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Conventions

We fix some notation and conventions as follows.

Algebra

We write L|K for a field extension X' C L. When L|K is Galois, we write Gal(L|K) for
its Galois group. For a field K, we will denote by K, a separable closure of K and by K an
algebraic closure of K. Let ¥ be a set endowed with a Gal(K|K)-action. Then we will denote
by (g,0) = 90 for the Gal(K|K)-action. Let S be a set endowed with a G-action for some
group G, then we write (g, s) — g.s for the G-action.

We will use Gothic letters to denote categories. For example, 2b is the category of abelian
groups, &t is the category of groups, o0 is the category of G-modules for a group G and etc.

Let L|K be a finite field extension. Then we simply write H?(L|K) for H?(Gal(L|K), L*).
When we want to emphasize how the maps between cohomology groups go, we will write ex-
plicitly H%(Gal(L|K), L*).

Algebraic geometry

Let X be a scheme. We write Ox for the structure sheaf on X and we denote by Ox , the
stalk at x. For each z € X, Ox , is a local ring with maximal ideal m, and we write x(z) for
the residue field. We write X (9 for the set of points on X of codimension ¢. If X is an integral
scheme, then we write K (X) for the function field of X. For an integral scheme X defined over
a field k, we also employ k(X) to denote its function field. For instance, let X be an integral
Q-scheme, then we write Q(X) for the function field of X.

Let k be a field and let k£ be an algebraic closure of k. Let X be a scheme over k, then we
write X = X Xy k.

We say X is a k-variety if X is separated and of finite type over k. An integral k-variety is a
reduced and irreducible k-variety. We say X satisfies some geometrical property P if X satisfies
the property P. For example, we say a k-variety X is geometrically integral (resp. geometrically
reduced, etc) if X is integral (resp. reduced, etc).

We say a variety X over k is split if it contains a non-empty smooth open set U which is
geometrically integral over k, i.e. U is integral and k is algebraically closed in k(U). We say a
k-variety X is geometrically split if the k-variety X is split. Note that X is geometrically split
iff X contains a non-empty smooth open subset.

Let S be a base scheme and let f : X — Y be a morphism of S-schemes. We say f is an
X-point on Y and we write Y (X) := Homg(X,Y") for all X-points on ¥ over S. If X = Spec A
for some ring A, then we write Y (A) := Homg(Spec A,Y) instead of Y (X).

The Brauer group Br(X) of a scheme X will always mean the cohomological Brauer group
HZ(X,G,,). We write Bra,(X) for the classes of similar Azumaya algebras over X. Let X be
a variety over k provided with p : X — Speck. Then we obtain two natural homomorphisms
p* : Br(k) — Br(X) and Br(X) — Br(X)G*k) We write

Bro(X) = Im(Br(k) — Br(X))
Br; (X) = Ker ( Br(X) — Br(X)G:0),



Finally, we fix notation on cohomology groups. Let X be a scheme, let G be a sheaf of
abelian groups in the Zariski topology and let F be an étale sheaf of abelian groups. Then
we write H7  (X,G) for the usual cohomology groups defined by the derived functors of the
global section functor. We write H%(X, F) for the cohomology groups with values in F in the
étale topology. Let $ be a covering in the étale topology over X, then we write H9 (8| X, F)
for the Cech cohomology groups with values in F with respect to the covering {. The Cech
cohomology groups H9(X, F) is the limit of H%(4|X, F) where 4 runs through all coverings in
the étale topology.

Arithmetic

Let K be a henselian field with respect to a non-archimedean valuation v. Let s be the residue
field of v. Then for each algebraic extension L|K, v extends uniquely to a non-archimedean
valuation of L. If L|K is a finite extension, then we say L|K is unramified if xr,|x is separable
and [L : K] = [kr : k]. An algebraic extension is called unramified if it is a union of finite
unramified subextensions. The composite of all unramified extensions inside an algebraic closure
K of K is simply called the maximal unramified extension of K and we denote it by K,,. The
residue field of K, is the separable closure of . If k is perfect, then the residue field of K, is
an algebraic closure of k. Moreover, K, contains all the roots of ™ — 1 for m not divisible by
the characteristic of x because the separable polynomial ™ — 1 splits over k, and hence it also
splits over K, by Hensel’s lemma. In practice, x will sometimes be finite. In this case, K| K
is generated by these roots of unity because these roots generate rs|x.

If k is a number field, we write Q or simply 2 for the set of places of k. We denote by
the archimedean places of k and Q; the finite places of k, so we have Q = Q| | Q. For v € ,
we denote by k, the completion of k£ with respect to the place v. For each finite place v € {2y,
we write O, for the ring of integers of k,. Let S C Q be a finite subset, we write Oy g be the
ring of S-integers, i.e.

Ops:={zeck]||z|, <1, forve¢ S}

We will write Ay for the associated ring of adeles of k. Finally, for a subset S C Q, we put

ks = HUGS kv and kS’ = Hveﬂfs kv'
If M is a discrete Gal(k|k)-module, then we write

0% (k, M) := Ker(H(k, M) — [[ H(ky, M)).
vEN

If A is an abelian variety over k, then III(A) = III'(k, A(k)) is its Tate-Shafarevich group.
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Classical Notions






Introduction

A Diophantine equation is a polynomial equation in at least two unknown with coefficients
in Z which we only concern whether it has integral solutions or not. People have spent lots of
times on answering some typical questions like the existence of a solution, the cardinality of the
set of solutions, whether it is possible to find all solutions in theory and etc. In 1900, Hilbert
proposed determining whether a Diophantine equation is soluble in Z or not, which is known
as the Hilbert’s tenth problem. Due to M. Davies, H. Putnam, J. Robinson, Ju. Matijasevic
and G. Chudnovsky, the answer to Hilbert’s tenth problem is negative. More precisely, let
f(t;z1,...,2,) = 0 be a polynomial equation with coefficients in Z. Then for a certain integer
t, there is no algorithm that would tell us whether the equation is soluble in Z or not.

For a homogeneous Diophantine equation, to find a non-trivial solution in Z is equivalent to
find a solution in Q. This suggests us, in general, to ask the existence of rational solutions of
ft;x1,. .., 2,) = 0 first. In fact, this does not reduce the difficulty of finding a solution. But
thanks to Hensel’s lemma, usually it will be much easier to find solutions in Q, and R rather
than in Q. More generally, let & be a number field and let V' be a k-variety. Hensel’s lemma
may provide k,-points on V for each place v, then it is natural to ask whether there is a k-point
on V. We are now in a position to state the Hasse principle. We say a family of varieties over k
satisfies the Hasse principle, if for each variety V in this family, V(k,) # 0 for each v will imply
V (k) # 0. A variety defined by one quadric equation was the first non-trivial example when
the Hasse principle holds (Minkowski-Hasse theorem). Now our strategy is to show a family of
varieties satisfy the Hasse principle, then to find k-points on each variety in this family reduces
to find k,-points.

In the middle of the twentieth century, mathematicians began to consider when the Hasse
principle fails. They discovered concepts such as Selmer group of an elliptic curve, the Tate-
Shafarevich group, and the Cassels-Tate form on it, and finally Manin first found a general
obstruction to the Hasse principle. We briefly introduce the idea as follows. Let X be a variety
over k and let Ay be the adelic ring over k. The idea is to find a closed subset C such that
X(k) c C C X(Ag). Then the emptiness of C' obstructs the existence of k-points on X. Manin
also found a good substitute to the Hasse principle when it fails and it is the statement that the
Manin obstruction to the Hasse principle is the only obstruction. A more precise statement for
principal homogeneous space under an abelian variety with finite Shafarevich group is theorem
6.2.3 in [47]. This means that if we are given solutions in k, satisfying certain conditions for
each v, then there is also a solution in k. The Manin obstruction is the only one for many
types of homogeneous spaces of linear algebraic groups. This is one possible generalization of
the Minkowski-Hasse theorem for quadrics.

It was Skorobogatov who first found a counter-example to the Hasse principle which is
not described by the Manin obstruction. This leads us to the notion of torsors and descent
obstructions. Let X be a k-variety and let G be an algebraic group over k. An X-torsor under
G is an fppf X-variety Y endowed with a G-action compatible with Y — X which is locally in
appropriate topology a direct product. Now suppose Y is a principal homogeneous space of an
elliptic curve F defined over k, G is a finite subgroup of F and X = Y/G. Assume X (k,) # 0
for each place v of k, then by descent theory we sometimes know that X contains no k-point.
Then descent method can also be used to describe general torsors and we will use the twist
operation to define the descent obstruction. We will see later this is some kind of generalization
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of the Brauer-Manin obstruction.

We also want to know whether the set of rational points on a variety is Zariski dense. In
this report, the Zariski density for nice varieties are proved by weak approximation which is a
stronger statement than the Hasse principle asking whether X (k) is dense inside [[ X (k,). We
usually study weak approximation and the Hasse principle at the same time, because the proof
can often be given at the same stage. The above topics form the first part of this report.

The first chapter collects well-known results such as group cohomology, nice morphisms
of schemes, Grothendieck’s topology, cohomology of abelian sheaves on topologies, birational
map and end up with a collection of useful techniques. The second chapter introduce the
Brauer groups of schemes and the Brauer-Manin obstruction to the Hasse principle and weak
approximation. The goal of the third chapter is to introduce torsors and their twist and then
state the descent obstruction.



Chapter 1

Preliminaries

The aim of this chapter is to introduce some notions and fix some notations which we will
frequently use in the sequel.

1.1 Group cohomology

In this section, we establish the theory of group cohomology and introduce some canonical
morphisms. We will use group cohomology theory to define Brauer groups of fields and to study
torsors.

1.1.1 Derived functors

We briefly recall some basic facts about d-functors and derived functors. The main reference
is the second chapter in [49].

Definition 1.1.1. Let 2 and 2’ be two abelian categories. A (covariant) cohomological ¢-
functor between 2 and 2 is a collection T' = (T'?) of additive functors T? : 2 — A’ for ¢ > 0,
together with morphisms
§9:TYC) — TIT(A)
defined for each short exact sequence 0 - A — B — C' — 0 in A such that the following two
conditions hold. Here we make the convention that 79 = 0 for ¢ < 0.
(1) For each short exact sequence 0 - A — B — C' — 0 in 2, there is a long exact sequence

q—1 q
e TYO) 'S TYA) = TY(B) — T9(C) S T (A) — - -
(2) For each morphism of short exact sequences from 0 -+ A" - B’ - C' - 0to0 — A —

B — C — 0in 2, §7 gives a commutative diagram

T9(C") LT‘!H(A’)

N

T9(0) A Tat1(A)

for each q.

Definition 1.1.2. (1) A morphism S — T of cohomological é-functors is a collection of natural
transformations S? — T that commute with §9.

(2) A cohomological d-functor T is universal if given any other §-functor S and a natural
transformation f° : T° — SO, there exists a unique morphism 7' — S of J-functors extending

f°.

13



1.1. GROUP COHOMOLOGY

As an example of universal cohomological d-functor, we introduce the right derived functors
of a left exact functor between abelian categories. Let F' : 2l — 2’ be a left exact functor between
two abelian categories. Suppose 2l has enough injectives. We construct the right derived functors
RYF of F for ¢ > 0 as follows. Let A be an object of 2, choose an injective resolution A — I*
and define

RIF(A) = HY(F(I%)).

Theorem 1.1.1. Let F : A — A’ be a left (resp. right) exact functor between abelian categories.
Suppose A has enough injectives (resp. projectives). Then the derived functors R1F (resp. L,F)
form a universal cohomological (resp. homological) §-functor.

Proof. See [19], Theorem 2.4.7. O
Finally we give some examples of derived functors and universal §-functors.

Example 1.1.2. Let R be a ring and let A be an R-module.
(1) The functor

Homgoo (A4, =) : Modr — Modgr, B — Homgyoo, (A, B)

is left exact. We define
Ext% (A, B) = R Homopoo , (A, —)(B).

(2) The functor
AQRp — : Moo — Modr, B— ARr B

is right exact. We define
Tory(A, B) = Ly(A®r —)(B).

Both two functors are universal §-functors since they are derived functors of some functors.

Example 1.1.3. For a topological space X, we write 2bx for the category of sheaves of abelian
groups on X. Let f: X — Y be a continuous map of topological spaces. Then the direct image
functor f, : Abx — Aby, F — f.F is left exact. We obtain its right derived functor R?f, which
is a universal cohomological J-functor.

1.1.2 Group homology and cohomology

Now we introduce group homology and cohomology. Let G be a finite group. By a G-module
we mean a Z[G]-module. We denote by 9Mods the category of G-modules. This is an abelian
category which has enough injectives and projectives.

Group cohomology

Let G be a finite group (we will generalize the group cohomology theory to profinite groups
later and then it is clear why we assume the group G is finite). We consider the functor

Homg(Z, —) : Modg — 2Ab, A — Homg(Z, A).

Here 2Ab is the category of abelian groups. Since the functor Homg(Z, —) is left exact and Modg
has enough injectives, we can define

H%(G, A) := R?(Homgc)(Z, —))(A),

for ¢ > 0. We call H9(G, A) the ¢-th cohomology group of G with coefficients in A. As we have
seen, for a short exact sequence 0 - A — B — C — 0 of G-modules, we have a long exact
sequence

- HT7YG,C) - HIYG,A) - HY(G,B) — HY(G,C) — HIT (G, A) — - -
Remark 1.1.4. Let A be a G-module. We denote by A® the elements of A fixed by G, i.e.
A% ={a€ A|ga=a, Vg€ G}. It’s easy to see that A = Homg(Z, A) = H°(G, A).

14



CHAPTER 1. PRELIMINARIES

Group homology

Similarly,
Z ®Z[G] — :Modg —Ab, A~ 7Z ®Z[G] A

is right exact and 900 has enough projectives, hence we can define
Hy(G, A) := Ly(Z ®z;c) —)(A)

for ¢ > 0. We call H,(G, A) the ¢-th homology group of G with coefficients in A. For a short
exact sequence 0 - A - B — C' — 0 of G-modules, we have a long exact sequence

o= Hyp1(G,C) - Hy(G,A) — Hy(G,B) - Hy(G,C) - Hy—1(G,A) — -

Tate cohomology groups

Let G be a finite group and let A be a G-module. Let N : A — A, a — deG g.a be the
norm. Let I be the kernel of the map Z[G] — Z, 3 congg = > cqng- Then we have the
Tate cohomology groups defined as follows:

HY(G,A) = H1(G, A) if ¢ > 1
HY(G,A) = AS/NA ifg=0
H Y (G,A) =KerN/IgA ifq=—1
H™9(G,A) = H, 1(G,A) ifqg>2.

Proposition 1.1.5. If G is a finite group and 0 = A — B — C' — 0 is an ezxact sequence of
G-modules, then there is a long exact sequence

o= HTYG,C) —» HY(G, A) — HY(G, B) — HY(G,C) — HI*Y (G, A) — -- -
Proof. See [4], page 102, theorem 3. O

Cyclic groups

Let G be a cyclic group of order n with a generator g. We consider two special elements in
Z[G], namely N =1+g+g*>+---+¢" ! and D = g — 1. By abuse of notation, we write

N :Z|G] = Z|G], a+ Na, and D :Z[G]— Z[G], a— Da.

Note that N(g) = N holds and hence we obtain N (3" n;¢°) =Y. n;N(g') = >.n;-N € Z-N. Let
€ : Z|G] — Z be the map given by (3" a;g°) — > a;. By checking directly we see Im D = Kere.

Proposition 1.1.6. The cohomology of a finite cyclic group is periodic of period two. Ex-
plicitly, we have

HY(G,A) =Ker(D)/Im(N) = A°/NA  forq=0 (mod 2),
ﬁq(G, A) =Ker(N)/Im(D) =Ker N/NA forq=1 (mod 2).

Proof. There are exact sequences
0 KerN 5 Z[G) S Z-N—=0 and 0—Z-N— Z[G] 3 Ker N — 0.

Therefore we obtain a periodic free resolution of Z:

LAz Bzia Bzl B zig) S Z - o.

Now we apply the functors — ®zg) A and Homgg)(—, A) and take homology, then by definition
of Tate cohomology groups we conclude the assertion. O

15



1.1. GROUP COHOMOLOGY

Let hg(A) denote the order of ﬁq(G,A) for ¢ = 0,1 when it is finite. If both are finite, we
define the Herbrand quotient h(A) := ho(A)/h1(A).

Proposition 1.1.7. Let G be a cyclic group and let0 — A — B — C — 0 be an exact sequence
of G-modules. If two of the three Herbrand quotients h(A), h(B), h(C) are defined, then so is
the third and we have

h(B) = h(A) - h(C).

Proof. See [1], page 109, proposition 10. O
Proposition 1.1.8. Let G be a cyclic group and let A be a finite G-module, then h(A) = 1.

Proof. See [1], page 109, proposition 11. O

1.1.3 Standard resolution

As usual, group cohomologies can be computed by cocycles. We introduce a free resolution
of the trivial G-module Z explicitly and it will tell us how the cocycles look like. But in fact,
we are mainly interested in 1-cocylces in this report. Let L, be a free Z-module with a basis
(90s---,9q) of ¢+ 1 elements of G, and define the G-action on L, componentwise

g'(QO? e agq) = (gg()a e 7ggq)~
Define the differentials d : L, — Lqy—1 by

q

d(go, e agq) = Z(—l)z(go’ cee 7§i7 cee 79(1)

=0

where the hat means that we omit the component g;. The homomorphism Ly — Z is defined
by sending each go to 1 € Z. Then we obtain an exact sequence

o= Ly - Log—7Z—0.

An element of K9 = Homgg)(Lg, A) can be identified with a function f(go,...,g,) taking
values in A, and satisfying the condition

f(9.90,---,9-94) = 9-f(gos- -, 9q)-
The coboundary of f is defined by
q+1

d: K1 4>Kq+17 f'_> ((907~-~7gq+1) — Z(il)if(gOa"'agia"'vgq+1))'
i=0

A cochain f is uniquely determined by its restriction to systems of the form

(1591791927 cees g1 - gq)

This leads us to interpret the elements of K7 as inhomogeneous cochains, i.e.

df(gla e aqurl) :gl'f(927 e aqurl) + (_1>q+1f(gla e agq)
q

(_1)7’f(gl7 v 9i—-1,9i9i4+1, 9i4+25 - - - agq+1>-
=1

+

7

Example 1.1.9. (1) A 1-cocycle is a map f : G — A such that
0 =df(91,92) = 91-f(92) — f(9192) + f(gn),

16
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or in other words, f verifies
f(9192) = 91.f(g2) + f(g1)-

It is also called a crossed homomorphism. It is a coboundary if there exists a € A such that
f(g) =g.a—aforall g € G.

When G acts trivially on A, we have g.a —a =0 forany g€ Ganda € A. Let f: G — A
be any 1-cocycle satisfying ¢.f(g0) = f(990), then f is a 1-coboundary iff f(g) = g.a — a for
some a € A which means that f is identically zero. This implies that we have the identification
HY(G, A) = Homg(G, A).

(2) A 2-cocycle is amap f: G x G — A such that

91-f(92:93) — f(9192:93) + f(91,9293) — f(g1,92) = 0.
We end up with explicit computation on the proof of Hilbert’s theorem 90.

Theorem 1.1.10 (Hilbert’s theorem 90). Let L|K be a finite Galois extension. Then
H'(Gal(L|K),L*) = 0.

Proof. Let c¢: Gal(L|K) — L* be a 1-cocycle, i.e. ¢(g192) = c(g1) - 9 ¢(g2). Recall that distinct
automorphisms of a field are linearly independent, we know that the endomorphism of L given
by multiplying deGal(L|K) ¢(g) - g is not identically zero. Hence we can find x € L* such that
a=> c(g) 92 # 0. Now for each g € Gal(L|K), we have

Y= 3 9(elh) - Ma) = YD 9(eh)

h

h
= clg) - elgh) - e = clg) M S elgh) - w = c(g) -,
h

h
where each h runs through Gal(L|K). This shows that c(g) = 98-8 for 8 =a~! € L*, i.e. each
1-cocycle is a coboundary. O
1.1.4 Change of groups

Let f : G — G be a homomorphism of groups and let A be a G-module. We put ¢'.a =
f(g).afor ¢ € G' and a € A. Then A is endowed with a G’-module structure which we denote
by f*A. For a € A®, we have ¢'.a = f(¢').a = a and hence A is a subgroup of (f*A)S". This
defines a natural transformation of the functors

H(G,-) - H) (G, f*—).

Since derived functors form a universal d-functor, it extends to a natural transformation
HY(G,—) = HI(G, f*~)

for all ¢ > 0. In particular, for each ¢ > 0 and each G-module A, we have a homomorphism
HYG,A) — HY(G', f*A).

More generally, we consider a G’-module A" and a group homomorphism ¢ : A — A’ as follows.
We say that f and ¢ are compatible if ¢(g".a) = ¢(f(¢’).a) = ¢’.¢(a) for all ¢’ € G'. This can
be visualized as the following commutative diagram

G'xA—Ls A

]

G x A — A
P

17
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where p(g’,a) = f(¢').a and p'(¢',a’) = ¢’.a’. This implies H°(G’, f*A) ¢ H°(G’, A’). Thus ¢
defines a homomorphism

HYG', f*A) - HY(G', A)

for each ¢ > 0. We obtain H4(G, A) — H?(G’, A’) by composing the homomorphisms as follows
for each ¢ > 0

HY(G,A) - HY(G, f*A) - HY(G', A)
and we call the resulting homomorphism the homomorphism associated to the pair (f, ®).

Example 1.1.11. If H is a subgroup of G and ¢ : H — G is the inclusion, then we obtain an
inclusion A® < A By the same argument as above, it extends to homomorphisms

res: HY(G,A) —» HI(H, A)
which are called the restriction homomorphisms.

Example 1.1.12. Let H be a subgroup of G and let A be a G-module. Suppose H has finite
index in G. If a € A" and g € G, then the element g.a depends only on the left coset of g
(mod H). As G/H is finite, we can form the sum Ng,/p(a) = > ,cq/ps.a. For any g € G,
9-Ng/u(a) = ZseG/H gs.a = Ng/g(a) holds, hence we get a homomorphism

Ng/u - H'(H, A) = H°(G, A), a— Ng/u(a).
This is the corestriction in degree 0. Thus we obtain a homomorphism for each ¢
cores : H1(H,A) - H(G, A),
which is called the corestriction homomorphism.

Example 1.1.13. Let H be a normal subgroup of G and let A be a G-module. Let 7 : G — G/H
be the projection and let ¢ : A¥ — A be the inclusion. For ¢ € G and a € A¥, we have
g.t(a) = g.a = w(g).a = t(m(g).a) and hence 7 and ¢ are compatible. Here g.a only depends
on the coset of G/H since a € A¥ and this implies g.a = 7(g).a. Therefore we obtain a
homomorphism for each g:

inf : HY(G/H,A") = HI(G, A)
and it is called the inflation homomorphism.

Proposition 1.1.14. Let ¢ > 0 be an integer. Suppose H'(H,A) =0 for 1 < i < q. Then the
following sequence is exact:

0— HYG/H,A")™ H9(G, A) S HI(H, A).
Proof. See [13] page 117, proposition 5. O

Corollary 1.1.15. Let M|K be a Galois extension containing a Galois extension LIK. Then
there is an exact sequence

0 — H*(Gal(L|K),L*) — H*(Gal(M|K), M*) — H?*(Gal(M|L), M*).

Proof. Let G = Gal(M|K) and let H = Gal(M|L). Since H'(Gal(M|L), M*) = 0 by Hilbert’s
theorem 90, we can apply the previous proposition with ¢ = 2. We get the exact sequence

0 — H*(Gal(L|K),L*) — H*(Gal(M|K), M*) — H?*(Gal(M|L), M*).
as required. O

18
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1.1.5 Profinite groups

Now we introduce the cohomology to profinite groups. Let G be a profinite group and let
{Ui}ier be the family of all open normal subgroups of G. For i,j € I, we assume i < j iff
U; C U;, hence {U;}ier is a direct system. Then for any ¢ < j, we have canonical projections
G/U; = G/U; and {G/U;} becomes an inverse system.

We can prove that G ~ I'&Hiel G/U; (see [1], page 118, corollary 1). We say a G-module A

is discrete, if A = J,¢; AUi where U; runs through all open normal subgroups of G. In fact,
A~ lim, AVi because all the homomorphisms AY7 — AYi are injective.
For each pair ¢ < j, we obtain an inflation homomorphism

)\ij : Hq(G/Ul7AU7) - Hq(G/U]aAU7)
induced by AY" — AY and G/U; — G/U; as usual. Therefore we obtain a direct system of
abelian groups (H4(G/U;, A7), \ij).

Definition 1.1.3. Let G be a profinite group, let {U;};c; be the family of all open normal
subgroups of G and let A be a discrete G-module. We call

H!(G, A) =l H'(G /U, A7)

iel
the ¢-th cohomology group of G with coefficients in A.

Example 1.1.16. Let L|K be a Galois extension and let {K;};c; be the family of all finite
Galois extensions of K contained in L. We write U; = Gal(L|K;) and then U; forms a direct
system consists of all the open normal subgroups of Gal(L|K). Then it follows that

Gal(L|K) ~ lim Gal(L| )/ Gal(L|K).

The Gal(L|K)-action on L makes the additive group (L,+) into a Gal(L|K)-module. Now
LY = K; and L = |JK; hold, hence L is a discrete Gal(L|K)-module. Moreover, K; is a
Gal(K;|K)-module and Gal(K;|K) ~ Gal(L|K)/U;. Thus we conclude

HY(Gal(L|K), L) ~ lig H(Gal(I;|K), K).

In fact, H?(Gal(L|K), L) = 0 for each ¢ > 1 (see [4], page 124, proposition 2). By this fact, the
cohomology theory of the additive group (L, +) is not interesting. The situation is quite different
when we look at the multiplicative group L* as a Gal(L|K)-module. Since (L*)Y = K¢ and
L* =|JK/*, L* becomes a discrete Gal(L|K )-module and we have

HY(Gal(L|K), L*) ~ lim HY(Gal(K;|K), K7°).

We will see the application later.

1.1.6 Cup product

Let A, B be two G-modules and let A ®7 B be their tensor product over Z. We make A®z B
into a G-module by setting
g(a®b)=g.a®g.b

and extending by G-linearity.

Proposition 1.1.17. Let G be a finite group. Then there exists one and only one family of
homomorphisms (called cup product) defined for every pair of integers (p,q) and every couple
of G-modules A, B: R R R

HP(G’ A) X7, I{q<6;'7 B) — H;D-i-q(G’ A X7, B)

denoted by a ® b — a Ub, which satisfy the following four properties:
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(1) These homomorphisms are morphisms of functors, when the two sides of the arrow are
considered to be covariant bifunctors in (A, B).
(2) For p=q =0, the cup product

(A9/NA) @z (B°/NB) — (A®z B)®/N(A®z B)

is obtained by passage to the quotient of the natural map A® ®7 B¢ — (A @z B)C.
(8) Let 0 > A" - A — A” — 0 be an exact sequence of G-modules. If the sequence

0—2A®,B—-A®;B— A"®;,B—0
is also exact, then for all o’ € HP(G,A”) and b € H1(G, B):
(6a”)yUb=4(a" Ub),

where both sides are elements of HP 91 (G, A ®y B).
(4) Let 0 — B’ — B — B” — 0 be an exact sequence of G-modules. If the sequence

0+ A®zB = Az B — A®zB" =0
is also ezact, then for all a € HP(G, A) and V' € H1(G,B"):
aU(8b") = (=1)P5(aUb"),
where both sides are elements of HP 11 (G, A @y B).

Proof. For a proof, see [1], page 105, section 7. O

1.2 Morphisms of schemes

We introduce some special morphisms of schemes with nice properties in this section.

1.2.1 Flat morphisms

Definition 1.2.1. Let f : X — Y be a morphism of schemes.

(1) We say f is flat at € X, if Ox, is a flat Oy,,-module via f} : Oy, — Ox ,, where
y = f(x). We say f is flat if f is flat at any = € X.

(2) We say f is faithfully flat if f is flat and surjective.

Proposition 1.2.1. (1) Open immersions are flat.
(2) Flat morphisms are stable under base change.
(8) Flat morphisms are stable under composition.

Proof. See [34], §4.3.1, proposition 3.3. O

1.2.2 Etale morphisms

Definition 1.2.2. Let f: X — Y be a morphism of schemes.

(1) We say f is unramified if for any « € X, myOx, = m, holds and k(z)|x(y) is a
separable field extension where y = f(x).

(2) We say f is étale if f is flat and unramified.

Example 1.2.2. Let L|K be a finite field extension. Then Spec L — Spec K is unramified
(hence étale) iff L|K is a separable extension.

We can describe unramified morphisms by the following lemma.
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Lemma 1.2.3. Let f : X — Y be a morphism of finite type between locally noetherian schemes.
Then f is unramified iff for each y € Y, the fibre X, is finite and reduced, and k(x)|k(y) is a
separable extension.

Proof. First note that Ox, . ~ Ox . ®oy., £(y) ~ Ox2/m,Ox . Suppose f is unramified.
Then m, = m,;Ox,. Hence Ox, ., ~ k(x). This shows that X, is reduced and of dimension
0. X, is of finite type over x(y) hence it is quasi-compact. It follows X, is finite. Conversely,
X, is finite implies X, is the disjoint union of Specx(z) for x € X,,. Hence s(z) ~ Ox, , ~
Ox »/myOx , and this shows that f is unramified. O

Proposition 1.2.4. (1) Open immersions are étale.
(2) Etale morphisms are stable under composition.
(8) Etale morphisms are stable under base change.

Proof. See [34], §4.3.2, proposition 3.22. O

1.2.3 Morphisms of finite presentation

Definition 1.2.3. Let f : X — Y be a morphism of schemes.

(1) We say f is quasi-compact if f~1V is quasi-compact for each affine open subset V of
Y. In particular, an affine morphism (hence a closed immersion) is quasi-compact.

(2) We say f is quasi-separated if the diagonal morphism A : X — X Xy X is quasi-
compact. In particular, a separated morphism is quasi-separated since the diagonal morphism
A: X — X xy X is a closed immersion.

Definition 1.2.4. Let f: X — Y be a morphism of schemes.

(1) We say f is of finite presentation at x € X, if there exists an open affine neighbourhood
V = Spec B of f(x) in Y and an open affine neighbourhood U = Spec A of z in f~(V) such
that A is a B-algebra of finite presentation.

(2) We say f is locally of finite presentation if f is of finite presentation at any = € X.

(3) We say f is of finite presentation if it is quasi-compact, quasi-separated and locally
of finite presentation.

Proposition 1.2.5. (1) Open immersions are locally of finite presentation.

(2) Morphisms of locally finite presentation (resp. finite presentation) are stable under base
change.

(8) Morphisms of locally finite presentation (resp. finite presentation) are stable under com-
position.

Proof. (1) Let j : U — X be an open immersion. We may assume U is an open subscheme of
X. Then for each x € U, we can find an open affine neighbourhood V = Spec A C U C X. Of
course A is an A-algebra of finite presentation and it follows that (1) holds.

(2) Let f: X - Y and Y’ — Y be morphisms of schemes. Suppose f is locally of finite
presentation. We denote by X’ =Y’ xy X and take 2’ € X’. Let z,y and ¢’ be the images of =’
in X, Y and Y’ respectively. Then by assumption, we can find two open affine neighbourhoods
V = Spec B and U = Spec A of y and « respectively such that f(U) C V and A is a B-algebra
of finite presentation. Let W = Spec B’ be an open affine neighbourhood of 3 in Y’ such that
W is contained in the inverse image of V. Now W Xy U =~ Spec(B’ ®p A) is an open affine
neighbourhood of z’ in X’ and B’ ® g A is a B’-algebra of finite presentation.

(3) Let f : X — Y and g : Y — Z be morphisms of schemes that are locally of finite
presentation. Take any € X and let y = f(z) and z = g¢g(y). We can find open affine
neighbourhoods W = SpecC and V = Spec B of z and y respectively such that g(V) Cc W
and B is a C-algebra of finite presentation. Now f is also locally of finite presentation, we
can therefore localize V' at suitable b € B and find U = Spec 4 such that f(U) C V} and A
is a By-algebra of finite presentation. Summing up, we obtain a C-algebra structure on A by
C — B — By — A and this implies that A is a C-algebra of finite presentation. O
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1.2.4 Smooth morphisms

Suppose X is an integral variety over an algebraically closed field for the moment. Then
there are two equivalent definitions for X to be non-singular (cf. [28] 1.5). Roughly speaking,
the first definition asks the Jacobian matrix at each point is of correct rank and the second
definition requires each local ring is a regular local ring. Unfortunately, these two definitions are
no longer equivalent in general. Moreover, we also need the notion of smoothness over arbitrary
base schemes rather than fields. In this section, we study regular (non-singular) schemes and
smooth morphisms.

Definition 1.2.5. Let f : X — Y be a morphism of finite type of noetherian schemes. Take
z € X and let y = f(x).

(1) We say f is smooth of relative dimension d at z if there exist an open neighbourhood U
of x and an open affine neighbourhood V' = Spec R of y € Y such that

U ~SpecR[Ty,...,Tn+adl/(f1y- -y fn)

for some f1,..., fn € R[T1,...,Thtq) and such that

rank (a;f( )) n,

where 1 <i<nand1<j<n+d.
(2) We say f: X — Y is smooth of relative dimension d if it is so at « for each x € X.
In this case, we sometimes say X is smooth over Y or X is a smooth Y-scheme.

Proposition 1.2.6. (1) Open immersions are smooth.
(2) Smooth morphisms are stable under base change.
(8) Smooth morphisms are stable under composition.

Proof. (1) Let j : U — X be an open immersion. We may assume U is an open subscheme of
X. Then for each z € U, we can find an open affine neighbourhood V"= Spec A C U C X. This
shows that open immersion are smooth of relative dimension 0.

(2) Let f : X — Y be a smooth morphism and let Y/ — Y be a morphism. Suppose
f is smooth of relative dimension d. We write X’ for Y’ xy X. Take 2/ € X’ and let z,y
and y’ be the images of 2’ in X,Y and Y’ respectively. Then we can find an open affine
neighbourhood V' = Spec A of y in Y such that @ € U ~ Spec A[T1, ..., Tyntal/(f1,-- ., fm) such
that rank(a;;)|, = m. Here a;; = 0f;/0T; for 1 <i<mand 1 < j < m+d Take V' = Spec B
be an open affine neighbourhood of ¢ then U’ = V' xy U ~ Spec B[T7, . .. m+d]/(f1, ey fm)-
Note that a;; € x(z) is contained in x(z’), hence rank(a;;)|,» = rank(a;;)|, = m. It follows that
/' X' = Y’ is also smooth of relative dimension d.

(3) Let f: X — Y and g : Y — Z be smooth morphisms of relative dimension d and e
respectively. By definition, we can reduce to the case that X,Y and Z are all affine. We may
assume X = SpecC, Y = Spec B and Z = Spec A such that

B~ ATy, ....Tm+d)/(f1,---s fm) and  C~B[Ui,...,Unptel/(g1,---59n)

with rank(0f;/0T;)|, = m and rank(dg;/0U; )|, = n. Here x € X and y = f(x). After renaming
the variables and the functions, we obtain

c :A[Tla"'uTm+duU17"‘ ’n+e]/(f17'"7fmaglv"'agn)
EA[TM s aTm+d+n+e]/(h17 B hm+n)'

Moreover,
Sfi (g 0
rank(9h, /9T;)|, = rank {5 (=) 0gi_m =m+n.
0 i 7 p— (2)
We conclude g o f is smooth of relative dimension m + n. O
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Definition 1.2.6. Let f : X — Y be a morphism of finite type of noetherian schemes. The
smooth locus of f is the subset

Xsmooth . £ € X | f is smooth at x}.
Its complement in X is called the singularity locus.

Proposition 1.2.7. Let f: X — Y be a morphism of finite type of noetherian schemes. Then
the smooth locus of f is open in X.

