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Conventions

We �x some notation and conventions as follows.

Algebra

We write L|K for a �eld extension K ⊂ L. When L|K is Galois, we write Gal(L|K) for
its Galois group. For a �eld K, we will denote by Ks a separable closure of K and by K an
algebraic closure of K. Let Σ be a set endowed with a Gal(K|K)-action. Then we will denote
by (g, σ) 7→ gσ for the Gal(K|K)-action. Let S be a set endowed with a G-action for some
group G, then we write (g, s) 7→ g.s for the G-action.

We will use Gothic letters to denote categories. For example, Ab is the category of abelian
groups, Gr is the category of groups, ModG is the category of G-modules for a group G and etc.

Let L|K be a �nite �eld extension. Then we simply write Hq(L|K) for Hq(Gal(L|K), L×).
When we want to emphasize how the maps between cohomology groups go, we will write ex-
plicitly Hq(Gal(L|K), L×).

Algebraic geometry

Let X be a scheme. We write OX for the structure sheaf on X and we denote by OX,x the
stalk at x. For each x ∈ X, OX,x is a local ring with maximal ideal mx and we write κ(x) for
the residue �eld. We write X(q) for the set of points on X of codimension q. If X is an integral
scheme, then we write K(X) for the function �eld of X. For an integral scheme X de�ned over
a �eld k, we also employ k(X) to denote its function �eld. For instance, let X be an integral
Q-scheme, then we write Q(X) for the function �eld of X.

Let k be a �eld and let k be an algebraic closure of k. Let X be a scheme over k, then we
write X = X ×k k.

We say X is a k-variety if X is separated and of �nite type over k. An integral k-variety is a
reduced and irreducible k-variety. We say X satis�es some geometrical property P if X satis�es
the property P. For example, we say a k-variety X is geometrically integral (resp. geometrically
reduced, etc) if X is integral (resp. reduced, etc).

We say a variety X over k is split if it contains a non-empty smooth open set U which is
geometrically integral over k, i.e. U is integral and k is algebraically closed in k(U). We say a
k-variety X is geometrically split if the k-variety X is split. Note that X is geometrically split
i� X contains a non-empty smooth open subset.

Let S be a base scheme and let f : X → Y be a morphism of S-schemes. We say f is an
X-point on Y and we write Y (X) := HomS(X,Y ) for all X-points on Y over S. If X = SpecA
for some ring A, then we write Y (A) := HomS(SpecA, Y ) instead of Y (X).

The Brauer group Br(X) of a scheme X will always mean the cohomological Brauer group
H2

ét(X,Gm). We write BrAz(X) for the classes of similar Azumaya algebras over X. Let X be
a variety over k provided with p : X → Spec k. Then we obtain two natural homomorphisms
p∗ : Br(k)→ Br(X) and Br(X)→ Br(X)Gal(k|k). We write

Br0(X) = Im(Br(k)→ Br(X))

Br1(X) = Ker
(

Br(X)→ Br(X)Gal(k|k)
)
.
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Finally, we �x notation on cohomology groups. Let X be a scheme, let G be a sheaf of
abelian groups in the Zariski topology and let F be an étale sheaf of abelian groups. Then
we write Hq

Zar(X,G) for the usual cohomology groups de�ned by the derived functors of the
global section functor. We write Hq(X,F) for the cohomology groups with values in F in the
étale topology. Let U be a covering in the étale topology over X, then we write Ȟq(U|X,F)
for the �ech cohomology groups with values in F with respect to the covering U. The �ech
cohomology groups Ȟq(X,F) is the limit of Ȟq(U|X,F) where U runs through all coverings in
the étale topology.

Arithmetic

LetK be a henselian �eld with respect to a non-archimedean valuation v. Let κ be the residue
�eld of v. Then for each algebraic extension L|K, v extends uniquely to a non-archimedean
valuation of L. If L|K is a �nite extension, then we say L|K is unrami�ed if κL|κ is separable
and [L : K] = [κL : κ]. An algebraic extension is called unrami�ed if it is a union of �nite
unrami�ed subextensions. The composite of all unrami�ed extensions inside an algebraic closure
K of K is simply called the maximal unrami�ed extension of K and we denote it by Knr. The
residue �eld of Knr is the separable closure of κ. If κ is perfect, then the residue �eld of Knr is
an algebraic closure of κ. Moreover, Knr contains all the roots of xm − 1 for m not divisible by
the characteristic of κ because the separable polynomial xm − 1 splits over κs and hence it also
splits over Knr by Hensel's lemma. In practice, κ will sometimes be �nite. In this case, Knr|K
is generated by these roots of unity because these roots generate κs|κ.

If k is a number �eld, we write Ωk or simply Ω for the set of places of k. We denote by Ω∞
the archimedean places of k and Ωf the �nite places of k, so we have Ω = Ω∞

⊔
Ωf . For v ∈ Ω,

we denote by kv the completion of k with respect to the place v. For each �nite place v ∈ Ωf ,
we write Ov for the ring of integers of kv. Let S ⊂ Ω be a �nite subset, we write Ok,S be the
ring of S-integers, i.e.

Ok,S := {x ∈ k | |x|v ≤ 1, for v /∈ S}.

We will write Ak for the associated ring of adeles of k. Finally, for a subset S ⊂ Ω, we put
kS =

∏
v∈S kv and k

S =
∏
v∈Ω−S kv.

If M is a discrete Gal(k|k)-module, then we write

Xq(k,M) := Ker(Hq(k,M)→
∏
v∈Ω

Hq(kv,M)).

If A is an abelian variety over k, then X(A) = X1(k,A(k)) is its Tate-Shafarevich group.



Part I

Classical Notions
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Introduction

A Diophantine equation is a polynomial equation in at least two unknown with coe�cients
in Z which we only concern whether it has integral solutions or not. People have spent lots of
times on answering some typical questions like the existence of a solution, the cardinality of the
set of solutions, whether it is possible to �nd all solutions in theory and etc. In 1900, Hilbert
proposed determining whether a Diophantine equation is soluble in Z or not, which is known
as the Hilbert's tenth problem. Due to M. Davies, H. Putnam, J. Robinson, Ju. Matijasevic
and G. Chudnovsky, the answer to Hilbert's tenth problem is negative. More precisely, let
f(t;x1, . . . , xn) = 0 be a polynomial equation with coe�cients in Z. Then for a certain integer
t, there is no algorithm that would tell us whether the equation is soluble in Z or not.

For a homogeneous Diophantine equation, to �nd a non-trivial solution in Z is equivalent to
�nd a solution in Q. This suggests us, in general, to ask the existence of rational solutions of
f(t;x1, . . . , xn) = 0 �rst. In fact, this does not reduce the di�culty of �nding a solution. But
thanks to Hensel's lemma, usually it will be much easier to �nd solutions in Qp and R rather
than in Q. More generally, let k be a number �eld and let V be a k-variety. Hensel's lemma
may provide kv-points on V for each place v, then it is natural to ask whether there is a k-point
on V . We are now in a position to state the Hasse principle. We say a family of varieties over k
satis�es the Hasse principle, if for each variety V in this family, V (kv) 6= ∅ for each v will imply
V (k) 6= ∅. A variety de�ned by one quadric equation was the �rst non-trivial example when
the Hasse principle holds (Minkowski-Hasse theorem). Now our strategy is to show a family of
varieties satisfy the Hasse principle, then to �nd k-points on each variety in this family reduces
to �nd kv-points.

In the middle of the twentieth century, mathematicians began to consider when the Hasse
principle fails. They discovered concepts such as Selmer group of an elliptic curve, the Tate-
Shafarevich group, and the Cassels-Tate form on it, and �nally Manin �rst found a general
obstruction to the Hasse principle. We brie�y introduce the idea as follows. Let X be a variety
over k and let Ak be the adelic ring over k. The idea is to �nd a closed subset C such that
X(k) ⊂ C ⊂ X(Ak). Then the emptiness of C obstructs the existence of k-points on X. Manin
also found a good substitute to the Hasse principle when it fails and it is the statement that the
Manin obstruction to the Hasse principle is the only obstruction. A more precise statement for
principal homogeneous space under an abelian variety with �nite Shafarevich group is theorem
6.2.3 in [47]. This means that if we are given solutions in kv satisfying certain conditions for
each v, then there is also a solution in k. The Manin obstruction is the only one for many
types of homogeneous spaces of linear algebraic groups. This is one possible generalization of
the Minkowski-Hasse theorem for quadrics.

It was Skorobogatov who �rst found a counter-example to the Hasse principle which is
not described by the Manin obstruction. This leads us to the notion of torsors and descent
obstructions. Let X be a k-variety and let G be an algebraic group over k. An X-torsor under
G is an fppf X-variety Y endowed with a G-action compatible with Y → X which is locally in
appropriate topology a direct product. Now suppose Y is a principal homogeneous space of an
elliptic curve E de�ned over k, G is a �nite subgroup of E and X = Y/G. Assume X(kv) 6= ∅
for each place v of k, then by descent theory we sometimes know that X contains no k-point.
Then descent method can also be used to describe general torsors and we will use the twist
operation to de�ne the descent obstruction. We will see later this is some kind of generalization
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of the Brauer-Manin obstruction.
We also want to know whether the set of rational points on a variety is Zariski dense. In

this report, the Zariski density for nice varieties are proved by weak approximation which is a
stronger statement than the Hasse principle asking whether X(k) is dense inside

∏
X(kv). We

usually study weak approximation and the Hasse principle at the same time, because the proof
can often be given at the same stage. The above topics form the �rst part of this report.

The �rst chapter collects well-known results such as group cohomology, nice morphisms
of schemes, Grothendieck's topology, cohomology of abelian sheaves on topologies, birational
map and end up with a collection of useful techniques. The second chapter introduce the
Brauer groups of schemes and the Brauer-Manin obstruction to the Hasse principle and weak
approximation. The goal of the third chapter is to introduce torsors and their twist and then
state the descent obstruction.



Chapter 1

Preliminaries

The aim of this chapter is to introduce some notions and �x some notations which we will
frequently use in the sequel.

1.1 Group cohomology

In this section, we establish the theory of group cohomology and introduce some canonical
morphisms. We will use group cohomology theory to de�ne Brauer groups of �elds and to study
torsors.

1.1.1 Derived functors

We brie�y recall some basic facts about δ-functors and derived functors. The main reference
is the second chapter in [49].

De�nition 1.1.1. Let A and A′ be two abelian categories. A (covariant) cohomological δ-
functor between A and A′ is a collection T = (T q) of additive functors T q : A → A′ for q ≥ 0,
together with morphisms

δq : T q(C)→ T q+1(A)

de�ned for each short exact sequence 0 → A → B → C → 0 in A such that the following two
conditions hold. Here we make the convention that T q = 0 for q < 0.

(1) For each short exact sequence 0→ A→ B → C → 0 in A, there is a long exact sequence

· · · → T q−1(C)
δq−1

→ T q(A)→ T q(B)→ T q(C)
δq→ T q+1(A)→ · · ·

(2) For each morphism of short exact sequences from 0 → A′ → B′ → C ′ → 0 to 0 → A →
B → C → 0 in A, δq gives a commutative diagram

T q(C ′)

��

δq // T q+1(A′)

��
T q(C)

δq // T q+1(A)

for each q.

De�nition 1.1.2. (1) A morphism S → T of cohomological δ-functors is a collection of natural
transformations Sq → T q that commute with δq.

(2) A cohomological δ-functor T is universal if given any other δ-functor S and a natural
transformation f0 : T 0 → S0, there exists a unique morphism T → S of δ-functors extending
f0.

13



1.1. GROUP COHOMOLOGY

As an example of universal cohomological δ-functor, we introduce the right derived functors
of a left exact functor between abelian categories. Let F : A→ A′ be a left exact functor between
two abelian categories. Suppose A has enough injectives. We construct the right derived functors
RqF of F for q ≥ 0 as follows. Let A be an object of A, choose an injective resolution A→ I•

and de�ne
RqF (A) = Hq(F (I•)).

Theorem 1.1.1. Let F : A→ A′ be a left (resp. right) exact functor between abelian categories.
Suppose A has enough injectives (resp. projectives). Then the derived functors RqF (resp. LqF )
form a universal cohomological (resp. homological) δ-functor.

Proof. See [49], Theorem 2.4.7.

Finally we give some examples of derived functors and universal δ-functors.

Example 1.1.2. Let R be a ring and let A be an R-module.
(1) The functor

HomMod(A,−) : ModR →ModR, B 7→ HomModR(A,B)

is left exact. We de�ne
ExtqR(A,B) = Rq HomModR(A,−)(B).

(2) The functor
A⊗R − : ModR →ModR, B 7→ A⊗R B

is right exact. We de�ne
TorRq (A,B) = Lq(A⊗R −)(B).

Both two functors are universal δ-functors since they are derived functors of some functors.

Example 1.1.3. For a topological space X, we write AbX for the category of sheaves of abelian
groups on X. Let f : X → Y be a continuous map of topological spaces. Then the direct image
functor f∗ : AbX → AbY , F 7→ f∗F is left exact. We obtain its right derived functor Rqf∗ which
is a universal cohomological δ-functor.

1.1.2 Group homology and cohomology

Now we introduce group homology and cohomology. Let G be a �nite group. By a G-module
we mean a Z[G]-module. We denote by ModG the category of G-modules. This is an abelian
category which has enough injectives and projectives.

Group cohomology

Let G be a �nite group (we will generalize the group cohomology theory to pro�nite groups
later and then it is clear why we assume the group G is �nite). We consider the functor

HomG(Z,−) : ModG → Ab, A 7→ HomG(Z, A).

Here Ab is the category of abelian groups. Since the functor HomG(Z,−) is left exact and ModG
has enough injectives, we can de�ne

Hq(G,A) := Rq(HomZ[G](Z,−))(A),

for q ≥ 0. We call Hq(G,A) the q-th cohomology group of G with coe�cients in A. As we have
seen, for a short exact sequence 0 → A → B → C → 0 of G-modules, we have a long exact
sequence

· · · → Hq−1(G,C)→ Hq(G,A)→ Hq(G,B)→ Hq(G,C)→ Hq+1(G,A)→ · · ·

Remark 1.1.4. Let A be a G-module. We denote by AG the elements of A �xed by G, i.e.
AG = {a ∈ A | g.a = a, ∀g ∈ G}. It's easy to see that AG = HomG(Z, A) = H0(G,A).

14



CHAPTER 1. PRELIMINARIES

Group homology

Similarly,
Z⊗Z[G] − : ModG → Ab, A 7→ Z⊗Z[G] A

is right exact and ModG has enough projectives, hence we can de�ne

Hq(G,A) := Lq(Z⊗Z[G] −)(A)

for q ≥ 0. We call Hq(G,A) the q-th homology group of G with coe�cients in A. For a short
exact sequence 0→ A→ B → C → 0 of G-modules, we have a long exact sequence

· · · → Hq+1(G,C)→ Hq(G,A)→ Hq(G,B)→ Hq(G,C)→ Hq−1(G,A)→ · · ·

Tate cohomology groups

Let G be a �nite group and let A be a G-module. Let N : A → A, a 7→
∑
g∈G g.a be the

norm. Let IG be the kernel of the map Z[G] → Z,
∑
g∈G ngg 7→

∑
g∈G ng. Then we have the

Tate cohomology groups de�ned as follows:
Ĥq(G,A) = Hq(G,A) if q ≥ 1

Ĥ0(G,A) = AG/NA if q = 0

Ĥ−1(G,A) = KerN/IGA if q = −1

Ĥ−q(G,A) = Hq−1(G,A) if q ≥ 2.

Proposition 1.1.5. If G is a �nite group and 0 → A → B → C → 0 is an exact sequence of
G-modules, then there is a long exact sequence

· · · → Ĥq−1(G,C)→ Ĥq(G,A)→ Ĥq(G,B)→ Ĥq(G,C)→ Ĥq+1(G,A)→ · · ·

Proof. See [4], page 102, theorem 3.

Cyclic groups

Let G be a cyclic group of order n with a generator g. We consider two special elements in
Z[G], namely N = 1 + g + g2 + · · ·+ gn−1 and D = g − 1. By abuse of notation, we write

N : Z[G]→ Z[G], a 7→ Na, and D : Z[G]→ Z[G], a 7→ Da.

Note that N(g) = N holds and hence we obtain N(
∑
nig

i) =
∑
niN(gi) =

∑
ni ·N ∈ Z·N . Let

ε : Z[G]→ Z be the map given by (
∑
aig

i) 7→
∑
ai. By checking directly we see ImD = Ker ε.

Proposition 1.1.6. The cohomology of a �nite cyclic group is periodic of period two. Ex-
plicitly, we have

Ĥq(G,A) = Ker(D)/ Im(N) = AG/NA for q ≡ 0 (mod 2),
Ĥq(G,A) = Ker(N)/ Im(D) = KerN/NA for q ≡ 1 (mod 2).

Proof. There are exact sequences

0→ KerN → Z[G]
N→ Z ·N → 0 and 0→ Z ·N → Z[G]

D→ KerN → 0.

Therefore we obtain a periodic free resolution of Z:

. . .
N→ Z[G]

D→ Z[G]
N→ Z[G]

D→ Z[G]
ε→ Z→ 0.

Now we apply the functors −⊗Z[G]A and HomZ[G](−, A) and take homology, then by de�nition
of Tate cohomology groups we conclude the assertion.

15
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Let hq(A) denote the order of Ĥq(G,A) for q = 0, 1 when it is �nite. If both are �nite, we
de�ne the Herbrand quotient h(A) := h0(A)/h1(A).

Proposition 1.1.7. Let G be a cyclic group and let 0→ A→ B → C → 0 be an exact sequence
of G-modules. If two of the three Herbrand quotients h(A), h(B), h(C) are de�ned, then so is
the third and we have

h(B) = h(A) · h(C).

Proof. See [4], page 109, proposition 10.

Proposition 1.1.8. Let G be a cyclic group and let A be a �nite G-module, then h(A) = 1.

Proof. See [4], page 109, proposition 11.

1.1.3 Standard resolution

As usual, group cohomologies can be computed by cocycles. We introduce a free resolution
of the trivial G-module Z explicitly and it will tell us how the cocycles look like. But in fact,
we are mainly interested in 1-cocylces in this report. Let Lq be a free Z-module with a basis
(g0, . . . , gq) of q + 1 elements of G, and de�ne the G-action on Lq componentwise

g.(g0, . . . , gq) = (gg0, . . . , ggq).

De�ne the di�erentials d : Lq → Lq−1 by

d(g0, . . . , gq) =

q∑
i=0

(−1)i(g0, . . . , ĝi, . . . , gq)

where the hat means that we omit the component gi. The homomorphism L0 → Z is de�ned
by sending each g0 to 1 ∈ Z. Then we obtain an exact sequence

· · · → L1 → L0 → Z→ 0.

An element of Kq = HomZ[G](Lq, A) can be identi�ed with a function f(g0, . . . , gq) taking
values in A, and satisfying the condition

f(g.g0, . . . , g.gq) = g.f(g0, . . . , gq).

The coboundary of f is de�ned by

d : Kq → Kq+1, f 7→
(
(g0, . . . , gq+1) 7→

q+1∑
i=0

(−1)if(g0, . . . , ĝi, . . . , gq+1)
)
.

A cochain f is uniquely determined by its restriction to systems of the form

(1, g1, g1g2, . . . , g1 . . . gq).

This leads us to interpret the elements of Kq as inhomogeneous cochains, i.e.

df(g1, . . . , gq+1) =g1.f(g2, . . . , gq+1) + (−1)q+1f(g1, . . . , gq)

+

q∑
i=1

(−1)if(g1, . . . , gi−1, gigi+1, gi+2, . . . , gq+1).

Example 1.1.9. (1) A 1-cocycle is a map f : G→ A such that

0 = df(g1, g2) = g1.f(g2)− f(g1g2) + f(g1),

16
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or in other words, f veri�es
f(g1g2) = g1.f(g2) + f(g1).

It is also called a crossed homomorphism. It is a coboundary if there exists a ∈ A such that
f(g) = g.a− a for all g ∈ G.

When G acts trivially on A, we have g.a − a = 0 for any g ∈ G and a ∈ A. Let f : G → A
be any 1-cocycle satisfying g.f(g0) = f(gg0), then f is a 1-coboundary i� f(g) = g.a − a for
some a ∈ A which means that f is identically zero. This implies that we have the identi�cation
H1(G,A) = HomG(G,A).

(2) A 2-cocycle is a map f : G×G→ A such that

g1.f(g2, g3)− f(g1g2, g3) + f(g1, g2g3)− f(g1, g2) = 0.

We end up with explicit computation on the proof of Hilbert's theorem 90.

Theorem 1.1.10 (Hilbert's theorem 90). Let L|K be a �nite Galois extension. Then

H1(Gal(L|K), L×) = 0.

Proof. Let c : Gal(L|K)→ L× be a 1-cocycle, i.e. c(g1g2) = c(g1) · g1c(g2). Recall that distinct
automorphisms of a �eld are linearly independent, we know that the endomorphism of L given
by multiplying

∑
g∈Gal(L|K) c(g) · g is not identically zero. Hence we can �nd x ∈ L× such that

α =
∑
c(g) · gx 6= 0. Now for each g ∈ Gal(L|K), we have

gα =
∑
h

g(c(h) · hx) =
∑
h

g(c(h)) · ghx

=
∑
h

c(g)−1 · c(gh) · ghx = c(g)−1
∑
h

c(gh) · ghx = c(g)−1 · α,

where each h runs through Gal(L|K). This shows that c(g) = gβ ·β for β = α−1 ∈ L×, i.e. each
1-cocycle is a coboundary.

1.1.4 Change of groups

Let f : G′ → G be a homomorphism of groups and let A be a G-module. We put g′.a =
f(g′).a for g′ ∈ G′ and a ∈ A. Then A is endowed with a G′-module structure which we denote
by f∗A. For a ∈ AG, we have g′.a = f(g′).a = a and hence AG is a subgroup of (f∗A)G

′
. This

de�nes a natural transformation of the functors

H0(G,−)→ H0(G′, f∗−).

Since derived functors form a universal δ-functor, it extends to a natural transformation

Hq(G,−)→ Hq(G′, f∗−)

for all q ≥ 0. In particular, for each q ≥ 0 and each G-module A, we have a homomorphism

Hq(G,A)→ Hq(G′, f∗A).

More generally, we consider a G′-module A′ and a group homomorphism ϕ : A→ A′ as follows.
We say that f and ϕ are compatible if ϕ(g′.a) = ϕ(f(g′).a) = g′.ϕ(a) for all g′ ∈ G′. This can
be visualized as the following commutative diagram

G′ ×A
ρ //

id×ϕ
��

A

ϕ

��
G′ ×A′

ρ′
// A′

17
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where ρ(g′, a) = f(g′).a and ρ′(g′, a′) = g′.a′. This implies H0(G′, f∗A) ⊂ H0(G′, A′). Thus ϕ
de�nes a homomorphism

Hq(G′, f∗A)→ Hq(G′, A′)

for each q ≥ 0. We obtain Hq(G,A)→ Hq(G′, A′) by composing the homomorphisms as follows
for each q ≥ 0

Hq(G,A)→ Hq(G′, f∗A)→ Hq(G′, A′)

and we call the resulting homomorphism the homomorphism associated to the pair (f, ϕ).

Example 1.1.11. If H is a subgroup of G and ι : H → G is the inclusion, then we obtain an
inclusion AG ↪→ AH . By the same argument as above, it extends to homomorphisms

res : Hq(G,A)→ Hq(H,A)

which are called the restriction homomorphisms.

Example 1.1.12. Let H be a subgroup of G and let A be a G-module. Suppose H has �nite
index in G. If a ∈ AH and g ∈ G, then the element g.a depends only on the left coset of g
(mod H). As G/H is �nite, we can form the sum NG/H(a) =

∑
s∈G/H s.a. For any g ∈ G,

g.NG/H(a) =
∑
s∈G/H gs.a = NG/H(a) holds, hence we get a homomorphism

NG/H : H0(H,A)→ H0(G,A), a 7→ NG/H(a).

This is the corestriction in degree 0. Thus we obtain a homomorphism for each q

cores : Hq(H,A)→ Hq(G,A),

which is called the corestriction homomorphism.

Example 1.1.13. LetH be a normal subgroup ofG and let A be aG-module. Let π : G→ G/H
be the projection and let ι : AH → A be the inclusion. For g ∈ G and a ∈ AH , we have
g.ι(a) = g.a = π(g).a = ι(π(g).a) and hence π and ι are compatible. Here g.a only depends
on the coset of G/H since a ∈ AH and this implies g.a = π(g).a. Therefore we obtain a
homomorphism for each q:

inf : Hq(G/H,AH)→ Hq(G,A)

and it is called the in�ation homomorphism.

Proposition 1.1.14. Let q > 0 be an integer. Suppose Hi(H,A) = 0 for 1 ≤ i < q. Then the
following sequence is exact:

0→ Hq(G/H,AH)
inf→ Hq(G,A)

res→ Hq(H,A).

Proof. See [43] page 117, proposition 5.

Corollary 1.1.15. Let M |K be a Galois extension containing a Galois extension L|K. Then
there is an exact sequence

0→ H2(Gal(L|K), L×)→ H2(Gal(M |K),M×)→ H2(Gal(M |L),M×).

Proof. Let G = Gal(M |K) and let H = Gal(M |L). Since H1(Gal(M |L),M×) = 0 by Hilbert's
theorem 90, we can apply the previous proposition with q = 2. We get the exact sequence

0→ H2(Gal(L|K), L×)→ H2(Gal(M |K),M×)→ H2(Gal(M |L),M×).

as required.
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1.1.5 Pro�nite groups

Now we introduce the cohomology to pro�nite groups. Let G be a pro�nite group and let
{Ui}i∈I be the family of all open normal subgroups of G. For i, j ∈ I, we assume i ≤ j i�
Uj ⊆ Ui, hence {Ui}i∈I is a direct system. Then for any i ≤ j, we have canonical projections
G/Uj → G/Ui and {G/Ui} becomes an inverse system.

We can prove that G ' lim←−i∈I G/Ui (see [4], page 118, corollary 1). We say a G-module A
is discrete, if A =

⋃
i∈I A

Ui where Ui runs through all open normal subgroups of G. In fact,
A ' lim−→i∈I A

Ui because all the homomorphisms AUj → AUi are injective.
For each pair i ≤ j, we obtain an in�ation homomorphism

λij : Hq(G/Ui, A
Ui)→ Hq(G/Uj , A

Uj )

induced by AUi → AUj and G/Uj → G/Ui as usual. Therefore we obtain a direct system of
abelian groups (Hq(G/Ui, A

Ui), λij).

De�nition 1.1.3. Let G be a pro�nite group, let {Ui}i∈I be the family of all open normal
subgroups of G and let A be a discrete G-module. We call

Hq(G,A) := lim−→
i∈I

Hq(G/Ui, A
Ui)

the q-th cohomology group of G with coe�cients in A.

Example 1.1.16. Let L|K be a Galois extension and let {Ki}i∈I be the family of all �nite
Galois extensions of K contained in L. We write Ui = Gal(L|Ki) and then Ui forms a direct
system consists of all the open normal subgroups of Gal(L|K). Then it follows that

Gal(L|K) ' lim←−Gal(L|K)/Gal(L|Ki).

The Gal(L|K)-action on L makes the additive group (L,+) into a Gal(L|K)-module. Now
LUi = Ki and L =

⋃
Ki hold, hence L is a discrete Gal(L|K)-module. Moreover, Ki is a

Gal(Ki|K)-module and Gal(Ki|K) ' Gal(L|K)/Ui. Thus we conclude

Hq(Gal(L|K), L) ' lim−→Hq(Gal(Ki|K),Ki).

In fact, Hq(Gal(L|K), L) = 0 for each q ≥ 1 (see [4], page 124, proposition 2). By this fact, the
cohomology theory of the additive group (L,+) is not interesting. The situation is quite di�erent
when we look at the multiplicative group L× as a Gal(L|K)-module. Since (L×)Ui = K×i and
L× =

⋃
K×i , L

× becomes a discrete Gal(L|K)-module and we have

Hq(Gal(L|K), L×) ' lim−→Hq(Gal(Ki|K),K×i ).

We will see the application later.

1.1.6 Cup product

Let A,B be two G-modules and let A⊗ZB be their tensor product over Z. We make A⊗ZB
into a G-module by setting

g.(a⊗ b) = g.a⊗ g.b

and extending by G-linearity.

Proposition 1.1.17. Let G be a �nite group. Then there exists one and only one family of
homomorphisms (called cup product) de�ned for every pair of integers (p, q) and every couple
of G-modules A,B:

Ĥp(G,A)⊗Z Ĥ
q(G,B)→ Ĥp+q(G,A⊗Z B)

denoted by a⊗ b 7→ a ∪ b, which satisfy the following four properties:
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(1) These homomorphisms are morphisms of functors, when the two sides of the arrow are
considered to be covariant bifunctors in (A,B).

(2) For p = q = 0, the cup product

(AG/NA)⊗Z (BG/NB)→ (A⊗Z B)G/N(A⊗Z B)

is obtained by passage to the quotient of the natural map AG ⊗Z B
G → (A⊗Z B)G.

(3) Let 0→ A′ → A→ A′′ → 0 be an exact sequence of G-modules. If the sequence

0→ A′ ⊗Z B → A⊗Z B → A′′ ⊗Z B → 0

is also exact, then for all a′′ ∈ Ĥp(G,A′′) and b ∈ Ĥq(G,B):

(δa′′) ∪ b = δ(a′′ ∪ b),

where both sides are elements of Ĥp+q+1(G,A⊗Z B).
(4) Let 0→ B′ → B → B′′ → 0 be an exact sequence of G-modules. If the sequence

0→ A⊗Z B
′ → A⊗Z B → A⊗Z B

′′ → 0

is also exact, then for all a ∈ Ĥp(G,A) and b′′ ∈ Ĥq(G,B′′):

a ∪ (δb′′) = (−1)pδ(a ∪ b′′),

where both sides are elements of Ĥp+q+1(G,A⊗Z B).

Proof. For a proof, see [4], page 105, section 7.

1.2 Morphisms of schemes

We introduce some special morphisms of schemes with nice properties in this section.

1.2.1 Flat morphisms

De�nition 1.2.1. Let f : X → Y be a morphism of schemes.
(1) We say f is �at at x ∈ X, if OX,x is a �at OY,y-module via f∗x : OY,y → OX,x, where

y = f(x). We say f is �at if f is �at at any x ∈ X.
(2) We say f is faithfully �at if f is �at and surjective.

Proposition 1.2.1. (1) Open immersions are �at.
(2) Flat morphisms are stable under base change.
(3) Flat morphisms are stable under composition.

Proof. See [34], �4.3.1, proposition 3.3.

1.2.2 Étale morphisms

De�nition 1.2.2. Let f : X → Y be a morphism of schemes.
(1) We say f is unrami�ed if for any x ∈ X, myOX,x = mx holds and κ(x)|κ(y) is a

separable �eld extension where y = f(x).
(2) We say f is étale if f is �at and unrami�ed.

Example 1.2.2. Let L|K be a �nite �eld extension. Then SpecL → SpecK is unrami�ed
(hence étale) i� L|K is a separable extension.

We can describe unrami�ed morphisms by the following lemma.
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Lemma 1.2.3. Let f : X → Y be a morphism of �nite type between locally noetherian schemes.
Then f is unrami�ed i� for each y ∈ Y , the �bre Xy is �nite and reduced, and κ(x)|κ(y) is a
separable extension.

Proof. First note that OXy,x ' OX,x ⊗OY,y κ(y) ' OX,x/myOX,x. Suppose f is unrami�ed.
Then mx = myOX,x. Hence OXy,x ' κ(x). This shows that Xy is reduced and of dimension
0. Xy is of �nite type over κ(y) hence it is quasi-compact. It follows Xy is �nite. Conversely,
Xy is �nite implies Xy is the disjoint union of Specκ(x) for x ∈ Xy. Hence κ(x) ' OXy,x '
OX,x/myOX,x and this shows that f is unrami�ed.

Proposition 1.2.4. (1) Open immersions are étale.
(2) Étale morphisms are stable under composition.
(3) Étale morphisms are stable under base change.

Proof. See [34], �4.3.2, proposition 3.22.

1.2.3 Morphisms of �nite presentation

De�nition 1.2.3. Let f : X → Y be a morphism of schemes.
(1) We say f is quasi-compact if f−1V is quasi-compact for each a�ne open subset V of

Y . In particular, an a�ne morphism (hence a closed immersion) is quasi-compact.
(2) We say f is quasi-separated if the diagonal morphism ∆ : X → X ×Y X is quasi-

compact. In particular, a separated morphism is quasi-separated since the diagonal morphism
∆ : X → X ×Y X is a closed immersion.

De�nition 1.2.4. Let f : X → Y be a morphism of schemes.
(1) We say f is of �nite presentation at x ∈ X, if there exists an open a�ne neighbourhood

V = SpecB of f(x) in Y and an open a�ne neighbourhood U = SpecA of x in f−1(V ) such
that A is a B-algebra of �nite presentation.

(2) We say f is locally of �nite presentation if f is of �nite presentation at any x ∈ X.
(3) We say f is of �nite presentation if it is quasi-compact, quasi-separated and locally

of �nite presentation.

Proposition 1.2.5. (1) Open immersions are locally of �nite presentation.
(2) Morphisms of locally �nite presentation (resp. �nite presentation) are stable under base

change.
(3) Morphisms of locally �nite presentation (resp. �nite presentation) are stable under com-

position.

Proof. (1) Let j : U → X be an open immersion. We may assume U is an open subscheme of
X. Then for each x ∈ U , we can �nd an open a�ne neighbourhood V = SpecA ⊂ U ⊂ X. Of
course A is an A-algebra of �nite presentation and it follows that (1) holds.

(2) Let f : X → Y and Y ′ → Y be morphisms of schemes. Suppose f is locally of �nite
presentation. We denote by X ′ = Y ′×Y X and take x′ ∈ X ′. Let x, y and y′ be the images of x′

in X,Y and Y ′ respectively. Then by assumption, we can �nd two open a�ne neighbourhoods
V = SpecB and U = SpecA of y and x respectively such that f(U) ⊂ V and A is a B-algebra
of �nite presentation. Let W = SpecB′ be an open a�ne neighbourhood of y′ in Y ′ such that
W is contained in the inverse image of V . Now W ×V U ' Spec(B′ ⊗B A) is an open a�ne
neighbourhood of x′ in X ′ and B′ ⊗B A is a B′-algebra of �nite presentation.

(3) Let f : X → Y and g : Y → Z be morphisms of schemes that are locally of �nite
presentation. Take any x ∈ X and let y = f(x) and z = g(y). We can �nd open a�ne
neighbourhoods W = SpecC and V = SpecB of z and y respectively such that g(V ) ⊂ W
and B is a C-algebra of �nite presentation. Now f is also locally of �nite presentation, we
can therefore localize V at suitable b ∈ B and �nd U = SpecA such that f(U) ⊂ Vb and A
is a Bb-algebra of �nite presentation. Summing up, we obtain a C-algebra structure on A by
C → B → Bb → A and this implies that A is a C-algebra of �nite presentation.
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1.2.4 Smooth morphisms

Suppose X is an integral variety over an algebraically closed �eld for the moment. Then
there are two equivalent de�nitions for X to be non-singular (cf. [28] I.5). Roughly speaking,
the �rst de�nition asks the Jacobian matrix at each point is of correct rank and the second
de�nition requires each local ring is a regular local ring. Unfortunately, these two de�nitions are
no longer equivalent in general. Moreover, we also need the notion of smoothness over arbitrary
base schemes rather than �elds. In this section, we study regular (non-singular) schemes and
smooth morphisms.

De�nition 1.2.5. Let f : X → Y be a morphism of �nite type of noetherian schemes. Take
x ∈ X and let y = f(x).

(1) We say f is smooth of relative dimension d at x if there exist an open neighbourhood U
of x and an open a�ne neighbourhood V = SpecR of y ∈ Y such that

U ' SpecR[T1, . . . , Tn+d]/(f1, . . . , fn)

for some f1, . . . , fn ∈ R[T1, . . . , Tn+d] and such that

rank
( ∂fi
∂Tj

(x)
)

= n,

where 1 ≤ i ≤ n and 1 ≤ j ≤ n+ d.
(2) We say f : X → Y is smooth of relative dimension d if it is so at x for each x ∈ X.

In this case, we sometimes say X is smooth over Y or X is a smooth Y -scheme.

Proposition 1.2.6. (1) Open immersions are smooth.
(2) Smooth morphisms are stable under base change.
(3) Smooth morphisms are stable under composition.

Proof. (1) Let j : U → X be an open immersion. We may assume U is an open subscheme of
X. Then for each x ∈ U , we can �nd an open a�ne neighbourhood V = SpecA ⊂ U ⊂ X. This
shows that open immersion are smooth of relative dimension 0.

(2) Let f : X → Y be a smooth morphism and let Y ′ → Y be a morphism. Suppose
f is smooth of relative dimension d. We write X ′ for Y ′ ×Y X. Take x′ ∈ X ′ and let x, y
and y′ be the images of x′ in X,Y and Y ′ respectively. Then we can �nd an open a�ne
neighbourhood V = SpecA of y in Y such that x ∈ U ' SpecA[T1, . . . , Tm+d]/(f1, . . . , fm) such
that rank(aij)|x = m. Here aij = ∂fi/∂Tj for 1 ≤ i ≤ m and 1 ≤ j ≤ m+ d. Take V ′ = SpecB
be an open a�ne neighbourhood of y′ then U ′ = V ′×V U ' SpecB[T1, . . . , Tm+d]/(f1, . . . , fm).
Note that aij ∈ κ(x) is contained in κ(x′), hence rank(aij)|x′ = rank(aij)|x = m. It follows that
f ′ : X ′ → Y ′ is also smooth of relative dimension d.

