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Abstract

In this essay, we study, describe and implement in Sage 8.1 algorithms to compute short vectors,
automorphisms and isometries of lattices. Concerning the short vectors of lattices, we present a
method of computation and we study the complexity analysis. Then, we compute of the group
of automorphisms of lattices. For this purpose, we give the naive algorithm, the algorithm using
the fingerprint and a computation time measurement of these algorithms. Finally, we present
three methods for computing isometries between lattices followed by a runtime of these methods
on an example.
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Chapter 1

Introduction

A lattice is an abelian group L isomorphic to Zn and given together with a positive definite
bilinear form Φ : L×L → Z. Lattices have been used in Mathematics for many years. This date
back to the 18th century when Mathematicians such as Gauss and Lagrange used lattices in
number theory. Lagrange considered lattice basis reductions in dimension two in [6] and Gauss
studied what is known as the Gauss’ Circle in [7]. After that, many contribution on the field
were made namely in 1910, Minkowski greatly advanced the study of lattices in his ”Geometry
of numbers” [8], after which other texts followed in this field. Then early in 1980s, Lenstra,
Lenstra and Lovasz discovered their famous LLL basis-reduction algorithm [9] to reduce lattice
bases. The applications of this method include factoring integer polynomials and breaking
several cryptosystems. Lattices have many applications in computer science and mathematics,
including the solution of integer programming problems, the design of secure cryptographic
systems and others. Many computational problems and algorithms highly use the enumeration
of short vectors of lattices. In 1985, the Mathematicians Finke and Pohst published a method
[4] for computing all lattice elements whose norm was less than a given constant. In 1997,
Plesken and Souvignier published an algorithm [1] for computing the group of automorphisms
of Euclideans lattices using these short vectors. The main point of this project is to study this
algorithm and make a slightly modified version to find isometries between lattices. Being able
to test whether two lattices are isometric or not allows to construct the genus of lattices that
are useful in the study of modular forms, arithmetic groups and others. This essay is organised
as follows: in chapter 2, we will give a background information on lattices; The third chapter
deals with the description of an algorithm to compute short vectors of lattices, the study of
the complexity analysis of these algorithms and a computation time of these algorithms on
an example; The enumeration of these short vectors is used in chapter 4 and 5; Chapter 4
covers algorithms for computing the group of automorphisms of a given lattice; It also presents
a computation time measurement of these algorithms; Chapter 5 illustrates how to adapt the
method from chapter 4 to compute isometries between two lattices; It also covers the main
algorithm for computing isometries of lattices using automorphisms of the first lattice and only
one isometry between the lattices involved; We end with a general conclusion. We describe each
algorithm by assembling several simpler sub-algorithms. We write all code in Sage 8.1.

Conventions Let M be an arbitrary element of some set. In the whole work:

• We denote by MT the transpose of M and by M−1 its inverse M ;

• 〈u, v〉 denotes the inner product between two vectors u and v;
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• We denote by either |C| or card(C) the cardinal of an arbitrary set C;

• We use only symmetric bilinear forms.
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Chapter 2

Background

The term ’lattice’ is used in many contexts and has many definitions. One may consider a
lattice as a regular arrangement of points on an n-dimensional grid. We might also describe
it as a discrete subgroup of Rn with a basis. This section presents an overview not only on
lattice, but also on the key words that will be used later on. We start with some definitions
and examples. To study the elements of lattices, we consider the following definitions.

Definition 1 A lattice L is the set of all integer linear combinations of a basis of an R-vector
space. Letting B = (b1, · · · , bn) be a matrix (with column the bi) of linearly independent vectors
in Zm with integer coefficients, the lattice L generated by B is expressed as:

L = {Bx : x ∈ Zn} =
{ n∑

i=1

xibi : xi ∈ Z
}

If L is a lattice generated by B, we have the following:

a) The matrix B is called a basis matrix for the lattice L.

b) The rank of the lattice L is the number of basis vectors generating L; it is the integer n
in this case.

c) If n = m, then L is called a full rank lattice.

Definition 2 Let L = {Bx : x ∈ Zn} be a lattice (with B defined as above). An element v of
L is a vector of the form v = Bx. Here:

• v is called the embedded vector,

• x is called the coordinate vector (as it is the coordinates of v in the basis vector B).

Example 3 Consider the lattice L generated by the basis B =

(
0 1 0
2 0 1
0 −1 1

)
. We have the

following:
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• rk(L) = 3;

• The coordinate vectors of b1 = (0, 2, 0)T , b2 = (1, 0,−1)T and b3 = (0, 1, 1)T are respectively
(1, 0, 0)T , (0, 1, 0)T , and (0, 0, 1)T .

• (1, 1, 1)T is coordinate vector of the embedded vector (1, 3, 0)T . Indeed,(
0 1 0
2 0 1
0 −1 1

)(
1
1
1

)
=

(
1
3
0

)

2.1 Quadratic and bilinear forms

Definition 4 A bilinear form on a lattice L is a map Φ : L × L → Z that is linear in each
variable. More precisely, ∀u, v, w ∈ L and for any scalar α ∈ Z:

• Φ(u, v + w) = Φ(u, v) + Φ(u,w);

• Φ(u+ v, w) = Φ(u,w) + Φ(v, w);

• Φ(αu, v) = αΦ(u, v);

• Φ(u, αv) = αΦ(u, v).

A bilinear form is symmetric if Φ(x, y) = Φ(y, x) ∀x, y ∈ L.

Definition 5 • Φ is said to be positive definite if Φ(x, x) > 0 ∀x 6= 0;

• Throughout this work, for (L,Φ) a lattice equipped with a symmetric positive definite
bilinear form Φ, with L = {Bx : x ∈ Zn, n ∈ N}, the bilinear form Φ will be defined as
follows:
For u = Bx, v = By, two embedded vectors, with x and y the coordinate vectors of u and
v respectively, we define:

Φ(x, y) = xTBTBy

Notice that, if Ψ is the bilinear form (used for embedded vectors) associated to L, then
one has:

Ψ(u, v) = 〈u, v〉 = 〈(Bx)T , (By)〉 = xTBTBy = Φ(x, y)

.

Definition 6 A quadratic form is a map Q : x 7→ Φ(x, x), where Φ is a bilinear form.

• A quadratic form Q is said to be positive definite if Q(x) > 0 ∀x 6= 0;

• A lattice L equipped with a quadratic form Q is a said to be positive definite if Q is
positive definite;
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• For Q a quadratic form defined as above, one has: Φ(x, y) = 1
2
(Q(x+ y)−Q(x)−Q(y)).

Example 7 Using the lattice defined on the first example, for x, y ∈ Z3 arbitrary coordinate

vectors, we have: Φ(x, y) = xTBTBy, with B =

(
0 1 0
2 0 1
0 −1 1

)
.

Definition 8 In the context of lattices, the norm is simply the quadratic form of the lattice. In
order words, the norm of an embedded vector v = Bx is given by Ψ(v, v) := 〈v, v〉; Hence the
norm of its coordinate vector x is Φ(x, x) = xTBTBx.

Example 9 Consider the basis B =

(
0 1 0
2 0 1
0 −1 1

)
defined as in the first example, then the

norm of the embedded vector (1, 3, 0)T is 10 and the norm of its coordinate vector x = (1, 1, 1)T

computed using the formula Φ(x, x) = xTBTBx equals 10.

Remark 10 • The definition of Φ, the norm of an embedded vector is the same as the norm
of its associated coordinate vector;

• In general cases, the norm is the square root of the quadratic form.

Definition 11 Let (L,Φ) be a lattice generated by a basis B = (b1, · · · , bn). The Gram matrix
of L with respect to Φ is the matrix F with coefficients Fij = Ψ(bi, bj) for 1 ≤ i, j ≤ n (where
Ψ is the bilinear form of L used for embedded vectors). In other words, F = BTB.
The determinant of a lattice is the determinant of its Gram matrix.

Example 12 The Gram matrix of the lattice given with the basis B =

(
0 1 0
2 0 1
0 −1 1

)
, is:

F = BTB =

(
0 2 0
1 0 −1
0 1 1

)(
0 1 0
2 0 1
0 −1 1

)
=

(
4 0 2
0 2 −1
2 −1 2

)
.

Remark 13 Using the Gram matrix F of a lattice (L,Φ) with basis vector B, we can generalise
the expression of Φ by setting:

Φ(x, y) = xTFy where x, y are coordinate vectors.

While working on the algorithm, we will use this definition of Φ.

2.2 Matrix Decomposition

In linear algebra, a matrix decomposition or matrix factorisation is a factorisation of a matrix
into a product of matrices. There are many matrix decompositions. In this section, we present
some methods of decompositions for matrices.
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2.2.1 The Cholesky decomposition

The reference for this section is [3].

Definition 14 The Cholesky decomposition of a real-valued symmetric positive definite
matrix A is a decomposition of the form A = LLT , where L is a lower triangular matrix with
real and strictly positive diagonal entries, and LT denotes the transpose of L. The matrix L is
called the Cholesky factor of A.

We consider the Cholesky decomposition of n by n matrix A = (aij)1≤i,j≤n. In terms of
coordinates, if L = (lij)1≤i,j≤n (with lij = 0 for i < j) then we have:ljj =

(
ajj −

∑j−1
k=1 l

2
jk

) 1
2

lij = 1
ljj

(
aij −

∑j−1
k=1 likljk

)
Remark 15 • This decomposition is very useful to solve linear equation of the form Ax = b

when A is a symmetric and positive definite matrix; b is a column vector and x is the
indeterminate vector. This is done by first writing A as A = LLT , then solving the
equation Ly = b for y, finally solving the equation LTx = y for x. Solving these equation
will be easier as L and LT are respectively lower and upper triangular matrices.

• The computation of the Cholesky factor of a matrix requires the use of the square roots as
the Cholesky factor of a matrix may contain entries that are square roots. But this is not
the case for the following decomposition.

2.2.2 LDLT -decomposition

A closely related variant of the Cholesky decomposition is the LDLT -decomposition.

Definition 16 The LDLT -decomposition of a real-valued symmetric positive definite matrix
A is a decomposition of the form A = LDLT , where L is a lower unit triangular matrix (i.e
triangular matrix with 1’s on the diagonal entries) with real entries, LT is the transpose of L,
and D is a diagonal matrix.

We consider the LDLT -decomposition of n by n matrix A = (aij)1≤i,j≤n. In terms of
coordinates, if L = (lij)1≤i,j≤n (with lij = 0 for i < j and lii = 1 for 1 ≤ i ≤ n) and D has as
diagonal entries (djj)1≤j≤n then we have:{

djj = ajj −
∑j−1

k=1 l
2
jkdkk

lij = 1
djj

(
aij −

∑j−1
k=1 likljkdkk

)
Remark 17 • If a matrix has a LDLT -decomposition then it has also a Cholesky decom-

position; But the converse is not always true.
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• If it is efficiently implemented, the LDLT -decomposition requires the same space and com-
putational complexity to construct and to use, but avoids extracting square roots. For these
reasons, one may prefer the LDLT -decomposition.

2.2.3 LLL-reduction

Gram-Schmidt orthogonalisation : Let (b1, · · · , bn) be linearly independent vectors. Their
Gram-Schmidt orthogonalisation (GSO) (b∗1, · · · , b∗n) is the orthogonal family defined recursively
as follows:

a) The vector b∗i is the component of the vector bi that is orthogonal to the linear span of
the vectors b1, · · · , bi−1;

b) b∗i = bi −
∑i−1

j=1 µijb
∗
j , where µij =

〈bi,b∗j 〉
||b∗j ||2

;

c) For i ≤ n, we let µii = 1.

Notice that the GSO family depends on the order of the vectors. If the bi’s are integer vectors,
then the b∗i ’s and the µij’s are rational.

Definition 18 A basis (b1, · · · , bn) is size reduced if its GSO family satisfies

|µij| ≤
1

2
, ∀ 1 ≤ j ≤ i < n.

Definition 19 A basis (b1, · · · , bn) is LLL-reduced if it is size reduced and if its GSO satisfies
the (n− 1) Lovasz conditions:

3

4
||b∗k−1||2 ≤ ||b∗k + µkkb

∗
k−1||2.

Remark 20 The LLL reduction algorithm provide an orthogonal basis whose vectors’ norms
are bounded. This algorithm is often used to reduce large basis to smaller basis. Such a basis
reduces the computation such as sums and products of the column vectors of the matrix formed
by that basis. See [5] for more explanations of the LLL-reduction.

2.3 Automorphisms and isometries

What follows is an outline on the definitions of automorphisms and isometries of a lattice.
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Definition 21 An automorphism of a lattice (L,Φ) is a Z-linear bijection θ : L → L satis-
fying:

Φ(x, y) = Φ(θ(x), θ(y)) ∀x, y coordinate vectors in L.