Proof. Suppose f is smooth of relative dimension d at x € X. Then there exist an affine open
neighbourhood V' = Spec A of y = f(x) and an open neighbourhood

U ~Spec ATy, ..., Totdl/(f1s-- -, fn)

of z such that the Jacobian matrix (gj’ij (x)) is of rank n. Therefore we can find an n X n minor
(ai;) such that det(a;;) does not vanish at . It follows that det(a;;) does not vanish in some
open neighbourhood U of x. Now U is contained in the smooth locus of f and hence the smooth

locus of f is open. O

Definition 1.2.7. A locally noetherian scheme X is regular at € X if the local ring Ox , is
a regular local ring. A locally noetherian scheme X is regular (or non-singular) if Ox , is a
regular local ring for each z € X.

Remark 1.2.8. Suppose X is a regular scheme. Then for each z € X, the local ring Ox , is
a regular local ring, hence an integral domain. It follows that the scheme X is locally integral.
This shows that X is a disjoint union of integral schemes. In particular, a connected regular
scheme is integral.

Now we compare these two concepts, namely smoothness and regularity.

Proposition 1.2.9. Let X be a scheme which is locally of finite type over an arbitrary field k.
(1) X is smooth over k iff X is geometrically regular.
(2) If X is smooth over k, then X is reqular. The converse holds if k is perfect.
(3) Let © € X be a closed point such that k(z)|k is a separable extension of fields. Then X
is smooth at x iff X is reqular at x.

Proof. See [2], §2.2, proposition 15. O

Finally, we introduce formally smooth morphisms of schemes. The infinitesimal lifting prop-
erty will be useful to deduce Hensel’s lemma.

Definition 1.2.8. Let f : X — Y be a morphism of schemes. We say f is formally smooth
if for each affine scheme Spec A over Y and for each nilpotent ideal I C A, the natural map
X(A) — X (A/I) is surjective. This property is also called the infinitesimal lifting property.

Proposition 1.2.10. Let f : X — Y be a morphism of schemes. Then f is smooth iff f is
locally of finite presentation and formally smooth.

Proof. See [2] §2.2, proposition 6. O

Application: Hensel’s lemma

Proposition 1.2.11 (Hensel’s lemma). Let A be a complete noetherian local ring with mazimal
ideal m. If X — Spec A is smooth, then X(A) — X (A/m) is surjective.
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Proof. First we recall a basic fact in algebraic geometry. To give an A-point of X, is the same
as to give a point € X and a local homomorphism ¢ : Ox , — A of local rings. Suppose we
are given an A-point of X, say f : Spec A — X, then we obtain a point € X being the image
of the closed point of Spec A and we obtain a local homomorphism f : Ox , — An. Since A is
local, A ~ A, holds. Conversely, any non-empty open subset of X containing the image of the
closed point of Spec A will contain the image of Spec A, hence we may assume X = Spec B is
affine. Let q be the prime ideal corresponding to z € X. Let B — B; — A be the composition
of ¢ and the canonical homomorphism. Then we obtain a morphism Spec A — X sending m to
x.
If X — Spec A is smooth, then by the infinitesimal lifting property, the map

X(A/m" ) — X(A/m™)

is surjective for each n > 1. Now by taking projective limit of X (A4/m"*!) — X(A/m"), we
obtain a surjective map

Jim X (A/m™+1) — Jim X (4/m")

By the above argument, we have
X(A/m™) ={(z,9) |z € X, ¢:O0x,45 — A/m" local A-algebra homomorphism}

for each n > 1 and it follows that lim X (A/m"™) = X (lim A/m™). Since A is complete, A ~
lim A/m" and therefore X(A) — lim X (A/m") is bijective. For the same reason, X(A/m) —
@X(A/m”*l) is bijective. We conclude X (A4) — X (A/m) is surjective. O

1.3 Grothendieck’s topologies

Let T be a topological space. Then we obtain a category whose objects are open subsets of
T and morphisms are inclusions. In this section, we generalise the notion of topological spaces
to Grothendieck’s topologies. We mainly follow Tamme’s book [48].

1.3.1 Topologies

Definition 1.3.1. A topology (or a site) T consists of a category cat(T") and a set cov(T') of
coverings, i.e. families {¢; : U; — U | ¢ € I} of morphisms in cat(T) such that the following
properties hold:

T1: for {U; — U} in cov(T) and a morphism V — U in cat(T), all fibre products U; xy V
exist and {U; xy V — V} is again in cov(T);

T2: given {U; — U} in cov(T) and a family {V;; — U; in cov(T) for all i € I, the family
{Vi; — U} obtained by composition of morphisms is also in cov(T');

T3: if ¢ : U’ — U is an isomorphism in cat(T'), then {¢ : U’ — U} is in cov(T).

Example 1.3.1. Let T be a topological space. Take cat(T') to be the category of all open subsets
of X, and take cov(T') to be families {U; — U |i € I, |JU; = U}. Suppose V' — U is a morphism
in cat(T') and suppose | J; U; = U. Then V C U is an open subset and U; xy U = U; N'V. This
tells us T1 holds. T2 and T3 are obviously true, and hence cat(T) and cov(T') form a topology.

Definition 1.3.2. A morphism f : T — T’ of topologies is a functor f : cat(T) — cat(T’) of
the underlying categories with the following two properties:

(1) {¢i : Uiy = U} in cov(T) implies {f(¢;) : f(U;) = f(U)} in cov(T");

(2) for {U; — U} in cov(T) and a morphism V' — U in cat(T), the canonical morphism

fWUi xu V) = f(Us) X sy fF(V)

is an isomorphism for all 7.
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Example 1.3.2. Let T and T” be topological spaces. If f: T/ — T is a continuous map, then
cat(T) — cat(T"), U f~1(U)

defines a morphism of topologies. Indeed, if U = |J;U; is an open covering in 7', then
f7HU) =U; f71(U;) holds. If V is an open subset of U, then f~*(U; xy V) = f~HU;NV) =
S7HU) X p=1py f7HV). Hence U — f~*(U) defines a morphism of topologies.

We give several examples in algebraic geometry. Let T" be a topology such that each object
of cat(T) is a set. We say {U; — U} in cov(T) is a surjective family if | J;., U; = U.

Zariski topologies

Example 1.3.3. Let X be a scheme. We put cat(Xz4,) to be the category of all Zariski open
subsets in X and we put cov(X z4,) to be the collection of surjective families of open immersions.
Then Xz, is a topology.

Etale topologies

Let X be a fixed scheme. We denote by Ftx the category of étale X-schemes whose objects
are étale X-schemes and morphisms are X-morphisms of schemes. A family {¢; : U; > U |i € I}
of morphisms in Etx is called a surjective family if U = |J,;c; ¢:(Us).

Example 1.3.4. We put cat(Xe) = Etx and we put cov(Xgt) to be surjective families in Ftx.
We verify the axioms T1 to T3 hold. Let {U; — U};ecr be a covering and let V' — U be an
X-morphism. Then U; x ¢ V exists by general theory and {U; xy V' — V },¢1 is a covering since
étale morphisms are stable under base change by (1.2.4). This shows T1. T2 and T3 obviously
hold. Hence X is indeed a topology and we call it the étale topology on X. The category
of abelian sheaves on X is denoted by 2b(Xet). Sheaves on X4 are also called étale sheaves
on X.

Remark 1.3.5. In some literatures, our étale topology is called the small étale site on X.
The big étale site on X has underlying category Gchx being the category of X-schemes and
the coverings are the surjective families of étale X-morphisms {¢; : U; = U | i € I'}.

Flat topologies

Let X be a scheme. Let cat(Xy;) be the category of flat X-schemes and let cov(Xy;) be
the collection of surjective families {U; — U }icr of flat X-schemes. Then Xy; is a topology by
direct verification and (1.2.1).

The fppf topologies

Here fppf is a French abbreviation means faithfully flat and of finite presentation. Let X be
a scheme. Suppose U — X is a flat morphism which is of finite presentation. An fppf covering
of U is a surjective family of morphisms {¢; : U; — U };ecs of schemes such that each ¢; is flat
and locally of finite presentation.

Lemma 1.3.6. Let U be a scheme.

(1) If U' = U is an isomorphism, then {U’" — U} is an fppf covering of U.

(2) If {U; — Uticr is an fppf covering and for each i, we have an fppf covering {V;; —
Uitjes,, then {V;; — U} is an fppf covering.

(8) If {U; — Ulier is an fppf covering and U' — U is a morphism of schemes, then
{U' xg U; = U'}ier is an fppf covering.

Proof. (1) is clear. For (2) and (3), recall that being flat and locally of finite presentation
are stable under composition and base change. And the base change of a surjective family of
morphisms is still a surjective family. O
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Let cat(Xeppr) be the category of flat X-schemes of finite presentation and let cov(Xgppr) be
the collection of surjective families. By the previous lemma, cat(Xeppe) and cov(Xgppe) forms a
topology Xeppt-

1.3.2 Sheaves on topologies

A presheaf F on a topological space T associates each open subset U of T an object F(U)
in some category €. Note that F can be viewed as a contravariant functor from the category
of open subsets of 7" to €. This motivates us to generalise the concept of presheaves on a
topological space to presheaves on topologies. Now let 1" be a topology and let € be a category
admits products.

Definition 1.3.3. (1) A presheaf on T with values in € is a contravariant functor 7 : T — €.
A morphism f : F — G of presheaves with values in € is defined as a morphism of contravariant
functors.

(2) A presheaf F on T is a sheaf if for every covering {U; — U} in cov(T), the diagram

FU) = [[FW) =[] FU xu U;)
i i,
is exact in €. More explicitly, the first arrow is a monomorphism in € and the image of (F)(U)
verifies the universal property of kernels of the second two parallel arrows. Morphisms of sheaves
are defined as morphisms of presheaves.
(3) Let 2Ab be the category of abelian groups. Presheaves (resp. sheaves) with values in
2b are called abelian presheaves (resp. sheaves) on T. We denote by b4 (resp. 2br) the
category of abelian presheaves (resp. sheaves) on 7.

Proposition 1.3.7. Let T be a topology.
(1) The category mbi’“e is an abelian category with enough injectives.
(2) A sequence F' — F — F" of abelian presheaves on T is exact iff the sequence

F'(U)— FU) - F"(U)
of abelian groups is exact for all U € T
Proof. See [48], 1, 2.1.1. O

Proposition 1.3.8. Let T be a topology. Let v : Abp — AbL¢, F — F be the inclusion (it is
a natural transformation).

(1) The category Abr is an abelian category with enough injectives.
(2) The inclusion v : Abp — AL is left exact.

Proof. See [48] 1, 3.2.1. O

1.3.3 Cohomology of abelian sheaves on topologies

Let X be a topological space. Then the category 2Abyx of sheaves of abelian groups on
X is an abelian category which has enough injectives. Note that the global section functor
I'(X,—):2Abx — Ab is left exact and hence we can define its derived functors. We denote

HYX,F) = RT(X,—)(F)

the ¢-th cohomology group of the sheaf F of abelian groups on X. This is the cohomology
of abelian sheaves in the usual sense. We generalize it to the cohomology of abelian sheaves
on topologies now. Let F' : Aby — € be a left exact additive functor where € is an abelian
category. Then by (1.3.8) the right derived functors R?F exist. In particular, we consider the
section functor

LU, —) : Abr — 2Ab, F — F(U),

which is additive and left exact.
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Definition 1.3.4. Let U € T be a fixed object and let F be an abelian sheaf on T. We define
the ¢-th cohomology group of U with values in F by

HYU,F):= RT(U, —)(F).
We will some times write H (U, F) instead of H?(U, F) to emphasize the topology T

Remark 1.3.9. By (1.3.7), the functor T'(U, —) : Ab5"° — Ab is exact. Hence RIT(U,—) =0
for each ¢ > 1. This is the reason why we only study the cohomology group of sheaves.

Example 1.3.10. Let X be a topological space and let T be its topology. Let F be an abelian
sheaf on X. Then the cohomology groups H*(X, F) we just defined, are the usual cohomology
groups HY(X,F).

Etale cohomology groups

Let U be an étale X-scheme. Then we obtain a left exact functor
I'(U, =) : Ab(Xet) — Ab, F = F(U).
By (1.3.8), the right derived functors of T'(U, —) exist. Hence we obtain the cohomology groups
HY, (U, F) = RUD(U, —)(F)
by taking the right derived functors of T'(U, —).

Example 1.3.11. Let X be a scheme. We denote by G,,, the sheaf given by U — T'(U, Oy )*.
Then we have

(1) H%ar(Xv Gm) = Hgt(X7 Gm) = F(X’ OX)X'

(2) H,,,(X,G,,) = HL(X,G,,) ~ Pic(X).

Proof of (1). By definition, H) (X, F) = R%(I'(X, —))(F) = I'(X, F) for any abelian étale sheaf
F. Hence HS, (X, Gm) ~ (X, Ox)* holds. HY, (X,G,,) =T(U,Oy)* is straightforward. The
proof of (2) will use Cech cohomology groups and it will be done later. O

1.3.4 Cech cohomology groups

As in the usual theory of cohomology of sheaves on schemes, the cohomology groups are not
easy to compute by definition. One way to reduce the difficulty is to introduce Cech cohomology
groups. Thanks to Leray covering theorem, Cech cohomology groups are isomorphic to the
cohomology groups defined by derived functors for quasi-compact and separated schemes. Cech
cohomology groups really help in computations, for example we can do explicit computation on
projective spaces. In this subsection we generalize Cech cohomology groups to abelian presheaves
on topologies. Let T be a topology and let &l = {U; — U},;cr be a covering in cov(T). We
consider the functor

HO(8L, —) - AL — 2Ab,

which associates each abelian presheaf F on T the abelian group

HO(8, F) := Ker (H}"(Ui) = [[FUi xv U)).

.
Then H°(U, —) is additive and left exact.

Definition 1.3.5. Let F be an abelian preshef on 7. The ¢-th Cech cohomology group
with values in F with respect to the covering {{ = {U; — U} is defined as

HY(YU, F) := RTH (U, —)(F).
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Remark 1.3.12. Let { = {U; — U};es be a covering in cov(T'). If F is an abelian sheaf, then
the sequence

FU) = [[FW) = [[FW: xv U;)

4,J
is exact by definition. Thus H°(8l, F) is identified with F(U). Moreover, by H°(4, F) = T'(U, F)
we conclude that HI(U, F) = HI(U, F).

Remark 1.3.13. Note that ¢ : by — Ab%"° sends injective objects in Abp to HO (4, —)-acyclic
objects in le;re. We obtain for each abelian sheaf F the spectral sequence

HP (U, RU(F)) = HPT(U, F).

This spectral sequence describes the relation between Cech cohomology and cohomology with
values in abelian sheaves. Here RY((F) can be identified with the presheaf #?(F) which sends
U to H1(U, F).

We omit the discussion of refinement of the coverings in cov(T") for a topology T' and we just
simply believe the fact that passing to direct limit of all coverings in cov(T) is a well-defined
operation. This allows us to give the following:

Definition 1.3.6. Let T be a topology, let U € cat(T') be an object and let F be an abelian
presheaf on 7. For ¢ > 0, we define the ¢-th Cech cohomology group of U with values in
F to be
HYU,F) := hgf{qw, F).
s

It is possible to view Hq(U, —) as a derived functor. This is guaranteed by the following
theorem.
Theorem 1.3.14. Let T be a topology and let U € cat(T). The functor
HO(U, —) - 6L — Ab, F s HO(U, F)

is left exact and additive. The right derived functors are given by the Cech cohomology groups
HY(U,-).

Proof. See page 38, theorem 2.2.6 in [18]. O

Theorem 1.3.15 (The spectral sequence for Cech cohomology). Let T be a topology and let F
be a sheaf of abelian groups on T.
(1) Let s\ = {U; — U} be a covering in T. Then there is a spectral sequence

HP (U, H(F)) = H* (U, F)

which is functorial in F.
(2) Let U be an object in T. Then there is a spectral sequence

HP(U,HY(F)) = HP (U, F)
which is functorial in F.
Proof. See page 58, theorem 3.4.4 in [48]. O

Corollary 1.3.16. Let T be a topology and let F be a sheaf of abelian groups on T. Then the
homomorphisms
HY(U,F)— HYU,F)

are bijective for ¢ = 0,1 and injective for q = 2.
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Proof. The case ¢ = 0 follows directly from definition. The terms H°(U, H?(F)) in the spectral
sequence
HP(U,HY(F)) = HP (U, F)

vanish for all ¢ > 0. Consider the exact sequence of terms of low degree
0— HY(U,H(F)) = HY(U,F) — H(U,H(F)) - H*(U, H°(F)) — H*(U, F),
and note that H°(F) = F, we conclude the assertion. O
We finish this subsection with an example.
Example 1.3.17. Let X be a scheme. Then we have H} (X, G,,) ~ Pic(X).

Proof. Let 4 = {U; — X} be an open covering in Zariski topology. Then invertible sheaves on
X trivialized by 4 modulo isomorphisms can be identified with Héar(X, Gyn). We pass to direct
limit over all open coverings and then we obtain Pic(X) ~ H}, (X,G,,) ~ H}, (X,G,,). Here
the last isomorphism follows from the previous corollary. O

Remark 1.3.18. For the proof of H} (X, G,,) ~ Pic(X), see [10] page 170.

1.4 Birational maps

In this section we briefly recall rational maps and birational equivalence of varieties. We
will need this notion to study the birational invariance of the Brauer groups of schemes and of
certain properties of rational points. Then we introduce Hironaka’s theorem on resolution of
singularities. Finally we study basic properties of del Pezzo surfaces.

1.4.1 Rational maps

Lemma 1.4.1. Let f,g : X — Y be two morphisms of schemes with X reduced. Suppose
f(x) = g(x) for each x € X. Then f = g as morphisms of schemes.

Proof. All we need to show is to check f equals to g as morphisms of sheaves, so we may assume
X = Spec A and Y = Spec B. By abuse of language, we write f,g : B — A for the corresponding
ring homomorphisms. By assumption, for each a € A, the composition B = A — A, coincides.
More explicitly, f(b)/1 = g(b)/1 in A, for each b € B and hence a™ (f(b) — g(b)) = 0 in A for
some integer n,. We conclude Im(f — g) € |JAnn(a™). X is reduced implies that Spec 4, is
dense, but Spec A, C V(Ann(a)) holds and finally we conclude Ann(a™) = 0. Consequently,
f,9: B = A coincides and f, g determine the same morphism of schemes. O

Lemma 1.4.2. Let S be a base scheme. Let X be a reduced scheme over S and let Y be
a separated scheme over S. Let f and g be two S-morphisms of X to Y which agree on a
non-empty Zariski dense subset of X. Then f =g.

Proof. Suppose U C X is the non-empty Zariski dense subset on which f and g coincide. Since
fyg: X — Y are S-morphisms, we obtain an induced morphism (f,g) : X - Y xgY. Y is
separated over S implies A : Y — Y xg Y is a closed immersion, and hence A(Y) C Y xgY
is closed. Since fly = g|u, we conclude (f,¢)(U) C A(Y). This implies the closed subset
(f,9)"Y(A(Y)) of X contains the dense subset U and hence f = g on the underlying topological
space of X. But X is reduced, hence f = g as morphisms of schemes. O

Corollary 1.4.3. Let X andY be integral varieties over a field k and let f, g be two morphisms
from X toY. Suppose f|y = glu for some non-empty open subset U C X. Then f = g.

Proof. By assumption X and Y are varieties over k, hence X is reduced and Y is separable over
k. Therefore the previous lemma applies and f = g on X. O
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Definition 1.4.1. Let X, Y be irreducible schemes over a base scheme S. Let f: U — Y and
gV — Y be S-morphisms defined over non-empty open subsets U,V of X. We say f and g are
equivalent if f|w = g|w for some non-empty subset W C U NV. By the previous lemma, this
relation is indeed an equivalent relation. A rational map from X to Y over S is an equivalence
class of the above equivalent relation.

Definition 1.4.2. Let f : X — Y be a morphism of schemes. We say f is dominant if the
image of f is a dense subset in Y.

Remark 1.4.4. In some literature a rational map from X to Y is denoted by X --» Y. Dashed
arrows are aimed to emphasize that a rational map is not in general a map of the underly-
ing topological spaces. Clearly we can compose dominant rational maps between irreducible
schemes, and this leads us to the category whose objects are irreducible schemes and morphisms
are dominant rational maps.

Definition 1.4.3. Let X,Y be irreducible schemes over a base scheme S. We say X and Y
are birational if X and Y are isomorphic in the category of irreducible schemes over S and
dominant rational maps over S.

Here is a criterion for birational equivalence.

Lemma 1.4.5. (1) Let X,Y be irreducible schemes over a base scheme S. Then X,Y are
birational iff there are non-empty open subsets U C X andV CY such that U,V are isomorphic
as S-schemes.

(2) Let X,Y be integral schemes locally of finite type over a base scheme S. Let x,y be the
generic points of X,Y respectively. Then XY are birational iff x,y are above the same point
s €S and k(z) ~ k(y) as extension fields of k(s).

Remark 1.4.6. Let &k be a field and let X, Y be integral k-varieties. Then XY are birational
iff they have isomorphic function fields by (2).

Definition 1.4.4. Let X be an integral variety of dimension n over k.

(1) We say X is k-rational or simply rational, if X is k-birational to P}.

(2) We say X is geometrically rational if there is a field extension K|k such that Xy is
integral and K-rational.

1.4.2 Resolution of singularities

We collect some results about resolution of singularities as follows. They will be needed to
study unramified Brauer groups of schemes and variants of Brauer-Manin pairing. The main
reference is [30].

Theorem 1.4.7 (Hironaka). Let k be a field of characteristic zero and let X be a smooth variety
over k. Let T be a non-zero ideal sheaf on X. Then there exists a smooth variety X' and a
birational and projective morphism f : X' — X such that

(1) f*Z C Ox: is a locally principal ideal sheaf on X',

(2) f: X" — X is an isomorphism over X — Supp(Ox/I), and

(8) f is a composition of smooth blowing-ups

X=X,—-X,_1— =X, = Xy=X.
Proof. See [30], page 136, theorem 3.21. O

Corollary 1.4.8 (Resolution of singularities). Let k be a field of characteristic zero and let X be
a quasi-projective variety over k. Then there is a smooth variety X' and a birational projective
morphism f: X' — X.

Proof. See [30], page 137, corollary 3.22. O
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Remark 1.4.9. By the above results and the construction of blowing-up, we can deduce the
following assertion. Let X be a smooth geometrically integral variety, then we can find a smooth
proper variety X, containing X as a dense open set. In this case, we say X, is a smooth proper
compactification of X.

1.4.3 Del Pezzo surfaces

Definition 1.4.5. A del Pezzo surface over a field k is a smooth geometrically irreducible
and proper surface such that —Kx is ample, where Kx is the class of the canonical sheaf wx
in Pic(X).

We quote a classification theorem of Iskovskikh to illustrate why del Pezzo surfaces are quite
interesting.

Theorem 1.4.10 (Iskovskikh). Let k be a field. Let X be a smooth projective geometrically
rational surface over k. Then X is k-birational to a del Pezzo surface of degree 1 < d <9 or a
rational conic bundle surface.

We need several constructions in general algebraic geometry to define our del Pezzo surfaces.

Definition 1.4.6. Let X be an integral regular variety of dimension n over a field k. We
define the canonical sheaf of X to be wx = A" x|k, the n-th exterior power of the sheaf of
differentials.

The following will be used to describe the exceptional curves on nice surfaces.

Definition 1.4.7. Let X be a projective scheme of dimension n over a field k.
(1) For a coherent sheaf F on X, we define the Euler characteristic of F by

X(F) =) (-1)"dimg HI(X, F).
(2) We define the arithmetic genus p,(X) of X by
Pa(X) = (=1)"(x(Ox) = 1).
Then we recall the intersection pairing of the Weil divisor group.

Theorem 1.4.11. Let X be a regular projective surface over an algebraically closed field k.
Then there is a unique pairing

(=, —)x :DivX xDivX - Z, (C,D)+— C.D,

such that
(1) if C and D are regular curves meeting transversally, then C.D = Card(C' N D),
(2) it is symmetric: C.D = D.C,
(8) it is additive: (Cy + C2).D = C1.D + C2.D, and
(4) it depends only on the linear equivalence classes: if C1 ~ Cs, then C1.D = C3.D.

When X is a noetherian integral separated locally factorial scheme, there is a natural iso-
morphism Cl X ~ Pic X. By (4) of the previous theorem, we obtain an intersection pairing

(—,—)x : Pic X x Pic X — Z.

An exceptional curve on a smooth projective surface over k is an irreducible curve C' C X3
such that
(C.C)x = (Kx,C)x = -1

Definition 1.4.8. The degree of a del Pezzo surface X is the intersection number (Kx, Kx)x.
Remark 1.4.12. A smooth exceptional curve has arithmetic genus 0, hence it is k-isomorphic

1
to ]P)E‘
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1.5 An appendix on arithmetic topics

1.5.1 Models over Dedekind schemes

Let X be a scheme over an integral scheme S. Let 7 € S be the generic point. We obtain a
canonical morphism Specx(n) — S. We call X, := X x g Specr(n) the generic fibre of X — S.

Definition 1.5.1. Let X be a scheme.

(1) We say X is normal at x € X if Ox, is an integrally closed domain. We say X is
normal if it is irreducible and normal at each point € X. In particular, normal schemes are
reduced and irreducible hence normal schemes are integral.

(2) We say X a Dedekind scheme if X is normal, noetherian and of dimension 1.

Remark 1.5.1. Suppose X is normal at each € X. Then Ox , is in particular an integral
domain for each x € X. This shows that X is a disjoint union of integral schemes. Here we
require the additional condition of irreducibility to guarantee the existence of the function field.

Example 1.5.2. We will use the following examples in the sequel.

(1) Let k be a field. Then A} and P} are normal schemes. In particular, P} is a Dedekind
scheme.

(2) Let R be a discrete valuation ring and let K be its fraction field. Then SpecR is a
Dedekind scheme.

Definition 1.5.2. Let S be a Dedekind scheme with function field K. Let X be a scheme of
finite type over K.

(1) A model for X over S is a flat morphism X — S of finite type such that there exists
an isomorphism X — Xx = X X g Spec K which identifies X with the generic fibre of X — S.
This can be visualized as the commutative diagram

X-—-->=X
Spec K —— S

which can be identified with a fibred product square.

(2) A morphism f : X — X’ of models for X is a morphism X — X’ of S-schemes such that
the induced morphism

X ~ Xk Iy e~ X

is the identity on X.

(3) A model X for X over S is called a proper (resp. smooth, etc) model if the structural
morphism X — S is proper (resp. smooth).

(4) A model X for X is called a regular model if X is a regular scheme.

Example 1.5.3. Let S = Spec A be a Dedekind scheme with function field K. Let C be
a projective curve over K defined by homogeneous polynomials Fi,..., F,, € K[Ty,...,T,].
We may assume the F; have coefficients in A by multiplying the F; by elements of A — {0} if
necessary. Let C := Proj A[Ty,...,T,)/(Fi1,..., Fm), then we have

Proj K[To, ..., Tn)/(Fi,...,Fn) ~ Proj ATy, ..., T,]/(F1, ..., Fin) Xspec 4 Spec K.
Thus C is a model for C over S.
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1.5.2 Reductions

Let X be a scheme over a base scheme S. For s € S, we write x(s) for the residue field of
the local ring Og 5. Then we obtain a natural morphism Specx(s) — S. We denote by X, the
fibred product X xg Specx(s). Now let S = Spec A and let p C A be a non-zero prime ideal in
A. Let X — Spec A be a scheme over A. We call

X, := X x4 Speck(p)

the reduction of X modulo p. We would like to pass to X, to study properties of X.

Now suppose X is a scheme over Q. In this case there are no non-trivial homomorphisms
Q — Fp, hence we can not study X by base change to SpecF,,. One possible way is considering
the canonical projection Z — Z/pZ ~ F,. If we view the Q-scheme X as a Z-scheme by
X — SpecQ — SpecZ, then the only non-trivial fibre is the fibre above the generic point. This
motivates us to extend X to SpecZ such that other fibres are non-trivial. If this is done, then
we can base change to SpecF, to study arithmetic properties of X.

Definition 1.5.3. Let S be a Dedekind scheme and let K be the function field of S. Let X be
a scheme of finite type over K and let X be a model for X over S.

(1) Let s € S be a closed point. The fibre X, of X above s is called the reduction of X
at s. This can be visualized by the following two fibred product squares:

Xooo»X Xy— = X
Spec K —— S Spec k(s) — S.

(2) We say X has good reduction at a closed point s € S if X admits a smooth and proper
model over Spec Og 5. Note that in this case X is proper and smooth over K and X x4, x(s)
is proper and smooth over x(s). This can be visualized by the following fibred product square:

.

Spec K —— Spec Og .
Example 1.5.4. Let p # 3 be a prime number. Then the curve
C = Proj QX Y, Z]/(X® + Y* + p*2%)

admits a model C
Proj Z[X, Y, W]/(X? + Y? + W?)

where W = pZ and the fibre C, is smooth over p. Hence C has good reduction at p.

Remark 1.5.5. Let k be a number field and let S = Spec Oy. Suppose X is a smooth projective
variety over k. We choose a closed immersion 4 : X — P}!. Note that P} is the generic fibre of
P% — S, so the Zariski closure X' of the image of (X)) in P% is projective over S. Then X is a
model for X over S. X may have bad special fibres, but we can prove X has good reductions
at all but finitely many points.

1.5.3 Passage to limit

Let k be a field and let P, be the projective line over k. Suppose a k-variety X is endowed
with a dominant morphism 7 : X — P}. Let X,, be the generic fibre of 7. We want to show
that if X, has some property P, then all but finitely many fibres of 7 satisfy the property P.
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Let Sy be a scheme. Let I be a directed set. Let (A;, ¢;;) be a direct system, where A; is a
quasi-coherent Og,-algebra for each i and ¢;; : A; — Aj; for ¢ < j is a morphism of Og,-algebras.
Let A =lim_A; and let ¢; : A; — A be the canonical morphism for each i € I. For each i we
construct a scheme S; = SpecA; which is affine over Sy. Let ©;; + Sj — Si be the Sp-morphism
induced by ¢;;.

Proposition 1.5.6. Let S = SpecA. Then S is the inverse limit of the inverse system (S;, wfj)
in the category of schemes.

Proof. Step 1. We show that S is the inverse limit of (S;, ¢};) in the category of So-schemes.
Let X be an Sp-scheme and let f : X — Sy be its structural morphism. By construction of
Spec, we have

Homsg, (X, S;) ~ Homog (Ai, f.Ox),
Homg, (X, S) =~ HOHI@SO (A, f*OX)

Since A = hén ; A; and Homog (-, f«Ox) is left exact, the canonical map

Homog (A, f.Ox) — Jim Homoy, (A;, f+Ox)
I

is bijective. Hence the canonical map

Homg, (X, S) — %iLnHoms0 (X, S:)
I
is bijective and S is the inverse limit in the category of Sy-schemes.
Step 2. Now we conclude. Let X be a scheme and let f € Homgp(X, So). Then f defines
an Sp-scheme structure on X. For an Sp-scheme Y, we denote by Homy(X,Y) the set of
Sp-morphisms with respect to the Sp-scheme structure on X defined by f. Therefore we have

Homg (X, S;) = U Hom/(X, S;)
fEHOmech(X,Sg)
Homeg (X, S) = U Hom¢ (X, S).

feHomg ¢y (X,S0)

By step 1, the canonical map

Homy(X,S) — @Homf(X, S;)
I

is bijective and hence the canonical map

HOHIGC[] ()(7 S) — %%HHOIHGC},(X, Sz)

is bijective, as required. O

Proposition 1.5.7. Let Sy be a quasi-compact and quasi-separated scheme. Let fo : Xg — Sp
be a morphism of finite presentation. If the morphism f : Xoxg, S — S obtained by base change
is proper, then for all but finitely many i € I, the morphism f; : Xo xg, S; — S; obtained by
base change is proper.

Proof. See [18], proposition 1.10.10. O

Remark 1.5.8. The previous proposition is still true if we replace proper by open immersion,
closed immersion, separated, finite, affine, surjective and quasi-finite. All these properties are
also proved in [18], proposition 1.10.10.
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Example 1.5.9. Let k be a field and let p : X — A} be a dominant morphism of schemes. Let
n be the generic point of A}. Since p is dominant, the generic fibre X,, is non-empty. Suppose
the generic fibre X, is proper, then by the previous proposition, all but finitely many fibres of
p: X — A} are proper.

The following is a variant version of passage to limit. It asserts under some condition that
properties of the generic fibre will also hold for an open neighbourhood of the generic point.

Proposition 1.5.10. Let S be an integral scheme and let K be its function field. Suppose X is
a scheme of finite presentation over K. Then there exist a dense open subscheme U C S and a
scheme X of finite presentation over U such that X can be identified with the generic fibre Xi.
This can be visualized as the following fibred product square:

X--->X

Spec K ——U.

Proof. Let Spec R be a non-empty affine open neighbourhood of the generic point of S. Then
K is the fraction field of R and Spec R is dense in S. Since X is of finite presentation over K,
X =X, U---UX, with X; ~ SpecK|[Ti1,...,Tin,]/(fir,- - fim,). X — Spec K is of finite
presentation (hence quasi-separated) implies that X; N X} is covered by finitely many affine open
subsets X;;, where Xy, is of finite presentation over K. Hence the gluing data of gluing X; along
X;NXj is given by finitely many polynomials g; with coefficients in K. We write each coefficient
of these f;; and g; as a fraction of elements of R for j =1,...,m;, i =1,...,7 and [, and we let
3} denote the set of all the inverse of the appeared denominators. Let Ry be the localization of
R with respect to the multiplicatively closed subset generated by X. We put U = Spec Ry. By
construction, X; is a scheme of finite presentation over U for each i = 1,...,r, and the gluing
data will also glue X; over U. Summing up, the resulting scheme X is as required. O

Theorem 1.5.11. Let S be an integral scheme and let K be its function field. We write P for
the following properties of morphisms: affine, open immersion, closed immersion, flat, étale,
smooth, separated, proper, projective and geometrically integral.

(1) Suppose X — S is a morphism of finite type and Xx — K satisfies P. Then there exists
a dense open subscheme U C S such that Xy — U satisfies P.

(2) Suppose X and X' are schemes of finite presentation over S and suppose f : Xk — Xj,
is a K-morphism. Then there exists a dense open subscheme U C S such that f extends to a
U-morphism Xy — XY;.

(8) Suppose [ : X — X' is an S-morphism between schemes of finite presentation over
S. If f+ Xk — X} satisfies P, then there exists a dense open subscheme U C S such that
fu : Xu — X[, satisfies P.

Proof. See [10], theorem 3.2.1. O

1.5.4 Adelic points on varieties over number fields

Let X be a variety over a number field k. Let Aj be the associated ring of adeles and let
ko = [I,cq kv- In this section we consider relevant topologies and the relations between X (Ay)
and X (kq).

v-adic topology on X (k,)

Let X be a variety over a number field k£ and let k, be the completion of k with respect to
the place v. We define the v-adic topology of X (k,) for v € Q as follows.

(1) If X = A} is the affine space of dimension n, then we have A% (k,) = []/_, k,. Hence
A7 (ky) is naturally endowed with the product topology obtained from the v-adic topology of
ky. If X C A7 is a closed subscheme, then we give X (k,) C [[;—, k, the subspace topology.
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(2) In general, X = X; U---U X, where
Xo >~ Speck[To1,- -, Tus,|/Ia for some ideal I,

and hence X, is identified with a closed subscheme of A}* for each a =1,...,r. Then we need
to glue Xi(ky),..., X, (k,) together. Suppose Xi,...,X, are glued via Zariski open subsets
Uap C Xq and @ap : Ugg — Ug, for each o # 5. We obtain a homeomorphism

Pap i Uap(kv) = Usa(kv), tas = Pap © Uap-

Then we have ¢go = QS;éa bap(Uap(ky) NUay (k) = Uga(ky) N Upy(ky) and ¢ay = gy 0 Pagp.
Therefore the gluing data of X1, ..., X, will also glue X;(k,),..., X, (k,) together. We call the
resulting topology on X (k,) the v-adic topology of X.

Remark 1.5.12. Suppose k is a topological field. Let X be a variety over k. Then the above
construction also works for X (k). The resulting topology is called the analytic topology on
X (k). In general, the analytic topology is different from the Zariski topology.