(3) Let f : X → Y and g : Y → Z be smooth morphisms of relative dimension d and e
respectively. By de�nition, we can reduce to the case that X,Y and Z are all a�ne. We may
assume X = SpecC, Y = SpecB and Z = SpecA such that

B ' A[T1, . . . , Tm+d]/(f1, . . . , fm) and C ' B[U1, . . . , Un+e]/(g1, . . . , gn)

with rank(∂fi/∂Tj)|y = m and rank(∂gi/∂Uj)|x = n. Here x ∈ X and y = f(x). After renaming
the variables and the functions, we obtain

C 'A[T1, . . . , Tm+d, U1, . . . , Un+e]/(f1, . . . , fm, g1, . . . , gn)

'A[T1, . . . , Tm+d+n+e]/(h1, . . . , hm+n).

Moreover,

rank(∂hi/∂Tj)|x = rank

(
∂fi
∂Tj

(x) 0

0 ∂gi−m
∂Uj−m−d

(x)

)
= m+ n.

We conclude g ◦ f is smooth of relative dimension m+ n.
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De�nition 1.2.6. Let f : X → Y be a morphism of �nite type of noetherian schemes. The
smooth locus of f is the subset

Xsmooth := {x ∈ X | f is smooth at x}.

Its complement in X is called the singularity locus.

Proposition 1.2.7. Let f : X → Y be a morphism of �nite type of noetherian schemes. Then
the smooth locus of f is open in X.

Proof. Suppose f is smooth of relative dimension d at x ∈ X. Then there exist an a�ne open
neighbourhood V = SpecA of y = f(x) and an open neighbourhood

U ' SpecA[T1, . . . , Tn+d]/(f1, . . . , fn)

of x such that the Jacobian matrix
(
∂fi
∂Tj

(x)
)
is of rank n. Therefore we can �nd an n×n minor

(aij) such that det(aij) does not vanish at x. It follows that det(aij) does not vanish in some
open neighbourhood U of x. Now U is contained in the smooth locus of f and hence the smooth
locus of f is open.

De�nition 1.2.7. A locally noetherian scheme X is regular at x ∈ X if the local ring OX,x is
a regular local ring. A locally noetherian scheme X is regular (or non-singular) if OX,x is a
regular local ring for each x ∈ X.

Remark 1.2.8. Suppose X is a regular scheme. Then for each x ∈ X, the local ring OX,x is
a regular local ring, hence an integral domain. It follows that the scheme X is locally integral.
This shows that X is a disjoint union of integral schemes. In particular, a connected regular
scheme is integral.

Now we compare these two concepts, namely smoothness and regularity.

Proposition 1.2.9. Let X be a scheme which is locally of �nite type over an arbitrary �eld k.
(1) X is smooth over k i� X is geometrically regular.
(2) If X is smooth over k, then X is regular. The converse holds if k is perfect.
(3) Let x ∈ X be a closed point such that k(x)|k is a separable extension of �elds. Then X

is smooth at x i� X is regular at x.

Proof. See [2], �2.2, proposition 15.

Finally, we introduce formally smooth morphisms of schemes. The in�nitesimal lifting prop-
erty will be useful to deduce Hensel's lemma.

De�nition 1.2.8. Let f : X → Y be a morphism of schemes. We say f is formally smooth
if for each a�ne scheme SpecA over Y and for each nilpotent ideal I ⊂ A, the natural map
X(A)→ X(A/I) is surjective. This property is also called the in�nitesimal lifting property.

Proposition 1.2.10. Let f : X → Y be a morphism of schemes. Then f is smooth i� f is
locally of �nite presentation and formally smooth.

Proof. See [2] �2.2, proposition 6.

Application: Hensel's lemma

Proposition 1.2.11 (Hensel's lemma). Let A be a complete noetherian local ring with maximal
ideal m. If X → SpecA is smooth, then X(A)→ X(A/m) is surjective.
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Proof. First we recall a basic fact in algebraic geometry. To give an A-point of X, is the same
as to give a point x ∈ X and a local homomorphism ϕ : OX,x → A of local rings. Suppose we
are given an A-point of X, say f : SpecA→ X, then we obtain a point x ∈ X being the image
of the closed point of SpecA and we obtain a local homomorphism f∗x : OX,x → Am. Since A is
local, A ' Am holds. Conversely, any non-empty open subset of X containing the image of the
closed point of SpecA will contain the image of SpecA, hence we may assume X = SpecB is
a�ne. Let q be the prime ideal corresponding to x ∈ X. Let B → Bq → A be the composition
of ϕ and the canonical homomorphism. Then we obtain a morphism SpecA→ X sending m to
x.

If X → SpecA is smooth, then by the in�nitesimal lifting property, the map

X(A/mn+1)→ X(A/mn)

is surjective for each n ≥ 1. Now by taking projective limit of X(A/mn+1) → X(A/mn), we
obtain a surjective map

lim←−X(A/mn+1)→ lim←−X(A/mn)

By the above argument, we have

X(A/mn) = {(x, ϕ) | x ∈ X, ϕ : OX,x → A/mn local A-algebra homomorphism}

for each n ≥ 1 and it follows that lim←−X(A/mn) = X(lim←−A/m
n). Since A is complete, A '

lim←−A/m
n and therefore X(A) → lim←−X(A/mn) is bijective. For the same reason, X(A/m) →

lim←−X(A/mn+1) is bijective. We conclude X(A)→ X(A/m) is surjective.

1.3 Grothendieck's topologies

Let T be a topological space. Then we obtain a category whose objects are open subsets of
T and morphisms are inclusions. In this section, we generalise the notion of topological spaces
to Grothendieck's topologies. We mainly follow Tamme's book [48].

1.3.1 Topologies

De�nition 1.3.1. A topology (or a site) T consists of a category cat(T ) and a set cov(T ) of
coverings, i.e. families {ϕi : Ui → U | i ∈ I} of morphisms in cat(T ) such that the following
properties hold:

T1: for {Ui → U} in cov(T ) and a morphism V → U in cat(T ), all �bre products Ui ×U V
exist and {Ui ×U V → V } is again in cov(T );

T2: given {Ui → U} in cov(T ) and a family {Vij → Ui in cov(T ) for all i ∈ I, the family
{Vij → U} obtained by composition of morphisms is also in cov(T );

T3: if ϕ : U ′ → U is an isomorphism in cat(T ), then {ϕ : U ′ → U} is in cov(T ).

Example 1.3.1. Let T be a topological space. Take cat(T ) to be the category of all open subsets
ofX, and take cov(T ) to be families {Ui ↪→ U | i ∈ I,

⋃
Ui = U}. Suppose V → U is a morphism

in cat(T ) and suppose
⋃
I Ui = U . Then V ⊂ U is an open subset and Ui ×V U = Ui ∩ V . This

tells us T1 holds. T2 and T3 are obviously true, and hence cat(T ) and cov(T ) form a topology.

De�nition 1.3.2. A morphism f : T → T ′ of topologies is a functor f : cat(T ) → cat(T ′) of
the underlying categories with the following two properties:

(1) {ϕi : Ui → U} in cov(T ) implies {f(ϕi) : f(Ui)→ f(U)} in cov(T ′);
(2) for {Ui → U} in cov(T ) and a morphism V → U in cat(T ), the canonical morphism

f(Ui ×U V )→ f(Ui)×f(U) f(V )

is an isomorphism for all i.
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Example 1.3.2. Let T and T ′ be topological spaces. If f : T ′ → T is a continuous map, then

cat(T )→ cat(T ′), U 7→ f−1(U)

de�nes a morphism of topologies. Indeed, if U =
⋃
I Ui is an open covering in T , then

f−1(U) =
⋃
I f
−1(Ui) holds. If V is an open subset of U , then f−1(Ui ×U V ) = f−1(Ui ∩ V ) =

f−1(Ui)×f−1(U) f
−1(V ). Hence U 7→ f−1(U) de�nes a morphism of topologies.

We give several examples in algebraic geometry. Let T be a topology such that each object
of cat(T ) is a set. We say {Ui → U} in cov(T ) is a surjective family if

⋃
i∈I Ui = U .

Zariski topologies

Example 1.3.3. Let X be a scheme. We put cat(XZar) to be the category of all Zariski open
subsets in X and we put cov(XZar) to be the collection of surjective families of open immersions.
Then XZar is a topology.

Étale topologies

Let X be a �xed scheme. We denote by EtX the category of étale X-schemes whose objects
are étaleX-schemes and morphisms areX-morphisms of schemes. A family {ϕi : Ui → U | i ∈ I}
of morphisms in EtX is called a surjective family if U =

⋃
i∈I ϕi(Ui).

Example 1.3.4. We put cat(Xét) = EtX and we put cov(Xét) to be surjective families in EtX .
We verify the axioms T1 to T3 hold. Let {Ui → U}i∈I be a covering and let V → U be an
X-morphism. Then Ui×U V exists by general theory and {Ui×U V → V }i∈I is a covering since
étale morphisms are stable under base change by (1.2.4). This shows T1. T2 and T3 obviously
hold. Hence Xét is indeed a topology and we call it the étale topology on X. The category
of abelian sheaves on Xét is denoted by Ab(Xét). Sheaves on Xét are also called étale sheaves
on X.

Remark 1.3.5. In some literatures, our étale topology is called the small étale site on X.
The big étale site on X has underlying category SchX being the category of X-schemes and
the coverings are the surjective families of étale X-morphisms {ϕi : Ui → U | i ∈ I}.

Flat topologies

Let X be a scheme. Let cat(Xfl) be the category of �at X-schemes and let cov(Xfl) be
the collection of surjective families {Ui → U}i∈I of �at X-schemes. Then Xfl is a topology by
direct veri�cation and (1.2.1).

The fppf topologies

Here fppf is a French abbreviation means faithfully �at and of �nite presentation. Let X be
a scheme. Suppose U → X is a �at morphism which is of �nite presentation. An fppf covering
of U is a surjective family of morphisms {ϕi : Ui → U}i∈I of schemes such that each ϕi is �at
and locally of �nite presentation.

Lemma 1.3.6. Let U be a scheme.
(1) If U ′ → U is an isomorphism, then {U ′ → U} is an fppf covering of U .
(2) If {Ui → U}i∈I is an fppf covering and for each i, we have an fppf covering {Vij →

Ui}j∈Ji , then {Vij → U} is an fppf covering.
(3) If {Ui → U}i∈I is an fppf covering and U ′ → U is a morphism of schemes, then

{U ′ ×U Ui → U ′}i∈I is an fppf covering.

Proof. (1) is clear. For (2) and (3), recall that being �at and locally of �nite presentation
are stable under composition and base change. And the base change of a surjective family of
morphisms is still a surjective family.
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Let cat(Xfppf) be the category of �at X-schemes of �nite presentation and let cov(Xfppf) be
the collection of surjective families. By the previous lemma, cat(Xfppf) and cov(Xfppf) forms a
topology Xfppf.

1.3.2 Sheaves on topologies

A presheaf F on a topological space T associates each open subset U of T an object F(U)
in some category C. Note that F can be viewed as a contravariant functor from the category
of open subsets of T to C. This motivates us to generalise the concept of presheaves on a
topological space to presheaves on topologies. Now let T be a topology and let C be a category
admits products.

De�nition 1.3.3. (1) A presheaf on T with values in C is a contravariant functor F : T → C.
A morphism f : F → G of presheaves with values in C is de�ned as a morphism of contravariant
functors.

(2) A presheaf F on T is a sheaf if for every covering {Ui → U} in cov(T ), the diagram

F(U)→
∏
i

F(Ui)⇒
∏
i,j

F(Ui ×U Uj)

is exact in C. More explicitly, the �rst arrow is a monomorphism in C and the image of (F )(U)
veri�es the universal property of kernels of the second two parallel arrows. Morphisms of sheaves
are de�ned as morphisms of presheaves.

(3) Let Ab be the category of abelian groups. Presheaves (resp. sheaves) with values in
Ab are called abelian presheaves (resp. sheaves) on T . We denote by AbPreT (resp. AbT ) the
category of abelian presheaves (resp. sheaves) on T .

Proposition 1.3.7. Let T be a topology.
(1) The category AbPreT is an abelian category with enough injectives.
(2) A sequence F ′ → F → F ′′ of abelian presheaves on T is exact i� the sequence

F ′(U)→ F(U)→ F ′′(U)

of abelian groups is exact for all U ∈ T .

Proof. See [48], I, 2.1.1.

Proposition 1.3.8. Let T be a topology. Let ι : AbT → AbPreT , F 7→ F be the inclusion (it is
a natural transformation).

(1) The category AbT is an abelian category with enough injectives.
(2) The inclusion ι : AbT → AbPreT is left exact.

Proof. See [48] I, 3.2.1.

1.3.3 Cohomology of abelian sheaves on topologies

Let X be a topological space. Then the category AbX of sheaves of abelian groups on
X is an abelian category which has enough injectives. Note that the global section functor
Γ(X,−) : AbX → Ab is left exact and hence we can de�ne its derived functors. We denote

Hq(X,F) := RqΓ(X,−)(F)

the q-th cohomology group of the sheaf F of abelian groups on X. This is the cohomology
of abelian sheaves in the usual sense. We generalize it to the cohomology of abelian sheaves
on topologies now. Let F : AbT → C be a left exact additive functor where C is an abelian
category. Then by (1.3.8) the right derived functors RqF exist. In particular, we consider the
section functor

Γ(U,−) : AbT → Ab, F 7→ F(U),

which is additive and left exact.
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De�nition 1.3.4. Let U ∈ T be a �xed object and let F be an abelian sheaf on T . We de�ne
the q-th cohomology group of U with values in F by

Hq(U,F) := RqΓ(U,−)(F).

We will some times write Hq
T (U,F) instead of Hq(U,F) to emphasize the topology T .

Remark 1.3.9. By (1.3.7), the functor Γ(U,−) : AbpreT → Ab is exact. Hence RqΓ(U,−) = 0
for each q ≥ 1. This is the reason why we only study the cohomology group of sheaves.

Example 1.3.10. Let X be a topological space and let T be its topology. Let F be an abelian
sheaf on X. Then the cohomology groups Hq

T (X,F) we just de�ned, are the usual cohomology
groups Hq(X,F).

Étale cohomology groups

Let U be an étale X-scheme. Then we obtain a left exact functor

Γ(U,−) : Ab(Xét)→ Ab, F 7→ F(U).

By (1.3.8), the right derived functors of Γ(U,−) exist. Hence we obtain the cohomology groups

Hq
ét(U,F) := RqΓ(U,−)(F)

by taking the right derived functors of Γ(U,−).

Example 1.3.11. Let X be a scheme. We denote by Gm the sheaf given by U 7→ Γ(U,OU )×.
Then we have

(1) H0
Zar(X,Gm) = H0

ét(X,Gm) ' Γ(X,OX)×.
(2) H1

Zar(X,Gm) = H1
ét(X,Gm) ' Pic(X).

Proof of (1). By de�nition, H0
ét(X,F) = R0(Γ(X,−))(F) = Γ(X,F) for any abelian étale sheaf

F . Hence H0
ét(X,Gm) ' Γ(X,OX)× holds. H0

Zar(X,Gm) = Γ(U,OU )× is straightforward. The
proof of (2) will use �ech cohomology groups and it will be done later.

1.3.4 �ech cohomology groups

As in the usual theory of cohomology of sheaves on schemes, the cohomology groups are not
easy to compute by de�nition. One way to reduce the di�culty is to introduce �ech cohomology
groups. Thanks to Leray covering theorem, �ech cohomology groups are isomorphic to the
cohomology groups de�ned by derived functors for quasi-compact and separated schemes. �ech
cohomology groups really help in computations, for example we can do explicit computation on
projective spaces. In this subsection we generalize �ech cohomology groups to abelian presheaves
on topologies. Let T be a topology and let U = {Ui → U}i∈I be a covering in cov(T ). We
consider the functor

Ȟ0(U,−) : AbPreT → Ab,

which associates each abelian presheaf F on T the abelian group

Ȟ0(U,F) := Ker
(∏

i

F(Ui)⇒
∏
i,j

F(Ui ×U Uj)
)
.

Then Ȟ0(U,−) is additive and left exact.

De�nition 1.3.5. Let F be an abelian preshef on T . The q-th �ech cohomology group
with values in F with respect to the covering U = {Ui → U} is de�ned as

Ȟq(U,F) := RqȞ0(U,−)(F).
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Remark 1.3.12. Let U = {Ui → U}i∈I be a covering in cov(T ). If F is an abelian sheaf, then
the sequence

F(U)→
∏
i

F(Ui)⇒
∏
i,j

F(Ui ×U Uj)

is exact by de�nition. Thus Ȟ0(U,F) is identi�ed with F(U). Moreover, by Ȟ0(U,F) = Γ(U,F)
we conclude that Ȟq(U,F) = Hq(U,F).

Remark 1.3.13. Note that ι : AbT → AbPreT sends injective objects in AbT to Ȟ0(U,−)-acyclic
objects in AbPreT . We obtain for each abelian sheaf F the spectral sequence

Ȟp(U, Rqι(F))⇒ Hp+q(U,F).

This spectral sequence describes the relation between �ech cohomology and cohomology with
values in abelian sheaves. Here Rqι(F) can be identi�ed with the presheaf Hq(F) which sends
U to Hq(U,F).

We omit the discussion of re�nement of the coverings in cov(T ) for a topology T and we just
simply believe the fact that passing to direct limit of all coverings in cov(T ) is a well-de�ned
operation. This allows us to give the following:

De�nition 1.3.6. Let T be a topology, let U ∈ cat(T ) be an object and let F be an abelian
presheaf on T . For q ≥ 0, we de�ne the q-th �ech cohomology group of U with values in
F to be

Ȟq(U,F) := lim−→
U

Ȟq(U,F).

It is possible to view Ȟq(U,−) as a derived functor. This is guaranteed by the following
theorem.

Theorem 1.3.14. Let T be a topology and let U ∈ cat(T ). The functor

Ȟ0(U,−) : AbPreT → Ab, F 7→ Ȟ0(U,F)

is left exact and additive. The right derived functors are given by the �ech cohomology groups
Ȟq(U,−).

Proof. See page 38, theorem 2.2.6 in [48].

Theorem 1.3.15 (The spectral sequence for �ech cohomology). Let T be a topology and let F
be a sheaf of abelian groups on T .

(1) Let U = {Ui → U} be a covering in T . Then there is a spectral sequence

Ȟp(U,Hq(F))⇒ Hp+q(U,F)

which is functorial in F .
(2) Let U be an object in T . Then there is a spectral sequence

Ȟp(U,Hq(F))⇒ Hp+q(U,F)

which is functorial in F .

Proof. See page 58, theorem 3.4.4 in [48].

Corollary 1.3.16. Let T be a topology and let F be a sheaf of abelian groups on T . Then the
homomorphisms

Ȟq(U,F)→ Hq(U,F)

are bijective for q = 0, 1 and injective for q = 2.
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Proof. The case q = 0 follows directly from de�nition. The terms Ȟ0(U,Hq(F)) in the spectral
sequence

Ȟp(U,Hq(F))⇒ Hp+q(U,F)

vanish for all q > 0. Consider the exact sequence of terms of low degree

0→ Ȟ1(U,H0(F))→ H1(U,F)→ Ȟ0(U,H1(F))→ Ȟ2(U,H0(F))→ H2(U,F),

and note that H0(F) = F , we conclude the assertion.

We �nish this subsection with an example.

Example 1.3.17. Let X be a scheme. Then we have H1
Zar(X,Gm) ' Pic(X).

Proof. Let U = {Ui → X} be an open covering in Zariski topology. Then invertible sheaves on
X trivialized by U modulo isomorphisms can be identi�ed with Ȟ1

Zar(X,Gm). We pass to direct
limit over all open coverings and then we obtain Pic(X) ' Ȟ1

Zar(X,Gm) ' H1
Zar(X,Gm). Here

the last isomorphism follows from the previous corollary.

Remark 1.3.18. For the proof of H1
ét(X,Gm) ' Pic(X), see [40] page 170.

1.4 Birational maps

In this section we brie�y recall rational maps and birational equivalence of varieties. We
will need this notion to study the birational invariance of the Brauer groups of schemes and of
certain properties of rational points. Then we introduce Hironaka's theorem on resolution of
singularities. Finally we study basic properties of del Pezzo surfaces.

1.4.1 Rational maps

Lemma 1.4.1. Let f, g : X → Y be two morphisms of schemes with X reduced. Suppose
f(x) = g(x) for each x ∈ X. Then f = g as morphisms of schemes.

Proof. All we need to show is to check f equals to g as morphisms of sheaves, so we may assume
X = SpecA and Y = SpecB. By abuse of language, we write f, g : B → A for the corresponding
ring homomorphisms. By assumption, for each a ∈ A, the composition B ⇒ A→ Aa coincides.
More explicitly, f(b)/1 = g(b)/1 in Aa for each b ∈ B and hence anb(f(b) − g(b)) = 0 in A for
some integer nb. We conclude Im(f − g) ⊂

⋃
Ann(an). X is reduced implies that SpecAa is

dense, but SpecAa ⊂ V (Ann(a)) holds and �nally we conclude Ann(an) = 0. Consequently,
f, g : B ⇒ A coincides and f, g determine the same morphism of schemes.

Lemma 1.4.2. Let S be a base scheme. Let X be a reduced scheme over S and let Y be
a separated scheme over S. Let f and g be two S-morphisms of X to Y which agree on a
non-empty Zariski dense subset of X. Then f = g.

Proof. Suppose U ⊂ X is the non-empty Zariski dense subset on which f and g coincide. Since
f, g : X → Y are S-morphisms, we obtain an induced morphism (f, g) : X → Y ×S Y . Y is
separated over S implies ∆ : Y → Y ×S Y is a closed immersion, and hence ∆(Y ) ⊂ Y ×S Y
is closed. Since f |U = g|U , we conclude (f, g)(U) ⊂ ∆(Y ). This implies the closed subset
(f, g)−1(∆(Y )) of X contains the dense subset U and hence f = g on the underlying topological
space of X. But X is reduced, hence f = g as morphisms of schemes.

Corollary 1.4.3. Let X and Y be integral varieties over a �eld k and let f, g be two morphisms
from X to Y . Suppose f |U = g|U for some non-empty open subset U ⊂ X. Then f = g.

Proof. By assumption X and Y are varieties over k, hence X is reduced and Y is separable over
k. Therefore the previous lemma applies and f = g on X.
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De�nition 1.4.1. Let X,Y be irreducible schemes over a base scheme S. Let f : U → Y and
g : V → Y be S-morphisms de�ned over non-empty open subsets U, V of X. We say f and g are
equivalent if f |W = g|W for some non-empty subset W ⊂ U ∩ V . By the previous lemma, this
relation is indeed an equivalent relation. A rational map from X to Y over S is an equivalence
class of the above equivalent relation.

De�nition 1.4.2. Let f : X → Y be a morphism of schemes. We say f is dominant if the
image of f is a dense subset in Y .

Remark 1.4.4. In some literature a rational map from X to Y is denoted by X 99K Y . Dashed
arrows are aimed to emphasize that a rational map is not in general a map of the underly-
ing topological spaces. Clearly we can compose dominant rational maps between irreducible
schemes, and this leads us to the category whose objects are irreducible schemes and morphisms
are dominant rational maps.

De�nition 1.4.3. Let X,Y be irreducible schemes over a base scheme S. We say X and Y
are birational if X and Y are isomorphic in the category of irreducible schemes over S and
dominant rational maps over S.

Here is a criterion for birational equivalence.

Lemma 1.4.5. (1) Let X,Y be irreducible schemes over a base scheme S. Then X,Y are
birational i� there are non-empty open subsets U ⊂ X and V ⊂ Y such that U, V are isomorphic
as S-schemes.

(2) Let X,Y be integral schemes locally of �nite type over a base scheme S. Let x, y be the
generic points of X,Y respectively. Then X,Y are birational i� x, y are above the same point
s ∈ S and κ(x) ' κ(y) as extension �elds of κ(s).

Remark 1.4.6. Let k be a �eld and let X,Y be integral k-varieties. Then X,Y are birational
i� they have isomorphic function �elds by (2).

De�nition 1.4.4. Let X be an integral variety of dimension n over k.
(1) We say X is k-rational or simply rational, if X is k-birational to Pnk .
(2) We say X is geometrically rational if there is a �eld extension K|k such that XK is

integral and K-rational.

1.4.2 Resolution of singularities

We collect some results about resolution of singularities as follows. They will be needed to
study unrami�ed Brauer groups of schemes and variants of Brauer-Manin pairing. The main
reference is [30].

Theorem 1.4.7 (Hironaka). Let k be a �eld of characteristic zero and let X be a smooth variety
over k. Let I be a non-zero ideal sheaf on X. Then there exists a smooth variety X ′ and a
birational and projective morphism f : X ′ → X such that

(1) f∗I ⊂ OX′ is a locally principal ideal sheaf on X ′,
(2) f : X ′ → X is an isomorphism over X − Supp(OX/I), and
(3) f is a composition of smooth blowing-ups

X ′ = Xr → Xr−1 → · · · → X1 → X0 = X.

Proof. See [30], page 136, theorem 3.21.

Corollary 1.4.8 (Resolution of singularities). Let k be a �eld of characteristic zero and let X be
a quasi-projective variety over k. Then there is a smooth variety X ′ and a birational projective
morphism f : X ′ → X.

Proof. See [30], page 137, corollary 3.22.
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Remark 1.4.9. By the above results and the construction of blowing-up, we can deduce the
following assertion. Let X be a smooth geometrically integral variety, then we can �nd a smooth
proper variety Xc containing X as a dense open set. In this case, we say Xc is a smooth proper
compacti�cation of X.

1.4.3 Del Pezzo surfaces

De�nition 1.4.5. A del Pezzo surface over a �eld k is a smooth geometrically irreducible
and proper surface such that −KX is ample, where KX is the class of the canonical sheaf ωX
in Pic(X).

We quote a classi�cation theorem of Iskovskikh to illustrate why del Pezzo surfaces are quite
interesting.

Theorem 1.4.10 (Iskovskikh). Let k be a �eld. Let X be a smooth projective geometrically
rational surface over k. Then X is k-birational to a del Pezzo surface of degree 1 ≤ d ≤ 9 or a
rational conic bundle surface.

We need several constructions in general algebraic geometry to de�ne our del Pezzo surfaces.

De�nition 1.4.6. Let X be an integral regular variety of dimension n over a �eld k. We
de�ne the canonical sheaf of X to be ωX =

∧n
ΩX|k, the n-th exterior power of the sheaf of

di�erentials.

The following will be used to describe the exceptional curves on nice surfaces.

De�nition 1.4.7. Let X be a projective scheme of dimension n over a �eld k.
(1) For a coherent sheaf F on X, we de�ne the Euler characteristic of F by

χ(F) =
∑

(−1)q dimkH
q(X,F).

(2) We de�ne the arithmetic genus pa(X) of X by

pa(X) = (−1)n(χ(OX)− 1).

Then we recall the intersection pairing of the Weil divisor group.

Theorem 1.4.11. Let X be a regular projective surface over an algebraically closed �eld k.
Then there is a unique pairing

〈−,−〉X : DivX ×DivX → Z, (C,D) 7→ C.D,

such that
(1) if C and D are regular curves meeting transversally, then C.D = Card(C ∩D),
(2) it is symmetric: C.D = D.C,
(3) it is additive: (C1 + C2).D = C1.D + C2.D, and
(4) it depends only on the linear equivalence classes: if C1 ∼ C2, then C1.D = C2.D.

When X is a noetherian integral separated locally factorial scheme, there is a natural iso-
morphism ClX ' PicX. By (4) of the previous theorem, we obtain an intersection pairing

〈−,−〉X : PicX × PicX → Z.

An exceptional curve on a smooth projective surface over k is an irreducible curve C ⊂ Xk

such that
〈C,C〉X = 〈KX , C〉X = −1.

De�nition 1.4.8. The degree of a del Pezzo surface X is the intersection number 〈KX ,KX〉X .

Remark 1.4.12. A smooth exceptional curve has arithmetic genus 0, hence it is k-isomorphic
to P1

k
.
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1.5 An appendix on arithmetic topics

1.5.1 Models over Dedekind schemes

Let X be a scheme over an integral scheme S. Let η ∈ S be the generic point. We obtain a
canonical morphism Specκ(η)→ S. We call Xη := X ×S Specκ(η) the generic �bre of X → S.

De�nition 1.5.1. Let X be a scheme.
(1) We say X is normal at x ∈ X if OX,x is an integrally closed domain. We say X is

normal if it is irreducible and normal at each point x ∈ X. In particular, normal schemes are
reduced and irreducible hence normal schemes are integral.

(2) We say X a Dedekind scheme if X is normal, noetherian and of dimension 1.

Remark 1.5.1. Suppose X is normal at each x ∈ X. Then OX,x is in particular an integral
domain for each x ∈ X. This shows that X is a disjoint union of integral schemes. Here we
require the additional condition of irreducibility to guarantee the existence of the function �eld.

Example 1.5.2. We will use the following examples in the sequel.
(1) Let k be a �eld. Then Ank and Pnk are normal schemes. In particular, P1

k is a Dedekind
scheme.

(2) Let R be a discrete valuation ring and let K be its fraction �eld. Then SpecR is a
Dedekind scheme.

De�nition 1.5.2. Let S be a Dedekind scheme with function �eld K. Let X be a scheme of
�nite type over K.

(1) A model for X over S is a �at morphism X → S of �nite type such that there exists
an isomorphism X → XK = X ×S SpecK which identi�es X with the generic �bre of X → S.
This can be visualized as the commutative diagram

X //

��

X

��
SpecK // S

which can be identi�ed with a �bred product square.
(2) A morphism f : X → X ′ of models for X is a morphism X → X ′ of S-schemes such that

the induced morphism

X ' XK
f×id // X ′K ' X

is the identity on X.
(3) A model X for X over S is called a proper (resp. smooth, etc) model if the structural

morphism X → S is proper (resp. smooth).
(4) A model X for X is called a regular model if X is a regular scheme.

Example 1.5.3. Let S = SpecA be a Dedekind scheme with function �eld K. Let C be
a projective curve over K de�ned by homogeneous polynomials F1, . . . , Fm ∈ K[T0, . . . , Tn].
We may assume the Fi have coe�cients in A by multiplying the Fi by elements of A − {0} if
necessary. Let C := ProjA[T0, . . . , Tn]/(F1, . . . , Fm), then we have

ProjK[T0, . . . , Tn]/(F1, . . . , Fm) ' ProjA[T0, . . . , Tn]/(F1, . . . , Fm)×SpecA SpecK.

Thus C is a model for C over S.
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1.5.2 Reductions

Let X be a scheme over a base scheme S. For s ∈ S, we write κ(s) for the residue �eld of
the local ring OS,s. Then we obtain a natural morphism Specκ(s)→ S. We denote by Xs the
�bred product X ×S Specκ(s). Now let S = SpecA and let p ⊂ A be a non-zero prime ideal in
A. Let X → SpecA be a scheme over A. We call

Xp := X ×A Specκ(p)

the reduction of X modulo p. We would like to pass to Xp to study properties of X.
Now suppose X is a scheme over Q. In this case there are no non-trivial homomorphisms

Q→ Fp, hence we can not study X by base change to SpecFp. One possible way is considering
the canonical projection Z → Z/pZ ' Fp. If we view the Q-scheme X as a Z-scheme by
X → SpecQ→ SpecZ, then the only non-trivial �bre is the �bre above the generic point. This
motivates us to extend X to SpecZ such that other �bres are non-trivial. If this is done, then
we can base change to SpecFp to study arithmetic properties of X.

De�nition 1.5.3. Let S be a Dedekind scheme and let K be the function �eld of S. Let X be
a scheme of �nite type over K and let X be a model for X over S.

(1) Let s ∈ S be a closed point. The �bre Xs of X above s is called the reduction of X
at s. This can be visualized by the following two �bred product squares:

X

��

// X

��

Xs //

��

X

��
SpecK // S Specκ(s) // S.

(2) We say X has good reduction at a closed point s ∈ S if X admits a smooth and proper
model over SpecOS,s. Note that in this case X is proper and smooth over K and X ×OS,s κ(s)
is proper and smooth over κ(s). This can be visualized by the following �bred product square:

X

��

// X

��
SpecK // SpecOS,s.

Example 1.5.4. Let p 6= 3 be a prime number. Then the curve

C = ProjQ[X,Y, Z]/(X3 + Y 3 + p3Z3)

admits a model C
ProjZ[X,Y,W ]/(X3 + Y 3 +W 3)

where W = pZ and the �bre Cp is smooth over p. Hence C has good reduction at p.

Remark 1.5.5. Let k be a number �eld and let S = SpecOk. Suppose X is a smooth projective
variety over k. We choose a closed immersion i : X → Pnk . Note that Pnk is the generic �bre of
PnS → S, so the Zariski closure X of the image of i(X) in PnS is projective over S. Then X is a
model for X over S. X may have bad special �bres, but we can prove X has good reductions
at all but �nitely many points.

1.5.3 Passage to limit

Let k be a �eld and let P1
k be the projective line over k. Suppose a k-variety X is endowed

with a dominant morphism π : X → P1
k. Let Xη be the generic �bre of π. We want to show

that if Xη has some property P, then all but �nitely many �bres of π satisfy the property P.
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Let S0 be a scheme. Let I be a directed set. Let (Ai, ϕij) be a direct system, where Ai is a
quasi-coherent OS0

-algebra for each i and ϕij : Ai → Aj for i ≤ j is a morphism of OS0
-algebras.

Let A = lim−→I
Ai and let ϕi : Ai → A be the canonical morphism for each i ∈ I. For each i we

construct a scheme Si = SpecAi which is a�ne over S0. Let ϕ∗ij : Sj → Si be the S0-morphism
induced by ϕij .

Proposition 1.5.6. Let S = SpecA. Then S is the inverse limit of the inverse system (Si, ϕ
∗
ij)

in the category of schemes.

Proof. Step 1. We show that S is the inverse limit of (Si, ϕ
∗
ij) in the category of S0-schemes.

Let X be an S0-scheme and let f : X → S0 be its structural morphism. By construction of
Spec, we have

HomS0
(X,Si) ' HomOS0 (Ai, f∗OX),

HomS0
(X,S) ' HomOS0 (A, f∗OX).

Since A = lim−→I
Ai and HomOS0 (−, f∗OX) is left exact, the canonical map

HomOS0 (A, f∗OX)→ lim←−
I

HomOS0 (Ai, f∗OX)

is bijective. Hence the canonical map

HomS0(X,S)→ lim←−
I

HomS0(X,Si)

is bijective and S is the inverse limit in the category of S0-schemes.
Step 2. Now we conclude. Let X be a scheme and let f ∈ HomSch(X,S0). Then f de�nes

an S0-scheme structure on X. For an S0-scheme Y , we denote by Homf (X,Y ) the set of
S0-morphisms with respect to the S0-scheme structure on X de�ned by f . Therefore we have

HomSch(X,Si) =
⋃

f∈HomSch(X,S0)

Homf (X,Si)

HomSch(X,S) =
⋃

f∈HomSch(X,S0)

Homf (X,S).

By step 1, the canonical map

Homf (X,S)→ lim←−
I

Homf (X,Si)

is bijective and hence the canonical map

HomSch(X,S)→ lim←−
I

HomSch(X,Si)

is bijective, as required.

Proposition 1.5.7. Let S0 be a quasi-compact and quasi-separated scheme. Let f0 : X0 → S0

be a morphism of �nite presentation. If the morphism f : X0×S0
S → S obtained by base change

is proper, then for all but �nitely many i ∈ I, the morphism fi : X0 ×S0
Si → Si obtained by

base change is proper.

Proof. See [18], proposition 1.10.10.

Remark 1.5.8. The previous proposition is still true if we replace proper by open immersion,
closed immersion, separated, �nite, a�ne, surjective and quasi-�nite. All these properties are
also proved in [18], proposition 1.10.10.
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Example 1.5.9. Let k be a �eld and let p : X → A1
k be a dominant morphism of schemes. Let

η be the generic point of A1
k. Since p is dominant, the generic �bre Xη is non-empty. Suppose

the generic �bre Xη is proper, then by the previous proposition, all but �nitely many �bres of
p : X → A1

k are proper.

The following is a variant version of passage to limit. It asserts under some condition that
properties of the generic �bre will also hold for an open neighbourhood of the generic point.

Proposition 1.5.10. Let S be an integral scheme and let K be its function �eld. Suppose X is
a scheme of �nite presentation over K. Then there exist a dense open subscheme U ⊂ S and a
scheme X of �nite presentation over U such that X can be identi�ed with the generic �bre XK .
This can be visualized as the following �bred product square:

X //

f.p.

��

X

f.p.

��
SpecK // U.

Proof. Let SpecR be a non-empty a�ne open neighbourhood of the generic point of S. Then
K is the fraction �eld of R and SpecR is dense in S. Since X is of �nite presentation over K,
X = X1 ∪ · · · ∪ Xr with Xi ' SpecK[Ti1, . . . , Tini ]/(fi1, . . . , fimi). X → SpecK is of �nite
presentation (hence quasi-separated) implies that Xi∩Xj is covered by �nitely many a�ne open
subsetsXijk whereXijk is of �nite presentation overK. Hence the gluing data of gluingXi along
Xi∩Xj is given by �nitely many polynomials gl with coe�cients in K. We write each coe�cient
of these fij and gl as a fraction of elements of R for j = 1, . . . ,mi, i = 1, . . . , r and l, and we let
Σ denote the set of all the inverse of the appeared denominators. Let RΣ be the localization of
R with respect to the multiplicatively closed subset generated by Σ. We put U = SpecRΣ. By
construction, Xi is a scheme of �nite presentation over U for each i = 1, . . . , r, and the gluing
data will also glue Xi over U . Summing up, the resulting scheme X is as required.

Theorem 1.5.11. Let S be an integral scheme and let K be its function �eld. We write P for
the following properties of morphisms: a�ne, open immersion, closed immersion, �at, étale,
smooth, separated, proper, projective and geometrically integral.

(1) Suppose X → S is a morphism of �nite type and XK → K satis�es P. Then there exists
a dense open subscheme U ⊂ S such that XU → U satis�es P.