The automorphism group of a lattice (L,Φ) is the set Aut(L) of all automorphisms
defined on L.

Lemma 22 let ◦ be the composition law. (Aut(L), ◦) is a group.

Proof. Indeed, (Aut(L), ◦) satisfies:

• The identity map of L is by definition an automorphism on L, so it belongs to Aut(L);

• For all θ1, θ2 ∈ Aut(L), we have θ1◦θ2 ∈ Aut(L), as θ1◦θ2 is a Z−linear bijection; moreover
since θ1 and θ2 are automorphisms on L, then for all x, y coordinate vectors in L, we have:

Φ(θ1 ◦ θ2(x), θ1 ◦ θ2(y)) = Φ(θ2(x), θ2(y)) = Φ(x, y);

• For all θ1, θ2, θ3 ∈ Aut(L), θ1 ◦ (θ2 ◦ θ3) = (θ1 ◦ θ2) ◦ θ3;

• For all θ ∈ Aut(L), θ−1 is also an automorphism of L ; so θ−1 ∈ Aut(L).

Definition 23 Let us consider two lattices (L,Φ) and (D,Ψ) with basis B and D respectively.
An isometry is a Z-linear bijection g from (L,Φ) to (D,Ψ) that preserves the bilinear forms
Φ and Ψ. More precisely,

Φ(x, y) = Ψ(g(x), g(y)) ∀x, y coordinate vectors in L.

Two lattices are said to be isometric if there exists an isometry between them.
The set of all isometries on a given lattice L is called the orthogonal group of L.

Proposition 24 The composition of two isometries is an isometry.

Proof. Let us consider three lattices (L1,Φ1), (L2,Φ2) and (L3,Φ3); let g1 and g2 be two
isometries from (L1,Φ1) to (L2,Φ2) and from (L2,Φ2) to (L3,Φ3) respectively. We have:

• By definition g2 ◦ g1 is Z-linear bijection;

• Moreover, for all x, y coordinate vectors in L1, we have:

Φ(g2 ◦ g1(x), g2 ◦ g1(y)) = Φ(g1(x), g1(y)) = Φ(x, y).

So g2 ◦ g1 is an isometry.
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Chapter 3

Computing Short vectors

The method of computation of isometries between two lattices that we will describe relies on
the use of the set of short vectors of these lattices. A short vector of a lattice (L,Φ) with basis
B is a vector v of the lattice L with norm less than or equal to the maximal norm of the basis
vectors of L. All short vectors of a given lattice (L,Φ) with basis B, form a set called the set
of short vector of L. We denote this set by S, and it is defined by:

S = {v ∈ L : Φ(v, v) ≤M},

where M is the maximum norm of the basis vector of L; More precisely, considering B =
(b1, · · · , bn) as the basis vector of L and F the associated Gram matrix, then

M = max
1≤i≤n

(Φ(bi, bi)) = max
1≤i≤n

Fii.

Remark that set S depends not only on the lattice but also on the basis of this lattice. In
this section, we present an algorithm to determine S, i.e all the short vectors of a given lattice
(L,Φ). Before going through this algorithm, we have to be sure that if any lattice L has a finite
number of short vectors. If it is the case, then we are sure that our algorithm will terminate.

Proposition 25 Consider as above the set S of short vectors of a given lattice (L,Φ) with basis
B = (b1, · · · , bn), Gram matrix F , and maximal norm of the basis vectors M .
Then the set S is finite.

Proof. Let x be the coordinate vector of an element of S, suppose x 6= 0. As F is positive
definite, all its eigenvalues are strictly positive. Let α ∈ R+ be the minimum eigenvalue of F .
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By definition of x, and since αx < Fx, then we have:

Φ(x, x) = xTFx ≤M ⇒ α||x||2 < xTFx ≤M,

⇒ α||x||2 < M,

⇒ ||x|| ≤
√
M

α
,

⇒ x ∈ BRn

(
0,

√
M

α

)
,

As x is the coordinate vector of an element of S then x ∈ Zn,

⇒ {x = (x1, · · · , xn) ∈ Zn :
n∑
i=1

xibi ∈ S} ⊆ Zn ∩ BRn

(
0,

√
M

α

)
;

Set C = {x = (x1, · · · , xn) ∈ Zn :
∑n

i=1 xibi ∈ S} and E =
[
−
⌊√

M
α

⌋
,
⌊√

M
α

⌋]n
.

We have:

C ⊆ Zn ∩ BRn

(
0,

√
M

α

)
⇒ C ⊆ Zn ∩ E,

But card(Zn ∩ E) = (2
⌊√M

α

⌋
+ 1)n <∞,

⇒ card(C) ≤ (2
⌊√M

α

⌋
+ 1)n <∞,

Since the sets S and C are in bijection (as S = BC) then card(S) = card(C),

⇒ card(S) ≤ (2
⌊√M

α

⌋
+ 1)n.

Hence S is finite. Now, let us describe the algorithm.

3.1 Algorithm to Generate short vectors

Here, we describe an algorithm to compute the list of all short vectors of a given lattice lattice
(L,Φ) with basis B = (b1, · · · , bn), Gram matrix F , and maximum norm of the basis vectors
M . Since any embedded vector v of S can be expressed by v = Bx and the norm of v is Φ(x, x),
with x its corresponding coordinate vector, therefore to find each vector v ∈ S it suffices to find
all possible coordinate vector x of v, satisfying Φ(x, x) ≤ M . The algorithm to described uses
the Cholesky decomposition.

3.1.1 Idea of the algorithm

Considering the same notation as above, let us notice that we are reduced to solve the inequality
Φ(x, x) ≤M for x. Let x = (x1, · · · , xn) be the coordinate vector of a short vector v. The idea
is to use the inequality Φ(x, x) ≤M to determine each time, a bound on each xk (for 1 ≤ k ≤ n)

13



and consider the solutions x as the different vectors formed by the xk, that are obtained while
each xk takes integer values in between its bounds.
In order to bound each xk for 1 ≤ k ≤ n, we first find the LLL-reduced matrix F ∗ of F . This
is done in order to reduce the large basis form by the columns of the matrix F into a basis F ∗

whose vectors’ norms are bounded. Such a basis reduces the computation such as sums and
products of the column vectors of the matrix formed by that basis. After finding the LLL-
reduced matrix F ∗ of F , we compute the Cholesky decomposition of F ∗. More precisely, we
write F ∗ as F ∗ = LLT , where L is a lower triangular matrix with positive and non zero diagonal
entries.

Bounds of the xk, 1 ≤ k ≤ n

Assuming that F ∗ = LLT , let L be defined by:

L =


l11 0 · · · · 0
l21 l22 · · · · ·
... · · · ...
· · · · 0
ln1 · · · · · lnn

 , so LT =


l11 l21 · · · · ln1
0 l22 · · · · ln2
... · · · ...
· · · · ·
0 · · · · · lnn


Using the fact that F = LLT , we have: Φ(x, x) = xTLLTx = (LTx)T .(LTx) = ||LTx||2,

LTx =


l11 l21 · · · · ln1
0 l22 · · · · ln2
... · · · ...
· · · · ·
0 · · · · · lnn



x1
x2
...
·
xn

 =



∑n
i=1 li1xi

...∑n
i=k likxi

...
lnnxn


As x satisfies Φ(x, x) ≤M , then:( n∑

i=1

li1xi

)2
+ · · ·+

( n∑
i=k

likxi

)2
+ · · ·+

(
lnnxn

)2
≤M (3.1)

First, this inequality implies that:(
lnnxn

)2
≤M ⇒ −

√
M

lnn
≤ xn ≤

√
M

lnn

14



So the lower bound and upper bound of xn are Lbn =
⌈
−
√
M
lnn

⌉
and Ubn =

⌊√
M
lnn

⌋
respectively.

The inequality (3.1) implies that for all 1 ≤ k ≤ n− 1, at the step k, we have:( n∑
i=k

likxi

)2
+ · · ·+

(
lnnxn

)2
≤M ⇔

( n∑
i=k

likxi

)2
≤M −

[( n∑
i=k+1

lik+1xi

)2
+ · · ·+

(
lnnxn

)2]
,

Set Uk =
n∑

j=k+1

( n∑
i=j

lijxi

)2
, and Un = 0, (3.2)

⇔
∣∣∣lkkxk +

n∑
i=k+1

likxi

∣∣∣ ≤√M − Uk,

Set Yk =
n∑

i=k+1

likxi, Yn = 0 (3.3)

⇔ 1

lkk

[
−
√
M − Uk − Yk

]
≤ xk ≤

1

lkk

[√
M − Uk − Yk

]
.

So for 1 ≤ k ≤ n− 1 the lower bound and upper bound on xk are Lbk and Ubk respectively.Lbk =
⌈

1
lkk

[
−
√
M − Uk − Yk

]⌉
Ubk =

⌊
1
lkk

[√
M − Uk − Yk

]⌋ (3.4)

Notice that, from (3.2), we have Uk−1 = Uk −
∑n

i=k+1 li,k+1x
2
i for k = n − 1, n − 2, · · · , 1 and

Un = 0. Hence, one may compute Uk using this expression for each 1 ≤ k ≤ n− 1.

Remark 26 Notice that for 1 ≤ k ≤ n, Lbk ≤ xk ≤ Ubk is equivalent to Φ(x, x) ≤ M . So on
the algorithm, for any integer value of xk between its bounds, the corresponding x must satisfies
the inequality Φ(x, x) ≤M .

3.1.2 Description of the algorithm

Considering the same notation as above, our algorithm works as follows:

a) We first find the LLL-reduced matrix F ∗ of F by applying the LLL-reduction algorithm
to F (See [3]);

b) We compute the Cholesky factor L of the matrix F ∗ ( i.e L satisfies F ∗ = LLT ) using the
Cholesky decomposition of F ∗ (See [3]);

c) We compute Lbn =
⌈
−
√
M
lnn

⌉
, Ubn =

⌊√
M
lnn

⌋
, we initialise xn = Lbn, and we set Nn = lnnxn,

Un = 0, and Yn = 0;

d) Using the value of xn, we compute starting from k = n − 1 going down to k = 1, Uk,
Yk, Lbk and Ubk(using the formulas (3.2), (3.3) and (3.4)) and set xk = Lbk(in order to
compute the next coordinate xk+1);
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e) When we reach k = 1(it means that we have found one element of S) we keep the first
vector x found; Then we increment x1(x1 = x1 + 1) and we keep the vectors x found until
x1 = Ub1;

f) When x1 > Ub1, we first increment x2(x2 = x2 + 1); Secondly, we compute again x1 using
U1, Y1, Lb1 and Ub1 (which are computed now using the new value of x2), then we go to
d). x2 will be incremented until x2 = Ub2; The step f) will be done for each k = 1, · · · , n.
Therefore this step can be generalised by the step f’) as follows;

f’) If xk > Ubk, then we first increment xK(xk = xk+1; This is done each time xk+1 ≤ Ubk+1);
Secondly, we compute again xj using Uj, Yj, Lbj and Ubj(which are computed now using
the new value of xj+1) for j = k going down to j = 1.

Remark 27 • The steps c) up to f ’) will be done until xn = Ubn or whenever we found x
equals to the zero vector.

• Since if Φ(x, x) = Φ(−x,−x), if x belong to S, then −x belongs also to S. So each time
we will find a solution x of the inequality Φ(x, x) ≤ M using our algorithm, we will also
add its opposite −x to the list of the solutions.
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Pseudocode

We consider the lattice (L,Φ) as above.
Input: F (the Gram matrix of the lattice) and M (the maximum of the norm of the basis vector
of the lattice)
Output: S (the list of coordinates of short vectors of the lattice)

Algorithm 1 Set of short vectors with Cholesky decomposition

1: procedure S − elements(F,M)
2: F ∗ ← LLL-reduction(F )
3: L← Cholesky-decomposition(F ∗)
4: n← number of columns of L
5: x← [x1, · · · , xn], f illxn ← 0

6: Compute Lbn ←
⌈
−
√
M
lnn

⌉
, Ubn ←

⌊√
M
lnn

⌋
7: Initialise xn ← Lbn, Nn ← lnnxn
8: Initialise Un ← 0, Yn ← 0, and k ← n− 1
9: while xn ≤ Ubn do

10: if fillxk = 0 then
11: Compute Nk, Uk and Yk(using the formulas (3.2), (3.3) and (3.4))
12: Set xk ← Lbk
13: fillxk ← 1
14: else
15: xk ← xk + 1
16: if xk <= Ubk then
17: k ← k − 1
18: else
19: fillxk ← 0
20: k ← k + 1
21: if k = 0 then
22: while x1 ≤ Ub1 do
23: if x = zero− vector then
24: append(x, S)
25: return S
26: else
27: append(x, S)
28: append(−x, S)

29: x1 ← x1 + 1
30: fillx1 ← 0
31: k ← 1

17



Remark 28 One may follows the same steps to describe a method for computing short vectors
using the LDLT -decomposition instead of the Cholesky decomposition. This method will be
better as it help to avoid the square root used in the Cholesky decomposition, and to work on
with approached values. Moreover, it is better to use it in case one uses matrices that are not
positive definite.