Adelic topology on X (Ayg)

Let X be a variety over a number field k. We define the adelic topology on X (Ay) as
follows. X admits a model X that is separated and of finite type over Spec Oy. If v € Qy, then
we give X(0,) C X(k,) the subspace topology. We equip the set X (Ay) of all adelic points
on X with the restricted topological product with respect to X (k,) for v € Qy and X(O,) for
v € {1y. By definition, an open base for topology is of the form

1o, <[] x©.),

veS vgS

where S is a finite subset of 2 containing the set all the archimedean places ., and U, is an
open subset of X (k,) for each v € S.

Remark 1.5.13. Of course we can view X(A;) = Home.p, (Spec Ay, X) as the set of all k-
morphisms from Spec A; to X, but in this way the topology of X (Ay) is not clear. We thus
consider a model over Oy to construct explicitly an open base for topology. We will see later
that the adelic topology on X (Aj) does not depend on the choice of the model X.

Adelic points on varieties

Let X be a scheme over a field k. We make the following remarks to give the explicit relations
between k-points, adelic points and kq-points on X.

(0) First of all, k& C k, induces a map X (k) — X (k,). This means each k-point gives rise to
a k,-point. By (1.4.1), we can view X (k) as a subset of X (k).

(1) By the diagonal embedding k < Ay, we obtain an induced map X (k) — X (Ag). This
means each k-point on X induces an adelic point on X.

(2) By construction we have A C kq, we obtain a map X (Ar) — [[,cq X (k) = X(kq).
This means each adelic point on X gives rise to a kq-point on X.

(3) By the canonical projection ko — k,, we obtain a map X (kq) — X (k,). This tells us
each kq-point on X induces a k,-point for each v € €. In particular, each adelic point on X
gives rise to a k,-point for each v € Q via X (Ay) = X (kq) — X (ky).

Proposition 1.5.14. Let k be a number field and let X be a k-scheme. Then the canonical
map X (k) — X (Ay) is injective.

Proof. Suppose x1 and 5 have the same image in X (Ag). Then z10A* = 290A* : Spec Ay, — X
as morphisms of schemes, where A* denotes the morphism induced by the diagonal embedding
k — Aj. Then A* is surjective implies that 1 = z2 as a map between topological spaces and let
z € X (Ay) be their image in X. Now we consider the homomorphisms ¢; : Ox , — k induced
by x; for i = 1,2. Since x1 0 A* = x5 0 A*, we conclude Ao p; = Aopy. Note that A : k — Ay
is injective, therefore 1 = o holds. It follows that z; = x5 as morphisms of schemes. O

36



CHAPTER 1. PRELIMINARIES

Consequently, we can view X (k) as a subset of X (Ay).

Proposition 1.5.15. Let k be a number field and let X be a separated k-scheme. Then the
sequence (Ty) € [[,cq X(ky) determines the corresponding adelic point (if it exists) uniquely.

Proof. Let m, : Ay — k, be the canonical projection to the v-component. It is clear that the
image of the canonical morphism Speck, — Spec Ay, is 7, 1(0) = {(aw) € Ay | a, = 0}. We
can therefore identify Speck, with its image in Spec Ay and we claim (J,.q Speck, C Spec Ay,
is Zariski dense. Indeed, let 0 # a € Ay be an arbitrary adele, then a, # 0 for some v € Q.
By construction, Speck, C D(a) holds. Recall that {D(a) | 0 # a € Ay} is an open base for
topology, thus we are done.

Suppose x1,xs : Spec Ay — X induce the same element in [, X (k,). This means that x;
and xy coincide on |J,.q Speck,. Now X is separable, Spec A}, is integral hence reduced, and
x1,x2 coincide on a dense subset of Spec Ag. Therefore x1 = x5 by (1.4.2). O

Remark 1.5.16. We obtain X (A;) C X(kq) by (1.5.15), hence each adelic point on X can
be represented by a family (z,) € [],cq X (ky). Moreover, X (Ax) can be endowed with the
subspace topology of X (kq) by X(Ax) C X (kq). The resulting topology is called the product
topology of X (Ay).

Suppose X is a separated scheme of finite type over Spec O with generic fibre X = X xo, k.
Next we introduce a criterion which tells us that whether a kqo-point on X comes from an adelic
point on X. Note that X(O,) C X(k,) by the valuation criterion of separated morphisms, and
direct verification tells us X (k,) can be identified with a subset of X (k).

Proposition 1.5.17. Let k be a number field and let Oy be the ring of algebraic integers in k.
Let X be a separated Oy-scheme of finite type over Oy and let X = X X, k be the generic fibre.
Then a kq-point (x,) € [[,cq X (k) is induced by an adelic point iff all but finitely many x,
are also O,-points on X.

Proof. Let Qo C S C Q be a finite set of places containing all Archimedean places of k. Let
(7y) € [[,eq X (ky) be a ko-point such that z, € X(0,) for v ¢ S and z, € X(k,) for v € S,
We need to show (z,) € X (Ag).

To simplify the notation, we write R, = O,, for v ¢ S and R, = k, for v € S. Now we have
r, € X(R,) for each v € Q. Let R = [],.q Ry. Suppose there is a morphism Spec R — X
induced by (z,). Now [[Ry = [[,eskv % [[,gs Ov C Ay will induce a canonical morphism
Spec Ay, — Spec R. Therefore (z,,) is induced by an adelic point.

Now we show that there is a morphism Spec R — X. If X = Spec A is affine, then

Home.p (Spec R, Spec A) =~ Hommping (A, H R,) ~ H Homuping (A, Ry) # 0.

Here fRing denotes the category of commutative rings with neutral elements. In general, note
that & is of finite type over Spec Oy and hence X is quasi-compact. We cover X by finitely
many open affine subsets X; = Spec A; for i = 1,...,n. Each R, is a local ring, so the image of
Spec R, is contained in one and only one of X; for i =1,...,n. Let

S; = {v € | the image of Spec R, — X lies in X;}

and then Q = | |, S;. Now Spec R, — &; for v € S; gives rise to a morphism Spec [, g Ro —
X; C X. Note that | [, Spec[],cg Rv =~ Spec]],cq Ry = Spec R since the left hand side is a
finite disjoint union. Therefore we obtain a morphism Spec R — | ||, Spec[[,cg, Rv = UXi =
X. By construction, the image of Spec R in X" is contained in the generic fibre and hence we
obtain an adelic point on X.

Conversely, let (z,) € [[ X (k,) be an adelic point on X. We cover X by open affine sub-
sets X; for ¢ = 1,...,n with X; ~ Spec Ok[Tl(i),...,TT(j)]/ai. The adelic point (z,) induces
homomorphisms of Oy-algebras

it ORI, TD) o — (M),
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for some f; € Ay such that (f1,...,fn) = (1). We fix adeles ¢1,...,9n € Ay such that f1g1 +
<o+ + fogn = 1 and let goi(Tj(i)) = hij/fie“ with h;; € Ay, and e;; € Z>¢. Let S be the union of
Q and the places v € {1y such that not all the adeles g; and h;; are integral at v. Then S is a
finite set of places. Take v ¢ S. Then

1= |<flgl + - +fngn)v|v S maXKfigi)v'v S maXKfi)v‘v

implies that |(f;).|», > 1 for some i. By construction |(h;;),|, < 1 and therefore (¢; (Tj(i)))v €0,
for each j. It follows that ¢; induces a morphism Spec O, — X; C X. O

Comparing adelic topology with product topology

As we have seen, X(Ay) C X(kq) can be endowed with the subspace topology.I n general,
the adelic topology of X (Ay) is different from the product topology of X (Ay). Now we compare
these two topologies on X (Ay) for a proper variety X over k.

Proposition 1.5.18. Let X be a proper variety over k, then X (Ay) = [[,cq X (k).

Proof. First X is proper hence separated, it follows that X (Ay) C X (kq). Conversely, we can
find a scheme & which is proper over Oy g for some finite subset Qo C S C € such that
the generic fibre can be identified with X. By construction Oy g C O, for v ¢ S, then we
obtain an induced map Spec O, — Spec Oy, s. Finally, z, € X (k,) will give rise to a morphism
Spec k, — X. We obtain a commutative diagram

Spec k., X

7
-
-~
-~
-~
-~

Spec O, — Spec O, 5.

The image of Speck, in Spec O, 5 via Spec O, is the generic point, hence the image of Speck,
in X lies in the generic fibre X, i.e. X(k,) = X (k,) holds for v ¢ S. We conclude that for the
places v ¢ S, we have X(0,) = X(k,) by the valuation criterion of proper morphisms. Hence
X (ky) = X(O,) for each v ¢ S. It follows that (z,) € X(Ay) by (1.5.17) and this implies
X (kq) C X(Ag). O

An open base for the product topology (resp. adelic topology) is of the form

H U, x HX(/%) (resp. H U, x H X(0y)).

veS vgS veES vgS

We have seen that X (k,) = X(O,) and therefore the adelic topology and the product topology
are equivalent when X is proper over k.

1.5.5 Implicit function theorem

The inverse function theorem and the implicit function theorem are well-known over R and
C. For arithmetic concerning, we will consider the v-adic implicit function theorem where v is
a place of a number field. We begin with generalizing analytic functions to fields endowed with
a non-trivial absolute value. The main reference is chapter II in [42].

Let k be a complete field with respect to a non-trivial absolute value | — | (archimedean or
ultrametric). For & € k™ and r € RZ, we define || < r (resp. |x| <r) <= |z;] < r; (resp.
|x;| < r;) fori=1,...,n. We put

Pr(x)={y|ly—=z|<r} (resp. Pr(x) ={y ||y —z[<7})

to be the polydisk (resp. strict polydisk) of radius r and center . Thanks to the absolute value
on k, we can define convergent power series with coefficients in k.
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Definition 1.5.4. Let f = Y a; X! be a formal power series with a; € k. Here I denotes
multi-index (iy,...,i,) and X' = X' ... X/,

(1) We say f is convergent in P,.(0) if 3 |as|r! < oco.

(2) We say f is convergent in P,.(0) if f is convergent in P, (0) for each r’ < r.

Then it is possible to define analytic functions and analytic maps.

Definition 1.5.5. (1) Let U C k™ be an open subset and let ¢ : U — k be a function. Then
we say  is analytic in U if for each € U, there is a formal power series f and a radius » > 0
such that P.(x) C U and f converges in P.(x) and for h € P.(x), o(x + h) = f(h).

(2) Let U C k™ be an open subset and let ¢ = (¢1,...,¢m) : U = k™ be a continuous map.
Then we say ¢ is analytic if ¢; is analytic for i =1,...,m.

Theorem 1.5.19 (v-adic inverse function theorem). Let U C k™ be an open subset and let
f:U — k™ be an analytic map such that f(0) = 0. If Df(0) : k™ — k™ is a linear isomorphism,
then f is a local analytic isomorphism.

Proof. See [12], chapter II. O

As usual, we can prove the v-adic implicit function theorem by applying the v-adic inverse
function theorem.

Theorem 1.5.20 (v-adic implicit function theorem). Let
F k"t s k™ (z,y) = (Fi(z,y), ..., Fu(z,y))

be an analytic map such that F;(0,0) = 0 for each i =1,...,m and det (2—5(0,0)) # 0. Then
there exists a unique analytic map '

frE" =k - (fi(x),..., fm(x))
such that f;(0) = 0 satisfying F(x, f(x)) = 0.
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Chapter 2

Brauer groups and Brauer-Manin
obstruction

The first goal of this chapter is to introduce the Brauer groups of schemes. We begin with
the Brauer group of a field by group cohomology and then we compare it with the classical
definition by central simple algebras. Then we generalize this definition to the Brauer group of
a local ring by replacing central simple algebras over a field with Azumaya algebras over a local
ring. Later we study the Brauer group of a scheme in terms of étale cohomology and we end up
with the unramified Brauer group of a variety. The next goal is to introduce the Hasse principle,
weak approximation, and strong approximation for varieties over a number field k. We will find
a closed subset of X(Ay) containing X (k) defined by the Brauer-Manin pairing. Then we are
in a position to state several slightly different Brauer-Manin obstructions to the Hasse principle
and weak approximation. Finally we briefly introduce some technical results.

2.1 Brauer groups of fields

2.1.1 The Brauer group

Cohomological description

Let L|K be a finite Galois extension of any fields and let
H*(L|K) = H*(Gal(L|K), L*).

Let (L;)ier be the family of all finite Galois extensions of K. Suppose L; and L; are two
finite Galois extensions of K, then we can always find a finite Galois extension L; containing
the composite L;.L;. Hence the family (L;);c; forms a directed set. Then we can define the
Brauer group of K to be
Br(K) := lim H*(L;|K).
We can write more explicitly that Br(K) = {J,c; H*(Li|K) because for each L; C Lj, the
homomorphism H?(L;|K) — H?(L;|K) is injective by (1.1.15).
By infinite Galois theory, we have

Gal(K | K) ~ lim Gal(K,| K)/ Gal(K| L;) ~ lim Gal(L;|K)
I I

where K is the separable closure of K, L;|K runs through all finite Galois extensions and
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Gal(K;|L;) runs through all open and normal subgroups of Gal(K,|K). Hence we conclude

H?(Gal(K| K), K) = lim H?( Gal(K,| K)/ Gal (K| Ls), (K ) S 0100)
I
~ lim H*(Gal(L;| K), L;*) = lim H*(L| K).
I I

Therefore we have the identification

H*(K,|K) := H*(Gal(K,|K), KX) ~ Br(K).

Central simple algebras

Now we introduce central simple algebras and then we study another equivalent description
of the Brauer group over a field K. For any ring A, we denoted by M,,(A) the ring of all n x n
matrices with all entries in A.

Proposition 2.1.1. Let K be a field and let A be a finite dimensional K -algebra. The following
are equivalent:

(1) A has no non-trivial two-sided ideal, and the center of A is K.

(2) A®x K ~ M, (K) for some positive integer n, where K is an algebraic closure of K.

(8) There ezists a finite Galois extension L|K such that Ay L ~ M, (L) for some positive
integer n.

(4) A ~ M, (D) for some positive integer n, where D is a division algebra with center K.

Proof. For a proof, see Bourbaki, Algebra, chapter VIII, §§5, 10. O

Definition 2.1.1. (1) Suppose A is a K-algebra that satisfies conditions (1) to (4) above. Then
A is called a central simple K-algebra.

(2) Let A and A’ be two central simple K-algebras. Then A ~ M,,(D) and A" ~ M, (D") for
some division K-algebras D and D’. We say A is similar to A" over K if D ~ D’ as K-algebras.
Note that this is an equivalent relation.

(3) We denote by Bra,(K) the set of similarity classes of central simple algebras over K.

Remark 2.1.2. Let A and A’ be two central simple K-algebras of the same dimension. Then
to say A is similar to A’ is equivalent to say they are K-isomorphic.

Remark 2.1.3 (Group structure). We give Bry,(K) a group structure as follows. Take
[A],[A] € Bra,(K). By definition we have A ~ M, (D), A" ~ M,/ (D’) for some division
algebra D and D’ over K. Since

ARk A~ Mn(D) RK Mn/(D,) ~ M (D RK D/)
is a central simple algebra, we can define
Bra,(K) x Bra,(K) — Bra,(K), ([4],[A]) = [A®k A].

Then we have [A][K] = [A] and [A][A°P] = [K]. Thus the tensor product makes Bra, (k) into
an abelian group, and [K] = [M,(K)| for any positive n is the neutral element. This is the
classical Brauer group.

Remark 2.1.4 (Covariant functor). Let L|K be a field extension, then we obtain a group
homomorphism
BI"AZ(K) — BI“AZ(L), A— ARk L.

It’s easy to check that Bra,(—) forms a covariant functor from the category of fields to the
category of groups.
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The equivalence of two constructions

The aim of this subsection is to show Bra,(K) ~ Br(K). Let L|K be a field extension. We
denote by
Bra,(L|K) := Ker(Bra,(K) — Bra,(L))

the kernel of the restriction homomorphism.

Take A € Bra,(K), then by (3) in (2.1.1) we obtain A ®y L ~ M, (L) for some finite Galois
extension L of K. This tells us Bra,(K) is the union of Bra,(L|K) as L runs through all the
finite Galois extensions of K. Hence it will be sufficient to construct isomorphisms

Bra,(L;|K) — H?(L;| K)
for each finite Galois extension L;|K that compatible with the injections
Bra,(Li|K) — Bra,(L;|K) and H*(L;|K) — H?*(L;|K),

for field extension L;|L;.
Let Bra,(n, L|K) be the set of similarity classes of K-algebras A such that A®x L ~ M, (L).
Then the group Bra,(L|K) = Un21 Bra,(n, L|K).

Proposition 2.1.5. Let L|K be a finite Galois extension. Then the canonical map
0,, : Bra,(n, LIK) — H'(Gal(L|K),PGL, (L))
is bijective.
Proof. See [13] page 158, proposition 8. O

On the other hand, we have a short exact sequence 1 — L* — GL,(L) — PGL,(L) — 1
with L* contained in the center of GL,(L). The short exact sequence defines a coboundary
operator

A, : H(Gal(L|K),PGL, (L)) — H*(Gal(L|K), L*)

of pointed sets (see [14], section 5.7). Composing 6,, and A,, gives a map

6n : Bray(n, LK) — H*(Gal(L|K), L*) = H*(LIK).
We want these {d,,}n>1 to be compatible so that we will have a homomorphism

§: Bra,(L|K) — H*(L|K).
This is guaranteed by the following:
Lemma 2.1.6. For C' € Bra,(n,L|K) and C' € Bra,(n/, L|K), then
St (C @ C') = 6,(C) + 6, (C7).

Moreover, 6,(C) =0 iff C is a matriz algebra.
Proof. See [13] page 158, lemma 1. O

Now we can conclude.

Proposition 2.1.7. (1) If n = [L : K], then the map 6, : Bra,(n,L|K) — H?*(L|K) is
surjective.

(2) The homomorphism & : Bry,(L|K) — H?(L|K) is bijective. In particular, Bra,(K) ~
H?(K,|K) = Br(K).

Proof. A proof is in [413], page 158. O
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2.1.2 Cyeclic algebras

We construct explicitly a representative for each similarity class in Br(K). Let L|K be a
cyclic extension of fields of degree n with Galois group G. Let x € Hom(G,Z/nZ) be a group
homomorphism. Note that y is surjective if and only if y is an isomorphism. This is also
equivalent to choose a generator o € G such that x(o) =1 € Z/nZ. Take a € K*, we construct
a K-algebra (x,a) as follows.

(1) As an additive abelian group, (x,a) is an n-dimensional L-vector space with basis
Le,...,e" 1. Weput (x,a) =L®Le®---@® Le" L.

(2) Let A, € L and o € G, we define

; ; Ao (p)etti ifi+j<n
LLoued = L
et pe { aro(p)eti=m ifi+j5>n
and extend L-bilinearly to (x,a).

Thus we obtain an associated K-algebra which is called the cyclic algebra associated to

the character x and a € K. Since dimy(x,a) = n, [L : K] = n, we conclude dimg (x,a) = n?.

Theorem 2.1.8. Let L|K be a cyclic extension of degree n. Take a € K> and let x : G - Z/nZ
be a surjective character. Then

(x,a) ®x L= My (L),

Proof. Let o be a generator of G such that x(o) = 1. Suppose as an L-vector space, (x,a) =~
@) Le'. We define a homomorphism

v:(x,a) @ L — M,(L)

of L-algebras by

n

p(A®1) = Z o(A)'E;  and  @(e®1) =aBn + Z Eii-1,

i=1 =2

for A € L and e as above, where Ej; is the n x n matrix with the (4, j)-entry equals to 1 and
others equal to 0. Then ¢ is a well-defined homomorphism of L-algebras. Since

dimy, ((x,a) ®k L) = n* = dim;, M, (L),

it will be sufficient to show ¢ is surjective.
Suppose L = K(«) for some o € L. For A € L, we can find g € K[t] such that A = g(«).
Then by the lemma below, A ® 1 is sent to (o, o(a),...,0" 1(a)) € LP". Hence we have

o(L®g L) = @ LE;;
i=1
¢(Le®g L) = LE,; & @LEz‘,i—l

=2

p(Le* @k L) = LEy 11 @ LEn2 ® @D LE;;_», etc.
=3

It follows that Im ¢ = M, (L). O

Lemma 2.1.9. Let L|K be a Galois extension of degree n with Galois group G. Then we have
an isomorphism of L-algebras:

L ®kg L ~Homg (G, L), a®b— (0 o(a)b).
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Proof. Write G = {01, ...,0,}. Finite separable extensions are simple extensions, so L = K («)
for some a € L. Let P(t) = [[;—, (¢t — 0s(«)) be the minimal polynomial of o. We view L @ L
as an L-algebra via the second entry. Then

Lok L~ (K[t]/P(t)) @k L ~ L[t]/P(t).

By Chinese remainder theorem, we conclude

n

Lit)/P(t) ~ [ L®)/(t - 0ia) = Home (G, L),

i=1
as required. 0
Definition 2.1.2. Let A be a central simple algebra over K. L|K is called a splitting field for
A if

A®yg L~ M,(L)
for some positive integer n. In this case we say that L splits A.
Theorem 2.1.10. Let L|K be a cyclic extension of degree n with Galois group G.

(1) By the identification H'(G,Z/nZ) ~ Hom(G, Z/nZ), we can view a surjective character
x € Hom(G,Z/nZ) as an element of H*(G,Z/nZ). From the exact sequence

0Z—->Q—=Q/Z—0
of trivial G-modules, we obtain a connecting homomorphism
§: HY(G,Q/7) — H*(G, 7).
Then for any a € K*, we get
aUd(x) € H*(G,L*) = H*(L|K)

equals to the class of the opposite of the cyclic algebra (x,a).

(2) A central simple algebra A over K is similar to a cyclic algebra iff there exists a cyclic
extension of K splitting A, i.e. A®y L ~ M, (L) where n = [L: K].

(8) In Br(K), we have

(O a)] + [(x, a2)] = [(x, ara2)] and [(x1,a)] + [(x2, @)] = [(x1 + Xx2,a)]
for any a1,a2 € K* and x1,x2 € HY(G,Z/nZ).

Proof. (1) This is done by explicit computation.

(2) Suppose a central simple algebra A over K is similar to a cyclic algebra (x,a), where
x : Gal(L|K) — Z/nZ is a surjective character for some cyclic extension L|K of degree n. Then
(x,a) ®x L ~ M, (L) for some n > 0, and hence A is also splitting by the cyclic extension
L|K. Conversely, suppose L|K is a cyclic extension of degree n splitting A. Then [A] €
Bra,(L|K) ~ H?(L|K). Let x € Hom(Gal(L|K),Z/nZ) be a surjective character. The we have
an isomorphism of Tate cohomology groups

K* /Ny (L*) = H(Gal(L|K), L*) 220 f2(Gal(L] K), L°) = H(L|K).

In particular, [A] = @U §(x) for some a € K*. This shows that A is a cyclic algebra over K by
(1).

(3) These formulas hold by the bilinearity of cup product. O
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2.1.3 The local invariants

We say a field K is a local field, if K is endowed with a discrete valuation v such that K is
complete with respect to v and the residue field « is finite.

Theorem 2.1.11. Let K be a local field.
(1) If K is of characteristic 0, then K is a finite extension of Q, for some prime number p.
(2) If K is of characteristic p > 0, then K is a finite extension of F,((t)) where F,, denotes
the finite field with p elements.

Proof. See [39], page 135, proposition 5.2. O

Example 2.1.12. Let k be a number field with O, the ring of algebraic integers and let v € Q2
be a finite place of k. Then k, is a local field. Indeed, each finite place v is above some prime
ideal (p) C Z and hence the residue field x(v) is a finite extension of F,, = Z/pZ. This shows
that in particular x(v) is finite.

Let K be a local field and we may assume the discrete valuation v is normalized which means
that v : K* — Z is surjective. We take Ux = {& € K™ | v(z) = 0} to be the group of units in
the valuation ring {x € K* | v(x) > 0} of v. Let K, be the separable closure of K and let K,
be the maximal unramified subextension of K|K. Recall that the residue field of K,,, is &, the
algebraic closure of k. Moreover, Gal(K,..|K) = Gal(%|x) holds. Recall that

Gal(Fyn|Fy) = Z/nZ, F, — 1

is an isomorphism for each positive integer n where F, is the Frobenius element. Passing to the
projective limit we obtain an isomorphism Gal(Fy|F,) ~ Z. In our case, the x is a finite field
and hence Gal(R|x) ~ 7. From now on, we may identify Z with Gal(K,.|K) by v — F", here
F is the Frobenius element in Gal(K,,|K).

Lemma 2.1.13. Let G be a finite group and let M be a G-module. Let
M=M"D>M!'D>.-..DM'D...

be a descending chain of G-submodules. Suppose the natural map M — ILmM/MZ s a bijection.
If there exists some q such that HI(G, M®/M™1) =0 for all i > 0, then H1(G, M) = 0.

Proof. Let f be any g-cocycle with values in M. We show that f is also a g-coboundary.
HY(G,M/M") = 0 implies there is a (¢ — 1)-cochain 1; with values in M such that f = §¢ + f;
where f; is a g-cocyle with values in M. Similarly, there exists ¢, such that f; = dis + fo with
f2 a g-cocycle with values in M?2. We construct in this way a sequence (v, f,) where 9, is a
(g—1)-cochain with values in M™~L, f, is a g-cocycle with values in M™ and f,, = 0, 11+ fri1-
Set 1) = 1)y +1pa+. .. By assumption M ~ lim M/M?, hence the series converges and thus defines
a (q—1)-cochain on G with values in M. Finally f = 51 + f1 = (1 + b))+ fo = --- = 5. O

Proposition 2.1.14. Let L|K be an unramified extension of degree n with Galois group G.
Then for all q € Z, we have

(1) HQ(G7 UL) = 0’

(2) v: HI(G,L*) — HY(G,Z) is an isomorphism.

Proof. From the exact sequence 1 — Up, — L* — Z — 0 with trivial G-actions, we obtain a
long exact sequence

<o — HY(G,Ur) = HYG,L*) — HY(G,Z) - H"™" (G,UL) — ...

If HY(G,Uy) = 0 for each ¢, then HY(G,L*) — H(G,Z) is an isomorphism for each ¢ € Z,
hence it will be sufficient to show (1).
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Let # € K be a uniformizor. Since L|K is unramified, Uéi) = 1+ 7'y, indeed forms a
descending chain of open subsets of Uy,. Then Uy, ~ @ UL/ Ug). To apply the previous lemma,
we need the following two facts.

(A) We have isomorphisms UL/US) ~ k; and US)/USH) ~ (kr,+) that are compatible
with the action of the Galois group.

Take a € Ur, we put Uy, — Kk, a — a. Since Uél) =14+70p,a=1iff a € U,gl).
Hence we have UL/US) ~ k}. Fora € Ug), then @ = 1+ 7b for some b € O;. We define
@ Uéi)/UgH) — (kr,+) by a+ b € kr. Clearly Ker ¢ ~ Ugﬂ), hence Uéi)/UgH) ~ (K, +)
holds for 7 > 1.

(B) For all g € Z, we have

HY(G, U Uity =0 ifi>1

HY(G,UY Uity = Hy(G,L*) ifi=0
q = 1, we apply Hilbert’s theorem 90. ¢ = 2, |[L*| < oo and G is cyclic imply the Herbrand
quotient h(L*) = 1 by (1.1.8). Hence H?(G, Ug)/UgH)) = 0. For other ¢ we use the periodicity.
Take M = Uy, and M; = Ug) for i > 1. Then for any ¢ and all i > 0, HY(G, M*/M*T1) =0
by (B). Hence H4(G, M) = 0 by the previous lemma. O

Since K,,|K is unramified, the valuation v : K* — Z extends uniquely to the valuation
v: K. — Z. This valuation map induces a homomorphism H?(K,,.|K) — H?(Gal(K,,|K),Z).
This leads us to the following theorem.

Theorem 2.1.15. The valuation map v : K. — Z defines an isomorphism
H* (K, |K) = H*(Z,7.).

Proof. We have seen H?(Gal(K,,|K),K).) — H9(Gal(K,,|K),Z) is an isomorphism. Note
that Gal(K,,|K) ~ Z, we conclude H?(K,,.|K) — H*(Z,7). O

Then we compute H? (2, 7). More generally, let G be a profinite group and consider the exact
sequence 0 = Z — Q — Q/Z — 0 of G-modules with trivial actions. Q is an injective Z-module,
hence Q has trivial cohomology groups. Hence ¢ : HY(G,Q/Z) — H*(G,Z) is an isomorphism
by the long exact sequence. Since Q/Z is a trivial G-module, H(G,Q/Z) = Hom(G,Q/Z).
Summing up, we get ¢ : Hom(G, Q/Z) ~ H*(G,Z).

In particular, we take G = Z. Hence we get a chain of maps:

(K| K) % HX(Z,2) S Hom(Z,Q/Z) 5 Q/2
where v is induced from v : KX. — Z and v : ¢ — ¢(1). We take
invg =vod lou,
then we obtain an isomorphism, the so-called local invariants:

invg : Br(K) — Q/Z.

Proposition 2.1.16. Let K be a local field, let L|K be a finite separable extension of degree n
and let Ly, K, be the mazimal unramified extensions of L, K respectively, so that K, C Ly,..
Then the following diagram is commutative:

H*(K,,|K) "2 H*(L,,|L)

inVK\L linvL

Q/zZ ™ Q/Z.
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Proof. We write I'x = Gal(K,,.|K) for short and we denote by Fi the Frobenius element in
the Galois group I'k. T'p, and Fp, are defined similarly. Then we have a homomorphism

1

I'n oTk, 0> j 000y

where j : K, — Ly, is the inclusion, and o o j(K,,) C j(K,,) holds implies that j~! makes

sense. This homomorphism between Galois groups induces the restriction homomorphism
res : H*(K.|K) — H*(Ly,|L).

Let ki and sy be the residue field of K and L respectively. Suppose f = [kr : Kk], then
Fr = (Fg)/. Let e be the ramification index of L|K. We consider the following diagram

H2 (Ko |K) > H*(T, Z) =~ Hom(T'x, Q/Z) —~> Q/Z

resl e'resl e~resl nl

H?(Lyy|L) —5— H*(T'1, Z) e Hom(I'z, Q/Z) —— Q/Z.

Here vk (p) = ¢(Fk) for ¢ € Hom(T'k,Q/Z) and v (¢) = ¢ (FL) for ¢ € Hom(I'r,,Q/Z). The
left square commutes since vy, = e - vg on K. The middle square commutes is obvious. The
right square commutes since Fy, = (Fx)/ and n = ef. This completes the proof. O

2.2 Brauer groups of schemes

2.2.1 Brauer groups of local rings

Let R be a commutative local ring with maximal ideal m and residue field kK = R/m. Let A
be an R-algebra (not necessarily commutative) with 14. Suppose the homomorphism R — A,
7 +— 1 - 14 identifies R with a subring of Z(A), the center of A. We write A°P for the opposite
algebra of A.

Definition 2.2.1. A is called an Azumaya algebra over R if
(1) Ais an free R-module of finite rank,
(2) the map A ®g A°° — Endg(A), a ® o/ — (z — aza’) is an isomorphism.

Lemma 2.2.1. Let M and N be finitely generated R-modules with N free. If o : M — N 1is a
homomorphism of R-modules such that @ : M — N s injective, then ¢ has a section. If © is
an isomorphism, then so is ¢. Here for any R-module M, we write M for M ®p (R/m).

Proof. See [37] lemma 1.11. O

Proposition 2.2.2. (1) If A is an Azumaya algebra over R and R’ is a commutative local
R-algebra (R — R’ need not be a local homomorphism), then A Qg R’ is an Azumaya algebra
over R'.

(2) If A is free of finite rank as an R-module, and A @ (R/m) is an Azumaya algebra over
R/m, then A is an Azumaya algebra over R.

Proof. (1) A is a free R-module of finite rank implies that A ® g R’ is a free R’-module of finite
rank. By the isomorphisms

(A Rr R/) Rpr (A [59) 3 R/)Op ~ (A (9] 3 AOP) Rnr R ~ EndR(A) (93 R ~ EHdR/(A QR RI),

we conclude that A ® g R’ is an Azumaya algebra over R’.

(2) All we need to show is A ®z A°P ~ Endg(A). Since A = A ®x (R/m) is an Azumaya
algebra over R/m, we have an isomorphism A ®p/m A ~ Endp /m(A) of R/m-algebras. This
gives rise to (AQr AP)R@r (R/m) ~ Endr(A)®@r (R/m). Ais a free R-module, hence the lemma
applies. Consequently, A®pr A°P ~ Endg(A) holds and therefore A is an Azumaya algebra over

R. O
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Corollary 2.2.3. (1) If A and A’ are Azumaya algebras over R, then A®g A’ is an Azumaya
algebra over R.
(2) The matriz ring M, (R) is an Azumaya algebra over R.

Proof. (1) Now A and A’ are free R-modules of finite rank, hence A®@r A’ is also a free R-module
of finite rank. By (2.2.2), A and A’ are Azumaya algebra over kK = R/m, we have

(A0, A @y (AR, AP ~ (A2, A) @ (A 2, A7) ~ End,.(A) @, End, (A7) ~ End,.(A®, A).

It follows that A ®, A’ is an Azumaya algebra over R/m and by (2.2.2) we conclude A ®@p A’ is
an Azumaya algebra over R.

(2) M,,(R) is a free R-algebra of finite rank and M,,(R)®r(R/m) ~ M, (R/m) is an Azumaya
algebra over R/m. Thus by (2.2.2) we know that M, (R) is an Azumaya algebra over R. O

We say two Azumaya algebras A and A’ over R are similar if
A®pr M,(R)~ A" ®r M,/ (R)

holds for some n and n’. Similarity is obvious flexible and symmetric. It’s easy to show it is
transitive by the fact M, (R) ® g M,,s(R) ~ M,/ (R). Hence similarity is an equivalence relation.

Definition 2.2.2. We define the Brauer group of R, denoted by Bra,(R), to be the group of
similarity classes of Azumaya algebras over R.

Remark 2.2.4. Note that if A; is similar to A} and As to A5, then A; ®g As is similar to
A} ®@pg Al by the fact M,,(R) ®g My (R) =~ My, (R). Hence [A][A'] = [A®g A], [A]71 = [A°P]
and the neutral element [R] make Bry,(R) into a group.

Let R be a local ring with residue field x. Take a € R and f € R[T], then we write @ € &
and f € s[T] for their images under the canonical projection. We say R is Henselian if for
each monic polynomial f € R[T] and each simple root ag of f in &, there exists an a € R
such that f(a) = 0 and @ = ag. We say a Henselian local ring R is strictly Henselian if x is
separably algebraically closed. We collect some results about the Brauer group of a local ring
in the following.

Proposition 2.2.5. If R is a Henselian local ring with residue field k, then the canonical
map Bra,(R) — Bra,(k) is injective. Moreover, if R is a strict Henselian local ring, then
Bra,(R) =0.

Proof. See [37], page 138-139. O

Proposition 2.2.6. Let R be a Henselian local ring with residue field k. Then the homomor-
phism
HZ (Spec R, G,,,) — HZ, (Speck, Gyy,)

is an isomorphism for each ¢ > 1.

Proof. See [37], page 116, remark 3.11(a). O

2.2.2 Brauer groups of schemes

Let X be a scheme and let Ox be the structure sheaf on X.

Definition 2.2.3. An Ox-module A is called an Azumaya algebra over X if
(1) Ais a coherent Ox-module,
(2) for all closed points = € X, A, is an Azumaya algebra over the local ring Ox ,.

Note that the assumption (2) implies that A is locally free of finite rank as an O x-module.
Moreover, for each point x € X (not necessarily closed), A, is an Azumaya algebra over Ox 5.
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Proposition 2.2.7. Let A be an Ox-algebra of finite type. The following are equivalent:

(1) A is an Azumaya algebra over X,

(2) A is locally free as an Ox-module and A, ®oy , k(z) is a central simple algebra over
k(z) for allz € X,

(3) A is locally free as an Ox-module and the canonical homomorphism A ®o, AP —
Endo, (A) is an isomorphism,

(4) there is a covering {U; — X} for the étale topology on X such that for all i, there exists
r; such that Ao, Ouy, ~ M, (Oy,),

(5) there is a covering {U; — X} for the flat topology on X such that for all i, there exists
r; such that A®p, Oy, ~ M,,(Oy,).