(2) Suppose X and X ′ are schemes of �nite presentation over S and suppose f : XK → X ′K
is a K-morphism. Then there exists a dense open subscheme U ⊂ S such that f extends to a
U -morphism XU → X ′U .

(3) Suppose f : X → X ′ is an S-morphism between schemes of �nite presentation over
S. If f : XK → X ′K satis�es P, then there exists a dense open subscheme U ⊂ S such that
fU : XU → X ′U satis�es P.

Proof. See [40], theorem 3.2.1.

1.5.4 Adelic points on varieties over number �elds

Let X be a variety over a number �eld k. Let Ak be the associated ring of adeles and let
kΩ =

∏
v∈Ω kv. In this section we consider relevant topologies and the relations between X(Ak)

and X(kΩ).

v-adic topology on X(kv)

Let X be a variety over a number �eld k and let kv be the completion of k with respect to
the place v. We de�ne the v-adic topology of X(kv) for v ∈ Ω as follows.

(1) If X = Ank is the a�ne space of dimension n, then we have Ank (kv) =
∏n
i=1 kv. Hence

Ank (kv) is naturally endowed with the product topology obtained from the v-adic topology of
kv. If X ⊂ Ank is a closed subscheme, then we give X(kv) ⊂

∏n
i=1 kv the subspace topology.
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(2) In general, X = X1 ∪ · · · ∪Xr where

Xα ' Spec k[Tα1, . . . , Tαsα ]/Iα for some ideal Iα

and hence Xα is identi�ed with a closed subscheme of Asαk for each α = 1, . . . , r. Then we need
to glue X1(kv), . . . , Xr(kv) together. Suppose X1, . . . , Xr are glued via Zariski open subsets
Uαβ ⊂ Xα and ϕαβ : Uαβ → Uβα for each α 6= β. We obtain a homeomorphism

φαβ : Uαβ(kv)→ Uβα(kv), uαβ 7→ ϕαβ ◦ uαβ .

Then we have φβα = φ−1
αβ , φαβ(Uαβ(kv) ∩ Uαγ(kv)) = Uβα(kv) ∩ Uβγ(kv) and φαγ = φβγ ◦ φαβ .

Therefore the gluing data of X1, . . . , Xr will also glue X1(kv), . . . , Xr(kv) together. We call the
resulting topology on X(kv) the v-adic topology of X.

Remark 1.5.12. Suppose k is a topological �eld. Let X be a variety over k. Then the above
construction also works for X(k). The resulting topology is called the analytic topology on
X(k). In general, the analytic topology is di�erent from the Zariski topology.

Adelic topology on X(Ak)

Let X be a variety over a number �eld k. We de�ne the adelic topology on X(Ak) as
follows. X admits a model X that is separated and of �nite type over SpecOk. If v ∈ Ωf , then
we give X (Ov) ⊂ X (kv) the subspace topology. We equip the set X(Ak) of all adelic points
on X with the restricted topological product with respect to X(kv) for v ∈ Ω∞ and X (Ov) for
v ∈ Ωf . By de�nition, an open base for topology is of the form∏

v∈S
Uv ×

∏
v/∈S

X (Ov),

where S is a �nite subset of Ω containing the set all the archimedean places Ω∞ and Uv is an
open subset of X(kv) for each v ∈ S.

Remark 1.5.13. Of course we can view X(Ak) = HomSchk(SpecAk, X) as the set of all k-
morphisms from SpecAk to X, but in this way the topology of X(Ak) is not clear. We thus
consider a model over Ok to construct explicitly an open base for topology. We will see later
that the adelic topology on X(Ak) does not depend on the choice of the model X .

Adelic points on varieties

Let X be a scheme over a �eld k. We make the following remarks to give the explicit relations
between k-points, adelic points and kΩ-points on X.

(0) First of all, k ⊂ kv induces a map X(k)→ X(kv). This means each k-point gives rise to
a kv-point. By (1.4.1), we can view X(k) as a subset of X(kv).

(1) By the diagonal embedding k ↪→ Ak, we obtain an induced map X(k) → X(Ak). This
means each k-point on X induces an adelic point on X.

(2) By construction we have Ak ⊂ kΩ, we obtain a map X(Ak) →
∏
v∈ΩX(kv) = X(kΩ).

This means each adelic point on X gives rise to a kΩ-point on X.
(3) By the canonical projection kΩ → kv, we obtain a map X(kΩ) → X(kv). This tells us

each kΩ-point on X induces a kv-point for each v ∈ Ω. In particular, each adelic point on X
gives rise to a kv-point for each v ∈ Ω via X(Ak)→ X(kΩ)→ X(kv).

Proposition 1.5.14. Let k be a number �eld and let X be a k-scheme. Then the canonical
map X(k)→ X(Ak) is injective.

Proof. Suppose x1 and x2 have the same image inX(Ak). Then x1◦∆∗ = x2◦∆∗ : SpecAk → X
as morphisms of schemes, where ∆∗ denotes the morphism induced by the diagonal embedding
k → Ak. Then ∆∗ is surjective implies that x1 = x2 as a map between topological spaces and let
x ∈ X(Ak) be their image in X. Now we consider the homomorphisms ϕi : OX,x → k induced
by xi for i = 1, 2. Since x1 ◦∆∗ = x2 ◦∆∗, we conclude ∆ ◦ϕ1 = ∆ ◦ϕ2. Note that ∆ : k → Ak
is injective, therefore ϕ1 = ϕ2 holds. It follows that x1 = x2 as morphisms of schemes.
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Consequently, we can view X(k) as a subset of X(Ak).

Proposition 1.5.15. Let k be a number �eld and let X be a separated k-scheme. Then the
sequence (xv) ∈

∏
v∈ΩX(kv) determines the corresponding adelic point (if it exists) uniquely.

Proof. Let πv : Ak → kv be the canonical projection to the v-component. It is clear that the
image of the canonical morphism Spec kv → SpecAk is π−1

v (0) = {(aw) ∈ Ak | av = 0}. We
can therefore identify Spec kv with its image in SpecAk and we claim

⋃
v∈Ω Spec kv ⊂ SpecAk

is Zariski dense. Indeed, let 0 6= a ∈ Ak be an arbitrary adele, then av 6= 0 for some v ∈ Ω.
By construction, Spec kv ⊂ D(a) holds. Recall that {D(a) | 0 6= a ∈ Ak} is an open base for
topology, thus we are done.

Suppose x1, x2 : SpecAk → X induce the same element in
∏
v∈ΩX(kv). This means that x1

and x2 coincide on
⋃
v∈Ω Spec kv. Now X is separable, SpecAk is integral hence reduced, and

x1, x2 coincide on a dense subset of SpecAk. Therefore x1 = x2 by (1.4.2).

Remark 1.5.16. We obtain X(Ak) ⊂ X(kΩ) by (1.5.15), hence each adelic point on X can
be represented by a family (xv) ∈

∏
v∈ΩX(kv). Moreover, X(Ak) can be endowed with the

subspace topology of X(kΩ) by X(Ak) ⊂ X(kΩ). The resulting topology is called the product
topology of X(Ak).

Suppose X is a separated scheme of �nite type over SpecOk with generic �bre X = X ×Ok k.
Next we introduce a criterion which tells us that whether a kΩ-point on X comes from an adelic
point on X. Note that X (Ov) ⊂ X (kv) by the valuation criterion of separated morphisms, and
direct veri�cation tells us X(kv) can be identi�ed with a subset of X (kv).

Proposition 1.5.17. Let k be a number �eld and let Ok be the ring of algebraic integers in k.
Let X be a separated Ok-scheme of �nite type over Ok and let X = X ×Ok k be the generic �bre.
Then a kΩ-point (xv) ∈

∏
v∈ΩX(kv) is induced by an adelic point i� all but �nitely many xv

are also Ov-points on X .

Proof. Let Ω∞ ⊂ S ⊂ Ω be a �nite set of places containing all Archimedean places of k. Let
(xv) ∈

∏
v∈ΩX(kv) be a kΩ-point such that xv ∈ X (Ov) for v /∈ S and xv ∈ X (kv) for v ∈ S.

We need to show (xv) ∈ X(Ak).
To simplify the notation, we write Rv = Ov for v /∈ S and Rv = kv for v ∈ S. Now we have

xv ∈ X (Rv) for each v ∈ Ω. Let R =
∏
v∈ΩRv. Suppose there is a morphism SpecR → X

induced by (xv). Now
∏
Rv =

∏
v∈S kv ×

∏
v/∈S Ov ⊂ Ak will induce a canonical morphism

SpecAk → SpecR. Therefore (xv) is induced by an adelic point.
Now we show that there is a morphism SpecR→ X . If X = SpecA is a�ne, then

HomSch(SpecR,SpecA) ' HomRing(A,
∏

Rv) '
∏

HomRing(A,Rv) 6= ∅.

Here Ring denotes the category of commutative rings with neutral elements. In general, note
that X is of �nite type over SpecOk and hence X is quasi-compact. We cover X by �nitely
many open a�ne subsets Xi = SpecAi for i = 1, . . . , n. Each Rv is a local ring, so the image of
SpecRv is contained in one and only one of Xi for i = 1, . . . , n. Let

Si = {v ∈ Ω | the image of SpecRv → X lies in Xi}

and then Ω =
⊔n
i=1 Si. Now SpecRv → Xi for v ∈ Si gives rise to a morphism Spec

∏
v∈Si Rv →

Xi ⊂ X . Note that
⊔n
i=1 Spec

∏
v∈Si Rv ' Spec

∏
v∈ΩRv = SpecR since the left hand side is a

�nite disjoint union. Therefore we obtain a morphism SpecR→
⊔n
i=1 Spec

∏
v∈Si Rv →

⋃
Xi =

X . By construction, the image of SpecR in X is contained in the generic �bre and hence we
obtain an adelic point on X.

Conversely, let (xv) ∈
∏
X(kv) be an adelic point on X. We cover X by open a�ne sub-

sets Xi for i = 1, . . . , n with Xi ' SpecOk[T
(i)
1 , . . . , T

(i)
ri ]/ai. The adelic point (xv) induces

homomorphisms of Ok-algebras

ϕi : Ok[T
(i)
1 , . . . , T (i)

ri ]/ai → (Ak)fi
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for some fi ∈ Ak such that (f1, . . . , fn) = (1). We �x adeles g1, . . . , gn ∈ Ak such that f1g1 +

· · ·+ fngn = 1 and let ϕi(T
(i)
j ) = hij/f

eij
i with hij ∈ Ak and eij ∈ Z≥0. Let S be the union of

Ω∞ and the places v ∈ Ωf such that not all the adeles gi and hij are integral at v. Then S is a
�nite set of places. Take v /∈ S. Then

1 = |(f1g1 + · · ·+ fngn)v|v ≤ max |(figi)v|v ≤ max |(fi)v|v

implies that |(fi)v|v ≥ 1 for some i. By construction |(hij)v|v ≤ 1 and therefore (ϕi(T
(i)
j ))v ∈ Ov

for each j. It follows that ϕi induces a morphism SpecOv → Xi ⊂ X .

Comparing adelic topology with product topology

As we have seen, X(Ak) ⊂ X(kΩ) can be endowed with the subspace topology.I n general,
the adelic topology of X(Ak) is di�erent from the product topology of X(Ak). Now we compare
these two topologies on X(Ak) for a proper variety X over k.

Proposition 1.5.18. Let X be a proper variety over k, then X(Ak) =
∏
v∈ΩX(kv).

Proof. First X is proper hence separated, it follows that X(Ak) ⊂ X(kΩ). Conversely, we can
�nd a scheme X which is proper over Ok,S for some �nite subset Ω∞ ⊂ S ⊂ Ω such that
the generic �bre can be identi�ed with X. By construction Ok,S ⊂ Ov for v /∈ S, then we
obtain an induced map SpecOv → SpecOk,S . Finally, xv ∈ X(kv) will give rise to a morphism
Spec kv → X . We obtain a commutative diagram

Spec kv

��

// X

��
SpecOv //

88

SpecOk,S .

The image of Spec kv in SpecOk,S via SpecOv is the generic point, hence the image of Spec kv
in X lies in the generic �bre X, i.e. X (kv) = X(kv) holds for v /∈ S. We conclude that for the
places v /∈ S, we have X (Ov) = X (kv) by the valuation criterion of proper morphisms. Hence
X(kv) = X (Ov) for each v /∈ S. It follows that (xv) ∈ X(Ak) by (1.5.17) and this implies
X(kΩ) ⊂ X(Ak).

An open base for the product topology (resp. adelic topology) is of the form∏
v∈S

Uv ×
∏
v/∈S

X(kv) (resp.
∏
v∈S

Uv ×
∏
v/∈S

X (Ov)).

We have seen that X(kv) = X (Ov) and therefore the adelic topology and the product topology
are equivalent when X is proper over k.

1.5.5 Implicit function theorem

The inverse function theorem and the implicit function theorem are well-known over R and
C. For arithmetic concerning, we will consider the v-adic implicit function theorem where v is
a place of a number �eld. We begin with generalizing analytic functions to �elds endowed with
a non-trivial absolute value. The main reference is chapter II in [42].

Let k be a complete �eld with respect to a non-trivial absolute value | − | (archimedean or
ultrametric). For x ∈ kn and r ∈ Rn>0, we de�ne |x| ≤ r (resp. |x| < r) ⇐⇒ |xi| ≤ ri (resp.
|xi| < ri) for i = 1, . . . , n. We put

P r(x) = {y | |y − x| ≤ r} (resp. Pr(x) = {y | |y − x| < r})

to be the polydisk (resp. strict polydisk) of radius r and center x. Thanks to the absolute value
on k, we can de�ne convergent power series with coe�cients in k.
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De�nition 1.5.4. Let f =
∑
aIX

I be a formal power series with aI ∈ k. Here I denotes
multi-index (i1, . . . , in) and XI = Xi1

1 . . . Xin
n .

(1) We say f is convergent in P r(0) if
∑
|aI |rI <∞.

(2) We say f is convergent in Pr(0) if f is convergent in P r′(0) for each r′ < r.

Then it is possible to de�ne analytic functions and analytic maps.

De�nition 1.5.5. (1) Let U ⊂ kn be an open subset and let ϕ : U → k be a function. Then
we say ϕ is analytic in U if for each x ∈ U , there is a formal power series f and a radius r > 0
such that Pr(x) ⊂ U and f converges in Pr(x) and for h ∈ Pr(x), ϕ(x+ h) = f(h).

(2) Let U ⊂ kn be an open subset and let ϕ = (ϕ1, . . . , ϕm) : U → km be a continuous map.
Then we say ϕ is analytic if ϕi is analytic for i = 1, . . . ,m.

Theorem 1.5.19 (v-adic inverse function theorem). Let U ⊂ kn be an open subset and let
f : U → kn be an analytic map such that f(0) = 0. If Df(0) : kn → kn is a linear isomorphism,
then f is a local analytic isomorphism.

Proof. See [42], chapter II.

As usual, we can prove the v-adic implicit function theorem by applying the v-adic inverse
function theorem.

Theorem 1.5.20 (v-adic implicit function theorem). Let

F : kn+m → km, (x,y) 7→ (F1(x,y), . . . , Fm(x,y))

be an analytic map such that Fi(0,0) = 0 for each i = 1, . . . ,m and det
(
∂Fi
∂yj

(0,0)
)
6= 0. Then

there exists a unique analytic map

f : kn → km, x 7→ (f1(x), . . . , fm(x))

such that fi(0) = 0 satisfying F (x, f(x)) = 0.
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Chapter 2

Brauer groups and Brauer-Manin

obstruction

The �rst goal of this chapter is to introduce the Brauer groups of schemes. We begin with
the Brauer group of a �eld by group cohomology and then we compare it with the classical
de�nition by central simple algebras. Then we generalize this de�nition to the Brauer group of
a local ring by replacing central simple algebras over a �eld with Azumaya algebras over a local
ring. Later we study the Brauer group of a scheme in terms of étale cohomology and we end up
with the unrami�ed Brauer group of a variety. The next goal is to introduce the Hasse principle,
weak approximation, and strong approximation for varieties over a number �eld k. We will �nd
a closed subset of X(Ak) containing X(k) de�ned by the Brauer-Manin pairing. Then we are
in a position to state several slightly di�erent Brauer-Manin obstructions to the Hasse principle
and weak approximation. Finally we brie�y introduce some technical results.

2.1 Brauer groups of �elds

2.1.1 The Brauer group

Cohomological description

Let L|K be a �nite Galois extension of any �elds and let

H2(L|K) = H2(Gal(L|K), L×).

Let (Li)i∈I be the family of all �nite Galois extensions of K. Suppose Li and Lj are two
�nite Galois extensions of K, then we can always �nd a �nite Galois extension Lk containing
the composite Li.Lj . Hence the family (Li)i∈I forms a directed set. Then we can de�ne the
Brauer group of K to be

Br(K) := lim−→
i∈I

H2(Li|K).

We can write more explicitly that Br(K) =
⋃
i∈I H

2(Li|K) because for each Li ⊂ Lj , the
homomorphism H2(Li|K)→ H2(Lj |K) is injective by (1.1.15).

By in�nite Galois theory, we have

Gal(Ks|K) ' lim←−
I

Gal(Ks|K)/Gal(Ks|Li) ' lim←−
I

Gal(Li|K)

where Ks is the separable closure of K, Li|K runs through all �nite Galois extensions and
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Gal(Ks|Li) runs through all open and normal subgroups of Gal(Ks|K). Hence we conclude

H2(Gal(Ks|K),K×s ) ' lim−→
I

H2
(

Gal(Ks|K)/Gal(Ks|Li), (K×s )Gal(Ks|Li)
)

' lim−→
I

H2(Gal(Li|K), L×i ) = lim−→
I

H2(Li|K).

Therefore we have the identi�cation

H2(Ks|K) := H2(Gal(Ks|K),K×s ) ' Br(K).

Central simple algebras

Now we introduce central simple algebras and then we study another equivalent description
of the Brauer group over a �eld K. For any ring A, we denoted by Mn(A) the ring of all n× n
matrices with all entries in A.

Proposition 2.1.1. Let K be a �eld and let A be a �nite dimensional K-algebra. The following
are equivalent:

(1) A has no non-trivial two-sided ideal, and the center of A is K.
(2) A⊗K K 'Mn(K) for some positive integer n, where K is an algebraic closure of K.
(3) There exists a �nite Galois extension L|K such that A⊗K L 'Mn(L) for some positive

integer n.
(4) A 'Mn(D) for some positive integer n, where D is a division algebra with center K.

Proof. For a proof, see Bourbaki, Algebra, chapter VIII, ��5, 10.

De�nition 2.1.1. (1) Suppose A is a K-algebra that satis�es conditions (1) to (4) above. Then
A is called a central simple K-algebra.

(2) Let A and A′ be two central simple K-algebras. Then A 'Mn(D) and A′ 'Mn′(D
′) for

some division K-algebras D and D′. We say A is similar to A′ over K if D ' D′ as K-algebras.
Note that this is an equivalent relation.

(3) We denote by BrAz(K) the set of similarity classes of central simple algebras over K.

Remark 2.1.2. Let A and A′ be two central simple K-algebras of the same dimension. Then
to say A is similar to A′ is equivalent to say they are K-isomorphic.

Remark 2.1.3 (Group structure). We give BrAz(K) a group structure as follows. Take
[A], [A′] ∈ BrAz(K). By de�nition we have A ' Mn(D), A′ ' Mn′(D

′) for some division
algebra D and D′ over K. Since

A⊗K A′ 'Mn(D)⊗K Mn′(D
′) 'Mnn′(D ⊗K D′)

is a central simple algebra, we can de�ne

BrAz(K)× BrAz(K)→ BrAz(K), ([A], [A′]) 7→ [A⊗K A′].

Then we have [A][K] = [A] and [A][Aop] = [K]. Thus the tensor product makes BrAz(k) into
an abelian group, and [K] = [Mn(K)] for any positive n is the neutral element. This is the
classical Brauer group.

Remark 2.1.4 (Covariant functor). Let L|K be a �eld extension, then we obtain a group
homomorphism

BrAz(K)→ BrAz(L), A 7→ A⊗K L.

It's easy to check that BrAz(−) forms a covariant functor from the category of �elds to the
category of groups.
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The equivalence of two constructions

The aim of this subsection is to show BrAz(K) ' Br(K). Let L|K be a �eld extension. We
denote by

BrAz(L|K) := Ker(BrAz(K)→ BrAz(L))

the kernel of the restriction homomorphism.
Take A ∈ BrAz(K), then by (3) in (2.1.1) we obtain A⊗K L 'Mn(L) for some �nite Galois

extension L of K. This tells us BrAz(K) is the union of BrAz(L|K) as L runs through all the
�nite Galois extensions of K. Hence it will be su�cient to construct isomorphisms

BrAz(Li|K)→ H2(Li|K)

for each �nite Galois extension Li|K that compatible with the injections

BrAz(Li|K)→ BrAz(Lj |K) and H2(Li|K)→ H2(Lj |K),

for �eld extension Lj |Li.
Let BrAz(n,L|K) be the set of similarity classes of K-algebras A such that A⊗KL 'Mn(L).

Then the group BrAz(L|K) =
⋃
n≥1 BrAz(n,L|K).

Proposition 2.1.5. Let L|K be a �nite Galois extension. Then the canonical map

θn : BrAz(n,L|K)→ H1(Gal(L|K),PGLn(L))

is bijective.

Proof. See [43] page 158, proposition 8.

On the other hand, we have a short exact sequence 1 → L× → GLn(L) → PGLn(L) → 1
with L× contained in the center of GLn(L). The short exact sequence de�nes a coboundary
operator

∆n : H1(Gal(L|K),PGLn(L))→ H2(Gal(L|K), L×)

of pointed sets (see [44], section 5.7). Composing θn and ∆n gives a map

δn : BrAz(n,L|K)→ H2(Gal(L|K), L×) = H2(L|K).

We want these {δn}n≥1 to be compatible so that we will have a homomorphism

δ : BrAz(L|K)→ H2(L|K).

This is guaranteed by the following:

Lemma 2.1.6. For C ∈ BrAz(n,L|K) and C ′ ∈ BrAz(n
′, L|K), then

δnn′(C ⊗K C ′) = δn(C) + δn′(C
′).

Moreover, δn(C) = 0 i� C is a matrix algebra.

Proof. See [43] page 158, lemma 1.

Now we can conclude.

Proposition 2.1.7. (1) If n = [L : K], then the map δn : BrAz(n,L|K) → H2(L|K) is
surjective.

(2) The homomorphism δ : BrAz(L|K) → H2(L|K) is bijective. In particular, BrAz(K) '
H2(Ks|K) = Br(K).

Proof. A proof is in [43], page 158.
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2.1.2 Cyclic algebras

We construct explicitly a representative for each similarity class in Br(K). Let L|K be a
cyclic extension of �elds of degree n with Galois group G. Let χ ∈ Hom(G,Z/nZ) be a group
homomorphism. Note that χ is surjective if and only if χ is an isomorphism. This is also
equivalent to choose a generator σ ∈ G such that χ(σ) = 1 ∈ Z/nZ. Take a ∈ K×, we construct
a K-algebra (χ, a) as follows.

(1) As an additive abelian group, (χ, a) is an n-dimensional L-vector space with basis
1, e, . . . , en−1. We put (χ, a) := L⊕ Le⊕ · · · ⊕ Len−1.

(2) Let λ, µ ∈ L and σ ∈ G, we de�ne

λei · µej =

{
λσ(µ)ei+j if i+ j < n
aλσ(µ)ei+j−n if i+ j ≥ n

and extend L-bilinearly to (χ, a).
Thus we obtain an associated K-algebra which is called the cyclic algebra associated to

the character χ and a ∈ K×. Since dimL(χ, a) = n, [L : K] = n, we conclude dimK(χ, a) = n2.

Theorem 2.1.8. Let L|K be a cyclic extension of degree n. Take a ∈ K× and let χ : G� Z/nZ
be a surjective character. Then

(χ, a)⊗K L 'Mn(L).

Proof. Let σ be a generator of G such that χ(σ) = 1. Suppose as an L-vector space, (χ, a) '⊕n−1
i=0 Le

i. We de�ne a homomorphism

ϕ : (χ, a)⊗K L→Mn(L)

of L-algebras by

ϕ(λ⊗ 1) =

n∑
i=1

σ(λ)i−1Eii and ϕ(e⊗ 1) = aEn1 +

n∑
i=2

Ei,i−1,

for λ ∈ L and e as above, where Eij is the n × n matrix with the (i, j)-entry equals to 1 and
others equal to 0. Then ϕ is a well-de�ned homomorphism of L-algebras. Since

dimL

(
(χ, a)⊗K L

)
= n2 = dimLMn(L),

it will be su�cient to show ϕ is surjective.
Suppose L = K(α) for some α ∈ L. For λ ∈ L, we can �nd g ∈ K[t] such that λ = g(α).

Then by the lemma below, λ⊗ 1 is sent to (α, σ(α), . . . , σn−1(α)) ∈ L⊕n. Hence we have

ϕ(L⊗K L) =

n⊕
i=1

LEii

ϕ(Le⊗K L) = LEn1 ⊕
n⊕
i=2

LEi,i−1

ϕ(Le2 ⊗K L) = LEn−1,1 ⊕ LEn,2 ⊕
n⊕
i=3

LEi,i−2, etc.

It follows that Imϕ = Mn(L).

Lemma 2.1.9. Let L|K be a Galois extension of degree n with Galois group G. Then we have
an isomorphism of L-algebras:

L⊗K L ' HomSet(G,L), a⊗ b 7→ (σ 7→ σ(a)b).
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Proof. Write G = {σ1, . . . , σn}. Finite separable extensions are simple extensions, so L = K(α)
for some α ∈ L. Let P (t) =

∏n
i=1(t− σi(α)) be the minimal polynomial of α. We view L⊗K L

as an L-algebra via the second entry. Then

L⊗K L '
(
K[t]/P (t)

)
⊗K L ' L[t]/P (t).

By Chinese remainder theorem, we conclude

L[t]/P (t) '
n∏
i=1

L(t)/(t− σiα) = HomSet(G,L),

as required.

De�nition 2.1.2. Let A be a central simple algebra over K. L|K is called a splitting �eld for
A if

A⊗K L 'Mn(L)

for some positive integer n. In this case we say that L splits A.

Theorem 2.1.10. Let L|K be a cyclic extension of degree n with Galois group G.
(1) By the identi�cation H1(G,Z/nZ) ' Hom(G,Z/nZ), we can view a surjective character

χ ∈ Hom(G,Z/nZ) as an element of H1(G,Z/nZ). From the exact sequence

0→ Z→ Q→ Q/Z→ 0

of trivial G-modules, we obtain a connecting homomorphism

δ : H1(G,Q/Z)→ H2(G,Z).

Then for any a ∈ K×, we get

a ∪ δ(χ) ∈ H2(G,L×) = H2(L|K)

equals to the class of the opposite of the cyclic algebra (χ, a).
(2) A central simple algebra A over K is similar to a cyclic algebra i� there exists a cyclic

extension of K splitting A, i.e. A⊗K L 'Mn(L) where n = [L : K].
(3) In Br(K), we have

[(χ, a1)] + [(χ, a2)] = [(χ, a1a2)] and [(χ1, a)] + [(χ2, a)] = [(χ1 + χ2, a)]

for any a1, a2 ∈ K× and χ1, χ2 ∈ H1(G,Z/nZ).

Proof. (1) This is done by explicit computation.
(2) Suppose a central simple algebra A over K is similar to a cyclic algebra (χ, a), where

χ : Gal(L|K)→ Z/nZ is a surjective character for some cyclic extension L|K of degree n. Then
(χ, a) ⊗K L ' Mn(L) for some n > 0, and hence A is also splitting by the cyclic extension
L|K. Conversely, suppose L|K is a cyclic extension of degree n splitting A. Then [A] ∈
BrAz(L|K) ' H2(L|K). Let χ ∈ Hom(Gal(L|K),Z/nZ) be a surjective character. The we have
an isomorphism of Tate cohomology groups

K×/NL|K(L×) = Ĥ0(Gal(L|K), L×)
−∪δ(χ)// Ĥ2(Gal(L|K), L×) = H2(L|K).

In particular, [A] = a ∪ δ(χ) for some a ∈ K×. This shows that A is a cyclic algebra over K by
(1).

(3) These formulas hold by the bilinearity of cup product.
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2.1.3 The local invariants

We say a �eld K is a local �eld, if K is endowed with a discrete valuation v such that K is
complete with respect to v and the residue �eld κ is �nite.

Theorem 2.1.11. Let K be a local �eld.
(1) If K is of characteristic 0, then K is a �nite extension of Qp for some prime number p.
(2) If K is of characteristic p > 0, then K is a �nite extension of Fp((t)) where Fp denotes

the �nite �eld with p elements.

Proof. See [39], page 135, proposition 5.2.

Example 2.1.12. Let k be a number �eld with Ok the ring of algebraic integers and let v ∈ Ω
be a �nite place of k. Then kv is a local �eld. Indeed, each �nite place v is above some prime
ideal (p) ⊂ Z and hence the residue �eld κ(v) is a �nite extension of Fp = Z/pZ. This shows
that in particular κ(v) is �nite.

Let K be a local �eld and we may assume the discrete valuation v is normalized which means
that v : K× → Z is surjective. We take UK = {x ∈ K× | v(x) = 0} to be the group of units in
the valuation ring {x ∈ K× | v(x) ≥ 0} of v. Let Ks be the separable closure of K and let Knr

be the maximal unrami�ed subextension of Ks|K. Recall that the residue �eld of Knr is κ, the
algebraic closure of κ. Moreover, Gal(Knr|K) = Gal(κ|κ) holds. Recall that

Gal(Fqn |Fq)→ Z/nZ, Fn 7→ 1

is an isomorphism for each positive integer n where Fn is the Frobenius element. Passing to the
projective limit we obtain an isomorphism Gal(Fq|Fq) ' Ẑ. In our case, the κ is a �nite �eld
and hence Gal(κ|κ) ' Ẑ. From now on, we may identify Ẑ with Gal(Knr|K) by v 7→ F v, here
F is the Frobenius element in Gal(Knr|K).

Lemma 2.1.13. Let G be a �nite group and let M be a G-module. Let

M = M0 ⊇M1 ⊇ · · · ⊇M i ⊇ . . .

be a descending chain of G-submodules. Suppose the natural map M → lim←−M/M i is a bijection.
If there exists some q such that Hq(G,M i/M i+1) = 0 for all i ≥ 0, then Hq(G,M) = 0.

Proof. Let f be any q-cocycle with values in M . We show that f is also a q-coboundary.
Hq(G,M/M1) = 0 implies there is a (q− 1)-cochain ψ1 with values in M such that f = δψ+ f1

where f1 is a q-cocyle with values inM1. Similarly, there exists ψ2 such that f1 = δψ2 +f2 with
f2 a q-cocycle with values in M2. We construct in this way a sequence (ψn, fn) where ψn is a
(q−1)-cochain with values inMn−1, fn is a q-cocycle with values inMn and fn = δψn+1 +fn+1.
Set ψ = ψ1+ψ2+. . . By assumptionM ' lim←−M/M i, hence the series converges and thus de�nes
a (q−1)-cochain on G with values inM . Finally f = δψ1 +f1 = δ(ψ1 +ψ2)+f2 = · · · = δψ.

Proposition 2.1.14. Let L|K be an unrami�ed extension of degree n with Galois group G.
Then for all q ∈ Z, we have

(1) Hq(G,UL) = 0,
(2) v : Hq(G,L×)→ Hq(G,Z) is an isomorphism.

Proof. From the exact sequence 1 → UL → L× → Z → 0 with trivial G-actions, we obtain a
long exact sequence

· · · → Hq(G,UL)→ Hq(G,L×)→ Hq(G,Z)→ Hq+1(G,UL)→ . . .

If Hq(G,UL) = 0 for each q, then Hq(G,L×) → Hq(G,Z) is an isomorphism for each q ∈ Z,
hence it will be su�cient to show (1).
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Let π ∈ K be a uniformizor. Since L|K is unrami�ed, U (i)
L = 1 + πiOL indeed forms a

descending chain of open subsets of UL. Then UL ' lim←−UL/U
(i)
L . To apply the previous lemma,

we need the following two facts.
(A) We have isomorphisms UL/U

(1)
L ' κ×L and U (i)

L /U
(i+1)
L ' (κL,+) that are compatible

with the action of the Galois group.
Take a ∈ UL, we put UL → κ×L , a 7→ a. Since U (1)

L = 1 + πOL, a = 1 i� a ∈ U
(1)
L .

Hence we have UL/U
(1)
L ' κ×L . For a ∈ U

(i)
L , then a = 1 + πib for some b ∈ OL. We de�ne

ϕ : U
(i)
L /U

(i+1)
L → (kL,+) by a 7→ b ∈ kL. Clearly Kerϕ ' U (i+1)

L , hence U (i)
L /U

(i+1)
L ' (κL,+)

holds for i ≥ 1.
(B) For all q ∈ Z, we have{

Hq(G,U
(i)
L /U

(i+1)
L ) = 0 if i ≥ 1

Hq(G,U
(i)
L /U

(i+1)
L ) = Hq(G,L×) if i = 0

q = 1, we apply Hilbert's theorem 90. q = 2, |L×| <∞ and G is cyclic imply the Herbrand
quotient h(L×) = 1 by (1.1.8). HenceH2(G,U

(i)
L /U

(i+1)
L ) = 0. For other q we use the periodicity.

Take M = UL and Mi = U
(i)
L for i ≥ 1. Then for any q and all i ≥ 0, Hq(G,M i/M i+1) = 0

by (B). Hence Hq(G,M) = 0 by the previous lemma.

Since Knr|K is unrami�ed, the valuation v : K× � Z extends uniquely to the valuation
v : K×nr � Z. This valuation map induces a homomorphism H2(Knr|K)→ H2(Gal(Knr|K),Z).
This leads us to the following theorem.

Theorem 2.1.15. The valuation map v : K×nr � Z de�nes an isomorphism

H2(Knr|K)→ H2(Ẑ,Z).

Proof. We have seen Hq(Gal(Knr|K),K×nr) → Hq(Gal(Knr|K),Z) is an isomorphism. Note
that Gal(Knr|K) ' Ẑ, we conclude H2(Knr|K)→ H2(Ẑ,Z).

Then we computeH2(Ẑ,Z). More generally, let G be a pro�nite group and consider the exact
sequence 0→ Z→ Q→ Q/Z→ 0 of G-modules with trivial actions. Q is an injective Z-module,
hence Q has trivial cohomology groups. Hence δ : H1(G,Q/Z) → H2(G,Z) is an isomorphism
by the long exact sequence. Since Q/Z is a trivial G-module, H1(G,Q/Z) = Hom(G,Q/Z).
Summing up, we get δ : Hom(G,Q/Z) ' H2(G,Z).

In particular, we take G = Ẑ. Hence we get a chain of maps:

H2(Knr|K)
v→ H2(Ẑ,Z)

δ−1

→ Hom(Ẑ,Q/Z)
γ→ Q/Z

where v is induced from v : K×nr → Z and γ : ϕ 7→ ϕ(1). We take

invK = γ ◦ δ−1 ◦ v,

then we obtain an isomorphism, the so-called local invariants:

invK : Br(K)→ Q/Z.

Proposition 2.1.16. Let K be a local �eld, let L|K be a �nite separable extension of degree n
and let Lnr,Knr be the maximal unrami�ed extensions of L,K respectively, so that Knr ⊂ Lnr.
Then the following diagram is commutative:

H2(Knr|K)

invK

��

res // H2(Lnr|L)

invL

��
Q/Z

n
// Q/Z.
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Proof. We write ΓK = Gal(Knr|K) for short and we denote by FK the Frobenius element in
the Galois group ΓK . ΓL and FL are de�ned similarly. Then we have a homomorphism

ΓL → ΓK , σ 7→ j−1 ◦ σ ◦ j

where j : Knr → Lnr is the inclusion, and σ ◦ j(Knr) ⊂ j(Knr) holds implies that j−1 makes
sense. This homomorphism between Galois groups induces the restriction homomorphism

res : H2(Knr|K)→ H2(Lnr|L).

Let κK and κL be the residue �eld of K and L respectively. Suppose f = [κL : κK ], then
FL = (FK)f . Let e be the rami�cation index of L|K. We consider the following diagram

H2(Knr|K)

res

��

vK // H2(ΓK ,Z)

e·res

��

δ−1
// Hom(ΓK ,Q/Z)

γK //

e·res

��

Q/Z

n

��
H2(Lnr|L)

vL
// H2(ΓL,Z)

δ−1

// Hom(ΓL,Q/Z)
γL
// Q/Z.

Here γK(ϕ) = ϕ(FK) for ϕ ∈ Hom(ΓK ,Q/Z) and γL(ψ) = ψ(FL) for ψ ∈ Hom(ΓL,Q/Z). The
left square commutes since vL = e · vK on K×nr. The middle square commutes is obvious. The
right square commutes since FL = (FK)f and n = ef . This completes the proof.

2.2 Brauer groups of schemes

2.2.1 Brauer groups of local rings

Let R be a commutative local ring with maximal ideal m and residue �eld κ = R/m. Let A
be an R-algebra (not necessarily commutative) with 1A. Suppose the homomorphism R → A,
r 7→ r · 1A identi�es R with a subring of Z(A), the center of A. We write Aop for the opposite
algebra of A.

De�nition 2.2.1. A is called an Azumaya algebra over R if
(1) A is an free R-module of �nite rank,
(2) the map A⊗R Aop → EndR(A), a⊗ a′ 7→ (x 7→ axa′) is an isomorphism.

Lemma 2.2.1. Let M and N be �nitely generated R-modules with N free. If ϕ : M → N is a
homomorphism of R-modules such that ϕ : M → N is injective, then ϕ has a section. If ϕ is
an isomorphism, then so is ϕ. Here for any R-module M , we write M for M ⊗R (R/m).

Proof. See [37] lemma 1.11.