3.2 Complexity Analysis

In this section, we study the complexity analysis of the algorithm to compute short vectors of
a lattice using the Cholesky decomposition. This study follows the method from [4], but we
reorganised the proof and added the details that were omitted by Fincke and Pohst. Recall that
to find the short vectors of the lattice L (defined as above) using the Cholesky decomposition,
we were reduced to find all vectors x = (x1, · · · , xn) ∈ Zn satisfying Q(x) ≤ M , where Q(x) =∑n

i=1

(∑n
j=i lijxj

)2
and M is the maximal norm of the basis vectors (b1, · · · , bn). To study the

complexity analysis of our algorithm, we start by finding an upper bound for the number of
vectors x = (x1, · · · , xn) ∈ Zn generated by the algorithm; Then, we look for the number of
arithmetic operations required for the other steps of the algorithm and we deduce the result.
Throughout this section, we count each multiplication, addition, extraction to squared root,
and the extraction of the ceiling (or the floor) of a real number as one operation.

3.2.1 The number of vectors x ∈ Zn generated by the algorithm

Here, we are looking for an upper bound for the number of vectors x = (x1, · · · , xn) ∈ Zn
generated by the algorithm. We first find an upper bound for the number of x = (x1, · · · , xn)
(i ≥ 1) satisfying T (x) ≤M ; then we deduce form it the number x = (x1, · · · , xn) of generated
by the algorithm. For 1 ≤ i ≤ n, we define:

Ti(xi, · · · , xn) =
n∑
k=i

( n∑
j=k

lijxj

)2
=

n∑
k=i

(liixi + Yi)
2

where Yi =
∑n

j=i+1 lijxj, and Yn = 0.

Wi(r) = card
(
{x = (xi, · · · , xn) ∈ Zn−i+1 : Ti(xi, · · · , xn) ≤ r}

)
,

for every positive real number r;
Our first aim is find an upper bound for the number of (xi, · · · , xn) (i ≥ 1) satisfying
Ti(xi, · · · , xn) ≤ M ; in other words, we want to find an upper bound of Wi(M). This will be
deduced from the following proposition.

Proposition 29 Considering the same notation as above, assume that 1
e

is a lower bound of lii
(1 ≤ i ≤ n). Therefore, one has:

Wi(r) ≤
4brec∑
j=0

Wi+1(r −
j

4
)

18



To prove this proposition, we need the following lemma.

Lemma 30 Considering the above notation and the assumption of the above proposition. If we
have found using the algorithm (xi+1, · · · , xn) ∈ Zn−i such that
Ti+1(xi+1, · · · , xn) ≤ r, then there exists at most ε xi say xi1 , · · · , xiε (with ε := 2b

√
rec + 1 )

such that Ti(xi, xi+1, · · · , xn) ≤ r and for each xij , one has |liixij + Yi| ≤ j
2

(1 ≤ j ≤ ε).

Proof. To prove this lemma, we proceed as follows.

a)For i = n, one has: Wi(r) = card
(
{xn ∈ Z : (lnnxn)2 ≤ r}

)
= 2
⌊√

r
lnn

⌋
+ 1.

b)Now, we suppose that we have found (xi+1, · · · , xn) ∈ Zn−i such that
Ti+1(xi+1, · · · , xn) ≤ r with the algorithm and let us find the number of xi such that Ti(xi, xi+1, · · · , xn) ≤
r.
By definition,

Ti(xi, · · · , xn) =
n∑
k=i

( n∑
j=k

lijxj

)2
= (liixi + Yi)

2 +
n∑

k=i+1

( n∑
j=k

lijxj

)2
= (liixi + Yi)

2 + Ti+1(xi+1, · · · , xn)

Set Ui = Ti+1(xi+1, · · · , xn).

So Ti(xi, xi+1, · · · , xn) = (liixi + Yi)
2 + Ui ≤ r.

Using this expression and the assumption on xi, we get:

Ti(xi, xi+1, · · · , xn) ≤ r ⇒ (liixi + Yi)
2 ≤ r − Ui ≤ r

⇒ |liixi + Yi| ≤
√
re.

Thus the number of xi such that Ti(xi, xi+1, · · · , xn) ≤ r is ε := 2η + 1, with η = b
√
rec.

c)Using the result obtained in b), we know that we have at most ε possibilities for xi ∈ Z,
say xi1 , xi2 , · · · , xiε , such that Ti(xi, xi+1, · · · , xn) ≤ r. We order the xij for 1 ≤ j ≤ ε according
to

|liixi1 + Yi| ≤ |liixi2 + Yi| ≤ · · · ≤ |liixiε + Yi|.
We claim that for all 1 ≤ j ≤ ε,

j − 1

2
≤ |liixij + Yi| ≤

j

2
.

To prove this, we use the inequality |liixij + Yi| ≤ η (for 1 ≤ j ≤ ε) and we distinguish three
cases (since from the ordering, |liixi2p +Yi| and |liixi2p+1 +Yi| have the same value namely p, for
0 ≤ p ≤ η):
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case 1: For j = 1, we have 0 ≤ |liixi1 + Yi| ≤ 1
2

(as |liixi1 + Yi| = 0;

case 2: For j = 2p (with 1 ≤ p ≤ η), we have:
2p−1
2
≤ |liixij + Yi| ≤ p

2
(as |liixij + Yi| = p);

case 3: For j = 2p+ 1 (with 0 ≤ p ≤ η), we have:
p ≤ |liixij + Yi| ≤ 2p+1

2
(as |liixij + Yi| = p).

Hence for all 1 ≤ j ≤ ε,
j − 1

2
≤ |liixij + Yi| ≤

j

2
.

This conclude the proof of the lemma.

Now, let us proof the proposition.

Proof. Recall that we would like to show that Wi(r) ≤
∑4brec

j=0 Wi+1(r − j
4
).

From the previous lemma, we know that if we have found using the algorithm (xi+1, · · · , xn) ∈
Zn−i such that
Ti+1(xi+1, · · · , xn) ≤ r, then there exists at most ε xi say xi1 , · · · , xiε (with ε := 2b

√
rec + 1)

such that Ti(xi, xi+1, · · · , xn) ≤ r and for each xij , one has |liixij + Yi| ≤ j
2

(1 ≤ j ≤ ε).
This implies that for xi = xij , we have:

Ti(xij , xi+1, · · · , xn) = (liixij + Yi)
2 + Ti+1(xi+1, · · · , xn)

=
j2

4
+ Ti+1(xi+1, · · · , xn) (3.5)

(3.6)

From (3.5), notice that if Ti+1(xi+1, · · · , xn) ≤ r − j2

4
, then Ti(xij , xi+1, · · · , xn) ≤ r.

For j = 1, · · · , ε, this implies that :

each tuple (xi+1, · · · , xn) such that Ti+1(xi+1, · · · , xn) ≤ r− j2

4
correspond to one tuple (xi, xi+1, · · · , xn)

such that Ti(xi, xi+1, · · · , xn) ≤ r.
Therefore, we have:

Wi(r) ≤
2b
√
rec+1∑
j=1

Wi+1(r −
j2

4
)

≤
2b
√
rec+1∑
j=0

Wi+1(r −
j2

4
)

=

2b
√
rec∑

j=0

Wi+1(r −
j2

4
) (3.7)

As r < (2b
√
rec+1)2

4
and by definition Wi(γ) = 0 if γ < 0.

Hence, by a change of variable in (3.7), we get:

Wi(r) ≤
4brec∑
j=0

Wi+1(r −
j

4
).
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This conclude the proof of the proposition.

From the above proposition, we can deduce that Wi(M) ≤
∑4brec

j=0 Wi+1(M − j
4
). Hence,

an upper bound for the number of (xi, · · · , xn) (i ≥ 1) satisfying Ti(xi, · · · , xn) ≤ M is∑4bMc
j=0 Wi+1(M − j

4
).

Now, let us compute an upper bound of the total number of vectors x generated by the
algorithm. We denoted it by W 1(M), where W̄i(M) =

∑n
j=iWj(M). This is will be deduced

by the following proposition. In general W i(r) =
∑n

j=iWj(r).

Proposition 31 Considering the same notation, one has:

W 1(r) ≤ (2b
√
rec+ 1)

(
4brec+ n− 1

4brec

)
.

Proof. 1)We start by defining an induction on W i(M). From the above proposition, we
know that

Wk(r) ≤
4brec∑
j=0

Wk+1(r −
j

4
).

This implies that:

W i(r) =
n∑
k=i

Wk(r)

≤
n∑
k=i

4brec∑
j=0

Wk+1(r −
j

4
)

=

4brec∑
j=0

n∑
k=i

Wk+1(r −
j

4
)

=

4brec∑
j=0

W i+1(r −
j

4
)

So

W i(r) ≤
4brec∑
j=0

W i+1(r −
j

4
) (3.8)

21



For i = 1, (3.8) says that: W 1(r) ≤
∑4brec

j=0 W 2(r − j
4
). Replacing W 2(r) by it corresponding

upper bound, we get:

W 1(r) ≤
4brec∑
j=0

W 2(r −
j

4
)

≤
4brec∑
j=0

4brec∑
k=0

W 3(r −
j

4
− k

4
)

=

4brec∑
j=0

4brec∑
l=j

W 3(r −
l

4
)

=

4brec∑
l=0

l∑
j=0

W 3(r −
l

4
)

=

4brec∑
l=0

(l + 1)W 3(r −
l

4
).

Continuing this way up to n, we get:

W 1(r) ≤
4brec∑
l=0

λijW i(r −
l

4
), (3.9)

where λij ∈ N.

2) Let us compute the λij for 1 ≤ i ≤ n and j =, · · · , 4brec.

a) For i = 1, since W 1(r) ≤ W 1(r) then λi0 = 1 and λij = 0 for j > 0.

b) In general, as W i(r − j
4
) ≤

∑4brec
k=0 W i+1(r − j+k

4
) then we have:

4brec∑
j=0

λijW i(r −
j

4
) ≤

4brec∑
j=0

λij

4brec∑
k=0

W i(r −
j + k

4
)

=

4brec∑
l=0

( l∑
j=0

λij

)
W i(r −

l

4
)

4brec∑
j=0

λijW i(r −
j

4
) =

4brec∑
l=0

( l∑
j=0

λi+1,l

)
W i(r −

l

4
)

with λi+1,l =
∑l

j=0 λij.
In general, {

λi+1,j =
∑j

k=0 λik
λ1,0 = 1, λ1,j = 0 for j > 0.
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From a lemma (see [4], page 468), one can show by induction that λi+1,j =
∏i−1

k=1
j+k
k

. So

λnj =
∏n−2

k=1
j+k
k

. Using the binomial properties, we have:

λnj =
n−2∏
k=1

k + j

k

=
(1 + j)(2 + j) · · · (n+ j − 2)

(n− 2)!

=
(n+ j − 2)!

j!(n− 2)!

λnj =

(
n+ j − 2

j

)
(3.10)

c)Let us now deduce our result. By definition, we have:

W n(r − j

4
=

n∑
k=n

Wn(r − j

4
)

= Wn(r − j

4
).

And using the fact that elε,ε ≥ 1 (1 ≤ ε ≤ n), we get:

Wn(r − j

4
) = card

(
{xn ∈ Z : (lnnxn)2 ≤ r − j

4
}
)

= 2
⌊√r − j

4

lnn

⌋
+ 1

≤ 2b
√
rec+ 1 as elnn ≥ 1.

Finally using (3.9) and (3.10), one may deduce that

W 1(r) = (2b
√
rec+ 1)

4brec∑
j=0

(
n+ j − 2

j

)
.

Using the binomial property
∑n

k=0

(
k+n
k

)
=
(
n+m+1

n

)
, for m ∈ N, we get:

W 1(r) ≤ (2b
√
rec+ 1)

(
4brec+ n− 1

4brec

)
.

This conclude the proof of our proposition.

From this proposition, by taking r = M , we deduce thatW 1(M) ≤ (2b
√
Mec+1)

(
4bMec+n−1

4bMec

)
.

Hence, the number of vectors x generated by the algorithm is at most

(2b
√
Mec+ 1)

(
4bMec+ n− 1

4bMec

)
. Now, let us give an upper bound for the total number of operations used by our algorithm.
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Theorem 32 [4] Let L be a lattice with Gram matrix F = (Fij)1≤i,j≤n.Let e−1 be the lower
bound for the entries lε,ε (1 ≤ ε ≤ n). Let M be the maximal norm of the basis vectors of L.
Then the algorithm for computation of short vectors of L (using the Cholesky decomposition)
uses at most

O
(
n2
(

(2b
√
Mec+ 1)

(
4bMec+ n− 1

4bMec

)
+ 1
))

arithmetic operations.

