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Introduction

Let E be an elliptic curve over Q of conductor N , let E have a good ordinary reduction
at a prime p, p 6= 2 and let K be an imaginary quadratic field of discriminant DK . Write
K∞/K for the anticyclotomic Zp-extension of K and set G∞ = Gal(K∞/K). It will be
assumed throughout that the discriminant of K is prime to N , so that K determines a
factorisation

N = N+N−,

where N+ (resp.N−) is divisible only by primes different from p which are split (resp.
inert) in K. Also we will assume that N− is the square-free product of an odd number
of primes.

Let us recall the definition of anticyclotomic extension of an imaginary quadratic
number field K. It is known that if K̃∞ is the compositum of all Zp-extensions of K (i.e.
of Galois extensions F of K with Gal(F/K) topologically isomorphic to the additive

group Zp of p-adic integers) then Gal(K̃∞/K) ∼= Zp × Zp.

Let Kcyc denote the cyclotomic Zp-extension of K (i.e. unique Zp- extension of K
in K(µp∞), where µp∞ the group of all p power roots of 1). Then there exist a unique
Zp-extension of K, Kacyc, such that Kacyc ∩Kcyc = K and Kacyc is galois over Q. This
Kacyc is called the anticyclotomic extension of K.

In this thesis we study the works of Bertolini-Darmon [BD01] on how to attach an
anticyclotomic p-adic L-function to the data consisting of such an elliptic curve E over
Q and such a quadratic imaginary field K.

For an elliptic curve E defined over Q and a non-archimedean place p, the curve E is
said to have good reduction at p if it extends to a smooth integral projective model over
the ring of integers Zp of Qp. In this case, reduction modulo p gives rise to an elliptic
curve over the residue field Fp. we set

ap := p+ 1−#E(Fp).

The curve E is said to have split (resp. non-split) multiplicative reduction at p if there
is a projective model of E over Zp for which the corresponding reduced curve has a node
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with tangent lines having slopes defined over Fp (resp. over the quadratic extension of
Fp but not over Fp). For more details see ([Si], Arithmetic of elliptic curves, Silverman).
For s ∈ C define the C-valued local L-function at p by setting L(E/Qp, s) to be

(1− app
−s + p1−2s)−1 if E has good reduction at p,

(1− p−s)−1 if E has split multiplicative reduction at p,

(1 + p−s)−1 if E has non-split multiplicative reduction at p,

1 otherwise.

And we complete the definition to the archimedean place ∞ by setting

L(E/R, s) = (2π)−sΓ(s).

Our strategy for attaching an anticyclotomic p-adic L-fuction to (E,K) will be as
follows. Thanks to the deep work of Wiles et.al. it is now known that every elliptic
curve over Q is modular, i.e. there exists a cuspidal eigenform f of weight 2 on Γ0(N)
for some N (N can be choosen to be the conductor of E) such that

L(E/Q, s) = L(f, s), (0.1)

where

L(E/Q, s) =
∏
v 6=∞

L(E/Qv, s). (0.2)

The infinite product in this equation converges for Re(s) > 3
2
.

Let χ be a Dirichlet character mod N . Since f is cusp form, it has Fourier series
f(z) =

∑
n≥1 ane

2πinz and the corresponding L-function L(f, s) is defined by

L(f, s) =
∑
n≥1

ann
−s =

(2π)s

Γ(s)

∫ ∞

0

f(it)ts
dt

t
. (0.3)

The function L(f, χ, s) is defined by

L(f, χ, s) = L(fχ, s)

where fχ = fχ(z) =
∑

n χ(n)ane
2πinz.

Let M be a fixed integer greater than 0 and prime to p. Set:

Zp,M = lim
←−
ν

(
Z

pνMZ

)
= lim

←−
ν

(
Z
pνZ

× Z
MZ

)
= Zp ×

Z
MZ

6



Contents

Z∗p,M = Z∗p ×
(

Z
MZ

)∗
.

We will see in chapter I (section 1.9) using modular symbol and the eigenform f which
has eigenvalue ap for the Hecke operator Tp that we can define a measure µf,α on Z∗p,M ,
where α is the p-adic unit root of the equation X2 − apX + p = 0.
Let Q̄ be algebraic closure of Q in C. We fix an embedding

i : Q̄ −→ Cp

For x ∈ Z∗p we can write uniquely,

x = ω(x)· < x > (0.4)

where ω(x) is a root of unity and where

< x >∈ 1 + pZp . (0.5)

Now the p-adic L-function for the cusp form f of weight 2 on Γ0(N) is defined by

Lp(f, χ, s) =

∫
Z∗p,M

< x >s−1χ(x)µf,α(x).

This L-function Lp(f, χ, s) is the cyclotomic p-adic L-function attached to E. In chapter
I our work is motivated to calculate L(f, χ, s), Lp(f, χ, s). At the end of the first chapter
we relate special values of the L-function with special values of the p-adic L-function.

In chapter II we study the basic notions regarding quaternion algebras over an arbi-
trary field. The main result of this chapter is that all quaternion algebras are simple
central algebras, all simple central algebras of dimension 4 are quaternion algebras and
if H is a quaternion algebra over field F then it is either isomorphic to M2(F ) or it is a
division algebra.

In chapter III we deal with quaternion algebras over local fields. The main result of
this chapter is theorem 3.1.1 which gives a classification of quaternion algebras over local
fields. Also we study the structure of M2(F ) where F is a local field and a notion relating
to Bruhat-Tits trees. Also we study here the zeta function for quaternion algebras over
local fields.

In chapter IV our aim is to give a classification of quaternion algebras over global
fields analogous to case of a local field. But due to lack of time we content ourselves by
defining the concept of adeles and giving references where the classification results can
be found.
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The 5th chapter form the heart of this thesis. There we study how to attach an
anticyclotomic p-adic L-function to an elliptic curve over an imaginary quadratic field
K, so we need a measure on G∞ = Gal(K∞/K).

Let B be the definite quaternion algebra over Q ramified exactly at the primes dividing
N−. That is to say, the algebra B ⊗R is isomorphic to Hamiltonian’s real quaternions,
and for each prime l the ring Bl := B ⊗Ql is isomorphic to the matrix algebra M2(Ql)
if l does not divide N−, and to the quaternion division algebra over Ql otherwise. The
assumption on N− ensures the existence of this quaternion algebra and it is unique up
to isomorphism from the classification of quaternion algebras over global fields.

Let K be a quadratic algebra of discriminant prime to N which embeds in B. Since
B is definite of discriminant N−, the algebra K is an imaginary quadratic field in which
all prime divisors of N− are inert. Let OK denote the ring of integers of K and let
O = OK [1/p] be the maximal Z[1/p]-order in K. Let R be an Eichler Z[1

p
]-order of level

N+.

Fix an embedding

Ψ : K −→ B satisfying Ψ(K) ∩R = Ψ(O).

Such a Ψ exists because all the primes dividing N+ are split in K. Since p 6 |N−, B⊗
Qp = M2(Qp). Now Ψ induces a map from

Kp
∗ = (K ⊗Qp)

∗ ↪→ B∗
p = (B ⊗Qp)

∗ = GL2(Qp)

since Qp
∗ ⊂ Kp

∗ and Qp
∗ is embedded in GL2(Qp) by

a →
(

a 0
0 a

)
.

Hence this yields an action of Kp
∗/Qp

∗ on the Bruhat-Tits tree T of PGL2(Qp).
Since K is unramified at p, we only have to deal with two cases, one when p remains
inert in K, another when p splits in K. In the first case we know from global class field
theory G∞ = Gal(K∞/K) = (Kp

∗/Qp
∗)/(µp2−1/µp−1). In the first case our aim is to

define a measure on Kp
∗/Qp

∗ which is isomorphic to Zp× Z
MZ with M = p+ 1. For that

we consider a modular form f of weight 2 defined on a quaternion algebra B of level
R̂∗, i.e. f is a function from B∗\B̂∗/R̂∗ taking values in Zp. We use then the following
theorem which is a consequence of the strong approximation theorem to simplify the
definition of modular forms on quaternion algebra :

Theorem 0.0.1 .Let p be a prime at which the quaternion algebra B is split. Then the
natural map

R∗\B∗
p/R

∗
p −→ B∗\B̂∗/R̂∗

which sends the class represented by bp to the class of the idele (...1, bp, 1, ....) is a bijec-
tion.

For more details see (Vi80, chapter III , section 3 and 4).
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In our caseB∗\B̂∗/R̂∗ ∼= R∗\B∗
p/(Q∗

pGL2(Zp)) ∼= Γ\GL2(Qp)/(Q∗
pGL2(Zp)) = Γ\V(T ),

where Γ = R∗ and V(T ) the set of vertices of the Bruhat-Tits tree. That is the modular
form f on a quaternion algebra B of weight 2 and level R̂∗ that is a Zp-valued function
on V(T ), which is Γ-invariant.

Denote by M2(B) the space of such modular forms. It is a free Zp-module of finite
rank.

From the Jacquet-Langlands theorem there exist an eigenform belonging M2(B) de-
noted by f by abuse of notations for all Tl, l 6 |N such that f|Tl

= al.f (al are the ones
for fE). Using this eigenform we define a measure on Kp

∗/Qp
∗.

In the second case when p splits in K, from global class field theory we know that

(Kp
∗/µp−1Qp

∗) /up
Z ∼= G∞ = Gal(K∞/K)

where up is the generator of p-units of OK

[
1
p

]
of norm 1. Analogously to the previous

case we define a measure on (Kp
∗/Qp

∗) /up
Z which is isomorphic to Zp × Z

MZ with M =
p − 1. Again we relate special values of the p-adic L-function in terms of the classical
L-function.

The motivation behind attaching a p-adic L-functions is this: we have a complex L-
functions attached to E and it is defined by an Euler product. While studying p-adic
L-functions in general we see that values taken by these functions on special points in the
common domain of the corresponding classical L-functions differ by a scalar multiple.
Hence we expect p-adic L-function should also have arithmetic information.
This is also well understood conjecturally in the form of “Main conjectures ”. As it is
well known from section 2 of [BD01], we attach to the data (E, K, p) an anticyclotomic
p-adic L-function Lp(E,K) which belongs to the Iwasawa algebra Λ := Zp[[G∞]]. To an
elliptic curve E over a number field F , we can attach a Selmer group. Take its p-primary
part and call is S(F ). Take direct limit

lim
−→

K ⊂ F ⊂ Kacyc

F/K finite

S(F ) =: S(Kacyc).

Now take its Pontryagin dual

X := Hom (S(Kacyc),Qp/Zp) .

It is known that X is a compact Λ- module. This comes from a deep theorem of Kato.
There is a nice structure theorem for modules like these and we can attach a characteristic
power series C, which is well defined up to units in Λ. The Main conjecture says that
the characteristic power series C divides the p-adic L-function which is proved under a
mild technical assumption by Bertolini-Darmon in section 2 of [BD01].
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1 Modular Symbols, Measures and
L-Functions

1.1 Elementary Notions

Throughout this section we will deal with non co-compact arithmetic subgroups of
SL2(R). Γ denote a congruence subgroup, i.e. a subgroup of SL2(Z) which contains the
homogeneous principal congruence subgroup

Γ(N) =

{[
a b
c d

]
∈ SL2(Z) :

[
a b
c d

]
=

[
1 0
0 1

]
( mod N)

}
for some positive integer N . For example SL2(Z) is the full congruence group of level
1, and the most important congruence subgroups are

Γ0(N) =

{[
a b
c d

]
∈ SL2(Z) :

[
a b
c d

]
=

[
∗ ∗
0 ∗

]
( mod N)

}
and

Γ1(N) =

{[
a b
c d

]
∈ SL2(Z) :

[
a b
c d

]
=

[
1 ∗
0 1

]
( mod N)

}
where “*” means “unspecified ” and satisfying

Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ SL2(Z).

Let us denote by H the upper half plane:

H = {z ∈ C : Im(z) > 0} .

Let GL2(R)+ denote the subgroup of GL2(R) of matrices with positive determinant. If

A =

[
a b
c d

]
belongs to GL2(R)+, set:

ρ(A)(z) =
det(A)

1
2

cz + d
. (1.1)

In particular if A ∈ SL2(Z), then ρ(A)(z) = (cz + d)−1.

11



1 Modular Symbols, Measures and L-Functions

We have an action of GL2(R) on the Riemann Sphere C ∪ {∞} via

A(z) =
az + b

cz + d
,

where

A(∞) =
a

c
if c 6= 0

= ∞ if c = 0

This formula implies that GL2(R)+ acts on the upper half plane H.

Definition 1.1.1 . Let k be an integer. A meromorphic function f : H −→ C is weakly
modular of weight k and level 1 if

f (A(z)) = (cz + d)kf(z) for A =

[
a b
c d

]
∈ SL2(Z) and z ∈ H.

Since SL2(Z) contains the translation matrix[
1 1
0 1

]
: z 7−→ z + 1,

for which the factor cz + d is simply 1, we have that f(z + 1) = f(z) for every weakly
modular function f : H −→ C. That is, weakly modular functions are Z-periodic.
Let D = {q ∈ C : |q| < 1} be the open complex disk, let D′ = D − 0, and recall from
complex analysis that the Z-periodic holomorphic map z 7→ e2πiz = q takes H to D′.
Thus, corresponding to f , the function g : D′ → C where g(q) = f(log(q)/(2πi)) is well
defined even though the logarithm is only determined up to 2πiZ, and f(z) = g(e2πiz).
If f is holomorphic on the upper half plane then the composition is holomorphic on the
punctured disk since the logarithm can be defined holomorphically about each point, and
so g has a Laurent expansion g(q) =

∑
n∈Z anq

n for q ∈ D′. The relation |q| = e−2πIm(z)

shows that q → 0 as Im(z) → ∞. Define f to be holomorphic at ∞ if g extends
holomorphically to the puncture point q = 0, i.e., the Laurent series sums over n ∈ N.
This means that f has a Fourier expansion

f(z) =
∞∑
n=0

an(f)qn, q = e2πiz.

Since q → 0 if and only if Im(z) → ∞, showing that a weakly modular holomorphic
function f : H −→ C doesn’t require computing its Fourier expansion, only showing
that limIm(z)→∞ f(z) exists or even just that f(z) is bounded as Im(z) →∞. For more
details see([DS] chapter I).

Definition 1.1.2 : Let k be an integer and f : H −→ C be a meromorphic function,
then we say f is modular form of weight k and level 1 if
(1) f is weakly modular of weight k,
(2) f is holomorphic on H,
(3) f is holomorphic at ∞.

The set of modular forms of weight k and level 1 is denoted Mk (SL2(Z)).
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1.1 Elementary Notions

Let k be a positive integer. For any complex valued function f on H, we define the
action of an element A of GL2(R)+ by(

f|[A]k

)
(z) = (ρ(A)(z))k f (Az) .

This is a right action of GL2(R)+ on the set of C-valued function on H:

f|[AB]k =
(
f|[A]k

)
|[B]k

.

For a congruence group Γ, a Γ-equivalence class of points in Q∪{∞} is called a cusp of
Γ.

Definition 1.1.3 : A complex valued function f(z) is called a Γ -automorphic form of
weight k if it satisfies the following conditions :
(1)f|[A]k ≡ f , i.e.

f (A(z)) = (cz + d)kf(z)

for all A =

[
a b
c d

]
∈ Γ,

(2) f is holomorphic on H; and
(3) f is holomorphic at every cusp of Γ.

The space of such functions will be denoted by Mk(Γ).

For congruence subgroups, elements of Mk(Γ) are often called modular forms( or
modular forms of level N if Γ = Γ(N)). If χ is a Dirichlet character modulo N (a
character of (Z/NZ)∗ extended in the obvious way to Z), and f(z) satisfies (in place of
(1) in definition 1.1.3)

f (A(z)) = χ(d)−1(cz + d)kf(z),

for all A ∈ Γ0(N), then f is an automorphic form of weight k and character χ. The
space of all such function is denoted by Mk(N,χ). For more details see ([G], chapter I)

If Γ is the conguence group Γ0(N), the Fourier expansion at ∞ of any f in Mk(Γ)
will be of the form

f(z) =
∞∑
n=0

an(f)qn, q = e2πiz.

Definition 1.1.4 : A Γ-automorphic form is a cusp form if it vanishes at every cusp
of Γ, i.e., its zeroth Fourier coefficients at each cusp is zero.

The space of Γ -cusp forms of weight k and character χ will be denoted Sk(Γ, χ).

13



1 Modular Symbols, Measures and L-Functions

For every γ ∈ GL2(Q)+, we can write γ = αγ′ , where α ∈ SL2(Z) and γ′ = r

[
a b
0 d

]
with r ∈ Q+ and a, b, d ∈ Z relatively prime. Using this, we will show that for a given
f ∈ Mk(Γ) for some congruence subgroup Γ and given such a γ = αγ′, if the Fourier
expansion for f|[α]k

has constant term 0, then the same holds for f|[γ]k
too.

Since α ∈ SL2(Z), then α−1Γα is also a congruence subgroup. So α−1Γα contains

a matrix

[
1 h
0 1

]
for some minimal h ∈ Z+. This implies that f|[α]k has a Fourier

expansion, so f|[γ]k has one too. The Fourier expansion for f|[α]k is :

f|[α]k(z) =
∞∑
n=0

an(f|[α]k)q
n, q = e2πiz/h .

Now,

γ−1Γγ =
1

ad

[
d −b
0 a

]
α−1Γα

[
a b
0 d

]

contains a matrix

[
1 dh
0 1

]
. This implies that f|[γ]k has Fourier expansion

f|[γ]k(z) =
∞∑
n=0

an(f|[γ]k)q
n, q = e2πiz/dh .

From the above calculation, we get that if the Fourier expansion for f|[α]k has constant
term 0 , then f|[γ]k does so too. Thus we are done. For more details see ([DS] chapter I,
page 24)

Now we are going to introduce the double coset operator to understand Hecke opera-
tors. For more details for next section see ([DS] chapter V).

1.2 The Double Coset Operator

Let Γ1 and Γ2 be congruence subgroup of SL2(Z). Then Γ1 and Γ2 are subgroups of
GL2(Q)+ . For each α ∈ GL2(Q)+, the set

Γ1αΓ2 = {γ1αγ2 : γ1 ∈ Γ1, γ2 ∈ Γ2}

is a double coset in GL2(Q)+.

Lemma 1.2.1 : Let Γ be a congruence subgroup of SL2(Z) and let α be an element of
GL2(Q)+. Then α−1Γα ∩ SL2(Z) is again a congruence subgroup of SL2(Z).

14



1.2 The Double Coset Operator

Proof : There exists anN ′ ∈ Z+ satisfying the conditions Γ(N ′) ⊂ Γ, N ′α ∈M2(Z), N ′α−1 ∈
M2(Z). Set N = N ′3. The calculation

αΓ(N)α−1 ⊂ α
(
I +N ′3M2(Z)

)
α−1 = I +N ′.N ′α.M2(Z).N ′α−1 ⊂ I +N ′M2(Z)

and the observation that αΓ(N)α−1 consists of determinant-1 matrices combine to show
that αΓ(N)α−1 ⊂ Γ(N ′). Thus Γ(N) ⊂ α−1Γ(N ′)α ⊂ α−1Γα, and after intersecting
with SL2(Z), we get the result. �

Using this lemma we can say that if α ∈ GL2(Q)+ and f ∈ Mk (Γ(N)) for some
N ∈ Z+, then f|[α]k belongs to Mk (Γ(N ′)) for some N ′ ∈ Z+. The analogous statement
holds for cusp forms.
Now fix an integer k ≥ 2 and let N ≥ 1. Let S (N,χ, k) denote the space of holomorphic
cusp forms of weight k with character χ on Γ0(N), where χ is a Dirichlet charcter on( Z
NZ

)∗
.

Let

Sk =
∑
N,χ

S (N,χ, k)

denote the space of all cusp forms of weight k which are on Γ1(N).
Then,

Sk =
∑
N,χ

S (N,χ, k) ⊂
∑
N

Sk (Γ(N)) = S ′k.

We proved earlier that GL2(Q)+ acts on the space
∑

N Sk (Γ(N)) by the formula :(
f|A
)
(z) = (ρ(A)(z))k .f(A(z))

Lemma 1.2.2 : Let Γ1 and Γ2 be congruence subgroup of SL2(Z), and let α be an
element of GL2(Q)+. Set Γ3 = α−1Γ1α ∩ Γ2, a subgroup of Γ2. Then left multiplication
by α,

Γ2 −→ Γ1αΓ2 given by γ2 7→ αγ2

induces a natural bijection from the coset space Γ3 \ Γ2 to the orbit space Γ1 \ Γ1αΓ2.

Proof : The map Γ2 −→ Γ1\Γ1αΓ2 taking γ2 to Γ1αγ2 is clearly surjective. The images
of the elements γ2, γ

′
2 are in the same orbit when Γ1αγ2 = Γ1αγ

′
2, that is γ′2γ

−1
2 ∈ α−1Γ1α

and of course γ′2γ
−1
2 ∈ Γ2. So from the definition Γ3 = α−1Γ1α ∩ Γ2 , Γ3 \ Γ2 −→

Γ1 \ Γ1αΓ2 is a bijection from cosets Γ3γ2 to orbits Γ1αγ2. �
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1 Modular Symbols, Measures and L-Functions

From Lemma 1.2.1 α−1Γ1α ∩ SL2(Z) is a congruence subgroup of SL2(Z). So its
index in SL2(Z) is finite, hence the coset space Γ3 \ Γ2 is finite and so is the orbit space
Γ1 \ Γ1αΓ2. Due to finiteness of the orbit space, the double coset space Γ1αΓ2 can act
on the modular forms.

Definition 1.2.3 : For congruence subgroups Γ1 and Γ2 of SL2(Z) and α ∈ GL2(Q)+,
the weight-k Γ1αΓ2 operator takes function f ∈Mk(Γ1) to

f|[Γ1αΓ2]k =
∑
j

f|[βj ]k

where {βj} are orbit representatives, that is Γ1αΓ2 =
⋃

j Γ1βj is a disjoint union.