Proposition 2.2.2. (1) If A is an Azumaya algebra over R and R′ is a commutative local
R-algebra (R → R′ need not be a local homomorphism), then A ⊗R R′ is an Azumaya algebra
over R′.

(2) If A is free of �nite rank as an R-module, and A⊗R (R/m) is an Azumaya algebra over
R/m, then A is an Azumaya algebra over R.

Proof. (1) A is a free R-module of �nite rank implies that A⊗R R′ is a free R′-module of �nite
rank. By the isomorphisms

(A⊗R R′)⊗R′ (A⊗R R′)op ' (A⊗R Aop)⊗R R′ ' EndR(A)⊗R R′ ' EndR′(A⊗R R′),

we conclude that A⊗R R′ is an Azumaya algebra over R′.
(2) All we need to show is A ⊗R Aop ' EndR(A). Since A = A ⊗R (R/m) is an Azumaya

algebra over R/m, we have an isomorphism A ⊗R/m A
op ' EndR/m(A) of R/m-algebras. This

gives rise to (A⊗RAop)⊗R (R/m) ' EndR(A)⊗R (R/m). A is a free R-module, hence the lemma
applies. Consequently, A⊗RAop ' EndR(A) holds and therefore A is an Azumaya algebra over
R.
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Corollary 2.2.3. (1) If A and A′ are Azumaya algebras over R, then A⊗R A′ is an Azumaya
algebra over R.

(2) The matrix ring Mn(R) is an Azumaya algebra over R.

Proof. (1) Now A and A′ are free R-modules of �nite rank, hence A⊗RA′ is also a free R-module
of �nite rank. By (2.2.2), A and A′ are Azumaya algebra over κ = R/m, we have

(A⊗κA′)⊗κ (A⊗κA′)op ' (A⊗κA
op

)⊗κ (A′⊗κA′
op

) ' Endκ(A)⊗κEndκ(A′) ' Endκ(A⊗κA′).

It follows that A⊗κ A′ is an Azumaya algebra over R/m and by (2.2.2) we conclude A⊗R A′ is
an Azumaya algebra over R.

(2)Mn(R) is a free R-algebra of �nite rank andMn(R)⊗R(R/m) 'Mn(R/m) is an Azumaya
algebra over R/m. Thus by (2.2.2) we know that Mn(R) is an Azumaya algebra over R.

We say two Azumaya algebras A and A′ over R are similar if

A⊗RMn(R) ' A′ ⊗RMn′(R)

holds for some n and n′. Similarity is obvious �exible and symmetric. It's easy to show it is
transitive by the factMn(R)⊗RMn′(R) 'Mnn′(R). Hence similarity is an equivalence relation.

De�nition 2.2.2. We de�ne the Brauer group of R, denoted by BrAz(R), to be the group of
similarity classes of Azumaya algebras over R.

Remark 2.2.4. Note that if A1 is similar to A′1 and A2 to A′2, then A1 ⊗R A2 is similar to
A′1 ⊗R A′2 by the fact Mn(R)⊗RMn′(R) 'Mnn′(R). Hence [A][A′] = [A⊗R A′], [A]−1 = [Aop]
and the neutral element [R] make BrAz(R) into a group.

Let R be a local ring with residue �eld κ. Take a ∈ R and f ∈ R[T ], then we write a ∈ κ
and f ∈ κ[T ] for their images under the canonical projection. We say R is Henselian if for
each monic polynomial f ∈ R[T ] and each simple root a0 of f in κ, there exists an a ∈ R
such that f(a) = 0 and a = a0. We say a Henselian local ring R is strictly Henselian if κ is
separably algebraically closed. We collect some results about the Brauer group of a local ring
in the following.

Proposition 2.2.5. If R is a Henselian local ring with residue �eld κ, then the canonical
map BrAz(R) → BrAz(κ) is injective. Moreover, if R is a strict Henselian local ring, then
BrAz(R) = 0.

Proof. See [37], page 138-139.

Proposition 2.2.6. Let R be a Henselian local ring with residue �eld κ. Then the homomor-
phism

Hq
ét(SpecR,Gm)→ Hq

ét(Specκ,Gm)

is an isomorphism for each q ≥ 1.

Proof. See [37], page 116, remark 3.11(a).

2.2.2 Brauer groups of schemes

Let X be a scheme and let OX be the structure sheaf on X.

De�nition 2.2.3. An OX -module A is called an Azumaya algebra over X if
(1) A is a coherent OX -module,
(2) for all closed points x ∈ X, Ax is an Azumaya algebra over the local ring OX,x.

Note that the assumption (2) implies that A is locally free of �nite rank as an OX -module.
Moreover, for each point x ∈ X (not necessarily closed), Ax is an Azumaya algebra over OX,x.
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Proposition 2.2.7. Let A be an OX-algebra of �nite type. The following are equivalent:
(1) A is an Azumaya algebra over X,
(2) A is locally free as an OX-module and Ax ⊗OX,x k(x) is a central simple algebra over

k(x) for all x ∈ X,
(3) A is locally free as an OX-module and the canonical homomorphism A ⊗OX Aop →

EndOX (A) is an isomorphism,
(4) there is a covering {Ui → X} for the étale topology on X such that for all i, there exists

ri such that A⊗OX OUi 'Mri(OUi),
(5) there is a covering {Ui → X} for the �at topology on X such that for all i, there exists

ri such that A⊗OX OUi 'Mri(OUi).

Proof. See [37], page 141, proposition 2.1.

We say two Azumaya algebras A and A′ over X are similar, if there exist two locally free
OX -modules E and E ′ of �nite rank on X, such that

A⊗OX EndOX (E) ' A′ ⊗OX EndOX (E ′).

The similarity relation is an equivalence relation, because

EndOX (E)⊗OX EndOX (E ′) ' EndOX (E ⊗OX E ′).

This leads us to the following:

De�nition 2.2.4. We de�ne the Brauer group of X, denoted by BrAz(X), to be the similarity
classes of Azumaya algebras over X.

Remark 2.2.8. (1) BrAz(X) is indeed a group. We de�ne an operation

BrAz(X)× BrAz(X)→ BrAz(X), [A][A′] = [A⊗A′].

Of course OX itself is an Azumaya algebra over X hence it de�nes a class [OX ] in BrAz(X).
Then its easy to see [A][OX ] = [A] and [A][Aop] = [OX ]. We conclude [OX ] is the neutral
element and [A]−1 = [Aop].

(2) BrAz(−) : Sch → Ab is a contravariant functor. Suppose f : X → Y is a morphism of
schemes, then we can de�ne

f∗ : BrAz(Y )→ BrAz(X), A 7→ f∗A.

Here f∗A is the sheaf associated to the presheaf f−1A⊗f−1OY OX . Let x ∈ X and y = f(x), then
(f∗A)x = Ay ⊗OY,y OX,x is a free OX,x-algebra. f∗x : OY,y → OX,x induces a homomorphism
κ(y) ↪→ κ(x) and hence (f∗A)x ⊗OX,x κ(x) ' Ay ⊗OY,y κ(x) is a central simple algebra over
κ(x).

De�nition 2.2.5. Let X be a scheme. We put

Gm : Xét → Ab, U 7→ Γ(U,OU )×,

and then Gm is an abelian sheaf on Xét. We de�ne the cohomological Brauer group of X,
denoted by Br(X), to be H2

ét(X,Gm).

Theorem 2.2.9. Let X be a scheme. There is a canonical injective homomorphism

BrAz(X)→ Br(X) = H2
ét(X,Gm).

Proof. See [37], page 142, theorem 2.5.

Corollary 2.2.10. Let X be a regular integral scheme with function �eld K(X). Then the
canonical map BrAz(X)→ Br(X) ↪→ Br(K(X)) is injective.
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Proof. See [37], page 145, corollary 2.6.

Finally, we give some special cases when the canonical homomorphism is surjective.

Proposition 2.2.11. Suppose R is a Henselian local ring. Let X = SpecR. Then BrAz(X) =
Br(X).

Proof. See [37], page 148, corollary 2.12.

Proposition 2.2.12. Suppose X is a regular quasi-compact and separated scheme endowed with
an ample invertible sheaf L. Then BrAz(X) = Br(X).

Proof. This is an unpublished result of Gabber. One proof is contained in [15].

2.2.3 Residue homomorphisms

We begin with a few discussion on the vanishing of the Brauer groups of �elds and then we
construct the residue homomorphisms.

Vanishing of Brauer groups

Proposition 2.2.13. For a given �eld K, the following are equivalent:
(1) Let L|K be any �nite separable extension of �elds. Then Br(L) = 0.
(2) Let L|K be a �nite extension and let M |L be a �nite Galois extension. Then the

Gal(M |L)-module M× is cohomologically trivial.
(3) Let L|K be a �nite extension and let M |L be a �nite Galois extension. Then the norm

map NM |L : M× → L× is surjective.

Proof. For a proof, see [43], chapter X, proposition 11.

Let A be a complete discrete valuation ring with fraction �eld K and perfect residue �eld
κ. Let Knr|K be the maximal unrami�ed extension of K. Then (3) in the proposition holds by
[43], chapter V, proposition 7, and hence Knr has trivial Brauer group.

Remark 2.2.14. The fact Br(Knr) = 0 can also be deduced from a more di�cult fact that
Knr is a C1 �eld which is proved by Lang in [31].

In fact, it is convenient to use the theory of cohomological dimension for pro�nite groups
to study �elds with vanishing Brauer group. We brie�y introduce some basic de�nitions and
results as follows. For an abelian group A and for a prime number p, we write A[p] for the
p-primary torsion subgroup of A, that is the subgroup of elements of p-power order.

De�nition 2.2.6. Let G be a pro�nite group and let p be a prime number.
(1) We say that G has p-cohomological dimension ≤ n, if Hq(G,A) = 0 for each q > n

and for each continuous torsion G-module A.
(2) We de�ne the p-cohomological dimension of G, denoted by cdp(G), to be the smallest

positive integer n for which G has cohomological dimension ≤ n. If such n does not exist, we
say cdp(G) =∞.

By construction, Ẑ = lim←−Z/nZ is a pro�nite group. We consider the p-cohomological di-

mension of Ẑ as an example.

Proposition 2.2.15. Let p be a prime number. Then we have cdp(Ẑ) = 1.

Proof. See [19], page 136, proposition 6.1.3.

Let K be a �eld and then the Galois group Gal(Ks|K) is a pro�nite group. This leads us to
the following:
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De�nition 2.2.7. Let K be a �eld and let Ks be a separable closure of K.
(1) The p-cohomological dimension cdp(K) of K is the p-cohomological dimension of the

absolute Galois group Gal(Ks|K).
(2) The cohomological dimension cd(K) of K is the supremum of the cdp(K) for all

prime numbers p.

Now we can see that �elds of p-cohomological dimension 1 can be characterized by the Brauer
group. The following result can be compared with (2.2.13).

Theorem 2.2.16. Let K be a �eld and let p be a prime number not equal to the characteristic
of K. Then the following are equivalent:

(1) The p-cohomological dimension of K is less or equal to 1, i.e. cdp(K) ≤ 1.
(2) For each separable algebraic extension L|K, we have Br(L)[p] = 0.
(3) The norm homomorphism NM |L : M× → L× is surjective for each separable algebraic

extension L|K and each Galois extension M |L with Gal(M |L) ' Z/pZ.

Proof. See [19], page 138, theorem 6.1.8.

We have the following complement:

Proposition 2.2.17. Let K be a �eld of characteristic p > 0. Then cdp(K) ≤ 1.

Proof. See [19], page 139, proposition 6.1.9.

Residue homomorphisms

Since Ks|K is a Galois extension containing the Galois extension Knr|K, we have an exact
sequence

0→ H2(Knr|K)→ H2(Ks|K)→ H2(Ks|Knr)

by (1.1.15). Note that H2(Ks|Knr) = Br(Knr) = 0, we conclude the map

H2(Gal(Knr|K),K×nr)→ H2(Gal(Ks|K),K×s ) = Br(K)

induced by Gal(Ks|K) → Gal(Knr|K) and K×nr ↪→ K×s is an isomorphism. Since Knr|K is
unrami�ed, the valuation vA of K extends uniquely to Knr. For each σ ∈ Gal(Knr|K), we have

vA(NKnr|K(σ.x)) = vA(σ.NKnr|K(x)) = vA(NKnr|K(x))

for each x ∈ K×nr since NKnr|K(x) ∈ K×. Therefore the valuation map K×nr → Z is Galois-
equivariant hence it induces a map

H2(Gal(Knr|K),K×nr)→ H2(Gal(Knr|K),Z).

Note that Gal(Knr|K) ' Gal(κ|κ), hence H2(Gal(Knr|K),Z) ' H2(Gal(κ|κ),Z). From the
short exact sequence 0→ Z→ Q→ Q/Z→ 0, we obtainH2(Gal(κ|κ),Z) ' H1(Gal(κ|κ),Q/Z).
We therefore construct a homomorphism

∂A : Br(K)→ H1(Gal(κ|κ),Q/Z)

by the composition

Br(K)
∼→ H2(Knr|K)

v→ H2(Gal(Knr|K),Z)
∼→ H2(Gal(κ|κ),Z)

∼→ H1(Gal(κ|κ),Q/Z).

When A is not complete, we replace A by its completion which does not change the residue �eld
κ, then apply the above construction.
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Proposition 2.2.18. Let X be a regular noetherian integral scheme of dimension 1. Let η be
the generic point on X. Suppose for each x ∈ X(1), the residue �eld κ(x) is perfect. Then we
have an exact sequence

0→ H2(X,Gm)→ H2(Specκ(η),Gm)→
⊕

x∈X(1)

H1(Specκ(x),Q/Z)

by [23], III, page 93, proposition 2.1.

Remark 2.2.19. Let A be a discrete valuation ring with fraction �eld K and residue �eld κ.
Then there is an exact sequence

0→ Br(A)→ Br(K)→ H1(κ,Q/Z).

We can show that Br(A) can be identi�ed with the kernel of the residue homomorphism ∂A :
Br(K)→ H1(κ,Q/Z) by [14], �1.1.

Proposition 2.2.20. Let k be a �eld. Let A ⊂ B be two discrete valuation rings containing k
with fraction �elds K ⊂ L and perfect residue �elds κA, κB. Let e = eB|A be the rami�cation
index of B over A. Then the diagram commutes:

Br(K)

res

��

∂A // H1(Gal(κA|κA),Q/Z)

e·res

��
Br(L)

∂B

// H1(Gal(κB |κB),Q/Z).

Proof. We have seen in the proof of (2.1.16), the diagram

H2(Knr|K)
vA //

res

��

H2(Gal(Knr|K),Z)

e·res

��
H2(Lnr|L)

vB
// H2(Gal(Lnr|L),Z)

is commutative. Hence the required square commutes by construction.

Proposition 2.2.21. Let A be a discrete valuation ring with fraction �eld K and perfect residue
�eld κ. Let L|K be a �nite separable extension of �elds. Let B ⊂ L be the integral closure of
A in L. B is a semi-local Dedekind ring. Let pi, i ∈ I be the non-zero prime ideals of B. Let
κi = B/pi which we assume to be separable extensions of κ. The following diagram commutes:

Br(L)

coresL|K

��

∑
i ∂i //⊕

i∈I H
1(Gal(κi|κi),Q/Z)

∑
i coresκi|κ

��
Br(K)

∂A

// H1(Gal(κ|κ),Q/Z).

We brie�y illustrate how these arrows go as follows. Since L|K is a �nite separable extension
of �elds, we obtain L ⊂ Ks and hence we can identify Br(L) with H2(Ks|L). Moreover,
Gal(Ks|L) ⊂ Gal(Ks|K) is a subgroup of �nite index Card(Gal(L|K)). Therefore we obtain a
corestriction homomorphism

coresL|K : H2(Ks|L)→ H2(Ks|K).

Let vi be the valuation of L associated to pi extending the valuation vA and let Li,nr be the
maximal unrami�ed extension of L with respect to vi contained in Ks. Therefore we obtain a
residue homomorphism

∂i : Br(L)→ H1(Gal(κi|κi),Q/Z)
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for each i. Finally, κi|κ is a �nite separable extension, so κ is also an algebraic closure of κi.
Moreover, Gal(κ|κi) is a subgroup of Gal(κ|κ) of �nite index, and the corestriction homomor-
phism

coresκi|κ : H1(Gal(κ|κi),Q/Z)→ H1(Gal(κ|κ),Q/Z)

is de�ned as usual.

Proposition 2.2.22. Let A be a discrete valuation ring with perfect residue �eld κ. Let K be
its fraction �eld and let vA : K× → Z be the associated valuation. Take ξ ∈ H1

ét(A,Q/Z). Let ξ
be the image of ξ under the reduction map

H1
ét(A,Q/Z)→ H1

ét(κ,Q/Z),

and let ξK be the image of H1
ét(A,Q/Z) in H1

ét(K,Q/Z). For any a ∈ K×, we have

∂A((ξK , a)) = vA(a) · ξ ∈ H1(κ,Q/Z).

Proof. For a proof, see [8], proposition 1.3.

2.2.4 Unrami�ed Brauer groups

There are two equivalent ways to de�ne the unrami�ed Brauer group of a variety X over
a �eld k. We �rst brie�y recall the birational invariance of the Brauer group Br(X). More
detailed arguments are contained in [23], III, section 7.

Proposition 2.2.23. Let f : X → Y be a birational morphism of integral smooth proper
varieties over a �eld of characteristic zero. Then the induced map Br(Y ) → Br(X) of the
Brauer groups is an isomorphism.

Let X be an integral smooth proper variety over a �eld k and let k(X) be the function �eld
of X. Let A be a discrete valuation ring of rank one such that k ⊂ A and k(X) is the fraction
�eld of A, and let κA be the residue �eld. We have constructed the residue homomorphism
∂A : Br(k(X)) → H1(κA,Q/Z). Let x ∈ X(1) be a point of codimension 1, then the above
construction applies to the local ring OX,x. Since X is regular, there is an injection Br(X) →
Br(k(X)). Similarly, for each x ∈ X, we have an injection Br(OX,x)→ Br(k(X)). We have the
well-known

Theorem 2.2.24. Let k be a �eld of characteristic zero and let X be an integral smooth proper
variety over k. Let k(X) be the function �eld of X. For an element α ∈ Br(k(X)), the following
are equivalent:

(1) α lies in Br(X).
(2) For any x ∈ X, α lies in Br(OX,x).
(3) For any x ∈ X(1), α lies in Br(OX,x); equivalently, the residue of α at x vanishes.
(4) For any discrete valuation ring A ⊂ k(X) containing k and with fraction �eld k(X), α

lies in Br(A); equivalently, the residue ∂A(α) vanishes.
If these conditions are ful�lled, and if Y is an integral smooth proper variety over k which

is k-birationally equivalent to X, then
(5) α lies in Br(Y ).
(6) For any y ∈ Y , α lies in Br(OY,y).

Proof. First of all, suppose all of (1) to (4) hold. Then (5) holds since Br(X) is isomorphic
to Br(Y ) and (6) holds by the equivalence of (1) and (2). Now we only need to prove the
equivalence of (1) to (4).

(1)⇒(2). For any x ∈ X, we have a morphism SpecOX,x → X and it induces Br(X) →
Br(OX,x). Both groups are contained in Br(k(X)) and hence Br(X)→ Br(OX,x) is an injection.

(2)⇒(3). This is trivial.
(3)⇒(1). By assumption for each x ∈ X(1), α ∈ Br(OX,x) and it follows that

α ∈ Ker
(

Br(k(X))→ H1(κ(x),Q/Z)
)
.
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Recall that we have an exact sequence

0→ Br(X)→ Br(k(X))→
⊕

x∈X(1)

H1(κ(x),Q/Z),

we conclude α lies in the kernel of the third arrow, i.e. α ∈ Br(X).

De�nition 2.2.8. The elements of Br(k(X)) satisfying conditions (1) to (4) above form a group,
denoted by Brnr(k(X)|k) or Brnr(X). We call it the unrami�ed Brauer group of the �eld
k(X) over k.

Remark 2.2.25. Let k be a �eld of characteristic zero and let X be a smooth geometrically
integral variety over k. We can embed X into a smooth and proper variety Xc by Hironaka's
theorem on resolution of singularities. It is possible to identify Brnr(X) with the Brauer group
Br(Xc) of Xc. The unrami�ed Brauer group Brnr(X) also provides an easier way to compute
Br(Xc) by residue homomorphisms.

2.3 Hasse principle, weak and strong approximation

In this section we introduce the Hasse principle, weak approximation and strong approxima-
tion for varieties over number �elds. Let k be a number �eld and let Ω be the set of places of
k. The main reference of this section is [47], �5.1.

2.3.1 Hasse principle, weak and strong approximation

De�nition 2.3.1. A class of geometrically integral varieties over a number �eld k satis�es the
Hasse principle if for every variety X in this class, the condition X(kv) 6= ∅ for all places
v ∈ Ω implies X(k) 6= ∅.

The Hasse principle is also called the local-global principle. We say a k-variety X is a
counter-example to the Hasse principle if X(kv) 6= ∅ for each place v, but X(k) = ∅.

Here is a list of some classical and more recent results on the Hasse principle. All cubics
are assumed to be geometrically integral, non-conical (can not be reduced to a lesser number of
variables by a linear transformation), and of codimension 1. For more detailed illustrations, see
[47], page 99.

Theorem 2.3.1. The following classes of geometrically integral varieties over a number �eld k
satisfy the Hasse principle:

(1) smooth projective quadrics (Minkowski and Hasse);
(2) Severi-Brauer varieties (Châtelet);
(3) smooth projective cubics in PnQ for n ≥ 9 (Hooley);
(4) principal homogeneous spaces under simply conncected, or adjoint semisimple groups

(Kneser, Harder and Chernousov).

Next, we suppose X(kv) 6= ∅ for each v ∈ Ω. Then we have the diagonal embedding
X(k) → X(kΩ). It is natural to ask the density of the image of X(k) in

∏
v∈ΩX(kv) with

respect to the product topology.

De�nition 2.3.2. Let X be a geometrically integral smooth variety over a number �eld k.
(1) We say X satis�es weak approximation if the image under the diagonal embedding of

X(k) is dense in X(kΩ) with respect to the product topology.
(2) Let S ⊂ Ω be a subset. We say X satis�es weak approximation away from S if X(k)

is dense in
∏
v∈Ω−S X(kv) with respect to the product topology.

The following proposition is useful when we study weak approximation because it allows us
to approximate only �nitely many places.

55



2.3. HASSE PRINCIPLE, WEAK AND STRONG APPROXIMATION

Proposition 2.3.2. Let k be a number �eld and let X be a k-variety. Suppose X(kv) 6= ∅ for
each v ∈ Ω. Then X satis�es weak approximation i� for any �nite set S ⊂ Ω, X(k) is dense in∏
v∈S X(kv).

Proof. Suppose X satis�es weak approximation. Let (Pv) ∈
∏
v∈S X(kv) be the point we need

to approximate. Take any (Qv) ∈
∏
v∈ΩX(kv) with Qv = Pv for v ∈ S, then we can �nd

Q ∈ X(k) arbitrarily close to (Qv). In particular, Q is also arbitrarily close to Pv for v ∈ S.
Conversely, let Z be the closure of X(k) in

∏
v∈ΩX(kv). By construction of the Tychono�

topology, an open base for topology is of the form{∏
v∈S

Uv ×
∏
v/∈S

X(kv) | for any �nite subset S ⊂ Ω
}
.

Here Uv ⊂ X(kv) is an open subset for each v ∈ S. Now let S ⊂ Ω be any �nite subset. By
assumption X(k) is dense in

∏
v∈S X(kv), hence

Z
⋂(∏

v∈S
Uv ×

∏
v/∈S

X(kv)
)
6= ∅.

This implies that Z meets every non-empty open subsets of
∏
v∈ΩX(kv) and hence Z =∏

v∈ΩX(kv), as required.

Remark 2.3.3. (1) We should take care of the extreme case
∏
v∈ΩX(kv) = ∅. In this case, we

say X satis�es weak approximation by convention.
(2) Suppose

∏
v∈ΩX(kv) 6= ∅. If X satis�es the weak approximation, then in particular

X(k) is non-empty and hence X satis�es the Hasse principle.

De�nition 2.3.3. Let X be a geometrically integral smooth variety over a number �eld k.
(1) We say X satis�es strong approximation if X(k) is dense in X(Ak) with respect to

the adelic topology.
(2) We say X satis�es strong approximation away from S, if X(k) is dense in X(ASk ) with

respect to the adelic topology.

Suppose X is a proper, smooth and geometrically integral variety over a number �eld k.
Applying (1.5.18), we obtain X(Ak) = X(kΩ). Moreover, the adelic topology and the product
topology are equivalent for proper varieties. Therefore weak approximation and strong approx-
imation are equivalent in this case.

2.3.2 Birational invariance

Roughly speaking, the existence of k-points and satisfying weak approximation are stable
under birational maps.

Lemma 2.3.4. Let k be a number �eld and let kv be its completion with respect to a place
v ∈ Ω. Let X be a smooth integral variety over kv. Let U ⊂ X be a non-empty Zariski open
subset. Then the set U(kv) is dense in X(kv) with respect to the v-adic topology. In particular,
if X(kv) is non-empty, then U(kv) is also non-empty.

Proof. Suppose X is of dimension n. Let P ∈ X(kv) be the kv-point we need to approximate.
Since P is a smooth point on X, we can �nd a Zariski open neighbourhood V such that

V ' Spec
kv[T1, . . . , Tn+m]

(F1, . . . , Fm)
and rank

(∂Fi
∂Tj

(P )
)

= m.

Note that the map

F : kn+m
v → kmv , (x,y) 7→ (F1(x,y), . . . , Fm(x,y))
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satisfying

det
( ∂Fi
∂Tn+j

(P )
)
6= 0,

hence by implicit function theorem we obtain a map

f : knv → kmv , x 7→ (f1(x), . . . , fm(x))

such that F (x, f(x)) = 0. Therefore there exists open subsets Ω1 ⊂ V (kv) and Ω2 ⊂ knv such
that P ∈ Ω1 and the map θ : Ω1 → Ω2 induced by ϕ : V → Ankv is a homeomorphism. Moreover,
the Zariski closure G of ϕ(U c∩V ) in Ank is of dimension strictly smaller than n. We can therefore
take the points in Ω2 − G arbitrarily close to ϕ(P ). Its inverse image by θ−1 is not in U c and
arbitrarily close to P .

Proposition 2.3.5. Let X,Y be two smooth geometrically integral and birationally equivalent
varieties over a number �eld k. Then X satis�es weak approximation if and only if Y satis�es
the weak approximation. In particular, k-rational geometrically integral smooth varieties over k
satisfy weak approximation.

Proof. It will be su�cient to prove the proposition in the case Y = X − W where W ⊂ X
is a proper closed sub-variety of X, i.e. Y is a dense open set of X. Then if X satis�es
weak approximation, then so does Y by de�nition of induced topology. Conversely, by the v-
adic implicit function theorem, Y (kv) is dense in X(kv) by (2.3.4). Suppose Y satis�es weak
approximation and let (xv) ∈

∏
vX(kv) be the given point we need to approximate. Choose

(yv) ∈
∏
v Y (kv) ⊂

∏
vX(kv) arbitrarily close to (xv) with respect to the product topology. By

hypothesis, there is a rational point y ∈ Y (k) whose image in
∏
v Y (kv) is arbitrarily close to

(yv). Hence y is also close to (xv), i.e. X satis�es weak approximation.

The Zariski density of rational points also follows from weak approximation.

Corollary 2.3.6. Let k be a number �eld and let X be a smooth geometrically integral variety
over k. Suppose X(k) 6= ∅ and X veri�es weak approximation. Then X(k) is Zariski dense in
X.

Proof. Let P ∈ X be any point. We need to show for any non-empty open neighbourhood
U of P , U ∩ X(k) is non-empty. Indeed, U is open dense in X and hence U satis�es weak
approximation. In particular, U(k) = U ∩X(k) is non-empty.

Finally, we prove the existence of a k-point is stable under birational maps for proper va-
rieties. This also shows that satisfying the Hasse principle is stable under birational maps for
proper varieties.

Lemma 2.3.7 (Lang-Nishimura). Let k be a �eld and let f : Y → X be a rational map of
schemes over k. Assume that Y has a smooth k-point and X is proper. Then X(k) 6= ∅.

Proof. We do induction on n = dimY . n = 0 is clear. For n > 0, let y be a smooth k-point of Y .
Consider the blow-up Bly Y of Y at y with exceptional divisor E ' Pn−1

k and the composition
Bly Y → Y → X. By the valuation criterion of properness, this composition is de�ned outside
a set of codimension at least 2, so the restricting to E, we obtain a rational map E → X. Now
X(k) 6= ∅.

2.4 The Brauer-Manin obstruction

Recall that for a number �eld k, the local invariant of the Brauer group of kv is a homomor-
phism

invv : Br(kv) ↪→ Q/Z.
It is an isomorphism for each �nite place v. If v is a real place, then invv identi�es Br(R) with
1
2Z/Z. If v is a complex place, then Br(C) = 0. We will frequently use the following short exact
sequence.
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Proposition 2.4.1 (Albert-Brauer-Hasse-Noether). Let k be a number �eld, then we have an
exact sequence of abelian groups

0→ Br(k)→
⊕
v∈Ω

Br(kv)→ Q/Z→ 0.

Here the second arrow is the natural diagonal map and the third arrow is the sum of local
invariants invv : Br(kv) ↪→ Q/Z.

2.4.1 Brauer-Manin pairing

Lemma 2.4.2. Let X be a variety over a number �eld k. Let A ∈ Br(X). For any �nite subset
S ⊂ Ω, there exist a scheme X of �nite type over Ok,S, an element A ∈ Br(X ) and a morphism
X ↪→ X identifying X with the generic �bre of X → SpecOk,S such that Br(X )→ Br(X) sends
A to A.

Proof. Now SpecOk is an integral scheme and the �eld k is its function �eld. X is a variety,
hence X → Spec k is of �nite presentation. Applying (1.5.10) we obtain a dense open subscheme
U of SpecOk and a scheme X of �nite presentation over U such that X ' Xk. We may shrinking
U to an a�ne open subscheme SpecOk,S0 for some �nite set S0 ⊂ Ω. Now we consider {XOk,T }
where T runs through all �nite subsets of Ω containing S0 and it forms a �ltrated inverse system
and lim←−XOk,T ' X. This implies Br(X) ' lim−→Br(XOk,T ) (Cf. [40], proposition 6.6.10). Hence
A ∈ Br(X) comes from an element of Br(XOk,S ) for some �nite set S ⊇ S0. The scheme XOk,S
is as required.

Proposition 2.4.3 (Brauer-Manin pairing). Let X be a smooth and geometrically integral va-
riety over a number �eld k. Then we have a well-de�ned pairing

Br(X)×X(Ak)→ Q/Z, (A, (xv)) 7→
∑
v∈Ω

invv(A(xv)).

Proof. (1) If xv is a kv-point of X, then apply Br(−) we obtain a map Br(xv) : Br(X)→ Br(kv)
induced by xv. We de�ne A(xv) to be the image of A under this induced map. Hence invv(A(xv))
indeed lies in Q/Z.

(2) Then we claim the sum is �nite. By (2.4.2), we can �nd a scheme X over Ok,S and
a morphism Br(X ) → Br(X) sending A to A. We may assume xv ∈ X (Ov) for all v /∈ S
by enlarging S. Note that (xv) is an adelic point, so S is still a �nite set. Then it follows
A(xv) = A(xv) ∈ Br(Ov). Since the Brauer group of a valuation ring of a local �eld is trivial,
it follows that Br(Ov) = 0 and A(xv) = 0 for almost all v.

Notation 2.4.1. Let Σ ⊂ Br(X) be a subset. Then we write

X(Ak)Σ = {(xv) ∈ X(Ak) |
∑
v∈Ω

invv(A(xv)) = 0, ∀A ∈ Σ}.

In particular, we obtain a subset X(Ak)Br(X) of X(Ak) and this is just the right kernel of the
Brauer-Manin pairing.

Lemma 2.4.4. Let X be a smooth and geometrically integral variety over a number �eld k.
Recall that Br0(X) = Im(Br(k) → Br(X)). Then X(Ak)Br0(X) = X(Ak) and hence the pairing
Br(X)×X(Ak)→ Q/Z can be considered as a pairing(

Br(X)/Br0(X)
)
×X(Ak)→ Q/Z.

Proof. Indeed, let p : X → Spec k be the structral morphism and let p∗ : Br(k) → Br(X) be
the induced map. Let A be an element in Br0(X), then A = p∗(α) for some α ∈ Br(k). Take
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any (xv) ∈ X(Ak) and we write x∗v : Br(X) → Br(kv) for the homomorphism induced by the
k-morphism xv : Spec kv → X. By construction, we have∑

v∈Ω

invv
(
p∗(α)(xv)

)
=
∑
v∈Ω

invv
(
(x∗v ◦ p∗)(α)

)
= (
∑
v∈Ω

invv) ◦∆(α) = 0

by the reciprocity law (2.4.1), where ∆ denotes the diagonal embedding Br(k)→
⊕

Br(kv).

Lemma 2.4.5. Let us write ∆ : X(k) → X(Ak) for the diagonal embedding. If x ∈ X(k) is a
k-point on X, then

∑
v∈Ω invv

(
A(x)

)
= 0 for each A ∈ Br(X). Here we view x ∈ X(k) as an

element in X(kv). In other words, we have ∆(X(k)) ⊂ X(Ak)Br(X).

Proof. Let A ∈ Br(X) and let x ∈ X(k). We write x∗ : Br(X)→ Br(k) for the homomorphism
induced by x ∈ X(k). Then we de�ne the evaluation map

evA : X(k)→ Br(k), x 7→ x∗(A).

Similarly we can de�ned the evaluation map

evA : X(Ak)→
⊕

Br(kv), (xv) 7→ (x∗v(A)).

Note that x∗v(A) ∈ Br(Ov) = 0 for all but �nitely many places v, hence the map evA : X(Ak)→⊕
Br(kv) is well-de�ned. Now we obtain the following commutative diagram

X(k)

��

// X(Ak)

��
0 // Br(k) //⊕Br(kv) // Q/Z // 0,

with exact bottom row. The Brauer-Manin pairing is the map obtained via X(Ak) and it is 0
by commutativity and exactness of the bottom row.

Remark 2.4.6 (Functionality of the kernel). Let k be a number �eld, let X and Y be two
k-varieties and let f : Y → X be a k-morphism. We denote by f∗ : Br(X) → Br(Y ) the
homomorphism induced by f . Take (yv) ∈ Y (Ak) and A ∈ Br(X). Then∑

v∈Ω

invv
(
(f∗A)(yv)

)
=
∑
v∈Ω

invv
(
(y∗v ◦ f∗)(A)

)
=
∑
v∈Ω

invv
(
A(f ◦ yv)

)
.

It follows that (f ◦ yv) ∈ X(Ak)Br(X) as soon as (yv) ∈ Y (Ak)Br(Y ) and thus we have a well-
de�ned map

f : Y (Ak)Br(Y ) → X(Ak)Br(X), (yv) 7→ (f ◦ yv).

In particular, X(Ak)Br(X) = ∅ implies Y (Ak)Br(Y ) = ∅.

Lemma 2.4.7. Let k be a number �eld and let X be a smooth and geometrically integral k-
variety. Let A ∈ Br(X).

(1) The map evA : X(kv)→ Br(kv), xv 7→ A(xv) is locally constant with respect to the v-adic
topology for each place v ∈ Ω.

(2) The map X(Ak) → Q/Z, (xv) 7→
∑
v∈Ω invv(A(xv)) is locally constant and X(Ak)A is

open and closed in X(Ak).

Proof. See [40], page 209, proposition 8.2.9.

Corollary 2.4.8. Let k be a number �eld and let X be a smooth and geometrically integral
k-variety. Then X(Ak)Br(X) is a closed subset of X(Ak).

Proof. By the previous lemma, it is clear that the complement of X(Ak)Br(X) in X(Ak) is open.
It follows that X(Ak)Br(X) is a closed subset of X(Ak).
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The product Brauer-Manin pairing

Proposition 2.4.9 (The product Brauer-Manin pairing). Let X be a smooth and geometrically
integral variety over a number �eld k. We write kΩ =

∏
v∈Ω kv as usual. Then we have a

well-de�ned pairing

Brnr(X)×X(kΩ)→ Q/Z, (A, (xv)) 7→
∑
v∈Ω

invv(A(xv)).

Proof. By Hironaka's theorem (1.4.7), we can �nd a smooth proper variety Xc containing X as a
dense open subset. The elements of Brnr(X) uniquely extend to elements of Br(Xc). Note that
X(kΩ) ⊂ Xc(kΩ) = Xc(Ak) and hence

∑
v∈Ω invv(A(xv)) is a �nite sum by the Brauer-Manin

pairing.

Notation 2.4.2. Let us put

X(kΩ)Brnr(X) = {(xv) ∈ X(kΩ) |
∑
v∈Ω

invv(A(xv)) = 0, ∀A ∈ Brnr(X)}

to be the right kernel of the product Brauer-Manin pairing.

Remark 2.4.10. We have seen Br(Xc) ⊂ Br(X) and hence Brnr(X) ⊂ Br(X) by Brnr(X) =
Br(Xc). We conclude that X(Ak)Br(X) ⊂ X(kΩ)Brnr(X). For a �xed A ∈ Brnr(X), the function∑
v∈Ω invv(A(xv)) is locally constant in the product topology. Thus X(kΩ)Brnr(X) ⊂ X(kΩ) is

closed.

2.4.2 The Brauer-Manin obstruction

Now we can view X(k) as a subset of X(Ak)Br(X) via the diagonal embedding. Therefore
X(Ak)Br(X) potentially obstructs the existence of k-points on X.

De�nition 2.4.3. Let X be a variety over a number �eld k.
(1) We say X has a Brauer-Manin obstruction to the Hasse principle if X(Ak)Br(X) = ∅

and X(Ak) 6= ∅.
(2) We say the Brauer-Manin obstruction is the only obstruction to the Hasse principle

for X if X(Ak)Br(X) 6= ∅ implies X(k) 6= ∅.
(3) We say there is no Brauer-Manin obstruction to the Hasse principle if X(Ak)Br(X) 6= ∅.

