, h∗F )

is injective. Finally, under the same assumptions, the functor

Étf (X) −→ Étf (Y )

X ′ ↦→ Y ′ = X ′ ×X Y

is faithful (resp. fully faithful).

2. Let L be a non-empty subset of the set of prime numbers P. The following statements are
equivalent:

(a) For every sheaf of groups F ind-L-finite over X, the canonical map

H i(X,F ) −→ H i(Y, h∗F )

is bijective for i = 0, 1.
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(b) For every finite morphism X ′ −→ X, label h′ the map induced by h via base change.
For every ordinary L-group G , the canonical map

H i(X ′,GX′) −→ H i(Y ′, h∗GY ′)

is bijective for i = 0, 1.

(c) If L = P, with the same notations as in (b), the inverse image functor induced by h′

induces an equivalence between the category Étf (X ′) and the category Étf (Y ′).

(d) If X is noetherian and if L = P, with the same notations as in (b), if X ′ is non-
empty, the same is true for Y ′. If y′ is a geometric point of Y ′ and x′ is its image
in X ′, we have two bijections

Π0(Y
′) −→ Π0(X

′)

and
Π1(Y

′, y′) −→ Π1(X
′, x′)

induced by the canonical maps.

3. Let L be a non-empty subset of the set of prime numbers P and let n ∈ N. The following
statements are equivalent:

(a) For every L-torsion sheaf F on X, the homomorphism

H i(X,F ) −→ H i(Y, h∗F )

is an isomorphism if i ≤ n and is a monomorphism if i = n+ 1.

(b) If n ≥ −1, with the same notation as in (a), the homomorphism is injective if i = 0
and it is surjective if i ≤ n.

(c) If n ≥ −1, for every finite morphism X ′ −→ X, let h′ : Y ′ −→ X ′ be the morphism
induced by h. For every l ∈ L and for every ν > 0, the canonical homomorphism

H i(X ′, (Z/lνZ)X′) −→ H i(Y ′, (Z/lνZ)Y ′)

is ijective for i = 0 and surjective for i ≤ n

Remark 6.2.2. Notice that, if h : Y −→ X is a closed immersion, condition 1. in Proposition
6.2.1 is equivalent to say that (X,Y ) is an henselian couple.

In [SGAIV, Exp. XII, Remarks 6.13] the authors conjectured the following statement:

If (X,X0) is an henselian couple, then conditions 2. and 3. in Proposition 6.2.1 are
satisfied with L = P and for every n.

A positive answer to this question is provided in the affine case by the works of R. Elkik
in [Elk] and of O. Gabber in [Gab]. In particular, the fact that condition 2. is satisfied is a
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consequence of the footnote at page 326 in [Gab]. Notice that it is a particular case of Theorem
5.1.1. The fact that condition 3. is satisfied is a consequence of [Gab, Corollary 1].

Notice that every henselian couple (X,X0) which arises as in Lemma 6.1.6 satisfies condi-
tions 2. and 3. in Proposition 6.2.1 with L = P and for every n as well. In fact, Theorem
5.1.1 immediately implies that condition 2.(c) in Proposition 6.2.1 is satisfied. The fact that
condition 3. is satisfied can be seen as a consequence of [Gab, Corollary 1] also in this case.
Then, applying Corollary 6.1.9, we get the following proposition:

Proposition 6.2.3. Let (X,X0) be an henselian couple. Assume that X is proper over a
noetherian ring A and that X0 = X ×Spec(A) Spec(A/I) for some ideal I ⊆ A. Then conditions
2. and 3. in Proposition 6.2.1 are satisfied with L = P and for every n.
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