The double coset operator is well defined, that is, it is independent of how the β′js
are chosen: assume that if β and β′ represent the same orbit in Γ1 \ Γ1αΓ2, that is,
Γ1β = Γ1β

′. Let β = γ1αγ2 and β′ = γ′1αγ
′
2, or equivalently αγ2 ∈ Γ1αγ

′
2. Since f is

weight-k invariant under Γ1, it easily follows that f|[β]k = f|[β′]k .

Now we want to show that the weight-k Γ1αΓ2 operator takes modular forms with
respect to Γ1 to modular forms with respect to Γ2, i.e.

[Γ1αΓ2]k : Mk(Γ1) −→Mk(Γ2)

That is, we have to show for each f ∈Mk(Γ1), the transformed f|[Γ1αΓ2]k
is Γ2- invariant

and is holomorphic at the cusps. Firs we will show that it is invariant under Γ2.
We know that any γ2 ∈ Γ2 permutes the orbit space Γ1 \ Γ1αΓ2 by right multiplication.
We have a map

γ2 : Γ1 \ Γ1αΓ2 −→ Γ1 \ Γ1αΓ2

given by Γ1β 7→ Γ1βγ2. This map is well defined and bijective. So if {βj} is set of orbit
representatives for Γ1 \Γ1αΓ2, then {βj} γ2 is a set of orbit representatives as well. Thus(

f|[Γ1αΓ2]k

)
|[γ2]k

=
∑
j

f|[βjγ2]k = f|[Γ1αΓ2]k
.

So f|[Γ1αΓ2]k
is weight k-invariant under Γ2.

We have to show now that the transformed f|[Γ1αΓ2]k
is holomorphic at the Γ2-cusps.

We know that for any f ∈ Mk(Γ1) and for any γ ∈ GL2(Q)+, the function g = f|[γ]k is
holomorphic at infinity, i.e., it has a Fourier expansion

g(z) =
∑
n≥0

an(g)e
2πinz/h

for some period h ∈ Z+. If functions g1, g2, g3, .....gd : H → C are holomorphic at
infinity, that is, if each has a Fourier expansion, then so does their sum (we can prove

16



1.3 Modular Integrals

this very easily by using the l.c.m of their periods ). For any δ ∈ SL2(Z), the functions(
f|[Γ1αΓ2]k

)
|[δ]k

is a sum of functions gj = f|[γj]k with γj = βjδ ∈ GL2(Q)+. So it is

holomorphic at infinity. Since δ is arbitrary, it is holomorphic at the cusps. We have
proved our claim.
Similarly, it holds for cusp forms that

[Γ1αΓ2]k : Sk(Γ1) −→ Sk(Γ2)

is a well defined operator and that it takes cusp forms to cusp forms.

The operator Tp = Γ

(
1 0
0 p

)
Γ is known the Hecke operator with repect to the

congruence subgroup Γ.

Our main goal in this chapter is to construct p-adic L-fuctions associated with modular
forms of weight 2 and trivial characters. So from now we only consider modulars form
is of weight 2 and let χ to be the trivial character denoted by ε. That is,

ε :

(
Z
NZ

)
−→ C

where

ε(a) = 1 if (a,N) = 1

= 0 otherwise.

Now we are going to define the concept of modular integral.

1.3 Modular Integrals

Fix A =

[
a b
c d

]
∈ GL2(R)+. As we know GL2(R)+ acts on the Riemann z-sphere

C ∪ {∞} via

A(z) =
az + b

cz + d
.

Differentiating the functions on both sides of the above equation, we get

d(A(z)) =
det(A)

(cz + d)−2
dz

= (ρ(A(z)))2dz.

Note that the “d” in dz and “d” in

[
a b
c d

]
are not be confused.

For f ∈ S ′2,
(f|A)(z)dz = f(A(z))d(A(z))

So we get that the differential is invariant under the operator GL2(Q)+.

17



1 Modular Symbols, Measures and L-Functions

Let P1(Q) = Q ∪ {∞} and define a map

φ : S ′2 × P1(Q) −→ C

by

φ(f, r) = 2πi

∫ r

∞
f(z)dz

=

{
2π
∫∞

0
f(r + it)dt if r ∈ Q
0 if r = ∞

We are going to adopt the convention that if one argument is to be kept constant in a
discussion, it may be in the position of subscript in our notation. Thus, φ(f, r) = φf (r).
Clearly,
(a) φ is linear in f for any r ∈ P1(Q)
(b)φ(f|A, r) = φf (A(r))− φf (A(∞)) for A ∈ GL2(Q)+.
By a modular integral we shall mean a mapping

φ : S ′2 × P1(Q) −→ C

satisfying axioms (a) and (b).

1.4 The Module of Values

Let Aj ∈ SL2(Z) be coset representatives for Γ0(N), so that

SL2(Z) =
∐
j∈I

Γ0(N).Aj

where I is a finite set, because we know that

[SL2(Z) : Γ0(N)] = N
∏
p|N

(1 +
1

p
).

For fixed f ∈ S2(Γ0(N), ε), let Lf ⊆ C denote the Z-module generated by the image of
P1(Q) under the mapping φf .

Proposition 1.4.1 : The Z-module Lf is the Z-sub module of C generated by the ele-
ments

φf (Aj(∞))− φf (Aj(0)) for j ∈ I (1.2)

Proof: Let L◦f ⊆ Lf denote the Z-submodule generated by the quantities (1.2). Let
a,m ∈ Z with m ≥ 0 and (a,m) = 1. We shall show that φ(f, a

m
) ∈ L◦f by induction on

m.

18



1.5 Modular Symbol

For m = 0, φ(f, a
m

) = 0 ∈ L◦f . Suppose m > 0, (a,m) = 1. Then we can find

an m′ ∈ Z such that am′ = 1(mod m), and 0 ≤ m′ < m. Putting a′ = am′−1
m

and

A =

[
a a′

m m′

]
, we get A(∞) = a

m
, and A(0) = a′

m′
. Since A = B.Aj for some

B ∈ Γ0(N), we have :

φ(f,
a

m
)− φ(f,

a′

m′ ) = φ(f, A(∞))− φ(f, A(0))

= φ(f,BAj(∞))− φ(f,BAj(0))

= −φ(f | BAj, 0)

= −ε(B)φ(f | Aj, 0)

= ε(B)[φ(f, Aj(∞))− φ(f, Aj(0))] ∈ L◦f .

By the induction hypothesis φf (
a′

m′
) ∈ L◦f . This implies that φf (

a
m

) ∈ L◦f .�

1.5 Modular Symbol

Now we will define the modular symbol λ using the modular integral φ. For a,m ∈
Z, m > 0, and f ∈ S ′2, we put

λ(f, a,m) : = φ
(
f,− a

m

)
(1.3)

= φ

f
|

0@ 1 −a
0 m

1A, 0

 . (1.4)

The second equality follows from (b) in the definition of φ.

Proposition 1.5.1 : The modular symbol λ(f, a,m) is C -linear in f. For fixed f ∈ S ′2
and a,m ∈ Z, the modular symbol λ(f, a,m) takes values in Lf . For fixed f, λ(f, a,m)
depends only on a mod m.
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1 Modular Symbols, Measures and L-Functions

Proof: Except for the last part, the other parts are trivial. We have :

λ(f, a+ rm,m) = φ(f,−a+ rm

m
)

= φ(f,− a

m
− r)

= φ(f,

(
1 −(a+ rm)
0 m

)
(0))

= φ(f
|

0@ 1 −(a+ rm)
0 m

1A, 0)

= φ(f
|

0@ 1 −r
0 1

1A0@ 1 −a
0 m

1A, 0)

= φ(f,− a

m
) ( because f is Γ0(N)− invariant)

= λ(f, a,m).

This implies that λ(f, a,m) depends only on a mod m. �

1.6 Action of the Hecke operators

Let f ∈ S2(Γ0(N), ε). For every prime number p consider the operators

f −→ f|Tp =

p−1∑
u=0

f
|

24 1 u
0 p

35

+ ε(p).f
|

24 p 0
0 1

35. (1.5)

Proposition 1.6.1 : For f ∈ S2(Γ0(N), ε) and each prime number p, we have the
formula :

λ(f|Tp , a,m) =

[
p−1∑
u=0

λ(f, a− um, pm)

]
+ ε(p)λ(f, a,

m

p
). (1.6)
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1.7 Relation of the modular symbols to the values of the complex L-function L(f, s)

Proof : We start from the right-hand side of (1.6) :

=

p−1∑
u=0

λ(f, a− um, pm) + ε(p)λ(f, a,
m

p
)

=

p−1∑
u=0

φ(f,−(a− um)

pm
) + ε(p)φ(f,−ap

m
)

=

p−1∑
u=0

φ(f,

[
1 −u
0 p

]
(− a

m
)) + ε(p)φ(f,−ap

m
)

=

p−1∑
u=0

φ(f
|

24 1 −u
0 p

35, (−
a

m
)) + ε(p)φ(f,−ap

m
)

=

p−1∑
u=0

φ(f
|

24 1 −u
0 p

35, (−
a

m
)) + ε(p)φ(f

|

24 p 0
0 1

35,−
a

m
)

= φ(

p−1∑
u=0

(f
|

24 1 −u
0 p

35 + ε(p)f
|

24 p 0
0 1

35,−
a

m
)

= φ(f|Tp ,−
a

m
)

= λ(f|Tp , a,m).

1.7 Relation of the modular symbols to the values of
the complex L-function L(f, s)

If f ∈ S2 has Fourier series f(z) =
∑

n≥1 ane
2πinz then the corresponding L-function

L(f, s) is defined by

L(f, s) =
∑
n≥1

an.n
−s =

(2π)s

Γ(s)
.

∫ ∞

0

f(it).ts.
dt

t
. (1.7)

For the convergence of integral and more details see ([DS] chapter V, section 5.9, page
no. 200). Therefore we have:

λ(f, 0, 1) = φ(f, 0) = −2πi

∫ i∞

0

f(z)dz = 2π

∫ ∞

0

f(it)dt = L(f, 1). (1.8)

1.8 Twists

Let χ be a Dirichlet character mod m. The Gauss sums are defined by the formulae:

τ(n, χ) :=
∑

a mod m

χ(a).e2πina/m (1.9)
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1 Modular Symbols, Measures and L-Functions

and

τ(χ) := τ(1, χ) (1.10)

As we know from character theory that

τ(n, χ) = χ̄(n).τ(χ) for all n ∈ Z if χ is primitive mod m, and

for (n,m) = 1, if χ is any character mod m.

Conversely if the first or second sentence holds for all n ∈ Z, then χ is a primitive
character mod m, and in this case

|τ(χ)|2 = χ(−1)τ(χ)τ(χ̄) = m. (1.11)

In particular, τ(χ) 6= 0.
For

f(z) =
∑
n≥1

ane
2πinz

we put

fχ(z) =
∑
n

χ(n)ane
2πinz

So if χ is primitive mod m, then we have

fχ̄(z) =
∑
n

anχ̄(n)e2πinz

=
∑
n

an
τ(n, χ)

τ(χ)
e2πinz

=
1

τ(χ)

∑
n

∑
a mod m

ane
2πina/m.e2πinz

=
1

τ(χ)

∑
a mod m

∑
n

anχ(a)e2πin(z+a/m)

=
1

τ(χ)

∑
a mod m

χ(a)f(z +
a

m
).

For the modular Integral, this gives the following twisting rule

φ(fχ̄, r) =
1

τ(χ)

∑
a mod m

χ(a).φ(f(z +
a

m
), r)

=
1

τ(χ)

∑
a mod m

χ(a).φ(f |
[

1 a
m

0 1

]
, r)

=
1

τ(χ)

∑
a mod m

χ(a).φ
(
f, r +

a

m

)
(1.12)
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From the above, we get:

λ(fχ̄, b, n) = φ( fχ̄,−
b

n
)

=
1

τ(χ)

∑
a mod m

χ(a).φ

(
f,− b

n
+
a

m

)
=

1

τ(χ)

∑
a mod m

χ(a).λ(f, bm− an,mn). (1.13)

putting b = 0 and n = 1, we get, by equation (1.8),

L(fχ̄, 1) =
1

τ(χ)

∑
a mod m

χ(a).λ(f,−a,m)

=
χ(−1)

τ(χ)

∑
a mod m

χ(a).λ(f, a,m)

=
τ(χ)

m

∑
a mod m

χ(a).λ(f, a,m). (1.14)

This expresses the special value L(fχ̄, 1) of the L-function of all twists of f in terms of
modular symbols for f .

1.9 p-adic distributions

Let p be fixed prime number. Suppose f ∈ S2(Γ0(N), ε) is an eigenform for Tp with
eigenvalue ap. Suppose also that the polynomial X2−apX+ ε(p)p has two distinct roots
α and β with α 6= 0. For m ∈ Z, m > 0 ν(m) = ordp(m) is an integer such that
m.p−ν(m) is a p-adic unit. Define:

µf,α(a,m) =
1

αν(m)
· λf (a,m)− ε(p)

αν(m)+1
· λf (a,

m

p
). (1.15)

It takes values in Zp.

Proposition 1.9.1 : For a,m ∈ Z, m > 0 we have a distribution property : that is, we
have: ∑

b = a mod m
b mod pm

µf,α(b, pm) = µf,α(a,m)
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1 Modular Symbols, Measures and L-Functions

Proof: We have, using prop 1.5.1,

∑
b ≡ a mod m
b mod pm

µf,α(b, pm) =
∑

b ≡ a mod m
b mod pm

(
1

αν(m)+1
.λf (b, pm)− ε(p)

αν(m)+2
.λf (b,m)

)

=


∑

b ≡ a mod m
b mod pm

1

αν(m)+1
.λf (b, pm)

−
ε(p)

αν(m)+2
.p.λf (a,m)

=

[
p−1∑
r=0

1

αν(m)+1
.λf (a+ rm, pm)

]
− p ε(p)

αν(m)+2
.λf (a,m)

=

[
p−1∑
r=0

1

αν(m)+1
.φ

(
f,−a+ rm

pm

)]
− β

αν(m)+1
.λf (a,m)

=

[
p−1∑
r=0

1

αν(m)+1
.φ

(
f |
[

1 −r
0 p

]
,− a

m

)]
− β

αν(m)+1
.λf (a,m)

=
1

αν(m)+1
.φ

(
f | Tp − ε(p)f |

[
p 0
0 1

]
,− a

m

)
− β

αν(m)+1
.λf (a,m)

=
ap − β

αν(m)+1
.φ
(
f,− a

m

)
− ε(p)

αν(m)+1
.φ

(
f |
[
p 0
0 1

]
,− a

m

)
=

1

αν(m)
.λf (a,m)− ε(p)

αν(m)+1
.λf (a,

m

p
)

= µf,α(a,m).�

Suppose ψ is Dirichlet character with conductor M such that (p,M)= 1. We find for n
prime to M the following equality.

Proposition 1.9.2

µfψ̄,αψ̄(p)(b, n) =
ψ(p)ν(n)

τ(ψ)
.
∑

a mod m

ψ(a).µf,α (Mb− na,Mn) . (1.16)

Proof: We start from the right hand side of (1.1.6) :
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1.10 p-adic Integrals

=
ψ(p)ν(n)

τ(ψ)
.
∑

a mod M

ψ(a).µf,α (Mb− na,Mn)

=
ψ(p)ν(n)

τ(ψ)
.
∑

a mod M

ψ(a)

(
1

αν(n)
.λf (Mb− na,Mn)− ε(p)

αν(n)+1
.λf (Mb− na,

Mn

p
)

)
=

1

(αψ̄(p))ν(n)
.

1

τ(ψ)
.
∑

a mod M

ψ(a).λf (Mb− na,Mn)−

ε(p)

(αψ̄(p))ν(n)+1
.

1

τ(ψ)
.
∑

a mod M

Ψ(ap).λf (Mb− na,
Mn

p
)

=
1

(αψ̄(p))ν(n)
.λ(fψ̄, b, n)− ε(p)

(αψ̄(p))ν(n)+1
.

1

τ(ψ)
.
∑

a mod M

ψ(a).λf

(
Mb− an

p
,
Mn

p

)
=

1

(αψ̄(p))ν(n)
.λ(fψ̄, b, n)− ε(p)

(αψ̄(p))ν(n)+1
.λ

(
fψ̄, b,

n

p

)
= µfψ̄,αψ̄(p)(b, n).

1.10 p-adic Integrals

Let M be a fixed integer greater than 0 and prime to p. Set:

Zp,M = lim
←−
ν

(
Z

pνMZ

)
= lim

←−
ν

(
Z
pνZ

× Z
MZ

)
= Zp ×

Z
MZ

Z∗p,M = Z∗p ×
(

Z
MZ

)∗
.

We view Z∗p,M as a p-adic analytic Lie group with a fundamental system of open disks
D(a, ν) indexed by an integer a prime to pM and natural number ν ≥ 1, where

D(a, ν) = a+ pνMZp,M ⊆ Z∗p,M . (1.17)

Let Q̄ be the algebraic closure of Q in C. Fix an embedding

i : Q̄ ↪→ Cp

where Cp = the completion of an algebraic closure of Qp

Let Op ⊆ Cp denote the ring of integers in Cp and let O∗
p be its topological group of
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1 Modular Symbols, Measures and L-Functions

units. For a fixed modular form f ∈ S2(Γ0(N), ε), consider the finite dimensional Cp -
vector space

Vf = Cp ⊗Q̄ LfQ̄

and the Op - lattice Ωf ⊆ Vf generated by Lf .

Definition 1.10.1 : If U ⊆ Zp,M is an open subset, a function

F : U −→ Cp

is called locally analytic if there is a covering of U by open disks D(a, ν) such that on
each D(a, ν), F is given by convergent power series

F (x) =
∑
n≥0

cn(x− a)n. (1.18)

Now our aim is to define a Vf -valued integral

(U, F ) −→
∫
U

Fdµf,α, (1.19)

where U ranges over compact open subsets of Z∗p,M and F ranges over locally analytic
functions on U .
So we are giving measures µf,α as before on Z∗p,M such that∫

D(a,ν)

dµf,α = µf,α(a, p
νM) (1.20)

where α is an admissible root of f . The equation (1.19) is Cp- linear in F and finitely
additive in U .

1.11 Choices of α

Let α and β be the two roots in Q̄ of the equation X2−apX+ε(p)p. Let σ = ordpα, σ̄ =
ordpβ such that σ < σ̄.

Definition 1.11.1 : The form f is ordinary at p iff σ = 0, i.e. if and only if ap ∈ O∗
p.

This depends on our embedding

i : Q̄ ↪→ Cp.

If f has good ordinary reduction at p i.e. p 6 |ap, then α is always an admissible root.
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1.12 p-adic L-functions

1.12 p-adic L-functions

By a p-adic character we mean a continuous homomorphism

χ : Z∗p,M −→ C∗
p (1.21)

for some p and M . We say that a character χ is primitive if it does not factor through
Z∗p,M1

for any proper divisor M1 of M . For a p-adic character χ, there is a unique M
such that χ is primitive on Z∗p,M . We call this M the p′-conductor of χ. It is an integer
≥ 1, prime to p.

Z∗p,M
π

χ // C∗
p

( Z
pνMZ)∗

<<xxxxxxxxx

Viewing
(

Z
pνMZ

)∗
as quotient of Z∗p,M , we can identify a primitive Dirichlet character

of conductor pνMZ with a p-adic character of p′-conductor M , and every character of
finite order arises in this way.
If x ∈ Z∗p, we can write:

x = ω(x)· < x > (1.22)

where ω(x) is a root of unity and

< x >∈ 1 + pZp (1.23)

then x 7→ ω(x) , x 7→< x > are p-adic characters of p′-conductor 1. If χ(x) = ψ(x),
where ψ is a character of finite order, then we call χ special .

Let f be an eigenform for Tp and suppose that α is an admissible p-root for f . For
each p-adic character χ, we put

Lp(f, χ, s) =

∫
Z∗p,M

< x >s−1 χ.dµf,α (1.24)

If χ(x) = ψ(x) is a special character and ψ is a conductor of finite order m = pνM ,
define the p-adic multiplier as

ep(α, χ) = ep(α, ψ)

=
1

αν

(
1− ψ̄(p)ε(p)

α

)(
1− ψ(p)

p

)
(1.25)

Proposition 1.12.1 : If χ is a special character as above, then

Lp(f, χ, 1) = ep(α, ψ) · m

τ(ψ̄)
· λ(fψ̄, 0, 1) (1.26)

= ep(α, ψ) · m

τ(ψ̄)
· L(fψ̄, 1). (1.27)
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Proof: If ν > 0, we need to show that:-

Lp(f, χ, 1) =
m

τ(ψ̄)
.

1

αν
λ(fψ̄, 0, 1).

But this is true because:-

Lp(f, χ, 1) =

∫
Z∗p,M

χ.dµf,α

=

∫
Z∗p,M

ψ.dµf,α

=
∑

a mod pνM

ψ(a).µf,α(a, p
νM)

=
∑

a mod pνM

ψ(a).
1

αν
.λ(f, a, pνM)

=
1

αν
.
m

τ(ψ̄)
.L(fψ̄, 1)

=
m

τ(ψ̄)
.

1

αν
.L(fψ̄, 1)

=
m

τ(ψ̄)
.

1

αν
.λ(fψ̄, 0, 1).

If ν = 0, then we have to show that

Lp(f, χ, 1) = ep(α, ψ).
m

τ(ψ̄)
.λ(fψ̄, 0, 1)

In this case ν = 0 implies m = M . And if a is an integer prime to M , let

D(a, 0) = Z∗p,M ∩ (a+MZP,M).