Proof. We would like to find an upper bound the number of arithmetic operations used
by our algorithm for computing all x = (x1, · · · , xn) ∈ Zn satisfying T (x) ≤ M ; where

T (x) =
∑n

i=1

(∑n
j=i lijxj

)2
and L = (lij)1≤i,j≤n is the Cholesky factor of F ∗ computed in

step b) of the algorithm.
To find this number, let us study the complexity analysis of all the steps of our algorithm.

• In step a), we compute the LLL-reduced matrix F ∗ of F . From [3], the LLL-reduction
algorithm computes F ∗ in time O(n6(logM)3);

• In step b), we computes the Cholesky decomposition of F ∗ and find F ∗ = LLT . From [3],
the computational complexity of the Cholesky algorithm is O(n3);

• In step c), we compute the bound of xn using at most 6 operations; In step d), the
computation of Yk and Uk takes at most O(n2) operations; Thus the transition from
one vector to the next takes at most O(n2). Recall that in our algorithm, each time
we find a vector x that is a solution, we add x and −x to the set of solutions. Hence,

the execution of our algorithm from step d) to step f’) produces at most 1
2

(
(2b
√
Mec +

1)
(
4bMc+n−1

4bMec

)
+ 1
)

; Therefore the execution of the algorithm from step c) to step f’) uses

at most O
(

1
2
n2
(

(2b
√
Mec+ 1)

(
4bMec+n−1

4bMec

)
+ 1
))

arithmetic operations.

Hence, we can conclude that our algorithm uses at most

O
(
n2
(

(2b
√
Mec+ 1)

(
4bMec+ n− 1

4bMec

)
+ 1
))

arithmetic operations.

Theorem 33 Let L be a lattice with Gram matrix F = (Fij)1≤i,j≤n. Suppose that lii ≥ 1

(1 ≤ i ≤ n). Assume that n is large enough (n�
⌊√

M
⌋

). Let M be the maximal norm of the

basis vectors of L. Then the algorithm for computation of short vectors of L (using the Cholesky
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decomposition) uses at most

O
((

1 +
n− 1

4bMc

)4bMec)
arithmetic operations.

Proof. Notice that for n large enough (n�
⌊√

M
⌋
), Stirling’s formula (namely for k, m ∈

N,
(
m
k

)
∼ mk

k!
) yields that W 1(M) increases at most like O

((
1 + n−1

4bMc

)4bMc)
(i.e W 1(M) ∼ O

(
1+ n−1

4bMc

)4bMc
). Indeed, for k = 4bMc, and m = n−1, one has

(
n
k

)
= (k+m)k

k!
=

kk

k!
(1 + m

k
)k.

Corollary 34 Let L be a lattice with Gram matrix F = (Fij)1≤i,j≤n. Suppose that lii ≥ 1
(1 ≤ i ≤ n). Assume that n is fixed. Let M be the maximal norm of the basis vectors of L
and suppose that M tends to infinity. Then the algorithm for computation of short vectors of L
(using the Cholesky decomposition) uses at most

O
(
M

n
2

)
arithmetic operations.

Proof. We use the above theorems and the assumptions of this corollary to get the follow-
ing:
If n is fixed then n is considered as a constant. So n2 = O(1). Also (2b

√
Mc+1) = O(b

√
Mc) =

O(
√
M). Moreover (

4bMc+ n− 1

4bMc

)
=

(
4bMc+ n− 1

n− 1

)
= O

(
(4bMc+ n− 1)n−1

)
= O(M

n−1
2 )

as M tends to infinity.
Hence we get the result.

Remark 35 One may proceed similarly for to study the complexity analysis for computing short
vectors of a lattice using the LDLT -decomposition.
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3.3 Runtime of algorithms

The purpose of this section is to give the computation time of the two algorithms described
above on an example. We consider the root lattice An for n = 2, 3, 4, 5, 6, 7, 8 with Gram matrix
FAn defined with 2 on the diagonal entries, −1 under and over the diagonal entries and the 0
elsewhere. It is given by:

FAn =



2 −1 0 · · · 0
−1 · · · · · ·
0 · · · ...
... · · · 0
· · · · −1
0 · · · 0 −1 2


we execute the cputime() Sage function and our Sage code for computing short vectors using
the Cholesky on a personal computer core I3. We get the following results.

n time(s) Card(S)
2 0 7
3 0.063 13
4 0.156 21
5 0.765 31
6 3.728 43
7 21.06 57
8 135.986 73

Table result of the runtime of our algorithm

From these results, we observed that we obtain the computation time of this algorithm
increases with the dimension n of the Gram matrix.
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Chapter 4

Automorphisms of lattices

We recall from chapter 2 that an automorphism on a lattice (L,Φ) is a Z-linear bijection
θ : L → L satisfying:

Φ(x, y) = Φ(θ(x), θ(y)) ∀x, y ∈ L.
Let B = (b1, · · · , bn) be the basis matrix of the lattice (L,Φ). To specify an automorphism θ
on a lattice L, it suffices to determine images of the vector basis. More precisely, we have to
determine a basis (v1, · · · , vn) from the vectors of L satisfying:

Φ(vi, vj) = Φ(bi, bj) ∀1 ≤ i, j ≤ n;

We shall call such a list of vectors, good image of the basis vectors. Having found this good
image, we can find the image of any lattice element under the automorphism θ (as each lattice
element is a linear combination of the basis vectors). Indeed, if we consider Bx and By two
lattice elements with x = (x1, · · · , xn), y = (y1, · · · , yn) , and we suppose that (v1, · · · , vn) is a
good image of the basis vectors then as θ is a Z-linear map, we have:
θ(x) = θ(

∑n
i=1 xibi) =

∑n
i=1 xiθ(bi) =

∑n
i=1 xivi; similarly, θ(y) =

∑n
j=1 yjvj;

Φ(θ(x), θ(y)) = (
n∑
i=1

xivi).(
n∑
j=1

yjvj)

=
n∑
i=1

n∑
j=1

xiyiΦ(vi, vj)

=
n∑
i=1

n∑
j=1

xiyiΦ(bi, bj) as Φ(vi, vj) = Φ(bi, bj )

= Φ(x, y)

Hence, our aim is to build up the set of all bases (v1, · · · , vn) that are good images of the basis
vectors (b1, · · · , bn). So we can identify the group Aut(L) of automorphisms on L by the set:
{(v1, · · · , vn) : (v1, · · · , vn) is good image of the basis vectors(b1, · · · , bn)}. These good images
will be determined by using the candidate images of the basis vectors. Before going through
these candidate images, let us precise that if we proceed as explained above we really get an
automorphism.

Lemma 36 We consider the same notation as above. Let S be the set of short vectors of L.
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If we find vectors (v1, · · · , vn) in S such that Φ(vi, vj) = Φ(bi, bj) for 1 ≤ i, j ≤ n, then we have
defined an automorphism.

Proof. We consider the lattice L as above. Let F be the Gram matrix of the lattice L.
We consider (v1, · · · , vn) in S. We assume that Φ(vi, vj) = Φ(bi, bj) for 1 ≤ i, j ≤ n. We would
like to show that there exists an endomorphism θ on L such that θ(L) = L.
a)Since (v1, · · · , vn) belongs S, then vi ∈ L ∀ 1 ≤ i ≤ n. As Φ(vi, vj) = Φ(bi, bj) for 1 ≤ i, j ≤ n,
therefore there exists an endomorphism θ on L such that θ sends the basis vectors (b1, · · · , bn)
to the list of vectors (v1, · · · , vn). This implies that θ(L) ⊆ L.

b) Let us show that L ⊆ θ(L).
Let M = (Mij) be the matrix associated with θ in B, then θ(bj) =

∑n
k=1Mkjbk. We have:

Φ(θ(bi), θ(bj)) = Φ(bi, bj)⇒
n∑
l=1

n∑
k=1

MliMkjbkΦ(bi, bj) = Φ(bi, bj)

⇒
n∑
l=1

n∑
k=1

MliMkjbkFij = Fij

⇒MTFM = F

⇒ det(MTFM) = det(F )

⇒ det(MT )× det(F )× det(M) = det(F )

⇒ (det(M))2 = 1 as det(MT ) = det(M)

⇒ det(M) = ±1

Hence det(M) 6= 0; so M is invertible.
Let M−1 be the inverse matrix of M . By definition, M−1 = 1

det(M)
×Com(M), where Com(M)

is the co-matrix of M . As M ∈Mn(Z), then Com(M) ∈Mn(Z).
Since det(M) = ±1, from the formula of M−1, we can express M−1 as:
M−1 = ±N with N ∈Mn(Z).
Let ψ be the morphism associated to the matrix N . We have:

N ∈Mn(Z)⇒ ψ(L) ⊆ L
⇒ θ ◦ ψ(L) ⊆ θ(L)

As ψ is an inverse of θ then L ⊆ θ ◦ ψ(L)

⇒ L ⊆ θ(L).

Hence θ(L) = L.

Now, we are sure that if we find vectors (v1, · · · , vn) in S such that Φ(vi, vj) = Φ(bi, bj) for
1 ≤ i, j ≤ n, then we have defined an automorphism.
Let us focus on the candidate images of the basis vectors.
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4.1 Candidate Images

A candidate image of a basis vector is a vector of L that is susceptible to be its image under
the automorphism involved. At the step k, the set Cki(for each 1 ≤ i, k ≤ n) is the set of all
candidate images of a basis vector bi. This set is defined using the set of short vectors S defined
in the previous chapter. To construct the set Cki, we first collect all vectors from a certain
subset SNi of the set S. For 1 ≤ i ≤ n, SNi is the set of all vectors from S with same norm as
the basis vector bi. It is defined by:
SNi = {v ∈ S : Φ(v, v) = Φ(bi, bi)}.

Definition 37 We say that a vector v ∈ SNi(for some 1 ≤ i ≤ n fixed) satisfies the inner
product conditions with respect to a list of vectors (v1, · · · , vk)(with k ≤ n), if Φ(v, vj) =
Φ(bi, bj) for j = 1, · · · , k and j 6= i.

Definition 38 A candidate vector at the step k of a basis vector bi(for 1 ≤ i ≤ n) is a
lattice element c with same norm as bi, satisfying the inner product conditions with respect to
the list of good images (v1, · · · , vk) of basis vectors (b1, · · · , bk)(with k ≤ n). More precisely, it
is a vector c ∈ SNi such that Φ(c, vj) = Φ(bi, bj) for j = 1, · · · , k and j 6= i.

Before determining the set Cik (for some 1 ≤ k, i ≤ n), Let us first write an algorithm to
find the set SNi.

4.1.1 Algorithm to find SNi

What follows is an algorithm to compute the list SN of the sets SNi of lattice elements with
same norm as the basis vector bi. We consider the lattice (L,Φ) as above.

Pseudocode

Input: F (the Gram matrix of the lattice) and S (the list of coordinates of short vectors of the
lattice)
Output: SN (the list SN of the sets SNi )

4.1.2 Algorithm to find Cki

Here is an algorithm to find at a step k the list of candidates images Cki of lattice elements
with same norm as the basis vector bi. We consider the lattice (L,Φ) as above. We assume
that the good image (v1, · · · , vk−1) of the list of k-vectors (b1, · · · , bk−1) has been found already.
So we set their list of candidate images to be the empty list, and we determine the remaining
candidate using the above description of Cki.
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Algorithm 2 the list SN of the sets SNi

1: procedure same− norm(F, S)
2: D ← Diagonal(F )
3: n← number of columns of F
4: for u in S do
5: if Φ(u, u) ∈ D then
6: K ← list− indices(Φ(u, u) in D)
7: for i ∈ K do
8: append(u, SNi)

9: return SN

Pseudocode

input: F (the Gram matrix of the lattice), SNi (as defined above), [v1, · · · , vk)1] a (k − 1)-
partial automorphism and the index k, i.
output: Cki (the list of candidates images)

Algorithm 3 the list of candidates images Cki
1: procedure cand− vect(F, SN, [v1, · · · , vk−1], k, i)
2: n ← number of columns of F
3: if i < k then
4: return [ ]
5: else
6: for u ∈ SNi do
7: if Φ(u, vj) = Fkj (∀j = 1, · · · , k − 1) then
8: append(u, Ci)

9: return Ci

4.2 Background on automorphisms search

Here, we present some background informations for the automorphisms search of lattices. Recall
that we would like to describe an algorithm (based on [1]), to compute the group of automor-
phisms of a given lattice. In general not all list of vectors (v1, · · · , vn) (obtained from the set
of candidate images) are good images of the basis vectors. Also, one may find a list of vectors
(v1, · · · , vn) such that there exists a rank k such that the list of k vectors (v1, · · · , vk) are good
images of the basis vectors (b1, · · · , bk), but the vector vk+1 is not a good image of bk+1. Such
a list (v1, · · · , vk) of vector is called a k−partial automorphism.