Proof. See [37], page 141, proposition 2.1. O

We say two Azumaya algebras A and A’ over X are similar, if there exist two locally free
Ox-modules £ and &’ of finite rank on X, such that

A®oy Endoy (E) ~ A ®oy Endo (E').
The similarity relation is an equivalence relation, because
Endoy (£) ®oy Endoy (E') = Endo (€ Roy E).
This leads us to the following:

Definition 2.2.4. We define the Brauer group of X, denoted by Bra,(X), to be the similarity
classes of Azumaya algebras over X.

Remark 2.2.8. (1) Bra,(X) is indeed a group. We define an operation
Bra,(X) x Bra,(X) — Bra,(X), [A][A] =[A® A

Of course Ox itself is an Azumaya algebra over X hence it defines a class [Ox] in Bra,(X).
Then its easy to see [A][Ox] = [A] and [A][A°P] = [Ox]. We conclude [Ox] is the neutral
element and [A]~! = [A°P].

(2) Bra,(—) : &¢ch — 2b is a contravariant functor. Suppose f : X — Y is a morphism of
schemes, then we can define

f*:Bra,(Y) = Bra,(X), A— f*A.

Here f*Ais the sheaf associated to the presheaf f~'A®;-10, Ox. Let z € X and y = f(z), then
(f*A)e = Ay ®0y., Ox ., is a free Ox ,-algebra. fr : Oy, — Ox, induces a homomorphism
#(y) < k(z) and hence (f*A), ®oy ., k(r) ~ Ay ®o,., £(x) is a central simple algebra over

k(z).
Definition 2.2.5. Let X be a scheme. We put
G 2 Xet — b, U — T(U, Op) ™,

and then G,, is an abelian sheaf on Xg. We define the cohomological Brauer group of X,
denoted by Br(X), to be HZ (X, G,,).

Theorem 2.2.9. Let X be a scheme. There is a canonical injective homomorphism
Bra,(X) — Br(X) = HA(X,G,,).
Proof. See [37], page 142, theorem 2.5. O

Corollary 2.2.10. Let X be a regular integral scheme with function field K(X). Then the
canonical map Bra,(X) — Br(X) — Br(K (X)) is injective.
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Proof. See [37], page 145, corollary 2.6. O
Finally, we give some special cases when the canonical homomorphism is surjective.

Proposition 2.2.11. Suppose R is a Henselian local ring. Let X = Spec R. Then Bry,(X) =
Br(X).

Proof. See [37], page 148, corollary 2.12. O

Proposition 2.2.12. Suppose X is a reqular quasi-compact and separated scheme endowed with
an ample invertible sheaf L. Then Brp,(X) = Br(X).

Proof. This is an unpublished result of Gabber. One proof is contained in [15]. O

2.2.3 Residue homomorphisms

We begin with a few discussion on the vanishing of the Brauer groups of fields and then we
construct the residue homomorphisms.

Vanishing of Brauer groups

Proposition 2.2.13. For a given field K, the following are equivalent:

(1) Let L|K be any finite separable extension of fields. Then Br(L) = 0.

(2) Let LIK be a finite extension and let M|L be a finite Galois extension. Then the
Gal(M|L)-module M* is cohomologically trivial.

(3) Let L|K be a finite extension and let M|L be a finite Galois extension. Then the norm
map Npgjr : M>* — L* is surjective.

Proof. For a proof, see [43], chapter X, proposition 11. O

Let A be a complete discrete valuation ring with fraction field K and perfect residue field
k. Let K,,.|K be the maximal unramified extension of K. Then (3) in the proposition holds by
[43], chapter V, proposition 7, and hence K, has trivial Brauer group.

Remark 2.2.14. The fact Br(K,,) = 0 can also be deduced from a more difficult fact that
K, is a C field which is proved by Lang in [31].

In fact, it is convenient to use the theory of cohomological dimension for profinite groups
to study fields with vanishing Brauer group. We briefly introduce some basic definitions and
results as follows. For an abelian group A and for a prime number p, we write A[p| for the
p-primary torsion subgroup of A, that is the subgroup of elements of p-power order.

Definition 2.2.6. Let G be a profinite group and let p be a prime number.

(1) We say that G has p-cohomological dimension < n, if HI(G, A) = 0 for each ¢ > n
and for each continuous torsion G-module A.

(2) We define the p-cohomological dimension of G, denoted by cd,(G), to be the smallest
positive integer n for which G has cohomological dimension < n. If such n does not exist, we
say cdp(G) = oo.

By construction, 7 = 1&12/ nZ is a profinite group. We consider the p-cohomological di-

mension of Z as an example.
Proposition 2.2.15. Let p be a prime number. Then we have Cdp(i) =1.
Proof. See [19], page 136, proposition 6.1.3. O

Let K be a field and then the Galois group Gal(K|K) is a profinite group. This leads us to
the following:
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Definition 2.2.7. Let K be a field and let K, be a separable closure of K.

(1) The p-cohomological dimension cd,(K) of K is the p-cohomological dimension of the
absolute Galois group Gal(K,|K).

(2) The cohomological dimension cd(K) of K is the supremum of the cd,(K) for all
prime numbers p.

Now we can see that fields of p-cohomological dimension 1 can be characterized by the Brauer
group. The following result can be compared with (2.2.13).

Theorem 2.2.16. Let K be a field and let p be a prime number not equal to the characteristic
of K. Then the following are equivalent:

(1) The p-cohomological dimension of K is less or equal to 1, i.e. cd,(K) < 1.

(2) For each separable algebraic extension L|K, we have Br(L)[p] = 0.

(3) The norm homomorphism Ny : M* — L* is surjective for each separable algebraic
extension L|K and each Galois extension M|L with Gal(M|L) ~ Z/pZ.

Proof. See [19], page 138, theorem 6.1.8. O

We have the following complement:
Proposition 2.2.17. Let K be a field of characteristic p > 0. Then cd,(K) < 1.

Proof. See [19], page 139, proposition 6.1.9. O

Residue homomorphisms

Since K|K is a Galois extension containing the Galois extension K,,.|K, we have an exact
sequence

0 — H*(Kn.|K) — H*(K,|K) — H*(K,|K,,)
by (1.1.15). Note that H?(K,|K,,) = Br(K,,) = 0, we conclude the map
H?*(Gal(K,,|K),K)) — H*(Gal(K,|K), K}) = Br(K)

induced by Gal(K,|K) — Gal(K,,|K) and K. < K is an isomorphism. Since K,.|K is
unramified, the valuation v4 of K extends uniquely to K. For each o € Gal(K,,.|K), we have

va(Nk,, |k (0:2)) = va(0-Nk,, [k (2)) = va(Ni,, |k (2))

for each x € K. since N, |x(z) € K*. Therefore the valuation map K, — Z is Galois-
equivariant hence it induces a map

H*(Gal(K,,|K),K).) = H*(Gal(K,,|K), Z).
Note that Gal(K,.|K) ~ Gal(k|k), hence H?(Gal(K,,|K),Z) ~ H?*(Gal(k|k),Z). From the
short exact sequence 0 — Z — Q — Q/Z — 0, we obtain H?(Gal(g|x), Z) ~ H*(Gal(k|x), Q/Z).
We therefore construct a homomorphism
04 : Br(K) — HY(Gal(R|k), Q/7Z)
by the composition

Br(K) 5 H*(K,,|K) % H*(Gal(K,,|K),Z) = H*(Gal(k|x), Z) = H'(Gal(R|x), Q/Z).

When A is not complete, we replace A by its completion which does not change the residue field
k, then apply the above construction.
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Proposition 2.2.18. Let X be a regular noetherian integral scheme of dimension 1. Let n be
the generic point on X. Suppose for each x € XV, the residue field k(z) is perfect. Then we
have an exact sequence

0 — H*(X,G,,) — H*(Specx(n),G,,) — @ H*(Specr(x),Q/Z)
reXxX @)
by [23], III, page 93, proposition 2.1.

Remark 2.2.19. Let A be a discrete valuation ring with fraction field K and residue field .
Then there is an exact sequence

0 — Br(A) — Br(K) — H'(x,Q/Z).

We can show that Br(A4) can be identified with the kernel of the residue homomorphism dy :
Br(K) — H'(k,Q/Z) by [11], §1.1.

Proposition 2.2.20. Let k be a field. Let A C B be two discrete valuation rings containing k
with fraction fields K C L and perfect residue fields ka,rp. Let e = epa4 be the ramification
index of B over A. Then the diagram commutes:

24, H\(Gal(Ralka),Q/Z)

resl ie-res

Br(L) —5 HY(Gal(Rg|kg), Q/Z).
B
Proof. We have seen in the proof of (2.1.16), the diagram

H2(K,,|K) —2> H2(Gal(K | K), Z)

resl le'res

H?(L,,|L) o H?(Gal(Ly.|L),Z)
is commutative. Hence the required square commutes by construction. O

Proposition 2.2.21. Let A be a discrete valuation ring with fraction field K and perfect residue
field k. Let LIK be a finite separable extension of fields. Let B C L be the integral closure of
A in L. B is a semi-local Dedekind ring. Let p;, i € I be the non-zero prime ideals of B. Let
k; = B/p; which we assume to be separable extensions of k. The following diagram commutes:

Zi 0y —
Br(L) =— @ H'(Gal(Ri|r:), Q/Z)

COTeSL | K l \LXL cores,, |,
Br(K) — HY(Gal(r|x),Q/Z).
A
We briefly illustrate how these arrows go as follows. Since L|K is a finite separable extension
of fields, we obtain I C K, and hence we can identify Br(L) with H?(K,|L). Moreover,

Gal(K;|L) C Gal(K,|K) is a subgroup of finite index Card(Gal(L|K)). Therefore we obtain a
corestriction homomorphism

coresy, i« H?* (K |L) — H*(K,|K).

Let v; be the valuation of L associated to p; extending the valuation v4 and let L; ,, be the
maximal unramified extension of L with respect to v; contained in K . Therefore we obtain a
residue homomorphism

0; : Br(L) — H'(Gal(7;i|r;), Q/Z)

53



2.2. BRAUER GROUPS OF SCHEMES

for each . Finally, x;|x is a finite separable extension, so % is also an algebraic closure of x;.
Moreover, Gal(%|x;) is a subgroup of Gal(%|x) of finite index, and the corestriction homomor-
phism

cores,, |, : H'(Gal(R|r;), Q/Z) — H"(Gal(E|r),Q/Z)

is defined as usual.

Proposition 2.2.22. Let A be a discrete valuation ring with perfect residue field r. Let K be
its fraction field and let va : K* — Z be the associated valuation. Take & € HZ (A, Q/Z). Let £
be the image of & under the reduction map

Hélt (A7 Q/Z) - Hé}t(’iv @/Z)v
and let £x be the image of HY(A,Q/Z) in HLY(K,Q/Z). For any a € K*, we have

da((éx,a)) = vala) - € € H'(r,Q/Z).
Proof. For a proof, see [8], proposition 1.3. O

2.2.4 Unramified Brauer groups

There are two equivalent ways to define the unramified Brauer group of a variety X over
a field k. We first briefly recall the birational invariance of the Brauer group Br(X). More
detailed arguments are contained in [23], III, section 7.

Proposition 2.2.23. Let f : X — Y be a birational morphism of integral smooth proper
varieties over a field of characteristic zero. Then the induced map Br(Y) — Br(X) of the
Brauer groups is an isomorphism.

Let X be an integral smooth proper variety over a field k and let k(X) be the function field
of X. Let A be a discrete valuation ring of rank one such that £k C A and k(X) is the fraction
field of A, and let k4 be the residue field. We have constructed the residue homomorphism
Oa : Br(k(X)) — H'(ka,Q/Z). Let z € XM be a point of codimension 1, then the above
construction applies to the local ring Ox ,. Since X is regular, there is an injection Br(X) —
Br(k(X)). Similarly, for each z € X, we have an injection Br(Ox ;) — Br(k(X)). We have the
well-known

Theorem 2.2.24. Let k be a field of characteristic zero and let X be an integral smooth proper
variety over k. Let k(X) be the function field of X. For an element o € Br(k(X)), the following
are equivalent:

(1) « lies in Br(X).

(2) For any x € X, « lies in Br(Ox ).

(8) For any x € XU, « lies in Br(Ox ,); equivalently, the residue of a at x vanishes.

(4) For any discrete valuation ring A C k(X) containing k and with fraction field k(X), «
lies in Br(A); equivalently, the residue 04 () vanishes.

If these conditions are fulfilled, and if Y is an integral smooth proper variety over k which
is k-birationally equivalent to X, then

(5) « lies in Br(Y').

(6) For any y € Y, « lies in Br(Oy,y).

Proof. First of all, suppose all of (1) to (4) hold. Then (5) holds since Br(X) is isomorphic
to Br(Y) and (6) holds by the equivalence of (1) and (2). Now we only need to prove the
equivalence of (1) to (4).

(1)=(2). For any = € X, we have a morphism SpecOx, — X and it induces Br(X) —
Br(Ox ). Both groups are contained in Br(k(X)) and hence Br(X) — Br(Ox ;) is an injection.
(2)=(8). This is trivial.

(3)=(1). By assumption for each z € X o € Br(Ox ,) and it follows that

o € Ker (Br(k(X)) — H'(x(z),Q/Z)).
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Recall that we have an exact sequence

0= Br(X) = Br(k(X)) » € H'(k(z),Q/Z),
xeX @)

we conclude « lies in the kernel of the third arrow, i.e. o € Br(X). O

Definition 2.2.8. The elements of Br(k(X)) satisfying conditions (1) to (4) above form a group,
denoted by Br,,,.(k(X)|k) or Br,,-(X). We call it the unramified Brauer group of the field
k(X) over k.

Remark 2.2.25. Let k be a field of characteristic zero and let X be a smooth geometrically
integral variety over k. We can embed X into a smooth and proper variety X, by Hironaka’s
theorem on resolution of singularities. It is possible to identify Br,,.(X) with the Brauer group
Br(X,) of X.. The unramified Brauer group Br,,(X) also provides an easier way to compute
Br(X.) by residue homomorphisms.

2.3 Hasse principle, weak and strong approximation

In this section we introduce the Hasse principle, weak approximation and strong approxima-
tion for varieties over number fields. Let k£ be a number field and let € be the set of places of
k. The main reference of this section is [47], §5.1.

2.3.1 Hasse principle, weak and strong approximation

Definition 2.3.1. A class of geometrically integral varieties over a number field k satisfies the
Hasse principle if for every variety X in this class, the condition X (k,) # 0 for all places
v € Q implies X (k) # 0.

The Hasse principle is also called the local-global principle. We say a k-variety X is a
counter-example to the Hasse principle if X (k,) # 0 for each place v, but X (k) = 0.

Here is a list of some classical and more recent results on the Hasse principle. All cubics
are assumed to be geometrically integral, non-conical (can not be reduced to a lesser number of
variables by a linear transformation), and of codimension 1. For more detailed illustrations, see

[17]. page 99.

Theorem 2.3.1. The following classes of geometrically integral varieties over a number field k
satisfy the Hasse principle:

(1) smooth projective quadrics (Minkowski and Hasse);

(2) Severi-Brauer varieties (Chdtelet);

(8) smooth projective cubics in Py for n > 9 (Hooley);

(4) principal homogeneous spaces under simply conncected, or adjoint semisimple groups
(Kneser, Harder and Chernousov).

Next, we suppose X(k,) # 0 for each v € Q. Then we have the diagonal embedding
X (k) = X(kq). It is natural to ask the density of the image of X (k) in ], .o X(k,) with
respect to the product topology.

Definition 2.3.2. Let X be a geometrically integral smooth variety over a number field k.

(1) We say X satisfies weak approximation if the image under the diagonal embedding of
X (k) is dense in X (kq) with respect to the product topology.

(2) Let S C Q be a subset. We say X satisfies weak approximation away from S if X (k)
is dense in [],.q_g X (k) with respect to the product topology.

The following proposition is useful when we study weak approximation because it allows us
to approximate only finitely many places.
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Proposition 2.3.2. Let k be a number field and let X be a k-variety. Suppose X (k,) # 0 for
each v € Q). Then X satisfies weak approzimation iff for any finite set S C Q, X (k) is dense in

[Loes X (kv)-

Proof. Suppose X satisfies weak approximation. Let (P,) € [[,cg X (ky) be the point we need
to approximate. Take any (Q,) € [[,cq X (ky) with Q, = P, for v € S, then we can find
Q € X (k) arbitrarily close to (Q,). In particular, @ is also arbitrarily close to P, for v € S.
Conversely, let Z be the closure of X (k) in J],.q X(k,). By construction of the Tychonoff
topology, an open base for topology is of the form

{ H U, x H X (ky) | for any finite subset S C Q}
veS vgS

Here U, C X (k,) is an open subset for each v € S. Now let S C Q be any finite subset. By

assumption X (k) is dense in [], g X (k,), hence
ZO (T[] U x J] X (k) # 0.
veS vgS

This implies that Z meets every non-empty open subsets of [] .o X(k,) and hence Z =
[1,cq X (ky), as required. O

Remark 2.3.3. (1) We should take care of the extreme case []
say X satisfies weak approximation by convention.

(2) Suppose [],cq X (k) # 0. If X satisfies the weak approximation, then in particular
X (k) is non-empty and hence X satisfies the Hasse principle.

veq X (ky) = 0. In this case, we

Definition 2.3.3. Let X be a geometrically integral smooth variety over a number field k.

(1) We say X satisfies strong approximation if X (k) is dense in X (Ay) with respect to
the adelic topology.

(2) We say X satisfies strong approximation away from S, if X (k) is dense in X (A}) with
respect to the adelic topology.

Suppose X is a proper, smooth and geometrically integral variety over a number field k.
Applying (1.5.18), we obtain X (Ay) = X (kq). Moreover, the adelic topology and the product
topology are equivalent for proper varieties. Therefore weak approximation and strong approx-
imation are equivalent in this case.

2.3.2 Birational invariance

Roughly speaking, the existence of k-points and satisfying weak approximation are stable
under birational maps.

Lemma 2.3.4. Let k be a number field and let k, be its completion with respect to a place
v € Q. Let X be a smooth integral variety over k,. Let U C X be a non-empty Zariski open
subset. Then the set U(k,) is dense in X (k,) with respect to the v-adic topology. In particular,
if X(ky) is non-empty, then U(k,) is also non-empty.

Proof. Suppose X is of dimension n. Let P € X(k,) be the k,-point we need to approximate.
Since P is a smooth point on X, we can find a Zariski open neighbourhood V' such that

ko[T1, -« Tt

V ~ Spec
e 2|

and rank (g? (P)) =m.
J

Note that the map

Foky™ =k (z,y) = (Fu(@,y), ... (2, y)
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satisfying

hence by implicit function theorem we obtain a map

fiky =k e (fi(x),..., fm(x))

such that F(x, f(x)) = 0. Therefore there exists open subsets y C V(k,) and Q2 C kI such
that P € Q; and the map 6 : 1 — Qs induced by ¢ : V' — A’,;‘v is a homeomorphism. Moreover,
the Zariski closure G of o(U°NV) in A} is of dimension strictly smaller than n. We can therefore
take the points in {0 — G arbitrarily close to ¢(P). Its inverse image by #~! is not in U¢ and
arbitrarily close to P. O

det (

Proposition 2.3.5. Let X,Y be two smooth geometrically integral and birationally equivalent
varieties over a number field k. Then X satisfies weak approzimation if and only if Y satisfies
the weak approximation. In particular, k-rational geometrically integral smooth varieties over k
satisfy weak approximation.

Proof. 1t will be sufficient to prove the proposition in the case ¥ = X — W where W C X
is a proper closed sub-variety of X, i.e. Y is a dense open set of X. Then if X satisfies
weak approximation, then so does Y by definition of induced topology. Conversely, by the v-
adic implicit function theorem, Y'(k,) is dense in X (k,) by (2.3.4). Suppose Y satisfies weak
approximation and let (z,) € [], X(k,) be the given point we need to approximate. Choose
(yo) € 1, Y (ko) C I, X (k) arbitrarily close to (z,) with respect to the product topology. By
hypothesis, there is a rational point y € Y (k) whose image in [[, Y (k,) is arbitrarily close to
(y»). Hence y is also close to (), i.e. X satisfies weak approximation. O

The Zariski density of rational points also follows from weak approximation.

Corollary 2.3.6. Let k be a number field and let X be a smooth geometrically integral variety
over k. Suppose X (k) # 0 and X verifies weak approximation. Then X (k) is Zariski dense in
X.

Proof. Let P € X be any point. We need to show for any non-empty open neighbourhood
U of P, UN X(k) is non-empty. Indeed, U is open dense in X and hence U satisfies weak
approximation. In particular, U(k) = U N X (k) is non-empty. O

Finally, we prove the existence of a k-point is stable under birational maps for proper va-
rieties. This also shows that satisfying the Hasse principle is stable under birational maps for
proper varieties.

Lemma 2.3.7 (Lang-Nishimura). Let k be a field and let f : Y — X be a rational map of
schemes over k. Assume that Y has a smooth k-point and X is proper. Then X (k) # (.

Proof. We do induction on n = dimY. n = 0is clear. For n > 0, let y be a smooth k-point of Y.
Consider the blow-up Bl, Y of Y at y with exceptional divisor F ~ ]P’Z_l and the composition
Bl,Y — Y — X. By the valuation criterion of properness, this composition is defined outside
a set of codimension at least 2, so the restricting to F, we obtain a rational map F — X. Now

X (k) #0. 0

2.4 The Brauer-Manin obstruction

Recall that for a number field k, the local invariant of the Brauer group of k,, is a homomor-
phism
inv, : Br(k,) < Q/Z.
It is an isomorphism for each finite place v. If v is a real place, then inv, identifies Br(R) with
%Z/Z. If v is a complex place, then Br(C) = 0. We will frequently use the following short exact
sequence.
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Proposition 2.4.1 (Albert-Brauer-Hasse-Noether). Let k be a number field, then we have an
ezact sequence of abelian groups

0 — Br(k) - @ Br(k,) — Q/Z — 0.
vEQR

Here the second arrow is the natural diagonal map and the third arrow is the sum of local
invariants inv, : Br(k,) — Q/Z.

2.4.1 Brauer-Manin pairing

Lemma 2.4.2. Let X be a variety over a number field k. Let A € Br(X). For any finite subset
S C Q, there ezist a scheme X of finite type over O s, an element A € Br(X) and a morphism
X — X identifying X with the generic fibre of X — Spec Ok, s such that Br(X) — Br(X) sends
A to A.

Proof. Now Spec Oy, is an integral scheme and the field k is its function field. X is a variety,
hence X — Speck is of finite presentation. Applying (1.5.10) we obtain a dense open subscheme
U of Spec Oy and a scheme X of finite presentation over U such that X ~ X}. We may shrinking
U to an affine open subscheme Spec Oy, 5, for some finite set Sy C Q2. Now we consider {Xo, .}
where T runs through all finite subsets of {2 containing Sy and it forms a filtrated inverse system
and lim Xo, . ~ X. This implies Br(X) ~ li_n;Br(Xok’T) (Cf. [40], proposition 6.6.10). Hence
A € Br(X) comes from an element of Br(Xp, ) for some finite set S D Sp. The scheme Xp, 4
is as required. O

Proposition 2.4.3 (Brauer-Manin pairing). Let X be a smooth and geometrically integral va-
riety over a number field k. Then we have a well-defined pairing

Br(X) x X(Ar) = Q/Z, (A, (2,)) = Y inv,(A(x,)).

veEQN

Proof. (1) If x, is a k,-point of X, then apply Br(—) we obtain a map Br(z,) : Br(X) — Br(k,)
induced by x,. We define A(z,) to be the image of A under this induced map. Hence inv, (A(z,))
indeed lies in Q/Z.

(2) Then we claim the sum is finite. By (2.4.2), we can find a scheme X over O g and
a morphism Br(X) — Br(X) sending A to A. We may assume z, € X(O,) for all v ¢ S
by enlarging S. Note that (x,) is an adelic point, so S is still a finite set. Then it follows
A(z,) = A(z,) € Br(O,). Since the Brauer group of a valuation ring of a local field is trivial,
it follows that Br(O,) = 0 and A(x,) = 0 for almost all v. O

Notation 2.4.1. Let ¥ C Br(X) be a subset. Then we write

X(Ap)® = {(z.) € X(A) | D inv,(A(z,)) =0, YA € B}
vEQN

In particular, we obtain a subset X (A;)B"(X) of X(A) and this is just the right kernel of the
Brauer-Manin pairing.

Lemma 2.4.4. Let X be a smooth and geometrically integral variety over a number field k.
Recall that Bro(X) = Im(Br(k) — Br(X)). Then X (Ag)B°X) = X(Ay) and hence the pairing
Br(X) x X(Ag) — Q/Z can be considered as a pairing

(Br(X)/Bro(X)) x X(Ax) — Q/Z.

Proof. Indeed, let p : X — Speck be the structral morphism and let p* : Br(k) — Br(X) be
the induced map. Let A be an element in Bro(X), then A = p*(a) for some a € Br(k). Take
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any (x,) € X(Ay) and we write z, : Br(X) — Br(k,) for the homomorphism induced by the
k-morphism =z, : Speck, — X. By construction, we have

Z inv, (p*(a)(zy)) = Z inv, ((z} 0 p*)(a)) = (Z inv,) o A(a) =0

vEQN vEQN vEQN
by the reciprocity law (2.4.1), where A denotes the diagonal embedding Br(k) — @ Br(k,). O

Lemma 2.4.5. Let us write A : X(k) — X (Ay) for the diagonal embedding. If x € X (k) is a
k-point on X, then Y, .o inv, (A(z)) = 0 for each A € Br(X). Here we view v € X (k) as an
element in X (k,). In other words, we have A(X(k)) C X (Ag)P*0.

Proof. Let A € Br(X) and let z € X (k). We write 2* : Br(X) — Br(k) for the homomorphism
induced by x € X (k). Then we define the evaluation map

eva : X(k) = Br(k), x — z*(A).
Similarly we can defined the evaluation map
eva s X(Ap) = @ Br(ky), () = (23(A)).

Note that x(A) € Br(O,) = 0 for all but finitely many places v, hence the map eva : X (Ay) —
P Br(k,) is well-defined. Now we obtain the following commutative diagram

X (k) —— X(Ax)

.

0 Br(k) @ Br(k.) Q/z 0,

with exact bottom row. The Brauer-Manin pairing is the map obtained via X (Ay) and it is 0
by commutativity and exactness of the bottom row. O

Remark 2.4.6 (Functionality of the kernel). Let k& be a number field, let X and Y be two
k-varieties and let f : Y — X be a k-morphism. We denote by f* : Br(X) — Br(Y) the
homomorphism induced by f. Take (y,) € Y(Ay) and A € Br(X). Then

Z inv,, ((f*A)(yv)) = Z inv, ((y; © f*)(A)) = Z inv, (A(f © yv))

vEQN vEQN vES)

It follows that (f oy,) € X(Ax)P"X) as soon as (y,) € Y (A;)P*¥) and thus we have a well-
defined map
FoY (AP = X (AP () = (f o).

In particular, X (Ag)B"X) = implies Y (Ag)B*) = 0.
Lemma 2.4.7. Let k be a number field and let X be a smooth and geometrically integral k-
variety. Let A € Br(X).

(1) The map evy : X (k) — Br(k,), x, — A(zy) is locally constant with respect to the v-adic
topology for each place v € Q.

(2) The map X (Ay) = Q/Z, (x) = X eqinvy(A(zy)) is locally constant and X (Ay)? is
open and closed in X (Ay).

Proof. See [10], page 209, proposition 8.2.9. O

Corollary 2.4.8. Let k be a number field and let X be a smooth and geometrically integral
k-variety. Then X (Ay)P"X) is a closed subset of X (Ay).

Proof. By the previous lemma, it is clear that the complement of X (A;)P*X) in X (Ay) is open.
It follows that X (A)BP"X) is a closed subset of X (Ay). O
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The product Brauer-Manin pairing

Proposition 2.4.9 (The product Brauer-Manin pairing). Let X be a smooth and geometrically
integral variety over a number field k. We write kg = [] ky, as usual. Then we have a
well-defined pairing

vEQ

B, (X) x X (kq) = Q/Z, (A, (x,))— > _ inv,(A
veEQN

Proof. By Hironaka’s theorem (1.4.7), we can find a smooth proper variety X. containing X as a
dense open subset. The elements of Br,,(X) uniquely extend to elements of Br(X,). Note that
X(kq) C Xe(ka) = Xc(Ag) and hence ), inv,(A(z,)) is a finite sum by the Brauer-Manin
pairing. U

Notation 2.4.2. Let us put

X (k)P ) = {(2,) € X(ka) | Y inv, (A =0, VA € Br,,(X)}
veEN

to be the right kernel of the product Brauer-Manin pairing.

Remark 2.4.10. We have seen Br(X,.) C Br(X) and hence Br,,(X) C Br(X) by Br,,(X) =
Br(X,). We conclude that X (A)P*X) ¢ X (kq)P'»(X). For a fixed A € Br,,,(X), the function
> veq vy (A(2y)) is locally constant in the product topology. Thus X (kq)Brr(X) € X (kq) is
closed.

2.4.2 The Brauer-Manin obstruction

Now we can view X (k) as a subset of X (A;)P"X) via the diagonal embedding. Therefore
X (Ag)B*) potentially obstructs the existence of k-points on X.

Definition 2.4.3. Let X be a variety over a number field k.
(1) We say X has a Brauer-Manin obstruction to the Hasse principle if X (Ay)
(2) We say the Brauer-Manin obstruction is the only obstruction to the Hasse principle
for X if X (Ay)B*X) £ () implies X (k) # 0.
(3) We say there is no Brauer-Manin obstruction to the Hasse principle if X (Ay)B"X) #£ (.

Suppose X (ko)P™r(X) C X (kg). Then X (k) C X (k)P (X) and X (kq)P»(X) C X(kq)
being closed imply X (k) cannot be dense in X (kq). This means X (kq) # X (kq)P™(X) is an
obstruction to weak approximation for X.

Br(X) _ 0

Definition 2.4.4. Let X be a smooth and geometrically integral variety over a number field k.

(1) We say X (kq) # X (kq)P»r(X) is the Brauer-Manin obstruction to weak approx-
imation for X.

(2) We say the Brauer-Manin obstruction is the only obstruction to the weak approxima-
tion if X (k) is dense in X (kq)B™ () ie. X (k) = X (kq)Bn (X,

(3) We say that there is no Brauer Manin obstruction to weak approximation if X (kq) =
X (kq)Brer (X,

In practice we will frequently in the situation that X is projective. In this case the Brauer-
Manin obstruction has an easier expression.

Definition 2.4.5. Let X be a proper, smooth and geometrically integral variety over a number
field k. Then X (Ay) = X (kq) and Br(X) = Br,,(X) are fulfilled.

(1) We say X (Ay) # X (Ay)P"X) is the Brauer-Manin obstruction to weak approxi-
mation for X.

(2) We say the Brauer-Manin obstruction is the only obstruction to the weak approxima-
tion if X (k) is dense in X (Ay)B (X,
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2.4.3 Harari’s formal lemma

We will use the following result in the sequel. More information is contained in [24].

Definition 2.4.6. Let X be an integral variety over a number field k¥ and let k(X) be its
function field. Take Ay,..., A, € Br(k(X)). Let (Ai,...,A,) be the subgroup of Br(k(X))
generated by these A; and let I' = Br(X) N (Ay,..., A,).

(1) We say there exists Brauer-Manin obstruction to the Hasse principle associated
to I if for each adelic point (P,) € X (A) and an element A € I" such that ), inv,(A(F,)) #
0in Q/Z.

(2) We say there exists Brauer-Manin obstruction to weak approximation associ-
ated to T' if there exists an adelic point (P,) € X(Ay) and an element A € T such that

Yo invo(A(P,)) # 0 in Q/Z.

Theorem 2.4.11. Let X be a smooth, projective and geometrically integral variety over k. Take
a € Br(k(X)) which is not in Br(X). Let U C X be a non-empty Zariski open subset such that
a € Br(U). Then there exist infinitely many places v of k such that U(k,) — Br(k,) induced by
« takes a non-zero value.

Proof. See [24], Thm 2.1.1. O

Lemma 2.4.12 (Harari). Let k be a number field and let Q) be the set of all places of k. Let X
be a smooth, projective and geometrically integral k-variety. Suppose X (k,) # 0 for all v € Q.
Let Ay,..., A, € Br(k(X)) and let T be as above. Let U be a non-empty Zariski open subset of
X such that A; € Br(U) for alli. Let S C Q be a finite subset.

(1) If there is no Brauer-Manin obstruction to the Hasse principle associated to T' for X,
then there exists a finite set T D S and a family (P,) € [[,cp U(ky) such that

> invy(Ai(P)) =0, i=1,...,r.

veT

(2) If there is no Brauer-Manin obstruction to weak approzimation associated to T’ for X,
then for all family (P,) € [[,cqU(ky), there exists a finite set T D> S and a family (P,) €
[I,er_g Ulky) such that

D vy (Ai(P)) =0, i=1,...,r

veT

Proof. We write multiplicatively the group law of Br(k(X)). Let n; be the order of A; in
Br(k(X)) for all i. Since the Brauer-Manin pairing Br(U) x U(k,) — Q/Z is additive in the
first variable, inv, (A4;(P,)) € Z/n;Z for all i and all P, € U(k,). For v € Q, we write E, for the
subset

B, = {(inv,(A(P)) € [, Z/niZ | P, € U(k,)}

of [T;_, Z/n;Z. Let T be the subgroup of [[;_, Z/n;Z generated by
{h = (h;) €1;_1 Z/niZ | h € E, for infinitely many v € Q}.

By construction of T, there exists a finite set S’ C € such that for all v ¢ S’ and for all
P} € U(k,), we have (inv,(A;(P))))i1<i<r € I'. Take (P,) € [[,cq U(ky). Let S C Q be a finite
subset containing S’ and take

Ws = (Y v (4i(P) ., € [[2/niZ.
vES i=1

(1) If Wg € T, we have —Wg = Wi+ - -+W,, where W; € E,;, 1 < < n for infinitely many v.
Thus there exist pairwise distinct places vy, ..., v, not in S, such that W, € E,, for 1 <[ < n.
Write " = {v1,...,v,}, and take T'= SUS”. Since W; € E,,, we can find P, € U(ky,)
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such that (inv,(A;(Py,)))1<i<r = Wi for 1 <1 < n. Then we have ) . inv,(4;(P,)) = 0 by
Ws + Z;l:l W, =0.

(2) If Wg ¢ T, there exists a character [],_; Z/n;Z — Q/Z which vanishes on T', but does
not vanish at Wg. Explicitly, there exist integers «; for 1 < ¢ < r such that for any element
(h1,...,hy) €T, we have Y./, a;h; = 0 in Q/Z while Y g inv,(I];_; A7 (P,)) # 0 in Q/Z.
But for all v ¢ S" and P} € U(k,), we have (inv,(A4;(P))))1<i<r € T' which implies that
inv,(Ti—; A% (P))) = 0 in Q/Z. By (2.4.11), we conclude A = []\_; A € Br(k(X)) is in fact
lies in Br(X) because inv.(A(P))) # 0 holds potentially for v € S’ which is finite. We have
Y oveq iV (A(Py)) = >, cq vy (A(P,)) # 0 in Q/Z since Zvesinvv(H::1 A(P,)) #0.

Now, there’s no Brauer-Manin obstruction to the Hasse principle associated to (Ay, ..., A,)
for X, we can take (P,) € [[,cq Ul(ky) such that for all B € Br(X), > o inv,(B(P,)) =0
holds. Hence the case (2) above can not happen and the assertion follows from the case (1).
Similarly, there’s no Brauer-Manin obstruction to weak approximation, it is known for every
element (P,) € [[,cq U(ky), we are in the above case. O
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Chapter 3

Torsors and descent obstruction

3.1 Definition of torsors

3.1.1 Group schemes

Let X be a base scheme. Before the main topic of this section, we briefly recall the notion
of X-group scheme and the action of an X-group scheme on an X-scheme.