Then,

D(a, 0) =
∐

b = a mod m, b 6= 0 mod p
b mod pm

D(b, 1)
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1.12 p-adic L-functions

and b ≡ a mod m, b ≡ 0 mod p is equivalent to b ≡ pap′ mod pm where pp′ ≡ 1 mod M .
Consequently,∫

D(a,o)

ψ.dµf,α =
∑

b = a mod m, b 6= 0 mod p
b mod pm

ψ(b)µf,α(b, pM)

=


∑

b = a mod m,
b mod pm

ψ(b)µf,α(b, pm)

− ψ(pap′).µf,α(pap
′, pm)

=


∑

b = a mod m,
b mod pm

ψ(a)µf,α(b, pm)

− ψ(a).µf,α(pap
′, pm)

= ψ(a)µf,α(a,m)− ψ(a)µf,α(pap
′, pm),

which implies that

Lp(f, χ, 1) =

∫
Z∗p,M

ψ.dµf,α

=
∑

a mod m

∫
D(a,o)

ψ.dµf,α

=
∑

a mod m

(ψ(a)µf,α(a,m)− ψ(a)µf,α(pap
′, pm))

=
∑

a mod m

ψ(a)

(
λf (a,m)− ε(p)

α
.λf (a,

m

p
)− 1

α
λf (pap

′, pm) +
ε(p)

α2
.λf (a,m)

)
=

∑
a mod m

ψ(a)

(
λf (a,m)− ε(p)

α
.λf (ap,m)− 1

α
λf (ap

′,m) +
ε(p)

α2
.λf (a,m)

)
=

∑
a mod m

ψ(a)λf (a,m)− ε(p)

α

∑
a mod m

ψ(a).λf (ap,m)−

1

α

∑
a mod m

ψ(a)λf (ap
′,m) +

ε(p)

α2

∑
a mod m

ψ(a).λf (a,m)

=
m

τ(ψ̄)
.L(fψ̄, 1)

(
1− ε(p)ψ̄(p)

α
− ψ(p)

α
+
ε(p)

α2

)
= ep(α, ψ).

m

τ(ψ̄)
.λ(fψ̄, 0, 1).
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2 Quaternion Algebras

In this chapter K is any field and Ks is a separable algebraic closure of K.

2.1 Quaternion algebras

Definition 2.1.1 : A quaternion algebra H of K is a central algebra of dimension 4
over K such that there is a quadratic separable extension L of K with H = L+ Lu ,
where u ∈ H satisfies

u2 = θ ∈ K∗, um = m̄u (2.1)

for all m ∈ L, where m→ m̄ is a non trivial automorphism of L/K.

We will sometimes write H = (L, θ). But H does not determine L and θ uniquely.
For example it is clear that one can replace θ by θmm̄ if m is an element of L such
that mm̄ 6= 0. The element u is not determined by (2.1) either if m ∈ L is an element
satisfing mm̄ = 1, we can replace u by mu.
We will give the law of multiplication in H using (2.1). That is if mi ∈ L for 1 ≤ i ≤ 4
then :

(m1 +m2u)(m3 +m4u) = (m1m3 +m2m̄4θ) + (m1m4 +m2m̄3)u.

Definition 2.1.2 The conjugation on H is the K-endomorphism : h → h̄ on H which
extended map of non trivial K - automorphism of L defined by ū = −u & mu = −mu
where m ∈ L.

It is easy to check that this is an anti automorphism involution of H from the following
relation.

ah+ bk = ah̄+ bk̄, ¯̄h = h, hk = k̄h̄ a, b ∈ K, h, k ∈ H.

Definition 2.1.3 : Let h ∈ H. The reduced trace of h is t(h)=h+h̄ and reduced norm
is n(h)= hh̄.

So if h /∈ K, then its minimal polynomial over K is :

(X − h)(X − h̄) = X2 − t(h)X + n(h).

The algebra K(h) generated by h over K is quadratic over K. The reduced trace and
the reduced norm of h are simply the image of h under the trace and norm of K(h)/K.
The conjugation and the identity are the K-automorphisms of K(h).
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2 Quaternion Algebras

Lemma 2.1.4 : The invertible elements of H are the elements of non-zero reduced
norm. The reduced norm defines a multiplicative homomorphism from H∗ to K∗. The
reduced trace is K-linear and the application (h, k) 7→ t(hk) is a non-degenerate bilinear
form.

Proof: Since n(hk) = hkhk = hkk̄h̄ = hn(k)h̄ = n(h)n(k), we have that h is invertible
if and only if n(h) 6= 0 : if n(h) 6= 0, then we can define h−1 = h̄n(h)−1. Then it defines
a multiplicative homomorphism from H∗ to K∗.

It is easy to check for a, b ∈ K, h, k ∈ H, t(ah+ bk) = at(h) + bt(k). Now we have to
prove that application (h, k) 7→ t(hk) non-degenerate bilinear form, i.e., for given h ∈ H,
t(hk) = 0 for all k ∈ H implies h = 0.
Take h = m1 +m2u and take k = m ∈ L.

t(hk) = t ((m1 +m2u)m) = 0 for all m ∈ L
⇒ t(m1m) + t(m2um) = 0 for all m ∈ L

⇒ t(m1m) = 0 for all m ∈ L

Since L/K is separable, this implies m1 = 0. So t(m2uk) = 0 for all k ∈ H. Take k = ū,
then we will get m2 = 0, this implies h = 0. Thus we are done.

For charK 6=2, we get the classical definition of quaternion algebras. The pair (L, θ)
is equivalent to a pair {a, b}, where a, b ∈ K∗ and the relations defining H as the basic
K-algebra of basis 1, i, j, ij satisfying the following relation.

i2 = a, j2 = b, ij = −ji (2.2)

The equation (2.1) is equivalent to equation (2.2) by taking H = L+Lj, L = K(i) and
θ = b. We will put ij = k.
The conjugation, the reduced trace and the reduced norm have the following expressions
: if h = x+ yi+ zj + tk

h̄ = x− yi− zj − tk, t(h) = 2x, n(h) = x2 − ay2 − bz2 + abt2. (2.3)

The fundamental example of a quaternion algebra overK, is given by the algebraM2(K).
The reduced trace and the reduced norm in M2(K) are the trace and determinant as
usual. We identify K with its image in M2(K) under the K-homomorphism which sends
the unit of K on the identity matrix.
Explicitely, if

h =

(
a b
c d

)
, h̄ =

(
a b
c d

)
, t(h) = a+ d, n(h) = ad− bc. (2.4)

We will show that M2(K) satisfies the definition of a quaternion algebra in a following
way : we will choose a matrix m of distinct eigenvalues and put L = K(m). Since m has
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2.1 Quaternion algebras

distinct eigenvalues, there exists a matrix u ∈ GL2(K) such that umu−1 = m̄. From here
we will get t(um) = t(u)m for all m ∈ L, and t(um) ∈ K. This implies t(u) = 0 and u2 =
θ ∈ K∗. This proves that M2(K) satisfies the definition of quaternion algebra. Also we

can take as the basis of M2(K) are

{(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
1 0
0 −1

)
,

(
0 1
−1 0

)}
whose elements satisfy equations (2.2).

From now on we assume that char(K) 6= 2. Now our chief aim is to prove that
the quaternion algebra is a simple central algebra and all simple central algebras of
dimension 4 are quaternion algebras. From now on we will denote H by {a, b} where
a, b ∈ K∗and H = K +Ki+Kj +Kk where i, j, k satisfy :

i2 = a, j2 = b, ij = −ji, ij = k.

Lemma 2.1.5 :The quaternion algebra H is a simple central algebra whose center is K.

Proof : To prove this lemma we introduce the Lie bracket operation [x, y] = xy− yx. If
x = c0 + c1i+ c2j + c3k ∈ H. Then we get by simple calculation

[i, x] = 2ac3j + 2c2k, [j, x] = −2bc3i− 2c1k, [k, x] = 2bc2i− 2ac1j

and we know that x ∈ Z(H) if and only if [i, x] = [j, x] = [k, x] = 0. This implies
c0 = c1 = c2 = c3 = 0. i.e. x ∈ K. So Z(H) = K.
Suppose that 0 6= x ∈ I is a two sided ideal of H. It must contain the Lie triple products

[j, [i, x]] = −4bc2i, [k, [j, x]] = 4abc3, [i, [k, x]] = −4ac1k.

If one of c1, c2, c3 is not zero then I contains the unit of H. If c1 = c2 = c3= 0 then
x = c0 is a unit belonging to I. So in all cases I = H. Hence quaternion algebras are
simple central algebras .

Proposition 2.1.6 : The following conditions are equivalent for H = {a, b}.
(i) H is a division algebra;
(ii) x ∈ H − {0} implies n(x) 6= 0;
(iii) if (c0, c1, c2) ∈ K3 satisfy c20 = ac21 + bc22 , then c0 = c1 = c2 = 0.

Proof : (i) ⇔ (ii) follows from lemma 1.
Let us prove (ii) ⇒ (iii). If c20 = ac21 + bc22 with (c0, c1, c2) 6= (0, 0, 0), then x = c0 +
c1i + c2j 6= 0 and n(x)= 0 . Therefore (ii) ⇒ (iii). Finally (iii) implies (ii). Let
x = d0 + d1i+ d2j + d3k with n(x) = 0, that is

d2
0 − ad2

1 − bd2
2 + abd2

3 = 0

d2
0 − bd2

2 = a(d2
1 − bd2

3)

a(d2
1 − bd2

3)
2 = (d2

0 − bd2
2)(d

2
1 − bd2

3)

a(d2
1 − bd2

3)
2 = (d0d1 + bd2d3)

2 − b(d0d3 + d1d2)
2

From assumption (iii) d2
1 − bd2

3 = 0, and therefore d1 = d3 = 0, similarly d0 = d2 = 0,
that is x = 0.
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2 Quaternion Algebras

2.1.1 Isomorphism of Quaternion Algebras

For any quaternion algebra H/K, we will denote by H0 the subset of H of quaternions
with zero reduced trace, V and V0 are the K-vector space sub-adjacent to H and H0.
For x, y in H = {a, b}, using the reduced norm we define:

β(x, y) =
1

2
(n(x+ y)− n(x)− n(y)).

If x = c0 + z, y = d0 + w with c0, d0 ∈ K and z = c1i + c2j + c3k ∈ H0, w =
d1i+ d2j + d3k ∈ H0, we have :

β(x, y) =
1

2
((x+ y)(x+ y)− xx̄− yȳ)

=
1

2
((x+ y)(x̄+ ȳ)− xx̄− yȳ)

=
1

2
(xȳ + yx̄)

=
1

2
((c0 + z)(d0 − w) + (d0 + w)(c0 − z))

= c0d0 −
1

2
(zw + wz)

= c0d0 − ac1d1 − bc2d2 + abc3d3.

These equations show that β is a bilinear mapping of V × V to K, which is symmetric
and non-singular. Moreover β(x, x) = n(x) and if z, w ∈ V0 then

β(z, w) = −1

2
(zw + wz) and n(z) = −z2. (2.5)

This implies that β is a non degenerate bilinear form associated to the vector spaces V
and V0.
Also these equations are equivalent to β(x, y) = 1

2
tr(xȳ).

Lemma 2.1.7 : Let H = {a, b} and H ′ = {a′, b′} be two quaternion algebras over K
with the respective reduced norm n and n′. As K-algebras H is isomorphic to H ′ if and
only if there is a vector space isomorphism φ : H0 → H ′

0 such that n′(φ(z))= n(z) for all
z ∈ H0.

Proof: We will start the proof with a characterization of H0. If x = c + z with c ∈ K
and z ∈ H0, then

x2 = c2 + z2 + 2zc

= c2 − n(z) + 2zc.

This implies that x2 ∈ Z(H) = K if and only if z = 0 or c = 0.
This calculation shows that

x ∈ H0 if and only if x /∈ Z(H) and x2 ∈ Z(H). (2.6)
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2.1 Quaternion algebras

We can similarly characterize H ′
0. Therefore, for any algebra isomorphism

φ : H −→ H ′,

we have :φ(Z(H)) = Z(H ′) and φ(x2) = (φ(x))2.

It follows from this and equation(1.6) that φ(H0) = H ′
0. If z ∈ H0, then

n′(φ(z)) = −(φ(z))2 = φ(−z2) = φ(n(z)) = n(z).

Conversely, suppose that φ : H0 → H ′
0 is a vector space isomorphism such that n′(φ(z)) =

n(z). We have to show that H ∼= H ′.
We will construct a basis for H ′ for which the structure constants are the same as the
structure constants with the standard basis of H. By equation(2.5)

φ(i)2 = −n′(φ(i)) = −n(i) = i2 = b.

Similarly φ(j)2 = b. Moreover

φ(i)φ(j) + φ(j)φ(i) = −2β′(φ(i), φ(j))

= −2β(i, j)

= ij + ji

= 0

⇒ φ(i)φ(j) = −φ(j)φ(i)

⇒ (φ(i)φ(j))2 = −ab

From equation(2.6) it follows that φ(i)φ(j) ∈ H0. In fact φ(i), φ(j), φ(i)φ(j) is a basis
of H ′

0 : if

c1φ(i) + c2φ(j) + c3φ(i)φ(j) = 0 with (c1, c2, c3) ∈ K3

⇒ φ(i) (c1φ(i) + c2φ(j) + c3φ(i)φ(j)) = 0

⇒ ac1 + c2φ(i)φ(j) + c3aφ(j) = 0

⇒ c1 = 0

Similarly c2 and c3 = 0. Define a mapping

ψ : H −→ H ′

1 7−→ 1

i 7−→ φ(i)

j 7−→ φ(j)

k 7−→ φ(i)φ(j).

The preceding discussion shows that ψ is a K-algebra Isomorphism. �
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2 Quaternion Algebras

Now we will translate the previous lemma in terms of quadratic forms. If z = c1i +
c2j + c3k ∈ H0, then n(z) = Φ(c1, c2, c3), where Φ is the ternary quadratic form −ax2

1 −
bx2

2 + abx2
3.

That is

Φ(x1, x2, x3) =
[
x1 x2 x3

]
α

 x1

x2

x3

 (2.7)

where α is

 −a 0 0
0 −b 0
0 0 ab

.

We say two quadratic forms are equivalent if it is possible to pass from one to other by
a non-singular linear change of variables.

Proposition 2.1.8 : The quaternion algebra H = {a, b} and H ′ = {a′, b′} over K are
isomorphic if and only if the quadratic forms −ax2

1−bx2
2 +abx2

3 and −a′x2
1−b′x2

2 +a′b′x2
3

are equivalent.

Proof : Let Φ(x1, x2, x3) = −ax2
1 − bx2

2 + abx2
3 and Φ′(x1, x2, x3) = −a′x2

1 − b′x2
2 + a′b′x2

3

and let z = c1i+c2j+c3k, z
′ = c′1i

′+c′2j
′+c′3k

′ , n(z) = −ax2
1−bx2

2+abx
2
3, and n′(z′) =

−a′x2
1 − b′x2

2 + a′b′x2
3. Write

α =

 −a 0 0
0 −b 0
0 0 ab

 , α′ =
 −a′ 0 0

0 −b′ 0
0 0 a′b′

 , ξ =

 c1
c2
c3

 , ξ′ =
 c′1
c′2
c′3


Then n(z) = ξtαξ and n′(z′) = (ξ′)tα′ξ′, where the superscript t denotes matrix trans-
position. If w = d1i + d2j + d3k and w′ = d′1i

′ + d′2j
′ + d′3k

′, then β(z, w) = ξtαη and
β′(z′, w′) = (ξ′)tαη′, where

η =

 d1

d2

d3

 , η′ =
 d′1
d′2
d′3

.

Suppose that φ : H0 −→ H ′
0 is linear, that is [φ(i), φ(j), φ(k)] = [i′, j′, k′] δ, where

δ = [dij] ∈ M3(K). The mapping is bijective if and only if δ is non singular. If
z = c1i+ c2j + c3k = [i, j, k] ξ, then

φ(z) = [φ(i), φ(j), φ(k)] ξ = [i′, j′, k′] δξ.

Similarly φ(w) = [i′, j′, k′] δη. Consequently,

β′(φ(z), φ(w)) = (δξ)tα′(δη)

= ξt(δtα′δ)η.

Therefore φ satisfies n′(φ(z)) = n(z) for all z ∈ H0, or equivalently
β′(φ(z), φ(w)) = β(z, w) for all z, w ∈ H0 if and only if ξtαη = ξt(δtα′δ)η for all ξ, η in
K3. Clearly, this last condition is equivalent to α = δtα′δ. So the quaternion algebras
H = {a, b} and H ′ = {a′, b′} over K are isomorphic if and only if the quadratic forms
−ax2

1 − bx2
2 + abx2

3 and −a′x2
1 − b′x2

2 + a′b′x2
3 are equivalent. �
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2.1 Quaternion algebras

Corollary 2.1.9 :If a ,b and c are non zero elements K, then(
H =

{
ac2, b

}) ∼= (H ′ =
{
a, bc2

}) ∼= (H ′′ = {a, b}) . (2.8)

Proof : This follows from the proposition. �

As a consequence of the corollary there are only three quaternion algebras over R up
to isomorphism. They are
{1, 1} , {1,−1} and {−1,−1}. We will represent {−1,−1} by H which is known as the
Hamiltonian quaternion algebra.

To prove that every simple central algebra of dimension 4 is a quaternion algebra, we
will use some theorems and definitions that we are going to state in the next subsection..

2.1.2 Maximal Subfields

In this section A is a K-algebra. A subfield of a K-algebra A is a sub-algebra E of A
such that E is a field, and E contains the identity element of A. So we can view E as
an extension of K. If there is no subfield F of A such that E ⊂ F , then E is called a
maximal subfield of A.

Lemma 2.1.10 :If B is a K-algebra with dimKB = k <∞, and if n ∈ N is divisible by
k, then B is isomorphic to a sub algebra of Mn(K).

Proof : If k = n, then we have nothing to prove. The general case follows from the map
x → (x,x,x,x,...x) is an injective algebra homomorphism from B to a product A of n/k
copies of B with dimKA = n. �

Lemma 2.1.11 : Let D be a division algebra over K. If x ∈ D, then there is a subfield E
of D such that x ∈ E. If dimKD <∞, then the sub algebra K [x] = {Φ(x) : Φ ∈ K[X]}
is a subfield of D .

Proof : Since K ⊆ Z(D), K[x] is a commutative sub-algebra of D and we have a map

θ : K[X] −→ K[x]

Φ 7→ Φ(x)

which is an algebra homomorphism. Since D has no proper zero divisors, K[x] is an
integral domain, which implies that Ker(θ ) is a prime ideal of K[X]. If dimKD < ∞
then Ker(θ) 6= 0, and Ker(θ) is a maximal ideal. This implies that E = F [x] is a field
containing x and contained in D. If Ker(θ ) = 0, then

E =
{
Φ(x)Ψ(x)−1 : Φ,Ψ ∈ F [X],Ψ 6= 0

}
is a subfield of D containing x. �
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2 Quaternion Algebras

Now the S(K) will denote the family of all finite dimensional simple central algebras
over K. It follows from last lemma that if D ∈ S(K) and D is a division algebra, then
every sub-algebra of D is also a division algebra.
For n ∈ N, we will say that the field K is n-closed if there is no proper extension E of
K such that [E : K] divides n. So every field is 1-closed and a field K is n-closed for all
n ∈ N if and only if K is algebraically closed.

Lemma 2.1.12 : If A is a simple finite dimensional K-algebra such that K is maximal
subfield of A, then A ∼= Mn(K) and K is n-closed, where n∈ N is (dimKA)1/2.

Proof: Since A is a simple finite dimensional algebra, Wedderburn’s structure theorem
implies that A ∼= Mn(D), where D is division algebra over K. In fact D = K, otherwise
by the last lemma there would be a subfield E of D which properly contains K. The
assumption that K is a maximal subfield of A excludes this possibility. If K is not
n-closed, then there is a proper extension E/K such that [E : K] divides n. In this case
Mn(K) ∼= A contains a subfield that is isomorphic to E by the previous lemma, which
again contradicts the maximality of K. �

If X is a subset of the algebra A , then the centralizer of X in A is defined to be

CA(X) = {y ∈ A : xy = yx for all x ∈ X} . (2.9)

Lemma 2.1.13 : Let X and Y be subsets of the algebra A, and suppose that B is a sub
algebra of A.
(i) CA(X) is a sub algebra of A with Z(A) ⊆ CA(X).
(ii) If X ⊆ Y, then CA(Y ) ⊆ CA(X).
(iii) X ⊆ CA(Y ) if and only if Y ⊆ CA(X); in particular, X ⊆ CA(CA(X)).
(iv) B ∩CA(B) = Z(B).
(v) CA(X) = A if and only if X ⊆ Z(A).

Proof : These are an easy consequence of definition. �

Theorem 2.1.14 :Let A∈ S(K), and suppose that B is a simple sub-algebra of A.
(i) CA(B) is simple.
(ii) (dimKB) (dimKCA(B)) = dimKA.
(iii)CA(CA(B)) = B.

We are not going to give the proof of this theorem. For the proof see ([Pi], chapter 12).
We will just use the statement of the theorem. This theorem is known as the double
centralizer theorem (DCT).

Proposition 2.1.15 : Let A ∈ S(K), and suppose that E is a subfield of A with [E : K]
= k. The following conditions are equivalent.
(i)E is a maximal subfield of A.
(ii) CA(E) ∼= Mn(E) and E is n-closed.
If (i) and (ii) are satisfied, then dimKA = (kn)2.
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Proof : Assume that E is a maximal subfield of A. Since E is simple so is CA(E) by
the last theorem. Moreover E ⊆ Z(CA(E)) because E is commutative. Thus CA(E) is
a simple E -algebra, and since E is maximal in A, it is also maximal in CA(E). From
Lemma(2.1.12), there exists n ∈ N such that CA(E) ∼= Mn(E) and E is n-closed. The
last theorem also gives

dimK(A) = (dimKE)(dimK(CA(E)) = [E : K] (dimKMn(E)) = n2k2.