Definition 39 A k−partial automorphism is a partial map (v1, · · · , vk) that sends bi to vi
for 1 ≤ i ≤ k, satisfying Φ(vi, vj) = Fij for all 1 ≤ i, j ≤ k. When k = n, it is called an
automorphism.

Example 40 The trivial k-partial automorphism is the list of first k-basis vector (b1, · · · , bk)
for any k ≤ n. It comes from the identity automorphism, that sends bi to bi for 1 ≤ i ≤ k .
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In the case described above, we say that this k-partial automorphism cannot be extended into
a (k+1)-partial automorphism. Also, not every k-partial automorphism can be extended into a
(k+ 1)-partial automorphism. Hence, to rule out as soon as possible a k-partial automorphism
that will never be an automorphism, one may test whether the number of extensions is preserved.

Definition 41 The number of extensions of a k-partial automorphism (v1, · · · , vk) is the num-
ber of vector v ∈ S satisfying:{

Φ(v, v) = Φ(bk+1, bk+1)

Φ(v, vj) = Φ(bk+1, bj), for j = 1, · · · , k.

This number is denoted by nbExt. It is defined by:
nbExt(v1, · · · , vk) = |{v ∈ SNk+1 : Φ(v, vj) = Φ(bk+1, bj), for j = 1, · · · , k}|.

If (v1, · · · , vk) is a k-partial automorphism, then we set this number to be zero since all
vectors in the k-partial automorphism are already good images of the basis vector b1 up to bk .
Therefore, for any 1 ≤ i, k ≤ n and any k-partial automorphism (v1, · · · , vk), we may consider
the following:

nbExt([v1, · · · , vk], k, i) =

{
0 if i < k∣∣∣{v ∈ SNi : Φ(v, vj) = Φ(bi, bj), for j = 1, · · · , k − 1}

∣∣∣ otherwise.

Remark from above that this number of extensions is exactly the number of candidate images
Cki for each fixed i and k. To compute this number, we will use the following algorithm.

4.2.1 Algorithm to find the number of extensions

Here is an algorithm to find the list of candidates images Cki of lattice element with same norm
as the basis vector bi. We consider the lattice (L,Φ) as above.

Pseudocode

input: F (the Gram matrix of the lattice), SNi (defined as above), kpartial (the k-partial
automorphism [v1, · · · , vk]) and the index k, i.
output: nExt(the number of extensions)

Algorithm 4 the list of candidates images Cki
1: procedure nbExt(F, SN, kpartial, k, i)
2: n← number of columns of F
3: nExt← length(cand− vect(F, SN, kpartial, k, i))
4: return nExt

31



Recall that, our goal is to construct the set

{(v1, · · · , vn) : (v1, · · · , vn) is a good image of (b1, · · · , bn)}.

To determine each such list of vectors (v1, · · · , vn), the idea of the naive algorithm is to first
choose the first k- good images (v1, · · · , vk) (for k ≤ n) using the set of candidate images; then
check if (v1, · · · , vk) is a k-partial automorphism; next, we choose a vector v in Ck+1, check
if (v1, · · · , vk, v) is a (k + 1)-partial automorphism; if so, then v is a good image for bk+1;we
keep the new list of (k + 1)-partial automorphism and we continue this way up to k = n and
get one automorphism if all the above checks are satisfied. Each time that one of these checks
is not satisfied, we take another vector in the set Ck+1 until this set is empty. To find all
automorphisms, we proceed as above for any possible partial list of good images (v1, · · · , vk)
(for 1 ≤ k ≤ n).
However [1] claims that the number of extensions must be preserved under isometries. This is
stated in the following proposition.

Proposition 42 Let (L1,Φ1) and (L2,Φ2) two lattices with basis B1 and B2 respectively. Let
g be an isometry from L1 to L2. Let k be an integer. Suppose that g sends (b1, · · · , bk) to
(v1, · · · , vk).
Then NbExt[(b1, · · · , bk) 7→ (b1, · · · , bk)] = Nbext[(b1, · · · , bk) 7→ (v1, · · · , vk)].

To simplify the notation, we set:
NbExt((b1, · · · , bk)) := NbExt[(b1, · · · , bk) 7→ (b1, · · · , bk)],
and NbExt((v1, · · · , vk)) := Nbext[(b1, · · · , bk) 7→ (v1, · · · , vk)].

Proof. Consider the sets:
E = {u ∈ L1 : Φ1(u, u) = Φ1(bk+1, bk+1) and Φ1(u, bj) = Φ1(bk+1, bj) for j = 1, · · · , k},
D = {v ∈ L2 : Φ2(v, v) = Φ1(bk+1, bk+1) and Φ2(u, vj) = Φ1(bk+1, bj) for j = 1, · · · , k},
By definition NbExt((b1, · · · , bk)) = card(E) and NbExt((v1, · · · , vk)) = card(D), where
card(E) and card(D) denote the cardinal of E and D respectively.
We want to show that card(E) = card(D). In order to do this, we prove that the sets E and
D are in bijection.
We may consider the map φ as follows:

φ : E → D

u 7→ g(u)

• The map φ is well defined (as g is a well defined isometry: indeed ∀ u ∈ E, Φ2(g(u), g(u)) =
Φ1(u, u) = Φ1(bk+1, bk+1); so φ(u) ∈ D);

• Moreover, the map ψ : D → E that sends any v in D to g−1(v) is well defined and is an
inverse of φ.

Therefore, φ is a bijection and card(E) = card(D).

Notice that an automorphism on a lattice L is an isometry from L to L. Hence, the above
proposition remains true for automorphisms.
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The statement of this proposition is helpful to detect earlier a k-partial automorphism that
will never be an automorphism. To take this into account in our algorithm, we consider the
naive algorithm described above; in that algorithm, before checking if the list (v1, · · · , vk, v)
is a (k + 1)-partial automorphism, we first check if the number of extensions of (v1, · · · , vk, v)
corresponds to the number of extensions of (b1, · · · , bk, bk+1). The number of extensions of the
trivial k-partial automorphism (b1, · · · , bk, bk+1) will be stored in a matrix called the fingerprint.

4.2.2 Fingerprint

The fingerprint stores at each entry(of index k, i) the number of vectors from SNi satisfying the
inner product conditions with respect to the first (k− 1)−basis vectors (b1, · · · , bk−1). As these
first (k − 1)-basis vectors form a (k − 1)−partial automorphism, the good images of the basis
vectors (b1, · · · , bk−1) are already known. As we are looking for the good image of bk, we may
suppose that each entry (of index k, i) of the fingerprint equals zero for 1 ≤ i < k ≤ n. Hence,
we may defined the fingerprint as follows.

Definition 43 The fingerprint of given lattice is an upper-triangular matrix denoted by f =
(fki)1≤k,i≤n and defined by:

fki =

{
0 if i < k

|{v ∈ SNi : Φ(v, bj) = Φ(bi, bj) for j = 1, . . . , k − 1}| if i ≥ k.

Each entry fki is exactly the number of candidates vectors that can be good images of the basis
vector bi.

From the definition of the entries of the fingerprint, a different ordering of the basis vectors
will give a different fingerprint. The method to find automorphisms that we are going to describe
is a backtrack search. For a fast backtrack search, it is better to reorder the matrix of the basis
vectors with respect to the number of candidate vectors of each basis vector. More precisely, we
will order B starting form the basis vector with the lowest possible candidate images up to the
one with the biggest possible candidate image. Indeed, if there is a vector that only have a few
possible images under any automorphism(or isometry), this will help us to first find the image
of that vector. To optimize our ordering, we may reorder our matrix basis while computing our
fingerprint. After computing each k-th row of the fingerprint f , we test if the entry fkk is the
minimal non-zero entry in the row. If so, we do nothing. Otherwise, we swap the k-th column
of the fingerprint with any column containing the minimal non-zero entry in the row involved.
While doing this, we will swap the corresponding basis vectors, compute the new Gram matrix;
and we will also swap the corresponding sub-lists of the list of same norm SN (computed above)
as well as the entries in any coordinates vector of SN .

Assume that the first row of our fingerprint is [6, 7, 1]. This tells us that there are six small
vectors whose norm matches b1, seven small vectors whose norm matches b2 and only one small
vectors whose norm matches b3. From this, we realise that b3 has less possible candidate image
than b1 and b2. Hence, if we start our search with b3 instead of b1, then we will have less possible
partial maps to verify.

Here, we have an outline of how to compute the fingerprint of a given lattice with basis B,
Gram matrix F and list of same norm SN .
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Pseudocode

Input: F (the Gram matrix of the lattice) and SN (as defined above).
Output: f (the fingerprint)

Algorithm 5 The fingerprint f

1: procedure fingerprint(F, SN)
2: n← number of columns of F
3: for k = 1, · · · , n do
4: for i = 1, · · · , n do
5: if i < k then
6: fki ← 0
7: else
8: fki ← nbExt(F, SN, kpartial, k, i)

9: return f

Here are some examples of fingerprints of lattices matrix basis, where the ordering explained
above is take into account. these fingerprints are computed using our Sage code.

Example 44 Consider the lattice generated by the basis B =

(
2 0 0
1 2 1
1 0 1

)
. Its Gram matrix is

F =

(
5 2 1
2 4 2
1 2 2

)
. Using the Sage code of the algorithms explained above, we found it set of small

vectors:

S =[(0, 1,−2), (0,−1, 2), (0, 0,−1), (0, 0, 1), (1, 0,−1), (−1, 0, 1),

(−1, 1,−1), (1,−1, 1), (0, 1,−1), (0,−1, 1), (0,−1, 0), (0, 1, 0),

(1,−1, 0), (−1, 1, 0), (−1, 0, 0), (1, 0, 0), (0, 0, 0].

This lattice has 17 small vectors. We also compute:
SN1 = [(1, 0,−1), (−1, 0, 1), (−1, 1,−1), (1,−1, 1), (1,−1, 0), (−1, 1, 0), (−1, 0, 0), (1, 0, 0)],
SN2 = [(0, 1,−2), (0,−1, 2), (0,−1, 0), (0, 1, 0)]
and SN3 = [(0, 0,−1), (0, 0, 1), (0, 1,−1), (0,−1, 1)]
. Hence SN = [SN1, SN2, SN3] So we have eight elements with same norm as b1, and four with
same norm as b2 and b3. We know from the ordering of the basis vectors explained that after
computing our fingerprint, we are suppose to have a basis where the first and the second vector
are swapped. And this is the case, since after computing the fingerprint with our Sage code, we
get:

• The fingerprint of this matrix is: f =

(
4 8 4
0 2 2
0 0 2

)
;

• The matrix basis becomes: B =

(
0 2 0
2 1 1
0 1 1

)
;
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• The list SN becomes SN = [SN2, SN1, SN3]. Also the first and the second entries
of each coordinates vectors in SN are swapped. For instance, SN3 becomes SN3 =
[(0, 0,−1), (0, 0, 1), (1, 0,−1), (−1, 0, 1)].

Having computed the fingerprint, we can now test whether the number of extensions a k-partial
automorphism into a (k + 1)-partial automorphism is preserved. To test this, we consider a
k-partial automorphism (v1, · · · , vk) and we check if the number of extensions of this k-partial
automorphism is the same as the entry fk+1,k+1 of the fingerprint f . More precisely, since:
nbExt(v1, · · · , vk) = |{v ∈ SNk+1 : Φ(v, vj) = Φ(bk+1, bj) for j = 1, . . . , k}| and
fk+1,k+1 = |{v ∈ SNk+1 : Φ(v, bj) = Φ(bk+1, bj) for j = 1, . . . , k}|,
then we have to check if nbExt(v1, · · · , vk) = fk+1,k+1. This is called the fingerprint test. In the
automorphism search’ algorithm, this will be done at each step k.
Before the description of the algorithm for finding automorphisms with the fingerprint, let us
give the naive algorithm of this computation.

4.3 Naive algorithm for automorphisms of lattices

Recall that, our aim is to construct the set

{(v1, · · · , vn) from L : (v1, · · · , vn) is a good image of (b1, · · · , bn)}.