Definition 3.1.1. Let X be a scheme and let G be an X-scheme. We say G is an X-group
scheme if there exists morphisms

w:GxxG—G, e: X =G and inv:G — G,

such that u, e and inv satisfy the group axioms for group operation, neutral element and inverse
element respectively. More precisely, these can be visualized as the following commutative
diagrams.

(1) Associativity:

GxxGxx G Y axy G

Gxx G m G.
(2) Left neutral element and right neutral element:
exid id xe

XXXGHGXXGHGXXX

.

G.

(3) Inverse:

inv X id id X inv
G——=GxxG<=——G

T

X——sG~—"r—X

Definition 3.1.2. Let X be a scheme, let G be an X-group scheme and let Y be an X-scheme.
A right G-action on Y is given by a morphism p:Y xx G — Y such that the composition

id xe

YoV xy X S yxyG—LsYy
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is the identity on Y, and such that the diagram

Y xxGxx G pxid Y xx G
idxul ip
YXXG o Y

is commutative.

Remark 3.1.1. Let T be an X-scheme. Then the action p: Y xx G — Y induces a map

The first request says pr(y,id) = y for each y € Y/(T') where id € G(T) is the neutral element.
And the second request says pr(y, gh) = pr(pr(y,h), g) for any g,h € G(T'). Hence we obtain
the action by the group G(T') on the set Y (T') in the usual sense. We will denote this action by

(Y,9) = y.g-

3.1.2 Torsors over schemes
Definition 3.1.3. Let X be a scheme and let G be an fppf X-group scheme. Let f:Y — X
be an X-scheme endowed with a G-action p:Y xx G — Y such that the diagram

Y xyG—L>Y

indGi lf

XXXGWX

commutes. We say Y is an X-torsor under G (or a G-torsor over X) if f : Y — X satisfies
the following equivalent properties:
(1) the morphism p : Y — X is fppf, and the morphism ¥ x x G — Y x x Y induced by

JE——

Y
Y X
is an isomorphism;

(2) there exists a covering {U; — X}ier in the flat topology such that for each i € I,
Yy, =Y xx U; with the action of Gy, = G x x U; is isomorphic to Gy, with the right action of
Gy, on itself.

Remark 3.1.2. If we apply the functor of points, the morphism obtained in (1) can be described
as follows. Let T" an X-scheme, then we obtain a bijection of sets

Y(T) xx) G(T) = Y(T) xxy Y(T), (y,9) — (y,p(y,9))

for y € Y(T) and g € G(T). In particular, for any y,z € Y(T), there exists unique g € G(T)
such that p(y, g) = z, i.e. the G(T')-action on Y (T') is simply transitive. In the sequel, we will
simply denote this morphism by (v, g) — (y,y.9).
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Remark 3.1.3. We briefly sketch the equivalence of (1) and (2). (1) implies (2) since ¥ — X
is a covering in the flat topology. Conversely, let U = | |U; be the disjoint union of all the U;.
Then U — X is faithfully flat and locally of finite type. By assumption, we have Yy, ~ Gy, and
it follows that Yy ~ Gy. Hence Yy — U verifies the property of (1). Y — X verifies (1) follows
from descent with respect to morphisms which are faithfully flat and locally of finite type.

Let G be an fppf X-scheme. Then in particular, G — X is an X-torsor under G. By the
compatibility assumption of an X-torsor, the right G-action on X is trivial. For this reason, the
torsor G — X with the right G-action is called the trivial torsor.

Definition 3.1.4. Let Y7 and Y3 be two X-torsors under G. A morphism ¢ : Y1 — Y5 of
X-torsors under G is a morphism ¢ : Y7 — Y5 of X-schemes such that the diagram

Vi xx G2 v, <k G

Y1 Yo

commutes. Here p; denotes the G-action on Y; for i = 1,2. If we apply the functor of points,
the compatibility of G-actions can be read as p2(¢(y1),9) = ¢(p1(y1,9)).

Lemma 3.1.4. Let G be an fppf group scheme over X. An X-torsor Y — X wunder G is trivial
iff the structural morphism f:Y — X has a section s : X — Y.

Proof. Let Y — X be a trivial X-torsor under G. Note that Y — X is fppf and hence Y — X
is surjective. Then each fibre Y, over x € X is non-empty and is isomorphic to the group G,
where G, stands for the fibre of G — X at . Now we obtain a section s : X — Y, z — 1y,
where 1y, is the unique element corresponding to the neutral element of G,.

Conversely, let s : X — Y be asectionof f:Y — X and let p: Y xx G = Y be the right
G-action on Y. Since Y — X is an X-torsor under G, the morphism 7 : Y xx G - Y xx Y
induced by p; and p is an isomorphism. Then we obtain an isomorphism

idX X

GZXXyYXxGH—XXyYXXyZY

where the existence of X Xy Y xx G and X Xy Y Xxx Y are given by the base change of
YxxG—YandY xxY — Y to the morphism s: X — Y. O

Proposition 3.1.5. The category of X-torsors under G is a groupoid. More precisely, any
morphism Y1 — Yo compatible with canonical projections to X and the action of G is an iso-
morphism.

Proof. Let f:Y; — Y5 be a morphism of X-torsors under GG. By definition, there are coverings
{Uij = X}ier,,j=1,2 of X in the flat topology over X such that Y; xx U;; ~ G xx U;;. We can
therefore take a common refinement {V; — X},cs of {Uin = X}ier, and {Uia — X }ier,, such
that ¥; xx V; ~ G xx V; for i = 1,2 and for each j € J. We take V' = | |, V; and we obtain
an fppf morphism V' — X. Then Y; xx V is a trivial V-torsor under Gy for ¢ = 1,2 and it
follows that Y7 xx V ~ Y5 xx V. By descent theory by fppf morphisms, Y7 — Y5 is also an
isomorphism. O

3.2 Torsors over fields

Let k be a field and let ks be an algebraic closure of k. Let X be a set endowed with an action
of the Galois group Gal(ks|k). Then we denote by (g,0) — 90 for the action of g € Gal(ks|k)
on o € X. Let G be an algebraic group defined over k. The left action of G on itself is denoted
by (s,z) — s.z, and the right action is denote by (s, ) + z.s. For an arbitrary scheme X over

65
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k, we write X for X xj ks. We have an action of Gal(ks|k) on X which can be visualized as
follows

idx xg*
X Xp ks ——————— X X ks

X X

)

where g* : Specks; — Specks is the morphism induced by g € Gal(ks|k). The G-actions on G
are compatible with the action of Gal(ks|k): for s1,s2 € G(ks), g € Gal(ks|k), we have

9(s182) =981 - Is0.

Let X be a variety over a field k. Then X is of finite type over k implies that X is noetherian.
The structure sheaf Ox is a free coherent Ox-module. These two facts show that Ox is flat
over X and consequently X is fppf over k. In particular, algebraic groups over k are also fppf
over k. Hence we can obtain Spec k-torsors under G from the previous section and we will say
k-torsors to simplify the notation.

Definition 3.2.1. Let X be a variety over k£ and let G be an algebraic group over k.
(1) A k-torsor under G is a non-empty k-variety X equipped with a right action X x;,G — X
of G, denoted by (z,g) — x.g, such that the morphism

X xp G = X xp X, (2,9) — (z,2.9)

is a k-isomorphism. A left k-torsor under G is a non-empty k-variety X equipped with a left
action of G such that the morphism G x; X — X X X is a k-isomorphism. Unless otherwise
stated, a torsor will always mean a right torsor.

(2) A morphism ¢ : X; — X3 of k-torsors under G is a morphism of k-varieties such that
the diagram

X, %, G2 X, % G

X X5

commutes, where p; : X; X G — X; is the action of G for i = 1,2. An isomorphism of k-torsors
under G is an isomorphism of k-varieties compatible with the G-actions.

Remark 3.2.1. Let X be a k-torsor under G. Then we obtain a bijective map

X (ks) x G(ks) = X (ks) x X(ks), (x,9) = (z,2.9).
This tells us that the right G(k;)-action on X (k) is simply transitive. More precisely, for any
x1,x2 € X(ks), there exists a unique g € G(ks) such that zo = z1.g.

Theorem 3.2.2. Let k be a field. Then k-torsors are quasi-projective. More generally, this also
holds with Spec k replaced by the spectrum of a Dedekind domain.

Proof. See theorem 6.4.1 in [2]. O

3.2.1 Twisting by Galois descent

Let F' be a quasi-projective k-variety endowed with an action of G. Suppose Gal(ks|k) is
endowed with its natural profinite topology and G(k;) is endowed with discrete topology. Let
o : Gal(ks|k) — G(ks) be a continuous 1-cocycle with respect to the group cohomology. Then
we have o(g192) = o(g1) - (%*c(g2)) by the standard resolution. We define the twisted action
of Gal(ks|k) on F by

p:Gal(ks|k) x F = F, (g,s) o(g).9s,

66



CHAPTER 3. TORSORS AND DESCENT OBSTRUCTION

where g € Gal(ks|k) and s € F. Take g1, g2 € Gal(ks|k), then we have

0(9192, 8) = 0(9192).91925 = (0(91) . 910(92)).91928
= 0(g1)-7 p(g2,8) = p(g1, p(g2,5)),

hence p : (g,8) = o(g).9s is a well-defined Gal(ks|k)-action on F'.

Definition 3.2.2. Let F' be a quasi-projective k-variety endowed with a G-action. Let o :
Gal(ks|k) — G(ks) be a continuous 1-cocycle. By Weil’s theorem on descent of the base field,
the quotient of F by the twisted action of Gal(k;|k) exists (a proof is contained in chapter 6 of
[2]). We call the quotient the twist of F' by o, and we denote it by F°.

Remark 3.2.3. Replacing o by a cohomologous cocycle g — (cfl -o(g) ~gc) for ¢ € G(k;) gives
rise to an isomorphic variety. The isomorphism depends on the choice of ¢ € G(k;) and hence
the isomorphism is not canonical.

3.2.2 Classification of k-torsors

Let ¢ : G — G be an automorphism of G such that ¢(z.s) = ¢(x).s for any z,s € G. Then
we claim ¢ can be identified with L, the multiplication of some element g € G on the left.
Indeed, we can take g = ¢(lg), then p(z) = p(lg.z) = ¢(1g).x = Ly(x). Thus the group
G acting on itself on the left is the automorphism group of the pair (G, the right action of G
on G). Let o : Gal(ks|k) — G(ks) be a continuous 1-cocycle. Thus the corresponding twisted
variety of G by o is equipped with the right action of G making it into a right torsor under G.
We shall denote this torsor by G°.

Conversely, any k-torsor X under G can be obtained in this way: choose a ks-point Ty €
X (ks), then for any g € Gal(k|k) there is a unique element o(g) € G(ks) such that 9Ty = Tg.0(g)
by the simple transitivity. Then we obtain a continuous map o : Gal(ks|k) — G(ks), g — o(g).
Note that

Too(g192) = 99°T0 = 9 (Too(g2)) = 9" To? 0(g2) = Too(g1) - ¥ 0 (g2),

where x holds by the compatibility of the G(ks)-action and the Gal(ks|k)-action on X (ks). We
therefore obtain o(g192) = 0(g1) - 90 (g2), i.e. o is a continuous 1-cocycle. Let T; € X (ks) and
oi(g) be the unique element in G(k) such that 97; = T;0;(g) for i = 1,2. Suppose Tp = "z, for
some h € Gal(k;|k). Then we conclude

T101(gh) = 9% = 9T5 = Ta02(g) = T101(h)o2(g),

and it follows that o1 (gh) = o1(h)o2(g). More explicitly, we have

oa(g) = (o1(h)) " - o1(g) - Y01 (h).

Therefore two ks-points 77 and Ty lead to cohomologous cocycles.

Summing up, cohomologous 1-cocycles give rise to isomorphic k-torsors and conversely iso-
morphic k-torsors determine cohomologous 1-cocycles. These two constructions are being inverse
to each other (Zy corresponds to the neutral element of G(k;)), and we obtain a bijection between

k-torsors under G up to isomorphism

and

the pointed set H'(k,G) = H'(Gal(ks|k), G (ks)).
The distinguished point represents the class of the trivial torsor, i.e. G with its right action on
itself.

Proposition 3.2.4. Let G be an algebraic group over k and let X be a k-torsor under G. The
following are equivalent:

(1) X is isomorphic to the trivial k-torsor G,

(2) X has a k-point, i.e. X (k) # 0,
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Proof. Suppose X is isomorphic to the trivial k-torsor G. Note that G(k) contains the neutral
element, hence X (k) is non-empty. Conversely, take © € X (k) and define a map ¢ : G — X,
g — x.g. This can be visualized by the following commutative diagram:

XXkGHXXkX

br2 l lerz

G- - - - =X

Since the morphism X x; G — X xj X is an isomorphism, X x; G — X, (z,9) — z.g is a
surjective morphism. It follows that ¢ is a homeomorphism. Finally by the commutativity of
the diagram above, we obtain a morphism Ox — ¢.O¢ of sheaves on X. Thus ¢ : G — X is a
k-isomorphism. O

3.3 Torsors over schemes

In this section, we study the constructions of X-torsors under an fppt X-group scheme G,
the classification by Cech cohomology and end up with connections to rational points.

3.3.1 Torsors and Cech cohomology

Now we study the classification of X-torsors under an fppf X-group scheme G. The isomor-
phism classes of torsors are naturally described by the elements of the first non-abelian Cech
cohomology set. We first recall the usual definition of the Cech cohomology with coefficients in
a presheaf P of abelian groups.

Abelian Cech cohomology revisited

Construction. Suppose X is a scheme. Let 4 = {U; — X};cs be a covering in the étale
topology over X. Let P be a presheaf of abelian groups on the étale (resp. fppf) topology over
X. We write Uj; = U; xx Uj and Uy, = Uy xx Uj X x Uy, and soon. If I C J"1 is a sequence
(o, - - -, jn) of indices of length n+1 then we write I/ for the sequence (i, . . ., i}7 ..., 1,) of indices
of length n. The canonical projections p;; : Uy — Uy; induce the maps p7; : P(Up;) — P(Ur).
The Cech complex consists of

crwP)y = [ P

[I|=n+1
with differentials
n+1 )
(d"z); =Y (—1)p};(xp)
=0

defined for |I| =n+ 2 and = € C’”gil,P). The Cech cohomology groups H™ (4| X, P) are the
cohomology groups of the complex C* (i, P), i.e.

H™(W|X,P) = H"(C* (8L, P)),

and H"(X,P) can be identified by passing to the inductive limit for all coverings (see II1.2 in

[571)-

Remark 3.3.1. We have a natural map 7 : P(X) — H°(4U|X,P) constructed as follows. Let
¢; : U;j — X be the étale morphism for each j € J. Then we obtain an induced morphism
@5+ P(X) — P(Uj). By construction, HO($1| X, P) consists of elements s = (s;);es such that
(d%s);; = pg‘j(sj) —p;‘j(si) =0 for all i # j in J. Here p?. : P(U;) — P(Uy;) is the morphism
induced by the projection U;; — U; and pg‘j is similarly defined. Since U;; = U; x x U;, we have

Py 0@l =Di;0¢; for all 4,5 € J. Now we consider z* = (¢f(x)) € [[P(U;), then we have
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(dz*)i; = p%‘j ©j () fpz‘j ¢¥(z) = 0 by construction. This shows the image of P(X) lies in Ker d°

and hence we obtain a natural map P(X) — H°(U4|X, P).
If P is a sheaf, then we have an exact sequence

PX) = [[Pw) = [] PWy).
i€l i,j€l
Therefore P(X) is identified with the kernel of the right arrow, which is H° (8| X, P).
By the spectral sequence for Cech cohomology (1.3.15), we have the spectral sequence
HP (U X, HY(P)) = HPTI(X,P),

where H%(P) is the presheaf U — HYI(U, P).
If a morphism Y — X is a covering, then we obtain a spectral sequence

H?(Y|X,HY(P)) = H""(X,P).
The corresponding exact sequence of low degree terms begins as follows
0— HY(Y|X,P) —» H'(X,P) —» H (Y |X,H" (P)) — H*(Y|X,P) —» H*(X,P).
We give examples of X-torsors when the above sequences have explicit descriptions.

Example 3.3.2 (Hochschild-Serre spectral sequence). Let F' be a finite group. A finite étale
Galois covering Y| X with Galois group F' is an X-torsor under an X-group scheme Fx which
as an X-scheme is the disjoint union of |F'| copies of X with the group structure inherited from
that of F.

For any sheaf P, we have

P(Y X x Fn) = HomGet(F”7P(Y))'

A direct verification then shows that the Cech complex C*(Y'|X,P) is isomorphic to the com-
plex of non-homogeneous cochains of the group F with coefficients in P(Y). Thus the Cech
cohomology groups of the canonical covering are computed in terms of group cohomology:

HY(Y|X,P) = H'(F,P(Y)).

Suppose now that our topology is flat or étale. Then Cech spectral sequence associated to
the canonical covering is the Hochschild-Serre spectral sequence

HP(F,HY(Y,P)) = H"*9(X,P).

Passing to the limit, one extends this to profinite Galois coverings.

Sheaves of torsors over topologies

Now we define sheaves of torsors and classify them by non-abelian Cech cohomology set.

Definition 3.3.1. Let T be a topology. Let G be a sheaf of groups on 7.

(1) A sheaf of pseudo torsors under G is a sheaf of sets F on T' endowed with an action
G x F — F such that the action G(U) x F(U) — F(U) is simply transitive when F(U) is
non-empty.

A morphism F — F’ of sheaves of pseudo torsors under G is a morphism of sheaves of sets
compatible with the G-actions.

(2) A sheaf of torsors under G is a sheaf F of pseudo torsors under G such that for each
object U in T, there exists a covering {U; — U}y of U such that F(U;) is non-empty for all
i € I. In this case, we may say F is trivialized on the covering {U; — U}icr.

A morphism of sheaves of torsors under G is a morphism of sheaves of pseudo torsors under
G. We may simply say a G-torsor rather than a sheaf of torsors under G.

(3) The trivial G-torsor is the sheaf G endowed with the right G-action.
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Classification of torsors under §

By construction of differentials in the Cech complex, a 1-cocycle s € C‘l(ﬂ, G) with respect
to the covering 4 = {U; — X };¢ consists of a family s,; € G(U;;) for all 4, j € I such that after
restricting to Uj;i, we have s;;s; = s;i. The cocycles s and s’ are cohomologous if there exist
elements h; € G(U;) such that after restricting to U;; we have s;; = hiSijh;l. The pointed set
of cohomology classes is denoted by H' (/| X, G). Passing to the inductive limit for all coverings
we obtain the set H'(X,G).

Let Y be a sheaf of torsors over X under G trivialized on a covering i = {U; — X };er.
By assumption Y(U;) is non-empty for each i € I, hence we can choose local sections y; €
Y(U;). Then there exists a unique s;; € G(U;;) such that y;s;; = y; on G(U;;) by the simple
transitivity. Hence we have y;s; = y;sijs;, for each i,j, k pairwise distinct, and again by
the simple transitivity we conclude the family {s;;} is a 1-cocycle with coefficients in G. This
associates to a sheaf of torsors ) over X under G trivialized by 4 a class in Hl(M|X, G). The
distinguished element of H' (8| X,G) corresponds to the sheaf of trivial torsors G. This defines
a bijection, more precisely, an isomorphism of pointed sets between

sheaves of torsors over X under G trivialized on 4 up to isomorphism

and §
the pointed set H'(4|X,G).

Passing to the inductive limit, we obtain a bijection between
sheaves of torsors over X under G up to isomorphism

and 5
the pointed set H'(X,G).

The cohomology class of a torsor Y — X in the relevant cohomology set (or group) is denoted
by [Y].

Remark 3.3.3. Let X be a scheme and let G be a sheaf of groups on the étale topology over
X. Now we have a contravariant functor G : Xg — ®tr. When G is represented by an étale
X-group scheme G, i.e. G(—) = Homegp, (—, G), we shall write G instead of .

Example 3.3.4. Let X be a scheme and let G be a sheaf of groups on the flat topology over
X. Suppose G is represented by G.

(1) If G is such that every sheaf of torsors over X under G is represented by an X-scheme,
we have a bijection between

{X-torsors under G up to isomorphism} and {the pointed set H'(X,G)}.

(2) If G is commutative, we can replace the Cech cohomology group by the flat cohomology
group and hence we obtain a bijection between X-torsors under G up to isomorphism and the
group H'(X, Q). Indeed, now G is a sheaf of abelian groups on the flat topology over X. It is
known that H'(X,G) can always be computed as H'(X,G). More details are in [37], chapter
111, corollary 2.10.

(3) If we assume further G is smooth over X, the flat topology can be replaced by the étale
topology (Cf. [37], IIL.4). Thus when G is commutative, X-torsors under G are classified by the
elements of the group Hg, (X, G).

Let 7°(G) be the presheaf of groups defined by U — H°(U, G) and let H*(G) be the presheaf
of pointed sets defined by U — H'(U, G). For any sheaf of sets we have G = H°(G). Then there
is an exact sequence of pointed sets

1 — H (UX,G) - HY(X,G) - H (Y| X, H (G)).

The last arrow is given by the collection of restrictions from X to U;, and H(U|X,H°(G))
parameterizes the classes of cocycles trivialized on 4.
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Lemma 3.3.5. Let G and G’ be algebraic groups over k, and let X and Y be k-varieties such
that Y — X is an X -torsor under G. There is an ezxact sequence of pointed sets

1— HY(Y|X,G") - H(X,G") —» H(Y|X,HY(G")).

The pointed set H (Y|X,G') can be interpreted as the set of equivalence classes of morphisms
f:Y % G — G’ satisfying the cocycle condition f(y,s)f(ys,s') = f(y,ss’); f is equivalent to
fif

F'y.s) = g(y) f(y, s)g(ys) ™"
for a morphism g : Y — G'. If G = G, then the class of the torsor Y — X in H'(Y|X,G) is
given by the second projection Y X G — G.

Proof. All statements except the last one are straightforward. The last statement is verified
directly from the definitions. Indeed, the torsor Y — X is trivialized by the covering Y — X,
and the map Y xx Y — Y has a section given by the diagonal morphism. Then the cocycle of
Y — X in H°(Y x xY, G) becomes the second projection after the isomorphism H°(Y x xY, G) =
HYY x; G,G). O

3.3.2 Twisting by fppf descent

The construction of twisting by fppf descent is crucial for the application of torsors. Let G
be an fppf X-group scheme. Let P be a right X-torsor under G and let ) be a scheme affine
over X equipped with a left G-action which is compatible with the projection to X. We write
pp: Pxx G — Pand pg: G xx Q — Q for the G-actions. From the following diagram

pr

PXXGXXQ GXXQ
pTJ/ \\\ ll)@
\A or
PxxG PxxQ Q
idXinv\L P""\L \L
Pxx G Py P X

where each pr denotes the projection, we obtain a G-action
pZPXXGXXQ%PXXQ

on Px x@Q. After applying the functor of points, we may denote this action by (p,q) — (pg~*, gq)
for g € G.

Lemma 3.3.6. The quotient of P xx Q by the G-action p given by (p,q) — (pg~*, gq) exists as
a scheme affine over X. In other words, there exists a morphism of X-schemesm: PxxQ —Y
for some scheme Y endowed with an affine morphism Y — X, such that fibres of m are orbits

of G.

Before we prove lemma (3.3.6), we give the following definition and we quote a result on
descent theory of Grothendieck.

Definition 3.3.2. By lemma (3.3.6), the quotient of P x x @ by the G-action exists. It is called
the contracted product of P and @ with respect to G or the twist of @) by the X-torsor P.
The quotient is denoted by P X)G( Q, P x% Q or simply by pQ. Note that P has the structure
of a left X-torsor under pG, so that pG acts on pQ@ on the left.

Theorem 3.3.7. Let f : P — X be a faithfully flat and quasi-compact morphism of schemes.
To give a scheme Y affine over X is the same as to give a scheme Y’ affine over P together
with an isomorphism ¢ : piY' — p3Y’ satisfying the cocycle condition

p31(9) = P32(@)P21 (),
where p1,p2 : P xx P — P and p;j : P xx Pxx P — P xx P fori> j are the projections.
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Proof. See [37], chapter I, theorem 2.23. O

Proof of (3.3.6). Let p1,pa: P xx P — P and p;; : P xx P xx P— P xx P fori> j be the
projections. Since P is a right X-torsor under G, we conclude

(PXXP)XP(PXXQ)ZPXXGXXQ.

Note that the G-action on G x x Q is given by (z,q) — (zg~?, gq), therefore each orbit can be
represented by (idg, ¢) for a unique ¢. Thus to take the contracted product G x @ is the same
as considering the morphism pg : G xx Q — @ given by the left G-action on (). We conclude
that G x© @ exists and is canonically isomorphic to Q. Set Y’ = P x x @Q and let

PiY =PxxPxx Q5 PxxPxxQ=psY'

be the morphism given by (z1, z2,q) — (21, X2, $21.q) where s9; is the unique element in G such
that xo = x1.591. From the following sequence

PXXPXxQ%PXXGXXQ—)PXXGXXQ—)PXXPXxQ

given by
(x17x27q) = (I175217q) — (1'135213 521~‘]) = ($1a$27521~Q)7

we obtain (z1,%2,q) — (x1, T2, $21.q) defines an isomorphism ¢ : piY’ — p3Y’. Then we need
to check p3i(p) = piy(0)p3,(p). Indeed, p3;(v) sends (z1, z2,x3,q) to (x1,x2, T3, S31.9) Where
r3 = x1.S31. Similarly we obtain so; and s3z. We have s3; = s32891 since P is an X-torsor
under G and thus the cocycle condition holds. This gives the existence of Y by descent theory.
The map P Xx PXxx Q 2~ P xx G xx Q@ - P xx @ =Y’ (quotient by G acting as in the
statement of the lemma) descends to P xx Q@ — P x% Q =Y. O

Example 3.3.8 (inner forms). We take @ = G and consider a left G-action pg : G xx G = G
given by conjugations (g,x) — gzg~'. The contracted product is an X-group scheme pG =
P x% @G, which locally in the fppf topology is isomorphic to G. If X = Speck, then pG is the

inner form G of G, where P is the k-torsor defined by o € Z!(Gal(k|k), G).

Example 3.3.9 (the inverse torsor). Suppose @ is a left X-torsor under G with G-action
p: G xx @Q — Q. We construct a right X-torsor ' under G as follows. As an X-scheme, we
put Q' to be isomorphic to @ via ¢ : Q" — Q. From the following diagram

GxxQ——=0Q
L
G X

1

where inv : G — G denotes the morphism g — ¢g~*, we obtain a morphism

Q/XxG*)GXXQ.

We obtain a morphism p' : Q' x x G — Q' by composition with := o p. Let T be an X-scheme
and let (¢/,g) € Q'(T) x G(T). Then p'(¢',9) =t *p(g~1,1(¢")) by construction. It follows that
P (¢ ide(ry) = 1™ 1u(q") = ¢’ and

P (5 9192) = plgy g uld) = ples s per s u(d))
=0 (¢ olgrt ud))s g2) = PP (9, 01), 92)-
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Therefore p' : Q' xx G — Q' is a right G-action. To simplify the notation, we may omit the
isomorphism ¢ and simply denote this right G-action by

-1

pQ xx G—=Q, (q,9)— plg~,q).

It is straightforward that @’ is a right X-torsor under G. Moreover, we can show that
Q' x¢Q~aG.

In other terms, the diagonal image of Q in Q' X x Q is an orbit of G, leading to a section of the
quotient X-scheme. Therefore we call @)’ the inverse torsor of Q under G.

Example 3.3.10 (twisting an X-torsor). Let @ be a left X-torsor under G, let Q' be the
inverse torsor of Q. Like any right torsor under G, @’ is also a left X-torsor under G’ := ¢/G.
Then @ is equipped with the structure of a right X-torsor under G’ with respect to the action
r.g' = (¢") 'z for ¢ € G'. Summing up, the contracted product P x& @ is a right X-torsor
under G, and a left X-torsor under pG. The operation P — P x© Q defines a bijection of sets

HY(X,G)— H'(X,&),
which sends the distinguished point to the class of . The inverse bijection is obtained by
HY(X,G') - H(X,G), P~ Px% Q,

i.e. taking the contracted product with @’ with respect to G'.

In the case when G is abelian, there is no difference between G and G’, and the contracted
product defines a group structure on HI(X7 G), and the above bijection is just the translation
by the class of Q.

Remark 3.3.11 (Twist right torsors by another right torsors). When we have to twist a right
X-torsor P under G with another right X-torsor E under G, we first consider the inverse E’
which is a left torsor under G, and then form the contracted product P x& E’. In this case the
twist P x“ E’ is a right X-torsor under G, and is denoted by g P. For example, pP is a trivial
torsor under pG. If G is abelian, the class of E’ is the inverse of the class of E, hence in the
group H'(X,G) we have a relation [gP] = [P] — [E].

We shall mostly deal with the case when X and P are varieties over k, G comes from an
algebraic group over k and E = X Xj Z, where Z is a right k-torsor under G. Then g P, also
denoted by 7P, can be obtained by Galois descent: take a cocycle o € Z1(Gal(k|k), G) defining
Z, then consider the quotient P° of P by the corresponding twisted action of Gal(k|k), which
is (g,x) — 9207 '(g). Note that to use Galois descent we need the assumption that P is a
quasi-projective k-variety.

3.3.3 Partition of X (k) defined by a torsor

Let k be a field. Let X be a variety over k and let G be an algebraic group over k. Let
f:Y — X be an X-torsor under GG. Suppose Z is a right k-torsor under G corresponding to
the class 0 € H*(k,G). Let zf : ¥ — X be the corresponding twisted right X-torsor under
zG. It exists provided Y is quasi-projective or G is affine.

Let f:Y — X be an X-torsor under G. For each rational point P € X (k), then the fibre
Yp is a k(P)-torsor under G by verifying Yp X, (py G — Yp X,(p) Yp is an isomorphism. Note
that P is a k-point on X, so x(P) =~ k and we obtain the class [Yp] of Yp in H'(k,G). Summing
up, we obtain a well-defined map

Oy : X(k) — H'(k,G), P+ [Yp].

This gives a partition of the set X (k) into the subsets of points such that the corresponding
fibres of f are isomorphic k-torsors under G,

Xtky= || 6'o= [| {PeX®)|r]=0}

ceH(k,G) ceH(k,G)
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Using the twisting operation, we can describe the partition of X (k) defined by f:Y — X in a
slightly different fashion. For o € H'(k,Q), let f° : Y° — X be the twisted k-torsor under G°.

Lemma 3.3.12. Suppose G is an fppf group scheme which is affine over X. We have
{PeX(k)|[Yp] =0} =f7(Y7(k))

Proof. Let P € X (k) and let Z be a right k-torsor under G such that [Z] = o in H!(k,G).
Note that P € f(Y°(k)) holds if and only if YZ (k) # 0, which is equivalent to say Yg is
a trivial k-torsor under G°. Therefore Yp x¢ Z' is a trivial k-torsor under G. By taking the
contracted product with Z on the right, we conclude Yp ~ Z as k-torsors under G. This shows
that [Yp] = 0. Conversely, we have Yp ~ Z as k-torsors under G. This implies Y3 is a trivial
k-torsor under G°. O

We summarize this by the formula

Xky= U rwom).

ceH(k,G)

Here Z runs over the set of k-torsors under G containing one representative from every isomor-
phism class.

3.4 Descent obstructions

Let G be an affine algebraic group over k. Twisting a right X-torsor f : Y — X under G
by a cocycle o € Z'(k,G) produces a right X-torsor f° : Y — X under the twisted group
G°. This operation commutes with base change. For example, twist operation commutes with
taking the fibre Yp at a k-point of X. In the abelian case, the inner form G can be identified
with G and the map H'(X,G) — H'(X,G?) is just the translation by —[o]. Replacing o by a
cohomologous cocycle gives an isomorphic torsor. In particular, the subset f7(Y7(k)) of X (k)
depends only on the class [0] € H'(k,G). We shall use the notation H'(X,G) for the Cech
cohomology set H'(X,G), this set classifies X-torsors under G up to isomorphism. We have
the following partition of X (k):

Xkhy= |J foomw).

[c]eH (k,G)

3.4.1 Descent obstruction to the Hasse principle

Suppose that X (Ay) # 0. Evaluating f : Y — X at an adelic point of X gives a map

Op : X(Ax) = [[ H' (ko G), (Py) = ([Yp,)),
Ve

where [Yp, ] is the class of Yp, in H!(k,,G). Note that since G is affine, then the set H'(k,, G)
is finite ([44] I11.4). For each o € Z!(k,G), we let o, denote its image in Z'(k,,G). This image
is defined by first choosing a place w of k over v, and then restricting o to the decomposition
group D,, of w. The union of completions at w of finite subextensions k is an algebraic closure
of k,, and D,, is its Galois group over k, ([14] p. 115). The corresponding map of cohomology
sets H'(k,G) — H'(k,, Q) sends the class of a torsor T to the class of T xy, ky.

Definition 3.4.1. Let X be a smooth and geometrically integral variety over a number field
k and let S be a finite set of places of k. Let f : Y — X be a torsor under a linear algebraic
group G over k. Define X (A7)f as the subset of X (AY) consisting of adelic points whose image
under the evaluation map

X(Alf) - H Hl(kvaG)’ (z0) = ([Ya,])
vEQ—S

74



CHAPTER 3. TORSORS AND DESCENT OBSTRUCTION

comes from an element of H!(k,G). More explicitly,

X(AHT = {(z,) € X(AD) | (V2,]) € Im(H'(k,G) —» [ H'(ky,G))}-
vEQ—S

Applying the twist operation, we obtain the following description:

XA = | rroemd).
ocH(K,G)

We have X (k) C X(A7) C X(AY).

When S = (), we shall write X (Ay) instead of X(Ag). The emptiness of X (Ag)/ is thus
an obstruction to the existence of a k-point on X. In other words, when X (Ay) is non-empty
the emptiness of X (Ay)/ is an obstruction to the Hasse principle. We call it the descent
obstruction to the Hasse principle associated to f:Y — X.

It is clear from this definition that X (A;)’ depends only on the isomorphism class [Y] €
HY(X,G).

Note that if G is a k-group of multiplicative type, the diagonal image of H!(k,G) in the
product [],.q H'(ky,G) is described by the Poitou-Tate exact sequence (cf. [38], 1.4.20(b),
1.4.13). There is a generalization of this sequence, due to R. Kottwitz, to the case when G is
connected and reductive. A complete proof is also contained in [1], page 43, theorem 5.16.

Proposition 3.4.1. Let f : Y — X be a torsor under a liner algebraic group G, and assume
that X is a proper k-variety. Let S C ) be a finite set of places. Then there are only finitely
many classes [0] € H'(k,G) such that Y (k%) # 0.

Proof. For a finite set of places S’ D S containing all the archimedean places of k, let Oy s» C k
be the ring of S’-integers of k. Let us fix S’ sufficiently large such that G extends to a smooth
group scheme G over Spec Oy, s/, X extends to a proper scheme X over Spec Oy, s/, and Y extends
to an X-torsor ) under G. These are visualized as the following fibred product squares:

G——¢§ X—X Y ——=Y)
Spec k —— Spec Oy s Spec k —— Spec Oy, s X —4X.

Let G° be the connected component of G. Then F = G/G" is a finite k-group. We denote by
GY and F some group schemes over Spec O, s extending G° and F, respectively. By enlarging
S’, we can assume that there is an exact sequence

1-G6" -G F—1

Then we have a commutative diagram

HY(O,,G) — H'(k,,G) < H'(k, G)

.

HY(0O,,F) — H(k,,, F) <— H(k, F)

for each place v ¢ 5.

Let 0 € H'(k,G) be such that Y7 (k%) # (). We denote by o, the image of o in H'(k,,G)
under the above homomorphism. By construction, the condition Y7 (k,) # () means that there
exists a k,-point x, € X(k,) such that [Y,,] = o,. Since X is proper over Oy g/, we have
X (ky) = X(0O,) for each v ¢ S’. Therefore the class o, coincides with the image of [}, ] under
the natural map H'(0,,G) — H!(k,,G) for each v ¢ S’ by our choice of S’. Thus the image

75



3.4. DESCENT OBSTRUCTIONS

of o, in H'(k,, F) comes from H'(O,,F) for each v ¢ S’. Suppose the image of o € H!(k, Q)
in H'(k, F) is represented by a k-torsor Z under F.