Conversely suppose that (ii) is satisfied. Let E ⊆ F , F a maximal subfield of A. Then
F ⊆ CA(E) ∼= Mn(E). Hence F is a maximal subfield of B = CA(E) ∈ S(E). From the
first part of the proof, we get

CB(F ) ∼= Mm(F ) and n2 = dimEB = (m[F : E])2.

So [F : E] divides n but E is n -closed by assumption. This implies that E = F is a
maximal subfield of A. �

Corollary 2.1.16 If A ∈ S(K), then dimK(A) = m2 for some m ∈ N. For a subfield
E of A, [E : F ] divides m.

Proof : This follows from the proposition. �

The natural number m is called the degree of A. It will be denoted by DegA. We have
DegA = (dimK(A))1/2. We will say that a subfield E of A ∈ S(K) is strictly maximal
if [E : K] = DegA.

Corollary 2.1.17 : A subfield E of A ∈ S(K) is strictly maximal if and only if CA(E)
= E. If A is a division algebra, then every maximal subfield of A is strictly maximal.

Proof : The first assertion follows from the double centralizer theorem because E ⊆
CA(E) and (DegA)2 = dimK(A) = [E : K] (dimKCA(E)). If E is a maximal subfield of
the division algebra A, so that Mn(E) ∼= CA(E) ⊆ A by the proposition, then n = 1
since A has no non-zero nilpotent elements. Thus CA(E) = E and E is strictly maximal.

We are going to give the statement of the Noether-Skolem Theorem.
Statement : Let A ∈ S(K) and suppose that B is a simple sub-algebra of A. If χ is an
algebra homomorphism from B to A, then there exists u ∈ A∗ such that χ(y) = u−1yu
for all y ∈ B.
For the proof see ([Pi], chapter 12). Following corollaries are consequences of the theo-
rem.

Corollary 2.1.18 For all separable quadratic algebras L/K, contained in H, there exists
θ ∈ K∗ such that H = {L, θ}.

Proof: Let L = K(m). By the above theorem, every K-automorphism of L is induced
by an interior automorphism of H, that is, there exists u ∈ K∗ such that umu−1 = m.
It is easy to check that t(u) = 0 and u2 ∈ K∗, say u2 = θ, which implies H = {L, θ}.
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2 Quaternion Algebras

Corollary 2.1.19 The quaternion algebra H = {L, θ} is isomorphic to M2(K) if and
only if either L is not a field or θ ∈ n(L).

Proof: If L is not a field, then K is a maximal subfield and H ∼= M2(K). We may thus
assume that L is a field. We will show that if H is not a division algebra then θ ∈ n(L).
We can choose a non-zero element of H, say h = m1 +m2u, such that n(h) = 0. Then
n(h) = n(m1) − n(m2)θ = 0. We conclude that n(m2)θ = n(m1). Now, if n(m2) = 0,
then n(m1) = 0 as well and we conclude that h = 0. Consequently, n(m2) 6= 0 and we
have θ = n(m1m

−1
2 ) ∈ n(L). Now we will show H = {L, θ} is isomorphic to M2(K) if

and only if θ ∈ n(L). If θ ∈ n(L), then there exists an element in H other than ± 1
whose square is 1. If h2 = 1 and h 6= ± then h ± 1 is a zero divisor. We can choose
an element in H, a divisor of zero, denoted by x and separable over K and and put
L′ = K(x). From the Skolem -Noether theorem we can show that H = {L′, θ′}. As L′

is not a field H ∼= M2(K). If θ /∈ n(L) then every non-zero element in H has a non-zero
reduced norm, which implies that H is division algebra. �

Theorem 2.1.20 : If A ∈ S(K) has degree 2, i.e. A is a simple central Algebra of
dimension 4 over K, then A is isomorphic to a quaternion algebra.

Proof : Let E be a maximal subfield of A. If E = K, then A ∼= M2(K) ∼= (H = {1, 1})
by Lemma 2.1.12. If E 6= K, then E is a quadratic extension of K and since char(K)
6=2, we can write E = K(x), where x2 = a ∈ K∗, x /∈ K.

The mapping x 7→ −x defines an automorphism of E, so by the Noether-Skolem
theorem, there exists y ∈ A∗ such that y−1xy = −x. Clearly y ∈ A − E. There-
fore dimK(K + Kx + Ky + Kxy) = 4 = dimK(A). Note that xy = −yx implies
xy2 = −yxy = y2x. Hence y2 ∈ Z(A) = K, say y2 = b ∈ K∗. The above discussion
shows that the correspondences

1 → 1

x→ i

y → j

xy → k

extends to K-algebra homomorphism from A to H = {a, b}. �

To prove the next corollary we will introduce the Brauer Group.

2.1.3 Brauer Group

Let A,B be a simple central algebras over K i.e. A,B ∈ S(K). We will write A ∼ B
if there exists a division algebra D ∈ S(K) and positive integers m and n such that
A ∼= Mn(D) and B ∼= Mm(D). It is easy to check that ∼ is an equivalence relation.
From this equivalence relation we can say that every central simple algebra is equivalent
to some division algebra over K.
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2.1 Quaternion algebras

We define the Brauer group of K as the set of equivalence classes of finite dimensional
simple central algebras over K under this equivalence relation. We will denote the
Brauer group of K by B(K). That is

B(K) = {[A] : A ∈ S(K)} (2.10)

We will not prove that this is a group. For the proof see ([Pi], chapter 12). We will just
give the rule of multiplication in this group .

[A] [B] = [A⊗K B]

[K] = Identity element

[A]−1 = [A∗] .

Where A∗ is the opposite K-algebra of A .
As we know there is no finite dimensional division algebra over C except C. This implies
B(C) = {0}.
Now we are returning to the corollary which is known as Frobenius theorem.

Corollary 2.1.21 (Frobenius Theorem) : Up to isomorphism , the only finite dimen-
sional non-commutative division algebra over R is H = {−1,−1}. Hence B(R) = Z/2Z.

Proof : Let D be a finite dimensional, non-commutative division algebra over R. Since
C is the only non-trivial algebraic extension of R, either Z(D) = R or C. The second
possibility is excluded because B(C) = {0}. Thus D ∈ S(R). Let E be a maximal
subfield of D. By Corollary 2.1.17 , Deg D = [E : R] = [C : R]. Thus D is a quaternion
algebra , so that D ∼= H = {−1,−1)}.

From our earlier discussion we found that if H is a quaternion algebra over K, then
it is either isomorphic to M2(K) or is a division algebra.
If K is a seprably closed field and H is quaternion algebra over K, then K will be the
maximal subfield, and from Lemma 2.1.12 , H ∼= M2(K).
Let F be a field containing K. The tensor product of a quaternion algebra H/K with
F over K is a quaternion algebra over F , and which is equal to

F ⊗H = F ⊗ {L, θ} = {F ⊗ L, θ} .

We will denote it by HF .

Definition 2.1.22 : A field F/K such that HF is isomorphic to M2(F ) is called a
neutralizing field of H.

Definition 2.1.23 : A quadratic form over a field K is said to be isotropic if there is a
non zero vector on which it vanishes.

Corollary 2.1.24 : The following properties are equivalent :
(1) H is isomorphic to M2(K).
(2) V is an isotropic quadratic space .
(3) V0 is an isotropic quadratic space .
(4) The quadratic form ax2 + by2 represents 1.
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2 Quaternion Algebras

Proof : (1) is equivalent to (2) and also (1) is equivalent to (3). For to prove (4) implies
(1) we can choose a element ix + jy whose square is ax2 + by2 and it is different from
±1. So H is not a division algebra thus H ∼= M2(K). Now we will prove (3) implies
(4). If ax2 + by2 − abz2 = 0 with z 6= 0, then it is clear that ax2 + by2 represents 1.
If z = 0, then b ∈ −ak2, then the quadratic form ax2 + by2 is equivalent to a(x2 − y2)
which represents 1.

2.2 Orders and Ideals

In this section we will give the definition of orders and ideals which we will be use in
next chapters, when K is local field or global field.
Let R is a dedekind domain i.e. a noetherian ring, integrally closed and every prime
ideal is maximal. Let K is fraction field of R and H is quaternion algebra over K.

Definition 2.2.1 : Let V be a K-vector space. A lattice L in V is free R-module
and has finite number of generators contained in V . We say a lattice L is complete if
K ⊗R L = V .

Definition 2.2.2 : An element x ∈ H is integral over R if R[x] is a R-lattice of H.

This definition is equivalent to x is root of some monic polynomial in R[X].

Lemma 2.2.3 : An element x ∈ H is integral if and only if the reduced trace and the
reduced norm are elements of R.

Proof : As we know x satisfy the equation X2 − t(x)X + n(x) = 0. Which is equivalent
to R[x] is R-lattice if and only if t(x), n(x) belongs to R.

Using this lemma we recognize that if an element is an integer, contrary to commu-
tative case, the sum and the product of integers are not always integers. This implies
that the set of integers does not form a ring here. So this is the main problem here if
someone wants to make explicit calculation. Now we are going to define order and ideal
here.

Definition 2.2.4 : An ideal of H is a finitely generated R -submodule I of H, which is
complete lattice. That is K ⊗R I ∼= H.

Definition 2.2.5 : A subset O of H is called an order if it satisfies the following equiv-
alent conditions:
(i) O is an ideal of H which is also a subring of H.
(ii) O is a subring of H containing R, KO = H, and every element of O is an integer
of H.

We are going to prove (i) and (ii) are equivalent. It is clear that (i) implies (ii). Con-
versely, let (ai) is a basis of H/K contained in O, and put L =

∑
Rai. An element

of O can be written as h =
∑
xiai , xi ∈ K. As O is a ring , hai ∈ O and

t(hai) =
∑

j xjt(ajai) ∈ R. This implies L ⊂ O ⊂ dL , where d = (det(t(ajai)))
−1 6= 0.

We deduce that O is an ideal. Hence we proved.
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2.2 Orders and Ideals

A maximal R-order in H is an R-order which is not properly contained in any other
R-order. An Eichler-order is the intersection of two maximal orders.

Now our chief aim is to prove that H contains R-orders. Certainly there exist ideals.
For example if H =

∑
Kxi, where (xi) is a basis of H over K, then I =

∑
Rxi is a full

R-lattice in H, i.e. I is an ideal. We define the left order of I as

Ol(I) = { h ∈ H : hI ⊂ I }

Clearly Ol(I) is a sub ring of H, and it is an R-module. So we only need to verify that
it is a full R-lattice in H. For each y ∈ H , yI is an R-lattice in H and so there exists
a non zero r ∈ R such that ryI ⊂ I. Thus ry ∈ Ol(I), which proves that K.Ol(I) = H.
Next, there exists a non-zero s ∈ R such that s ∈ I. Therefore Ol(I).s ⊂ I, whence
Ol(I) ⊂ s−1I. Since R is a noetherian ring and s−1I is an R-lattice, this implies that
Ol(I) is also an R-lattice. This prove that Ol(I) is an R-order in H. Similarly, we define
right order of I

Or(I) = { h ∈ H : Ih ⊂ I } .

It is an R-order in H.

Definition 2.2.6 : We say that an ideal I whose left order is Ol , and right order is
Or, is bilateral if Ol = Or, normal if Ol and Or are maximal, integral if it is contained
in Ol and Or, and principal if I = Olh = hOr for some h ∈ H∗.

We now define

I−1 = { h ∈ H : I.h.I ⊂ I }

Clearly

I−1 = { h ∈ H : I.h ⊂ Ol(I) } = { h ∈ H : h.I ⊂ Or(I) }

If Λ = Ol(I), then αΛ ⊂ I ⊂ βΛ for some non zero α, β ∈ R. Therefore α−1Λ ⊃ I−1 ⊃
β−1Λ, since

α−1Λ = {h ∈ H : αΛ.h ⊂ Λ} ⊃ {h ∈ H : I.h ⊂ Λ} = I−1.

Similarly for the other inclusion. Thus I−1 is also a full R-lattice in H.

The product IJ of two ideals I, J is the set of finite sums of elements hk, where h ∈ I,
k ∈ J . It is obvious that IJ is an ideal. From the definition, we see that the product of
two ideals is associative .

Lemma 2.2.7 . (1) The ideal I is an integral ideal if and only if it contained in one of
the orders.
(2) The ideal I and I−1 satisfy
Ol(I

−1) ⊃ Or(I) , Or(I
−1) ⊃ Ol(I) , I I

−1 ⊂ Ol(I) , I
−1I ⊂ Or(I).

proof : This is an easy verification. �
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2 Quaternion Algebras

2.2.1 Properties of principal ideals

Let O be an order, and I = Oh be a principal ideal. The left order of I is equal to O
and the right order is O′ = h−1Oh. Then I = hO′.

We have the following multiplication rules for principal ideals :
Ol(I) = Or(I

−1) = I I−1 , Or(I) = Ol(I
−1) = I−1I , Ol(IJ) = Ol(I) ,

Or(IJ) = Or(J), (IJ)−1 = J−1I−1

From now on we will assume that the above rules of multiplication hold true for the
ideals and orders considered.

Definition 2.2.8 We say that the product IJ of two ideals I and J is proper if Or(I) =
Ol(J).

Let I, J, C,D are four ideals such that the product CJ and JD are proper. We will show
that the equality I = CJ = JD is equivalent to C = IJ−1 and D = J−1I.
Since the product CJ is proper, this implies Ol(J) = Or(C). Now I = CJ , implies
IJ−1 = CJJ−1 = C Ol(J) = C Or(C) = C. Similarly we get the result: if C = IJ−1

then I = CJ . Similarly for the other equality.

Lemma 2.2.9 : The relation I ⊂ J is equivalent to I = CJ and to I = JD, where C
and D are integral ideal and the products are proper.

Proof : If I ⊂ J , take C = IJ−1. Then C = IJ−1 ⊂ JJ−1 = Ol(J) = Or(C). So C is
an integral ideal and equivalent to I = CJ . Conversely if
I = CJ ⊂ Or(C)J ⊂ Ol(J)J ⊂ J . Similarly for the other possibilities.

This also gives the multiplication rules. From now on we will suppose that the product
of ideals is proper.

2.2.2 Bilateral ideal or two sided ideal

Definition 2.2.10 : Let O be an order. A prime ideal of O is a proper non zero
two sided integral ideal P in O such that for every pair of two sided ideals I and J in
O, IJ ⊂ P implies I ⊂ P or J ⊂ P .

We will show that I is a prime ideal if and only if it is strictly contained in no other
ideal distinct from O. Let I be an ideal which is strictly contained in no other ideal, and
let J and J ′ two two-sided integral ideal of O such that JJ ′ ⊂ I. If J 6⊂ I, then the ideal
I+J contains I strictly, hence is equal to O. So (I + J) J ′ = J ′, whence IJ ′+JJ ′ = J ′,
and J ′ ⊂ I. Consequently I is a prime ideal. Conversely, if I is a prime ideal and J is a
two-sided integral ideal such that I ⊂ J , then I = JD, where D = J−1I are two-sided
integral ideal. From this we deduce that D ⊂ I, which is not possible.

Now we will show next that the product of two prime ideals in O commutes. Let P
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and Q be two prime ideals and write QP = PQ′(applying the process of factorisation),
where Q′ is another two sided integral ideal. This implies PQ′ ⊂ Q ⇒ Q′ ⊂ Q, which
implies QP ⊂ PQ. By symmetry of P and Q, we can similarly show that PQ ⊂ QP ,
whence QP = PQ.

Since O is a finitely generated R-module, any strictly increasing chain of ideals is
finite. Using the above results and rules of multiplication, we will show that the family
of two-sided ideal of O form a free group generated by the prime ideals.

Let I be an ideal, whose the left order is O and right order is O′, and let P be prime
ideal of O. The product I−1PI is a two-sided ideal of O′. If I is two-sided ideal of, then
I−1PI = P . If not, that is, O′ 6= O , then P ′ = I−1PI is prime ideal of O′, independent
of the choice of Ideal I, whose left order is O and right order is O′. We now verify this.
Suppose P ′ is not a prime ideal, this implies P ′ ⊂ M , where M is a two-sided of O′,
which implies P ⊂ IMI−1, that is, P contained in IMI−1, which is two sided ideal of
O, contradiction. To show independence, of the choice of an ideal I whose left order is
O and the right order is O′, we can write every ideal whose left order is O and right
order is O′ in the form IJ ′ or JI , where J is a two-sided ideal of O and J ′ is a two
sided ideal of O′. From this independence of I is obvious..

2.2.3 Properties of non bilateral ideal

Let O be an order. We say that an non zero proper integral ideal P is irreducible if it
is maximal with respect to inclusion in the set of all ideals whose left order is O.

Its easy to see that the P is a maximal ideal in the set of integral ideals of Or(P ).

Theorem 2.2.11 For each maximal left ideal P of a maximal R-order O, there is a
unique prime ideal P of O such that

P ⊂ P ⊂ O, P = ann (O/P ) = {x ∈ O : xO ⊂ P} .

We will not give the proof of this theorem. For the proof see ([Re], page no 195). Also,
from this we will get that every integral ideal is product of irreducible ideals.

Definition 2.2.12 : The reduced norm n(I) of an ideal I is the fractional-ideal of R
generated by the reduced norms of their elements.

If I = Oh is a principal ideal , then n(I) = Rn(h). If J = O′h′ is another principal
ideal, whose left order is O′ = h−1Oh, then IJ = Ohh′, whence n(IJ) = n(I)n(J). Also
this results holds also for non-principal ideals.
Also, we can define the norm of an Ideal I, whose left order is O and right order is
O′ by n(I) = ordR (O/I), where ordR (M/N), for two ideals M and N , is defined by
ordR (M/N) = E1E2....Er, where

M = J1m1 ⊕ J2m2 ⊕ ....⊕ Jrmr, N = E1J1m1 ⊕ E2J2m2 ⊕ ....⊕ ErJrmr.

Here {mi} ∈M and {Ji} , {Ei} are fractional R-ideals.
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2.2.4 Different and Discriminant

For an ideal I , we define a complementary ideal

Ĩ = {x ∈ H : t(xI) ⊂ R}

Here,

t : H ×H → K

is the non-degenerate bilinear trace form defined in section (2.1), that is,

t(h, k) = t(hk)

First we will prove that Ĩ is an ideal, i.e., it is full R-lattice in H. Since I is contained in
some full R-lattice N =

⊕4
i=1Rxi, there exists {yj} ∈ H such that t (xi, yj) = δij, 1 ≤

i, j ≤ 4. Then

Ĩ ⊃ Ñ =
4⊕
i=1

Ryi.

Similarly, Ĩ is contained in some full R-lattice in H. Therefore Ĩ itself is a full R-lattice

in H. The left order of Ĩ is
{
x ∈ H : t(xĨI) ⊂ R

}
=
{
x ∈ H : t(ĨxI) ⊂ R

}
, because

t(xy) = t(yx). This implies that Ĩ is bilateral ideal. For the case when I is O itself, we

note that Õ ⊃ O and ÕÕ−1 ⊃ Õ−1, so Õ−1 is an integral ideal.

The different of O of with respect to R is defined as

D(O/R) = Õ−1,

and the discriminant of O with respect to R is defined as

d(O/R) = n(Õ−1) = n(D(O/R)).

Lemma 2.2.13 If

O =
4⊕

i=1

Rxi, 1 ≤ i ≤ 4,

and O is principal, then

n(Õ−1)2 = R · det (t(xixj)) , 1 ≤ i,j ≤ 4.
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Proof : Since O =
⊕4

i=1Rxi, there exists elements
{
yj

}
∈ H with t(xiyj) = δij, 1 ≤

i,j ≤ 4. If yj =
∑

ajkxk , then t(xiyj) =
∑

ajkt(xixk). Then we get det(t(xiyj)) =

det(aij) det(t(xixj)). Since Õ = Oh for some h ∈ H∗, (because O is principal), then

(xih) is another basis of Õ. For α ∈ Õ, n(α)2 is the determinant of the endomor-
phism h → αh, so we have det(aij) = n(α)2u, u ∈ R∗. We conclude that R

(det(t(xixj))) = n(Õ)−2 = n(Õ−1)2. �

This lemma remains valid if O is not principal.

Corollary 2.2.14 Let O and O′ be two orders. If O′ ⊂ O. Further d(O′) ⊂ d(O) and
d(O′) = d(O) implies O′ = O .

Proof : Let vi and ui be R-bases of O′ and O respectively. Since O′ ⊂ O, we can write
vi =

∑
j aijuj with aij ∈ R. Then det(t(vivj)) = (det(aij))

2 det(t(uiuj)). This implies that
d(O′) ⊂ d(O). If d(O′) = d(O), that is (aij) is invertible, then O′ = O.

2.2.5 Ideal classes

The two ideals I and J are called equivalent on the left if and only if I = hJ, for some h ∈
H∗. If O is an order, we define the set Picl(O) of left-ideal classes of O as the set of
ideals with right order O modulo equivalent on the left. This is the correct way to define
it, since modifying an ideal on the left does not change its right order. Of course there
is a similar definition Picr(O) of right-classes of left O-ideals.

Lemma 2.2.15 (1) The application I 7→ I−1 induces a bijection between left classes
and right classes of O.
(2) Let J be given ideal. The application I 7→ JI induces a bijection between left classes
of Ol(I) = Or(J) and the left classes of Ol(J).

Proof : Easy. �

Two orders are said to be of the same type if they are conjugate by an element h ∈ H∗.

Linked orders: We say that two orders O and O′ are linked if there exists an ideal
I whose left order is O and whose right order is O′. This is an equivalence relation,
and we will speak of linkage classes of orders. As an example, the maximal orders lie
in a single linkage class(since if O and O′ are any two orders, put I := O.O′. Then
O ⊂ Ol(I) and O′ ⊂ Or(I); if O and O′ are maximal, we must have equality).

Lemma 2.2.16 . Linked orders have the same number of (left or right) ideal classes.