Suppose X(kΩ)Brnr(X) ( X(kΩ). Then X(k) ⊂ X(kΩ)Brnr(X) and X(kΩ)Brnr(X) ⊂ X(kΩ)
being closed imply X(k) cannot be dense in X(kΩ). This means X(kΩ) 6= X(kΩ)Brnr(X) is an
obstruction to weak approximation for X.

De�nition 2.4.4. Let X be a smooth and geometrically integral variety over a number �eld k.
(1) We say X(kΩ) 6= X(kΩ)Brnr(X) is the Brauer-Manin obstruction to weak approx-

imation for X.
(2) We say the Brauer-Manin obstruction is the only obstruction to the weak approxima-

tion if X(k) is dense in X(kΩ)Brnr(X), i.e. X(k) = X(kΩ)Brnr(X).
(3) We say that there is no Brauer Manin obstruction to weak approximation if X(kΩ) =

X(kΩ)Brnr(X).

In practice we will frequently in the situation that X is projective. In this case the Brauer-
Manin obstruction has an easier expression.

De�nition 2.4.5. Let X be a proper, smooth and geometrically integral variety over a number
�eld k. Then X(Ak) = X(kΩ) and Br(X) = Brnr(X) are ful�lled.

(1) We say X(Ak) 6= X(Ak)Br(X) is the Brauer-Manin obstruction to weak approxi-
mation for X.

(2) We say the Brauer-Manin obstruction is the only obstruction to the weak approxima-
tion if X(k) is dense in X(Ak)Br(X).
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2.4.3 Harari's formal lemma

We will use the following result in the sequel. More information is contained in [24].

De�nition 2.4.6. Let X be an integral variety over a number �eld k and let k(X) be its
function �eld. Take A1, . . . , Ar ∈ Br(k(X)). Let 〈A1, . . . , Ar〉 be the subgroup of Br(k(X))
generated by these Ai and let Γ = Br(X) ∩ 〈A1, . . . , Ar〉.

(1) We say there exists Brauer-Manin obstruction to the Hasse principle associated
to Γ if for each adelic point (Pv) ∈ X(Ak) and an element A ∈ Γ such that

∑
v∈Ω invv(A(Pv)) 6=

0 in Q/Z.
(2) We say there exists Brauer-Manin obstruction to weak approximation associ-

ated to Γ if there exists an adelic point (Pv) ∈ X(Ak) and an element A ∈ Γ such that∑
v∈Ω invv(A(Pv)) 6= 0 in Q/Z.

Theorem 2.4.11. Let X be a smooth, projective and geometrically integral variety over k. Take
α ∈ Br(k(X)) which is not in Br(X). Let U ⊂ X be a non-empty Zariski open subset such that
α ∈ Br(U). Then there exist in�nitely many places v of k such that U(kv)→ Br(kv) induced by
α takes a non-zero value.

Proof. See [24], Thm 2.1.1.

Lemma 2.4.12 (Harari). Let k be a number �eld and let Ω be the set of all places of k. Let X
be a smooth, projective and geometrically integral k-variety. Suppose X(kv) 6= ∅ for all v ∈ Ω.
Let A1, . . . , Ar ∈ Br(k(X)) and let Γ be as above. Let U be a non-empty Zariski open subset of
X such that Ai ∈ Br(U) for all i. Let S ⊂ Ω be a �nite subset.

(1) If there is no Brauer-Manin obstruction to the Hasse principle associated to Γ for X,
then there exists a �nite set T ⊃ S and a family (Pv) ∈

∏
v∈T U(kv) such that∑

v∈T
invv(Ai(Pv)) = 0, i = 1, . . . , r.

(2) If there is no Brauer-Manin obstruction to weak approximation associated to Γ for X,
then for all family (Pv) ∈

∏
v∈S U(kv), there exists a �nite set T ⊃ S and a family (Pv) ∈∏

v∈T−S U(kv) such that ∑
v∈T

invv(Ai(Pv)) = 0, i = 1, . . . , r.

Proof. We write multiplicatively the group law of Br(k(X)). Let ni be the order of Ai in
Br(k(X)) for all i. Since the Brauer-Manin pairing Br(U) × U(kv) → Q/Z is additive in the
�rst variable, invv(Ai(Pv)) ∈ Z/niZ for all i and all Pv ∈ U(kv). For v ∈ Ω, we write Ev for the
subset

Ev =
{

(invv(Ai(P
′
v)) ∈

∏r
i=1 Z/niZ | P ′v ∈ U(kv)

}
of
∏r
i=1 Z/niZ. Let Γ be the subgroup of

∏r
i=1 Z/niZ generated by{

h = (hi) ∈
∏r
i=1 Z/niZ | h ∈ Ev for in�nitely many v ∈ Ω

}
.

By construction of Γ, there exists a �nite set S′ ⊂ Ω such that for all v /∈ S′ and for all
P ′v ∈ U(kv), we have (invv(Ai(P

′
v)))1≤i≤r ∈ Γ. Take (Pv) ∈

∏
v∈Ω U(kv). Let S ⊂ Ω be a �nite

subset containing S′ and take

WS =
(∑
v∈S

invv(Ai(Pv))
)

1≤i≤r ∈
r∏
i=1

Z/niZ.

(1) IfWS ∈ Γ, we have −WS = W1+· · ·+Wn whereWl ∈ Ev, 1 ≤ l ≤ n for in�nitely many v.
Thus there exist pairwise distinct places v1, . . . , vn not in S, such that Wl ∈ Evl for 1 ≤ l ≤ n.
Write S′′ = {v1, . . . , vn}, and take T = S ∪ S′′. Since Wl ∈ Evl , we can �nd Pvl ∈ U(kvl)
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such that (invv(Ai(Pvl)))1≤i≤r = Wl for 1 ≤ l ≤ n. Then we have
∑
v∈T invv(Ai(Pv)) = 0 by

WS +
∑n
l=1Wl = 0.

(2) If WS /∈ Γ, there exists a character
∏r
i=1 Z/niZ → Q/Z which vanishes on Γ, but does

not vanish at WS . Explicitly, there exist integers αi for 1 ≤ i ≤ r such that for any element
(h1, . . . , hr) ∈ Γ, we have

∑r
i=1 αihi = 0 in Q/Z while

∑
v∈S invv(

∏r
i=1A

αi
i (Pv)) 6= 0 in Q/Z.

But for all v /∈ S′ and P ′v ∈ U(kv), we have (invv(Ai(P
′
v)))1≤i≤r ∈ Γ which implies that

invv(
∏r
i=1A

αi
i (P ′v)) = 0 in Q/Z. By (2.4.11), we conclude A =

∏r
i=1A

αi
i ∈ Br(k(X)) is in fact

lies in Br(X) because invc(A(P ′v)) 6= 0 holds potentially for v ∈ S′ which is �nite. We have∑
v∈Ω invv(A(Pv)) =

∑
v∈S′ invv(A(Pv)) 6= 0 in Q/Z since

∑
v∈S invv(

∏r
i=1A

αi
i (Pv)) 6= 0.

Now, there's no Brauer-Manin obstruction to the Hasse principle associated to (A1, . . . , Ar)
for X, we can take (Pv) ∈

∏
v∈Ω U(kv) such that for all B ∈ Br(X),

∑
v∈Ω invv(B(Pv)) = 0

holds. Hence the case (2) above can not happen and the assertion follows from the case (1).
Similarly, there's no Brauer-Manin obstruction to weak approximation, it is known for every
element (Pv) ∈

∏
v∈Ω U(kv), we are in the above case.
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Chapter 3

Torsors and descent obstruction

3.1 De�nition of torsors

3.1.1 Group schemes

Let X be a base scheme. Before the main topic of this section, we brie�y recall the notion
of X-group scheme and the action of an X-group scheme on an X-scheme.

De�nition 3.1.1. Let X be a scheme and let G be an X-scheme. We say G is an X-group
scheme if there exists morphisms

µ : G×X G→ G, e : X → G and inv : G→ G,

such that µ, e and inv satisfy the group axioms for group operation, neutral element and inverse
element respectively. More precisely, these can be visualized as the following commutative
diagrams.

(1) Associativity:

G×X G×X G

id×µ
��

µ×id // G×X G

µ

��
G×X G

µ
// G.

(2) Left neutral element and right neutral element:

X ×X G

&&

e×id // G×X G

µ

��

G×X X
id×eoo

xx
G.

(3) Inverse:

G

��

inv× id// G×X G

µ

��

G

��

id× invoo

X
e

// G X
e

oo

De�nition 3.1.2. Let X be a scheme, let G be an X-group scheme and let Y be an X-scheme.
A right G-action on Y is given by a morphism ρ : Y ×X G→ Y such that the composition

Y ' Y ×X X
id×e // Y ×X G

ρ // Y
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is the identity on Y , and such that the diagram

Y ×X G×X G
ρ×id //

id×µ
��

Y ×X G

ρ

��
Y ×X G

ρ
// Y

is commutative.

Remark 3.1.1. Let T be an X-scheme. Then the action ρ : Y ×X G→ Y induces a map

ρT : Y (T )×X(T ) G(T )→ Y (T ).

The �rst request says ρT (y, id) = y for each y ∈ Y (T ) where id ∈ G(T ) is the neutral element.
And the second request says ρT (y, gh) = ρT (ρT (y, h), g) for any g, h ∈ G(T ). Hence we obtain
the action by the group G(T ) on the set Y (T ) in the usual sense. We will denote this action by
(y, g) 7→ y.g.

3.1.2 Torsors over schemes

De�nition 3.1.3. Let X be a scheme and let G be an fppf X-group scheme. Let f : Y → X
be an X-scheme endowed with a G-action ρ : Y ×X G→ Y such that the diagram

Y ×X G
ρ //

f×idG

��

Y

f

��
X ×X G

pr1
// X

commutes. We say Y is an X-torsor under G (or a G-torsor over X) if f : Y → X satis�es
the following equivalent properties:

(1) the morphism p : Y → X is fppf, and the morphism Y ×X G→ Y ×X Y induced by

Y ×X G

ρ

**
pr1

��

&&
Y ×X Y

��

// Y

��
Y // X

is an isomorphism;
(2) there exists a covering {Ui → X}i∈I in the �at topology such that for each i ∈ I,

YUi = Y ×X Ui with the action of GUi = G×X Ui is isomorphic to GUi with the right action of
GUi on itself.

Remark 3.1.2. If we apply the functor of points, the morphism obtained in (1) can be described
as follows. Let T an X-scheme, then we obtain a bijection of sets

Y (T )×X(T ) G(T )→ Y (T )×X(T ) Y (T ), (y, g) 7→ (y, ρ(y, g))

for y ∈ Y (T ) and g ∈ G(T ). In particular, for any y, z ∈ Y (T ), there exists unique g ∈ G(T )
such that ρ(y, g) = z, i.e. the G(T )-action on Y (T ) is simply transitive. In the sequel, we will
simply denote this morphism by (y, g) 7→ (y, y.g).
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Remark 3.1.3. We brie�y sketch the equivalence of (1) and (2). (1) implies (2) since Y → X
is a covering in the �at topology. Conversely, let U =

⊔
Ui be the disjoint union of all the Ui.

Then U → X is faithfully �at and locally of �nite type. By assumption, we have YUi ' GUi and
it follows that YU ' GU . Hence YU → U veri�es the property of (1). Y → X veri�es (1) follows
from descent with respect to morphisms which are faithfully �at and locally of �nite type.

Let G be an fppf X-scheme. Then in particular, G → X is an X-torsor under G. By the
compatibility assumption of an X-torsor, the right G-action on X is trivial. For this reason, the
torsor G→ X with the right G-action is called the trivial torsor.

De�nition 3.1.4. Let Y1 and Y2 be two X-torsors under G. A morphism ϕ : Y1 → Y2 of
X-torsors under G is a morphism ϕ : Y1 → Y2 of X-schemes such that the diagram

Y1 ×X G

ρ1

��

ϕ×id // Y2 ×X G

ρ2

��
Y1 ϕ

// Y2

commutes. Here ρi denotes the G-action on Yi for i = 1, 2. If we apply the functor of points,
the compatibility of G-actions can be read as ρ2(ϕ(y1), g) = ϕ(ρ1(y1, g)).

Lemma 3.1.4. Let G be an fppf group scheme over X. An X-torsor Y → X under G is trivial
i� the structural morphism f : Y → X has a section s : X → Y .

Proof. Let Y → X be a trivial X-torsor under G. Note that Y → X is fppf and hence Y → X
is surjective. Then each �bre Yx over x ∈ X is non-empty and is isomorphic to the group Gx,
where Gx stands for the �bre of G → X at x. Now we obtain a section s : X → Y , x → 1Yx
where 1Yx is the unique element corresponding to the neutral element of Gx.

Conversely, let s : X → Y be a section of f : Y → X and let ρ : Y ×X G → Y be the right
G-action on Y . Since Y → X is an X-torsor under G, the morphism π : Y ×X G → Y ×X Y
induced by p1 and ρ is an isomorphism. Then we obtain an isomorphism

G ' X ×Y Y ×X G
idX ×π// X ×Y Y ×X Y ' Y

where the existence of X ×Y Y ×X G and X ×Y Y ×X Y are given by the base change of
Y ×X G→ Y and Y ×X Y → Y to the morphism s : X → Y .

Proposition 3.1.5. The category of X-torsors under G is a groupoid. More precisely, any
morphism Y1 → Y2 compatible with canonical projections to X and the action of G is an iso-
morphism.

Proof. Let f : Y1 → Y2 be a morphism of X-torsors under G. By de�nition, there are coverings
{Uij → X}i∈Ij ,j=1,2 of X in the �at topology over X such that Yj ×X Uij ' G×X Uij . We can
therefore take a common re�nement {Vj → X}j∈J of {Ui1 → X}i∈I1 and {Ui2 → X}i∈I2 , such
that Yi ×X Vj ' G ×X Vj for i = 1, 2 and for each j ∈ J . We take V =

⊔
J Vj and we obtain

an fppf morphism V → X. Then Yi ×X V is a trivial V -torsor under GV for i = 1, 2 and it
follows that Y1 ×X V ' Y2 ×X V . By descent theory by fppf morphisms, Y1 → Y2 is also an
isomorphism.

3.2 Torsors over �elds

Let k be a �eld and let ks be an algebraic closure of k. Let Σ be a set endowed with an action
of the Galois group Gal(ks|k). Then we denote by (g, σ) 7→ gσ for the action of g ∈ Gal(ks|k)
on σ ∈ Σ. Let G be an algebraic group de�ned over k. The left action of G on itself is denoted
by (s, x) 7→ s.x, and the right action is denote by (s, x) 7→ x.s. For an arbitrary scheme X over
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k, we write X for X ×k ks. We have an action of Gal(ks|k) on X which can be visualized as
follows

X ×k ks
idX ×g∗ // X ×k ks

X X,

where g∗ : Spec ks → Spec ks is the morphism induced by g ∈ Gal(ks|k). The G-actions on G
are compatible with the action of Gal(ks|k): for s1, s2 ∈ G(ks), g ∈ Gal(ks|k), we have

g(s1s2) = gs1 · gs2.

Let X be a variety over a �eld k. Then X is of �nite type over k implies that X is noetherian.
The structure sheaf OX is a free coherent OX -module. These two facts show that OX is �at
over X and consequently X is fppf over k. In particular, algebraic groups over k are also fppf
over k. Hence we can obtain Spec k-torsors under G from the previous section and we will say
k-torsors to simplify the notation.

De�nition 3.2.1. Let X be a variety over k and let G be an algebraic group over k.
(1) A k-torsor under G is a non-empty k-varietyX equipped with a right actionX×kG→ X

of G, denoted by (x, g) 7→ x.g, such that the morphism

X ×k G→ X ×k X, (x, g) 7→ (x, x.g)

is a k-isomorphism. A left k-torsor under G is a non-empty k-variety X equipped with a left
action of G such that the morphism G ×k X → X ×k X is a k-isomorphism. Unless otherwise
stated, a torsor will always mean a right torsor.

(2) A morphism ϕ : X1 → X2 of k-torsors under G is a morphism of k-varieties such that
the diagram

X1 ×k G
ϕ×id //

ρ1

��

X2 ×k G

ρ2

��
X1 ϕ

// X2

commutes, where ρi : Xi×kG→ Xi is the action of G for i = 1, 2. An isomorphism of k-torsors
under G is an isomorphism of k-varieties compatible with the G-actions.

Remark 3.2.1. Let X be a k-torsor under G. Then we obtain a bijective map

X(ks)×G(ks)→ X(ks)×X(ks), (x, g) 7→ (x, x.g).

This tells us that the right G(ks)-action on X(ks) is simply transitive. More precisely, for any
x1, x2 ∈ X(ks), there exists a unique g ∈ G(ks) such that x2 = x1.g.

Theorem 3.2.2. Let k be a �eld. Then k-torsors are quasi-projective. More generally, this also
holds with Spec k replaced by the spectrum of a Dedekind domain.

Proof. See theorem 6.4.1 in [2].

3.2.1 Twisting by Galois descent

Let F be a quasi-projective k-variety endowed with an action of G. Suppose Gal(ks|k) is
endowed with its natural pro�nite topology and G(ks) is endowed with discrete topology. Let
σ : Gal(ks|k) → G(ks) be a continuous 1-cocycle with respect to the group cohomology. Then
we have σ(g1g2) = σ(g1) · (g1σ(g2)) by the standard resolution. We de�ne the twisted action
of Gal(ks|k) on F by

ρ : Gal(ks|k)× F → F , (g, s) 7→ σ(g).gs,
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where g ∈ Gal(ks|k) and s ∈ F . Take g1, g2 ∈ Gal(ks|k), then we have

ρ(g1g2, s) = σ(g1g2).g1g2s =
(
σ(g1) · g1σ(g2)

)
.g1g2s

= σ(g1).g1ρ(g2, s) = ρ(g1, ρ(g2, s)),

hence ρ : (g, s) 7→ σ(g).gs is a well-de�ned Gal(ks|k)-action on F .

De�nition 3.2.2. Let F be a quasi-projective k-variety endowed with a G-action. Let σ :
Gal(ks|k) → G(ks) be a continuous 1-cocycle. By Weil's theorem on descent of the base �eld,
the quotient of F by the twisted action of Gal(ks|k) exists (a proof is contained in chapter 6 of
[2]). We call the quotient the twist of F by σ, and we denote it by Fσ.

Remark 3.2.3. Replacing σ by a cohomologous cocycle g 7→
(
c−1 ·σ(g) · gc

)
for c ∈ G(ks) gives

rise to an isomorphic variety. The isomorphism depends on the choice of c ∈ G(ks) and hence
the isomorphism is not canonical.

3.2.2 Classi�cation of k-torsors

Let ϕ : G→ G be an automorphism of G such that ϕ(x.s) = ϕ(x).s for any x, s ∈ G. Then
we claim ϕ can be identi�ed with Lg the multiplication of some element g ∈ G on the left.
Indeed, we can take g = ϕ(1G), then ϕ(x) = ϕ(1G.x) = ϕ(1G).x = Lg(x). Thus the group
G acting on itself on the left is the automorphism group of the pair (G, the right action of G
on G). Let σ : Gal(ks|k) → G(ks) be a continuous 1-cocycle. Thus the corresponding twisted
variety of G by σ is equipped with the right action of G making it into a right torsor under G.
We shall denote this torsor by Gσ.

Conversely, any k-torsor X under G can be obtained in this way: choose a ks-point x0 ∈
X(ks), then for any g ∈ Gal(ks|k) there is a unique element σ(g) ∈ G(ks) such that gx0 = x0.σ(g)
by the simple transitivity. Then we obtain a continuous map σ : Gal(ks|k)→ G(ks), g 7→ σ(g).
Note that

x0σ(g1g2) = g1g2x0 = g1(x0σ(g2))
∗
= g1x0

g1σ(g2) = x0σ(g1) · g1σ(g2),

where ∗ holds by the compatibility of the G(ks)-action and the Gal(ks|k)-action on X(ks). We
therefore obtain σ(g1g2) = σ(g1) · g1σ(g2), i.e. σ is a continuous 1-cocycle. Let xi ∈ X(ks) and
σi(g) be the unique element in G(ks) such that gxi = xiσi(g) for i = 1, 2. Suppose x2 = hx1 for
some h ∈ Gal(ks|k). Then we conclude

x1σ1(gh) = ghx1 = gx2 = x2σ2(g) = x1σ1(h)σ2(g),

and it follows that σ1(gh) = σ1(h)σ2(g). More explicitly, we have

σ2(g) = (σ1(h))−1 · σ1(g) · gσ1(h).

Therefore two ks-points x1 and x2 lead to cohomologous cocycles.
Summing up, cohomologous 1-cocycles give rise to isomorphic k-torsors and conversely iso-

morphic k-torsors determine cohomologous 1-cocycles. These two constructions are being inverse
to each other (x0 corresponds to the neutral element of G(ks)), and we obtain a bijection between

k-torsors under G up to isomorphism

and
the pointed set H1(k,G) = H1(Gal(ks|k), G(ks)).

The distinguished point represents the class of the trivial torsor, i.e. G with its right action on
itself.

Proposition 3.2.4. Let G be an algebraic group over k and let X be a k-torsor under G. The
following are equivalent:

(1) X is isomorphic to the trivial k-torsor G,
(2) X has a k-point, i.e. X(k) 6= ∅,

67



3.3. TORSORS OVER SCHEMES

Proof. Suppose X is isomorphic to the trivial k-torsor G. Note that G(k) contains the neutral
element, hence X(k) is non-empty. Conversely, take x ∈ X(k) and de�ne a map ϕ : G → X,
g 7→ x.g. This can be visualized by the following commutative diagram:

X ×k G //

pr2

��

X ×k X

pr2

��
G // X.

Since the morphism X ×k G → X ×k X is an isomorphism, X ×k G → X, (x, g) 7→ x.g is a
surjective morphism. It follows that ϕ is a homeomorphism. Finally by the commutativity of
the diagram above, we obtain a morphism OX → ϕ∗OG of sheaves on X. Thus ϕ : G→ X is a
k-isomorphism.

3.3 Torsors over schemes

In this section, we study the constructions of X-torsors under an fppf X-group scheme G,
the classi�cation by �ech cohomology and end up with connections to rational points.

3.3.1 Torsors and �ech cohomology

Now we study the classi�cation of X-torsors under an fppf X-group scheme G. The isomor-
phism classes of torsors are naturally described by the elements of the �rst non-abelian �ech
cohomology set. We �rst recall the usual de�nition of the �ech cohomology with coe�cients in
a presheaf P of abelian groups.

Abelian �ech cohomology revisited

Construction. Suppose X is a scheme. Let U = {Uj → X}j∈J be a covering in the étale
topology over X. Let P be a presheaf of abelian groups on the étale (resp. fppf) topology over
X. We write Uij = Ui×X Uj and Uijk = Ui×X Uj ×X Uk, and so on. If I ⊂ Jn+1 is a sequence
(j0, . . . , jn) of indices of length n+1 then we write I ĵ for the sequence (i0, . . . , îj , . . . , in) of indices
of length n. The canonical projections pI ĵ : UI → UI ĵ induce the maps p∗

I ĵ
: P(UI ĵ ) → P(UI).

The �ech complex consists of
Čn(U,P) =

∏
|I|=n+1

P(UI)

with di�erentials

(dnx)I =

n+1∑
j=0

(−1)jp∗
I ĵ

(xI ĵ )

de�ned for |I| = n + 2 and x ∈ Čn(U,P). The �ech cohomology groups Ȟn(U|X,P) are the
cohomology groups of the complex Č•(U,P), i.e.

Ȟn(U|X,P) = Hn(Č•(U,P)),

and Ȟn(X,P) can be identi�ed by passing to the inductive limit for all coverings (see III.2 in
[37]).

Remark 3.3.1. We have a natural map π : P(X) → Ȟ0(U|X,P) constructed as follows. Let
ϕj : Uj → X be the étale morphism for each j ∈ J . Then we obtain an induced morphism
ϕ∗j : P(X) → P(Uj). By construction, Ȟ0(U|X,P) consists of elements s = (sj)j∈J such that
(d0s)ij = p∗

îj
(sj) − p∗iĵ(si) = 0 for all i 6= j in J . Here p∗

iĵ
: P(Ui) → P(Uij) is the morphism

induced by the projection Uij → Ui and p∗îj is similarly de�ned. Since Uij = Ui ×X Uj , we have
p∗
iĵ
◦ ϕ∗i = p∗

îj
◦ ϕ∗j for all i, j ∈ J . Now we consider x∗ = (ϕ∗i (x)) ∈

∏
P(Ui), then we have
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(dx∗)ij = p∗
îj
ϕ∗j (x)− p∗

iĵ
ϕ∗i (x) = 0 by construction. This shows the image of P(X) lies in Ker d0

and hence we obtain a natural map P(X)→ Ȟ0(U|X,P).
If P is a sheaf, then we have an exact sequence

P(X)→
∏
i∈I
P(Ui)⇒

∏
i,j∈I

P(Uij).

Therefore P(X) is identi�ed with the kernel of the right arrow, which is Ȟ0(U|X,P).

By the spectral sequence for �ech cohomology (1.3.15), we have the spectral sequence

Ȟp(U|X,Hq(P))⇒ Hp+q(X,P),

where Hq(P) is the presheaf U 7→ Hq(U,P).
If a morphism Y → X is a covering, then we obtain a spectral sequence

Ȟp(Y |X,Hq(P))⇒ Hp+q(X,P).

The corresponding exact sequence of low degree terms begins as follows

0→ Ȟ1(Y |X,P)→ H1(X,P)→ Ȟ0(Y |X,H1(P))→ Ȟ2(Y |X,P)→ H2(X,P).

We give examples of X-torsors when the above sequences have explicit descriptions.

Example 3.3.2 (Hochschild-Serre spectral sequence). Let F be a �nite group. A �nite étale
Galois covering Y |X with Galois group F is an X-torsor under an X-group scheme FX which
as an X-scheme is the disjoint union of |F | copies of X with the group structure inherited from
that of F .

For any sheaf P, we have

P(Y ×X Fn) = HomSet(F
n,P(Y )).

A direct veri�cation then shows that the �ech complex Č•(Y |X,P) is isomorphic to the com-
plex of non-homogeneous cochains of the group F with coe�cients in P(Y ). Thus the �ech
cohomology groups of the canonical covering are computed in terms of group cohomology:

Ȟi(Y |X,P) = Hi(F,P(Y )).

Suppose now that our topology is �at or étale. Then �ech spectral sequence associated to
the canonical covering is the Hochschild-Serre spectral sequence

Hp(F,Hq(Y,P))⇒ Hp+q(X,P).

Passing to the limit, one extends this to pro�nite Galois coverings.

Sheaves of torsors over topologies

Now we de�ne sheaves of torsors and classify them by non-abelian �ech cohomology set.

De�nition 3.3.1. Let T be a topology. Let G be a sheaf of groups on T .
(1) A sheaf of pseudo torsors under G is a sheaf of sets F on T endowed with an action

G × F → F such that the action G(U) × F(U) → F(U) is simply transitive when F(U) is
non-empty.

A morphism F → F ′ of sheaves of pseudo torsors under G is a morphism of sheaves of sets
compatible with the G-actions.

(2) A sheaf of torsors under G is a sheaf F of pseudo torsors under G such that for each
object U in T , there exists a covering {Ui → U}i∈I of U such that F(Ui) is non-empty for all
i ∈ I. In this case, we may say F is trivialized on the covering {Ui → U}i∈I .

A morphism of sheaves of torsors under G is a morphism of sheaves of pseudo torsors under
G. We may simply say a G-torsor rather than a sheaf of torsors under G.

(3) The trivial G-torsor is the sheaf G endowed with the right G-action.
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Classi�cation of torsors under G

By construction of di�erentials in the �ech complex, a 1-cocycle s ∈ Č1(U,G) with respect
to the covering U = {Ui → X}i∈I consists of a family sij ∈ G(Uij) for all i, j ∈ I such that after
restricting to Uijk we have sijsjk = sik. The cocycles s and s′ are cohomologous if there exist
elements hi ∈ G(Ui) such that after restricting to Uij we have s′ij = hisijh

−1
j . The pointed set

of cohomology classes is denoted by Ȟ1(U|X,G). Passing to the inductive limit for all coverings
we obtain the set Ȟ1(X,G).

Let Y be a sheaf of torsors over X under G trivialized on a covering U = {Ui → X}i∈I .
By assumption Y(Ui) is non-empty for each i ∈ I, hence we can choose local sections yi ∈
Y(Ui). Then there exists a unique sij ∈ G(Uij) such that yisij = yj on G(Uij) by the simple
transitivity. Hence we have yisik = yisijsjk for each i, j, k pairwise distinct, and again by
the simple transitivity we conclude the family {sij} is a 1-cocycle with coe�cients in G. This
associates to a sheaf of torsors Y over X under G trivialized by U a class in Ȟ1(U|X,G). The
distinguished element of Ȟ1(U|X,G) corresponds to the sheaf of trivial torsors G. This de�nes
a bijection, more precisely, an isomorphism of pointed sets between

sheaves of torsors over X under G trivialized on U up to isomorphism

and
the pointed set Ȟ1(U|X,G).

Passing to the inductive limit, we obtain a bijection between

sheaves of torsors over X under G up to isomorphism

and
the pointed set Ȟ1(X,G).

The cohomology class of a torsor Y → X in the relevant cohomology set (or group) is denoted
by [Y ].

Remark 3.3.3. Let X be a scheme and let G be a sheaf of groups on the étale topology over
X. Now we have a contravariant functor G : Xét → Gr. When G is represented by an étale
X-group scheme G, i.e. G(−) = HomSchX (−, G), we shall write G instead of G.

Example 3.3.4. Let X be a scheme and let G be a sheaf of groups on the �at topology over
X. Suppose G is represented by G.

(1) If G is such that every sheaf of torsors over X under G is represented by an X-scheme,
we have a bijection between

{X-torsors under G up to isomorphism} and {the pointed set Ȟ1(X,G)}.

(2) If G is commutative, we can replace the �ech cohomology group by the �at cohomology
group and hence we obtain a bijection between X-torsors under G up to isomorphism and the
group H1(X,G). Indeed, now G is a sheaf of abelian groups on the �at topology over X. It is
known that H1(X,G) can always be computed as Ȟ1(X,G). More details are in [37], chapter
III, corollary 2.10.

(3) If we assume further G is smooth over X, the �at topology can be replaced by the étale
topology (Cf. [37], III.4). Thus when G is commutative, X-torsors under G are classi�ed by the
elements of the group H1

ét(X,G).

Let Ȟ0(G) be the presheaf of groups de�ned by U 7→ Ȟ0(U,G) and let Ȟ1(G) be the presheaf
of pointed sets de�ned by U 7→ Ȟ1(U,G). For any sheaf of sets we have G = Ȟ0(G). Then there
is an exact sequence of pointed sets

1→ Ȟ1(U|X,G)→ Ȟ1(X,G)→ Ȟ0(U|X, Ȟ1(G)).

The last arrow is given by the collection of restrictions from X to Ui, and Ȟ1(U|X, Ȟ0(G))
parameterizes the classes of cocycles trivialized on U.
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Lemma 3.3.5. Let G and G′ be algebraic groups over k, and let X and Y be k-varieties such
that Y → X is an X-torsor under G. There is an exact sequence of pointed sets

1→ Ȟ1(Y |X,G′)→ Ȟ1(X,G′)→ Ȟ0(Y |X, Ȟ1(G′)).

The pointed set Ȟ1(Y |X,G′) can be interpreted as the set of equivalence classes of morphisms
f : Y ×k G → G′ satisfying the cocycle condition f(y, s)f(ys, s′) = f(y, ss′); f is equivalent to
f ′ if

f ′(y, s) = g(y)f(y, s)g(ys)−1

for a morphism g : Y → G′. If G = G′, then the class of the torsor Y → X in Ȟ1(Y |X,G) is
given by the second projection Y ×k G→ G.

Proof. All statements except the last one are straightforward. The last statement is veri�ed
directly from the de�nitions. Indeed, the torsor Y → X is trivialized by the covering Y → X,
and the map Y ×X Y → Y has a section given by the diagonal morphism. Then the cocycle of
Y → X inH0(Y ×XY,G) becomes the second projection after the isomorphismH0(Y ×XY,G) =
H0(Y ×k G,G).

3.3.2 Twisting by fppf descent

The construction of twisting by fppf descent is crucial for the application of torsors. Let G
be an fppf X-group scheme. Let P be a right X-torsor under G and let Q be a scheme a�ne
over X equipped with a left G-action which is compatible with the projection to X. We write
ρP : P ×X G→ P and ρQ : G×X Q→ Q for the G-actions. From the following diagram

P ×X G×X Q
pr //

pr

�� ''

G×X Q

ρQ

��
P ×X G

id× inv

��

P ×X Q
pr //

pr

��

Q

��
P ×X G

ρP
// P // X

where each pr denotes the projection, we obtain a G-action

ρ : P ×X G×X Q→ P ×X Q

on P×XQ. After applying the functor of points, we may denote this action by (p, q) 7→ (pg−1, gq)
for g ∈ G.
Lemma 3.3.6. The quotient of P ×X Q by the G-action ρ given by (p, q) 7→ (pg−1, gq) exists as
a scheme a�ne over X. In other words, there exists a morphism of X-schemes π : P ×XQ→ Y
for some scheme Y endowed with an a�ne morphism Y → X, such that �bres of π are orbits
of G.

Before we prove lemma (3.3.6), we give the following de�nition and we quote a result on
descent theory of Grothendieck.

De�nition 3.3.2. By lemma (3.3.6), the quotient of P ×XQ by the G-action exists. It is called
the contracted product of P and Q with respect to G or the twist of Q by the X-torsor P .
The quotient is denoted by P ×GX Q, P ×G Q or simply by PQ. Note that P has the structure
of a left X-torsor under PG, so that PG acts on PQ on the left.

Theorem 3.3.7. Let f : P → X be a faithfully �at and quasi-compact morphism of schemes.
To give a scheme Y a�ne over X is the same as to give a scheme Y ′ a�ne over P together
with an isomorphism ϕ : p∗1Y

′ → p∗2Y
′ satisfying the cocycle condition

p∗31(ϕ) = p∗32(ϕ)p∗21(ϕ),

where p1, p2 : P ×X P → P and pij : P ×X P ×X P → P ×X P for i > j are the projections.
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Proof. See [37], chapter I, theorem 2.23.

Proof of (3.3.6). Let p1, p2 : P ×X P → P and pij : P ×X P ×X P → P ×X P for i > j be the
projections. Since P is a right X-torsor under G, we conclude

(P ×X P )×P (P ×X Q) ' P ×X G×X Q.

Note that the G-action on G×X Q is given by (x, q) 7→ (xg−1, gq), therefore each orbit can be
represented by (idG, q) for a unique q. Thus to take the contracted product G×GQ is the same
as considering the morphism ρQ : G ×X Q → Q given by the left G-action on Q. We conclude
that G×G Q exists and is canonically isomorphic to Q. Set Y ′ = P ×X Q and let

p∗1Y
′ = P ×X P ×X Q

ϕ→ P ×X P ×X Q = p∗2Y
′

be the morphism given by (x1, x2, q) 7→ (x1, x2, s21.q) where s21 is the unique element in G such
that x2 = x1.s21. From the following sequence

P ×X P ×X Q→ P ×X G×X Q→ P ×X G×X Q→ P ×X P ×X Q

given by
(x1, x2, q) 7→ (x1, s21, q) 7→ (x1, s21, s21.q) 7→ (x1, x2, s21.q),

we obtain (x1, x2, q) 7→ (x1, x2, s21.q) de�nes an isomorphism ϕ : p∗1Y
′ → p∗2Y

′. Then we need
to check p∗31(ϕ) = p∗32(ϕ)p∗21(ϕ). Indeed, p∗31(ϕ) sends (x1, x2, x3, q) to (x1, x2, x3, s31.q) where
x3 = x1.s31. Similarly we obtain s21 and s32. We have s31 = s32s21 since P is an X-torsor
under G and thus the cocycle condition holds. This gives the existence of Y by descent theory.
The map P ×X P ×X Q ' P ×X G ×X Q → P ×X Q = Y ′ (quotient by G acting as in the
statement of the lemma) descends to P ×X Q→ P ×G Q = Y .

Example 3.3.8 (inner forms). We take Q = G and consider a left G-action ρG : G×X G→ G
given by conjugations (g, x) 7→ gxg−1. The contracted product is an X-group scheme PG =
P ×G G, which locally in the fppf topology is isomorphic to G. If X = Spec k, then PG is the
inner form Gσ of G, where P is the k-torsor de�ned by σ ∈ Z1(Gal(k|k), G).

Example 3.3.9 (the inverse torsor). Suppose Q is a left X-torsor under G with G-action
ρ : G ×X Q → Q. We construct a right X-torsor Q′ under G as follows. As an X-scheme, we
put Q′ to be isomorphic to Q via ι : Q′ → Q. From the following diagram

Q′ ×X G

ι◦pr1

**
inv ◦pr2

��

&&
G×X Q //

��

Q

��
G // X

where inv : G→ G denotes the morphism g 7→ g−1, we obtain a morphism

Q′ ×X G→ G×X Q.

We obtain a morphism ρ′ : Q′ ×X G→ Q′ by composition with ι−1 ◦ ρ. Let T be an X-scheme
and let (q′, g) ∈ Q′(T )×G(T ). Then ρ′(q′, g) = ι−1ρ(g−1, ι(q′)) by construction. It follows that
ρ′(q′, idG(T )) = ι−1ι(q′) = q′ and

ρ′(q′, g1g2) = ι−1ρ(g−1
2 g−1

1 , ι(q′)) = ι−1ρ(g−1
2 , ρ(g−1

1 , ι(q′)))

= ρ′(ι−1ρ(g−1
1 , ι(q′)), g2) = ρ′(ρ′(g′, g1), g2).
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Therefore ρ′ : Q′ ×X G → Q′ is a right G-action. To simplify the notation, we may omit the
isomorphism ι and simply denote this right G-action by

ρ′ : Q′ ×X G→ Q′, (q, g) 7→ ρ(g−1, q).