Note that F' is a finite k-group and hence Z is a 0-dimensional k-scheme. Moreover, we
conclude Z = SpecI'(Z,0z) where the étale k-algebra I'(Z,Oz) is a product of separable
extensions of k. The fact that the image of o, in H'(k,, F) comes from H'(O,, F) implies that
each of these fields are not ramified at each v ¢ S’. The degrees of these extensions of k are
bounded by |F(k)|. There are only finitely many extensions of k of bounded degree which are
unramified away from S’ (see |33], V.4, theorem 5). In particular, there exists a finite Galois
field extension k’|k which contains all these extensions. Thus the image of ¢ € H'(k,G) in
H'(k, F) is contained in a finite subset (the image of H!(Gal(k'|k), F) in H'(k, F)), which we
an take to be the image of a finite subset ® C H'(k,G) consisting of elements coming from
H'(0,,G) for each v ¢ S'.

Now we conclude. Suppose that the set

A={oce H'(k,G)|n(c)=1, and 0, € Im (H'(0,,G) — H'(k,,G)) for each v ¢ S’}

is finite. Then we are done by replacing G with its twist by a cocyle representing a class in ®. So
it is enough to show A is a finite set. Let p, € H*(O,,G) be a class mapping to o, € H'(k,,G).
We claim that p,(p,) = 1in H*(O,, F). Since w(c) = 1, m,(0,) = 1 by the commutativity of the
right square. Hence it will be sufficient to show that the canonical map H'(O,, F) — H*(k,, F)
between pointed sets has trivial kernel. Suppose that U is a Spec O,-torsor under F such that
the image of [U] in H'(k,, F) is trivial. Since F is finite (hence proper) over O,, it follows
U is also proper over O,. By the valuative criterion of the proper morphism U — Spec O,, a
section Spec k, — U extends uniquely to a section Spec O, — U. This means that U/ is a trivial
Spec O,-torsor and therefore p,(p,) = 1 in H'(O,, F). By construction of F, we conclude that
py comes from H'(O,,G°). However, every Spec O,-torsor under the smooth and connected
group G° is trivial by Lang’s theorem (which allows us to find a rational point in the closed
fibre, see [32]) and Hensel’s lemma (which allows us to lift it to a section over Spec O,,). It follows
that H'(O,,G") is trivial, hence p, = 1 and this implies that its image o, = 1 in H!(k,,G) for
each v ¢ S'. Since every set H'(k,,G) is finite, the family

(o) e [ H'(k,G)

veEQ—S

belongs to the finite subset of [, .,_ g H'(ky, G) consisting of () such that a, is arbitrary for
v e S — S and a, = 1 otherwise. Finally, by a theorem of Borel and Serre (see [44], III, 4.6)
the natural diagonal map
H'(k,G)— [[ H'(k,G)
veEN-S

has finite fibres, hence the inverse image of our finite subset is also finite. Thus the set of classes
o € H'(k,Q) such that Y°(k,) # 0 for any v ¢ S is finite. O

3.4.2 Descent obstruction to weak approximation

Let X be a proper, smooth and geometrically integral variety. We claim that the set X (Af )
also provides an obstruction to weak approximation away from S. The key fact is that the map

X(ky) = H(ky, G), 0y = [fHw0)]

is locally constant when X (k,) is endowed with the v-adic topology. To see this, we can assume
that [f~!(z,)] = 0 is the trivial torsor by applying the twist operation if necessary. Recall that
the k,-torsor f~!(z,) is trivial iff it contains a k,-point, so x, = f(y,) for some y, € Y (k,).
By the v-adic inverse function theorem over a small v-adic neighbourhood of z,, we can find
a section of f passing through y,. Thus the class of the fibre is also 0 for all k,-points in this
neighbourhood.
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Proposition 3.4.2. Let X be a proper, smooth and geometrically integral variety such that
——S
X(k)# 0. Let X (k)™ be the closure of the image of X (k) in X(A7). Then

X(F) c X(a7)!,

Proof. By proposition (3.4.1), we can find a finite set X C H'(k, G) such that Y7 (A7) = 0 for
[0] ¢ X. Therefore

XA = |J  rrar@d) = rores)

cEHL(k,G) oces

is actually a finite union. Now it is enough to show that f(Y (A7) is closed in X (AY).

Let (z,) € X(A?) be a point lies in the closure of f(Y(A7)). For any v ¢ S, let U, C
X (k,) be a small neighbourhood of z, € X(k,) in the corresponding v-adic topology such that
[f~1(=))] = [f*(zy)] € H'(ky,G) for any x/, € U,. The open set U, contains the image f(y,)
for some y, € Y (k,). Therefore [f~!(z,)] = [f~1(f(y»))] = 0, which means that the fibre above
z, is a trivial k,-torsor and hence x, = f(z,) for some 2, € Y (k,). Hence (z,) € f(Y(AY))

which proves that f(Y (A?)) is closed. O

By (3.4.2), the condition X (Aj)7 # X (A) is an obstruction to weak approximation on X,
and X (AY) # X(A7) is an obstruction to weak approximation outside S on X. Note that
unlike the Brauer-Manin obstruction, the descent obstruction to weak approximation is only
defined for proper varieties X (this comes from the fact that there is no convenient analogue
of the unramified Brauer group).

Definition 3.4.2. Let X be a proper, smooth and geometrically integral variety such that
X (k) # 0.

(1) We say that X has the descent obstruction to weak approximation associated to
f Y - X le(Ak)f 7é X(Ak)

(2) We say that X has the descent obstruction to weak approximation outside S
associated to f:Y — X if X(AY) # X (AY).

(3) We say that the descent obstruction to the Hasse principle and weak approximation
associated to the torsor f : Y — X is the only one if

X (k) = X (Ap)”.

3.4.3 The Manin obstruction as a particular case
Let k be a field and let X be a smooth k-variety. We denote by Bra,(X) the Brauer group
of X. This is the group of similarity classes of Azumaya algebras over X. We have seen that
there is a canonical injective map Bra,(X) — Br(X) holds for any scheme X. More precisely,
the exact sequence of étale sheaves
1—-G,, —»GL, —»PGL, —> 1
gives rise to the exact sequence of pointed sets

HY(X,G,,) — H'(X,GL,) — H'(X,PGL,) % Br(X).

The group Bra,(X) C Br(X) is the union of images of d,,(H'(X,PGLy,)) for all n. It is known
that d,,(H*(X,PGL,)) C Bra,(X)[n]. If k is a number field or a local field, it is known that

d : H*(Speck,PGL,) — Br(k)[n]
is bijective.
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Proposition 3.4.3. Let X be a proper, smooth and geometrically integral variety. Let PGIL be
the disjoint union of sets H*(X,PGL,,) for all n > 2. We have

X(8)P 0 = ) X (A
fEPGL

Proof. For n > 1, let d,, : H*(X,PGL,) — Br(X) be the natural morphism obtained from the
short exact sequence 1 — G,,, — GL,, = PGL,, — 1 of étale sheaves on X. Take A € Bry,(X).
Then A = d,([Y]) for some integer n and some X-torsor f : ¥ — X under PGL,. Therefore
nA = 0 since the image of d,, is contained in the n-torsion part of Bra,(X).

Let (z,) € X(Ag). Then we have the following commutative diagram

H'(X,PGL,) —% = Br(X)[n]

| |

[Lcq H (ky, PGL,) =25 T1, q, Br(ko) (7]

! |

H'(k,PGL,) dn Br(k)[n]

where the upper vertical maps are induced by z, € X(k,), and the lower ones are the natural
diagonal maps. The image of [Y] in [], . H' (ky, PGLy,) is just ([Y;,]) and the image of [Y] in
[1,cq Br(ky)[n] via Br(X)[n] is (A(z,)). By the commutativity of the diagram, the image of
([Yz,]) in [[,cq Br(ky)[n] coincides with (A(x,)). Since the middle and the bottom horizontal
maps are bijective, we conclude

([Yz,)) € Im (H'(k,PGL,) — [ H'(ky, PGL,))
vEQ

if and only if

(A(zy)) € Im (Br(k) = [] Br(k.)).

vEQ

Finally by the global reciprocity law, we obtain (z,) € X (Ag)* if and only if (A(x,)) lies in
Im (Br(k) = [],cq Br(ky)). It follows that X (Ay)/ = X (Ag)A. Since Bra,(X) is the union of
the images of H'(X,PGL,) in Br(X) for n > 1, we conclude

X(Ak)BrAz(X) — ﬂ X(Ak)A: ﬂ (X(Ak))f
AEBra,(X) fEPGL

as required. O
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Introduction

In 1982, Colliot-Théléne, Sansuc and Swinnerton-Dyer took up the fibration method which
Hasse used to establish the Hasse principle for quadratic forms in four variables. The fibra-
tion method is to use analogue of the following theorem to study whether X satisfies weak
approximation and the Hasse principle.

Theorem. Let 7 : X — B be a projective flat surjective morphism of k-varieties with X smooth
over k. Suppose

(1) B is projective and satisfies weak approximation,

(2) all but finitely many k-fibres of 7 satisfies the weak approximation, and

(3) all fibres of 7 are geometrically integral.

Then X satisfies weak approximation.

In the first chapter of this part, we are interested in conic bundle surfaces over number fields.
Here a conic bundle surface over a number field & is a projective non-singular surface X which
is endowed with a dominant k-morphism 7 : X — ]P’,l€ such that all fibres of 7w are conics. The
work before this paper has been restricted to the case in which the number r of degenerated
geometric fibres is small. In our situation each fibre is given by a conic, so a degenerate fibre
is just a union of two conjugated lines. For example, for 0 < r < 3, the Hasse principle holds
and furthermore, X is k-rational as soon as X (k) # 0. For r = 4, we know that X is either a
Chatelet surface or a quadric del Pezzo surface with a conic bundle surface structure. For r = 5,
X is k-isomorphic to a smooth cubic surface containing a line defined over k. In particular X (k)
is non-empty. We introduce the work of T.D. Browning, L. Matthiesen and A.N. Skorobogatov
which deals unconditionally with conic bundle surfaces over QQ with all the degenerate fibres are
all defined over Q. The main result is the following

Theorem. Let X|P{, be a conic bundle surface over Q in which degenerate fibres exist and are
all defined over Q. Then the set X (Q) is Zariski dense in X. Furthermore, the Brauer-Manin
obstruction is the only obstruction to weak approximation for X.

In our situation, the intersection of the two components of a degenerate fibre is a Q-point,
therefore our conic bundle surface will always has a Q-point. This is why we assume the
degenerate fibre exists.

An important feature of the previous theorem is that it holds without requiring the number
of the degenerate fibres. For example, it can be applied to the surfaces given by the equation

F#®)2® +g(t)y* + h(t)2* =0,

where t is a coordinate function on Aé, [ : y : 2] are homogeneous coordinates in ]P% and f,g,h
are products of linear polynomials with rational coefficients. We will also use the previous
theorem to construct families of minimal del Pezzo surfaces X of degree 1 and 2 over Q for
which the set X (Q) is non-empty and dense in X (Ag)B".

In section 1 we establish a technical result based only on recent work by L. Matthiesen and
then we use it to prove the main result in section 2. We prove the Brauer-Manin obstruction
is the only one to the Hasse principle and weak approximation for products of conic bundle
surfaces under certain conditions in section 3. Section 4 gives analogues to higher-dimensional
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quadrics and section 5 is about higher dimensional varieties. In section 6 we apply these results
to study del Pezzo surfaces in degree 1 and 2.

For the second chapter of this part, we are interested in norm forms Ny ,(x) = P(t) where
K|k is a finite field extension and P(¢) is a polynomial in one variable. Suppose X is a smooth
projective k-variety which is k-birational to the affine variety Ng,(x) = P(t). Then we can
ask typical questions like whether X (A;)B" # @) implies X (k) # (). We can successfully answer
these questions due to the results in [26] by Y. Harpaz, A.N. Skorobogatov and O. Wittenberg.
Historically, Shinzel’s hypothesis is used to prove that the Brauer-Manin obstruction controls
the Hasse principle and weak approximation on pencils of conics and similar varieties. We are
lucky that the finite complexity case of the generalised Hardy-Littlewood conjecture was proved
by Green and Tao ([20], [21]) and Green-Tao-Ziegler ([22]). We can use their results to establish
Schinzel’s Hypothesis over Q and then prove the following

Theorem. Let X be a geometrically integral variety over Q with a smooth and surjective
morphism 7 : X — P! such that

(1) each fibre of 7 contains a geometrically integral irreducible component except finitely
many Q-fibres X1,..., X,

(2) for all ¢, the fibre X; contains an irreducible component such that the algebraic closure
of QQ in its function field is an abelian extension of Q.

Then P (Q) N (X (Ag)) is dense in m(X (Ag)B™er) C P1(Ag) =[], P1(Qy).

In fact, a more powerful theorem which allows us to get rid of the assumption on being abelian
field extensions was established by Y. Harpaz and O. Wittenberg in 2016 (see [27]). We make
the assumption (2) here because we would like to write each abelian extension as a composite
of cyclic extensions and then compute explicitly with the corresponding cyclic algebras.

We will illustrate how this theorem helps to study Severi-Brauer varieties and norm forms.
In section 1 we introduce how recent results help to establish Shinzel’s hypothesis. We prove
the main results in section 2. We apply these results to norm form and products of norm forms
in section 3.
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Chapter 4

Pencils of conics and quadrics with
degenerate fibres

In this chapter, we study the paper [3] by T.D. Browning, L. Matthiesen and A.N. Skoroboga-
tov. Sometimes a fibration in algebraic curves is a smooth surface X and a proper surjective
morphism X — C' to a smooth curve C with connected fibres. In this case X is sometimes said
to be a pencil of curves. We study similar situations in this chapter.

4.1 Rational points on a certain class of varieties

We establish the following result in this section.

Theorem 4.1.1. Let ay,...,a, € Q% — (Q*)? and let f1,..., fr € Q[uy,...,us] be a system of
pairwise non-proportional homogeneous linear polynomials with s > 2. We consider the smooth
variety ¥V C AZ{“ over Q defined by

0 +# CL‘ZZ —aiyf = fi(uy, ..., us)

fori=1,...,r. Then ¥ (Q) is Zariski dense in ¥ as soon as ¥ (Q) is non-empty. Furthermore,
YV satisfies the Hasse principle and weak approzimation.

Proof. Before proving the theorem, we briefly introduce the idea as follows. Suppose we have
shown ¥ satisfies the Hasse principle and weak approximation. Then the Zariski density of
¥ (Q) follows from weak approximation by (2.3.6) when #(Q) # 0. So all we need to do is
to show the second assertion. More precisely, we assume that the variety ¥ defined by the
equations

0# T/f - aiyf = filur, ..., us)

is everywhere locally soluble, i.e. ¥(Q,) # 0 for all v € Q. Here Q) denotes the set of all places of
Q. Then we show that ¥ (Q) is non-empty and that ¥ satisfies weak approximation under this
hypothesis. Since conics defined by a single equation with Q-points satisfy weak approximation,
it will be sufficient to place weak approximation conditions on the variables w = (uq,...,us) in
¥ alone.

Step 1. Reduce to counting integral points under certain conditions.

We can find a suitable positive integer d such that d?a; € Z and d?f; € Zluy, ..., us) for each
i=1,...,r. Since the variety defined by

0 # (da;)? — (Pa;)y; = d* fi(ur, ..., us)
in A?@Hs is just our variety ¥, we can assume without loss of generality that

a1,...,ar €Z and f1,...,fr € Zlus,. .., ug.
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4.1. RATIONAL POINTS ON A CERTAIN CLASS OF VARIETIES

Let | — |, denote the p-adic norm for each finite place p € 2, and let | — | denote the norm
for the real place. Let S C Q be any finite set which we need to approximate. Let ¢ > 0 be a
sufficiently small positive constant. Let (x(),y(®) u(*)) € #(Q,) for each v € Q be the given
point we need to approximate. Our task is to find a rational point (x,y,u) € ¥ (Q) such that

lu—u|, <e

for each v € S.

We can enlarge S such that S contains the real place and all finite places p bounded by
L for some parameter L to be determined later. Since scaling by an integer a € Zsq on the
ring homomorphism Q,[X,Y,U] — Q, does not change the associated morphism of schemes
Spec @, — Spec Q,[X,Y, U], we can assume (xP), y® u®)) ¢ Zf,’”rs for each finite place p € S.
Applying the Chinese remainder theorem for Z?"**, then we can find (x(*),y(M) u(M)) ¢ 72r+s

such that

(M) _ (M) _

Ix xP|, <e, |y™M —y@P |, <e, |u u?|, <e

for each finite place p € S. We replace |u — u(”)|p < ¢ by the sufficient condition that u € Z°
and

uj = ug-M) (mod M) (4.1)

for j =1,...,s and for an appropriate modulus M € Z~. For technical reasons we require that
M has the following property. If ¢|M is a prime divisor and if we write m = valy(M), then

m > 1réliagx {Valg(élai)}
and
f;(u®)£0  (mod (™)

for i = 1,...,r and all finite places p € S. By assumption f;(u®) # 0 in Q,, hence we can
arrange for this property to hold by possibly decreasing the value of ¢ in [u — u®|, < ¢.
For the real place, we will seek points in ¥ (Z) satistying

lu— Bul®| < ¢B, (4.2)

where B = C? and C is a sufficiently large positive integer verifying C = 1 (mod M). It is
clear that any solution (x,y,u) € ¥(Z) satisfying (4.1) and (4.2) will give rise to a solution
(C~'x,C~'y,C~2u) € 7(Q) satisfying |O~?u — ul?)|, < ¢ for each finite place p € S and
|C~2u —ul™)| <.

Let us decompose the set of indices {1,...,r} as I_ | | I}, where i € I iff sign(a;) = . Let
(x(o0), y(>) u(*®)) € ¥(R) be a solution. Then f;(ul>)) = (xl(oo))2 —a; (yfoo))2 >0foriel_.
It follows that after decreasing e if necessary, any u € R* satisfying |u — C?u(*>)| < ¢C? will
produce positive values of f;(u) for i € I_.

Let ¢i(z,y) = 22 — a;y? for i = 1,...,7. Then g;(z,y) is a primitive binary quadratic form
of discriminant 4a;. Moreover, ¢;(x,y) is positive definite for i € I_ and indefinite for i € I.

For d < —4, let
4 ifd=—4,
w“”‘{2 if d < —4,

and for d > 0, let n(d) denote the fundamental unit of Q(v/d). Let us call a solution (x,y,u) €
727 +s of

0# 1712 - aiyf = filu, ... us)
primary if the pair (z;,y;) lies in a fixed fundamental domain for the action of the group of
automorphisms &; of ¢; for ¢ = 1,...,r. Our strategy will be to estimate asymptotically, when

B — o0, the total number N (B) of primary solutions (x,y,u) € Z?>"** which satisfies (4.1) and
(4.2) and to show that this quantity is positive for sufficiently large B.
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CHAPTER 4. PENCILS OF CONICS AND QUADRICS WITH DEGENERATE FIBRES

We will henceforth view e, M together with the coefficients of ¥ and u*),u(*>) as being
fixed once and for all. Given n € Z, we define the representation functions

Ri(n) = Card{(z,y) € Z°/&; | qi(x,y) = n}

fori=1,...,r. We put R;(n) =0if n <0 and ¢ € I_. Then we obtain

uczs =
(4.1),(4.2) hold

Step 2. The computation of N(B).
We eliminate the constraint (4.1) in N(B) by writing u; = u;M) +Mt;for j=1,...,s. This

leads to the expression
> JIRit)
teZsNK i=1

where
K={teR*||Mt+u® — Bul>)| < B}
and
gi(t) = fi(u™) 4 M),

fori=1,...,r. Theregion K is convex and contained in [—uB, uB]® for an appropriate absolute
positive constant u. K has measure m(K) = (2¢M ~'B)® > B*, where z > y means that there
exists a positive constant a such that > ay. Our choice of ¢ ensures that g;(K) is positive for
every i € I_. Moreover, (g1,...,¢,) : Z° — Z" defines a system of linear polynomials of finite
complexity in the language of Green and Tao. Indeed, the linear parts of any two g;, g; with
1 # j, are non-proportional. Given A € Z and q € Z~, let

pia, A) = Card{(z,y) € (Z/qZ)* | ¢* —ag? = A (mod q)}.

It then follows from theorem 1.1 in [36] that

= Boo Hﬁp + O(Bs)
p

as B — oo. Here the main term is a product of local densities, given by

log n(a;)
Boo = m(K)
* Q (4a;) «/|az jg NG

and .
B = lim p= G+ N T T o, gi(8))
te(z/pkz)s i=1

for each prime p. Since S = m(K) 2 B*, we see that in order to complete the proof, it remains
to show that [[, 8, 2 1
For each prime p, let

B, = lim p=(+0k R 7 szp fi(u
we(Z/psL)s i=1

be the local factor associated to the original system of equations. By lemma 8.3 in [35], these
factors satisfy (3, = 1+O(p~?). Since the change of variables from f;(t) to g;(t) = f:(uM) £ Art)
is non-singular modulo p when p { M, we conclude that 3, = ﬁz/z for pt M. Recall that primes
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4.2. RATIONAL POINTS ON CONIC BUNDLE SURFACES

p{ M satisfy p > L. We may now specify the parameter L = O(1) to be such that 3, > 0 for
all p > L. Hence for this choice of L, we have

[Is=11sz21

ptM ptM

Our final task is to show that 5, > 0 for primes p|M. It will be convenient to write

G =Y [Ir@"a®)

te(z/pkz)s i=1
— Card{(x,y,u) € (Z/p"Z)?** | 2% — aiy? = gi(t) (mod p*), i =1,...,7},

so that
Bp = lim p~ TG (pF).
k—o0
Suppose val,(M) = m > 0. To start with, observe that the integer vector (x(M) (M) 7(M))
satisfies

0+ a:lz —aiyf = fi(ug, ..., us)

modulo M. This implies G(p™) > p*™ since g;(t) = fi(u+ Mt). To analyse G(p*) for k > m,
we shall employ corollary 6.4 in [35]. This yields

1
pi(pka A) = Epi(pk-i_l? A + fpk)

for any ¢ € Z/pZ, providing that k > val,(4a;) and A #= 0 (mod p*). We have arranged things
so that M satisfies

m > [nax {val,(4a;)} and fiu™)£0  (mod p™).

Thus the conditions hold for k > m when A = g;(t) and t € Z*, and we deduce that G(p**!) =
p*tTG(p*). Hence
Bp=p TGP = pT >0

for p[M. Finally, N(B) = s [, Bp + 0o(B®) 2 m(K) 2 B® implies that N(B) > 1 when B is
sufficiently large. This completes the proof. O

4.2 Rational points on conic bundle surfaces

Definition 4.2.1. Let k be a number field. Let X be a projective non-singular surface over k.
X is called a conic bundle surface if there is a dominant k-morphism X — IP’}C such that all
fibres are conics.

Colliot-Théléne and Sansuc conjectured in 1979 that the Brauer-Manin obstruction is the
only obstruction to the Hasse principle and weak approximation for conic bundle surfaces. It
is worth noting that the analogue for O-cycles of degree 1 is known due to Colliot-Théléne and
Swinnerton-Dyer (see [14]). We want to study unconditional resolutions of the conjecture.

Remark 4.2.1. It is convenient to assume without loss of generality that the conic bundle
7 : X — P} is relatively minimal, which means that no irreducible component of a degenerate
fibre is defined over the field of definition of that fibre. More explicitly, suppose the fibre Xp
above P € P} is degenerate and is defined over k. Hence topologically, Xp is a union of two
conjugated lines, say Up and Vp. Then the relative minimality says that Up and Vp are defined
over k(y/ap) for some ap € k* — (k)2

We establish the following result by applying (4.1.1) in this section.
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Theorem 4.2.2. Let 7w : X — I%) be a conic bundle surface over Q. Suppose the degenerate
fibres of  exist and all these degenerate fibres are defined over Q. Then the set of Q-points X (Q)
is Zariski dense in X. Furthermore, the Brauer-Manin obstruction is the only obstruction to
weak approzimation for X.

Proof. We assume without loss of generality that 7 : X — Pé@ is relatively minimal and by
a change of variables in P}, we may assume that the fibre of 7 at infinity is smooth. Let
P(t) € QJt] be the separable monic polynomial of degree r that vanishes at the points of
A(b = P(b — {o0} that produce degenerate fibres. Our hypotheses are therefore equivalent to
a factorisation P(t) = (t —e1)...(t —e,) with e1,...,e, € Q = Aj(Q) pairwise distinct, and
ai,...,a, € Q% — (Q*)? such that each irreducible component of the fibre X,, is defined over
Q(ya;) fori=1,...,7.

The elements of the cohomological Brauer group Br(X) = HZ(X,G,,) have the following
explicit description. Since X(Q) # (), we obtain a section of the structural morphism X —
Spec Q and hence the natural map Br(Q) — Br(X) is injective. We put

§:(2/22)" — Q" /(Q*)?

to be the map that sends (ni,...,n,) € (Z/2Z)" to the class of a}* - - -a? in Q* /(Q*)2. By the
Faddeev reciprocity law we have a; - - -a, € (Q*)?, hence (1,...,1) € Ker(§) by construction of
6. For i = 1,...,r, the quaternion algebras (a;,t — e;) form classes in Br(Q(¢)). An integral
linear combination Y ;_, n;(a;,t—e;) gives rise to an element of Br(X) iff (nq,...,n,) € Ker(d).
Therefore we obtain a well-defined homomorphism

7 : Ker(§) — Br(X)/Br(Q)

which sends (nq,...,n,) to the class of Y/_, n;(a;,t — €;) in Br(X)/Br(Q). By proposition
7.1.2 in [47], n is surjective with the kernel generated by (1,...,1). Hence we have

Br(X)/Br(Q) ~ Ker(d)/ Ker(n),

and Ker(0) is generated by (1,...,1) iff Br(X) = Br(Q).

To show the Brauer-Manin obstruction is the only one to weak approximation for X, we
have to show that X (Q) is dense in X (Ag)®**) under the product topology. Here X (Ag)B (%)
denotes the right kernel in the Brauer-Manin pairing Br(X) x X (Ag) — Z/2Z. Recall that
the pairing is additive in the first variable, it follows that the image of paring lies in Z/2Z by
Br(X)/Br(Q) ~ Ker(d)/ Ker(n).

According to work of Colliot-Théléne and Sansuc (theorem 2.6.4(iii) in [9]), any universal
torsor 7 over X is Q-birationally equivalent to Wy x C x Ab, where C is a conic over Q and

Wi C A?@T*Q is the variety defined by
u—e;v = N2 — ay?)

with ¢ = 1,...,r for suitable A = (A1,...,A\;) € (Q*)". An application of (4.1.1) in the special
case s = 2 shows that all universal torsors .7 over X satisfy the Hasse principle and weak
approximation. Since X(Q) # 0, it follows from the descent theory of Colliot-Théléne and
Sancuc (see [9], theorem 3.5.1 and proposition 3.8.7) that X (Q) is dense in X (Ag)P"X) under
the product topology, as required for the second part of the assertion.

This implies that there is a finite set S of places of Q such that weak approximation holds
away from S. In particular, for almost all primes p, the set X (Q) is dense in X (Q,) under the
p-adic topology. This shows that the first part of the assertion follows from the second part. [

Remark 4.2.3. If 7 does not have degenerate fibres, then we can use the fibration method
mentioned in the introduction to conclude. So we assume the degenerate fibres exist and are
all defined over Q. In this case, the intersection of the two components of a degenerate fibre is
therefore a Q-point.
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4.3. SMOOTH PROPER MODELS OF PRODUCT OF CONIC BUNDLE SURFACES

4.3 Smooth proper models of product of conic bundle sur-
faces

Let Y be a variety over a number field k, and let f : Z — Y be a torsor under a k-torus 7.
We write Ay for the ring of adéles of k. Specialising the torsor at an adelic point defines the
evaluation map

Y(Ap) = [[H" (k0, T)

v

where the product is taken over all completions k, of k. Let Y(Ak)f be the set of adelic
points for which the image of the evaluation map is contained in the image of the natural map
HY(k,T) — [1, H' (ky, T). It is clear that the diagonal image of Y (k) in Y (Ay) is in Y (Ag)”.

There is an equivalent way to define Y (Ay)f. Up to isomorphism, the k-torsors R of T are
classified by their classes [R] € H'(k,T). The twist of f : Z — Y by R is defined as the quotient
of Z x R by the diagonal action of T', with the morphism to Y induced by the first projection.
We denote the twisted torsor by f¥ : Z% — Y. Then Y (A;)7 is the union of the images of
projections ff: ZB(Ay) — Y (Ay) for all [R] € HY(k,T).

Proposition 4.3.1. Let X be a smooth geometrically integral variety over a number field k. Let
Y C X be a dense open set, and let f : Z — Y be a torsor of a k-torus T. Then X (Ay)B" # ()
implies Y (Ap)f # 0.

If X is proper, then X (Ay)BT is contained in the closure of Y (Ag)' in X(Ay) =[], X (ky)-
In this case, if all the twists of Z by k-torsors of T satisfy the Hasse principle and weak approx-
imation, then X (k) is dense in X (Ay)P*.

Proof. Let T be the group of homomorphisms T x; k — G,, 7 of algebraic groups. Equipped
with the discrete topology, 1" is a continuous Gal(k|k)-module. The natural pairing of discrete
Gal(k|k)-modules T'(k) x T — k™ gives rise to the cup product pairing

U HY(Y,T) x H'(k,T) — HL(Y,T) x HY(Y,T) — H(Y,Gy) = Br(Y).

([47], page 63-64) Let [Z] € HL (Y, T) be the class of the torsor Z/Y, and let B C Br(Y) be the
subgroup [Z|UH (k,T). Since H'(k,T) is finite, B is also finite. Let Y (A;)? be the set of adelic
points of Y that are orthogonal to B with respect to the Brauer-Manin paring. By (2.4.12) we
have X (A)BMB(X) £ ¢ iff Y(A)P # 0, and the latter set is dense in the former when X is
proper. Since X (Ax)B" € X (Ay)BMB*(X) it remains to prove that Y (A)? = Y (A;)f. This is
a well-known consequence of the Poitou-Tate duality for tori; see the proof of statement (2) in
[17], page 115, 119-121. O

We can use the above proposition to prove the following;:

Theorem 4.3.2. Let w; : X; — I% be conic bundle surfaces over Q for j =1,... n. Suppose
the degenerate fibres of these 7; are all defined over Q. Let

X:X1 X]png Xp1 X"'X]pan

be the fibred product. Assume that whenever two or more of these conic bundles have degenerate
fibers over the same point of I%, the irreducible components of their fibres at this point are
defined over the same quadratic field. Then the Brauer-Manin obstruction is the only obstruction
to the Hasse principle and weak approzimation on any smooth and proper Q-varieties that are
birational to X .

Proof. Step 1. We construct a dense open subset Y C X.

Without loss of generality, we assume that X; — P! is relatively minimal and the fibre at
infinity of X; — P! is smooth for each j = 1,...,n. Then there are ej,... e, in Q = AY(Q)
such that the restriction of X; — P! to P! — {ey,...,e,} is a smooth morphism for each j. By
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CHAPTER 4. PENCILS OF CONICS AND QUADRICS WITH DEGENERATE FIBRES

assumption, for i = 1,...,7 there exists a; € Q* — (Q*)? defined up to a square, such that the
fibre of each X; — P! at e; is either a smooth conic or a union of two conjugate lines defined
over Q(,/a;).

Let U =A'—{e1,...,e,}. For j=1,...,n, we take Y; = 7Tj_1(U) C X, as the inverse image
of U C PL. Let Y be the fibred product Y; X --- X Y;, over U. Then Y is a dense open subset
of X.

Step 2. We construct a Y-torsor under a Q-torus 7.

Let #5 C A(Q@H'Q for A € (Q*)", be the variety given by

vH(u —ev) £0 and  u— e = N(x? —ay?), i=1,...,m (4.3)
i=1
The morphism #) — U that sends the point (u,v,x;,y;) to the point with the coordinate
t =wu/v is a torsor of the following Q-torus 7"

2 2 2 2
v=oi—ay; ==, —ay, #0.

The fibred product Y xy #, is a Y-torsor of T for any .

Step 3. We classify the Q-torsors under 7" and compute the twists of the above Y-torsor by
these Q-torsors.

The Q-torsors of T' are the affine varieties R. given by

v=rc1(z] —ay;) = = (2} — a,y}) #0,

where c = (c1,...,¢.) € (Q*)". The isomorphism classes of Q-torsors of T bijectively correspond
to ¢ € (Q*)" up to a common non-zero rational multiple and multiplication of each ¢; by
the norm of a non-zero element of Q(,/a;). The twist #4 is the torsor #ex, where cA =
(c1A1y...,¢:Ar). Thus the set of torsors Y xy #5 — Y for all A € (Q*)" is closed under all
twists by Q-torsors of T'.

Step 4. We check the Hasse principle and weak approximation hold for these twisted varieties
and then we conclude the assertion.

For j =1,...,n, we denote by

I; = {1 <i<n| the fibre of 7; : X; — P' at e; is singular},

and let r; = |I;| be the cardinality of I;. We define ”//A(j) C Agﬂjﬂ to be the variety given by

vH(u —ev)#0 and  u—ev = N(x} —ay}), i € I
i=1
for A € (Q*)™. As proved in [9] (theorem 2.6.4(ii)(a) and remark 2.6.8), there exist a conic
C; over Q such that Y; xy #37) is birationally equivalent to C; x #,7) for each j. There is

a natural morphism #5 — W)EJ ) that forgets the coordinates z;, y; for ¢ ¢ I;,. This morphism
is obviously compatible with the projection to U, hence Y; Xy #4 is birationally equivalent to
C; x #x. Therefore Y xy #5 is birationally equivalent to Cy x --- x C, x #5. By (4.1.1)
and the Hasse-Minkowski theorem (4.3.5) this variety satisfies the Hasse principle and weak
approximation. It now follows from (4.3.1) that X (Q) is dense in X (Ag)P". O

Remark 4.3.3. A quadratic form Q = Q(z1,...,z,) over k is a homogeneous polynomial of
degree 2 with coefficients in k. Therefore we can write Q = >, a;;x;x; with a;; = a;; € k.

Theorem 4.3.4 (Hasse-Minkowski). A quadratic form Q with rational coefficients has a zero
in Q if and only if Q has a zero in Q, for each v € 2, where Q) is the set of all places of Q.

The following theorem is a variant in the language of algebraic geometry.
Theorem 4.3.5 (Hasse-Minkowski). Let X be a smooth projective quadric of dimension at least

1 over a number field k. Then X satisfies the Hasse principle.
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4.4. GENERALISATION TO HIGHER-DIMENSIONAL QUADRICS

4.4 Generalisation to higher-dimensional quadrics

Now we turn to the arithmetic of pencils of 2-dimensional quadratics. We start with the
relevant definition from [15]. Let k be a field of characteristic different from 2.

Definition 4.4.1. A quadric over k is a hypersurface of degree 2 in P} for some n > 2.

(1) A geometrically integral variety X over k endowed with a morphism = : X — P} is
a quadric bundle if every closed point P € ]P’,lC has a Zariski open neighbourhood Up C IP’,lC
such that 7=!(Up) is the closed subset of Up x P} defined by the vanishing of a quadratic form
Qp(x1,x2,25,24) = 0 with coefficients in the k-algebra of regular functions on Up such that
det(Qp) is not identically zero.

(2) A quadric bundle X over P} is admissible if for every closed point P € P} for which
the fibre Xp is singular, Up and Qp(x1,z2,23,24) in (1) can be chosen so that

1
Qp(w1,29,23,24) = > _ fi}
i=1

where each f; is invertible outside P with at most a simple zero at P and f1(P)f2(P) # 0.