Proof: Suppose O and O′ are linked by I. We define a map from the set of left O-
ideals to the set of right O′-ideals by J 7→ J−1I. The map P 7→ IP−1 gives an inverse.
Moreover, the map descends to ideal classes, since Jh 7→ (Jh)−1I = h−1J−1I.
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Definition 2.2.17 : The class number of H(with respect to R) is #Picl(O), where O is
any maximal order. Note that the preceding lemma shows that this is well defined. The
type number of H is the number of conjugacy classes of maximal orders of H.

Lemma 2.2.18 Let O and O′ be two orders. The following properties are equivalents.
(1) O and O′ are of the same type.
(2) O and O′ are linked by a principal ideal.

Proof : (1) ⇔(2)
If O′ = h−1Oh, then the principal ideal Oh links O to O′, and conversely.

Corollary 2.2.19 . If the class number of H is one, its type number is one.

Proof: Since any two maximal orders are linked by some ideal, this follows immediately
from the lemma.

The number of types of orders of H is the number of types of its maximal orders. So
we get from the above lemma that the number of types t of the orders connected to a
given order is less than or equal to the number of classes h of these orders.

Definition 2.2.20 : Let L/K be a separable algebra of dimension 2 over K. Let B be an
R-order of L and O an R-order of H. An embedding f : L→ H is maximal with respect
to O/B if f(L) ∩ O = f(B). As the restriction of f to B determines f, we also say
that f is a maximal embedding of B in O.

Let us suppose that L = K(h) is contained in H. From the Skolen-Noether theorem,
the conjugacy classes of h in H∗,

C(h) =
{
xhx−1, x ∈ H∗} .

are in bijection with the set of embeddings of L in H. This is equal to

C(h) = {x ∈ H, t(x) = t(h), and n(x) = n(h)}

The set of maximal embedding of B in O are in bijection with the following subset of
the conjugacy classes of h in H∗ :

C(h,B) =
{
xhx−1, x ∈ H∗ K(xhx−1) ∩ O = xBx−1

}
.

We have a disjoint union

C(h) =
⋃
B

C(h,B)

48



2.2 Orders and Ideals

where B varies over the orders of L. Consider a subgroup G of the normalizer of O in
H∗ :

N(O) =
{
x ∈ H∗ , xOx−1 = O

}
.

For x ∈ H∗ , note that x̃ : y → xyx−1 is the interior automorphism of H associating to
x, and G̃ = {x̃ , x ∈ G}. The set C(h,B) is stable under the left action of G̃.

Definition 2.2.21 : A class of maximal embeddings of B in O is a class of maximal
embeddings of B in O for the equivalence relation f = x̃f ′, x̃ ∈ G̃. The conjugacy class
modulo G of h ∈ H∗ is CG(h) = {xhx−1 , x ∈ G}.

Thus we see that the set of conjugacy classes modulo G of elements x ∈ H∗ such that
t(x) = t(h), n(x) = n(h) is equal to

G̃ \ C(h) =
⋃
B

G̃ \ C(h,B).

In particular if #(G̃ \ C(h,B)) is finite and zero for almost all orders B ⊂ L, we have

#(G̃ \ C(h)) =
∑
B

#(G̃ \ C(h,B)).

2.2.6 Group of units in an order

The units of an order O are the invertible elements which are contained in this order.
They naturally form a group which is denoted O∗. The units of norm 1 also form a
group denoted by O1.

Lemma 2.2.22 : An element of O is a unit if and only if its reduced norm is a unit of
R.

Proof: If x, x−1 belongs to O , then n(x), n(x)−1 are in R. Conversely if x ∈ O, and
n(x)−1 ∈ R, then x−1 = n(x)−1x̄ ∈ O, because x̄ ∈ O.
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3 Quaternion Algebras over Local
Fields

In this chapter K is a local field, i.e. it is a finite extension of K/K ′ of a field K ′ which
can be one of the following :
- R the field of real numbers ,
- Qp the field of p-adic numbers ,
- Fq[[T]] the field of formal series in one variable over a finite field Fq.

If K ′ 6= R let R be the ring of integrals of K and π, k = R/πR a uniformizer and
the residue field of K respectively and Lur is a quadratic unramified extension of K in
a separable closure Ks.

We will prove that Lur is the unique quadratic unramified extension up to isomor-
phism. Since Lur is unramified, it has residue degree f = 2 and ramification index e = 1,
implies that π is also a uniformizer of Lur. Let L1 and L2 be two unramified extension
of degree 2 over K and, let RL1 and RL2 be their rings of integers. Since RL1/πRL1

and RL2/πRL2 are degree 2 extensions over k. They are isomorphic. From this we can
deduce that L1

∼= L2.

We will denote by RL the ring of integers of Lur and by kL the residue field of Lur.
Also, we note that n(R∗

L) = R∗.

Let H/K be a quaternion algebra. All the notations of orders and ideals in H are
relative to R.

3.1 Classification

In this section we will give the classification of quaternion algebras over local fields. The
following theorem classifies the quaternion algebras over local fields.

Theorem 3.1.1 . Over local fields K 6= C, there exists a unique quaternion division
algebra up to isomorphism.

After developing the necessary theory we will give a proof of this theorem at the end
of the section. For K = R, the Frobenius theorem shows that there exists a unique
quaternion division algebra namely, Hamilton’s quaternions, and for K = C, M2(C) is
the unique quaternion algebra.
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3 Quaternion Algebras over Local Fields

Let Quat(K) be the set of isomorphism classes of quaternion algebras over K. We
define an isomorphism of Quat(K) taking values in {±1} by asigning to a quaternion
algebra H/K the values : ε(H) = −1 if H is a division algebra, ε(H) = 1 otherwise.
We call ε(H) the Hasse invariant of H.

From theorem 3

Quat(K) ∼= {±1} if K 6= C , Quat(C) ∼= {1} .

If char(K) 6= 2, and if a and b ∈ K∗, the Hasse invariant of a , b is defined by

ε( a , b ) = ε({a, b})

where H = {a, b} is the quaternion algebra described in Chapter II. The Hilbert symbol
of a , b is defined by

(a , b) =

{
1 if ax2 + by2 − z2 = 0 has a non trivial solution in K3

−1 otherwise
.

So from Corollary 2.1.24, Proposition 2.1.6 and Theorem 3.1.1 we conclude that the
Hilbert symbol and Hasse invariant agree and satisfy the following properties :
(1) (ax2, by2) = (a, b)
(2) (a, b) (a, c) = (a, bc)
(3) (a, b) = (b, a)
(4) (a, 1-a) = 1
(5) (a, b) = 1 , for all b ∈ K∗ implies a ∈ K2

(6) (a, b) = 1 is equivalent to a ∈ n(K(
√
b)) or b ∈ n(K(

√
a)).

We will not prove these properties. For more details see ([BS], chapter I, section 6).

We suppose from now on that K 6= R,C. The classification theorem follows from the
following more precise theorem.

Theorem 3.1.2 Let K be a non archimedian local field. Then H = {Lur, π} is the
unique quaternion division algebra over K up to isomorphism. A finite extension F/K
neutralises H if and only if its degree [F : K] is even.

The proof of the theorem consists of several steps. From now we consider H/K a quater-
nion divison algebra. To prove the above theorem we will define discrete valuations.

Definition 3.1.3 A discrete valuation v on a division algebra X is a function v : X∗ →
Z satisfying
(1) v(xy) = v(x) + v(y)
(2) v(x+y)≥ inf(v(x) , v(y)) for all x , y ∈ X∗ with equality if v(x)= v(y).
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3.1 Classification

A non zero element u of minimal valuation is called a uniformizer of X. We can
extend this application v to a map v : X → Z ∪ {∞} by setting v(0)= ∞. The set
A = {x ∈ X, v(x) ≥ 0} is the discrete valuation ring associated to v. It has a unique
non zero prime ideal, namely M = Au = {x ∈ X, v(x) > 0}. The field A/M is called
the residuefield of A and the group A∗ = {x ∈ X, v(x) = 0} is called the group of units
of A. We may suppose that v is surjective, i.e., v(X∗) = Z.

Let H/K be a quaternion algebra which is a division algebra and let v be a valuation
on K. We define

w : H∗ → Z

by

w(h) = v ◦ n(h) (h ∈ H∗),

where n : H∗ → K∗ is the reduced norm map defined in Chapter II. Since the norm
is multiplicative, therefore w satisfies the property (1). Since K is a local field, it is
commutative and L is an extension of K contained in H, and we conclude that the
restriction of w to L is a valuation.

For h, k ∈ K∗ take L = K(hK−1). To prove that w is a valuation on H, we have
to prove that w satisfies the property(2), that is w(h+ k) ≥ inf (w(h), w(k)). We may
assume w(h) ≥ w(k), so we have to prove that w(h+ k) ≥ w(k). Now

w(h+ k)− w(k) = w(hk−1 + 1)

≥ inf
(
w(hk−1), w(1)

)
, because the restriction of w to L is a valuation

≥ 0

So w satisfies the property (2), that is w, is a discrete valuation of H.

Let us denote by O the valuation ring associated to the valuation w. For all finite
extensions L/K contained in H, O ∩ L is the valuation ring of the restriction of w to
L. Then O ∩ L is the ring RL of integers of L. So we deduce that O is an order of H,
in fact it is unique maximal order in H. From here we get that every normal ideal is a
two-sided ideal. If u ∈ O is a uniformizer, P = Ou is a unique prime ideal of O. All the
normal ideals are of the form P n, n ∈ Z.

Lemma 3.1.4 The unramified quadratic extension Lur/K is isomorphic to a subfield of
H.

Proof : Suppose otherwise. If Lur is not embedded in H, then for all x ∈ O − R the
extension K(x)/K is ramified. Let us denote by P the only prime ideal of O, P1 =
P ∩K(x), P0 = P ∩R and Ox = O ∩K(x). Since L/K is ramified, we have P0Ox = P 2

1
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3 Quaternion Algebras over Local Fields

andOx/P1
∼= R/P0. This implies that there exists a ∈ R such that x = a+ux1, withx1 ∈

O −R. Proceeding in a similar way we get

x = a+ ua1 + u2a2 + u3a3 + .......

with a, a1, a2, a3, a4, .. ∈ R. Hence O = R[[u]] = R[u] and therefore H = K[u], which is
quadratic over K. This is a contradiction. �

Corollary 3.1.5 .The unique quaternion division algebra H is isomorphic to {Lur, π}.
Its prime ideal is P = Ou and satisfies P 2 = Oπ. Its ring of integers O is isomorphic
to RL +RLu. The discriminant d(O) of O is equal to n(P ) = Rπ.

Proof : From the corollary 2.1.18 and corollary 2.1.19, we have H ∼= {Lur, x} where
x ∈ K∗ and x /∈ n(L∗ur). Since n(R∗

L) = R∗, this implies that we can choose x = πy2,
where y ∈ K∗. We can put x = π, which proves the first part of the corollary. The
element u satisfies u2 = x = π, which implies that it has minimal valuation. Then
P = Ou satisfying P 2 = Oπ. So the prime ideal Rπ is ramified in O and O is the
valuation ring of the valuation w, which implies that O = {h ∈ H : n(h) ∈ R}. Also,
RL = {m ∈ Lur : n(m) ∈ R}. If h = m1 + m2u with m1,m2 ∈ Lur, then n(h) ∈ R is
equivalent to n(mi) ∈ R, i = 1, 2. This shows that O = RL +RLu. We use the formula
of Lemma 2.2.13 to calculate d(O), and because of the fact that d(RL) = R, we get
d(O) = Rπ. Since P = Ou, this implies that n(P ) = R · n(u) = Rπ. So we get that

d(O) = n(P ) = Rπ and Õ−1 = P . �

Definition 3.1.6 Let Y/X be a finite extension of division algebras with discrete valu-
ation whose valuation rings are Ay., Ax = X ∩ Ay. Let Py, Px = Py ∩ Ax be the prime
ideals and ky, kx the residue division algebra respectively. The residue degree f of Y/X is
the degree [ky : kx]. The ramification index of Y/X is the integer e such that AyPx = P e

y .

We have deduced that an unramified quadratic extension Lur/K has ramification
index 1 and residue degree 2. The quaternion division algebra H/K has ramification
index 2 and residue degree 2.

Let F/K be a finite extension of fields of ramification index e and residue degree f.
We have ef = [F : K], because the order of k is finite, and RF/πRF

∼= RF/π
e
FRF if πF

is a uniformizer of F .

Lemma 3.1.7 The following properties are equivalent :

(1) f is even
(2) F ⊃ Lur
(3) F ⊗ Lur is not a division algebra
Proof : Suppose f is even. We know from Serre [1], Corollary 2, Chap 3, Section
6 that the sub extensions of F/K which are unramified over K are in one-to-one
correspondence with the separable sub extensions kF/k, where kF is residue field of F .
This implies that F ⊃ Lur. This proves that (1)⇒ (2). Suppose now that F ⊃ Lur.
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3.2 Calculation of Hilbert symbol

Since F ⊃ Lur has even residue degree, f is even. This gives (2)⇒ (1). Now, since Lur
is a separable extension of degree 2 over K, we have Lur = K[X]/P (X), where P (X)
is the irreducible polynomial of degree 2 in K[X] and P (X) = (X − α)(X − α′) with
α, α′ ∈ Lur. Then F ⊗ Lur = F ⊗ K[X]/P (X) = K[X]/P (X), which implies that
F ⊗ Lur is not division algebra if and only if P (X) has a root in F which is equivalent
to F ⊃ Lur. This proves (2) ⇔ (3).

Let us consider now HF
∼= {F ⊗ Lur, π}. If πF is a uniformizer of F , we can suppose

that π = πe
F . From corollary 2.1.19 and the previous lemma, we get that if e or f is

even then HF
∼= M(2, F ), i.e., F neutralizes H. If not, i.e., if [F : K] is not even, then

HF
∼= {F ⊗ Lur, πF}, where F ⊗ Lur is a quadratique unramified extension of F in Ks.

Then F is quaternion division algebra over F . The proof of theorem 3.1.2 is complete.

We remark the following:
All quadratic extensions of K are isomorphic to a sub-division algebra of H. So that if
B is an order of a maximal subfield of H, then for it to be embedded maximally in H,
it is necessary and sufficient that it be maximal.

3.2 Calculation of Hilbert symbol

Lemma 3.2.1 If the characteristic of K is not 2, and if e is a unit of R∗ which is not
a square, then the set {1, e, π, eπ} forms a system of representatives in K∗ of K∗/K∗2.
Moreover Lur is isomorphic to K(

√
e).

Proof : Let us consider the digram 1 // R∗
1

2
��

// R∗

2

��

// k∗

2

��

// 1

R∗
1

// R∗ // k∗

where the vertical arrows are the homomorphism h 7→ h2 , and R∗
1 = {1 + πa, a ∈ R}.

We have
[
k∗ : k∗2

]
= 2 and R∗

1 = R∗
1
2, because

(1 + πa)1/2 = 1 + πa/2 + ..........

converges in K.
From the diagram we have

R∗

R∗
1

∼= k∗

Also from the above diagram we have an exact sequence

1 // R∗
1

// R∗2 // k∗2 // 1

which gives

R∗2

R∗
1

∼= k∗2
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3 Quaternion Algebras over Local Fields

Then

R∗

R∗2
∼=

R∗/R∗
1

R∗2/R∗
1

∼= k∗/k∗2

This implies
[
R∗ : R∗2] =

[
k∗ : k∗2

]
= 2. Since K∗ ∼= Z×R∗ and K∗2 ∼= 2Z×R∗2, we

have
[
K∗ : K∗2] = 4. If e ∈ R∗−R∗2, then {1, e, π, eπ} is a system of representatives of

K∗/K∗2. π is also a uniformizer for K(
√
e), which characterizes Lnr = K(

√
e). �

Using this lemma and the properties that we have discussed in section (2.1), we will
give the table for the Hilbert symbol of quaternion algebras over local fields. We put ε
= 1 if -1 is square in K, and ε = -1 otherwise.

a\b 1 e π πe
1 1 1 1 1
e 1 1 -1 -1
π 1 -1 ε -ε
πe 1 -1 -ε ε

Definition 3.2.2 . Let p be a prime number and a an integer prime to p. The Legendre
symbol

(
a
b

)
is defined by :(

a

p

)
=

{
1 if a is square modulo p

−1 otherwise.

From the above definition we see immediately that the Hilbert symbol (a, p)p of a, p

in Qp is equal to the Legendre symbol
(
a
p

)
. We can also calculate the Hilbert symbol

(a, b)p in Qp of two integers a, b, if p 6= 2, using the properties of the Hilbert symbol that
we have discussed in section (2.1) :

(a, b)p =

{
1 if p 6 |a, p 6 |b(

a
p

)
if p 6 |a, p ‖ b

3.3 Study of M(2,K)

Let V be a vector space of dimension 2 over K. Let us fix a basis {e1, e2} of V/K such
that V = Ke1+Ke2. This basis allows to identifyM2(K) with the ring of endomorphisms

End(V ) of V . If h =

(
a b
c d

)
∈ M2(K), the associated endomorphism is : v → v.h,

where v.h is the product of the row matrix (x, y) by h if v = xe1 + ye2. If L,M are two
complete lattices in V . We will denote by End(L,M), or End(L) if L = M , the ring of
R-endomorphisms of L in M .
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3.3 Study of M(2,K)

Lemma 3.3.1 (1) The maximal orders of End(V) are the rings End(L), where L varies
over the set of complete lattices in V.
(2) The normal ideals of End(V) are the ideals End(L,M), where L , M vary over the
complete lattices in V.

Proof:(1) Let O be an order of End(V ) and M a complete lattice in V . We put

L = {m ∈M : m.O ⊂M}

which is equivalent to setting

L = {m ∈M : f(m) ∈M for all f ∈ O} .

This implies that O ⊂ End(L) and L ⊂ M . Its enough to prove that L is a complete
lattice. Since M is complete lattice. We have M ⊗R K = V , whence End(M)⊗R K =
End(V ) and End(M) is complete full R-lattice in End(V ) as R-module. This implies
that there exists a ∈ R such that

aEnd(M) ⊂ O ⊂ a−1End(M).

We deduce that for all f ∈ O, af ∈ End(M), i.e., af(m) ∈ M for all m ∈ M . Thus
f(am) ∈ M for all m ∈ M which implies am ∈ L. This implies that aM ⊂ L ⊂ M ,
hence we are done.
(2) Let I be given. Then Ol(I) is a maximal order in End(V ). Choose a lattice L ⊂ V
such that Ol(I) = End(L) and define

M = R ({i(m) : i ∈ I,m ∈M}) .

Clearly M is a complete lattice. By definition I ⊂ End(L,M) and Or(I) ⊂ End(L),
hence Or(I) = End(L). Since L and M are complete lattices, we can view End(L,M)
as being isomorphic to M2(R). We can suppose that L = Re1 +Re2, where {e1, e2} is a
basis of V/K. Hence I ⊂ M2(R) is a sub R-module such that M(2,R) = Ol(I), M2(R)
= Or(I) and the column of all elements of I generate R2 i.e. I is a two-sided ideal in

M2(R). Let i =

(
a b
c d

)
∈ I be such that a ∈ R∗, or b ∈ R∗, or c ∈ R∗, or d ∈ R∗. By

elementary row and column operations

(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
and

(
0 0
0 1

)
are in I. So I = M2(R), whence I = End(L,M). �

So we have proved that the map

K∗\ { (L,M)| L, M are complete lattices in V } −→ { Normal ideal I ⊂ End(V )}

is surjective.
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3 Quaternion Algebras over Local Fields

We will now list some classical results of the theory.

Lemma 3.3.2 . Let L ⊂M two complete lattices in V.
(1) There exists an R-basis {f1, f2} of M and an R-basis

{
f1π

a, f2π
b
}

of L where a, b
are uniquely determined integers.
(2) If {f1, f2} is a R-basis of L, there exists a unique basis of M/R of the form
{f1π

n, f1r + f2π
m} , where n,m are integers, and r belongs to a given system Um of

representatives of R modulo πmR.

Proof. (1) It follows at once from invariant factor theorem.

(2) The basis of M are {f1a+ f2c, f1b+ f2d} is such that the matrix A =

(
a b
c d

)
satisfies L.A = M . We can replace A by XA if X ∈ M2(R)∗ and we can check without

difficulty that A can be reduced to the form A =

(
πn r
0 πm

)
where n,m are integers

and r ∈ Um.

We will express the results in terms of matrices:

Theorem 3.3.3 . (1) The maximal orders of M2(K) are conjugate to M2(R).
(2) The two sided ideals of M2(R) form a cyclic group generated by a prime ideal P =
M2(R)π,
(3) The integral ideals whose left order is M2(R) are the distinct ideals

M2(R)

(
πn r
0 πm

)
, where n,m ∈ N and r ∈ Um

where Um is a set of representatives for R modulo πmR.
(4)The number of integral ideals whose left order is M2(R) and have reduced norm Rπd

is equal to 1+ q+ q2 + ...+ qd, where q is number of elements of residue field k = R/πR.

Proof. Everything follows from our earlier discussion. �

Let O = End(L) and O′ = End(M) be two maximal orders in End(V ), where L,M
are two complete lattices of V . If x, y belong to K∗, we also have End(Lx) = O and
End(Ly) = O′. Also, we can suppose that L ⊂ M . Then there exist bases {f1, f2} and{
f1π

a, f2π
b
}

of L/R and M/R, where a, b ∈ N. The integer |b− a| does not change if
we replace L,M by Lx,My. It is called the distance between the two maximal orders
O, O′ and we will denote it by d(O,O′).

For example, the distance between the two maximal orders M2(R) and

(
R π−nR
πnR R

)
is equal to n.
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Eichler order

Definition 3.3.4 . An Eichler order of level Rπn is an intersection of two maximal
orders of distance n. We denote by On the Eichler order of level Rπn and equal to

On = M2(R) ∩
(

R π−nR
πnR R

)
=

(
R R
πnR R

)
.

An Eichler order of V is of the form O = End(L) ∩ End(M), where L,M are two
complete lattices of V which we can suppose to be of the form L = Rf1 + Rf2 and
M = Rf1 + Rπnf2. This is also the set of endomorphisms h ∈ End(L) such that
h.f1 ∈ Rf1 + πnL. The properties which we will prove in the following lemma justify
the definition of the level of an Eichler order.