It is straightforward that Q′ is a right X-torsor under G. Moreover, we can show that

Q′ ×G Q ' G.

In other terms, the diagonal image of Q in Q′ ×X Q is an orbit of G, leading to a section of the
quotient X-scheme. Therefore we call Q′ the inverse torsor of Q under G.

Example 3.3.10 (twisting an X-torsor). Let Q be a left X-torsor under G, let Q′ be the
inverse torsor of Q. Like any right torsor under G, Q′ is also a left X-torsor under G′ := Q′G.
Then Q is equipped with the structure of a right X-torsor under G′ with respect to the action
x.g′ := (g′)−1x for g′ ∈ G′. Summing up, the contracted product P ×G Q is a right X-torsor
under G′, and a left X-torsor under PG. The operation P 7→ P ×G Q de�nes a bijection of sets

Ȟ1(X,G)→ Ȟ1(X,G′),

which sends the distinguished point to the class of Q. The inverse bijection is obtained by

Ȟ1(X,G′)→ Ȟ1(X,G), P 7→ P ×G
′
Q′,

i.e. taking the contracted product with Q′ with respect to G′.
In the case when G is abelian, there is no di�erence between G and G′, and the contracted

product de�nes a group structure on Ȟ1(X,G), and the above bijection is just the translation
by the class of Q.

Remark 3.3.11 (Twist right torsors by another right torsors). When we have to twist a right
X-torsor P under G with another right X-torsor E under G, we �rst consider the inverse E′

which is a left torsor under G, and then form the contracted product P ×G E′. In this case the
twist P ×GE′ is a right X-torsor under EG, and is denoted by EP . For example, PP is a trivial
torsor under PG. If G is abelian, the class of E′ is the inverse of the class of E, hence in the
group H1(X,G) we have a relation [EP ] = [P ]− [E].

We shall mostly deal with the case when X and P are varieties over k, G comes from an
algebraic group over k and E = X ×k Z, where Z is a right k-torsor under G. Then EP , also
denoted by ZP , can be obtained by Galois descent: take a cocycle σ ∈ Z1(Gal(k|k), G) de�ning
Z, then consider the quotient Pσ of P by the corresponding twisted action of Gal(k|k), which
is (g, x) 7→ gxσ−1(g). Note that to use Galois descent we need the assumption that P is a
quasi-projective k-variety.

3.3.3 Partition of X(k) de�ned by a torsor

Let k be a �eld. Let X be a variety over k and let G be an algebraic group over k. Let
f : Y → X be an X-torsor under G. Suppose Z is a right k-torsor under G corresponding to
the class σ ∈ H1(k,G). Let Zf : ZY → X be the corresponding twisted right X-torsor under
ZG. It exists provided Y is quasi-projective or G is a�ne.

Let f : Y → X be an X-torsor under G. For each rational point P ∈ X(k), then the �bre
YP is a κ(P )-torsor under G by verifying YP ×κ(P ) G→ YP ×κ(P ) YP is an isomorphism. Note
that P is a k-point on X, so κ(P ) ' k and we obtain the class [YP ] of YP in H1(k,G). Summing
up, we obtain a well-de�ned map

θY : X(k)→ H1(k,G), P 7→ [YP ].

This gives a partition of the set X(k) into the subsets of points such that the corresponding
�bres of f are isomorphic k-torsors under G,

X(k) =
⊔

σ∈H1(k,G)

θ−1
Y (σ) =

⊔
σ∈H1(k,G)

{P ∈ X(k) | [YP ] = σ}.
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Using the twisting operation, we can describe the partition of X(k) de�ned by f : Y → X in a
slightly di�erent fashion. For σ ∈ H1(k,G), let fσ : Y σ → X be the twisted k-torsor under Gσ.

Lemma 3.3.12. Suppose G is an fppf group scheme which is a�ne over X. We have

{P ∈ X(k) | [YP ] = σ} = fσ(Y σ(k)).

Proof. Let P ∈ X(k) and let Z be a right k-torsor under G such that [Z] = σ in H1(k,G).
Note that P ∈ fσ(Y σ(k)) holds if and only if Y σP (k) 6= ∅, which is equivalent to say Y σP is

a trivial k-torsor under Gσ. Therefore YP ×G Z ′ is a trivial k-torsor under G. By taking the
contracted product with Z on the right, we conclude YP ' Z as k-torsors under G. This shows
that [YP ] = σ. Conversely, we have YP ' Z as k-torsors under G. This implies Y σP is a trivial
k-torsor under Gσ.

We summarize this by the formula

X(k) =
⋃

σ∈H1(k,G)

fσ(Y σ(k)).

Here Z runs over the set of k-torsors under G containing one representative from every isomor-
phism class.

3.4 Descent obstructions

Let G be an a�ne algebraic group over k. Twisting a right X-torsor f : Y → X under G
by a cocycle σ ∈ Z1(k,G) produces a right X-torsor fσ : Y σ → X under the twisted group
Gσ. This operation commutes with base change. For example, twist operation commutes with
taking the �bre YP at a k-point of X. In the abelian case, the inner form Gσ can be identi�ed
with G and the map H1(X,G)→ H1(X,Gσ) is just the translation by −[σ]. Replacing σ by a
cohomologous cocycle gives an isomorphic torsor. In particular, the subset fσ(Y σ(k)) of X(k)
depends only on the class [σ] ∈ H1(k,G). We shall use the notation H1(X,G) for the �ech
cohomology set Ȟ1(X,G), this set classi�es X-torsors under G up to isomorphism. We have
the following partition of X(k):

X(k) =
⋃

[σ]∈H1(k,G)

fσ(Y σ(k)).

3.4.1 Descent obstruction to the Hasse principle

Suppose that X(Ak) 6= ∅. Evaluating f : Y → X at an adelic point of X gives a map

θf : X(Ak)→
∏
v∈Ω

H1(kv, G), (Pv) 7→ ([YPv ]),

where [YPv ] is the class of YPv in H1(kv, G). Note that since G is a�ne, then the set H1(kv, G)
is �nite ([44] III.4). For each σ ∈ Z1(k,G), we let σv denote its image in Z1(kv, G). This image
is de�ned by �rst choosing a place w of k over v, and then restricting σ to the decomposition
group Dw of w. The union of completions at w of �nite subextensions k is an algebraic closure
of kv, and Dw is its Galois group over kv ([44] p. 115). The corresponding map of cohomology
sets H1(k,G)→ H1(kv, G) sends the class of a torsor T to the class of T ×k kv.

De�nition 3.4.1. Let X be a smooth and geometrically integral variety over a number �eld
k and let S be a �nite set of places of k. Let f : Y → X be a torsor under a linear algebraic
group G over k. De�ne X(ASk )f as the subset of X(ASk ) consisting of adelic points whose image
under the evaluation map

X(ASk )→
∏

v∈Ω−S
H1(kv, G), (xv) 7→ ([Yxv ])
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comes from an element of H1(k,G). More explicitly,

X(ASk )f =
{

(xv) ∈ X(ASk ) | ([Yxv ]) ∈ Im(H1(k,G)→
∏

v∈Ω−S
H1(kv, G))

}
.

Applying the twist operation, we obtain the following description:

X(ASk )f =
⋃

σ∈H1(k,G)

fσ(Y σ(ASk )).

We have X(k) ⊂ X(ASk )f ⊂ X(ASk ).
When S = ∅, we shall write X(Ak) instead of X(A∅k). The emptiness of X(Ak)f is thus

an obstruction to the existence of a k-point on X. In other words, when X(Ak) is non-empty
the emptiness of X(Ak)f is an obstruction to the Hasse principle. We call it the descent
obstruction to the Hasse principle associated to f : Y → X.

It is clear from this de�nition that X(Ak)f depends only on the isomorphism class [Y ] ∈
H1(X,G).

Note that if G is a k-group of multiplicative type, the diagonal image of H1(k,G) in the
product

∏
v∈ΩH

1(kv, G) is described by the Poitou-Tate exact sequence (cf. [38], I.4.20(b),
I.4.13). There is a generalization of this sequence, due to R. Kottwitz, to the case when G is
connected and reductive. A complete proof is also contained in [1], page 43, theorem 5.16.

Proposition 3.4.1. Let f : Y → X be a torsor under a liner algebraic group G, and assume
that X is a proper k-variety. Let S ⊂ Ω be a �nite set of places. Then there are only �nitely
many classes [σ] ∈ H1(k,G) such that Y σ(kS) 6= ∅.

Proof. For a �nite set of places S′ ⊃ S containing all the archimedean places of k, let Ok,S′ ⊂ k
be the ring of S′-integers of k. Let us �x S′ su�ciently large such that G extends to a smooth
group scheme G over SpecOk,S′ , X extends to a proper scheme X over SpecOk,S′ , and Y extends
to an X -torsor Y under G. These are visualized as the following �bred product squares:

G //

��

G

��

X //

��

X

��

Y //

��

Y

��
Spec k // SpecOk,S′ Spec k // SpecOk,S′ X // X .

Let G0 be the connected component of G. Then F = G/G0 is a �nite k-group. We denote by
G0 and F some group schemes over SpecOk,S′ extending G0 and F , respectively. By enlarging
S′, we can assume that there is an exact sequence

1→ G0 → G → F → 1.

Then we have a commutative diagram

H1(Ov,G) //

pv

��

H1(kv, G)

πv

��

H1(k,G)oo

π

��
H1(Ov,F) // H1(kv, F ) H1(k, F )oo

for each place v /∈ S′.
Let σ ∈ H1(k,G) be such that Y σ(kS) 6= ∅. We denote by σv the image of σ in H1(kv, G)

under the above homomorphism. By construction, the condition Y σ(kv) 6= ∅ means that there
exists a kv-point xv ∈ X(kv) such that [Yxv ] = σv. Since X is proper over Ok,S′ , we have
X(kv) = X (Ov) for each v /∈ S′. Therefore the class σv coincides with the image of [Yxv ] under
the natural map H1(Ov,G) → H1(kv, G) for each v /∈ S′ by our choice of S′. Thus the image
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of σv in H1(kv, F ) comes from H1(Ov,F) for each v /∈ S′. Suppose the image of σ ∈ H1(k,G)
in H1(k, F ) is represented by a k-torsor Z under F .

Note that F is a �nite k-group and hence Z is a 0-dimensional k-scheme. Moreover, we
conclude Z = Spec Γ(Z,OZ) where the étale k-algebra Γ(Z,OZ) is a product of separable
extensions of k. The fact that the image of σv in H1(kv, F ) comes from H1(Ov,F) implies that
each of these �elds are not rami�ed at each v /∈ S′. The degrees of these extensions of k are
bounded by |F (k)|. There are only �nitely many extensions of k of bounded degree which are
unrami�ed away from S′ (see [33], V.4, theorem 5). In particular, there exists a �nite Galois
�eld extension k′|k which contains all these extensions. Thus the image of σ ∈ H1(k,G) in
H1(k, F ) is contained in a �nite subset (the image of H1(Gal(k′|k), F ) in H1(k, F )), which we
an take to be the image of a �nite subset Φ ⊂ H1(k,G) consisting of elements coming from
H1(Ov,G) for each v /∈ S′.

Now we conclude. Suppose that the set

Λ = {σ ∈ H1(k,G) | π(σ) = 1, and σv ∈ Im
(
H1(Ov,G)→ H1(kv, G)

)
for each v /∈ S′}

is �nite. Then we are done by replacing G with its twist by a cocyle representing a class in Φ. So
it is enough to show Λ is a �nite set. Let ρv ∈ H1(Ov,G) be a class mapping to σv ∈ H1(kv, G).
We claim that pv(ρv) = 1 in H1(Ov,F). Since π(σ) = 1, πv(σv) = 1 by the commutativity of the
right square. Hence it will be su�cient to show that the canonical map H1(Ov,F)→ H1(kv, F )
between pointed sets has trivial kernel. Suppose that U is a SpecOv-torsor under F such that
the image of [U ] in H1(kv, F ) is trivial. Since F is �nite (hence proper) over Ov, it follows
U is also proper over Ov. By the valuative criterion of the proper morphism U → SpecOv, a
section Spec kv → U extends uniquely to a section SpecOv → U . This means that U is a trivial
SpecOv-torsor and therefore pv(ρv) = 1 in H1(Ov,F). By construction of F , we conclude that
ρv comes from H1(Ov,G0). However, every SpecOv-torsor under the smooth and connected
group G0 is trivial by Lang's theorem (which allows us to �nd a rational point in the closed
�bre, see [32]) and Hensel's lemma (which allows us to lift it to a section over SpecOv). It follows
that H1(Ov,G0) is trivial, hence ρv = 1 and this implies that its image σv = 1 in H1(kv, G) for
each v /∈ S′. Since every set H1(kv, G) is �nite, the family

(σv) ∈
∏

v∈Ω−S
H1(kv, G)

belongs to the �nite subset of
∏
v∈Ω−S H

1(kv, G) consisting of (αv) such that αv is arbitrary for
v ∈ S′ − S and αv = 1 otherwise. Finally, by a theorem of Borel and Serre (see [44], III, 4.6)
the natural diagonal map

H1(k,G)→
∏

v∈Ω−S
H1(kv, G)

has �nite �bres, hence the inverse image of our �nite subset is also �nite. Thus the set of classes
σ ∈ H1(k,G) such that Y σ(kv) 6= ∅ for any v /∈ S is �nite.

3.4.2 Descent obstruction to weak approximation

Let X be a proper, smooth and geometrically integral variety. We claim that the set X(ASk )f

also provides an obstruction to weak approximation away from S. The key fact is that the map

X(kv)→ H1(kv, G), xv 7→ [f−1(xv)]

is locally constant when X(kv) is endowed with the v-adic topology. To see this, we can assume
that [f−1(xv)] = 0 is the trivial torsor by applying the twist operation if necessary. Recall that
the kv-torsor f−1(xv) is trivial i� it contains a kv-point, so xv = f(yv) for some yv ∈ Y (kv).
By the v-adic inverse function theorem over a small v-adic neighbourhood of xv, we can �nd
a section of f passing through yv. Thus the class of the �bre is also 0 for all kv-points in this
neighbourhood.
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Proposition 3.4.2. Let X be a proper, smooth and geometrically integral variety such that

X(k) 6= ∅. Let X(k)
S
be the closure of the image of X(k) in X(ASk ). Then

X(k)
S
⊂ X(ASk )f .

Proof. By proposition (3.4.1), we can �nd a �nite set Σ ⊂ H1(k,G) such that Y σ(ASk ) = ∅ for
[σ] /∈ Σ. Therefore

X(ASk )f =
⋃

σ∈H1(k,G)

fσ(Y σ(ASk )) =
⋃
σ∈Σ

fσ(Y σ(ASk ))

is actually a �nite union. Now it is enough to show that f(Y (ASk )) is closed in X(ASk ).
Let (xv) ∈ X(ASk ) be a point lies in the closure of f(Y (ASk )). For any v /∈ S, let Uv ⊂

X(kv) be a small neighbourhood of xv ∈ X(kv) in the corresponding v-adic topology such that
[f−1(x′v)] = [f−1(xv)] ∈ H1(kv, G) for any x′v ∈ Uv. The open set Uv contains the image f(yv)
for some yv ∈ Y (kv). Therefore [f−1(xv)] = [f−1(f(yv))] = 0, which means that the �bre above
xv is a trivial kv-torsor and hence xv = f(zv) for some zv ∈ Y (kv). Hence (xv) ∈ f(Y (ASk ))
which proves that f(Y (ASk )) is closed.

By (3.4.2), the condition X(Ak)f 6= X(Ak) is an obstruction to weak approximation on X,
and X(ASk )f 6= X(ASk ) is an obstruction to weak approximation outside S on X. Note that
unlike the Brauer-Manin obstruction, the descent obstruction to weak approximation is only
de�ned for proper varieties X (this comes from the fact that there is no convenient analogue
of the unrami�ed Brauer group).

De�nition 3.4.2. Let X be a proper, smooth and geometrically integral variety such that
X(k) 6= ∅.

(1) We say that X has the descent obstruction to weak approximation associated to
f : Y → X if X(Ak)f 6= X(Ak).

(2) We say that X has the descent obstruction to weak approximation outside S
associated to f : Y → X if X(ASk )f 6= X(ASk ).

(3) We say that the descent obstruction to the Hasse principle and weak approximation
associated to the torsor f : Y → X is the only one if

X(k) = X(Ak)f .

3.4.3 The Manin obstruction as a particular case

Let k be a �eld and let X be a smooth k-variety. We denote by BrAz(X) the Brauer group
of X. This is the group of similarity classes of Azumaya algebras over X. We have seen that
there is a canonical injective map BrAz(X) → Br(X) holds for any scheme X. More precisely,
the exact sequence of étale sheaves

1→ Gm → GLn → PGLn → 1

gives rise to the exact sequence of pointed sets

H1(X,Gm)→ H1(X,GLn)→ H1(X,PGLn)
dn→ Br(X).

The group BrAz(X) ⊂ Br(X) is the union of images of dn(H1(X,PGLn)) for all n. It is known
that dn(H1(X,PGLn)) ⊂ BrAz(X)[n]. If k is a number �eld or a local �eld, it is known that

dn : H1(Spec k,PGLn)→ Br(k)[n]

is bijective.
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Proposition 3.4.3. Let X be a proper, smooth and geometrically integral variety. Let PGL be
the disjoint union of sets H1(X,PGLn) for all n ≥ 2. We have

X(Ak)BrAz(X) =
⋂

f∈PGL
X(Ak)f .

Proof. For n ≥ 1, let dn : H1(X,PGLn) → Br(X) be the natural morphism obtained from the
short exact sequence 1→ Gm → GLn → PGLn → 1 of étale sheaves on X. Take A ∈ BrAz(X).
Then A = dn([Y ]) for some integer n and some X-torsor f : Y → X under PGLn. Therefore
nA = 0 since the image of dn is contained in the n-torsion part of BrAz(X).

Let (xv) ∈ X(Ak). Then we have the following commutative diagram

H1(X,PGLn)
dn //

��

Br(X)[n]

��∏
v∈ΩH

1(kv,PGLn)
dn // ∏

v∈Ω Br(kv)[n]

H1(k,PGLn)

OO

dn // Br(k)[n]

OO

where the upper vertical maps are induced by xv ∈ X(kv), and the lower ones are the natural
diagonal maps. The image of [Y ] in

∏
v∈ΩH

1(kv,PGLn) is just ([Yxv ]) and the image of [Y ] in∏
v∈Ω Br(kv)[n] via Br(X)[n] is (A(xv)). By the commutativity of the diagram, the image of

([Yxv ]) in
∏
v∈Ω Br(kv)[n] coincides with (A(xv)). Since the middle and the bottom horizontal

maps are bijective, we conclude

([Yxv ]) ∈ Im
(
H1(k,PGLn)→

∏
v∈Ω

H1(kv,PGLn)
)

if and only if
(A(xv)) ∈ Im

(
Br(k)→

∏
v∈Ω

Br(kv)
)
.

Finally by the global reciprocity law, we obtain (xv) ∈ X(Ak)A if and only if (A(xv)) lies in
Im
(

Br(k)→
∏
v∈Ω Br(kv)

)
. It follows that X(Ak)f = X(Ak)A. Since BrAz(X) is the union of

the images of H1(X,PGLn) in Br(X) for n ≥ 1, we conclude

X(Ak)BrAz(X) =
⋂

A∈BrAz(X)

X(Ak)A =
⋂

f∈PGL
(X(Ak))f

as required.
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Introduction

In 1982, Colliot-Thélène, Sansuc and Swinnerton-Dyer took up the �bration method which
Hasse used to establish the Hasse principle for quadratic forms in four variables. The �bra-
tion method is to use analogue of the following theorem to study whether X satis�es weak
approximation and the Hasse principle.

Theorem. Let π : X → B be a projective �at surjective morphism of k-varieties with X smooth
over k. Suppose

(1) B is projective and satis�es weak approximation,
(2) all but �nitely many k-�bres of π satis�es the weak approximation, and
(3) all �bres of π are geometrically integral.
Then X satis�es weak approximation.

In the �rst chapter of this part, we are interested in conic bundle surfaces over number �elds.
Here a conic bundle surface over a number �eld k is a projective non-singular surface X which
is endowed with a dominant k-morphism π : X → P1

k such that all �bres of π are conics. The
work before this paper has been restricted to the case in which the number r of degenerated
geometric �bres is small. In our situation each �bre is given by a conic, so a degenerate �bre
is just a union of two conjugated lines. For example, for 0 ≤ r ≤ 3, the Hasse principle holds
and furthermore, X is k-rational as soon as X(k) 6= ∅. For r = 4, we know that X is either a
Châtelet surface or a quadric del Pezzo surface with a conic bundle surface structure. For r = 5,
X is k-isomorphic to a smooth cubic surface containing a line de�ned over k. In particular X(k)
is non-empty. We introduce the work of T.D. Browning, L. Matthiesen and A.N. Skorobogatov
which deals unconditionally with conic bundle surfaces over Q with all the degenerate �bres are
all de�ned over Q. The main result is the following

Theorem. Let X|P1
Q be a conic bundle surface over Q in which degenerate �bres exist and are

all de�ned over Q. Then the set X(Q) is Zariski dense in X. Furthermore, the Brauer-Manin
obstruction is the only obstruction to weak approximation for X.

In our situation, the intersection of the two components of a degenerate �bre is a Q-point,
therefore our conic bundle surface will always has a Q-point. This is why we assume the
degenerate �bre exists.

An important feature of the previous theorem is that it holds without requiring the number
of the degenerate �bres. For example, it can be applied to the surfaces given by the equation

f(t)x2 + g(t)y2 + h(t)z2 = 0,

where t is a coordinate function on A1
Q, [x : y : z] are homogeneous coordinates in P2

Q and f, g, h
are products of linear polynomials with rational coe�cients. We will also use the previous
theorem to construct families of minimal del Pezzo surfaces X of degree 1 and 2 over Q for
which the set X(Q) is non-empty and dense in X(AQ)Br.

In section 1 we establish a technical result based only on recent work by L. Matthiesen and
then we use it to prove the main result in section 2. We prove the Brauer-Manin obstruction
is the only one to the Hasse principle and weak approximation for products of conic bundle
surfaces under certain conditions in section 3. Section 4 gives analogues to higher-dimensional

81



quadrics and section 5 is about higher dimensional varieties. In section 6 we apply these results
to study del Pezzo surfaces in degree 1 and 2.

For the second chapter of this part, we are interested in norm forms NK|k(x) = P (t) where
K|k is a �nite �eld extension and P (t) is a polynomial in one variable. Suppose X is a smooth
projective k-variety which is k-birational to the a�ne variety NK|k(x) = P (t). Then we can
ask typical questions like whether X(Ak)Br 6= ∅ implies X(k) 6= ∅. We can successfully answer
these questions due to the results in [26] by Y. Harpaz, A.N. Skorobogatov and O. Wittenberg.
Historically, Shinzel's hypothesis is used to prove that the Brauer-Manin obstruction controls
the Hasse principle and weak approximation on pencils of conics and similar varieties. We are
lucky that the �nite complexity case of the generalised Hardy-Littlewood conjecture was proved
by Green and Tao ([20], [21]) and Green-Tao-Ziegler ([22]). We can use their results to establish
Schinzel's Hypothesis over Q and then prove the following

Theorem. Let X be a geometrically integral variety over Q with a smooth and surjective
morphism π : X → P1 such that

(1) each �bre of π contains a geometrically integral irreducible component except �nitely
many Q-�bres X1, . . . , Xr,

(2) for all i, the �bre Xi contains an irreducible component such that the algebraic closure
of Q in its function �eld is an abelian extension of Q.

Then P1(Q) ∩ π(X(AQ)) is dense in π(X(AQ)Brvert) ⊂ P1(AQ) =
∏
v P1(Qv).

In fact, a more powerful theorem which allows us to get rid of the assumption on being abelian
�eld extensions was established by Y. Harpaz and O. Wittenberg in 2016 (see [27]). We make
the assumption (2) here because we would like to write each abelian extension as a composite
of cyclic extensions and then compute explicitly with the corresponding cyclic algebras.

We will illustrate how this theorem helps to study Severi-Brauer varieties and norm forms.
In section 1 we introduce how recent results help to establish Shinzel's hypothesis. We prove
the main results in section 2. We apply these results to norm form and products of norm forms
in section 3.
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Chapter 4

Pencils of conics and quadrics with

degenerate �bres

In this chapter, we study the paper [3] by T.D. Browning, L. Matthiesen and A.N. Skoroboga-
tov. Sometimes a �bration in algebraic curves is a smooth surface X and a proper surjective
morphism X → C to a smooth curve C with connected �bres. In this case X is sometimes said
to be a pencil of curves. We study similar situations in this chapter.

4.1 Rational points on a certain class of varieties

We establish the following result in this section.

Theorem 4.1.1. Let a1, . . . , ar ∈ Q× − (Q×)2 and let f1, . . . , fr ∈ Q[u1, . . . , us] be a system of
pairwise non-proportional homogeneous linear polynomials with s ≥ 2. We consider the smooth
variety V ⊂ A2r+s

Q over Q de�ned by

0 6= x2
i − aiy2

i = fi(u1, . . . , us)

for i = 1, . . . , r. Then V (Q) is Zariski dense in V as soon as V (Q) is non-empty. Furthermore,
V satis�es the Hasse principle and weak approximation.

Proof. Before proving the theorem, we brie�y introduce the idea as follows. Suppose we have
shown V satis�es the Hasse principle and weak approximation. Then the Zariski density of
V (Q) follows from weak approximation by (2.3.6) when V (Q) 6= ∅. So all we need to do is
to show the second assertion. More precisely, we assume that the variety V de�ned by the
equations

0 6= x2
i − aiy2

i = fi(u1, . . . , us)

is everywhere locally soluble, i.e. V (Qv) 6= ∅ for all v ∈ Ω. Here Ω denotes the set of all places of
Q. Then we show that V (Q) is non-empty and that V satis�es weak approximation under this
hypothesis. Since conics de�ned by a single equation with Q-points satisfy weak approximation,
it will be su�cient to place weak approximation conditions on the variables u = (u1, . . . , us) in
V alone.

Step 1. Reduce to counting integral points under certain conditions.
We can �nd a suitable positive integer d such that d2ai ∈ Z and d2fi ∈ Z[u1, . . . , us] for each

i = 1, . . . , r. Since the variety de�ned by

0 6= (dxi)
2 − (d2ai)y

2
i = d2fi(u1, . . . , us)

in A2r+s
Q is just our variety V , we can assume without loss of generality that

a1, . . . , ar ∈ Z and f1, . . . , fr ∈ Z[u1, . . . , us].
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4.1. RATIONAL POINTS ON A CERTAIN CLASS OF VARIETIES

Let | − |p denote the p-adic norm for each �nite place p ∈ Ω, and let | − | denote the norm
for the real place. Let S ⊂ Ω be any �nite set which we need to approximate. Let ε > 0 be a
su�ciently small positive constant. Let (x(v),y(v),u(v)) ∈ V (Qv) for each v ∈ Ω be the given
point we need to approximate. Our task is to �nd a rational point (x,y,u) ∈ V (Q) such that

|u− u(v)|v < ε

for each v ∈ S.
We can enlarge S such that S contains the real place and all �nite places p bounded by

L for some parameter L to be determined later. Since scaling by an integer a ∈ Z>0 on the
ring homomorphism Qp[X,Y,U] → Qp does not change the associated morphism of schemes
SpecQp → SpecQp[X,Y,U], we can assume (x(p),y(p),u(p)) ∈ Z2r+s

p for each �nite place p ∈ S.
Applying the Chinese remainder theorem for Z2r+s, then we can �nd (x(M),y(M),u(M)) ∈ Z2r+s

such that
|x(M) − x(p)|p < ε, |y(M) − y(p)|p < ε, |u(M) − u(p)|p < ε

for each �nite place p ∈ S. We replace |u − u(p)|p < ε by the su�cient condition that u ∈ Zs
and

uj ≡ u(M)
j (mod M) (4.1)

for j = 1, . . . , s and for an appropriate modulusM ∈ Z>0. For technical reasons we require that
M has the following property. If `|M is a prime divisor and if we write m = val`(M), then

m ≥ max
1≤i≤r

{
val`(4ai)

}
and

fi(u
(p)) 6≡ 0 (mod `m)

for i = 1, . . . , r and all �nite places p ∈ S. By assumption fi(u
(p)) 6= 0 in Qp, hence we can

arrange for this property to hold by possibly decreasing the value of ε in |u− u(p)|p < ε.
For the real place, we will seek points in V (Z) satisfying

|u−Bu(∞)| < εB, (4.2)

where B = C2 and C is a su�ciently large positive integer verifying C ≡ 1 (mod M). It is
clear that any solution (x,y,u) ∈ V (Z) satisfying (4.1) and (4.2) will give rise to a solution
(C−1x, C−1y, C−2u) ∈ V (Q) satisfying |C−2u − u(p)|p < ε for each �nite place p ∈ S and
|C−2u− u(∞)| < ε.

Let us decompose the set of indices {1, . . . , r} as I−
⊔
I+, where i ∈ I± i� sign(ai) = ±. Let

(x(∞),y(∞),u(∞)) ∈ V (R) be a solution. Then fi
(
u(∞)

)
=
(
x

(∞)
i

)2 − ai(y(∞)
i

)2
> 0 for i ∈ I−.

It follows that after decreasing ε if necessary, any u ∈ Rs satisfying |u − C2u(∞)| < εC2 will
produce positive values of fi(u) for i ∈ I−.

Let qi(x, y) = x2 − aiy2 for i = 1, . . . , r. Then qi(x, y) is a primitive binary quadratic form
of discriminant 4ai. Moreover, qi(x, y) is positive de�nite for i ∈ I− and inde�nite for i ∈ I+.
For d ≤ −4, let

w(d) =

{
4 if d = −4,
2 if d < −4,

and for d > 0, let η(d) denote the fundamental unit of Q(
√
d). Let us call a solution (x,y,u) ∈

Z2r+s of
0 6= x2

i − aiy2
i = fi(u1, . . . , us)

primary if the pair (xi, yi) lies in a �xed fundamental domain for the action of the group of
automorphisms Ei of qi for i = 1, . . . , r. Our strategy will be to estimate asymptotically, when
B →∞, the total number N(B) of primary solutions (x,y,u) ∈ Z2r+s which satis�es (4.1) and
(4.2) and to show that this quantity is positive for su�ciently large B.
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CHAPTER 4. PENCILS OF CONICS AND QUADRICS WITH DEGENERATE FIBRES

We will henceforth view ε, M together with the coe�cients of V and u(M),u(∞) as being
�xed once and for all. Given n ∈ Z, we de�ne the representation functions

Ri(n) = Card{(x, y) ∈ Z2/Ei | qi(x, y) = n}

for i = 1, . . . , r. We put Ri(n) = 0 if n ≤ 0 and i ∈ I−. Then we obtain

N(B) =
∑
u∈Zs

(4.1),(4.2) hold

r∏
i=1

Ri(fi(u)).

Step 2. The computation of N(B).
We eliminate the constraint (4.1) in N(B) by writing uj = u

(M)
j +Mtj for j = 1, . . . , s. This

leads to the expression

N(B) =
∑

t∈Zs∩K

r∏
i=1

Ri(gi(t)),

where
K = {t ∈ Rs | |Mt + u(M) −Bu(∞)| < εB}

and
gi(t) = fi(u

(M) +Mt),

for i = 1, . . . , r. The regionK is convex and contained in [−uB, uB]s for an appropriate absolute
positive constant u. K has measure m(K) = (2εM−1B)s & Bs, where x & y means that there
exists a positive constant a such that x > ay. Our choice of ε ensures that gi(K) is positive for
every i ∈ I−. Moreover, (g1, . . . , gr) : Zs → Zr de�nes a system of linear polynomials of �nite
complexity in the language of Green and Tao. Indeed, the linear parts of any two gi, gj with
i 6= j, are non-proportional. Given A ∈ Z and q ∈ Z>0, let

ρi(q, A) = Card{(x, y) ∈ (Z/qZ)2 | x2 − aiy2 ≡ A (mod q)}.

It then follows from theorem 1.1 in [36] that

N(B) = β∞
∏
p

βp + o(Bs)

as B →∞. Here the main term is a product of local densities, given by

β∞ = m(K)
∏
i∈I−

π

ω(4ai)
√
|ai|

∏
j∈I+

log η(aj)√
aj

and

βp = lim
k→∞

p−(s+r)k
∑

t∈(Z/pkZ)s

r∏
i=1

ρi(p
k, gi(t))

for each prime p. Since β∞ & m(K) & Bs, we see that in order to complete the proof, it remains
to show that

∏
p βp & 1.

For each prime p, let

β′p = lim
k→∞

p−(s+r)k
∑

u∈(Z/psZ)s

r∏
i=1

ρi(p
k, fi(u))

be the local factor associated to the original system of equations. By lemma 8.3 in [35], these
factors satisfy β′p = 1+O(p−2). Since the change of variables from fi(t) to gi(t) = fi(u

(M)+Mt)
is non-singular modulo p when p - M , we conclude that βp = β′p for p - M . Recall that primes
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4.2. RATIONAL POINTS ON CONIC BUNDLE SURFACES

p - M satisfy p > L. We may now specify the parameter L = O(1) to be such that β′p > 0 for
all p > L. Hence for this choice of L, we have∏

p-M

βp =
∏
p-M

β′p & 1.

Our �nal task is to show that βp > 0 for primes p|M . It will be convenient to write

G(pk) =
∑

t∈(Z/pkZ)s

r∏
i=1

ρi(p
k, gi(t))

= Card{(x,y,u) ∈ (Z/pkZ)2r+s | x2
i − aiy2 ≡ gi(t) (mod pk), i = 1, . . . , r},

so that
βp = lim

k→∞
p−(s+r)kG(pk).

Suppose valp(M) = m > 0. To start with, observe that the integer vector (x(M),y(M), z(M))
satis�es

0 6= x2
i − aiy2

i = fi(u1, . . . , us)

modulo M . This implies G(pm) ≥ psm since gi(t) = fi(u +Mt). To analyse G(pk) for k > m,
we shall employ corollary 6.4 in [35]. This yields

ρi(p
k, A) =

1

p
ρi(p

k+1, A+ `pk)

for any ` ∈ Z/pZ, providing that k ≥ valp(4ai) and A 6=≡ 0 (mod pk). We have arranged things
so that M satis�es

m ≥ max
1≤i≤r

{
valp(4ai)

}
and fi(u

(v)) 6≡ 0 (mod pm).

Thus the conditions hold for k > m when A = gi(t) and t ∈ Zs, and we deduce that G(pk+1) =
ps+rG(pk). Hence

βp = p−(s+r)mG(pm) ≥ p−rm > 0

for p|M . Finally, N(B) = β∞
∏
p βp + o(Bs) & m(K) & Bs implies that N(B) > 1 when B is

su�ciently large. This completes the proof.

4.2 Rational points on conic bundle surfaces

De�nition 4.2.1. Let k be a number �eld. Let X be a projective non-singular surface over k.
X is called a conic bundle surface if there is a dominant k-morphism X → P1

k such that all
�bres are conics.

Colliot-Thélène and Sansuc conjectured in 1979 that the Brauer-Manin obstruction is the
only obstruction to the Hasse principle and weak approximation for conic bundle surfaces. It
is worth noting that the analogue for 0-cycles of degree 1 is known due to Colliot-Thélène and
Swinnerton-Dyer (see [14]). We want to study unconditional resolutions of the conjecture.

Remark 4.2.1. It is convenient to assume without loss of generality that the conic bundle
π : X → P1

k is relatively minimal, which means that no irreducible component of a degenerate
�bre is de�ned over the �eld of de�nition of that �bre. More explicitly, suppose the �bre XP

above P ∈ P1
k is degenerate and is de�ned over k. Hence topologically, XP is a union of two

conjugated lines, say UP and VP . Then the relative minimality says that UP and VP are de�ned
over k(

√
aP ) for some aP ∈ k× − (k×)2.

We establish the following result by applying (4.1.1) in this section.
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Theorem 4.2.2. Let π : X → P1
Q be a conic bundle surface over Q. Suppose the degenerate

�bres of π exist and all these degenerate �bres are de�ned over Q. Then the set of Q-points X(Q)
is Zariski dense in X. Furthermore, the Brauer-Manin obstruction is the only obstruction to
weak approximation for X.

Proof. We assume without loss of generality that π : X → P1
Q is relatively minimal and by

a change of variables in P1
Q, we may assume that the �bre of π at in�nity is smooth. Let

P (t) ∈ Q[t] be the separable monic polynomial of degree r that vanishes at the points of
A1

Q = P1
Q − {∞} that produce degenerate �bres. Our hypotheses are therefore equivalent to

a factorisation P (t) = (t − e1) . . . (t − er) with e1, . . . , er ∈ Q = A1
Q(Q) pairwise distinct, and

a1, . . . , ar ∈ Q× − (Q×)2 such that each irreducible component of the �bre Xei is de�ned over
Q(
√
ai) for i = 1, . . . , r.
The elements of the cohomological Brauer group Br(X) = H2

ét(X,Gm) have the following
explicit description. Since X(Q) 6= ∅, we obtain a section of the structural morphism X →
SpecQ and hence the natural map Br(Q)→ Br(X) is injective. We put

δ : (Z/2Z)r → Q×/(Q×)2

to be the map that sends (n1, . . . , nr) ∈ (Z/2Z)r to the class of an1
1 · · · anrr in Q×/(Q×)2. By the

Faddeev reciprocity law we have a1 · · · ar ∈ (Q×)2, hence (1, . . . , 1) ∈ Ker(δ) by construction of
δ. For i = 1, . . . , r, the quaternion algebras (ai, t − ei) form classes in Br(Q(t)). An integral
linear combination

∑r
i=1 ni(ai, t−ei) gives rise to an element of Br(X) i� (n1, . . . , nr) ∈ Ker(δ).