(3) An admissible quadric bundle is relatively minimal if in the notation of (2), for each
closed point P € P} such that f3(P) = f4(P) = 0, the (well-defined) values of the functions
—f1/f2 and —f3/f4 at P are both non-squares in the residue field k(P).

fr: X — IP’}f is a relatively minimal admissible quadric bundle, then the closed fibre Xp is
not geometrically integral iff X p is the zero set of a quadric form of rank 2. In our notation, Xp is
given by f1(P)z?+ fo(P)z3 = 0. Thus Xp is the union of two conjugate projective planes defined
over the quadratic extension k(P)(y/ap) of the residue field k(P), where ap = —f1(P)/ f2(P).
In particular, the (non-trivial) class of ap in k(P)*/(k(P)*)? is uniquely determined by the
morphism 7 : X — IE”,lg.

The singular locus (Xp)ging of Xp is the projective line given by z1 = z2 = 0. An easy
calculation (see [45], corollary 2.1) shows that the singular locus Xgine is contained in the
union of singular loci of the closed fibres of X — P} that are not geometrically integral. Let
bp € k(P)* be the value of —f3/fs at P. By proposition 2.2 in [45], we conclude Xging N Xp
is the subscheme of (Xp)sing given by xi = bpgcg. In particular, the non-trivial class of bp in
k(P)* /(k(P)*)? is uniquely determined by the morphism 7 : X — Pi.

Recall that a scheme over k is called split if it contains a non-empty geometrically integral
open subscheme ([16], definition 0.1, page 906). Let us denote by X the blow-up of Xging in
X. By proposition 2.4 in [15], X is a smooth projective threefold. Since X — P} is relatively
minimal, each fibre of X — P} that is not geometrically integral consists of two irreducible
components, none of them is geometrically integral since ap and bp are both non-square in
k(P)* (see remark 2.2 in [45]). Hence a fibre of X — P} is split iff it is geometrically integral.

Let a; € Q% — (Q*)? and ¢; € Q* fori = 1,...,n. Given pairwise distinct rational numbers
€1,...,€2,, (4.3.2) can be applied to the intersection of quadrics

(U - 621‘7171)(7«6 - €2iv) = Cz(x? - aiyiz)

fori = 1,...,n in IP%"'H. Indeed, no two of the conic bundles in the fibred product have
degenerate fibres over the same point of ]P’(b. The funny fact is that for such varieties counter-
examples to the Hasse principle and weak approximation are known (see §7 in [6]). Theorem
(4.3.2) tells us that all such counter-examples are explained by the Brauer-Manin obstruction.
This was previously known only when n = 2, by using a descent argument to reduce the problem
to an intersection of two quadrics in P{, covered by theorem 6.7 in [11].

Now we generalise theorem (4.2.2) to families of higher-dimensional (at least 3) quadrics.
Before we start, we recall the following result.
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Proposition 4.4.1. Let Y be a smooth and geometrically integral variety over a number field
k. Suppose Y (k) # 0 and Y satisfies weak approzimation. Let Z be a smooth scheme over Y
with surjective structural morphism such that each fibre is a quadric of dimension at least 3. Let
X over k be any smooth and geometrically integral variety which is k-birational to Z. Then the
Hasse principle and weak approzimation hold for Z and X.

Proof. See proposition 3.9 in [11]. O

Remark 4.4.2. Let k£ be a number field and let Y be a non-empty open subset of an affine
space A} over k. Then Y (k) # () and Y satisfies weak approximation because Y is k-birational
to A?. Let Z be any variety with a surjective morphism to Y such that the fibres are smooth
projective quadrics of dimension at least 3. Then by (4.4.1), Z satisfies the Hasse principle and
weak approximation.

Thus we focus on the case of a variety with a surjective morphism to P(b such that the fibres
are 2-dimensional quadrics. Progress so far has been restricted to the case in which there are at
most three geometric fibres that are quadrics of rank 2 or less, as in [12] and [45].

Theorem 4.4.3. Let X be a smooth, proper and geometrically integral variety of dimension
3 over Q equipped with a surjective morphism © : X — ]P’qll) such that the generic fibre is a
2-dimensional quadric. If all the fibres that are not geometrically integral are defined over Q,
then the set X(Q) is dense in X (Ag)PrX).

Proof. Step 1. Reduce to a Q-birationally equivalent variety X’ which is relatively minimal
admissible quadric bundle and reformulate the assumptions explicitly.

By proposition 2.1 with its proof and proposition 2.3 in [15], it follows that there exists
a relatively minimal admissible quadric bundle 7’ : X’ — P§ such that the generic fibres of
Tm: X — IP’@ and 7’ : X' — Pé_) are isomorphic. This shows that in particular, X and X’ are
birationally equivalent. If a fibre Xp is geometrically integral, hence split, then X > is split
too (see corollary 2.2 in [46]). By the previous paragraph X > is then a geometrically integral
quadric, hence so is X%. It follows that X} is geometrically integral when Xp is geometrically
integral.

If all the fibres of 7’ : X/ — I%) are geometrically integral, the variety X satisfies the Hasse
principle and weak approximation (see theorem 3.10 in [11] or theorem 2.1 in [16]). Thus we
may assume that at least one Q-fibre X% of 7’/ : X/ — ]P’(%2 is given by a quadratic form of rank
2. Then almost all Q-points on the common line of the two planes of X} are smooth in X',
hence X (Q) # 0.

By a change of variables we may assume the fibre of 7’ : X/ — IP’}@ at infinity is smooth. Let
Ag C Pg be the complement to the point at infinity, and let ¢ be a coordinate function on Ag. By
assumption we know that there are ey, ..., e, € Q such that the fibres X/ ,..., X/ can be given
by quadratic forms of rank 2, and all the other fibres of 7’ : X' — ]%2 are geometrically integral.
Let ay,...,a, € Q% — (Q*)?, defined up to squares, be such that Q(,/a;) is the quadratic field
over which the components of X/ are defined.

Let U = Af — {e1,..., e} and let U; be a Zariski open neighbourhood of e; as in (4.4.1).
Then by definition, the restriction of 7’ : X’ — ]P’é to U; is given by the vanishing of the equation

27 — oy + it — e;) (a3 — Biag) =0,

where a;, 3;, v; are invertible regular functions on U; (by the relative minimality of 7’ : X’ — ]P’b)
Then at e; we have 23 — ;(e;)z3 = 0 which is decomposed to two conjugate planes over Q(/a;),
hence we have a; = «a;(e;).

Step 2. Reduce to the case which we can apply (4.3.1).

Let Q be the set of all places of Q. For any finite set S C 2, we write Zg for the subring of
Q consisting of the fractions with denominators divisible only by primes in S. Now we choose
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S C € to be a finite subset containing 2 and the real place. Then we enlarge the set S such that
foralli=1,...,r, we have

e; €Ls, a; €Ly, e; —ej €L for i# j.

Moreover, by further increasing S, we can assume that X’ has an integral model X" — IP’% such
that for any p ¢ S, its reduction modulo p, i.e. the morphism X]F — IP’}F obtained from

Xp —— X'
|
1 1
Py —— Pz,
is an admissible quadric bundle with exactly r fibres that are quadrics of rank 2 at the reductions
of e1,...,e, modulo p. For i =1,...,r, we define U; C ]P’%S as the complement to the Zariski

closure of ]P’(%2 —U; in ]P’%S and hence we have U, = U; xz, Q. By enlarging S, we ensure that
«;, B;,7v; are invertible regular functions on U;, and

x% — azxz + 7t — ez)( le4) =0,

is an equation for X’ over U;.
Let ag =ay ...a,. For A= (A1,..., ) € (Q*)", we define the variety # as follows:

P—ayl) #£0, v=aj—agys #0. (4.4)

The morphism #) — U that sends the point (u,v,x;,y;) to the point with the coordinate
t =u/v is a torsor of the following Q-torus 7":

u—e;v=N\(z

2 2 2 2 2 2
v=a5—aoyy =2 —ay; = =z, — apy; # 0.

Let Y C X’ be the inverse image of U under 7’ : X' — P}Q. The fibred product Y xy #y is a Y-
torsor of T for any A. As in the proof of (4.3.2), we see that the family of torsors Y xy #\ — Y
is closed under all twists by Q-torsors of T. By (4.3.1), it will be sufficient to prove that the
varieties Y Xy #5 satisfy the Hasse principle and weak approximation.

Write # = #. Let us enlarge the set S such that it contains all the primes where we need
to approximate, and contains all primes such that \; € Z§ for i = 1,...,r. We are given a
family of Q,-points N, for all primes p and a real point Noo on Y xy #'. Let M,, My be the
images of these points under the natural projection in #'. By (4.1.1) the variety # satisfies the
Hasse principle and weak approximation. Indeed, if ag ¢ (Q*)?, then (4.1.1) can be directly
applied to # . If ag € (Q*)?, a change of variables in the last equation of

u—eiv:Ai(ﬂc azyz)#o v:x%—aoyg#o

gives v = x{y(, so that # is birationally equivalent to the product of Ab and the variety
u—ev = N(x? —ay?), i=1,...,r and vH(u—eiv) #0

to which (4.1.1) can be applied.

Thus in all cases we can find a point M € #(Q) arbitrarily close to the points My, and M,
for p € S, in their real topology and p-adic topology respectively. Let P € U(Q) be the image of
M under the map #'(Q) — U(Q) induced by # — U. We can choose M so that P is contained
in a given non-empty open subset of I%, for example in the open set Uy c UNU; N---NU,
defined by the property that Yp = X} is a smooth quadric for any P in Uy. Then Yp can be
given by

ot — a4+ it — ) (25 — Bixd) = 0
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for any « = 1,...,r. By the implicit function theorem, Yp has Q,-points close to N, for p € S
and a real point close to No,. We claim that

Y(Qp) #0 forallpé¢sS. (4.5)

Once achieved this will show that Yp is everywhere locally soluble over Q and hence has a
Q-point and satisfies weak approximation (by the theorem of Hasse and the rationality of a
smooth quadric with a Q-point). This, in turn, implies that ¥ xy # also has a Q-point and
satisfies weak approximation, as required to complete the proof of (4.4.3).

Step 3. Conclude the assertion by verifying (4.5).

Let #; be the inverse image of Uy in #. To establish (4.5), it will be sufficient to show that
the natural projection

(Y xy %)(Qp) — %(Qp)

is surjective for all p ¢ S. We can assume that there exists a point in #4(Q,) with coordinates
(20, Y0, - -+, yp) € Z27F2, not all divisible by p. It maps to the point P = [u : v] € Up(Qy),
where u,v € Zjy, and t = u/v € Q, is such that ¢ # (), for any ¢ = 1,...,r. Let us denote by
x +— T the map Q, — F, U {oo} such that =2 (mod p) if x € Z, and T =0 if 2z € Q, — Z,.
We have three possible cases:

(a) t is not equal to any of the points ¢; for i =1,...,7;
(b) t =, for some i € {1,...,r} and val,(v) is even;
(c) t =¢; for some i € {1,...,r} and val,(v) is odd.

In case (a), the quadric Yp reduces to a geometrically integral quadric over F,. Such a
quadric has smooth F,-points, and any smooth F,-point lifts to a Q,-point on Yp by Hensel’s
lemma. Thus (4.5) holds in this case.

Now suppose that we are in case (b) or case (c). Then the reduction of Yp modulo p is the
same as that of Ye,. If a; is a square modulo p, the reduction of Yp modulo p is a union of two
projective planes defined over F,. Any F,-point not on the common line of the two planes is
smooth and hence lifts to a Qp-point in Yp by Hensel’s lemma. Now assume that a; is not a
square modulo p. Since P = (¢ : 1) € U;(Q), we can evaluate

xf — aimg + it — ei)(xg — Bxi) =0,

at P and obtain an equation for Yp = X%. From (4.4) we see that val,(u — e;v) must be even.

In case (b), we deduce that val,(t —e;) is also even. But then Yp can be given by a quadratic
form over Z, that reduces to a rank 4 quadratic form over F,. This implies that Yp has a
Qp-point, as required for (4.5).

Finally, the case (c) is not compatible with the condition that a; is not a square modulo p.
Indeed, if val,(v) is odd, then val,(t —e;) > 0 is also odd. Take any j € {1,...,r} with j # 1.
Since e; —e; € Z§, we see that t —e; € ZF, so that v — e;v has odd valuation. Now (??) implies
that a; is a square modulo p. Since v = x3 — apys has odd valuation, ag must also be a square
modulo p. This is a contradiction to the fact that ag...a, is a square. This finishes the proof
of (4.5) and so completes the proof of the theorem. O

4.5 Analogous for higher-dimensional varieties

We can also deduce analogous statements for suitable higher-dimensional varieties. Let
m > 1 and n > 3. The equation

n

Z fi($)X? =0

=1

defines a variety in ]P’(g_1 xq A, where t = (t1,...,t,) € Q™ and f1,..., fn € Q[t]. We have
the following result.

93



4.5. ANALOGOUS FOR HIGHER-DIMENSIONAL VARIETIES

Theorem 4.5.1. The Brauer-Manin obstruction is the only obstruction to weak approximation
on smooth and proper varieties which are Q-birational to the variety

n

Zfi(t)Xig =0

i=1
provided that f1,..., fn are products of non-zero linear polynomials defined over Q.

Proof. Let us denote by V the variety defined by .1, f;(t)X2? = 0. If n > 5, then each fibre
of V.= A{ is a quadric of dimension at least 3. Hence by (4.4.1), it will be sufficient to assume
n=3orn=4.

On multiplying Y"1 | f;(t)X? = 0 and each of the variables X; by an appropriate non-
zero rational function in ¢ = (f1,...,%,), it suffices to replace Y., fi(t)X? = 0 by a Q-
birationally equivalent variety that is given by an equation of the same form satisfying the
following additional conditions. There exist pairwise non-proportional, non-constant polynomi-
alsly,...,l. € Q[t] of degree 1, which are not necessarily homogeneous, such that for j = 1,...,n
we can write f; = ¢; [[;¢;, li where ¢; € Q* and I; C {1,...,r}. Moreover, for n = 3, (resp.
n = 4), each l; divides exactly one of f1, fo, f3 (resp. one or two of fi, f2, f3, f1). Finally, we
may assume that

li(t) =t1 + diato + -+ dimtm + dio

for ¢ = 1,...,r and appropriate constants d;,d;2,...,dim € Q. Indeed, for i = 1,...,r, we
can write I;(t) = L;(t) + 1;(0), where L;(¢) is homogeneous of degree 1. There is a non-zero
vector @ € Q™ such that L;(a) # 0 for i = 1,...,r. Assuming without loss of generality that
aj # 0, one achieves the claim by making the change of variables t; = a1t} and ¢; = t} + a;t}
for 2 < i < m and then replacing ¢; by ¢;[[,c;, Li(a). The case when 377", f;(t)X7 = 0is
a quadric over Q being a subject of Hasse-Minkowski theorem, we can assume without loss of
generality that f; is not constant and is divisible by i1 (¢).

When m = 1, the statement of the theorem follows from (4.2.2) and (4.4.3). We assume for
the remainder of the proof that m > 2. The mapp: V — qu sending (X1,...,X,,t) to
(t2,...,tm) is a surjective morphism. The fibre V; = p~1(b) above a point b = (ba, ..., by,) of
A(gf*l is given by the following equation with coefficients in the residue field Q(b):

> fimx;=o,
j=1

where f;(t) = f;(t,b). We note that the morphism p has a section s that sends (ta, ..., t,) to
the point of V' with coordinates X1 =1, Xo =---=X,, =0, t1 = —{1(0,t2,. .., tm).

The proof will follow from a variant of the fibration method with a section, which is a result
of Harari (theorem 4.3.1 in [24]), once we check that

(1) the generic fibre V;, of p is geometrically integral and geometrically rational, and the
section s defines a smooth point of V,;

(2) there is a non-empty open subset U C Agf‘l such that for any point b € U(Q), the
Brauer-Manin obstruction is the only obstruction to weak approximation on smooth and proper
models of V.

Let U C Ag_l be the open subset given by l;, (0,b) # 1;,(0,b) for all i1 # i3. This set is
not empty since no two polynomials /;, and [;, are equal for i; # is. The restriction of p to U
has geometrically integral fibres, as follows from our assumption that if n = 3 (resp. n = 4),
then each I; divides exactly one of fi, fo, f3 (resp. one or two of fi, fa, fs, f4). In the case
n = 3, the fibre V4 is a smooth conic bundle over A@ py for any b in U. In particular, V;, is
smooth, so the point of V;, defined by s is certainly smooth. In the case n = 4 the fibre V} is
an admissible quadric bundle over A(b(b). A direct verification shows that at every point of the
singular locus (V};)sing exactly two of the coordinates X, Xs, X3, X4 must vanish. Hence the
point of V;, defined by s is also smooth in this case. Thus condition (1) is satisfied. Condition
(2) follows from (4.2.2) and (4.4.3), so the proof is completed. O
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4.6 Rational points on some del Pezzo surfaces of degree 1
and 2

In this section we construct families of del Pezzo surfaces of degree 1 and 2 for which the
failure of weak approximation is controlled by the Brauer-Manin obstruction. Recall that a
smooth projective surface V is called minimal if any birational morphism V — V', where V'
is smooth and projective, is an isomorphism.

We start with describing del Pezzo surfaces in terms of the Galois group action on the set
of exceptional curves. Let X be a del Pezzo surface of degree d defined over an algebraically
closed field k. Let I'y be the graph whose vertices are the exceptional curves on X. Two vertices
C1 and Cy are connected by n edges if the intersection number (Cy,Cs)x of the corresponding
curves is n.

Now let X be a del Pezzo surface of degree d defined over Q. We simply write G for the
Galois group Gal(Q|Q). Let I'y be the graph of exceptional curves on X = X xg Q. Then we
obtain an action of the Galois group G on I'y.

Let I'(1) be the graph with two vertices joined by a single edge. For a positive integer r, we
denote by I'(r) the disconnected union of r copies of I'(1). Recall that a subgraph I" of a graph
I' is induced if the vertices of I are connected by exactly the same edges as in I

Proposition 4.6.1. Consider the family of del Pezzo surfaces of degree d <7 over Q for which
'y has an induced subgraph I'(8 — d) such that all the connected components of I'(8 — d) are
G-invariant. All surfaces in this family have the property that the Brauer-Manin obstruction
is the only obstruction to weak approzimation. Moreover, if d € {1,2,4}, then the surfaces for
which no vertex of T'(8 — d) is fived by G are minimal over Q.

Proof. See [3], proposition 5.1. O

Let f,g,h € Q[f] be polynomials such that f(¢)g(t)h(t) = c[[_,(t — ;) for ¢ € Q* and
pairwise different ey, ..., e, € Q. Assume that [ = deg f, m = degg and n = deg h are integers
of the same parity such that | < m < n. Consider the smooth surface in IP% X A(b defined by

F(®)z® + g(t)y* + h(t)2* =0,

where ¢ is a coordinate function on A([l}. We embed Ab into I%) as the complement to the point
oco. We may also take A(%l, - I%, to be the complement to the point ¢t = 0 with the coordinate
function T = 1/t. Let F(T) = T'f(1/T), G(T) = T™g(1/T) and H(T) = T"h(1/T). Consider
the smooth surface in IP’?Q X A(b given by

F(T)X?+G(T)Y?+H(T)Z? = 0.

Let 7 : V — I% be the conic bundle obtained by gluing the above two surfaces. For this
we identify the restrictions of the two fibrations to IP’Ql2 — {0, 00} by means of the isomorphism
t=T" L o=T"X,y=T™Y,z=T"Z, where (I,m,n) = 2(l1,m1,ny) or (I,m,n)+(1,1,1) =
2(ly,m1,n1). Since F(0)G(0)H(0) # 0, the fibre of 7 at t = oo is smooth, so 7 has precisely
r =1 4+ m + n degenerate fibres.

The case r =5

Suppose r = 5 with (I,m,n) = (1,1,3). Setting z = 1 in f(t)z2 + g(t)y* + h(t)z?> = 0 and
passing to homogeneous coordinates we obtain a smooth cubic surface in IE”%_) with the equation

c1(u—e1v)2? + ca(u — eav)y? + c3(u — ezv)(u — eq)(u — e5v) = 0.

It contains the line v = v = 0. If the conic bundle is relatively minimal, then, contracting this
line, we obtain a minimal del Pezzo surface of degree 4 with a Q-point by [29], proposition 2.1.

95



4.6. RATIONAL POINTS ON SOME DEL PEZZO SURFACES OF DEGREE 1 AND 2

The case r =6
Suppose that r = 6 with (I,m,n) = (2,2, 2).

Proposition 4.6.2. Let f(t) = a(t—e1)(t—ea), g(t) = b(t —e3)(t—eq), h(t) = c(t—es5)(t —eg),
where eq,...,e¢ € Q are pairwise distinct and a,b,c € Q*. If f(t),g(t) and h(t) are linearly
independent over Q, then V is a del Pezzo surface of degree 2 for which the Brauer-Manin
obstruction is the only obstruction to weak approzimation. If moreover, the classes

—1,a, b, c,e—ej for1 <i<j<6
are linearly independent in the Fo-vector space Q% /(Q*)2, then V is minimal.

Proof. See [3] proposition 5.2. O

The case r =7

The case r = 7 translates as K% = 1. Note that r = 7 iff (I, m,n) = (1,1,5) or (I,m,n) =
(1,3,3). We claim that neither of these surfaces can be isomorphic to a del Pezzo surface of
degree 1. Recall that del Pezzo surfaces are defined by the property that their anticanonical
divisor is ample. It will be sufficient to find a geometrically integral curve C on V for which
(C,—Ky) <0. We adapt an argument of Iskovskikh [29], proposition 1.3 and corollary 1.4.

In the case (I,m,n) = (1,1,5) consider the curve C that is the Zariski closure in V' of the
closed subset of f(t)x? + g(t)y® + h(t)2? = 0 given by z = 0. We claim that this is a smooth
curve of genus 0 such that (C,—Ky) = —1. To see this we note that C' is a smooth curve of
genus 0 such that (C, F) = 2, where F' € Pic(V) is the class of a fibre. The divisor of the rational
function z/x on V' is C+2F,, —C’, where F, is the fibre at infinity and C’ is the Zariski closure
in V of the closed subset of f(t)z2 + g(t)y? + h(t)2? = 0 given by z = 0. Since (C,C’) = 1,
we see that (C,C) = —3 and then from the adjunction formula we find that (C, —Ky) = —1 as
claimed.

In the case (I,m,n) = (1,3,3) we consider the pencil of genus 1 curves £ = E(y.,) cut out
by Ay + uz =0 on V. It is easy to see that (£, F) = 1 and hence adjunction formula gives
(E,—Ky) = 1. It follows that E = —Ky,. This pencil contains two reducible members, each
consisting of the union of one component of the degenerate fibre at f(t) = 0 and a residual
rational curve C. It follows that (C, —Ky) = 0.

The case r =8

We can use some special conic bundles with 8 degenerate fibres to construct del Pezzo surfaces
of degree 1 to which (4.2.2) can be applied. Note that r = 8 gives K‘Q, =0. Let e1,...,e5 € Q
be pairwise distinct. Let 7 : V — ]P’qll) be the conic bundle constructed as above from the surface

given by the equation
4

8
2 t—ei o 2
“ ges—eiy +j1;[5(t @)
in ]P’?Q X Aé. This conic bundle is not relatively minimal because the fibre at ¢ = eg is a union
of components defined over Q. Either of them can be smoothly contracted, thus producing a
conic bundle surface W — ]P’}@ with seven degenerate fibres.

Recall that the discriminant of the quartic polynomial p(t) = Z?:O p;tt is a homogeneous
form Dy(po, ..., ps) of degree 6. Thus Dy = 0 defines a hypersurface Z =C I% of degree 6. The
space of projective lines in P is naturally identified with the Grassmannian Gr(2,5). The open
subset of Gr(2,5) parameterizing those lines that meet Z in six distinct complex points is non-
empty. Joining two points by a line gives a dominant rational map from Ag x A to Gr(2,5). It
follows that the open subset of AZ x A consisting of pairs of polynomials (p(t), ¢(t)) such that the
discriminant of rp(t) + aq(t) vanishes for exactly six points (r : s) € PL(C) is non-empty. These
six points of Z are necessarily smooth in Z, and hence for each of them rp(t) 4 sq(t) has exactly
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one double root. We conclude that there is a non-zero polynomial f(po,...,p4,qo,.-.,qs) With
coefficients in Q such that if f(po,...,p4,q0,.-.,q4) # 0, then rp(t) + sq(t) has multiple roots
for exactly six values of (r : s) € PL(C), and for each of these values, rp(t) + sq(t) has exactly
one double root. Writing the coefficients as symmetric functions of the roots and applying this
to the polynomials

4 8
pt)=J[(t—e) and qt)=]]t-¢).
i=1 j=5
We obtain a non-zero polynomial F(eq,...,es) with coefficients in Q.

Proposition 4.6.3. Ifeq,...,es € Q satisfy F(ey,...,es) # 0, then W is a del Pezzo surface
of degree 1 over Q for which the Brauer-Manin obstruction is the only obstruction to weak
approzimation. If moreover, the classes of e; —e; where 1 < i <4 and 5 < j < 8 are linearly
independent in the Fay-vector space Q% /(Q*)?, then W is minimal.

Proof. See [3] proposition 5.3. O
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Chapter 5

The Hardy-Littlewood conjecture
and rational points

In this chapter, we introduce the results of Y. Harpaz, A.N. Skorobogatov and O. Wittenberg.
The main reference is their paper [20].

5.1 Schinzel’s hypothesis (H)

In this section we will show how recent results in additive combinatorics help to study the
Hasse principle and weak approximation.

A corollary of the Hardy-Littlewood conjecture in the finite complexity case

In a series of papers, Green and Tao ([20], [21]) and Green-Tao-Ziegler ([22]) proved the
generalised Hardy-Littlewood conjecture in the finite complexity case. The following statement
is corollary 1.9 in [20].

Theorem 5.1.1 (Green, Tao, Ziegler). Let Li(x,y),...,L.(x,y) € Zlx,y] be pairwise non-
proportional linear forms and let ¢y, ...,c, € Z. Assume that for each prime number p, there
exists (m,n) € Z2 such that p does not divide L;(m,n) +¢; fori=1,...,r. Let K C R? be an
open conver cone containing a point (m,n) € Z* such that L;(m,n) >0 fori=1,...,r. Then
there exist infinitely many pairs (m,n) € K NZ? such that L;(m,n) + ¢; are all prime numbers.

Let S C Z be a finite subset of prime numbers. We write Zs = Z[S™!] for the localization
of Z at the multiplicatively closed subset generated by the prime numbers in S.

Proposition 5.1.2. Let S C Z be a finite subset of prime numbers. Suppose we are given
(Aps tp) € Qf) for p € S and a positive real constant C. Let eq,...,e, € Zg. Then there exist
pairs (\, ) € Z% such that

(1) A >Cu>0,
(2) (A, w) is arbitrarily close to (A\p, ip) in the p-adic topology for p € S,
(3) A — eip = wip; with u; € ZZ fori=1,...,r, where p1,...,p, are prime numbers not in

S such that p; = p; iff e; = e;.

Proof. By eliminating repetitions we can assume e, ..., e, are pairwise distinct. We can mul-
tiply Ap, pp by a product of powers of primes in S, so we may assume (A, (1) € Zf, forp e S.
We can assume C' > e; for i = 1,...,r by increasing C. Now we consider the equations x = A,

(mod p"») where n, > 0. By Chinese remainder theorem, we can find a solution g € Z.
Similarly we obtain pg € Z such that py = p, (mod p™»). Note that Ao + ap™ and po + bp™»
are also solutions to ¢ = A\, (mod p™) and = = p, (mod p™») respectively. We can therefore

99



5.1. SCHINZEL’S HYPOTHESIS (H)

assume \g > Cug > 0 by choosing a, b sufficiently large. In particular, \g —e; g > Ag—Cpg > 0
for all 1.
Let d be a product of powers of primes in S such that de; € Z for all i. Let us write

d(Xo — eipo) = Mic;

where M; is a product of powers of primes in S and ¢; € Z is coprime to the primes in S. Let
N be a product of primes in S such that N > ¢; — ¢; for any i, j. Take

mp 2 jax {np, val,(N) + val, (M;)},

and M =[], cgp™*. Then my, > val,(N) +val,(M;) implies N divides M/M,; for all i. Now we
look for A and p of the form

A= Xo+Mm, p=po+Mn, (m,n)cZ
We put L;(z,y) = M[lMd(ac —e;y), then

A—ein= (Ao —eipo) + M(m —e;n)
=d *Mc; + d " M;(M; ' Md(m — e;n))
= dilMi(Li(m, ’fl) + Ci).
Let us check the linear functions L;(z,y) + ¢; satisfy the condition of (5.1.1) and choose an
open convex cone K. For p € S, L;(0,0) +¢; = ¢; is coprime to the primes in S by construction.
For p ¢ S, take m = [],(Xo — eipio)p, then L;(m,0) +¢; = ¢;(M [];;(Ao — €jp0)p + 1) which is

clearly coprime to p. For K, we choose (mq,ng) € Z? such that mg > Cng > 0 and L;(mq, no)
are pairwise distinct. After reordering the subscripts, we obtain the inequalities

mo > Cng >0 and Li(mg,ng) > - > L,.(mg,ng) > 0.

Define K C R? by these inequalities.

Then we apply (5.1.1) to these L;(x, y) 4+ ¢; and the cone K. Thus there exist infinitely many
pairs (m,n) € K NZ2 such that L;(m,n) + ¢; = p;, where p; is a prime not in S for all 7. Since
N divides M; *Md and L;(m,n) — Liy1(m,n) > 0,

L,(m,n) — Li+1(m,n) >N > Cit1 — C;

holds. Thus p; > p;41 fori =1,...,r—1. In particular, these p; are pairwise distinct. (m,n) € K
implies n > 0 and m > Cn, and it follows that u = po + Mn > 0 and A = Ao + Mm > Cp.
Finally, A — e;u = d=*M;(Li(m,n) + ¢;) = d~*M;p; tells us u; = d~'M; € Z§. O
An application

We can use the previous proposition to study Hasse principle and weak approximation for
certain varieties. For a field extension K |Q of degree n, we denote by Ng/|g(x) the corresponding
norm with x = (z1,...,2,) defined by choosing a basis of K over Q.

Theorem 5.1.3. Let K; be a cyclic extension of Q of degree d; and let b; € Q*, e; € Q for
i=1,...,7. Then the affine variety V C A% x A% x ... x A% over Q defined by

bi(u — e;v) = Ng,j0(xi) #0
fori=1,... 7 satisfies the Hasse principle and weak approzximation.

Proof. Let Q be the set of all places of Q. Then ¢ is identified with the set of all positive prime
numbers in Z and Q, consists of the only real place. We will denote finite places v of Q be the
corresponding prime numbers p. Let (M,) € [],cq V(Qy) be the point we need to approximate.

100



CHAPTER 5. THE HARDY-LITTLEWOOD CONJECTURE AND RATIONAL POINTS

We write M, € V(Q,) for each prime number p and write My € V(R) for the real place. Let S
be a finite set of places of Q which we need to approximate. We first find a rational point and
then show that the diagonal image V(Q) < [],cq V(Qv) is dense.

Step 1. Note that the set of real points (u,v,x1,...,%,) € V(R) with (u,v) € Q? is dense
in V(R), and so it will be sufficient to prove the claim when the coordinates v and v of M, are
in Q. By a Q-linear change of variables we can assume without loss of generality that M, has
coordinates (u,v) = (1,0).

We enlarge S such that the following properties hold. We can assume b; € Z§, e; € Zg by
adding prime factors of the denominators of b; and e; for each i. And we can assume the field
K; is unramified outside S for all . Note that each K; is unramified at all but finitely many
places, hence the enlarged S is still a finite set. We write (\p, tp,X1p, - - ., Xy p) for the Q,-point
M, on V. Thus for each p € § we now have a pair (\,, ip) € Qg such that

bi(Ap — eiptp) = NKiIQ(Xi,p) #0

for i =1,...,r, and for some x;, € K; ®qg Q, ~ (Qp)di. Let C > e; for each i be a positive
constant determined later. Then by (5.1.2), we can find (\, ) € Z%, A > Cu > 0 such that for
each 4, the number b;(A — e;u) is a local norm for K;|Q at each finite place of S. It remains
to show this is also true for the real place of Q. My has coordinates (u,v) = (1,0) and K;|Q
is cyclic, so we conclude b; = Nk, g(x;) > 0. By construction A — e;u > 0 for all i, it follows
bi(A — e;p) > 0 and hence it is a local norm. Moreover, for each i we have b;(A — e; 1) = p;u;,
where p; ¢ S, u; € Z§. Recall that p; = p; iff ¢; = ¢;.

Step 2. We prove the Hasse principle now. Let (K;|Q, b;(\ —e;1)) € Br(Q) be the class of
the corresponding cyclic algebra. Since b;(\, — e;fip) is a local norm for p € S, we conclude
inv, (K;|Q, b;(Ap — e;11p)) = 0. By construction, (A, i) is close to (A, pp) in the p-adic topology
for p € S, hence inv,(K;|Q,b;(A —e;n)) = 0 for p € S, and inve(K;|Q,b;(A — e;u)) = 0 by
continuity. Next, b;(A—e;11) = u;p; is a unit at every prime p ¢ SU{p;} and K;|Q is unramified
outside S, hence we obtain

iIle(Ki|@, bz(/\ - eiu)) =0

for any prime p # p; and for real place. By Hasse’s reciprocity law, we have an exact sequence

0 — Br(Q) — P Br(Q,) - Q/Z — 0.

vEQ

We therefore know the case at p;:

0= Z inv, (KG|Q, by (A — eip)) = invy, (K3 Q, bi(A — esp)) = invy, (K;]Q, ps).
veEQ

Since K;|Q is unramified outside S, the prime p; splits completely in K;. In particular, b;(A—e;u)
is a local norm at every place of Q. By Hasse’s norm theorem it is a global norm, so that

bi(A —eip) = Ni,jo(xi) # 0

for some x; € Q% i.e. (\,u,X1,...,X,) is a rational point of V. This proves the Hasse principle
for V.

Step 8. Now we prove weak approximation for V. Write d = d; ...d,. Using weak approx-
imation in Q, we find a positive rational number p that is arbitrarily close to 1 in the p-adic
topology for each prime p € S and p? is arbitrarily close to A > 0 in the real topology. We now
make the change of variables

A=p"N, p=p', x; = p?ix]
for all . Then (X, y’) is still arbitrarily close to (Ap, up) in the p-adic topology for each p € S.
In the real topology (N, ') is arbitrarily close to (1,u/)). Since 0 < /A < C~1, by choosing
a sufficiently large C', we ensure that (X, ') is close to (1,0). We can conclude by using weak
approximation in the norm tori Ng,o(z) = 1. O
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Shinzel’s hypothesis

Hypothesis (H;). Let e1,...,e, € Q be pairwise distinct. Let S be a finite set of primes
containing the prime factors of the denominators of ey, ..., e, and the primes p < r. Suppose
we are given 7, € Q, for p € S and a positive real number C. Then there exist 7 € Q and
primes p1,...,p, not in S such that

(1) 7 is arbitrarily close to 7, in the p-adic topology for p € S,

(2)T>C,
(3) valp(tr —e;) =0forany p¢ SU{p;},i=1,...,7,
(4) valy,(r —e;) =1forany i =1,...,r.

Hypothesis (H;) is usually supplemented with the following statement. Let K|Q be a cyclic
extension unramified outside S. Assuming the conclusion of (H;), we have the following impli-
cation: if ZpES inv, (K|Q, 7, —e;) = 0 for some ¢, then p; splits completely in K|Q. Hypothesis
(H;) and its supplement can be compared to the following consequence of (5.1.2).

Proposition 5.1.4. Letey,...,e. € Q and let S be a finite set of primes containing the prime
factors of the denominators of ey, ...,e,. Suppose that we are given 7, € Q, for p € S and a
positive real constant C. Then there exist T € Q and primes p1,...,p, not in S with p; = p; iff
e; = ej, such that

(1) 7 is arbitrarily close to T, in the p-adic topology for p € S,

(2) T>C,
(3) for each i =1,...,r, we have val,(T —e;) <0 for any p ¢ SU {p;},
(4) for each i =1,...,r, we have valy, (T —¢;) =1,

(5) for any cyclic extension K|Q unramified outside S and such that

Zinvp(K\Q,Tp —e)=ceQ/Z

peS
for some i, we have inv,, (K|Q,T —e;) = —c. In particular, if c = 0, then p; splits completely
in K|Q.
Proof. By increasing the set {e1,...,e,}, we may assume r > 2 and e; # e; for some i # j. We

also assume C > ¢; for all . Then we apply (5.1.1) to (A, ptp) = (7, 1) for p € S. This provides
(A, ) € Z2 such that

(a) A>Cp >0, (A ) is close to (Ap, ftp) = (7, 1) in the p-adic topology for p € S, and

(b) A — e;p = u;p; with w; € Z§ for i = 1,...,r, where py,...,p, are prime numbers not in
S such that p; = p; iff e; = ¢;.