Lemma 3.3.5 . Let O be an order of M2(K). The following properties are equivalent:
(1) There exists a unique pair of maximal orders (O1,O2) such that
O = O1 ∩ O2.
(2) O is an Eichler order.
(3) There exists a unique integer n ∈ N such that O is conjugate to

On =

(
R R
πnR R

)
.

(4) O contains a subring conjugate to

(
R 0
0 R

)
.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are obvious. We will show (4)⇒ (1).

Let O be an order containing

(
R 0
0 R

)
. We can check very easily check that it is of

the form

(
R πaR
πbR R

)
with a + b = m ≥ 0. A maximal order containing O is of the

form

(
R πc

π−c R

)
, with a −m ≤ c ≤ a. We conclude that there exist more than two

maximal orders containig O, corresponding to c = a and c = a−m. �

Let us denote by N(O) the normalizer in GL2(K) of an Eichler order O of M2(K).
By definition N(O) = {x ∈ GL2(K), xOx−1 = O}. Let O1,O2 be maximal orders con-
taining O. The interior automorphism associated to an element of N(O) fixes the pair
(O1,O2). The study of the two-sided ideals in maximal orders has showed that the
two-sided ideals of a maximal order are generated by the non zero elements of K. Then
we have N(O) = K∗O∗ if O is maximal. If O is not maximal, then we can suppose that

O = On, with n ≥ 1. Then we see that N(On) is generated by K∗O∗ and

(
0 1
πn 0

)
.

We can easily check that the reduced discriminant of an Eichler order is equal to its
level.
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3 Quaternion Algebras over Local Fields

The tree of maximal order

A graph Γ consists of a set V(Γ) , a set E(Γ) and two maps the first of which is

E(Γ) −→ V(Γ)× V(Γ) ,

y 7→ (o(y), t(y))

where the elements of V(Γ) are called vertices of Γ , the elements of E(Γ) are called
edges of Γ, o(y) is called the origin of y and t(y) is called the terminal of y. The second
map is an involution of E(Γ)

E(Γ) −→ E(Γ),

y 7−→ ȳ

such that the origin of y is the terminal of ȳ and such that y 6= ȳ.

A path in a graph Γ is a succession of edges (y1, y2, y3, ....., yi+1.......) such that the
terminal of yi is the origin of yi+1, for all i. The given path is equivalent to a succession
of vertices such that two consecutive vertices are always the origin and the end of an
edge. A finite path (y1, y2, ....., yn) is said to be of length n. It joints the origin of y1

to the terminal of yn. A pair (yi, ȳi) in a path is called a backtracking. A finite path
without backtracking such that origin of y1 is the terminal yn) is called a circuit. A
graph is connected if there is always a path joining two distinct vertices. A tree is a
connected non empty graph without circuits.

Now consider the graph whose vertices are the maximal orders of M2(K) and such
that two vertices are connected by a single edge if and only if the two maximal order
have distance one. This is also equivalent to considering graphs with vertices which are
lattices in V up to homothety.

We will show that this graph is the homogeneous tree of order q + 1(where q is the
cardinality of the residue field of K), called the Bruhat-Tits tree of PGL2(K) denoted
by T . At first we will prove that this graph is connected. Let O′ be a maximal order
such that d(O,O′) = n. Then we can take O = End(L) and O′ = End(M) such that
L = Re1+Re2 andM = Re1+Rπ

ne2 where {e1, e2} is a basis of V overK. The succession
of vertices (O,O1,O2, ...........,Oi, ...O′), where Oi = End(Re1 + Rπie2), 1 ≤ i ≤ n-1 is
a path joining O to O′ of length n. This shows that this graph is connected.

In order to prove that the above graph is a tree, it is sufficient to show that if
(O0,O1, ....,On)(n > 2) is a sequence of vertices in a path without backtracking in
the above graph, there exist R-lattices Li ⊃ Li+1 ⊃ Liπ such that Oi = End(Li) for
0 ≤ i ≤ n. The path is without backtracking if Liπ 6= Li+2 for all 0 ≤ i ≤ n− 2. We
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3.4 Maximal embedding of orders

have

Li+1 ⊃ Liπ ⊃ Li+1π

Li+1 ⊃ Li+2 ⊃ Li+1π

and Li+1/Li+1π is a k-vector space of dimension 2. Then Liπ + Li+2 = Li+1, whence
Liπ + Li+j+2 = Li+1, for all i, j ≥ 0, i + j + 2 ≤ n. Then L0π does not contain Li for
all i ≥ 1 hence d(O0,Oi) = i for 1 ≤ i ≤ n.

Hence we get that maximal orders form a tree. Now consider O a maximal order in
M2(K). We can suppose that O = End(L), where L is a lattice in V . Each vertex O′

of the above tree T is represented by a unique lattice M ⊂ L such that L/M ∼= R/πnR,
where n = dist(O,O′) and O′ = End(M). The R/πnR-module L/πnL is free of rank
2, and M/πnL is a direct factor of rank 1. From here we see that the vertices of the
tree T at distance n from O correspond bijectively to direct factors of L/πnL of rank 1,
that is, to points of the projective line P(L/πnL) ∼= P1(R/πnR). For n = 1, this implies
that the edges with origin O correspond bijectively to the points of P(L/πL), which are
equal in number to the order of P1(R/πR) i.e. q + 1.

For example take K = Qp, R = Zp, π = p. In this case the vertices of the Bruhat-Tits
tree are the maximal Zp-orders in M2(Qp) i.e. complete lattices in Q2

p up to homothety,
two vertices being adjacent if their intersection is an Eichler order of level p. As we
defined the notion of Bruhat Tits tree, GL2(Qp) acts on the vertices and edges transi-
tively. If v = End(L) is a vertex of the tree, where L = [Zp ⊕ Zp], then the stabilizer of
v = Q∗

pGL2(Zp). So we have

PGL2(Qp)/GL(Zp) ∼= V(T ).

If e = ([Zp⊕Zp], [Zp⊕pZp]) is an edge of the tree, then the stabilizer of the edge is equal

to Q∗
pΓ0(pZp), where Γ0(pZp) =

{(
a b
c d

)
∈ GL2(Zp) such that c = 0 mod pZp

}
. So

we have

PGL2(Qp)/Γ0(pZp) ∼= E(T ).

3.4 Maximal embedding of orders

Let H/K be a quaternion algebra, and L/K a quadratic separable algebra over K
contained in H. We are given an order B of L over the ring of integers R of K. Let O
be an Eichler order of H. We recall that B is maximally embedded in O if O∩L = B. A
maximal embedding of B in O is an embedding f of L in H such that O∩f(L) = f(B).
We will determine all maximal embeddings of B inO. It is clear that we can replaceO by
an order which is conjugate to it: if H is a division algebra then there is only one Eichler
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3 Quaternion Algebras over Local Fields

order, and if H = M2(K) we may suppose that O = On for n ≥0. If h̃ is an interior
automorphism defined by an element h of normalizer equal to the normalizer N(O) of

O in H∗, it is clear that h̃f is also a maximal embedding of B in O. We will show that
the number of maximal embeddings of B in O, modulo interior automorphisms defined
by a group G, O∗ ⊂ G ⊂ N(O), is finite. We can calculate this number explicitly. The
result of the calculation is rather complicated if O is a level Rπn with n ≥ 2. Since we
will not be using the result for n ≥ 2. We will just prove the complete result in the case
n ≤1. However, the proofs are given in the general case.

Definition 3.4.1 Let L/K be a quadratic separable extension of K. Let π be a uni-
formizer of K. We define the Artin symbol

(
L
π

)
(
L

π

)
=

{
−1 if L/K is non ramified,

0 if L/K is ramified

Let B be an order in a separable quadratic extension L/K. We define the Eichler symbol
to be

(
B
π

)
equal to the Artin symbol

(
L
π

)
if B is a maximal order, and 1 otherwise.

Now we will suppose that H is division algebra.

Theorem 3.4.2 Let L/K be a separable quadratic extension of K and let B be an order
in L. Let O be a maximal order in H. If B is a maximal order, the number of maximal
embeddings of B in O modulo the interior automorphisms defined by a group G is equal
to :

1 if G = N(O)

1−
(
L

π

)
if G = O∗.

If B is not maximal, then it is not maximally embedded in O.

Proof: Let f : L → H be an embedding of L in H. As we seen in section (3.1), f is
maximal embedding of ring of integers RL of L in a maximal order O of H. Thus, if
B is not maximal, then it is not maximally embedded in O. After Chap II, page no.
49, the number of maximal embeddings of RL in O modulo G is equal to number of
conjugacy classes in H of an element m ∈ L, m /∈ K, modulo G̃. As N(O) = H∗, we

have m(L,N(O)) = 1. Also Õ∗ ∪ Õ∗ũ = H̃∗ if u ∈ H is an element of reduced norm π,
we have m(L,O∗) = 1 if we can choose u ∈ L, i.e. if L/K is ramified, and m(L, O∗)
=2 if not, i.e. if L/K is not ramified. �
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Now suppose that H = M2(K). The analogous result is then:

Theorem 3.4.3 . Let L/K be a seprable quadratic extension and let B be an order of
L. Let O be a maximal order of M2(K). Then we can embed B maximally in O and the
number of maximal embeddings of B in O modulo interior automorphisms defined by O∗

is equal to 1. Let O′ be an Eichler order of level Rπ of M2(K). The number of maximal
embeddings of B in O′ modulo interior automorphisms associated to G is equal to:{

0 or 1 if G = N(O′)
1 +

(
B
π

)
if G = O′∗ .

This theorem shows that B is not embedded maximally in O′ if and only if B is maximal
and L/K is not ramified. The proof of this theorem will be given following ([H1],
Hijikata). We will study in general maximal embeddings of B in an Eichler order On.

Definition 3.4.4 . If B is an order in L, there exists s ∈ N such that B = R + Rbπs,
where R + Rb is a maximal order of L. The integer s characterizes B, and we will write
B = Bs. The ideal Rπs is called the conductor of B. If u≤ s, we have Bs ⊆ Bu. The
ideal Rπs−u is called the relative conductor of Bs in Bu.

Let f be an embedding of L in M2(K) and let g ∈ B, g /∈ R. We let p(X) = X2−tX+m
be minimal polynomial of g over K, Rπr the relative conductor of R[g] in B and set

f(g) =

(
a b
c d

)
.

Lemma 3.4.5 . Let On, n ≥ 0 be an Eichler order in M2(K). The following properties
are equivalent.
(1) f is maximal embedding of B in On.
(2) r is the greatest integer i such that (R + f(g)) ∩ πiOn is non empty.
(3) The elements π−rb, π−r(a− d), π−r−nc are relatively prime integers.
(4) The congruence p(x) ≡ 0 mod Rπn+2r admits a solution x in R satisfying: t ≡ 2x

mod Rπr, and there exists u ∈ N(On) such that uf(g)u−1 =

(
x πr

−p(x) t− x

)
.

Proof: We will denote by fx(g) the matrix uf(g)u−1 defined above. The equivalence
of properties (1), (2), (3) is easy and (4) ⇒ (3) is obvious. Now we will show that (3)

⇒ (4). If π−rb is a unit, put u =

(
1 0
0 π−rb

)
. Then uf(g)u−1 = fx(g), where x is a

solution in R of the congruence p(x) ≡ 0 mod Rπn+2r. It is thus a question of being
reduced to the case where π−rb is a unit. If π−r−nc is a unit, we conjugate f(g) by(

0 1
πn 0

)
. If not, we conjugate f(g) by

(
1 1
0 1

)
, which replaces b by −(a+ c)+ b+d

and this is the product of a unit by πr. �
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Now we have a criterion of existence of a maximal embedding of B in On. We will now
compute these embeddings. We write E = {x ∈ R, t ≡ 2x mod Rπr, p(x) ≡ 0 mod Rπn+2r}.
This is the set is introduced in (4) of the previous lemma.

Lemma 3.4.6 . Let f, f ′ be two maximal embeddings of B in On. Let nf = h̃nf,whence h̃n

is the interior automorphism induced by

(
0 1
πn 0

)
.

(1) f is equivalent to f ′ modulo N(On) if and only if f is equivalent either to f ′ or to
nf ′ modulo O∗

n. If n = 0, the equivalence modulo N(O0) coincides with the equivalence
modulo O∗

0.
(2) Let x, x′ ∈ E and fx, fx′ defined as in the previous lemma. Then fx is equivalent to
fx′ modulo O∗

n if and only if x ≡ x′ mod πr+n.
(3) If π−2r(t2−4n) is a unit in R (resp. it is not unit in R), then fx is equivalent to nfx′

if
and only if x ≡ t−x′ mod πr+n(resp. x ≡ t−x′ mod πr+n and p(x′) 6≡ 0 mod πn+2r+1).

Proof: (1) is obvious. (2): If x ≡ x′ mod πr+n, put a = π−r(x− x′) and u =

(
1 0
a 1

)
.

Then u ∈ O∗
n and ufx(g)u

−1 =

(
x′ πr

∗ ∗

)
= fx′(g). Conversely suppose that fx is

equivalent to fx′ modulo O∗
n. As all elements of O∗

n are upper triangular modulo πn,
if u ∈ O∗

n, π
−r(ufx(g)u

−1 − x) has the same diagonal modulo πn than π−r(fx(g) − x),
whence x ≡ x′ mod πr+n.
(3) If π−n−2rf(x′) is a unit, nfx′

(g) satisfies the condition (3) of the previous lemma.

Hence it is equivalent to

(
t− x′ πr

−π−rf(x′) x′

)
. Also, after (2), fx is equivalent to nfx′

modulo O∗
n if and only if x ≡ t−x′ mod πr+n. If π−n−2rf(x′) is not a unit , for b ∈ R, let

u =

(
1 b
0 1

)
and unfx(g)u

−1 = (xij). Modulo πr+n, x11 = t−x′ and x12 = b(2x′−t)−

π−n+rf(x′). Thus, if π−r(2x′−t) is a unit, or equivalently if π−2r(t2−4n) is a unit, we can

choose b so that π−rx12 is a unit and the new (xij) is equivalent to

(
t− x′ πr

−π−rf(x′) x′

)
modulo O∗

n. Finally suppose that π−n−2rf(x′) and π−2r(t2 − 4n) are not units, then if
we note that O∗

n is generated modulo πn by diagonal matrices and matrix of the form(
1 b
0 1

)
, we see that, for all u ∈ O∗

n, if unfx′
(g)u−1 = (xij), then π−rx12 is never a

unit. Hence nfx′
can not be equivalent to fx modulo O∗

n.

We deduce from the preceding two lemmas the following proposition which makes it
possible to count the number of maximal embeddings of Bs in On modulo the group
of interior automorphisms induced by G = N(On) or O∗

n. The theorem 3.4.3 is an
immediate corollary.

Proposition 3.4.7 (1) B is embedded maximally in On if and only if E is not empty.
(2) The number of maximal embedding of B in On modulo the interior automorphism
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induced by O∗
n is equal to the cardinal of the image of E in R/π2r+nR if On = O0 is

maximal, or if π−r(t2 − 4m) is unit. Otherwise, this number is the sum of the preced-
ing cardinal and the cardinal of the image of F = {x ∈ E, p(x) ≡ 0mod Rπn+2r+1} in
R/π2r+nR.

Proof of theorem 3.4.3. We suppose that O = O0 is a maximal order. As N(O) = K∗O∗

the number of maximal embedding modulo interior automorphism induced by a group
G, O∗ ⊂ G ⊂ N(O), does not depend on G. This number is not zero because E is not
empty. We deduce from (2) that this number is equal to 1. We suppsoe that O = O1.
We now recall that B = R + Rbπs, where R + Rb is a maximal order in L. If B is not
maximal, s ≥ 1, then x = 0 is solution of the congruence p(x) = x2− t(b)πsx+π2sn(b) =
0 mod Rπ2. As the discriminant of the polynomial is not a unit, an application of the
proposition (with r = 0) shows that there exist two maximal embeddings of B in O
modulo interior automorphisms induced by O∗. If B is a maximal order, and if L/K is
not ramified, then E = ∅ because the residue field of L and and that of K are distinct. If
L/K is ramified, then n(b) ∈ R∗π and the discriminant of p(x) belongs to Rπ. Modulo
πR, the set E is reduced to only one element {0} and F = ∅.
The theorem is proved if G = O∗. To obtain it when G = N(O), we use the fact

that N(O) is the group generated by O∗ and

(
0 1
π 0

)
. The matrices

(
0 1
−n t

)
and(

t −π−1n
π 0

)
are conjugates modulo N(O). This implies that the number of maximal

embeddings of B in O modulo interior automorphisms of N(O) is equal to 0 or 1.

3.5 Zeta Function

In this section we present some basic results which we use in chapter IV: it includs no
theorem but definitions and preparatory calculations which will facilitate proofs in the
next chapters, which use adelic techniques. We use the definition of local zeta function
as defined in ([W1], Weil), the normalisation of measures and certain calculations of
volume and integrals that we will need later.

Let X be a local field K or a quaternion algebra H/K which does not contain R. Let
B be an order in X which contains the valuation ring R of K. The norm of an integral
ideal I of B is equal to NX(I) = Card(B/I).
By multiplicativity, we extend the definition of norm to fractional ideals. With this
definition :

NK(Rπ) = Card(R/Rπ) = Card(k) = q

NH(P ) =

{
Card(O/Ou) = q2, if H is division algebra,
Card(O/Oπ) = q4, if H ∼= M2(K),

where P is a two-sided integral maximal ideal of a maximal order O of H. The norm of a
principal ideal Oh is natuarally equal to the norm of the ideal hO. After the Corollary
3.1.5 and Theorem 3.3.3, we have :
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Lemma 3.5.1 . The number of left (or right) integral ideals of a maximal order in H
of norm qn , n ≥ 0, is equal to{

1 if n is even
0 if n is odd

, if H is division algebra

1 + q + q2 + .......+ qn, if H ∼= M2(K).

Definition 3.5.2 The zeta function of X = H or K is the following function of the
complex variable

ζX(s) =
∑
I⊂B

N(I)−s

where the sum extends over the left (or right ) integral ideals I of maximal orders B of
X.

The previous lemma allows us to calculate explicitely ζH(s) in terms of ζK(s). We have

ζK(s) =
∑
n≥0

q−ns = (1− q−s)−1

ζH(s) =
∑
n≥0

q−2ns = ζK(2s), if H is a division algebra

ζH(2s) =
∑
n≥0

∑
0≤d≤n

qd−2ns =
∑
d≥0

∑
d′≥0

qd−2(d+d′)s = ζK(2s)ζK(2s− 1),

if H ∼= M2(K).

There exists a more general definition of the zeta function which is valid when X ⊃ R.
The idea for these zeta functions comes from Tate [1], in the case of local fields. Their
generalisation to simple central algebras is due to Godement [1] and Jacquet-Godement
[1]. The starting point is to notice that the classical zeta-function can also be defined
as integral on the locally compact group X∗ of the characteristic function of a maximal
order multiplied by χ(x) = N(x)−s, for a certain Haar measure. This definition then
generalises to define the zeta function of a Schwartz-Bruhat function, and a quasi -
character, and extends naturally to the archimedean case. This is what we will do. We
will follow the book of Weil[1].

Definition 3.5.3 . Let G be a locally compact group and let dg be a Haar measure on
G. For any isomorphism a of G let d(ag) the Haar measure on G defined by

∫
G
f(g)dg =∫

G
f(ag)d(ag), for all measurable functions on G. The ratio of these two measures, ‖a‖ =

d(ag)/dg, is called the modulus of the isomorphism a.

We check without difficulties that :
(1) vol(aZ) = ‖a‖vol(Z), for all measurable sets, Z ⊂ G,
(2)‖a‖ ‖b‖ = ‖ab‖, where a, b are two isomorphisms of G.
Note that (2) shows that the modulus does not depend on the measure used in its
definition.
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3.5 Zeta Function

Definition 3.5.4 The modulus of an element x ∈ X∗, denoted by ‖x‖X , is the modulus
in the above definition of the isomorphism induced by left(or right) multiplication by x
on X = H or X = K. The norm NX(x) of x is the inverse of the modulus of x.

In R or C we will denote by |x| the usual modulus of an element x. We check immediately
the following properties: if x ∈ X∗,
‖x‖R = |x|, ‖x‖C = |x|2, ‖x‖X = NX(x)−1 = NX(Bx)−1 if X 6⊃ R.
Now we will normalise the measure on X, X∗.

Definition 3.5.5 . If X 6⊃ R, we denote by dx or dxX the additive Haar measure such
that the volume of a maximal order B is equal to 1. We denote by dx∗ or dx∗X the
multiplicative Haar measure (1− q−1)−1 ‖x‖−1

X dxX .

Lemma 3.5.6 . For the multiplicative measure dx∗, the volume of the group of units
B∗ of a maximal order B of X is given by:
vol(R∗) = 1,
vol(O∗) = (1− q−1)−1(1− q−2), where O is the ring of integers of a division quaternion
algebra H/K,
vol(GL2(R)) = 1− q−2.

Proof: Suppose that X is a division algebra. Let m be a maximal ideal of B. For the
additive measure dx, we have the equality

vol(B∗) = vol(B)− vol(m) = 1− ‖x‖ = 1−N(x)−1 = 1− Card(B/m)

=

{
1− q−1 if X = K
1− q−2 if X = H.