To determine such a list of vectors (v1, · · · , vn), the idea of the naive algorithm is to first
choose a partial list of good images (v1, · · · , vk)(for 1 ≤ k ≤ n) using the set of candidate
images(we will start with k = 1 and take v1 in SN1); then check if (v1, · · · , vk) is a k-partial
automorphism; if it is the case, then we choose a v vector in Ck+1, check if (v1, · · · , vk, v) is a
(k + 1)−partial automorphism; if so, then v is a good image for bk+1; we keep the new list of
(k+1)−partial automorphism and we continue this way up to k = n and get one automorphism
if all the above checks are satisfied. Each time that one of these checks is not satisfied, we
take another vector in the set Ck+1 until this set is empty. To find all automorphisms, we
proceed as above for every possible partial list of good images (v1, · · · , vk)(for 1 ≤ k ≤ n).
Indeed, having found an automorphism (v1, · · · , vn−1, v), to find others automorphisms, we first
keep the (n − 1)−partial automorphism (v1, · · · , vn−1); next, we test if this (n − 1)−partial
automorphism together with each candidate image v of bn form an automorphism. We keep the
automorphism (v1, · · · , vn−1, v) found. Once all candidate images of bn have been tested, we go
back to the index k = n− l(starting from l = 1 up to l = n− 1). For each l, while the set Cn−l
is non empty, we choose another candidate image of bn−l, we increase the index k = n − l to
k = n− l + 1 and we proceed as above.
The algorithm will stop whenever the set of candidate images of the first basis vector b1 is
empty.

pseudocode

To find all automorphism, we need the procedure is− i−partial automorphism. This procedure
checks whether the list of vectors [v1, .., vi−1] preserves the inner product with the [b1, .., bi−1]; i.e
[v1, .., vi−1, vi] is again a i−partial when we add a vector vi−1 to a (i−1)−partial [v1, .., vi−1](the
vi are vectors from the lattice L). This function returns True if so and False otherwise.
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Input: F (the Gram matrix of our lattice L) and the list of vectors [v1, · · · , vk] to test.
Output: True or False

Algorithm 6 is-i-partial-automorphism

1: procedure is− i− partial − auto(F, [v1, .., vi−1, vi])
2: n← number of columns of F
3: ans← True
4: for j = 1, · · · , i do
5: if Φ(v, vj) 6= Φ(bi, bj) then
6: ans← False
7: break
8: return ans

The following procedure computes all automorphisms on our lattice L described as above(with
basis vectors (b1, · · · , bn)). To make our naive backtrack search, we consider the sets of n ele-
ments ind(list of horizontal index on the tree formed by the vectors images), k(the number of
candidate images of the basis vector bi), and V (current list of vectors images); we initialise the
cells of these sets at zero. We also consider the current list Stp of candidates of vectors images
(start with i = 1 i.e vectors having same norm with b1).

Input:F (the Gram matrix of the lattice L) and SN (defined as above).
Output: sol (the list of all automorphisms of a lattice)
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Algorithm 7 Naive algorithm for computing automorphisms of a lattice

1: procedure naive− auto(F, SN)
2: n ← number of columns of F
3: Stp ← SN1, k1 ← len(Stp), i← 1
4: while i ≤ n and ind1 < k1 do
5: ki ← len(Stp), f ind− vi ← False
6: if i < n then
7: for j = indi, · · · , ki do
8: kpartial← [V1, · · · , Vi], append(Stp[j], kpartial)
9: L← cand− vect(F, SN, kpartial, i+ 1, i+ 1)

10: if is− i− partial(F, [v1, .., vi−1, vi]) then
11: Vi ← Stp[j], Stp ← L, find− vi ← True
12: break
13: else
14: if j < ki − 1 then
15: indi ← indi + 1
16: if find− vi then
17: i← i+ 1
18: else
19: while indi = ki − 1 and i > 1 do
20: indi ← 0, i← i− 1

21: indi ← indi + 1
22: Stp← NbExt(F, SN, [V1, · · · , Vi], i, i)
23: else
24: for j = 1, · · · , ki do
25: if is− i− partial − auto(F, [v1, .., vn−1, Stp[j]]) then
26: Vn ← Stp[j]
27: append(V, sol)

28: i← n− 1
29: while indi = ki − 1 and i > 1 do
30: indi ← 0, i← i− 1

31: indi ← indi + 1
32: if i = 1 and indi > ki − 1 then
33: return sol
34: break the while loop

35: if i = 1 then
36: Stp ← SN1

37: else
38: Stp ← NbExt(F, SN, [V1, · · · , Vi], i, i)
39: return sol
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This algorithm will terminates as the group Aut(L) of all automorphisms on L) is finite.
Indeed, if θ ∈ Aut(L) then θ(bi) ∈ S for every 1 ≤ i ≤ n and the list (θ(b1), · · · , θ(bn))
determines the automorphism θ; This implies that |Aut(L)| ≤ |S|n which is finite since the set
of short vectors S (shown in chapter 3) is finite.

Now, let us describe the algorithm that uses the fingerprint.

4.4 Computing Automorphisms of lattices with the fin-
gerprint

To determine all automorphisms of a given lattice(using our algorithm), the idea is to make a
backtrack search around the set of candidate images of each basis vector and use the fingerprint
test to rule out as soon as possible k-partial automorphisms that cannot be extended.
To explain how the algorithm to compute our fingerprint work, let us assume that the basis
B of our lattice have 5 vectors. Say we are looking for an automorphism θ. We would like to
determine the good image of each basis vector in B = (b1, b2, b3, b4, b5) under θ. Suppose the
good image of b1 and b2 are known say : v1 and v2(this is always possible as we may take the
identity partial map namely v1 = b1 and v2 = b2). So θ sends b1 to v1 and b2 to v2. We suppose
also that our fingerprint is computed using the ordering explained. In order to determine the
good images of v3, v4 and v5 through θ, we proceed as follows.

1) We check if (v1, v2) is a 2-partial auto(True in this case asv1 and v2 are supposed to be
good images of b1 and b2);

2) If so, we compute the set C3 of all candidate images of b3;

3) We test for each vector v in C3, whether nbExt(v1, v2, v) = f3,3;

4) If 3) is satisfied, we set v3 = v, and we go to 2).

Now we search for the image of b4 and b5 by following the above steps 1) up to 4) (but replacing
the index 3 of the vector involved by 4 and 5 respectively). Proceeding this way, we will get
one automorphism θ.

In general to find all automorphism of a given lattice, at each step k, we do the following.

Description of the algorithm

1) We start with a list of k-potential image (v1, · · · , vk) of the first k−basis vectors (b1, · · · , bk);

2) We check if (v1, · · · , vk) is a k-partial automorphism;

3) If so, we compute the set Ck+1 of all candidate images of bk+1;

4) We take a vector v in Ck+1, and test if nbExt(v1, · · · , vk, v) = fk+1,k+1;
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5) If so, we set vk+1 = v, k = k + 1 and we go to 2); otherwise, we go to 4 and take another
vector in Ck+1 until Ck+1 is empty;

6) When we reach the last basis vector (i.e at k = n), we test for each vector in Cn if
(v1, · · · , vn−1, v) is an n− partial map; If so we set vn = v. Hence we found our automor-
phism; Otherwise, we do the same for another vector in Cn until Cn is empty;

Pseudocode

To find all automorphisms, we need the following procedure (called ’is−partial’) to test if the
(n− 1) vectors of a list L together with a vector Vn form an automorphism.
Input: L (a list of a (n − 1)-partial automorphism: [V1, ..., Vn−1]), a vector Vn and the Gram
matrix F of L.
Output: True(if it is an automorphism) or False(otherwise)

Algorithm 8 is-partial

1: procedure is− partial(L, Vn, F )
2: n← number of columns of F
3: ans← True
4: for j = 1, · · · , length(L) do
5: if Φ(Vn, L[j]) 6= F [n− 1, j] then
6: ans← False
7: break
8: return ans

The following procedure computes the list of all automorphisms of a lattice with basis vector
B = (b1, · · · , bn), and set of small vector S. To make our backtrack search, we consider the
sets of n elements ind(list of horizontal index on the tree formed by the vectors images), k(the
number of candidate images of the basis vector bi), and V (current list of vectors images); we
initialise the cells of these sets at zero. We also consider the current list Stp of candidates of
vectors images(start with i = 1 i.e vectors having same norm with b1).
Input: F (the Gram matrix of the lattice), SN (defined as above) and f (the computed
fingerprint).
Output: sol (the list of all automorphisms of a lattice)
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Algorithm 9 The list of all automorphisms of a lattice computed using the fingerprint

1: procedure auto(F, SN, f)
2: n← number of columns of F
3: Stp ← SN1, k1 ← len(Stp), i← 1
4: while i ≤ n and ind1 < k1 do
5: ki ← len(Stp), f ind− vi ← False
6: if i < n then
7: for j = indi, · · · , ki do
8: kpartial← [V1, · · · , Vi], append(Stp[j], kpartial)
9: L← nbExt(F, SN, i+ 1, i+ 1, kpartial)

10: if L = fi+1,i+1 then
11: Vi ← Stp[j], Stp ← L, find− vi ← True
12: break
13: else
14: if j < ki − 1 then
15: indi ← indi + 1
16: if find− vi = True then
17: i← i+ 1
18: else
19: while indi = ki − 1 and i > 1 do
20: indi ← 0, i← i− 1

21: indi ← indi + 1
22: Stp← nbExt(F, SN, i, i, [V1, · · · , Vi])
23: else
24: for j = 1, · · · , ki do
25: if is− partial([V1, · · · , Vn−1], Stp[j], F ) then
26: Vn ← Stp[j]
27: append(V, sol)

28: i← n− 1
29: while indi = ki − 1 and i > 1 do
30: indi ← 0, i← i− 1

31: indi ← indi + 1
32: if i = 1 and indi > ki − 1 then
33: return sol
34: break the while loop

35: if i = 1 then
36: Stp ← SN1

37: else
38: Stp ← nbExt(F, SN, i, i, [V1, · · · , Vi])
39: return sol
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Remark 45 This algorithm will terminate as the set Aut(L) is finite. Indeed, if θ ∈ Aut(L)
then θ(bi) ∈ S for every 1 ≤ i ≤ n and the list (θ(b1), · · · , θ(bn)) determines θ; hence |Aut(L)| ≤
|S|n which is finite since the set of short vectors S is finite (proof in chapter 3).

4.5 Computation time measurement of algorithms

The purpose of this section is to compare the computation time of the two algorithms used
to compute the automorphisms of some lattices: the naive algorithm and the algorithm with
the fingerprint. In this following table, these algorithms are respectively called auto-naif and
auto-fingerprint. We consider the identity lattice (whose Gram matrix is the identity matrix
Idn) and the root lattice An for n = 2, 3, 4, 5, 6, 7, 8 with Gram matrix FAn defined with 2 on
the diagonal entries, −1 under and over the diagonal entries and the 0 elsewhere. It is given by:

FAn =



2 −1 0 · · · 0
−1 · · · · · ·
0 · · · ...
... · · · 0
· · · · −1
0 · · · 0 −1 2

 ,

We execute the cputime() Sage function and our Sage code for computing automorphisms using
these algorithms. In order to be sure of our results, we also use the Sage function to compute
automorphisms in order to check if we get the same number of automorphisms. We get the
following results.

1) Results obtained by using the identity lattice Idn:

n time(s) My Card(Aut(Idn)) Sage Card(Aut(Idn))
2 0 8 8
3 0.016 48 48
4 0.109 384 384
5 1.888 3840 3840
6 32.682 46080 46080
7 716.341 645120 645120

Table result of auto-naif

n time(s) My Card(Aut(Idn)) Sage Card(Aut(Idn))
2 0 8 8
3 0.016 48 48
4 0.125 384 384
5 1.935 3840 3840
6 31.496 46080 46080
7 663.206 645120 645120

Table result of auto-fingerprint

2) Results obtained by using the root lattice An:
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n time(s) My Card(Aut(An)) Sage Card(Aut(An))
2 0 12 12
3 0.016 48 48
4 0.234 240 240
5 2.792 1440 1440
6 35.99 10080 10080
7 477.769 80640 80640

Table result of auto-naif

n time(s) My Card(Aut(An)) Sage Card(Aut(An))
2 0 12 12
3 0.031 48 48
4 0.234 240 240
5 2.683 1440 1440
6 33.026 10080 10080
7 464.742 80640 80640

Table result of auto-fingerprint

From these tables, we observed that the number of automorphisms computed with each of
my functions is the same. This number is the same as the number of automorphisms computed
with the Sage function. Also, the auto-fingerprint function is faster than the auto-naif function
starting from n = 6. For n ≤ 5, the computation time is almost the same for the two functions.
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Chapter 5

Isometries of lattices

An isometry is a Z-linear bijection g between two lattices (L,Φ) and (D,Ψ) that preserves the
bilinear forms Φ and Ψ. More precisely ,

Φ(x, y) = Ψ(g(x), g(y)) ∀x, y coordinate vectors in L.