Therefore we obtain a well-de�ned homomorphism

η : Ker(δ)→ Br(X)/Br(Q)

which sends (n1, . . . , nr) to the class of
∑r
i=1 ni(ai, t − ei) in Br(X)/Br(Q). By proposition

7.1.2 in [47], η is surjective with the kernel generated by (1, . . . , 1). Hence we have

Br(X)/Br(Q) ' Ker(δ)/Ker(η),

and Ker(δ) is generated by (1, . . . , 1) i� Br(X) = Br(Q).
To show the Brauer-Manin obstruction is the only one to weak approximation for X, we

have to show that X(Q) is dense in X(AQ)Br(X) under the product topology. Here X(AQ)Br(X)

denotes the right kernel in the Brauer-Manin pairing Br(X) × X(AQ) → Z/2Z. Recall that
the pairing is additive in the �rst variable, it follows that the image of paring lies in Z/2Z by
Br(X)/Br(Q) ' Ker(δ)/Ker(η).

According to work of Colliot-Thélène and Sansuc (theorem 2.6.4(iii) in [9]), any universal
torsor T over X is Q-birationally equivalent to Wλ × C × A1

Q, where C is a conic over Q and
Wλ ⊂ A2r+2

Q is the variety de�ned by

u− eiv = λi(x
2
i − aiy2

i )

with i = 1, . . . , r for suitable λ = (λ1, . . . , λr) ∈ (Q×)r. An application of (4.1.1) in the special
case s = 2 shows that all universal torsors T over X satisfy the Hasse principle and weak
approximation. Since X(Q) 6= ∅, it follows from the descent theory of Colliot-Thélène and
Sancuc (see [9], theorem 3.5.1 and proposition 3.8.7) that X(Q) is dense in X(AQ)Br(X) under
the product topology, as required for the second part of the assertion.

This implies that there is a �nite set S of places of Q such that weak approximation holds
away from S. In particular, for almost all primes p, the set X(Q) is dense in X(Qp) under the
p-adic topology. This shows that the �rst part of the assertion follows from the second part.

Remark 4.2.3. If π does not have degenerate �bres, then we can use the �bration method
mentioned in the introduction to conclude. So we assume the degenerate �bres exist and are
all de�ned over Q. In this case, the intersection of the two components of a degenerate �bre is
therefore a Q-point.

87



4.3. SMOOTH PROPER MODELS OF PRODUCT OF CONIC BUNDLE SURFACES

4.3 Smooth proper models of product of conic bundle sur-
faces

Let Y be a variety over a number �eld k, and let f : Z → Y be a torsor under a k-torus T .
We write Ak for the ring of adèles of k. Specialising the torsor at an adelic point de�nes the
evaluation map

Y (Ak)→
∏
v

H1(kv, T )

where the product is taken over all completions kv of k. Let Y (Ak)f be the set of adelic
points for which the image of the evaluation map is contained in the image of the natural map
H1(k, T )→

∏
vH

1(kv, T ). It is clear that the diagonal image of Y (k) in Y (Ak) is in Y (Ak)f .
There is an equivalent way to de�ne Y (Ak)f . Up to isomorphism, the k-torsors R of T are

classi�ed by their classes [R] ∈ H1(k, T ). The twist of f : Z → Y by R is de�ned as the quotient
of Z ×R by the diagonal action of T , with the morphism to Y induced by the �rst projection.
We denote the twisted torsor by fR : ZR → Y . Then Y (Ak)f is the union of the images of
projections fR : ZR(Ak)→ Y (Ak) for all [R] ∈ H1(k, T ).

Proposition 4.3.1. Let X be a smooth geometrically integral variety over a number �eld k. Let
Y ⊂ X be a dense open set, and let f : Z → Y be a torsor of a k-torus T . Then X(Ak)Br 6= ∅
implies Y (Ak)f 6= ∅.

If X is proper, then X(Ak)Br is contained in the closure of Y (Ak)f in X(Ak) =
∏
vX(kv).

In this case, if all the twists of Z by k-torsors of T satisfy the Hasse principle and weak approx-
imation, then X(k) is dense in X(Ak)Br.

Proof. Let T̂ be the group of homomorphisms T ×k k → Gm,k of algebraic groups. Equipped

with the discrete topology, T̂ is a continuous Gal(k|k)-module. The natural pairing of discrete
Gal(k|k)-modules T (k)× T̂ → k

×
gives rise to the cup product pairing

∪ : H1
ét(Y, T )×H1(k, T̂ )→ H1

ét(Y, T )×H1
ét(Y, T̂ )→ H2

ét(Y,Gm) = Br(Y ).

([47], page 63-64) Let [Z] ∈ H1
ét(Y, T ) be the class of the torsor Z/Y , and let B ⊂ Br(Y ) be the

subgroup [Z]∪H1(k, T̂ ). Since H1(k, T̂ ) is �nite, B is also �nite. Let Y (Ak)B be the set of adelic
points of Y that are orthogonal to B with respect to the Brauer-Manin paring. By (2.4.12) we
have X(Ak)B∩Br(X) 6= ∅ i� Y (Ak)B 6= ∅, and the latter set is dense in the former when X is
proper. Since X(Ak)Br ⊂ X(Ak)B∩Br(X), it remains to prove that Y (Ak)B = Y (Ak)f . This is
a well-known consequence of the Poitou-Tate duality for tori; see the proof of statement (2) in
[47], page 115, 119-121.

We can use the above proposition to prove the following:

Theorem 4.3.2. Let πj : Xj → P1
Q be conic bundle surfaces over Q for j = 1, . . . , n. Suppose

the degenerate �bres of these πj are all de�ned over Q. Let

X = X1 ×P1 X2 ×P1 × · · · ×P1 Xn

be the �bred product. Assume that whenever two or more of these conic bundles have degenerate
�bers over the same point of P1

Q, the irreducible components of their �bres at this point are
de�ned over the same quadratic �eld. Then the Brauer-Manin obstruction is the only obstruction
to the Hasse principle and weak approximation on any smooth and proper Q-varieties that are
birational to X.

Proof. Step 1. We construct a dense open subset Y ⊂ X.
Without loss of generality, we assume that Xj → P1 is relatively minimal and the �bre at

in�nity of Xj → P1 is smooth for each j = 1, . . . , n. Then there are e1, . . . , er in Q = A1(Q)
such that the restriction of Xj → P1 to P1 − {e1, . . . , er} is a smooth morphism for each j. By
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assumption, for i = 1, . . . , r there exists ai ∈ Q× − (Q×)2 de�ned up to a square, such that the
�bre of each Xj → P1 at ei is either a smooth conic or a union of two conjugate lines de�ned
over Q(

√
ai).

Let U = A1−{e1, . . . , er}. For j = 1, . . . , n, we take Yj = π−1
j (U) ⊂ Xj as the inverse image

of U ⊂ P1. Let Y be the �bred product Y1×U · · · ×U Yn over U . Then Y is a dense open subset
of X.

Step 2. We construct a Y -torsor under a Q-torus T .
Let Wλ ⊂ A2r+2

Q for λ ∈ (Q×)r, be the variety given by

v

r∏
i=1

(u− eiv) 6= 0 and u− eiv = λi(x
2
i − aiy2

i ), i = 1, . . . , r. (4.3)

The morphism Wλ → U that sends the point (u, v, xi, yi) to the point with the coordinate
t = u/v is a torsor of the following Q-torus T :

v = x2
1 − a1y

2
1 = · · · = x2

r − ary2
r 6= 0.

The �bred product Y ×U Wλ is a Y -torsor of T for any λ.
Step 3. We classify the Q-torsors under T and compute the twists of the above Y -torsor by

these Q-torsors.
The Q-torsors of T are the a�ne varieties Rc given by

v = c1(x2
1 − a1y

2
1) = · · · = cr(x

2
r − ary2

r) 6= 0,

where c = (c1, . . . , cr) ∈ (Q×)r. The isomorphism classes ofQ-torsors of T bijectively correspond
to c ∈ (Q×)r up to a common non-zero rational multiple and multiplication of each ci by
the norm of a non-zero element of Q(

√
ai). The twist W Rc

λ is the torsor Wcλ, where cλ =
(c1λ1, . . . , crλr). Thus the set of torsors Y ×U Wλ → Y for all λ ∈ (Q×)r is closed under all
twists by Q-torsors of T .

Step 4. We check the Hasse principle and weak approximation hold for these twisted varieties
and then we conclude the assertion.

For j = 1, . . . , n, we denote by

Ij =
{

1 ≤ i ≤ n
∣∣ the �bre of πj : Xj → P1 at ei is singular

}
,

and let rj = |Ij | be the cardinality of Ij . We de�ne W
(j)
λ ⊂ A2rj+2

Q to be the variety given by

v

r∏
i=1

(u− eiv) 6= 0 and u− eiv = λi(x
2
i − aiy2

i ), i ∈ Ij

for λ ∈ (Q×)rj . As proved in [9] (theorem 2.6.4(ii)(a) and remark 2.6.8), there exist a conic
Cj over Q such that Yj ×U W

(j)
λ is birationally equivalent to Cj × W

(j)
λ for each j. There is

a natural morphism Wλ → W
(j)
λ that forgets the coordinates xi, yi for i /∈ Ij . This morphism

is obviously compatible with the projection to U , hence Yj ×U Wλ is birationally equivalent to
Cj × Wλ. Therefore Y ×U Wλ is birationally equivalent to C1 × · · · × Cn × Wλ. By (4.1.1)
and the Hasse-Minkowski theorem (4.3.5) this variety satis�es the Hasse principle and weak
approximation. It now follows from (4.3.1) that X(Q) is dense in X(AQ)Br.

Remark 4.3.3. A quadratic form Q = Q(x1, . . . , xn) over k is a homogeneous polynomial of
degree 2 with coe�cients in k. Therefore we can write Q =

∑n
i=1 aijxixj with aij = aji ∈ k.

Theorem 4.3.4 (Hasse-Minkowski). A quadratic form Q with rational coe�cients has a zero
in Q if and only if Q has a zero in Qv for each v ∈ Ω, where Ω is the set of all places of Q.

The following theorem is a variant in the language of algebraic geometry.

Theorem 4.3.5 (Hasse-Minkowski). Let X be a smooth projective quadric of dimension at least
1 over a number �eld k. Then X satis�es the Hasse principle.
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4.4 Generalisation to higher-dimensional quadrics

Now we turn to the arithmetic of pencils of 2-dimensional quadratics. We start with the
relevant de�nition from [45]. Let k be a �eld of characteristic di�erent from 2.

De�nition 4.4.1. A quadric over k is a hypersurface of degree 2 in Pnk for some n ≥ 2.
(1) A geometrically integral variety X over k endowed with a morphism π : X → P1

k is
a quadric bundle if every closed point P ∈ P1

k has a Zariski open neighbourhood UP ⊂ P1
k

such that π−1(UP ) is the closed subset of UP ×P3
k de�ned by the vanishing of a quadratic form

QP (x1, x2, x3, x4) = 0 with coe�cients in the k-algebra of regular functions on UP such that
det(QP ) is not identically zero.

(2) A quadric bundle X over P1
k is admissible if for every closed point P ∈ P1

k for which
the �bre XP is singular, UP and QP (x1, x2, x3, x4) in (1) can be chosen so that

QP (x1, x2, x3, x4) =

4∑
i=1

fix
2
i

where each fi is invertible outside P with at most a simple zero at P and f1(P )f2(P ) 6= 0.
(3) An admissible quadric bundle is relatively minimal if in the notation of (2), for each

closed point P ∈ P1
k such that f3(P ) = f4(P ) = 0, the (well-de�ned) values of the functions

−f1/f2 and −f3/f4 at P are both non-squares in the residue �eld k(P ).

If π : X → P1
k is a relatively minimal admissible quadric bundle, then the closed �bre XP is

not geometrically integral i�XP is the zero set of a quadric form of rank 2. In our notation, XP is
given by f1(P )x2

1+f2(P )x2
2 = 0. ThusXP is the union of two conjugate projective planes de�ned

over the quadratic extension k(P )(
√
aP ) of the residue �eld k(P ), where aP = −f1(P )/f2(P ).

In particular, the (non-trivial) class of aP in k(P )×/(k(P )×)2 is uniquely determined by the
morphism π : X → P1

k.
The singular locus (XP )Sing of XP is the projective line given by x1 = x2 = 0. An easy

calculation (see [45], corollary 2.1) shows that the singular locus XSing is contained in the
union of singular loci of the closed �bres of X → P1

k that are not geometrically integral. Let
bP ∈ k(P )× be the value of −f3/f4 at P . By proposition 2.2 in [45], we conclude XSing ∩XP

is the subscheme of (XP )Sing given by x2
4 = bPx

2
3. In particular, the non-trivial class of bP in

k(P )×/(k(P )×)2 is uniquely determined by the morphism π : X → P1
k.

Recall that a scheme over k is called split if it contains a non-empty geometrically integral
open subscheme ([46], de�nition 0.1, page 906). Let us denote by X̃ the blow-up of XSing in
X. By proposition 2.4 in [45], X̃ is a smooth projective threefold. Since X → P1

k is relatively
minimal, each �bre of X̃ → P1

k that is not geometrically integral consists of two irreducible
components, none of them is geometrically integral since aP and bP are both non-square in
k(P )× (see remark 2.2 in [45]). Hence a �bre of X̃ → P1

k is split i� it is geometrically integral.
Let ai ∈ Q×− (Q×)2 and ci ∈ Q× for i = 1, . . . , n. Given pairwise distinct rational numbers

e1, . . . , e2n, (4.3.2) can be applied to the intersection of quadrics

(u− e2i−1v)(u− e2iv) = ci(x
2
i − aiy2

i )

for i = 1, . . . , n in P2n+1
Q . Indeed, no two of the conic bundles in the �bred product have

degenerate �bres over the same point of P1
Q. The funny fact is that for such varieties counter-

examples to the Hasse principle and weak approximation are known (see �7 in [6]). Theorem
(4.3.2) tells us that all such counter-examples are explained by the Brauer-Manin obstruction.
This was previously known only when n = 2, by using a descent argument to reduce the problem
to an intersection of two quadrics in P6

Q covered by theorem 6.7 in [11].

Now we generalise theorem (4.2.2) to families of higher-dimensional (at least 3) quadrics.
Before we start, we recall the following result.
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Proposition 4.4.1. Let Y be a smooth and geometrically integral variety over a number �eld
k. Suppose Y (k) 6= ∅ and Y satis�es weak approximation. Let Z be a smooth scheme over Y
with surjective structural morphism such that each �bre is a quadric of dimension at least 3. Let
X over k be any smooth and geometrically integral variety which is k-birational to Z. Then the
Hasse principle and weak approximation hold for Z and X.

Proof. See proposition 3.9 in [11].

Remark 4.4.2. Let k be a number �eld and let Y be a non-empty open subset of an a�ne
space Ank over k. Then Y (k) 6= ∅ and Y satis�es weak approximation because Y is k-birational
to Ank . Let Z be any variety with a surjective morphism to Y such that the �bres are smooth
projective quadrics of dimension at least 3. Then by (4.4.1), Z satis�es the Hasse principle and
weak approximation.

Thus we focus on the case of a variety with a surjective morphism to P1
Q such that the �bres

are 2-dimensional quadrics. Progress so far has been restricted to the case in which there are at
most three geometric �bres that are quadrics of rank 2 or less, as in [12] and [45].

Theorem 4.4.3. Let X be a smooth, proper and geometrically integral variety of dimension
3 over Q equipped with a surjective morphism π : X → P1

Q such that the generic �bre is a
2-dimensional quadric. If all the �bres that are not geometrically integral are de�ned over Q,
then the set X(Q) is dense in X(AQ)Br(X).

Proof. Step 1. Reduce to a Q-birationally equivalent variety X ′ which is relatively minimal
admissible quadric bundle and reformulate the assumptions explicitly.

By proposition 2.1 with its proof and proposition 2.3 in [45], it follows that there exists
a relatively minimal admissible quadric bundle π′ : X ′ → P1

Q such that the generic �bres of
π : X → P1

Q and π′ : X ′ → P1
Q are isomorphic. This shows that in particular, X and X ′ are

birationally equivalent. If a �bre XP is geometrically integral, hence split, then X̃ ′P is split
too (see corollary 2.2 in [46]). By the previous paragraph X̃ ′P is then a geometrically integral
quadric, hence so is X ′P . It follows that X

′
P is geometrically integral when XP is geometrically

integral.
If all the �bres of π′ : X ′ → P1

Q are geometrically integral, the variety X satis�es the Hasse
principle and weak approximation (see theorem 3.10 in [11] or theorem 2.1 in [46]). Thus we
may assume that at least one Q-�bre X ′P of π′ : X ′ → P1

Q is given by a quadratic form of rank
2. Then almost all Q-points on the common line of the two planes of X ′P are smooth in X ′,
hence X(Q) 6= ∅.

By a change of variables we may assume the �bre of π′ : X ′ → P1
Q at in�nity is smooth. Let

A1
Q ⊂ P1

Q be the complement to the point at in�nity, and let t be a coordinate function on A1
Q. By

assumption we know that there are e1, . . . , er ∈ Q such that the �bres X ′e1 , . . . , X
′
er can be given

by quadratic forms of rank 2, and all the other �bres of π′ : X ′ → P1
Q are geometrically integral.

Let a1, . . . , ar ∈ Q× − (Q×)2, de�ned up to squares, be such that Q(
√
ai) is the quadratic �eld

over which the components of X ′ei are de�ned.
Let U = A1

Q − {e1, . . . , er} and let Ui be a Zariski open neighbourhood of ei as in (4.4.1).
Then by de�nition, the restriction of π′ : X ′ → P1

Q to Ui is given by the vanishing of the equation

x2
1 − αix2

2 + γi(t− ei)(x2
3 − βix2

4) = 0,

where αi, βi, γi are invertible regular functions on Ui (by the relative minimality of π′ : X ′ → P1
Q).

Then at ei we have x2
1−αi(ei)x2

2 = 0 which is decomposed to two conjugate planes over Q(
√
ai),

hence we have ai = αi(ei).
Step 2. Reduce to the case which we can apply (4.3.1).
Let Ω be the set of all places of Q. For any �nite set S ⊂ Ω, we write ZS for the subring of

Q consisting of the fractions with denominators divisible only by primes in S. Now we choose
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S ⊂ Ω to be a �nite subset containing 2 and the real place. Then we enlarge the set S such that
for all i = 1, . . . , r, we have

ei ∈ ZS , ai ∈ Z×S , ei − ej ∈ Z×S for i 6= j.

Moreover, by further increasing S, we can assume that X ′ has an integral model X ′ → P1
ZS such

that for any p /∈ S, its reduction modulo p, i.e. the morphism X ′Fp → P1
Fp obtained from

X ′Fp //

��

X ′

��
P1
Fp

// P1
ZS

is an admissible quadric bundle with exactly r �bres that are quadrics of rank 2 at the reductions
of e1, . . . , er modulo p. For i = 1, . . . , r, we de�ne Ui ⊂ P1

ZS as the complement to the Zariski
closure of P1

Q − Ui in P1
ZS and hence we have Ui = Ui ×ZS Q. By enlarging S, we ensure that

αi, βi, γi are invertible regular functions on Ui, and

x2
1 − αix2

2 + γi(t− ei)(x2
3 − βix2

4) = 0,

is an equation for X ′ over Ui.
Let a0 = a1 . . . ar. For λ = (λ1, . . . , λr) ∈ (Q×)r, we de�ne the variety Wλ as follows:

u− eiv = λi(x
2
i − aiy2

i ) 6= 0, v = x2
0 − a0y

2
0 6= 0. (4.4)

The morphism Wλ → U that sends the point (u, v, xi, yi) to the point with the coordinate
t = u/v is a torsor of the following Q-torus T :

v = x2
0 − a0y

2
0 = x2

1 − a1y
2
1 = · · · = x2

r − ary2
r 6= 0.

Let Y ⊂ X ′ be the inverse image of U under π′ : X ′ → P1
Q. The �bred product Y ×U Wλ is a Y -

torsor of T for any λ. As in the proof of (4.3.2), we see that the family of torsors Y ×U Wλ → Y
is closed under all twists by Q-torsors of T . By (4.3.1), it will be su�cient to prove that the
varieties Y ×U Wλ satisfy the Hasse principle and weak approximation.

Write W = Wλ. Let us enlarge the set S such that it contains all the primes where we need
to approximate, and contains all primes such that λi ∈ Z×S for i = 1, . . . , r. We are given a
family of Qp-points Np for all primes p and a real point N∞ on Y ×U W . Let Mp, M∞ be the
images of these points under the natural projection in W . By (4.1.1) the variety W satis�es the
Hasse principle and weak approximation. Indeed, if a0 /∈ (Q×)2, then (4.1.1) can be directly
applied to W . If a0 ∈ (Q×)2, a change of variables in the last equation of

u− eiv = λi(x
2
i − aiy2

i ) 6= 0, v = x2
0 − a0y

2
0 6= 0

gives v = x′0y
′
0, so that W is birationally equivalent to the product of A1

Q and the variety

u− eiv = λi(x
2
i − aiy2

i ), i = 1, . . . , r and v

r∏
i=1

(u− eiv) 6= 0

to which (4.1.1) can be applied.
Thus in all cases we can �nd a point M ∈ W (Q) arbitrarily close to the points M∞ and Mp

for p ∈ S, in their real topology and p-adic topology respectively. Let P ∈ U(Q) be the image of
M under the map W (Q)→ U(Q) induced by W → U . We can chooseM so that P is contained
in a given non-empty open subset of P1

Q, for example in the open set U0 ⊂ U ∩ U1 ∩ · · · ∩ Ur
de�ned by the property that YP = X ′P is a smooth quadric for any P in U0. Then YP can be
given by

x2
1 − αix2

2 + γi(t− ei)(x2
3 − βix2

4) = 0
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for any i = 1, . . . , r. By the implicit function theorem, YP has Qp-points close to Np for p ∈ S
and a real point close to N∞. We claim that

Y (Qp) 6= ∅ for all p /∈ S. (4.5)

Once achieved this will show that YP is everywhere locally soluble over Q and hence has a
Q-point and satis�es weak approximation (by the theorem of Hasse and the rationality of a
smooth quadric with a Q-point). This, in turn, implies that Y ×U W also has a Q-point and
satis�es weak approximation, as required to complete the proof of (4.4.3).

Step 3. Conclude the assertion by verifying (4.5).
Let W0 be the inverse image of U0 in W . To establish (4.5), it will be su�cient to show that

the natural projection
(Y ×U W0)(Qp)→ W0(Qp)

is surjective for all p /∈ S. We can assume that there exists a point in W0(Qp) with coordinates
(x0, y0, . . . , xr, yr) ∈ Z2r+2

p , not all divisible by p. It maps to the point P = [u : v] ∈ U0(Qp),
where u, v ∈ Zp, and t = u/v ∈ Qp is such that t 6= ∅, for any i = 1, . . . , r. Let us denote by
x 7→ x the map Qp → Fp ∪ {∞} such that x ≡ x (mod p) if x ∈ Zp and x =∞ if x ∈ Qp − Zp.
We have three possible cases:

(a) t is not equal to any of the points ei for i = 1, . . . , r;
(b) t = ei for some i ∈ {1, . . . , r} and valp(v) is even;
(c) t = ei for some i ∈ {1, . . . , r} and valp(v) is odd.
In case (a), the quadric YP reduces to a geometrically integral quadric over Fp. Such a

quadric has smooth Fp-points, and any smooth Fp-point lifts to a Qp-point on YP by Hensel's
lemma. Thus (4.5) holds in this case.

Now suppose that we are in case (b) or case (c). Then the reduction of YP modulo p is the
same as that of Yei . If ai is a square modulo p, the reduction of YP modulo p is a union of two
projective planes de�ned over Fp. Any Fp-point not on the common line of the two planes is
smooth and hence lifts to a Qp-point in YP by Hensel's lemma. Now assume that ai is not a
square modulo p. Since P = (t : 1) ∈ Ui(Q), we can evaluate

x2
1 − αix2

2 + γi(t− ei)(x2
3 − βx2

4) = 0,

at P and obtain an equation for YP = X ′P . From (4.4) we see that valp(u− eiv) must be even.
In case (b), we deduce that valp(t−ei) is also even. But then YP can be given by a quadratic

form over Zp that reduces to a rank 4 quadratic form over Fp. This implies that YP has a
Qp-point, as required for (4.5).

Finally, the case (c) is not compatible with the condition that ai is not a square modulo p.
Indeed, if valp(v) is odd, then valp(t − ei) > 0 is also odd. Take any j ∈ {1, . . . , r} with j 6= i.
Since ei−ej ∈ Z×S , we see that t−ej ∈ Z×S , so that u−ejv has odd valuation. Now (??) implies
that aj is a square modulo p. Since v = x2

0 − a0y
2
0 has odd valuation, a0 must also be a square

modulo p. This is a contradiction to the fact that a0 . . . ar is a square. This �nishes the proof
of (4.5) and so completes the proof of the theorem.

4.5 Analogous for higher-dimensional varieties

We can also deduce analogous statements for suitable higher-dimensional varieties. Let
m ≥ 1 and n ≥ 3. The equation

n∑
i=1

fi(t)X
2
i = 0

de�nes a variety in Pn−1
Q ×Q AmQ , where t = (t1, . . . , tm) ∈ Qm and f1, . . . , fn ∈ Q[t]. We have

the following result.

93



4.5. ANALOGOUS FOR HIGHER-DIMENSIONAL VARIETIES

Theorem 4.5.1. The Brauer-Manin obstruction is the only obstruction to weak approximation
on smooth and proper varieties which are Q-birational to the variety

n∑
i=1

fi(t)X
2
i = 0

provided that f1, . . . , fn are products of non-zero linear polynomials de�ned over Q.

Proof. Let us denote by V the variety de�ned by
∑n
i=1 fi(t)X

2
i = 0. If n ≥ 5, then each �bre

of V → AmQ is a quadric of dimension at least 3. Hence by (4.4.1), it will be su�cient to assume
n = 3 or n = 4.

On multiplying
∑n
i=1 fi(t)X

2
i = 0 and each of the variables Xi by an appropriate non-

zero rational function in t = (t1, . . . , tm), it su�ces to replace
∑n
i=1 fi(t)X

2
i = 0 by a Q-

birationally equivalent variety that is given by an equation of the same form satisfying the
following additional conditions. There exist pairwise non-proportional, non-constant polynomi-
als l1, . . . , lr ∈ Q[t] of degree 1, which are not necessarily homogeneous, such that for j = 1, . . . , n
we can write fj = cj

∏
i∈Ij li where cj ∈ Q× and Ij ⊂ {1, . . . , r}. Moreover, for n = 3, (resp.

n = 4), each li divides exactly one of f1, f2, f3 (resp. one or two of f1, f2, f3, f4). Finally, we
may assume that

li(t) = t1 + di,2t2 + · · ·+ di,mtm + di,0

for i = 1, . . . , r and appropriate constants di,0, di,2, . . . , di,m ∈ Q. Indeed, for i = 1, . . . , r, we
can write li(t) = Li(t) + li(0), where Li(t) is homogeneous of degree 1. There is a non-zero
vector a ∈ Qm such that Li(a) 6= 0 for i = 1, . . . , r. Assuming without loss of generality that
a1 6= 0, one achieves the claim by making the change of variables t1 = a1t

′
1 and ti = t′i + ait

′
1

for 2 ≤ i ≤ m and then replacing cj by cj
∏
i∈Ij Li(a). The case when

∑n
i=1 fi(t)X

2
i = 0 is

a quadric over Q being a subject of Hasse-Minkowski theorem, we can assume without loss of
generality that f1 is not constant and is divisible by l1(t).

When m = 1, the statement of the theorem follows from (4.2.2) and (4.4.3). We assume for
the remainder of the proof that m ≥ 2. The map p : V → Am−1

Q sending (X1, . . . , Xn, t) to
(t2, . . . , tm) is a surjective morphism. The �bre Vb = p−1(b) above a point b = (b2, . . . , bm) of
Am−1

Q is given by the following equation with coe�cients in the residue �eld Q(b):

n∑
j=1

f̃j(t)X
2
j = 0,

where f̃j(t) = fj(t, b). We note that the morphism p has a section s that sends (t2, . . . , tm) to
the point of V with coordinates X1 = 1, X2 = · · · = Xn = 0, t1 = −l1(0, t2, . . . , tm).

The proof will follow from a variant of the �bration method with a section, which is a result
of Harari (theorem 4.3.1 in [24]), once we check that

(1) the generic �bre Vη of p is geometrically integral and geometrically rational, and the
section s de�nes a smooth point of Vη;

(2) there is a non-empty open subset U ⊂ Am−1
Q such that for any point b ∈ U(Q), the

Brauer-Manin obstruction is the only obstruction to weak approximation on smooth and proper
models of Vb.

Let U ⊂ Am−1
Q be the open subset given by li1(0, b) 6= li2(0, b) for all i1 6= i2. This set is

not empty since no two polynomials li1 and li2 are equal for i1 6= i2. The restriction of p to U
has geometrically integral �bres, as follows from our assumption that if n = 3 (resp. n = 4),
then each li divides exactly one of f1, f2, f3 (resp. one or two of f1, f2, f3, f4). In the case
n = 3, the �bre Vb is a smooth conic bundle over A1

Q(b) for any b in U . In particular, Vη is
smooth, so the point of Vη de�ned by s is certainly smooth. In the case n = 4 the �bre Vb is
an admissible quadric bundle over A1

Q(b). A direct veri�cation shows that at every point of the
singular locus (Vη)Sing exactly two of the coordinates X1, X2, X3, X4 must vanish. Hence the
point of Vη de�ned by s is also smooth in this case. Thus condition (1) is satis�ed. Condition
(2) follows from (4.2.2) and (4.4.3), so the proof is completed.
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4.6 Rational points on some del Pezzo surfaces of degree 1
and 2

In this section we construct families of del Pezzo surfaces of degree 1 and 2 for which the
failure of weak approximation is controlled by the Brauer-Manin obstruction. Recall that a
smooth projective surface V is called minimal if any birational morphism V → V ′, where V ′

is smooth and projective, is an isomorphism.
We start with describing del Pezzo surfaces in terms of the Galois group action on the set

of exceptional curves. Let X be a del Pezzo surface of degree d de�ned over an algebraically
closed �eld k. Let Γd be the graph whose vertices are the exceptional curves on X. Two vertices
C1 and C2 are connected by n edges if the intersection number 〈C1, C2〉X of the corresponding
curves is n.

Now let X be a del Pezzo surface of degree d de�ned over Q. We simply write G for the
Galois group Gal(Q|Q). Let Γd be the graph of exceptional curves on X = X ×Q Q. Then we
obtain an action of the Galois group G on Γd.

Let Γ(1) be the graph with two vertices joined by a single edge. For a positive integer r, we
denote by Γ(r) the disconnected union of r copies of Γ(1). Recall that a subgraph Γ′ of a graph
Γ is induced if the vertices of Γ′ are connected by exactly the same edges as in Γ.

Proposition 4.6.1. Consider the family of del Pezzo surfaces of degree d ≤ 7 over Q for which
Γd has an induced subgraph Γ(8 − d) such that all the connected components of Γ(8 − d) are
G-invariant. All surfaces in this family have the property that the Brauer-Manin obstruction
is the only obstruction to weak approximation. Moreover, if d ∈ {1, 2, 4}, then the surfaces for
which no vertex of Γ(8− d) is �xed by G are minimal over Q.

Proof. See [3], proposition 5.1.

Let f, g, h ∈ Q[t] be polynomials such that f(t)g(t)h(t) = c
∏r
i=1(t − ei) for c ∈ Q× and

pairwise di�erent e1, . . . , er ∈ Q. Assume that l = deg f , m = deg g and n = deg h are integers
of the same parity such that l ≤ m ≤ n. Consider the smooth surface in P2

Q × A1
Q de�ned by

f(t)x2 + g(t)y2 + h(t)z2 = 0,

where t is a coordinate function on A1
Q. We embed A1

Q into P1
Q as the complement to the point

∞. We may also take A1
Q ⊂ P1

Q to be the complement to the point t = 0 with the coordinate
function T = 1/t. Let F (T ) = T lf(1/T ), G(T ) = Tmg(1/T ) and H(T ) = Tnh(1/T ). Consider
the smooth surface in P2

Q × A1
Q given by

F (T )X2 +G(T )Y 2 +H(T )Z2 = 0.

Let π : V → P1
Q be the conic bundle obtained by gluing the above two surfaces. For this

we identify the restrictions of the two �brations to P1
Q − {0,∞} by means of the isomorphism

t = T−1, x = T l1X, y = Tm1Y , z = Tn1Z, where (l,m, n) = 2(l1,m1, n1) or (l,m, n)+(1, 1, 1) =
2(l1,m1, n1). Since F (0)G(0)H(0) 6= 0, the �bre of π at t = ∞ is smooth, so π has precisely
r = l +m+ n degenerate �bres.

The case r = 5

Suppose r = 5 with (l,m, n) = (1, 1, 3). Setting z = 1 in f(t)x2 + g(t)y2 + h(t)z2 = 0 and
passing to homogeneous coordinates we obtain a smooth cubic surface in P3

Q with the equation

c1(u− e1v)x2 + c2(u− e2v)y2 + c3(u− e3v)(u− e4v)(u− e5v) = 0.

It contains the line u = v = 0. If the conic bundle is relatively minimal, then, contracting this
line, we obtain a minimal del Pezzo surface of degree 4 with a Q-point by [29], proposition 2.1.
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The case r = 6

Suppose that r = 6 with (l,m, n) = (2, 2, 2).

Proposition 4.6.2. Let f(t) = a(t−e1)(t−e2), g(t) = b(t−e3)(t−e4), h(t) = c(t−e5)(t−e6),
where e1, . . . , e6 ∈ Q are pairwise distinct and a, b, c ∈ Q×. If f(t), g(t) and h(t) are linearly
independent over Q, then V is a del Pezzo surface of degree 2 for which the Brauer-Manin
obstruction is the only obstruction to weak approximation. If moreover, the classes

−1, a, b, c, ei − ej for 1 ≤ i < j ≤ 6

are linearly independent in the F2-vector space Q×/(Q×)2, then V is minimal.

Proof. See [3] proposition 5.2.

The case r = 7

The case r = 7 translates as K2
V = 1. Note that r = 7 i� (l,m, n) = (1, 1, 5) or (l,m, n) =

(1, 3, 3). We claim that neither of these surfaces can be isomorphic to a del Pezzo surface of
degree 1. Recall that del Pezzo surfaces are de�ned by the property that their anticanonical
divisor is ample. It will be su�cient to �nd a geometrically integral curve C on V for which
〈C,−KV 〉 ≤ 0. We adapt an argument of Iskovskikh [29], proposition 1.3 and corollary 1.4.

In the case (l,m, n) = (1, 1, 5) consider the curve C that is the Zariski closure in V of the
closed subset of f(t)x2 + g(t)y2 + h(t)z2 = 0 given by z = 0. We claim that this is a smooth
curve of genus 0 such that 〈C,−KV 〉 = −1. To see this we note that C is a smooth curve of
genus 0 such that 〈C,F 〉 = 2, where F ∈ Pic(V ) is the class of a �bre. The divisor of the rational
function z/x on V is C+2F∞−C ′, where F∞ is the �bre at in�nity and C ′ is the Zariski closure
in V of the closed subset of f(t)x2 + g(t)y2 + h(t)z2 = 0 given by x = 0. Since 〈C,C ′〉 = 1,
we see that 〈C,C〉 = −3 and then from the adjunction formula we �nd that 〈C,−KV 〉 = −1 as
claimed.

In the case (l,m, n) = (1, 3, 3) we consider the pencil of genus 1 curves E = E(λ:µ) cut out
by λy + µz = 0 on V . It is easy to see that 〈E,E〉 = 1 and hence adjunction formula gives
〈E,−KV 〉 = 1. It follows that E = −KV . This pencil contains two reducible members, each
consisting of the union of one component of the degenerate �bre at f(t) = 0 and a residual
rational curve C. It follows that 〈C,−KV 〉 = 0.

The case r = 8

We can use some special conic bundles with 8 degenerate �bres to construct del Pezzo surfaces
of degree 1 to which (4.2.2) can be applied. Note that r = 8 gives K2

V = 0. Let e1, . . . , e8 ∈ Q
be pairwise distinct. Let π : V → P1

Q be the conic bundle constructed as above from the surface
given by the equation

x2 =

4∏
i=1

t− ei
e8 − ei

y2 +

8∏
j=5

(t− ej)z2

in P2
Q × A1

Q. This conic bundle is not relatively minimal because the �bre at t = e8 is a union
of components de�ned over Q. Either of them can be smoothly contracted, thus producing a
conic bundle surface W → P1

Q with seven degenerate �bres.
Recall that the discriminant of the quartic polynomial p(t) =

∑4
i=0 pit

i is a homogeneous
form D4(p0, . . . , p4) of degree 6. Thus D4 = 0 de�nes a hypersurface Z =⊂ P4

Q of degree 6. The
space of projective lines in P4

Q is naturally identi�ed with the Grassmannian Gr(2, 5). The open
subset of Gr(2, 5) parameterizing those lines that meet Z in six distinct complex points is non-
empty. Joining two points by a line gives a dominant rational map from A5

Q×A5
Q to Gr(2, 5). It

follows that the open subset of A5
Q×A5

Q consisting of pairs of polynomials (p(t), q(t)) such that the
discriminant of rp(t) + aq(t) vanishes for exactly six points (r : s) ∈ P1

C(C) is non-empty. These
six points of Z are necessarily smooth in Z, and hence for each of them rp(t) + sq(t) has exactly
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one double root. We conclude that there is a non-zero polynomial f(p0, . . . , p4, q0, . . . , q4) with
coe�cients in Q such that if f(p0, . . . , p4, q0, . . . , q4) 6= 0, then rp(t) + sq(t) has multiple roots
for exactly six values of (r : s) ∈ P1

C(C), and for each of these values, rp(t) + sq(t) has exactly
one double root. Writing the coe�cients as symmetric functions of the roots and applying this
to the polynomials

p(t) =

4∏
i=1

(t− ei) and q(t) =

8∏
j=5

(t− ej).