The volume of B∗ for the multiplicative measure dx∗ is equal to volume of B∗ for the
additive measure (1−q−1)−1dx. We easily deduced the lemma, if X is a division algebra.
Now we assume that X = M2(K).
The canonical map :R → k induces a surjection from GL2(R) → GL2(k) whose kernel
Z is the of the group of matrices congruent to the identity modulo the ideal Rπ. The
number of elements of GL2(k) is equal to the cardinality of a basis of a k-vector space
of dimension 2, which is (q2 − 1)(q2 − q). The volume of Z for the measure dx is
vol(Rπ)4 = q−4. The volume of GL2(R) for dx∗ is then equal to the product
q−4(q2 − 1)(q2 − q)(1− q−1)−1 = 1− q−2. �

Lemma 3.5.7 . We have:

ZX(s) =

∫
B
N(x)−sdx∗ =


ζK(s) , if X = K,

ζH(s)
ζK(2)

·
{

(1− q−1)−1 , if X = H is a division algebra,
1 , if X = M2(K).

Proof: The number of elements of B modulo B∗, of norm qn (n ≥ 0) is the number of
integral ideal of B of norm qn. The integral is then equal to ζX(s)vol(B∗). �
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Definition 3.5.8 Let dx be the Lebesgue measure on R. Let X ⊃ R and (ei) be an
R-basis of X. For x =

∑
xiei ∈ X, we denote by TX(x) the usual trace of the R-

endomorphism of X given by left (or right) multiplication by x. We denote by dxX the
additive Haar measure on X such that

dxX = | det(TX(eiej))|1/2
∏

dxi.

We denote by dx∗X the multiplicative Haar measure ‖x‖−1
X dxX .

We check that the above definition is explicitely given by :
(1) dxC = 2dx1dx2 , if x = x1 + ix2 , xi ∈ R,
(2) dxH = 4dx1...dx4 , if x = x1 + ix2 + jx3 + ijx4 , xi ∈ R,

(3) dxM2(K) =
∏
dxi , if x =

(
x1 x2

x3 x4

)
∈M2(K), K = R or C.

We denote by xt the transpose of the matrix x. In an explicit way, the real number
TX(xtx̄) is equal to

x2 , if X = R,
2xx̄ , if X = C,
2n(x) , if X = H,∑

x2
i , if X = M2(R),

2
∑

xix̄i , if X = M2(C),

We put:

ZX(s) =

∫
X∗

exp(−πTX(xtx̄))N(x)−sdx

Lemma 3.5.9 . We have

ZR(s) = (∗)π−s/2Γ(s/2)

ZC(s) = (∗)(2π)−sΓ(s)

ZH(s/2) = (∗)ZK(s)ZK(s− 1) ·
{
s− 1 , if H is division algebra,

1 , if H = M2(K),

where “(*)” is a constant which is independent of s.

Proof: For X = R,

ZR(s) =

∫
R∗
e−πx

2 ‖x‖sR ‖x‖
−1
R dx

= 2

∫ ∞

0

e−πx
2

xs−1dx

= 2π−1/2−s/2
∫ ∞

0

e−tts/2−1dt (put t = −πx2)

= (∗)π−s/2Γ(s/2).

Similarly for X = C and X = H. �
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Definition 3.5.10 . The Schwartz- Bruhat space of X is

S =

{
The functions which are rapidly decreasing infinitely diffrentiable if X ⊃ R

The functions which have compact support and are locally constant if X 6⊃ R .

A quasi-character of a locally compact group G is a continuous homomorphism of G in
C. If it takes values of modulus 1, we call it a character.

For example, the quasi-charcters of a compact group are always characters.
An example of a quasi-character on X is x 7→ N(x)s. It is a character if and only if
s is a purely imaginary number. The quasi-characters of H∗ are trivial on groups of
commutators. As we know the commutator subgroup of H∗ is equal to the group H1 of
quaternions of reduced norm 1. All quasi-characters of H∗ are of the form

χH = χK ◦ n

where χK is a quasi-character of K.

Definition 3.5.11 : The zeta function associated to a function f in the Schwartz-Bruhat
space and a quasi-charcter χ is the integral :

ZX(f, χ) =

∫
X∗
f(x)χ(x)dx∗.

The canonical function Φ of X is :

Φ =

{
The characteristic function of a maximal order if X 6⊃ R

exp(−πTX(xtx̄)) if X ⊃ R .

Then the functions ZX(s) as defined earlier agree with ZX(Φ, N(x)−s).

We will end this section by defining Tamagawa measures, a concept which is more or
less equivalent to that of discriminant. We choose on X a quasi-character ψX , called a
canonical character, defined by the conditions :
- ψR(x) = exp(−2iπx)
- ψK′(x) is trivial on the ring of integers RK′ = R′ and RK′ is self dual with respect to
ψK′ if K ′ is a non archimedean prime subfield of K.
- ψK(x) = ψK′ ◦ TX(x) if K ′ is the prime subfield of K.

The topological isomorphism x 7→ (y 7→ ψX(xy)) between X and its dual allows us to
write the Fourier tranformation :

f ∗(x) =

∫
X

f(y)ψX(xy)dy

where dy = dXy is the additive measure on X normalized as above. The dual measure
is the measure d∗y such that the inversion formula holds

f(x) =

∫
X

f ∗(y)ψX(−yx)d∗y.
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Definition 3.5.12 . The Tamagawa measure on X is the Haar additive measure on X
which is self dual for the Fourier transformation associated to the canonical character
ψX .

Lemma 3.5.13 . The Tamagawa measure on X is the measure dx if K ′ = R. If K ′ 6= R,
the Tamagawa measure is the measure D

−1/2
X dx, where DX is the discriminant of X i.e.

DX = ‖det(TX(eiej))‖−1
K

where (ei) is an R′- basis of a maximal order in X.

Proof: If K ′ = R, the global definition of dx shows us that it is self dual(i.e. equal to its
dual measure) for ψX . Suppose then K ′ 6= R and let us choose a maximal R′-order which
we denote by B. We denote by Ψ its characteristic function. The Fourier transform of
Φ is the characteristic function of the dual B∗ of B with respect to the trace. In the
same way, we see that B∗∗ = vol(B∗)Φ (because B∗∗ = B). The self dual measure of X
is then vol(B∗)−1/2dx. If (ei) is an R′- basis of B, denote by (e∗i ) its dual basis so that
TX(eie

∗
j) = 0, if i 6= j and TX(eie

∗
j) = 1, if i = j. The dual basis is an R′-basis of B∗. If

e∗j =
∑

i ajiei, let A be the matrix (aij). We have vol(B∗) = ‖det(A)‖K′ vol(B) = det(A)

for the measure dx. In addition, it is clear that vol(B) = ‖detTX(eiej)‖−1
K′ . We have

consequently showed that the dual measure of dx is D
−1/2
X dx. �

Lemma 3.5.14 The discriminants of H and K are related by the relation

DH = D4
KNK(d(O))2

where d(O) is the reduced discriminant of maximal R′-order O in H.

Proof: With the notation of Chapter II, we have O = {h ∈ H, t(hO) ⊂ R∗}, from
which we easily deduce that

O∗ =

{
R∗ if H = M2(K)

R∗u−1 if H is a division algebra.

We have DH = vol(O∗) = NH(O∗−1) = NKn
2(R∗−1)NK(d(O))2 = D4

KNK(d(O))2. �

Remarks. If K ′ 6= R, the modulus group ‖X∗‖ is a discrete group. It provides a
measure which assigns to each element its own value (modulus).
In all other cases, the discrete groups which we will consider provide us with a discrete
measure which assigns to each element the value 1.

Compatible measures. Let Y, Z, T be topological groups provided with Haar mea-
sures dy, dz, dt and let the following be an exact sequence with continuous functions
:

1 //Y i //Z
j //T //1 .
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We say that the measures dy, dz, dt are compatibles with this sequence, or still that
dz = dydt, dy = dz/dt, or dt = dz/dy, if for all the functions f such that the integrals
below make sense, we have the equality :∫

Z

f(z)dz =

∫
T

dt

∫
Y

f(i(y)z)dy, with t = j(z).

This allows us to define, whenever we have two measures and an exact sequence, a
third measure by compatibility. Such a construction will be frequently used. But it is
necessaary to be careful : the third measure depends on the exact sequence. Let us
give an example. Let X1 be the kernel of the modulus and let X1 be the kernel of the
reduced norm. One naturally provides them with induced measures from the measures
normalized above, and the exact sequence that their definition suggests. We denote the
measures by dx1 or dx1. These measures are different, although the sets X1 and X1

can be equal. For an explicit example on the calculation of volumes, see the exercises
of chapterII of [Vi 80]. If K ′ 6= R, we remark that dx1 is the restriction to X1 of the
measure dx∗.
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4 Quaternion algebras over global
fields

In this chapter we will give the fundamental results of the theory of quaternion algebras
over global fields. In particular, we will state : the classification theorem, the strong
approximation theorem for the quaternions of reduced norm 1, calculations of Tamagawa
numbers, trace formulas. We will obtain them by analytical methods.
We will start with the basic concept of Adeles. We will follow the book ([W1], Weil)

4.1 Adeles

A global field K/K ′ is a finite extensions of a field K ′ called its ground field, which is
equal to

- Q the field of rational numbers ,
- Fq(T ) the field of rationals in one variable T with coefficients in finite fields Fq, where
q is a power of prime number. If Q ⊂ K, we say that K is number field. if Fp(T ) ⊂ K,
we say that K is function field.

Let us consider the set of embeddings i : K → L of the local field L such that the image
i(K) of K is dense in L. Two such embeddings i, i′ are said to be equivalent if there
exists an isomorphism f : L→ L′ of local fields such that i′ = f ◦ i. An equivalence class
is called a place of K. It is usually denoted by v, and we denote iv : K → Kv a dense
embedding of K in a local field Kv represented by a place v. We distinguish archimedean
places or infinite places as being those such that K contains a field isomorphic to R.
The other places are called finite places.
Notations. We fix the representatives iv : K → Kv of places v of K. Then we view
K as being contained in each Kv. We denote by V the set of all places, ∞ is the set of
infinite places, and P is a set of finite places. Kv is a local field as defined in chapter III
with an index v. If S is a finite set of places of K, such that ∞ ∈ S, we write

R(S) =
⋂
v/∈S

(Rv ∩K)

the ring of elements of K which are integral at the places not belonging to S. It is a
Dedekind ring. We write, if K is number field, R∞ = R. It is the ring of integers of K.
If v ∈ P , the number of elements of in the residue field kv is denoted by Nv. We call it
the norm of v.

73



4 Quaternion algebras over global fields

Examples: Places of Q: Infinite places, represented by natural embeddings of Q in
the field of real numbers; the finite places represented by the natural embeddings of Q
in the p-adic fields Qp for all prime numbers p.

Places of Fp(T ): They are all finite places, associated to irreducible polynomials and
to T−1. The set of elements of K whose image belongs to Rv, for all v ∈ V , is Fp, non
associated to T−1 is equal to Fp[T ]. The irreducible polynomials are bijection with the
prime ideals of Fp[T ]

Definition 4.1.1 Let H/K be a quaternion algebra. A place v of K ramifies in H if the
tensor product Hv = H ⊗Kv is a division algebra.

For example if the characterstic of K is other than 2, and if H = {a, b}( as defined in
Chapter II), a place v of K is ramified in H = {a, b} if and only if the Hilbert symbol
(a, b)v of a, b in Kv is equal to -1. This allows us to obtain the places that ramify in
H = {a, b}.
It will be pointed out that the definition of ramification is quite natural. The ramified
places of K in H are places v of K such that Hv/Kv is ramified.

Lemma 4.1.2 . The number of places of K that ramify in H is finite.

Proof: Let (ei), 1 ≤ i ≤ 4 be a basis of H/K. For almost all finite places v, the lattice
generated by (ei) over Rv is an order of reduced discriminant dv = Rv (From lemma
2.2.13). From the discussion in Chapter 3, section 1, we get that Hv = M2(Kv). Hence
the lemma is proved.
Also we can prove this lemma using the well known fact that there does not exist a
quaternion division algebra over finite field.

Definition 4.1.3 The product of the finite places of K which ramify in H is called the
reduced discriminant of H/K. If K is a number field, it is identified with an integral ideal
of the ring of integers of K. We denote it by d or by dH . It is an element of the free
group generated by p.

The set of places of K which ramify in H plays a fundamental role in the classification
problem. It is denoted by Ram(H). We will denote sometimes Ram∞H, (RamfH) the
set of infinite places (finite places) which ramify in H.

Let us consider the situation where for every place v ∈ V we are given a locally
compact group Gv, and for every place v not belonging to a finite set S ⊂ V , an open
compact sub-group Cv of Gv.

Definition 4.1.4 . The restricted product GA of the the locally compact groups Gv with
respect to the compact subgroups Cv is defined by

GA =

{
x = (xv) ∈

∏
v∈V

Gv, xv ∈ Cv for almost all places v /∈ S

}
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4.1 Adeles

To define a topology on G it is enough to give fundamental neighbourhoods of unity given
by the sets

∏
v∈V Uv, Uv = Cv, for almost all v /∈ S, and Uv is an open neighbourhood

of unity in Gv. For more details to these these groups see Bourbaki[3]. There it is shown
that GA is a locally compact topological group which does not depend on S.

The above situation arises if G is an algebraic group over K. Then Gv is the set of
points of G taking values in Kv, Cv is the set of points of G taking values in Rv for v
not belonging to a finite set S 3 ∞. The group GA is called the group of adeles of G.

We now give some examples.
(1) The ring of adeles of K,
we choose Gv = Kv, S = ∞, Cv = Rv

The corresponding adelic group is called the ring of adeles of K. It is also the group of
adeles of the algebraic group induced by the additive group structure on K. We denote
it by AK . More precisely, the adele ring of K is

AK =
∏′

v∈V
Kv =

{
(xv) ∈

∏
v∈V

Kv, xv ∈ Cv for all but finitely many v

}
This product is given a topology as follows : U ⊂ AK is open if and only if for all
a ∈ AK , the set

(a+ U) ∩

∏
v|∞

Kv ×
∏
v<∞

Rv


is open in the product topology.

For a specific example take K = Q. The adele ring of Q is

AQ =
∏′

p
Qp =

{
(xp) ∈

∏
p

Qp, xp ∈ Zp for almost but finitely many p

}
· R.

Here p is prime number.

(2) The group of ideles of K. We choose
Gv = K∗

v , S = ∞, Cv = R∗
v

The corresponding adelic group is called the group of ideles of K. It is the group of
units of AK . We denote by A∗K . Observe that the idele group of K is

A∗K =

{
(xv) ∈

∏
v∈V

K∗
v , xv ∈ C∗

v for all but finitely many v

}

Since inversion is not a continuous operation in the relative topology (the topology
induced on A∗K from AK), we have to endow A∗K with a new topology such that inversion
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4 Quaternion algebras over global fields

becomes a continuous operation. The new topology on A∗K is given as follows: U ⊂ A∗K
is open if and only, if for all a ∈ A∗K , the set

aU ∩

∏
v|∞

K∗
v ×

∏
v<∞

R∗
v


is open in the product topology. In general, if R is a topological ring, R∗ becomes a
topological group when we give R∗ the relative topology induced by

R∗ ⊂ (R×R)

x 7→
(
x, x−1

)
.

(3) Adelic group defined by H
(a) Gv = Hv, S ⊃ ∞, S 6= ∅, Cv = Ov

where O is an order in H over the ring R(S), and Ov = O⊗Rv, the tensor product being
taken over R(S). Then we define the ring of adeles of H , which we denote by AH . It is
equal to A⊗H , where the tensor product is taken over K.
(b) Gv = H∗

v , S 3 ∞, S 6= ∅, Cv = O∗
v

We define the group of units of AH , denoted by A∗H .
(2) Gv = Hv

1, S 3 ∞, S 6= ∅, Cv = O1
v

Where X1 denotes the set of elements in X of reduced norm 1. We define the adelic
group and denoted it by A1

H .
All these adelic groups are also examples of groups of adeles of algebraic groups.

Morphisms. Let us suppose that there is another restricted product G′
A of locally

compact groups G′
v with respect to locally compact subgroups C ′

v. We can suppose that
the set S ′ ⊂ V is such that, for v /∈ S ′, C ′

v is defined, is equal to S ( Mainly we can
assume that S′ = S). Now assume that for every place v ∈ V , we have a homomorphism
fv : Gv → G′

v such that if v /∈ S, fv(Cv) ⊂ C ′
v. Then the restriction of

∏
fv to GA

defines a morphism of GA to G′
A which is denoted by fA. If the function fv is continuous,

then fA is continuous as well.
For example we define the reduced trace map is tA : AH → AK and the reduced norm
map is nA : A∗H → A∗K which are induced from the maps tr : Hv → Kv and n : H∗

v → K∗
v .

We now suppose that G′ is a group whose unit element is 1, and that for every place
v ∈ V we have a homomorphism fv : Gv → G′ such that fv(Cv) = 1 for almost all v /∈ S.
Then we can define in G′ the product

fA(x) =
∏
v∈V

fv(xv), if x = (xv) ∈ GA

For example we may define the norm NA and the modulus ‖.‖A on A∗H and A∗K in this
way.
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4.1 Adeles

NOTATIONS. For the sake of convenience we consider Gv as embedded in GA by
identifying canonically with

∏
w 6=v 1w ×Gv, where 1w is the unit of Gw, w ∈ V . When

GA is a group of adeles of an algebraic group defined over K, then the group GK will
be the group of K-rational points of G taking values in K. For every place v ∈ V , we
choose an embedding of GK in Gv, denoted iv. For almost every place v, iv(GK) ⊂ Cv,
whence the function

∏
v∈V iv defines an embedding of GK into GA.

We put X = XK = H or K, and Yv = Ov or Rv, for almost all places v ∈ S.

Quasi-characters. Recall the definition of a quasi-character from the previous chap-
ter. It is a continuous homomorphism from a locally compact group to C∗. Let ΨA be
a quasi-character of GA. By restriction to Gv, it defines a quasi-character Ψv of Gv.
Naturally we have the relation

ΨA(x) =
∏
v∈V

Ψv(xv) if x = (xv) ∈ GA

For the product to converge in C∗, it is necessary and sufficient that Ψv(Cv) = 1 for
almost all v ∈ S. In effect, if this property were not satisfied, we could find cv ∈ Cv such
that |Ψv(cv)− 1| > 1

2
for almost all v /∈ S and the product would not converge on the

elements x such that xv = cv for almost all v /∈ S. We have showed :

Lemma 4.1.5 The application ΨA → (Ψv) is a group isomorphism of quasi-characters
of GA onto the group { (Ψv), Ψv a quasi-character of Gv, Ψv(Cv) = 1, for almost all v /∈ V }.

We can apply the local results of the previous chapter to the quasi-characters of AX .
Let ΨA =

∏
v∈V Ψv (the product of characters).

Local canonical characters(taken from exercise 4.1 of [Vi 80]): The product is
well-defined because Ψv(Yv) = 1 for almost all v /∈ S. The previous lemma shows that
all characters of AX are of the form x → ΨA(ax), a = (av) ∈ Xv, and av ∈ ker(Ψv) for
almost all v /∈ S. As ker(Ψv) = Yv for almost all v /∈ S, we deduce that a ∈ AK . Then
AX is self-dual. By reducing to the case X = Q or Fp(T ) is a prime field, we check that
ΨA is trivial on XK and that the dual of AX/XK is XK (cf. Weil [1]). Hence we get the
following proposition :

Proposition 4.1.6 . AX is self-dual and XK is dual of AX/XK.

Now we will give main theorem on the adeles AX and A∗X . These theorems are still true
if X is a simple central algebra over K. The proof in our case will give a good idea of
the proof in general.

Theorem 4.1.7 Adeles.
(1) XK is discrete in AX and AX/XK is compact.
(2)(Approximation theorem). For every place v, XK +Xv is dense in AX .
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4 Quaternion algebras over global fields

Ideles.
(1) X∗

K is discrete in A∗X .
(2)(Product formula) For all x ∈ X∗

K, the modulus of x is 1.
(3)(Fujisaki theorem). If X is a division algebra, the image in A∗X/X

∗
K of the set

Y = {x ∈ A∗X 0 < m ≤ ||x|| ≤M} ; m,M ∈ R

is compact.
(4) For every place v, infinite if XK is not division algebra, there exists a compact set C
of A∗X such that A∗X = X∗

KX
∗
vC.

Proof: Adeles.
(1) To show that XK is discrete in AX , it is sufficient to check that 0 is not a limit point
of XK . In a sufficiently small neighbourhood of 0 in AX , the only possible elements of
XK are integers at all the finite places: then they are finite in number if K is a function
field and belong to Z if X = Q. In these two cases, it is clear that 0 can not be a limit
point. The same holds for all X, because X is a finite dimensional vector space over
Q or a function field. The dual group of a discrete group is compact: thus AX/XK is
compact.
(2)Approximation theorem. We will show that the characters on AX which are trivial
on XK are determined by their restrictions to Xv. In effect, a trivial character on XK

and on Xv is of the form x→ ΨA(ax), where ΨA is a canonical character with a in XK

and Ψv(axv) = 1 for all xv ∈ XV . This implies that a = 0 and that the character ΨA(ax)
is trivial. If XK + Xv were not dense in AX , there would be a non-trivial character of
AX which would be trivial both on XK and on Xv; this is a contradiction.
Ideles.
(1) To show that tX∗

K is discrete in A∗X , it is sufficient to check that 1 is not a limit
point of X∗

K . A sequence of elements (xn) of X∗
K converges towards 1 if and only if (xn)

and (x−1
n ) converge towards 1. Then 1 is limit point of a XK in AX . This is not possible

after the first part of the proof.
Product formula. Let x be an element of XK ; In order to show that the modulus of
x is equal to 1, is necessary and sufficient to check that the volume of a measurable set
Y ⊂ AX is equal to the volume of xY for some Haar measure. We have :

vol(xY ) =

∫
AX

ϕ(x−1y)dy =

∫
XK\AX

(∑
z∈XK

ϕ(zx−1y)

)
dẏ∫

XK\AX

∑
z∈XK

ϕ(zy)dẏ = vol(Y )

where ϕ is the characteristic function of Y , and dẏ is a measure on XK\AX obtained by
compatibility with dy and the discrete measure on XK , takes value 1 on each element
of XK .
Fujisaki theorem. A compact set of A∗X is of the form{

x ∈ A∗X , (x, x−1) ∈ C × C ′}
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4.1 Adeles

for two compact subsets C and C ′ of AX . For x an element of Y , that is

0 < m ≤ ||x|| ≤M

we find an element of X∗
K such that xa ∈ C and a−1x−1 ∈ C ′. We choose in AX a

compact set of sufficiently large volume greater than (vol(AX/XK) Sup(m−1,M)) then
the volume of x−1C ′′ and C ′′x are strictly greater than the volume of AX/XK . We put
then C = C ′′ − C ′′ = {x− y : x, y ∈ C ′′}. It is a compact subset of AX since the map
(x, y) → x − y is continuous. There exist a, b ∈ XK such that xa ∈ C, bx−1 ∈ C. At
this point we suppose that X is a division algebra: then we can choose a, b in X∗

K . We
have ba ∈ C2, which is compact in AX . Then the number of possible values for ba = c
is finite, and we choose C ′ = ∪c−1C.
(4) By Fujisaki’ theorem, this is obvious for a division algebra X. In effect, with the
choice made for v, the group of modulus of Xv is let finite index in the corresponding
group for A∗X , and if we denote by A∗X,1, the elements of AX of modulus 1, we have just
shown that A∗X,1/X

∗
K is compact. There remains the case of M2(K). We will use the well

known existence of the “ Siegel Set ” . But in the very simple case which interests us
the proof is simple. Let P be the group of the upper triangular matrices, let D be that
of diogonal matrices, and N be the group of unipotent matrices of P . By triangulation,
we have

GL2(AX) = AP .C = ADANC,

where C is a maximal compact subgroup of GL2(AX). After the approximation theorem
in the adeles AX = AN and the property (4), being show for K, we have:

AP = DKDvC
′.NKNvC

′′.