In this work, we will consider two lattices (L,Φ) and (D,Ψ)) with basis B = (b1, · · · , bn) and
D = (d1, · · · , dn) respectively.
We also consider the set Iso(L,D) = {g : (L,Φ)→ (D,Ψ) : g is an isometry} of all isometry
form L to D. What follows is a description of a method of computation of the set of all
isometries between two arbitrary lattices. The general idea of this algorithm is based on the
following proposition.

Proposition 46 Let h ∈ Iso(L,D), and consider the set H = {hγ : γ ∈ Aut(L)}.
Then Iso(L,D) = H.

Proof. Iso(L,D) ⊇ H : Let hγ ∈ H then:

a) hγ is a bijection as h and γ are bijections.

b) Moreover, since by definition h and γ preserve their corresponding bilinear forms, therefore
∀Bx,By ∈ L, Ψ(hγ(x), hγ(y)) = Φ(γ(x), γ(y)) = Φ(x, y).

This implies that hγ ∈ Iso(L,D);
Iso(L,D) ⊆ H : Let g ∈ Iso(L,D). Let us find γ ∈ Aut(L) such that g = hγ
Set γ = h−1g;

i) γ : (L,Φ)→ (L,Φ) is a bijection since g and h−1 are both bijection by definition.

ii) again by definition of g and h−1, we have:
∀Bx,By ∈ L, Φ(γ(x), γ(y)) = Φ(h−1g(x), h−1g(y)) = Ψ(g(x), g(y)) = Φ(x, y).
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i) and ii) imply that γ ∈ Aut(L).
Moreover, γ = h−1g ⇒ g = hγ ∈ H.
So g ∈ H.
Hence Iso(L,D) = H.

Remark 47 From this proposition, we realise that to determine the set of all isometries between
two arbitrary lattices, it suffices to first determine only one isometry h(∈ Iso(L,D)) between
the two lattices, then find all the automorphisms of the first lattice L, and deduce Iso(L,D) by
taking the composition of h with each of the automorphism found of L.

To determine all automorphisms between 2 lattices, we will use the algorithm presented in
chapter 4. We start by describing the naive algorithm to compute either one or all isometries,
then we present an algorithm that is faster than the naive one. Finally, we use them to describe
the algorithm presented in the above remark.
In what follows, we consider the following notations:

• A lattice (L1,Φ1) with matrix basis B1 = (b1, · · · , bn), Gram matrix F1 and maximal norm
of basis vector M1

• A second lattice (L2,Φ2) with matrix basis B2 = (b′1, · · · , b′n), Gram matrix F2 and maxi-
mal norm of basis vector M2

• The set Iso(L1,L2) defined as above.

To find an isometry g between two lattices L1 and L1, it suffices to determine good images
of the vector basis. More precisely, we have to determine a basis (v1, · · · , vn) from the set of
short vectors S2 of the lattice L2 satisfying:

Φ2(vi, vj) = Φ1(bi, bj) ∀1 ≤ i, j ≤ n;

As we are looking for vector in L2 whose norm matches those of the basis vector, then we define
S2 by:

S2 = {v ∈ L2 : Φ2(v, v) ≤M1}
The algorithm to determine S2 is similar as the one describe in chapter 3. We only have to use
the bilinear form of the second lattice Φ2 instead of the one of the first lattice.
As in the automorphism case, we need the candidate images in order to find good images of these
basis vectors. To find the candidate images, we enumerate all element from the sets SN2i for all
1 ≤ i ≤ n. These sets form the list of vectors from S2 with same norm as the basis vectors of L1.
This list is called the list of same norm 2 and it is denoted : SN2 = {SN2i, for i = 1, · · · , n}.
The set SN2i are defined for every 1 ≤ i ≤ n by

SN2i = {v ∈ S2 : Φ2(v, v) = Φ1(bi, bi)}
We can now define the candidate images in the isometry case.

44



Definition 48 We say that a vector v ∈ SN2i(for some 1 ≤ i ≤ n fixed) satisfies the inner
product conditions(in the isometry case) with respect to a list of vectors (v1, · · · , vk)(with
k ≤ n) from L2, if Φ2(v, vj) = Φ1(bi, bj) for j = 1, · · · , k and j 6= i.

Definition 49 A candidate vector at a step k of a basis vector bi(for 1 ≤ i ≤ n) is a lattice
element c with same norm as bi, satisfying the inner product conditions with respect to a list
of vectors (v1, · · · , vk) (with k ≤ n) from the second lattice L2. More precisely, it is a vector
c ∈ SNi such that Φ2(c, vj) = Φ1(bi, bj) for j = 1, · · · , k and j 6= i. For each i, the set Cki is
the set of all candidate images of the basis vector bi.

Before determining the set Cki (for some 1 ≤ i, k ≤ n), Let us first write an algorithm to
define the set SN2i.

5.1 Algorithm to find SN2i

What follows is an algorithm to define the list SN2 of the sets SN2i of lattice element with
same norm as the basis vector bi.

Pseudocode

Input: F1 (the Gram matrix of the lattice L1), F2 (the Gram matrix of the lattice L2) and S2

(the list of coordinates of short vectors of the lattice L2)
Output: SN2 (the list SN2 of the sets SN2i )

Algorithm 10 the list SN of the sets SN2i
1: procedure same− norm(F1, F2, S2)
2: D1 ← Diagonal(F1)
3: n← number of columns of F1

4: for u ∈ S2 do
5: if Φ2(u, u) ∈ D1 then
6: K ← list− indices(Φ2(u, u) ∈ D1)
7: for i ∈ K do
8: append(u, SN2i)

9: return SN2
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5.2 Algorithm to find Cki

Here is an algorithm to find at a step k the list of candidates images Cki of a lattice element
with same norm as the basis vector bi. We consider the two lattices as above. We assume that
the good image of the list of k-vectors (b1, · · · , bk−1) has been found already. This means that
we have a k-partial isometry. A k-partial isometry is a partial map (v1, · · · , vk) of vectors
from the lattice L2 that sends bi to vi for 1 ≤ i ≤ k, satisfying Φ2(vi, vj) = Φ1(bi, bj) for all
1 ≤ i, j ≤ k. When k = n, it is called an isometry. So we set the list of candidate images of the
list of (k−1)-vectors (b1, · · · , bk−1) to be the empty list (as their good images are (v1, · · · , vk−1)
), and we determine the remaining candidate.

Pseudocode

input: F1 (the Gram matrix of the lattice L1), F2 (the Gram matrix of the lattice L2), S2(the
list of coordinates of short vectors of the lattice L2), a (k − 1)−partial isometry [v1, · · · , vk−1]
and the index k, i.
output: Cki (the list of candidates images)

Algorithm 11 the list of candidates images Cki
1: procedure cand− vect− iso(F1, F2, SN2, [v1, · · · , vk−1], k, i)
2: n← number of columns of F1

3: if i < k then
4: return [ ]
5: else
6: for u in SN2i do
7: if Φ2(u, vj) = Φ1(bk, bj) (∀j = 1, · · · , k − 1) then
8: append(u, Ci)

9: return Ci

Recall that, our aim is to construct the set

{(v1, · · · , vn) from L2 : (v1, · · · , vn) is a good image of (b1, · · · , bn)}.

We start by the naive algorithm of the search of elements of this set.

5.3 Naive algorithm

To determine such a list of vectors (v1, · · · , vn), the idea of the naive algorithm is to first choose
a partial list of good images (v1, · · · , vk)(for 1 ≤ k ≤ n) using the set of candidate images(we
will start with k = 1 and take v1 in SN21); then check if (v1, · · · , vk) is a k-partial isometry;
if it is the case, then we choose a v vector in Ck+1, check if (v1, · · · , vk, v) is a (k + 1)−partial
isometry; if so, then v is a good image for bk+1; we keep the new list of (k+ 1)−partial isometry
and we continue this way up to k = n and get one isometry if all the above checks are satisfied.
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Each time that one of these checks is not satisfied, we take another vector in the set Ck+1 until
this set is empty. To find all isometries, we proceed as above for every possible partial list of
good images (v1, · · · , vk)(for 1 ≤ k ≤ n). Indeed, having found an isometry (v1, · · · , vn−1, v),
to find find others isometries, we first keep the (n − 1)−partial isometry (v1, · · · , vn−1); next,
we test if this (n − 1)−partial isometry together with each candidate image v of bn form an
isometry. We keep the isometry (v1, · · · , vn−1, v) found. Once all candidate images of bn have
been tested, we go back to the index k = n− l(starting from l = 1 up to l = n− 1). For each
l, while the set Cn−l is non empty, we choose another candidate image of bn−l, we increase the
index k = n− l to k = n− l + 1 and we proceed as above.
The algorithm will stop whenever the set of candidate images of the first basis vector b1 is empty.

pseudocode

To find all isometries, we need the procedure is − i−partial isometry. This procedure checks
whether the list of vectors [v1, .., vi−1] preserves the inner product with the [b1, .., bi−1]; i.e
[v1, .., vi−1, vi] is again a i−partial when we add a vector vi−1 to a (i−1)−partial [v1, .., vi−1](the
vi are vectors from the second lattice L2). This function returns True if so and False otherwise.
Input: F1(the Gram matrix of the lattice L1) ,F2(the Gram matrix of the lattice L2) and the
list of vectors [v1, · · · , vk] to test.
Output: True or False

Algorithm 12 is-i-partial

1: procedure is− i− partial(F1, F2, [v1, .., vi−1, vi])
2: n← number of columns of F1

3: ans← True
4: for j = 1, · · · , i do
5: if Φ2(v, vj) 6= Φ1(bi, bj) then
6: ans← False
7: break
8: return ans

The following procedure computes one (or all) isometries between the two lattices described
above(with basis vectors B = (b1, · · · , bn)). To make our naive backtrack search, we consider
the sets of n elements ind(list of horizontal index on the tree formed by the vectors images),
k(the number of candidate images of the basis vector bi), and V (current list of vectors images);
we initialise the cells of these sets at zero. We also consider the current list Stp of candidates of
vectors images (start with i = 1 i.e vectors having same norm with bn).
Input: F1 (the Gram matrix of the lattice L1), F2 (the Gram matrix of the lattice L2), and
SN2 (defined as above).
Output: sol (the list of all isometries of a lattice)
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Algorithm 13 All (or one) isometries of a lattice

1: procedure naive− algo− iso(F1, F2, SN2, one− iso = False)
2: n ← number of columns of F1

3: Stp ← SN21, k1 ← len(Stp), i← 1
4: while i ≤ n and ind1 < k1 do
5: ki ← len(Stp), f ind− vi ← False
6: if i < n then
7: for j = indi, · · · , ki do
8: kpartial← [V1, · · · , Vi], appen(Stp[j], kpartial)
9: L← cand− vect− iso(F1, F2, SN2, kpartial, i+ 1, i+ 1)

10: if is− i− partial(F1, F2, [v1, .., vi−1, vi]) then
11: Vi ← Stp[j], Stp ← L, find− vi = True
12: break
13: else
14: if j < ki − 1 then
15: indi ← indi + 1
16: if find− vi then
17: i← i+ 1
18: else
19: while indi = ki − 1 and i > 1 do
20: indi ← 0, i← i− 1

21: indi ← indi + 1
22: Stp← cand− vect− iso(F1, F2, SN2, [V1, · · · , Vi], i, i)
23: else
24: for j = 1, · · · , ki do
25: if is− i− partial(F1, F2, [V1, .., Vn−1, Stp[j]]) then
26: Vn ← Stp[j]
27: append(V, sol)

28: if one− iso and length(sol) = 1 then
29: return sol
30: i← n− 1
31: while indi = ki − 1 and i > 1 do
32: indi ← 0, i← i− 1

33: indi ← indi + 1
34: if i = 1 and indi > ki − 1 then
35: return sol
36: break the while loop

37: if i = 1 then
38: Stp ← SN1

39: else
40: Stp ← cand− vect− iso(F1, F2, SN2, [V1, · · · , Vi], i, i)
41: return sol
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This algorithm will terminates as the set Iso(L1,L2) is finite. Indeed, if g ∈ Iso(L1,L2)
then g(bi) ∈ S2 for every 1 ≤ i ≤ n and the list (g(b1), · · · , g(bn)) determines g; This implies
that |Iso(L1,L2)| ≤ |S2|n which is finite since the set of short vectors S2 (shown in chapter 3)
is finite.

5.4 Isometries search with fingerprint

Here, we present an a method to compute either one or all isometries between the two lattices
described above using the fingerprint test. This fingerprint test is done using the fingerprint f1
of the first lattice L1 (that is computed as in chapter 4) and the number of extensions in the
isometry case.