We take 7 = A/u. Then we prove the above five properties as follows.

(1) Now we have

T—Tp=ANpu—Tp = A= pmy) = A =7 + (1 — ).

Hence 7 is arbitrarily close to 7.

(2) This holds by 7 = X/u > C.

(3) By construction y is an element in Zg, hence the denominator of y is a product of primes
in S. Thus for p ¢ S, we have val,(1z) > 0. Now we take any p ¢ S U {p;}, then we have
val, (A — e;u) = val,(u;p;) = 0, and it follows that

val, (17 — €;) = val, (A — e;u) — val,(p) < 0.

(4) We claim val,, (1) = 0 for each ¢ = 1,...,r. If not, then val,, (1) > 0 for some i. We
conclude val,, (A) = val,, (u;p; + e;p) > min(valy, (u;p;), valy, (e;1)) > 0. Here we use the fact
valy, (e;p) = valy, (e;) +valp, (1) > 0 since e; € Zg and val,, (1) > 0. By assumption we can take
Jj such that e; # e;. It follows that

val,, (A = ;1) > min(valy, (X), val,, (e1)) > 0,
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which contradicts to (3). Therefore valy, (1) = 0 for all ¢ and
valy, (T — €;) = val,, (A — e;u) = valy, (w;p;) = 1.
(5) Since (A, p) is close to (7p, 1) in the p-adic topology for p € S, by continuity we have
Z inv, (K|Q, A —e;p) = c.
peSs

We also have A\ —e; 11 > 0, hence it is a norm and it follows that invg (K|Q, A — e; 1) = 0. By the
global reciprocity law of class field theory, i.e. the short exact sequence

0 — Br(Q) — P Br(Q,) —» Q/Z — 0,

veEQN

we conclude that
Zinvp(lﬂ(@, A—ein) = —c.

PE¢S

Since val, (A — e;u) = val,(u;p;) = 0 for any prime p ¢ SU {p;} and K|Q is unramified outside
S, we have inv, (K|Q, A — e;u) = 0 for any prime p ¢ SU {p;}. Thus

inv,, (K|Q,\ —e;p) = —c.

When ¢ = 0, then inv,, (K|Q,p;) = inv,, (K|Q, u;p;) = inv,, (K|Q, A — e;u) = 0. Therefore p;
splits completely in K. O

5.2 Varieties fibred over the projective line

Main theorem I

Let X be an integral variety over Q and let 7 : X — IF’@ be a dominant Q-morphism.
Then we obtain an induced homomorphism Q(Pg) — Q(X) between the corresponding function
fields. Applying the functor Br(—), we obtain a homomorphism 7* : Br(@([%)) — Br(Q(X)) by
sending any center simple algebra A over Q(Py) to A Rqry) Q(X). Recall for integral varieties
we have a canonical injection Br(X) — Br(Q(X)). These lead us to the:

Definition 5.2.1. Let 7: X — IP’@ be a dominant morphism of integral varieties over Q. We
define the corresponding vertical Brauer group of X as

Bryert (X) := Br(X) N 7* Br(Q(PY)) C Br(Q(X)).
By a Q-fibre of 7 : X — P{, we mean a fibre above a Q-point, of Pf,.
We will need the Lang-Weil estimate and we briefly recall it here.

Theorem 5.2.1 (Lang-Weil). Let F, be the finite field with g elements. There exists a constant
C(n,r,d) such that for all finite field Fy and all geometrically integral closed subvariety X of
degree d and dimension r of ]P’[}Lq, we have

| Card(X (Fy)) — ¢"| < C(n,r,d)q" /.

By Lang-Weil estimate, we have ¢" — Cq"~'/2 < Card(X (F,)) where C does not depend on
q. Hence we may enlarge ¢ such that X can be defined over F, and ¢" — C¢"~'/2 > 0, this
means that X has F,-points. The following result is lemma 1.3 in [13] which is a consequence
of Lang-Weil estimate and Hensel’s lemma. Although it is proved for number fields, we simply
deal with the case of rational numbers.
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Lemma 5.2.2. Let Spec R be a non-empty open subset of SpecZ. Let X — Spec R be a flat
quasi-projective morphism and let X be its generic fibre. Then there exists a finite set S C Spec R
such that for any non-zero prime number p € Spec R and p ¢ S, if the fibre Xr, over ), splits,
then X, contains a smooth Fy-point and X contains a smooth Q,-point.

We denote by Q, the completions of Q with respect to the place v €  and by Ag the
associated ring of adeles. When v is a finite place, Q, = Q, for some prime number p and
Q. = R for the real place of Q. Let Q be an algebraic closure of Q.

Theorem 5.2.3. Let X be a geometrically integral variety over Q with a smooth and surjective
morphism 7 : X — IP’}@ such that

(1) each fibre of m contains a geometrically integral irreducible component except finitely
many Q-fibres Xq,...,X,,

(2) for each i = 1,...,r, the fibre X; contains an irreducible component U; such that the
algebraic closure of Q in its function field Q(U;) is an abelian extension of Q.

Then Py (Q) Nm(X (Aq)) is dense in m(X (Ag)P™r) C Py(Ag) = [T, PH(Qy)-

Proof. Let A}@ be the affine line over Q. By a change of variables if necessary, we may assume
that X; is the fibre above a Q-point e; on A(b - ]P’b for i =1,...,r. Note that Ab(@) =Q, so
we may identify the point e; on A}@ with a rational number which we will also write e; by abuse
of language. Let K; be the algebraic closure of Q in Q(U;) and K;|Q is an abelian extension as
in the assumption (2).

Step 1. Let us recall a description of Bryeq(X). Since K;|Q is an abelian extension, we can
write K; as a composite of cyclic extensions K;;|Q. Let y;; : Gal(Q|Q) — Q/Z be a character
such that K;; is isomorphic to the invariant subfield of Ker(y;;), i.e. K;j ~ {z € Q | o(z) =
z, Yo € Kerxi;}. Let t be a coordinate on A, C P such that Q(Pg) = Q(t). Let

Ay = (Kij|Q,t — e;) € Br(Q(%))

be the class of the corresponding cyclic algebra. Here we simply write (K;;|Q,t — e;) instead
of (K;;(t)|Q(t),t — e;) to simplify notations. By (2.2.22), the residue of A;; is non-zero only
at e; and oo € Pb with residues x;; and —y;;, respectively. Let A € Br(Q(¢)) be such that
m*A € Br(X), i.e. 7*A € Bryert(X). Assumptions (1) and (2) together with (2.2.20) imply that
Aon ]P’%JE is unramified away from eq,...e,, and that the residue of A at e; belongs to

Ker (Hom(Gal(Q|Q),Q/Z) — Hom(Gal(Q|K;), Q/Z)).

This group is generated by the characters y;;. Hence there exist n,;; € Z such that A—3)"n;; A;;
is unramified on A'. Since Br(Ay) = Br(Q) we conclude that A = Y n;;A;; + Ao for some
Ap € Br(Q). A is unramified at oo € ]P’(lQ and Ag € Br(Q) imply, by considering residues at oo,
that

> nijxi; =0 € Hom(Gal(Q|Q), Q/Z).

Therefore, every element of Bryeyt(X) is of the form )" n;;n*A;; + Ao for some n;; such that
Enijxij =0 and some Ag € BI‘(Q)

Step 2. Now we slightly modify the point we need to approximate by a point arbitrarily close
to it and we enlarge the set of places we need to approximate. We can assume X (Ag)Brvert £ (),
otherwise there is nothing to prove. Take (M,) € X(Ag)B™et to be the point we need to
approximate. As usual, we write M, for points in X (Q,) for each prime p and My for points
in X(R). By replacing (M,) by a point arbitrarily close to it, we can assume that M, does not
belong to any of the fibres Xi,..., X,.

We include the real place in the finite set of places S where we need to approximate. The
set of real points My € X (R) for which 7(My) € ]P’b(@) is dense in X (R), and so it is sufficient
to approximate adelic points (M,) such that 7(Mj) € Py (Q). By a change of variables we then
assume that (M) = co. By replacing (M),) by a point arbitrarily close to it for each prime p,
we can further assume that m(M),) # oo when p # 0.
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Then we enlarge S such that the following properties hold. First, for any p ¢ S, X has a
good reduction at p, i.e. X admits a smooth model over Z,). Second, by adding prime factors
appeared in the denominators, we can assume e; € Zg for all 4, and e; — e; € Z§ for all i # j.
Third, for any p ¢ S, p is unramified in any of the fields K;. Furthermore, by (5.2.2) we increase
S so that if K; has a place of degree 1 over p ¢ S, then the corresponding F,-component of
the degenerate fibre of 7 over the reduction of e; has an F,-point. By a similar argument we
assume that on the reduction of X modulo p ¢ S any geometrically integral component of a fibre
over an [F,-point contains an F,-point. All these F,-points are smooth, because 7 is a smooth
morphism.

Since X (Ag)Btvert #£ (), by the result of Step 1 we can use Harari’s formal lemma (2.4.12) to
increase S C S; and choose M, € X(Q,) for p € S; — S away from the fibres X,..., X, so that
for all 7, j we have

> invy, (A ((My))) =0.

PESL

Step 3. Let 7, be the coordinate of 7(M,) € Ag, where p is a prime number in S; and
let 7o € P§(R) be the image of My. Note that M, € Pg(Q,) implies that 7, € Ay(Q,) = Q,
for each prime number p € S;. An application of (5.1.4) produces an arbitrarily large positive
rational number 7 € @Q such that 7 is arbitrarily close to 7, in the p-adic topology for each
prime number p € S;. Let M € Aj(Q) C PL(Q) be the point with coordinate 7. We claim
X (Ag) # 0.

By construction we obtain X, (Q,) # 0 and X (R) # 0. The fibre X,/ is smooth, hence by
the inverse function theorem we have X/ (R) # 0 and X»/(Q,) # 0 for p € S;. Thus it remains
to consider the following two cases.

(I) Qu = Q, where p =p;, i =1,...,r. Since val,, (T — e;) = 1, the reduction of 7 modulo
p; equals the reduction of e;. We conclude

D i (Ky|Q,m —e) = Y invy(Ay(7) = D invy(Ai(7)) = 0,

pESL pEST pESTL

since 7 is close to 7, in the p-adic topology and inv, is locally constant. Now property (5) of
(5.1.4) implies that for each ¢ =1,...,r, all the cyclic fields K;; are split at p;, and thus K; is
also split. Hence there is a geometrically integral irreducible component of the F,,, -fibre over the
reduction of e; modulo p;. We arranged that it has an IF,,-point in step 2. By Hensel’s lemma,
it gives rise to a Zj,,-point in Xjy.

(II) Q, = Q, where p ¢ S1 U {p1,...,pr}. We have val,(T —¢;) <0 for all ¢, and hence the
reduction of 7 modulo p is a point of P!(F,) other than the reduction of any of e1,...,e,. Thus
any F,-point on a geometrically integral irreducible component of the fibre at 7 (mod p) gives
rise to a Zy,-point on X s by Hensel’s lemma.

In both cases we constructed a Q,-point that comes from a Z,-point on an integral model
of Xy, therefore Xy (Ag) # 0. O

Corollary 5.2.4. In the situation of (5.2.3), let us assume further that all but finitely many Q-
fibres of m: X — Py, satisfy the Hasse principle. Then 7(X(Q)) is dense in (X (Ag)Brvert). If
these Q-fibres X, are such that X, (Q) is dense in X,(Ag), then X (Q) is dense in X (Ag)Brvert,

Proof. We can assume X (Ag)Brvert o (), otherwise there is nothing to prove. Then we can take
an adelic point (M,) € X (Ag)P". Let’s say m((M,)) = (1) € Py(Ag). By (5.2.3), we can
find A € Pg(Q)Nm(X (Ag)) which is arbitrarily close to (). Since all but finitely many Q-fibres
of 7 satisfies the Hasse principle, we may assume the fibre X satisfies the Hasse principle. Note
that A € (X (Ag)), Xa(Ag) # 0 holds and it follows that X,(Q) # @ by the Hasse principle.
Therefore 7(X (Q)) is dense in 7(X (Ag)Brver).

For the second assertion, let (M,) € X (Ag)B™* be the point we need to approximate. We
can find 7 = 7(N) € Py(Q) for some N € X(Q) that is arbitrarily close to m((M,)) by the
first assertion and such that X,(Q) is dense in X,.(Ag) by assumption. Then N € X(Q) is
arbitrarily close to (M, ) and we are done. O
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Remark 5.2.5. If the generic fibre of 7 : X — P! is proper, then all but finitely many fibres
of 7 are proper. For proper Q-fibres X, the approximation assumptions in (5.2.4) is that of
weak approximation, since in this case X;(Aq) = [],cq X+(Qy). By Hironaka’s theorem, we
can always replace m : X — P! by a partial compactification 7’ : X’ — P! such that X is a
dense open subset of X’ and the morphism 7’ is smooth with proper generic fibre.

Application: a new proof of Theorem (5.1.3)

We can prove (5.1.3) in a different manner. Let W be the quasi-affine subvariety of A2 x
A% x ... x A% given by
bi(u — ev) = Ni,q(xi)

fori=1,...,r and (u,v) # (0,0). Then the variety
bi(u — 6i’U) = NKHQ(XZ) # 0

for i = 1,...,7 is a dense open subset of W. The projection to the coordinates (u,v) defines
a morphism W — AZ — (0,0). Then we obtain a morphism 7 : W — Pg by composing the
projection (A — (0,0)) — Pf,. Let X be the smooth locus of 7. Since each fibre of 7 contains
a smooth point, we see that 7(X) = Pb. Let 7/ : Y — ]P’(b be a partial compactification of
m: X — Pg. Then ' is smooth with proper generic fibre.

Let t = u/v be a coordinate on P,. We can conclude (5.1.3) by verifying (1) assumptions of
theorem (5.2.3) holds, (2) geometrically integral, proper Q-fibres of 7’ satisfy the Hasse principle
and weak approximation, and (3) Bryer(Y) = Brg(Y). These indeed hold by §3.3 in [26].

Main theorem II

Next we give a statement for a smooth and proper variety X, to be compared with theorem
1.1 in [13]. We need several results in [12].

Let f : X — Z be a surjective k-morphism between integral k-varieties over a field k of
characteristic 0. Then we define Bryert (X) = Br(X) N f*Br(k(Z)) C Br(k(X)). Here k(X)
and k(Z) are the function fields of X and Z, respectively. Since Z is integral, we conclude that
Br(Z) ¢ Br(k(Z)) and hence f*Br(Z) C Bryes(X).

Lemma 5.2.6. Let k be a field of characteristic 0. Let X, Z be reqular geometrically integral
k-varieties. Let f : X — Z be a flat surjective morphism with geometrically split fibres at points
of Z of codimension one and with geometrically integral generic fibre. Then Brye(X)/f* Br(Z)
is finite.

Proof. For an arbitrary scheme S, we write S(!) for the set of points of codimension one on S.
For any z € ZW | the fibre X, is non-empty and all the components of X, have codimension 1
in X since f is flat and surjective. We consider the following commutative diagram

0 Br(Z) Br(k(Z)) — @.cz0 H'(k(2),Q/2Z)
s
0 Br(X) Br(k(X)) — @,exw H' (5(z), Q/Z),

where z = f(z), and e, is the multiplicity in the fibre X, of the irreducible component whose
generic point is x.

Since the fibres X, are geometrically split, for each z € Z(1), we can choose ' € X(*) such
that f(z') = z and e/, = 1. Let s, be the integral closure of x(z) in k(). Then r, is a finite
and separable extension of (z). Then the map e, - f* on H'(k(z),Q/Z) decomposes as

H'(x(2),Q/Z) =g H'(ke,Q/Z) — H'(k(z'),Q/Z),

106



CHAPTER 5. THE HARDY-LITTLEWOOD CONJECTURE AND RATIONAL POINTS

where 7, ;- is the restriction map and the last map is injective since k, is integrally closed in
k(z’). By the commutativity of the diagram, we get the inclusion

Bryert (X)/f*(Br(Z)) = @) Kerr. 0.

If X, is geometrically integral, then Kerr, ,» = 0. Since the generic fibre of f is geometrically
integral, this is the case for all but a finite number of z € Z(!). In general, Kerr, .+ is a finite
group. O

Corollary 5.2.7. With the same assumptions as in (5.2.6), let Y C X be an open subset such
that the composite map Y — X — Z is surjective and has geometrically split fibres at points of
codimension one of Z. Then Brye(X) is a subgroup of Brye(Y) of finite index. If moreover
Z is proper and k-birational to a projective space, then the group Brye(Y)/ Bro(Y) is finite.

Proof. Let j : Y — X be the open immersion. Then foj:Y — Z is a flat and surjective
morphism. Hence Brye(Y)/(f 0 4)* Br(Z) is finite by (5.2.6). Then Bryey (X) is a subgroup of
finite index by (5.2.6).

If Z is proper and k-birational to a projective space, then Br(Z) = Br(k). We conclude by
definition Bro(Y) = Im(f o j)* Br(k). O

Proposition 5.2.8. Let X be a smooth and geometrically integral variety over a number field
k. Let Y C X be a dense open subset. Let B C Br(Y) be a subgroup such that [B : BN Bry(Y)]
is finite. Then X (Ay)BBX) £ 0 iff Y (Ap)® # 0. If X is a proper k-variety, then Y (Ay)P is
dense in the closed subset X (Ay)P B'X) of X(Ay) = [Toeq X(Ky).

Proof. Let X, be the smooth compactification of X, then X is an open subset of X, and X, is
smooth and geometrically integral. We obtain

Y(Ak)B C X(Ak)BﬁBr(X) C Xc(Ak)BmBr(XC)

)

and hence it will be sufficient to show that X.(A;)PBr(Xe) £ () implies Y (Ay)® # 0. Let
Ai,..., A, € B be a set of representatives for B/(B N Brg(Y)). Over a dense open subset
U C Spec O, Y has a smooth integral model ) over U such that Y(O,) # 0 for each v € U and
such that each A; is contained in Br()) C Br(Y). Let (P,)veq € Xo(Ax)PMB" X Tet S be a
finite set of places not in U, (hence contains the archimedean places). For each place v € S, let
U, € X(k,) be an open set. Harari’s formal lemma implies that there is a finite set T' of places
of k such that SNT = (), and points P, € Y (k,) for v € SUT, with P, € U, for v € S, such

that
D invy(Ai(P,)) =0
veSUT
fori=1,...,n. Now pick up any set of integral points P, € Y(O,) for v ¢ SUT. Then A4;(P,) €
Br(0,) = 0 implies Y, o¢, inv,(A(P,)) = 0 for any A € B. This means that (P,)yeq € Y (Ax)”.
This proves the first part of the proposition. The second part also follows because if X is proper
over k, hence X = X, then a basis of open sets for the topology of X (Ay) is given by sets

H’UGS UU X HUQS X(kv) O

Proposition 5.2.9. Let X be a smooth, proper and geometrically integral variety over a number
field k. Let f : X — PL be a dominant morphism with geometrically split fibres and geometrically
integral generic fibre. Let Y C X be a dense open set such that the composite map Y — X — P},
is surjective and has geometrically split fibres at closed points of Pj.. Then Y(Ak)Brve"(Y) 18
dense in X (Ay)Prert(X) C X(Ay).

Proof. Now Bryet(X) = Br(X) N Bryet(Y) and Bryet(Y)/Bro(Y) is finite by (5.2.7). The
above proposition implies Y (Ag)Pvert(Y) is dense in X (A, )Brvert(X), O

In our situation below, ¥ — P! is a smooth surjective morphism with geometrically split
fibres at points of P! of codimension 1 and with geometrically integral generic fibre. Then we
claim Bryegt (Y)/m* Br(P!) is finite.
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Theorem 5.2.10. Let X be a smooth, proper and geometrically integral variety over Q with a
surjective morphism 7 : X — P! such that

(1) each fibre of ® contains a geometrically integral irreducible component of multiplicity one
except finitely many Q-fibres X1,..., X,

(2) for all i, the fibre X; contains an irreducible component of multiplicity one such that the
algebraic closure of Q in its function field is an abelian extension of Q.

Then P(Q) N 7(X (Ag)) is dense in m(X(Ag)Bert) C PY(Ag) = [[,PY(Qy). If all but
finitely many Q-fibres of m satisfy the Hasse principle and weak approzimation, then X (Q) is
dense in X (Ag)Brver.

Proof. Let Y C X be the smooth locus of 7. Then by assumption, each fibre of 7 contains an
irreducible component of multiplicity one. In particular, each fibre of 7 contains a smooth point
and hence 7 : Y — P! is surjective. Now 7 : Y — P! is a smooth and surjective morphism, so we
can apply (5.2.3). It follows that P1(Q) N 7(Y (Ag)) is dense in 7(Y (Ag)P™e+()). By applying
(5.2.6), we conclude Y (Aqg)Bvert(Y) is dense in X (Ag)Bvert(X). Hence P1(Q) N 7(Y(Ag)) is
dense in m(X (A@)B”e"(x )). In particular, the first assertion holds. By weak approximation, we
conclude that all but finitely many fibres X, verify X, (Q) C X,(Ag) is dense. Thus applying
(5.2.4), it follows X (Q) is dense in X (Ag)Btvert. O

Application to pencils of Severi-Brauer and similar varieties

Corollary 5.2.11. Let X be a smooth, proper and geometrically integral variety over Q with a
morphism w : X — PL. Suppose the generic fibre of 7 is a Severi-Brauer variety, a 2-dimensional
quadric, or a product of such. If all the fibres of w that are not geometrically integral are Q-fibres,
then X (Q) is dense in X (Ag)Bver.

Proof. The assumptions of (5.2.10) are satisfied by [45] and [17] and hence the assertion holds.

O
5.3 Application to norm forms
5.3.1 Cyclic extensions
Consider the following system of Diophantine equations:
Ni,jo(xi) = Pi(t)
for i = 1,...,r, where K;|Q are cyclic extensions and the polynomials P;(¢) are products of

(possibly repeated) linear factors over Q.

Corollary 5.3.1. Let X be a smooth, proper and geometrically integral variety over Q with a
surjective morphism m : X — P! such that the generic fibre of 7 is birationally equivalent to the
affine variety

over Q(P') = Q(t). Then X(Q) is dense in X (Ag)Bver.

Proof. We want to show the assumptions (1) and (2) of (5.2.10) hold for 7 and all but finitely
many Q-fibres of 7 satisfy the Hasse principle and weak approximation.

Each fibre of 7 outside infinity and the zero set of Py (t) ... P-(t) = 0 contains a geometrically
integral irreducible component of multiplicity one. Hence (1) holds. Since m has a section over
the composite K7 ... K, which is abelian extension of Q, (2) holds. By Hasse’s norm theorem,
the varieties Ng|g(z) = c satisfies the Hasse principle where K|Q is a cyclic extension and
¢ € Q*. Moreover, smooth and proper models of principal homogeneous spaces of cyclic norm
tori satisfy the Hasse principle and weak approximation, by chapter 8 in [41]. It follows that all
but finitely many fibres of 7 verifies the Hasse principle. We conclude by (5.2.10). O
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Remark 5.3.2. For any cyclic extension of fields K|k the affine variety Ng,(x) = ¢ € kX is
birationally equivalent to the Severi-Brauer variety defined by the cyclic algebra (K |k, ¢). Thus
corollary (5.3.1) can be seen as a particular case of corollary (5.2.11).

When each P;(t) is linear, we have the following consequence of (5.3.1).

Corollary 5.3.3. Let K; be a cyclic extension of Q of degree d; for i =1,...,r. Let b; € Q*
and e; € Q,i=1,...,r. Then the variety X over Q defined by

bi(t — ei) = Ni,jo(x) # 0
fori=1,...,r, satisfies the Hasse principle and weak approzimation.

Proof. By calculation the rank of the Jacobian matrix, it follows that the variety X is smooth.
By (5.3.1), it will be sufficient to show Bryey,(X) = Bro(X). In step 1 of the proof of (5.2.3),
we saw that for any A € Br(Q(¢)) such that 7*A € Br(X) C Br(Q(X)) there exists Ay € Br(Q)
for which we can write ,
A = an(Kl|Q,t — ei) —+ Ao.
i=1
Since (K;|Q, Nk, |0(x:)) = 0in Br(Q(X)) (N, o(x:) is a norm form), the element 7* A € Br(X)
can be written as .
A = — Z TLAKJQ, bl) —+ AO e BI‘()(X)
i=1

It follows X (Q) is dense in X (Ag)P0(X) = X (Ag), i.e. X satisfies the weak approximation. [

We can use (5.3.1) and the fibration method in the form of Theorem 3.2.1 in [25] to deduce
the following;:

Corollary 5.3.4. Let X be a smooth and proper model of the variety over Q defined by the
system of equations

fori=1,... ,r, where each K; is a cyclic extension of Q and each P;(t1,...,t,) is a product of
polynomials of degree 1 over Q. Then X (Q) is dense in X (Ag)®".

5.3.2 Products of norms

We can consider a product of norm forms associated to field extensions of QQ satisfying certain
conditions. We can apply (5.2.10) to deduce:

Corollary 5.3.5. Let P(t) be a product of (possibly repeated) linear factors over Q. Let
Ly,...,L, be n > 2 finite filed extensions of Q such that L1|Q is abelian and linearly dis-
joint from the composite Lo ... L,. Let X be a smooth, proper and geometrically integral variety
over Q with a morphism 7 : X — P! such that the generic fibre of 7 is birationally equivalent
to the affine variety

Niyjo(x1). .. N, jo(xn) = P(t)
over Q(P') = Q(¢). Then X satisfies the Hasse principle and weak approzimation.

Proof. By the same argument as in (5.3.1), assumptions (1) and (2) of Theorem (5.2.10) are
satisfied since L;|Q is abelian. By chapter 8 in [41], III2(Q,T) = 0 will imply almost all Q-
fibres satisfy the Hasse principle and weak approximation. Here T is the multinorm torus over
Q attached to the fields Lq,..., L,. This is theorem 1 in [16] which is proved by Demarche and
Wei. It follows that X (Q) is dense in X (Ag)B™er by (5.2.10).

We claim Brye(X) = Brg(X). Take A € Br(Q(¢)) such that 7*A € Br(X), hence 7*A €
Br(X)N7* Br(Q(t)) = Bryert (X ). We want to show that 7* A comes from Br(Q). The morphism
7 has a section s; : IP’ILi — X xqg L; defined over L; for each i = 1,...,n. By considering the
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image of 7 A under Br(X) — Br(X xqL;) — Br(PPy ), we see the restriction of 7* A to Br(L;(t))
comes from Br(Pj ) = Br(L;). In particular, the residues of A at the roots of P(t) are in the
kernel of the map H'(Q,Q/Z) — H'(L;,Q/Z). Since Ly N Ly ... L, = Q by assumption, there
is no non-trivial cyclic extension of @ contained in all of the L;. This implies that A is not
ramified at the zero set of P(t). (2.2.20) shows that A is unramified away from the zero set of
P(t). Hence A € Br(A') = Br(Q). It follows that X(Q) is dense in X (Ag)P(X) = X(Ag) and
we are done. O

Proposition 5.3.6. Let P(t) be a product of (possibly repeated) linear factors over Q, and let
a,b € Q*. Let X be a smooth, proper and geometrically integral variety over Q with a morphism
7 X — P! such that the generic fibre of w is binationally equivalent to the affine variety

N@(\/EHQ(X)NQ(\/B)‘Q(Y)NQ(\/ENQ(Z) = P(t)
over Q(PY) = Q(t). Then X(Q) is dense in X (Ag)®".

Proof. We can assume Q(y/a), Q(v/d) and Q(vab) are quadratic fields, otherwise the variety
X is rational and the statement is clear. Let V be the smooth locus of the affine variety
Notya)e(®)No/s)0Y) Novan(z) = P(t) and let U be the image of V' by the projection to
the coordinate ¢. Then P! — U is a finite union of Q-points. The fibres of V' — U are principal
homogeneous spaces of the torus T that is given by

No(va)ie(¥)No(vs)10¥) No(va)o(2) = 1.

Let E be a smooth equivariant compactification of 7' (which exists by [7]), and let V¢ =V xT E
be the contracted product. Then V¢ — U is a fibrewise smooth compactification of V. — U. We
take 7 : X — P! such that X xp1 U = V¢, We compose 7 with an automorphism of P! to ensure
that the fibre at infinity is smooth and is close to the real point that we need to approximate.
In particular, the fibre at infinity contains a real point. A change of variables shows that X
contains an open set which is the smooth locus of the affine variety given by

No(va)io*) Nowsio¥) Nowane(2) = Q)

where Q(t) is a polynomial with rational roots ej,..., e, such that U is the complement to
{e1,...,e,} in PL. Note that for any 7 € U(Q), we have X,(Ag) # 0 by Proposition 5.1 in [7].

The quaternion algebra A = (Ng( /a)q(x), b) defines an element of Br(z~"(U)).

We are given points (M,) € X(Q,) for all primes p and My € X(R) such that (M),) €
X (Ag)Brvrt. Since Br(X)/Bro(X) is finite, we can replace (M,) by a point arbitrarily close to
it such that m(M,) is a point in U N A! where ¢ equals 7, € Q).

Let Sy be the finite set of places of Q where we need to approximate. We can find a finite
set S of places of Q containing Sy and the real place such that 7 : X — P! extends to a proper
morphism 7 : X — P} with X regular. By doing so we can ensure that Q(v/a), Q(v/b) and
Q(Vab) are unramified outside S, and that we have a,b € Zg, Q(t) € Zs[t], and ¢; € Zg for
i=1,...,7. By (2.4.12), we can further enlarge S such that

> vy (A(M,) =0, Y invy (b7, —e;) =0, i=1,...,7

peES peES

(For this we need to modify the points M, for p € S — Sy.) Let U be the complement to the
Zariski closure of e; U---Ue, in Pj_. The same algebra A defines a class in Br(w(i)). An
application of (5.1.4) gives a Q-point 7 in U N A! that is arbitrarily large in the real topology
and is close to 7, in the p-adic topology for the primes p € S. For p ¢ SU {p1,...,p.} we see
from property (3) of (5.1.4) that the Zariski closure of 7 in P%S is contained in U xz4 Z,. This
implies that for any N, € X,(Q,) the value A(N,) € Br(Q,) comes from Br(Z,). From property
(5) we see that for each i = 1,...,r, the primes p; splits in Q(v/) and hence A(N,,) = 0 for
any Np, € X,(Qp,). By continuity and the inverse function theorem we can find N, € X,(Q,)
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arbitrarily close to M, for p € S, so that }_ _ginv,(A(N,)) = 0. Summing over all places of
Q we now have >_  inv,(A(N,)) = 0 for any choice of Ny, p ¢ S. By Theorem 4.1 in [5], the
algebra A generated Br(X,) modulo the image of Br(Q). By Chapter 8 in [11], the set X.(Q)
is dense in X, (Ag)®", so we can find a Q-point in X, arbitrarily close to M, for p € S. O

5.3.3 Non-cyclic extensions of prime degree

Theorem 5.3.7. Let P(t) be a product of (possibly repeated) linear forms over Q. Let K be a
non-cyclic extension of Q of prime degree such that the Galois group of the normal closure of K
over Q has a non-trivial abelian quotient. Let X be a smooth, proper and geometrically integral
variety over Q with a morphism m : X — P! such that the generic fibre of m is birationally
equivalent to the affine variety Ngq(x) = P(t) over Q(t). Then X satisfies the Hasse principle
and weak approrimation.

Proof. We can assume that X contains an open set which is the smooth locus of the affine
variety Ng|o(x) = Q(t), where Q(t) is a product of powers of t —e; for i = 1,...,r with the
additional assumption that the fibre at infinity is smooth and contains a real point close to the
real point that we want to approximate.

Step 1. We claim Br(X) = Bry(X).

Let T be the norm torus Ng|g(x) = 1. Since £ = [K : Q] is a prime number, it follows by
[10] (Prop. 9.1 and Prop. 9.5) that

HY(F,Pic(Z xp F) =2 (F,T) =0

for any smooth and proper variety Z over a field F' such that a dense open subset of Z is a
principal homogeneous space of T.. Applying this to the generic fibre of 7 : X — P!, we see that
Br(X) = Bryert(X).

Now let A € Br(Q(t)) be such that 7*A € Br(X). The morphism 7 has a section defined
over K. By restricting to it we see that the image of A in Br(K(t)) belongs to the injective
image of Br(PL) = Br(K). In particular, the residue of A at e; lies in the kernel of the map

H'(Q,Q/Z) - H'(K,Q/Z).

Since [K : Q] = /¢ is a prime number, K contains no cyclic extension of Q and hence the above
kernel is zero. Thus A is not ramified at the zero set of Q(¢). Since A is also unramified outside
the zero set of Q(t), we conclude A € Br(Q). O

Let L be the normal closure of K|Q. By assumption there exists a cyclic extension k|Q of
prime degree such that &k C L. Let ¢ = [k : Q]. Since Gal(L|Q) C Sy and k # K, it follows
q <.

Step 2. Let a € Q*. If p is a prime unramified in L and inert in k, then the equation
Nko(x) = a is solvable in Q.

Write K Qg Q, = Ky, @ -+ @& K,, and let d; = [K,, : Q).

If s > 1, then £ =dj +---+ds is a prime number implies there exist integers n, ..., ns such
that 1 = nid; + -+ + nyds. If follows that

a= 1] N, j0,(a") € Ngjo(K €0 Qp),
=1

so we are done.

If s =1, then K ®q¢ Q, = K, is a field extension of Q, of degree ¢. By assumption p is inert
in k, so that k ®g Q, = ky, is a field. Since [k,, : Q] = ¢ is a prime less than ¢, the fields k,,
and K, are linearly disjoint over Q,, so that k,, K, is a field. Thus p is inert in kK C L, which
implies that the Frobenius at p in Gal(L|Q) is an element of order divisible by ¢q. However, Sy
contains no such elements, so the case s = 1 is impossible. O

Step 3. Now we conclude the assertion. Let the point M given by M, € X(Q,) for all
primes p and My € X(R) be the point we need to approximate. By replacing M with a point
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arbitrarily close to M, we may assume 7(M,) € U N A! where ¢ equals 7, € Q,. Let S be the
finite set of places of Q where we need to approximate, containing the real place and the primes
of bad reduction for X. We also assume that L is unramified over any p ¢ S. Consider the
cyclic algebras

A = (KQ,t — ¢;) € Br(Q(X))

for ¢ = 1,...,r. By Harari’s formal lemma and Step 1, we can enlarge S to S’ and choose
M, € X(Q,) for p € S" — S such that

> vy (Ai(7)) #0

peS

fori =1,...,7. Now we apply (5.1.4) and we obtain a Q-point 7 in U N A! that is arbitrarily
large in the real topology and is arbitrarily close to 7, in the p-adic topology for the primes p € S.
This ensures that X, (R) # 0 and X,(Q,) # 0 for allp € S. For p ¢ SU{p1,...,p,}, we see from
property (3) of (5.1.4) that 7 reduces modulo p to a point of P!(F,) other that the reduction
of any of e1,...,e,. The corresponding fibre over F, contains a principal homogeneous space
of a torus over a finite field, and hence an F,-point by Lang’s theorem. By Hensel’s lemma it
gives rise to a Q,-point in X .. Finally, property (5) of (5.1.4) implies that inv,, (A;(7)) # 0. By
property (4), this implies that p; is inert in k. Now Step 2 applies and we conclude X, (Q,,) # 0.
This holds for all i = 1,...,7 and hence X, (Ag) # 0. IT12(Q,T) = 0 implies that the principal
homogeneous space of T over Q satisfy the Hasse principle and weak approximation by Chapter
8 in [41]. O
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