The elementary permutation relation(
a 0
0 b

)(
1 x
0 1

)
=

(
1 ax/b
0 1

)(
a 0
0 b

)
implies that AP = PKPvC

′′ where C ′′ ⊂ AP is compact, which implies (4).
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5 Anticyclotomic p-adic L-functions
attached to (E,K)

Let E be an elliptic curve over Q of conductor N , let E have good ordinary reduction
at a prime p, p 6= 2 and let K be an imaginary quadratic field of dicriminant DK . Write
K∞/K for the anticyclotomic Zp-extension of K and set G∞ = Gal(K∞/K). It will be
assumed throughout that the discriminant of K is prime to N , so that K determines a
factorisation

N = N+N−,

where N+ (resp.N−) is divisible only by primes different from p which are split (resp.
inert) in K. Also we will assume that N− is the square-free product of an odd number
of primes.

The following statement plays a vital role in our scheme of things.
Let B be a quaternion division algebra over some global field. From the classification
of quaternion algebras over global fields, we know that the number |Ram(B)| of places
where B ramifies is even. For all finite sets S of places of that global field of order |S|,
assumed to be even there exists a unique quaternion algebra B over that global field,
upto isomorphism, such that S = Ram(H).

Let B be a definite quaternion division algebra over Q of discriminant N−∞, that is
ramified at all primes dividing N−. The algebra B is unique up to isomorphism from
the above statement. For a prime l, we fix an isomorphism (as Ql-algebra) such that

if l 6 | N−∞ B ⊗Ql
∼= M2(Ql)

if l | N−∞ B ⊗Ql is a division algebras over Ql

if l = ∞ B ⊗ R = H, the Hamiltonian algebra.

Now let R be an Eichler Z[1
p
]-order of level N+ in B. The Eichler order R is unique up

to conjugation by B∗. For more details see (cf. [Vi , chap3 , section 4 and section 5]).
For a prime l we fix an isomorphism (as Zl) algebra such that

if l 6 | N∞ R⊗ Zl
∼= M2(Zl)

if l | N− R⊗ Zl is the maximal order in B ⊗ Zl,

if l | N+ R⊗ Zl
∼=
{(

a b
c d

)
∈M2(Zl) : N+ | c

}

81



5 Anticyclotomic p-adic L-functions attached to (E,K)

Denote by T the Bruhat-Tits tree of Bp
∗/Qp

∗, where

Bp := B ⊗Qp
∼= M2(Qp)

The set V(T ) of vertices of T is indexed by the maximal Zp-orders in Bp, two vertices

being adjacent if their intersection is an Eichler order of level p. Let
−→
E (T ) denote the

set of ordered edges of T , that is, the set of ordered pairs (s,t) of adjacent vertices of T .
If e = (s,t), the vertex s called source or origin of e and the vertex t is called the target
or terminal of e. They are denoted by s(e) and t(e) respectively.

The tree T is endowed with a natural left action of Bp
∗/Qp

∗ by isometries correspond-
ing to conjugation of maximal orders by element of Bp

∗. This action is transitive on

both V(T ) and
−→
E (T ). Let R∗ denote the group of invertible elements of R. The group

Γ := R∗/Z[1
p
]∗ - a discrete subgroup of Bp

∗/Qp
∗ in the p-adic topology-acts naturally on

T , and the quotient T /Γ is a finite graph.

Notations. Let Ẑ =
∏

l Zl denote the usual profinite completion of Z, and write

Q̂ := Ẑ⊗Q for the ring of finite rational adeles. Let

R̂ := R⊗ Ẑ, B̂ := B ⊗ Q̂ = R̂⊗Q.

Definition 5.0.8 . A modular form on the quaternion algebras B of weight 2 and level
R̂∗ is a Zp-valued function f on V(T ) satisfying such that

f(γv) = f(v) for all γ ∈ Γ

Denote by M2(B) the space of all such modular forms. It is a free Zp-module of finite
rank.

Action of Hecke-operators: The Hecke operators Tp act on f ∈M2(B) by(
f|Tp

)
(v) =

∑
v′→v

f(v′)

where v′ are the vertices adjacent to v.
For all prime l 6 |pN , there is a Hecke operator Tl onM2(B) given by elements γ1, γ2, γ3....γl+1

of R, such that

ΓMlΓ = γ1Γ ∪ γ2Γ ∪ γ3Γ........ ∪ γl+1Γ

with Ml ∈ R of reduced norm l. See [BD01] for the precise definition.
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The Jacquet-Langlands correspondence. Let E/Q be an elliptic curve of con-
ductor N . The complex vector space M2(H/Γ0(N)) of classical modular forms of weight
2 on H/Γ0(N) is similarly endowed with an action of Hecke operators which will also
denoted by the symbols Tp. Let fE ∈M2(Γ0(N)) be an eigenform for the “good ” Hecke
operators. That is fE |Tp

= ap.fE for all p 6 |N , where ap = p + 1 − #E(Fp). We have
the following theorem due to Jacquet-Langlands :

Theorem 5.0.9 . Let fE be as above. Then there exists an eigenform f ∈ M2(B) for
all Tl, l 6 |N such that f|Tl

= al.f (al are the ones for fE ).

We will not give the prove of this theorem. For the proof see ([BD01] , page no 8).

Assumption on K: Let O = OK [1
p
] ⊂ K, where OK is the ring of integers of K.

For simplicity, we assume that the class number of O is 1.

We can embed K in B because B is definite of discriminant N− and the algebra
K is an imaginary quadratic field in which all prime divisors of N− are inert. Fix an
embedding

Ψ : K ↪→ B satisfying Ψ(K) ∩R = Ψ(O). (5.1)

Such a Ψ exists if and only if all the primes dividing N+ are split in K. So from our
initial assumption it does exist, and it is unique up to conjugation by elements in B∗.
Now

Ψp : Kp = K ⊗Qp ↪→ Bp = B ⊗Qp
∼= M2(Qp)

This induces a map

Ψp : Kp
∗ ↪→ GL2(Qp).

Now, since Qp
∗ ⊂ Kp

∗ and Qp
∗ is embedded in GL2(Qp) by

a 7→
(

a 0
0 a

)
.,

the embedding Ψ induces an embedding of K∗
p into B∗

p and hence yields an action of
Kp

∗/Qp
∗ on T .

Since p 6 |DK , we have that either p is inert in K or p splits in K. Now we will study
the structure of Kp

∗/Qp
∗ in these two cases.

Case1. Suppose p is inert in K. This implies that Kp is an unramified extension of
residue degree 2. In this case

Qp
∗ = pZ × µp−1 × (1 + pZp),

and Kp
∗ = pZ × µp2−1 × (1 + pOKp)
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5 Anticyclotomic p-adic L-functions attached to (E,K)

which implies that Kp
∗/Qp

∗ ∼=
µp2−1×(1+pOKp )

µp−1×(1+pZp)
∼=

µp2−1

µp−1
× 1+pOKp

1+pZp
.

Also we see in this case that

K∗
p = Q∗

p · O∗
Kp
. (5.2)

Let γ ∈ Kp be such that γ2 = DK . Then an embedding (local) of

Ψp : Kp ↪→M2(Qp)

is determined by

(1) Ψp(a) =

(
a 0
0 a

)
if a ∈ Qp

and

(2) Ψp(γ) = A such that A2 =

(
DK 0
0 DK

)
, i.e. trace(A) = 0 and det(A) = −DK .

We can change the isomorphism defined previously (page. 81), so that A has the form(
0 1

−Dk 0

)
. Note that the choice of the matrix of the isomorphism does not affect the

further calculations we do. Now Ψp(a+ bγ) = a · Id+ b · A, a, b ∈ Qp.

Kp as a Qp-vector-space is equal to Qp ⊕Qpγ ∼= Qp ⊕Qp (17→ (1, 0), γ 7→ (0, 1)).

Consider the lattice L0 = (Zp · Id)⊕ (Zp · A) in (Qp · Id)⊕ (Qp · A) ⊂M2(Qp).
At first we will show that Ψp(K

∗
p/Q∗

p) fixes the vertex of the tree v0 = [L0] i.e. Ψp(K
∗
p/Q∗

p)
stabilizes the class [L0].

Since Ψp(Q∗
p) acts trivially on the class of lattices, from equation 5.2 just we have to

see how Ψp(O∗
Kp

) acts on [Zp · Id⊕ Zp · A], which is equivalent to seeing how O∗
Kp

acts
on [Zp⊕Zpγ]. It is easy to see the action of O∗

Kp
by left multiplication takes this lattice

to itself and hence stabilizes its class.

We know that the vertices at distance n from v0 corresponds to one dimensional factors
of L0/p

nL0 (as a Zp/p
nZp)-module). Let vn = [(Zp · Id) ⊕ pn(Zp · A)]. Clearly vn is at

distance n from v0. Now our aim is to find the stabilizer of the class [(Zp ·Id)⊕pn(Zp ·A)]
under the action of Ψp(K

∗
p/Q∗

p). We have the surjection map O∗
Kp

−→ OKp/p
nOKp

∼=
L0/p

nL0 (as a Zp/p
nZp)-module) and so O∗

Kp
acts on L0/p

nL0 by left multiplication.
This action is the same as the action of Ψp(O∗

Kp
) on the vertices which are at distance

n from v0. vn corresponds to the one dimensional factor in L0/p
nL0 generated by (1,0)

i.e. identity in OKp/p
nOKp . i.e. a ∈ O∗

Kp
fixes this if and only if ā = 1 in OKp/p

nOKp

i.e. a ∈ 1 + pnOKp . So in K∗
p/Q∗

p,

1 + pnOKp

Q∗
p ∩ (1 + pnOKp)

=
1 + pnOKp

1 + pnZp

fixes the vertex vn.

84



Put Un =
1+pnOKp

1+pnZp
. After taking p-adic logarithms we can prove that Un =

1+pnOKp

1+pnZp

∼=
pnOKp

pnZp
. As U1 ⊆ Kp

∗/Qp
∗ with index p + 1, (because

µp2−1

µp−1
is cyclic group of order

p + 1) and Un ⊆ Un−1 with index p because as additive groups, if OKp
∼= Zp ⊕ Zp then

pnOKp
∼= pnZp ⊕ pnZp, which implies that Un

∼= pnZp and therefore [Un : Un−1] = p and
[Un : Kp

∗/Qp
∗] = pn−1(p+ 1). So we have:

......Un ⊆ Un−1........ ⊆ U2 ⊆ U1 ⊆ Kp
∗/Qp

∗.

From global class field theory we have G∞ = Gal(K∞/K) = (K∗
p/Qp

∗)/(µp2−1/µp−1).

Let G̃∞ denote the group

K∗ \ K̂∗/ (Q̂∗.
∏
l 6=p

(OK ⊗ Zl)
∗),

which is the union of the ring class fields of K of conductor pn for every n. By passing
to the adelisation in equation (5.1) the embedding Ψ induces a map

Ψ̂ : G̃∞ −→ B∗ \ B̂∗/Q̂∗.
∏
l 6=p

(OK ⊗ Zl)
∗ = B∗ \ B̂∗/Q̂∗.

∏
l 6=p

Rl
∗ (5.3)

By strong approximation ([Vi, chapter 3 , section 4]), the double coset space appearing on
the right has a fundamental region containing Bp

∗ ⊂ B∗. In fact, strong approximation
yields a canonial identification

η : B∗ \ B̂∗/Q̂∗.
∏
l 6=p

Rl
∗ −→ Γ \Bp

∗/Qp
∗

For more details see ([N], chapter IV).

Now our aim is to define a Zp valued measure on K∗
p/Qp

∗. For that we choose a
sequence of vertices v0, v1, .....vn.... of consecutive edges on T satisfying

StabK∗p/Qp
∗(vj) = Uj, j = 1, 2, 3.....n, ..

and (Kp
∗/Qp

∗) /Un acts transitively on the vertices at distance n from v0.

Let f ∈ M2(B) with eigenvalue ap. Let α be the unit root of X2 − apX + p = 0 in
Zp

∗. For a ∈ G∞, n ≥ 1 , we define:

µ(aUn) = α−nf(avn)− α−n−1f(avn−1),

We would like to show that µ is a measure on G∞. Let b1, b2, ....bp be representatives of
Un/Un+1, for a ∈ G∞, we need to show

µ(aUn) =

p∑
i=1

µ(a.biUn+1)
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Now,

p∑
i=1

µ(a.biUn+1) =

p∑
i=1

(
α−n−1f(abivn+1)− α−n−2f(abivn)

)
= α−n−1

p∑
i=1

f(abivn+1)− pα−n−2f(avn)

Since (f|Tp)(avn) =
∑p

i=1 f(abivn+1) + f(abivn−1) and f|Tp = apf , we get

p∑
i=1

µ(a.biUn+1) = α−n−1 (apf(avn)− f(abivn−1))− pα−n−2f(avn)

= α−n−1 (αf(avn)− f(avn−1))

= α−nf(avn)− α−n−1f(avn−1)

= µ(aUn).

Now Gal(Kp/Qp) = 〈x 7→ x̄〉, where x 7→ x̄ is the non-trivial automorphism of Kp/Qp.
We define a function

Kp
∗ −→ OKp

∗, x −→ x

x̄
,

whose kernel is Qp
∗. Then Kp

∗/Qp
∗ ↪→ OKp

∗,
and the image is

{
x ∈ OKp

∗ | NKp/Qp(x) = 1
}
.

If χ : K∗
p/Qp

∗ → Cp
∗ is a finite order character of conductor pn, define:

Lp(E/K,χ, s) =

∫
K∗p/Qp

∗

(x
x̄

)s−1

χ(x)µ(x).

Case 2. p splits K.
Say pOk = PP̄, where P is a prime ideal in K, P 6= P̄, and OK/P ∼= OK/P̄ ∼= Fp.
In this case,

Kp = K ⊗Q Qp
∼= KP ×KP̄

∼= Qp ×Qp

and Qp is embedded in Kp by x→ (x, x).

We can change the isomorphism defined previously (page. 81) such that in this case
we have an embedding

Ψp : Kp ↪→M2(Qp)

determined by

(1) Ψp(a, b) =

(
a 0
0 b

)
, a, b ∈ Qp.
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Now Kp
∗/Qp

∗ = Qp
∗×Qp

∗

Qp
∗ . We define a map

V :
Qp

∗ ×Qp
∗

Qp
∗ −→ Z, (a, b) 7→ V

(a
b

)
.

where V is the valuation on Qp. This map is well defined, surjective and Ker(V) = Zp
∗.

Since the given map is surjective, Kp
∗/Qp

∗ is not compact, but the kernel of this map
is compact. Since Ker(V) = Zp

∗ = µp−1 × (1 + pZp). Put V0 = Ker(V), and let Vi be
the subgroup of V0 corresponsing to the subgroup (1 + piZp), i = 1, 2, ... of Zp. So we
have

...Vn ⊂ .....V2 ⊂ V1 ⊂ V0,

with [V0 : Vn] = (p− 1)pn−1 and [V0 : V1] = p− 1

We had an embedding

Ψ : K ↪→ B

Ψp : Kp
∗ ↪→ GL2(Qp)

As we proved earlier, that (Kp
∗/Qp

∗) /V0
∼= Z. In this case we will first prove that the

action of Kp
∗/Qp

∗ does not fix any vertex.

Consider the lattice L0 = Zpe1 ⊕ Zpe2, where {e1, e2} is a basis for Q2
p over Qp as

a vector space. Let v0 = [L0], where L0 = Zpe1 ⊕ Zpe2 be a vertex of the tree. Let
δ = (a, b) ∈ (Q∗

p × Qp
∗), then Ψp(δ) · [L0] = [Zpae1 ⊕ Zpbe2], so [L0] = [Zpae1 ⊕ Zpbe2]

if and only if V(a
b
) = 0. We can choose (a, b) ∈ (Q∗

p × Qp
∗) such that V(a

b
) 6= 0, which

implies that the action of Kp
∗/Qp

∗ does not fix a vertex.

Consider the line ........[Zpe1 ⊕ p−1Zpe2], [Zpe1 ⊕ Zpe2], [Zpe1 ⊕ Zppe2], ........[Zpe1 ⊕
Zpp

ne2]........ denoted by g in the tree T . V0 fixes this line g in T i.e. it fixes a line of
edges, i.e. for all σ ∈ V0, v ∈ g, σv = v and (Kp

∗/Qp
∗) /V0 acts by translation on g.

Now we define for some v ∈ V(T ), dist(v, g) = min {dist(v, v′), v′ ∈ g}.

Let vn = [Zpe1 ⊕ p−nZp(e1 + e2)]. Clearly it is at distance n from the line g, mainly
it is at distance n from [Zpe1 ⊕ Zpe2]. We can easily calculate the stabilizer of vn inside
V0 which is equal to Vn and (Kp

∗/Qp
∗)/Vn acts transitively on the set of vertices at

distances n from g.

The group S = the group of p-units of OK

[
1
p

]
of norm 1 is generated by up.

As we defined earlier, Ψ
(
OK

[
1
p

])
= K ∩R⇒ Ψ

(
OK

[
1
p

]∗)
⊆ R∗ = Γ.
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By complex multiplication and global class field theory, we have:

(Kp
∗/µp−1Qp

∗) /up
Z ∼= G∞ = Gal(K∞/K).

So we have :

(Kp
∗/Qp

∗) /up
Z ∼= Zp × (Z/MZ)

with M = p− 1. Define:

Kp
∗/Qp

∗ −→ Zp × (Z/MZ), Vi −→ [Vi]

Write for a ∈ Kp
∗/Qp

∗, [a] ∈ G∞. For v ∈ T and f ∈M2(B), we have :
Claim. f ([a].v) := f(a.v) is well defined.
Proof. Let a′ = a.up

n for some n ∈ N. Then f(a′v) = f(Ψ(up
n).a.v) = f(a.v) because

Ψ(up) ∈ Γ.

To define a Zp-valued measure on (Kp
∗/Qp

∗)/uZ
p , choose a connected sequence of

vertices v0, v1, v2, ...... such that vn is at distance n from g. For f ∈ M2(B) with
eigenvalue ap, let α be the unit root of X2 − apX + p = 0 in Zp

∗. For a ∈ G∞, n ≥ 0
define:

µ(aVn) = α−nf(avn+1)− α−n−1f(avn), a ∈ G∞.

Similar to last time we can show that µ satisfies the distribution property. For χ :
(Kp

∗/Qp
∗)/uZ

p → Cp
∗ a finite order character define

Lp(E/K, χ, s) =

∫
(Kp

∗/Qp
∗)/uZ

p

xs−1χ(x)µ(x).
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Conclusion

In this concluding section we briefly give an overview what we studied in this thesis and
the consequences of the main results.

As we mentioned in the introduction, this thesis is an attempt to give a glance at
what happens when analysis meet arithmetic. The romance of analysis and arithmetic
is among the deepest and most enticing themes in all of mathematics. In recent decades
p-adic analysis, a hybrid of arithmetic and analysis has emerged as a fascinating offspring
of this union. We know that analytically defined quantities like the order of vanishing
(or pole) and the leading coefficient of the Taylor series of L-functions attached to an
arithmetic object X sometimes encode global arithmetic invariants of X. For X an
elliptic curve over Q the conjecture of Birch and Swinnerton-Dyer predicts that the
order of vanishing of L(X, s) at s = 1 is equal to the rank of the group of rational
points on X and that the leading coefficient of the Taylor series encodes the order of the
Tate-Shafarevich group as well as the height regulator.

The structure of such special values is usually expressed through their arithmetic
properties. We sometimes find that the special values of a given L-function (and its
twists) satisfy enough congruences to guarantee the existence of an array of p-adic L-
functions that interpolate essentially the same values at special points as the complex
L-function. Even more remarkable is the apparent fact that the p-adic analytic properties
of these L-functions mirror those of the complex L-function.

In this thesis we have studied how to attach certain p-adic L-functions to to the
data consisting of an elliptic curve E over Q and a quadratic imaginary field K with
some conditions on the elliptic curve and the field. We then expect following the general
philosophy outlied in the previous paragraphs, that the values at integers (special points)
of these L-functions are related to the corresponding values taken by the classical L-
function. In a paper by M.Bertolini and H.Darmon they formulate and prove a more
precise statement involving this relation.
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