Definition 50 The number of extensions (in the isometry case) of a k-partial isometry (v1, · · · , vk)
is the number of vector v ∈ S2 satisfying:{

Φ2(v, v) = Φ1(bk+1, bk+1)

Φ2(v, vj) = Φ1(bk+1, bj), for j = 1, · · · , k.

This number is denoted by nbExt− iso. It is defined by:
nbExt− iso(v1, · · · , vk) = |{v ∈ SN2k+1 : Φ2(v, vj) = Φ1(bk+1, bj), for j = 1, · · · , k}|.

For k-partial isometry (v1, · · · , vk), this number is simply zero as all vectors in the k-partial
isometry are already good images of the basis vector b1 up to bk. Therefore, for any 1 ≤ i, k ≤ n
and any k-partial isometry (v1, · · · , vk), we may consider the following:

nbExt− iso([v1, · · · , vk], k, i) =

{
0 if i < k∣∣∣{v ∈ SN2i : Φ2(v, vj) = Φ1(bi, bj), for j = 1, · · · , k − 1}

∣∣∣ otherwise.

This number of extensions is exactly the number of candidate images Cki for each fixed i and
k. To compute this number, we will use the following algorithm.

5.4.1 Algorithm to find the number of extensions

Here is an algorithm to find at a step k the list of candidates images Cki of a lattice element
with same norm as the basis vector bi. We consider the lattices L1 and L2 as above.

Pseudocode

input: F1 (the Gram matrix of the lattice L1), F2 (the Gram matrix of the lattice L2) the set
of same norm SN2, the k-partial isometry kpartial = [v1, · · · , vk] to test and the index k, i.
output: nExt− iso (the number of extensions)

49



Algorithm 14 the list of candidates images Cki
1: procedure nbExt− iso(F1, F2, SN2, kpartial, k, i)
2: n← number of columns of F
3: nExt− iso← length(cand− vect− iso(F1, F2, SN2, kpartial, k, i))
4: return nExt− iso

To determine each such list of good image (v1, · · · , vn) of the basis vector using the fingerprint
test, the idea is to first consider the naive algorithm of the isometry described in the previous
section; Next, in that algorithm, before checking if the list (v1, · · · , vk, v) is a (k + 1)-partial
automorphism, we first check if the number of extensions of (v1, · · · , vk, v) corresponds to the
number of extensions of (b1, · · · , bk, bk+1). This is helpful to detect as soon as possible, a k-partial
isometry that cannot be extended into an isometry. The algorithm is the following.

Pseudocode

Input: F1 (the Gram matrix of the lattice L1), f1 (the fingerprint of the lattice L1), F2 (the
Gram matrix of the lattice L2), and SN2 (defined as above).
Output: sol (the list of all isometries of a lattice)
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Algorithm 15 All (or one) isometries of a lattice

1: procedure algo− iso− fingerprint(F1, f1, F2, SN2, one− iso = False)
2: n ← number of columns of F1

3: Stp ← SN21, k1 ← len(Stp), i← 1
4: while i ≤ n and ind1 < k1 do
5: ki ← len(Stp), f ind− vi ← False
6: if i < n then
7: for j = indi, · · · , ki do
8: kpartial← [V1, · · · , Vi], append(Stp[j], kpartial)
9: L← cand− vect− iso(F1, F2, SN2, kpartial, i+ 1, i+ 1)

10: if nbExt− iso(F1, F2, SN2, kpartial, i+ 1, + 1) = f1[i+ 1, i+ 1] then
11: Vi ← Stp[j], Stp ← L, find− vi ← True
12: break
13: else
14: if j < ki − 1 then
15: indi ← indi + 1
16: if find− vi then
17: i← i+ 1
18: else
19: while indi = ki − 1 and i > 1 do
20: indi ← 0, i← i− 1

21: indi ← indi + 1
22: Stp← cand− vect− iso(F1, F2, SN2, [V1, · · · , Vi], i, i)
23: else
24: for j = 1, · · · , ki do
25: if is− i− partial(F1, F2, [V1, .., Vn−1, Stp[j]]) then
26: Vn ← Stp[j]
27: append(V, sol)

28: if one− iso and length(sol) = 1 then
29: return sol
30: i← n− 1
31: while indi = ki − 1 and i > 1 do
32: indi ← 0, i← i− 1

33: indi ← indi + 1
34: if i = 1 and indi > ki − 1 then
35: return sol
36: break the while loop

37: if i = 1 then
38: Stp ← SN1

39: else
40: Stp ← cand− vect− iso(F1, F2, SN2, [V1, · · · , Vi], i, i)
41: return sol
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5.5 Search for Isometries of lattices

We follow the method describe in the above proposition. Recall that from the above proposition,
to determine the set of all isometries between two lattices L1 and L2, the idea is to first determine
only one isometry g between these two lattices, then find all the automorphisms of the first lattice
L1, and deduce Iso(L1,L2) by taking the composition of g with each of the automorphism found
of L. We will use the algorithm for isometry using fingerprint to determine the first isometry.
And the algorithm of automorphisms described in chapter 3 to determine the automorphisms
of the first lattice.

pseudocode

input: F1 (the Gram matrix of the lattice L1), f1 (the fingerprint of the lattice L1), SN1
(defined as in the automorphism case), F2 (the Gram matrix of the lattice L2) and SN2 (defined
as above).
output: sol (the list of all isometries)

Algorithm 16 the list of candidates images Cki
1: procedure algo− iso− auto(F1, f1, SN1, F2, SN2)
2: sol = [ ]
3: ”Computing the first isometry”
4: g = algo− iso− fingerprint(F1, f1, F2, SN2, T rue)
5: ”Computing the list of all automorphisms of the first lattice”
6: List− auto1 = auto(F1, SN1, f1)
7: for θ in List− auto1 do
8: append(θ ◦ g, sol)
9: return sol

5.6 Runtime of algorithms described

The aim of this section is to test and give the computation time of the three algorithms for finding
isometries of lattices described above. This will be done on some examples where the bases of
the lattices involved are isometrics or not. In the first section, we construct some isometrics
bases to be used in order to ensure our algorithms results. The second section provided the test
and the comparison of these algorithms on examples based on the construction of isometrics
bases made.

5.6.1 Construction of isometrics lattices

In what follows, we would like to illustrate how one may construct two isometrics lattices. It
suffices to construct from a given basis matrix B of the first lattice, a second basis matrix V
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such that these two basis are isometrics. For this purpose, we consider two lattices with basis
vectors: B = (b1, · · · , bn) and V = (v1, · · · , vn), and with bilinear forms given by the inner
product. The following lemma is a tool for the construction of such basis.

Lemma 51 Assume that there exists coefficients αij ∈ Z such that bi =
∑n

j=1 αijvj. Then there
exists an isometry g between B and V .

Proof. We set g(bi) =
∑n

j=1 αijvj := bi, for each i = 1, · · · , n.

Since g(bi) := bi and the bilinear forms are given by the inner product, then g preserves the
bilinear forms. It is a Z-linear bijection by definition. Moreover, from this definition, g sends
each coordinates (0, · · · , 0, 1, 0, · · · , 0)T (with 1 in the i-th position) of the basis vectors bi to
the coordinates vectors (αi1, αi2, · · · , αii, · · · , αin)T ; thus we get:

((b1, · · · , bn)) = (v1, · · · , vn)

α11 α21 · · · αn1
...

... · · · ...
α1n α2n · · · αnn


Hence, g is really an isometry that sends B to V .

From this lemma, we know that if we have basis vectors B and V as above such that the
bi’s are linear combinations of the vi’s, then the basis B and V are isometrics. The following
proposition involve an example of construction of isometric basis.
We consider B and V as above and we assume that:

v1 = b1
v2 = α21b1 + b2

...

vk =
k−1∑
j=1

αkjbj + bk

...

vn =
n−1∑
j=1

αkjbj + bn

Proposition 52 Considering these assumptions, the basis B and V are isometrics.

Proof. From the above lemma, it suffices to show that there exists βij ∈ N such that
bi =

∑n
j=1 βijvj for all i ∈ {1, · · · , n}.

We prove this by induction on i.

1) For i = 1: since v1 = b1, set β11 = 1 and β1j = 0 ∀j > 1 and get b1 =
∑n

j=1 β1jvj.
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2)Assume for i = 1, · · · , k that there exists βij ∈ N such that bi =
∑n

j=1 βijvj. Let us prove

that there exists βk+1,j ∈ N such that bk+1 =
∑n

j=1 βk+1,jvj.

We know that bk+1 = vk+1 −
∑k

j=1 αk+1,jbj and by assumption ∀j ∈ {1, · · · , k} there exists

βjl ∈ N such that bj =
∑n

l=1 βjlvl. From this, we get:

bk+1 = vk+1 −
k∑
j=1

αk+1,j

( n∑
l=1

βjlvl

)
= vk+1 −

n∑
l=1

( k∑
j=1

αk+1,jβjl

)
vl

Since
∑k

j=1 αk+1,jβjl ∈ N for all l, then one may set βk+1,l =
∑k

j=1 αk+1,jβjl ∈ N. Thus

bk+1 =
∑n

j=1 βk+1,jvj.
This proves the proposition.

From this proposition, we can deduce the following corollary.

Corollary 53 Given a basis B = (b1, · · · , bn) and arbitrary coefficients αij ∈ N such that
αii = 1 for i = 1, · · · , n and αij = 0 for j > i and j ∈ {1, · · · , n}, one can construct an
isometric basis V = (v1, · · · , vn) of B, with the vi’s defined by vi =

∑n
j=1 αijbj = bi+

∑
j<i αijbj.

Moreover, the basis V can be computed using the matrix expression: V = BM , where M =
1 α21 · · · αn1

0 · · ...
... · · αn,n−1
0 · 0 1



Proof. This is just a consequence of the above proposition.

5.6.2 Computation time

Here we use three examples to illustrate the test and to present the computation time of our
algorithms.

Example 54 In this example, we want to verify whether our algorithms returns an empty list
when they have as input not isometric lattices. For this purpose, we consider the identity lattice
n and the root lattice An with Gram matrix FAn defined with 2 on the diagonal entries, −1 under
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and over the diagonal entries and the 0 elsewhere. It is given by:

FAn =



2 −1 0 · · · 0
−1 · · · · · ·
0 · · · ...
... · · · 0
· · · · −1
0 · · · 0 −1 2

 .

These two lattices are not isometric as det(FIdn) = 1 6= 5 = det(FAn). We run our Sage code
in dimension 4 and we get the following results.

Returns iso-naive iso-fingerprint iso-auto
time(s) 0.0 0.0 0.0
card(Iso(Id4,A4)) 0 0 0

This table ensure our algorithms results when not isometric lattices are given. Moreover, we
realised that our Sage code produces this results in time less than a second.

The following example uses the above corollary to compute from a given basis B of a lattice,
a second basis V for a second lattice in the case where M = (αij)(1≤i,j≤n), with n equals to the
number of bi’s; the matrix M has 1 on the diagonal and under the diagonal, and the 0 in other
entries. Then, we find the isometries between B and V using our algorithms. The computation
time of these algorithms is also considered.

Example 55 Here, we take B =

(
0 2 0
2 1 1
0 0 1

)
and with our Sage code we compute V =

(
2 2 0
3 2 1
0 1 1

)
.

Then we compute the Gram matrices FB = BTB and FV = V TV Finally, we apply these Gram
matrices to our Sage code and we obtain the following results.

Returns iso-naive iso-fingerprint iso-auto
time(s) 0.0 0.0 0.015
card(Iso(B, V )) 16 16 16
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Chapter 6

Conclusion

In this work, we first give an overview on lattices. This was done by giving definitions and
examples of lattice, lattice elements, quadratic and bilinear form associated to a given lattice;
Also, we gave a brief description and application of some matrix decomposition; The definitions
and properties of automorphisms and isometries were also involved. Second, we describe a
method for computing short vectors of a given lattice (L,Φ); These are vectors v in L satisfying
Φ(v, v) ≤M , where M is the maximal norm of the basis vectors of the lattice L; These methods
use either the Cholesky decomposition or the LDLT -decomposition of the LLL reduced form of
the Gram matrix of the lattice involved; We also study the complexity analysis of these methods
based on [4] and a computation time of these algorithms on an example. Third, we present an
algorithm for computing the group of automorphisms of lattices; Proposed by [1], this method
is achieved using partial maps and the fingerprint of the Gram matrix involved; The description
of this backtrack search algorithm is followed by a computation time measurement. We end by
presenting methods to compute isometries between two lattices. These methods are based on the
backtrack search described on [1] to find the group of automorphisms of lattices. All algorithms
described in this essay were coded and tested in Sage 8.1 using standard packages. Future work
with these methods would involve reducing the computation time by using for instance vector
sums or Bacher polynomials as in [1]. One can also use the algorithm for computing isometries
to construct the genus of lattices. Lastly, these methods could also be extended in general to
work over number fields.
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