We obtain a non-zero polynomial F (e1, . . . , e8) with coe�cients in Q.

Proposition 4.6.3. If e1, . . . , e8 ∈ Q satisfy F (e1, . . . , e8) 6= 0, then W is a del Pezzo surface
of degree 1 over Q for which the Brauer-Manin obstruction is the only obstruction to weak
approximation. If moreover, the classes of ei − ej where 1 ≤ i ≤ 4 and 5 ≤ j ≤ 8 are linearly
independent in the F2-vector space Q×/(Q×)2, then W is minimal.

Proof. See [3] proposition 5.3.
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Chapter 5

The Hardy-Littlewood conjecture

and rational points

In this chapter, we introduce the results of Y. Harpaz, A.N. Skorobogatov and O. Wittenberg.
The main reference is their paper [26].

5.1 Schinzel's hypothesis (H)

In this section we will show how recent results in additive combinatorics help to study the
Hasse principle and weak approximation.

A corollary of the Hardy-Littlewood conjecture in the �nite complexity case

In a series of papers, Green and Tao ([20], [21]) and Green-Tao-Ziegler ([22]) proved the
generalised Hardy-Littlewood conjecture in the �nite complexity case. The following statement
is corollary 1.9 in [20].

Theorem 5.1.1 (Green, Tao, Ziegler). Let L1(x, y), . . . , Lr(x, y) ∈ Z[x, y] be pairwise non-
proportional linear forms and let c1, . . . , cr ∈ Z. Assume that for each prime number p, there
exists (m,n) ∈ Z2 such that p does not divide Li(m,n) + ci for i = 1, . . . , r. Let K ⊂ R2 be an
open convex cone containing a point (m,n) ∈ Z2 such that Li(m,n) > 0 for i = 1, . . . , r. Then
there exist in�nitely many pairs (m,n) ∈ K ∩Z2 such that Li(m,n) + ci are all prime numbers.

Let S ⊂ Z be a �nite subset of prime numbers. We write ZS = Z[S−1] for the localization
of Z at the multiplicatively closed subset generated by the prime numbers in S.

Proposition 5.1.2. Let S ⊂ Z be a �nite subset of prime numbers. Suppose we are given
(λp, µp) ∈ Q2

p for p ∈ S and a positive real constant C. Let e1, . . . , er ∈ ZS. Then there exist
pairs (λ, µ) ∈ Z2

S such that
(1) λ > Cµ > 0,
(2) (λ, µ) is arbitrarily close to (λp, µp) in the p-adic topology for p ∈ S,
(3) λ− eiµ = uipi with ui ∈ Z×S for i = 1, . . . , r, where p1, . . . , pr are prime numbers not in

S such that pi = pj i� ei = ej.

Proof. By eliminating repetitions we can assume e1, . . . , er are pairwise distinct. We can mul-
tiply λp, µp by a product of powers of primes in S, so we may assume (λp, µp) ∈ Z2

p for p ∈ S.
We can assume C > ei for i = 1, . . . , r by increasing C. Now we consider the equations x ≡ λp
(mod pnp) where np � 0. By Chinese remainder theorem, we can �nd a solution λ0 ∈ Z.
Similarly we obtain µ0 ∈ Z such that µ0 ≡ µp (mod pnp). Note that λ0 + apnp and µ0 + bpnp

are also solutions to x ≡ λp (mod pnp) and x ≡ µp (mod pnp) respectively. We can therefore
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assume λ0 > Cµ0 > 0 by choosing a, b su�ciently large. In particular, λ0−eiµ0 > λ0−Cµ0 > 0
for all i.

Let d be a product of powers of primes in S such that dei ∈ Z for all i. Let us write

d(λ0 − eiµ0) = Mici

where Mi is a product of powers of primes in S and ci ∈ Z is coprime to the primes in S. Let
N be a product of primes in S such that N > ci − cj for any i, j. Take

mp ≥ max
1≤i≤r

{np, valp(N) + valp(Mi)},

and M =
∏
p∈S p

mp . Then mp ≥ valp(N) + valp(Mi) implies N divides M/Mi for all i. Now we
look for λ and µ of the form

λ = λ0 +Mm, µ = µ0 +Mn, (m,n) ∈ Z2.

We put Li(x, y) = M−1
i Md(x− eiy), then

λ− eiµ = (λ0 − eiµ0) +M(m− ein)

= d−1Mici + d−1Mi(M
−1
i Md(m− ein))

= d−1Mi(Li(m,n) + ci).

Let us check the linear functions Li(x, y) + ci satisfy the condition of (5.1.1) and choose an
open convex cone K. For p ∈ S, Li(0, 0) + ci = ci is coprime to the primes in S by construction.
For p /∈ S, take m =

∏
i(λ0 − eiµ0)p, then Li(m, 0) + ci = ci(M

∏
j 6=i(λ0 − ejµ0)p+ 1) which is

clearly coprime to p. For K, we choose (m0, n0) ∈ Z2 such that m0 > Cn0 > 0 and Li(m0, n0)
are pairwise distinct. After reordering the subscripts, we obtain the inequalities

m0 > Cn0 > 0 and L1(m0, n0) > · · · > Lr(m0, n0) > 0.

De�ne K ⊂ R2 by these inequalities.
Then we apply (5.1.1) to these Li(x, y)+ci and the cone K. Thus there exist in�nitely many

pairs (m,n) ∈ K ∩ Z2 such that Li(m,n) + ci = pi, where pi is a prime not in S for all i. Since
N divides M−1

i Md and Li(m,n)− Li+1(m,n) > 0,

Li(m,n)− Li+1(m,n) ≥ N > ci+1 − ci

holds. Thus pi > pi+1 for i = 1, . . . , r−1. In particular, these pi are pairwise distinct. (m,n) ∈ K
implies n > 0 and m > Cn, and it follows that µ = µ0 + Mn > 0 and λ = λ0 + Mm > Cµ.
Finally, λ− eiµ = d−1Mi(Li(m,n) + ci) = d−1Mipi tells us ui = d−1Mi ∈ Z×S .

An application

We can use the previous proposition to study Hasse principle and weak approximation for
certain varieties. For a �eld extension K|Q of degree n, we denote by NK|Q(x) the corresponding
norm with x = (x1, . . . , xn) de�ned by choosing a basis of K over Q.

Theorem 5.1.3. Let Ki be a cyclic extension of Q of degree di and let bi ∈ Q×, ei ∈ Q for
i = 1, . . . , r. Then the a�ne variety V ⊂ A2 × Ad1 × · · · × Adr over Q de�ned by

bi(u− eiv) = NKi|Q(xi) 6= 0

for i = 1, . . . , r satis�es the Hasse principle and weak approximation.

Proof. Let Ω be the set of all places of Q. Then Ωf is identi�ed with the set of all positive prime
numbers in Z and Ω∞ consists of the only real place. We will denote �nite places v of Q be the
corresponding prime numbers p. Let (Mv) ∈

∏
v∈Ω V (Qv) be the point we need to approximate.
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We write Mp ∈ V (Qp) for each prime number p and write M0 ∈ V (R) for the real place. Let S
be a �nite set of places of Q which we need to approximate. We �rst �nd a rational point and
then show that the diagonal image V (Q) ↪→

∏
v∈Ω V (Qv) is dense.

Step 1. Note that the set of real points (u, v,x1, . . . ,xr) ∈ V (R) with (u, v) ∈ Q2 is dense
in V (R), and so it will be su�cient to prove the claim when the coordinates u and v of M0 are
in Q. By a Q-linear change of variables we can assume without loss of generality that M0 has
coordinates (u, v) = (1, 0).

We enlarge S such that the following properties hold. We can assume bi ∈ Z×S , ei ∈ ZS by
adding prime factors of the denominators of bi and ei for each i. And we can assume the �eld
Ki is unrami�ed outside S for all i. Note that each Ki is unrami�ed at all but �nitely many
places, hence the enlarged S is still a �nite set. We write (λp, µp,x1,p, . . . ,xr,p) for the Qp-point
Mp on V . Thus for each p ∈ S we now have a pair (λp, µp) ∈ Q2

p such that

bi(λp − eiµp) = NKi|Q(xi,p) 6= 0

for i = 1, . . . , r, and for some xi,p ∈ Ki ⊗Q Qp ' (Qp)di . Let C > ei for each i be a positive
constant determined later. Then by (5.1.2), we can �nd (λ, µ) ∈ Z2

S , λ > Cµ > 0 such that for
each i, the number bi(λ − eiµ) is a local norm for Ki|Q at each �nite place of S. It remains
to show this is also true for the real place of Q. M0 has coordinates (u, v) = (1, 0) and Ki|Q
is cyclic, so we conclude bi = NKi|Q(xi) > 0. By construction λ − eiµ > 0 for all i, it follows
bi(λ − eiµ) > 0 and hence it is a local norm. Moreover, for each i we have bi(λ − eiµ) = piui,
where pi /∈ S, ui ∈ Z×S . Recall that pi = pj i� ei = ej .

Step 2. We prove the Hasse principle now. Let (Ki|Q, bi(λ − eiµ)) ∈ Br(Q) be the class of
the corresponding cyclic algebra. Since bi(λp − eiµp) is a local norm for p ∈ S, we conclude
invp(Ki|Q, bi(λp − eiµp)) = 0. By construction, (λ, µ) is close to (λp, µp) in the p-adic topology
for p ∈ S, hence invp(Ki|Q, bi(λ − eiµ)) = 0 for p ∈ S, and invR(Ki|Q, bi(λ − eiµ)) = 0 by
continuity. Next, bi(λ−eiµ) = uipi is a unit at every prime p /∈ S∪{pi} and Ki|Q is unrami�ed
outside S, hence we obtain

invp(Ki|Q, bi(λ− eiµ)) = 0

for any prime p 6= pi and for real place. By Hasse's reciprocity law, we have an exact sequence

0→ Br(Q)→
⊕
v∈Ω

Br(Qv)→ Q/Z→ 0.

We therefore know the case at pi:

0 =
∑
v∈Ω

invv(Ki|Q, bi(λ− eiµ)) = invpi(Ki|Q, bi(λ− eiµ)) = invpi(Ki|Q, pi).

SinceKi|Q is unrami�ed outside S, the prime pi splits completely inKi. In particular, bi(λ−eiµ)
is a local norm at every place of Q. By Hasse's norm theorem it is a global norm, so that

bi(λ− eiµ) = NKi|Q(xi) 6= 0

for some xi ∈ Qdi , i.e. (λ, µ,x1, . . . ,xr) is a rational point of V . This proves the Hasse principle
for V .

Step 3. Now we prove weak approximation for V . Write d = d1 . . . dr. Using weak approx-
imation in Q, we �nd a positive rational number ρ that is arbitrarily close to 1 in the p-adic
topology for each prime p ∈ S and ρd is arbitrarily close to λ > 0 in the real topology. We now
make the change of variables

λ = ρdλ′, µ = ρdµ′, xi = ρd/dix′i

for all i. Then (λ′, µ′) is still arbitrarily close to (λp, µp) in the p-adic topology for each p ∈ S.
In the real topology (λ′, µ′) is arbitrarily close to (1, µ/λ). Since 0 < µ/λ < C−1, by choosing
a su�ciently large C, we ensure that (λ′, µ′) is close to (1, 0). We can conclude by using weak
approximation in the norm tori NKi|Q(z) = 1.
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Shinzel's hypothesis

Hypothesis (H1). Let e1, . . . , er ∈ Q be pairwise distinct. Let S be a �nite set of primes
containing the prime factors of the denominators of e1, . . . , er and the primes p ≤ r. Suppose
we are given τp ∈ Qp for p ∈ S and a positive real number C. Then there exist τ ∈ Q and
primes p1, . . . , pr not in S such that

(1) τ is arbitrarily close to τp in the p-adic topology for p ∈ S,
(2) τ > C,
(3) valp(τ − ei) = 0 for any p /∈ S ∪ {pi}, i = 1, . . . , r,
(4) valpi(τ − ei) = 1 for any i = 1, . . . , r.

Hypothesis (H1) is usually supplemented with the following statement. Let K|Q be a cyclic
extension unrami�ed outside S. Assuming the conclusion of (H1), we have the following impli-
cation: if

∑
p∈S invp(K|Q, τp− ei) = 0 for some i, then pi splits completely in K|Q. Hypothesis

(H1) and its supplement can be compared to the following consequence of (5.1.2).

Proposition 5.1.4. Let e1, . . . , er ∈ Q and let S be a �nite set of primes containing the prime
factors of the denominators of e1, . . . , er. Suppose that we are given τp ∈ Qp for p ∈ S and a
positive real constant C. Then there exist τ ∈ Q and primes p1, . . . , pr not in S with pi = pj i�
ei = ej, such that

(1) τ is arbitrarily close to τp in the p-adic topology for p ∈ S,
(2) τ > C,
(3) for each i = 1, . . . , r, we have valp(τ − ei) ≤ 0 for any p /∈ S ∪ {pi},
(4) for each i = 1, . . . , r, we have valpi(τ − ei) = 1,
(5) for any cyclic extension K|Q unrami�ed outside S and such that∑

p∈S
invp(K|Q, τp − ei) = c ∈ Q/Z

for some i, we have invpi(K|Q, τ − ei) = −c. In particular, if c = 0, then pi splits completely
in K|Q.

Proof. By increasing the set {e1, . . . , er}, we may assume r ≥ 2 and ei 6= ej for some i 6= j. We
also assume C > ei for all i. Then we apply (5.1.1) to (λp, µp) = (τp, 1) for p ∈ S. This provides
(λ, µ) ∈ Z2

S such that
(a) λ > Cµ > 0, (λ, µ) is close to (λp, µp) = (τp, 1) in the p-adic topology for p ∈ S, and
(b) λ− eiµ = uipi with ui ∈ Z×S for i = 1, . . . , r, where p1, . . . , pr are prime numbers not in

S such that pi = pj i� ei = ej .
We take τ = λ/µ. Then we prove the above �ve properties as follows.
(1) Now we have

τ − τp = λ/µ− τp = µ−1(λ− µτp) = µ−1(λ− τp + τp(1− µ)).

Hence τ is arbitrarily close to τp.
(2) This holds by τ = λ/µ > C.
(3) By construction µ is an element in ZS , hence the denominator of µ is a product of primes

in S. Thus for p /∈ S, we have valp(µ) ≥ 0. Now we take any p /∈ S ∪ {pi}, then we have
valp(λ− eiµ) = valp(uipi) = 0, and it follows that

valp(τ − ei) = valp(λ− eiµ)− valp(µ) ≤ 0.

(4) We claim valpi(µ) = 0 for each i = 1, . . . , r. If not, then valpi(µ) > 0 for some i. We
conclude valpi(λ) = valpi(uipi + eiµ) ≥ min(valpi(uipi), valpi(eiµ)) > 0. Here we use the fact
valpi(eiµ) = valpi(ei) + valpi(µ) > 0 since ei ∈ ZS and valpi(µ) > 0. By assumption we can take
j such that ei 6= ej . It follows that

valpi(λ− ejµ) ≥ min(valpi(λ), valpi(ejµ)) > 0,
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which contradicts to (3). Therefore valpi(µ) = 0 for all i and

valpi(τ − ei) = valpi(λ− eiµ) = valpi(uipi) = 1.

(5) Since (λ, µ) is close to (τp, 1) in the p-adic topology for p ∈ S, by continuity we have∑
p∈S

invp(K|Q, λ− eiµ) = c.

We also have λ− eiµ > 0, hence it is a norm and it follows that invR(K|Q, λ− eiµ) = 0. By the
global reciprocity law of class �eld theory, i.e. the short exact sequence

0→ Br(Q)→
⊕
v∈Ω

Br(Qv)→ Q/Z→ 0,

we conclude that ∑
p/∈S

invp(K|Q, λ− eiµ) = −c.

Since valp(λ− eiµ) = valp(uipi) = 0 for any prime p /∈ S ∪ {pi} and K|Q is unrami�ed outside
S, we have invp(K|Q, λ− eiµ) = 0 for any prime p /∈ S ∪ {pi}. Thus

invpi(K|Q, λ− eiµ) = −c.

When c = 0, then invpi(K|Q, pi) = invpi(K|Q, uipi) = invpi(K|Q, λ − eiµ) = 0. Therefore pi
splits completely in K.

5.2 Varieties �bred over the projective line

Main theorem I

Let X be an integral variety over Q and let π : X → P1
Q be a dominant Q-morphism.

Then we obtain an induced homomorphism Q(P1
Q)→ Q(X) between the corresponding function

�elds. Applying the functor Br(−), we obtain a homomorphism π∗ : Br(Q(P1
Q))→ Br(Q(X)) by

sending any center simple algebra A over Q(P1
Q) to A⊗Q(P1

Q) Q(X). Recall for integral varieties
we have a canonical injection Br(X)→ Br(Q(X)). These lead us to the:

De�nition 5.2.1. Let π : X → P1
Q be a dominant morphism of integral varieties over Q. We

de�ne the corresponding vertical Brauer group of X as

Brvert(X) := Br(X) ∩ π∗ Br(Q(P1
Q)) ⊂ Br(Q(X)).

By a Q-�bre of π : X → P1
Q we mean a �bre above a Q-point of P1

Q.

We will need the Lang-Weil estimate and we brie�y recall it here.

Theorem 5.2.1 (Lang-Weil). Let Fq be the �nite �eld with q elements. There exists a constant
C(n, r, d) such that for all �nite �eld Fq and all geometrically integral closed subvariety X of
degree d and dimension r of PnFq , we have

|Card(X(Fq))− qr| < C(n, r, d)qr−1/2.

By Lang-Weil estimate, we have qr − Cqr−1/2 < Card(X(Fq)) where C does not depend on
q. Hence we may enlarge q such that X can be de�ned over Fq and qr − Cqr−1/2 > 0, this
means that X has Fq-points. The following result is lemma 1.3 in [13] which is a consequence
of Lang-Weil estimate and Hensel's lemma. Although it is proved for number �elds, we simply
deal with the case of rational numbers.
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Lemma 5.2.2. Let SpecR be a non-empty open subset of SpecZ. Let X → SpecR be a �at
quasi-projective morphism and let X be its generic �bre. Then there exists a �nite set S ⊂ SpecR
such that for any non-zero prime number p ∈ SpecR and p /∈ S, if the �bre XFp over Fp splits,
then XFp contains a smooth Fp-point and X contains a smooth Qp-point.

We denote by Qv the completions of Q with respect to the place v ∈ Ω and by AQ the
associated ring of adeles. When v is a �nite place, Qv = Qp for some prime number p and
Qv = R for the real place of Q. Let Q be an algebraic closure of Q.

Theorem 5.2.3. Let X be a geometrically integral variety over Q with a smooth and surjective
morphism π : X → P1

Q such that
(1) each �bre of π contains a geometrically integral irreducible component except �nitely

many Q-�bres X1, . . . , Xr,
(2) for each i = 1, . . . , r, the �bre Xi contains an irreducible component Ui such that the

algebraic closure of Q in its function �eld Q(Ui) is an abelian extension of Q.
Then P1

Q(Q) ∩ π(X(AQ)) is dense in π(X(AQ)Brvert) ⊂ P1
Q(AQ) =

∏
v P1

Q(Qv).

Proof. Let A1
Q be the a�ne line over Q. By a change of variables if necessary, we may assume

that Xi is the �bre above a Q-point ei on A1
Q ⊂ P1

Q for i = 1, . . . , r. Note that A1
Q(Q) = Q, so

we may identify the point ei on A1
Q with a rational number which we will also write ei by abuse

of language. Let Ki be the algebraic closure of Q in Q(Ui) and Ki|Q is an abelian extension as
in the assumption (2).

Step 1. Let us recall a description of Brvert(X). Since Ki|Q is an abelian extension, we can
write Ki as a composite of cyclic extensions Kij |Q. Let χij : Gal(Q|Q) → Q/Z be a character
such that Kij is isomorphic to the invariant sub�eld of Ker(χij), i.e. Kij ' {x ∈ Q | σ(x) =
x, ∀σ ∈ Kerχij}. Let t be a coordinate on A1

Q ⊂ P1
Q such that Q(P1

Q) = Q(t). Let

Aij = (Kij |Q, t− ei) ∈ Br(Q(t))

be the class of the corresponding cyclic algebra. Here we simply write (Kij |Q, t − ei) instead
of (Kij(t)|Q(t), t − ei) to simplify notations. By (2.2.22), the residue of Aij is non-zero only
at ei and ∞ ∈ P1

Q with residues χij and −χij , respectively. Let A ∈ Br(Q(t)) be such that
π∗A ∈ Br(X), i.e. π∗A ∈ Brvert(X). Assumptions (1) and (2) together with (2.2.20) imply that
A on P1

Q is unrami�ed away from e1, . . . er, and that the residue of A at ei belongs to

Ker
(

Hom(Gal(Q|Q),Q/Z)→ Hom(Gal(Q|Ki),Q/Z)
)
.

This group is generated by the characters χij . Hence there exist nij ∈ Z such that A−
∑
nijAij

is unrami�ed on A1. Since Br(A1
Q) = Br(Q) we conclude that A =

∑
nijAij + A0 for some

A0 ∈ Br(Q). A is unrami�ed at ∞ ∈ P1
Q and A0 ∈ Br(Q) imply, by considering residues at ∞,

that ∑
nijχij = 0 ∈ Hom(Gal(Q|Q),Q/Z).

Therefore, every element of Brvert(X) is of the form
∑
nijπ

∗Aij + A0 for some nij such that∑
nijχij = 0 and some A0 ∈ Br(Q).
Step 2. Now we slightly modify the point we need to approximate by a point arbitrarily close

to it and we enlarge the set of places we need to approximate. We can assume X(AQ)Brvert 6= ∅,
otherwise there is nothing to prove. Take (Mv) ∈ X(AQ)Brvert to be the point we need to
approximate. As usual, we write Mp for points in X(Qp) for each prime p and M0 for points
in X(R). By replacing (Mv) by a point arbitrarily close to it, we can assume that Mp does not
belong to any of the �bres X1, . . . , Xr.

We include the real place in the �nite set of places S where we need to approximate. The
set of real points M0 ∈ X(R) for which π(M0) ∈ P1

Q(Q) is dense in X(R), and so it is su�cient
to approximate adelic points (Mp) such that π(M0) ∈ P1

Q(Q). By a change of variables we then
assume that π(M0) =∞. By replacing (Mp) by a point arbitrarily close to it for each prime p,
we can further assume that π(Mp) 6=∞ when p 6= 0.
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Then we enlarge S such that the following properties hold. First, for any p /∈ S, X has a
good reduction at p, i.e. X admits a smooth model over Z(p). Second, by adding prime factors
appeared in the denominators, we can assume ei ∈ ZS for all i, and ei − ej ∈ Z×S for all i 6= j.
Third, for any p /∈ S, p is unrami�ed in any of the �elds Ki. Furthermore, by (5.2.2) we increase
S so that if Ki has a place of degree 1 over p /∈ S, then the corresponding Fp-component of
the degenerate �bre of π over the reduction of ei has an Fp-point. By a similar argument we
assume that on the reduction of X modulo p /∈ S any geometrically integral component of a �bre
over an Fp-point contains an Fp-point. All these Fp-points are smooth, because π is a smooth
morphism.

Since X(AQ)Brvert 6= ∅, by the result of Step 1 we can use Harari's formal lemma (2.4.12) to
increase S ⊂ S1 and choose Mp ∈ X(Qp) for p ∈ S1−S away from the �bres X1, . . . , Xr so that
for all i, j we have ∑

p∈S1

invp
(
Aij(π(Mp))

)
= 0.

Step 3. Let τp be the coordinate of π(Mp) ∈ A1
Q, where p is a prime number in S1 and

let τ0 ∈ P1
Q(R) be the image of M0. Note that Mp ∈ P1

Q(Qp) implies that τp ∈ A1
Q(Qp) = Qp

for each prime number p ∈ S1. An application of (5.1.4) produces an arbitrarily large positive
rational number τ ∈ Q such that τ is arbitrarily close to τp in the p-adic topology for each
prime number p ∈ S1. Let M ∈ A1

Q(Q) ⊂ P1
Q(Q) be the point with coordinate τ . We claim

XM (AQ) 6= ∅.
By construction we obtain Xτp(Qp) 6= ∅ and Xτ0(R) 6= ∅. The �bre XM is smooth, hence by

the inverse function theorem we have XM (R) 6= ∅ and XM (Qp) 6= ∅ for p ∈ S1. Thus it remains
to consider the following two cases.

(I) Qv = Qp where p = pi, i = 1, . . . , r. Since valpi(τ − ei) = 1, the reduction of τ modulo
pi equals the reduction of ei. We conclude∑

p∈S1

invp(Kij |Q, τ − ei) =
∑
p∈S1

invp(Aij(τ)) =
∑
p∈S1

invp(Aij(τp)) = 0,

since τ is close to τp in the p-adic topology and invp is locally constant. Now property (5) of
(5.1.4) implies that for each i = 1, . . . , r, all the cyclic �elds Kij are split at pi, and thus Ki is
also split. Hence there is a geometrically integral irreducible component of the Fpi-�bre over the
reduction of ei modulo pi. We arranged that it has an Fpi-point in step 2. By Hensel's lemma,
it gives rise to a Zpi-point in XM .

(II) Qv = Qp where p /∈ S1 ∪ {p1, . . . , pr}. We have valp(τ − ei) ≤ 0 for all i, and hence the
reduction of τ modulo p is a point of P1(Fp) other than the reduction of any of e1, . . . , er. Thus
any Fp-point on a geometrically integral irreducible component of the �bre at τ (mod p) gives
rise to a Zp-point on XM by Hensel's lemma.

In both cases we constructed a Qp-point that comes from a Zp-point on an integral model
of XM , therefore XM (AQ) 6= ∅.

Corollary 5.2.4. In the situation of (5.2.3), let us assume further that all but �nitely many Q-
�bres of π : X → P1

Q satisfy the Hasse principle. Then π(X(Q)) is dense in π(X(AQ)Brvert). If
these Q-�bres Xτ are such that Xτ (Q) is dense in Xτ (AQ), then X(Q) is dense in X(AQ)Brvert .

Proof. We can assume X(AQ)Brvert 6= ∅, otherwise there is nothing to prove. Then we can take
an adelic point (Mv) ∈ X(AQ)Brvert . Let's say π((Mv)) = (τv) ∈ P1

Q(AQ). By (5.2.3), we can
�nd λ ∈ P1

Q(Q)∩π(X(AQ)) which is arbitrarily close to (τv). Since all but �nitely many Q-�bres
of π satis�es the Hasse principle, we may assume the �bre Xλ satis�es the Hasse principle. Note
that λ ∈ π(X(AQ)), Xλ(AQ) 6= ∅ holds and it follows that Xλ(Q) 6= ∅ by the Hasse principle.
Therefore π(X(Q)) is dense in π(X(AQ)Brvert).

For the second assertion, let (Mv) ∈ X(AQ)Brvert be the point we need to approximate. We
can �nd τ = π(N) ∈ P1

Q(Q) for some N ∈ X(Q) that is arbitrarily close to π((Mv)) by the
�rst assertion and such that Xτ (Q) is dense in Xτ (AQ) by assumption. Then N ∈ X(Q) is
arbitrarily close to (Mv) and we are done.
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Remark 5.2.5. If the generic �bre of π : X → P1 is proper, then all but �nitely many �bres
of π are proper. For proper Q-�bres Xτ , the approximation assumptions in (5.2.4) is that of
weak approximation, since in this case Xτ (AQ) =

∏
v∈ΩXτ (Qv). By Hironaka's theorem, we

can always replace π : X → P1 by a partial compacti�cation π′ : X ′ → P1 such that X is a
dense open subset of X ′ and the morphism π′ is smooth with proper generic �bre.

Application: a new proof of Theorem (5.1.3)

We can prove (5.1.3) in a di�erent manner. Let W be the quasi-a�ne subvariety of A2 ×
Ad1 × · · · × Adr given by

bi(u− eiv) = NKi|Q(xi)

for i = 1, . . . , r and (u, v) 6= (0, 0). Then the variety

bi(u− eiv) = NKi|Q(xi) 6= 0

for i = 1, . . . , r is a dense open subset of W . The projection to the coordinates (u, v) de�nes
a morphism W → A2

Q − (0, 0). Then we obtain a morphism π : W → P1
Q by composing the

projection
(
A2

Q − (0, 0)
)
→ P1

Q. Let X be the smooth locus of π. Since each �bre of π contains
a smooth point, we see that π(X) = P1

Q. Let π′ : Y → P1
Q be a partial compacti�cation of

π : X → P1
Q. Then π

′ is smooth with proper generic �bre.
Let t = u/v be a coordinate on P1

Q. We can conclude (5.1.3) by verifying (1) assumptions of
theorem (5.2.3) holds, (2) geometrically integral, proper Q-�bres of π′ satisfy the Hasse principle
and weak approximation, and (3) Brvert(Y ) = Br0(Y ). These indeed hold by �3.3 in [26].

Main theorem II

Next we give a statement for a smooth and proper variety X, to be compared with theorem
1.1 in [13]. We need several results in [12].

Let f : X → Z be a surjective k-morphism between integral k-varieties over a �eld k of
characteristic 0. Then we de�ne Brvert(X) = Br(X) ∩ f∗ Br(k(Z)) ⊂ Br(k(X)). Here k(X)
and k(Z) are the function �elds of X and Z, respectively. Since Z is integral, we conclude that
Br(Z) ⊂ Br(k(Z)) and hence f∗ Br(Z) ⊂ Brvert(X).

Lemma 5.2.6. Let k be a �eld of characteristic 0. Let X,Z be regular geometrically integral
k-varieties. Let f : X → Z be a �at surjective morphism with geometrically split �bres at points
of Z of codimension one and with geometrically integral generic �bre. Then Brvert(X)/f∗ Br(Z)
is �nite.

Proof. For an arbitrary scheme S, we write S(1) for the set of points of codimension one on S.
For any z ∈ Z(1), the �bre Xz is non-empty and all the components of Xz have codimension 1
in X since f is �at and surjective. We consider the following commutative diagram

0 // Br(Z)

f∗

��

// Br(k(Z))

f∗

��

//⊕
z∈Z(1) H1(κ(z),Q/Z)

ex|z·f∗

��
0 // Br(X) // Br(k(X)) //⊕

x∈X(1) H1(κ(x),Q/Z),

where z = f(x), and ex|z is the multiplicity in the �bre Xz of the irreducible component whose
generic point is x.

Since the �bres Xz are geometrically split, for each z ∈ Z(1), we can choose x′ ∈ X(1) such
that f(x′) = z and ex′|z = 1. Let κx′ be the integral closure of κ(z) in κ(x′). Then κx′ is a �nite
and separable extension of κ(z). Then the map ex′|z · f∗ on H1(κ(z),Q/Z) decomposes as

H1(κ(z),Q/Z)
rz,x′→ H1(κx′ ,Q/Z) ↪→ H1(κ(x′),Q/Z),
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where rz,x′ is the restriction map and the last map is injective since κx′ is integrally closed in
κ(x′). By the commutativity of the diagram, we get the inclusion

Brvert(X)/f∗(Br(Z)) ↪→
⊕
x

Ker rz,x′ .

If Xz is geometrically integral, then Ker rz,x′ = 0. Since the generic �bre of f is geometrically
integral, this is the case for all but a �nite number of z ∈ Z(1). In general, Ker rz,x′ is a �nite
group.

Corollary 5.2.7. With the same assumptions as in (5.2.6), let Y ⊂ X be an open subset such
that the composite map Y → X → Z is surjective and has geometrically split �bres at points of
codimension one of Z. Then Brvert(X) is a subgroup of Brvert(Y ) of �nite index. If moreover
Z is proper and k-birational to a projective space, then the group Brvert(Y )/Br0(Y ) is �nite.

Proof. Let j : Y → X be the open immersion. Then f ◦ j : Y → Z is a �at and surjective
morphism. Hence Brvert(Y )/(f ◦ j)∗ Br(Z) is �nite by (5.2.6). Then Brvert(X) is a subgroup of
�nite index by (5.2.6).

If Z is proper and k-birational to a projective space, then Br(Z) = Br(k). We conclude by
de�nition Br0(Y ) = Im(f ◦ j)∗ Br(k).

Proposition 5.2.8. Let X be a smooth and geometrically integral variety over a number �eld
k. Let Y ⊂ X be a dense open subset. Let B ⊂ Br(Y ) be a subgroup such that [B : B ∩Br0(Y )]
is �nite. Then X(Ak)B∩Br(X) 6= ∅ i� Y (Ak)B 6= ∅. If X is a proper k-variety, then Y (Ak)B is
dense in the closed subset X(Ak)B∩Br(X) of X(Ak) =

∏
v∈ΩX(kv).

Proof. Let Xc be the smooth compacti�cation of X, then X is an open subset of Xc and Xc is
smooth and geometrically integral. We obtain

Y (Ak)B ⊂ X(Ak)B∩Br(X) ⊂ Xc(Ak)B∩Br(Xc),

and hence it will be su�cient to show that Xc(Ak)B∩Br(Xc) 6= ∅ implies Y (Ak)B 6= ∅. Let
A1, . . . , An ∈ B be a set of representatives for B/(B ∩ Br0(Y )). Over a dense open subset
U ⊂ SpecOk, Y has a smooth integral model Y over U such that Y(Ov) 6= ∅ for each v ∈ U and
such that each Ai is contained in Br(Y) ⊂ Br(Y ). Let (Pv)v∈Ω ∈ Xc(Ak)B∩Br(X). Let S be a
�nite set of places not in U , (hence contains the archimedean places). For each place v ∈ S, let
Uv ∈ X(kv) be an open set. Harari's formal lemma implies that there is a �nite set T of places
of k such that S ∩ T = ∅, and points Pv ∈ Y (kv) for v ∈ S ∪ T , with Pv ∈ Uv for v ∈ S, such
that ∑

v∈S∪T
invv(Ai(Pv)) = 0

for i = 1, . . . , n. Now pick up any set of integral points Pv ∈ Y(Ov) for v /∈ S∪T . Then Ai(Pv) ∈
Br(Ov) = 0 implies

∑
v∈Ω invv(A(Pv)) = 0 for any A ∈ B. This means that (Pv)v∈Ω ∈ Y (Ak)B .

This proves the �rst part of the proposition. The second part also follows because if X is proper
over k, hence X = Xc, then a basis of open sets for the topology of X(Ak) is given by sets∏
v∈S Uv ×

∏
v/∈S X(kv).

Proposition 5.2.9. Let X be a smooth, proper and geometrically integral variety over a number
�eld k. Let f : X → P1

k be a dominant morphism with geometrically split �bres and geometrically
integral generic �bre. Let Y ⊂ X be a dense open set such that the composite map Y → X → P1

k

is surjective and has geometrically split �bres at closed points of P1
k. Then Y (Ak)Brvert(Y ) is

dense in X(Ak)Brvert(X) ⊂ X(Ak).

Proof. Now Brvert(X) = Br(X) ∩ Brvert(Y ) and Brvert(Y )/Br0(Y ) is �nite by (5.2.7). The
above proposition implies Y (Ak)Brvert(Y ) is dense in X(Ak)Brvert(X).

In our situation below, Y → P1 is a smooth surjective morphism with geometrically split
�bres at points of P1 of codimension 1 and with geometrically integral generic �bre. Then we
claim Brvert(Y )/π∗ Br(P1) is �nite.
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Theorem 5.2.10. Let X be a smooth, proper and geometrically integral variety over Q with a
surjective morphism π : X → P1 such that

(1) each �bre of π contains a geometrically integral irreducible component of multiplicity one
except �nitely many Q-�bres X1, . . . , Xr,

(2) for all i, the �bre Xi contains an irreducible component of multiplicity one such that the
algebraic closure of Q in its function �eld is an abelian extension of Q.

Then P1(Q) ∩ π(X(AQ)) is dense in π(X(AQ)Brvert) ⊂ P1(AQ) =
∏
v P1(Qv). If all but

�nitely many Q-�bres of π satisfy the Hasse principle and weak approximation, then X(Q) is
dense in X(AQ)Brvert .

Proof. Let Y ⊂ X be the smooth locus of π. Then by assumption, each �bre of π contains an
irreducible component of multiplicity one. In particular, each �bre of π contains a smooth point
and hence π : Y → P1 is surjective. Now π : Y → P1 is a smooth and surjective morphism, so we
can apply (5.2.3). It follows that P1(Q) ∩ π(Y (AQ)) is dense in π(Y (AQ)Brvert(Y )). By applying
(5.2.6), we conclude Y (AQ)Brvert(Y ) is dense in X(AQ)Brvert(X). Hence P1(Q) ∩ π(Y (AQ)) is
dense in π(X(AQ)Brvert(X)). In particular, the �rst assertion holds. By weak approximation, we
conclude that all but �nitely many �bres Xτ verify Xτ (Q) ⊂ Xτ (AQ) is dense. Thus applying
(5.2.4), it follows X(Q) is dense in X(AQ)Brvert .

Application to pencils of Severi-Brauer and similar varieties

Corollary 5.2.11. Let X be a smooth, proper and geometrically integral variety over Q with a
morphism π : X → P1. Suppose the generic �bre of π is a Severi-Brauer variety, a 2-dimensional
quadric, or a product of such. If all the �bres of π that are not geometrically integral are Q-�bres,
then X(Q) is dense in X(AQ)Brvert .

Proof. The assumptions of (5.2.10) are satis�ed by [45] and [17] and hence the assertion holds.

5.3 Application to norm forms

5.3.1 Cyclic extensions

Consider the following system of Diophantine equations:

NKi|Q(xi) = Pi(t)

for i = 1, . . . , r, where Ki|Q are cyclic extensions and the polynomials Pi(t) are products of
(possibly repeated) linear factors over Q.

Corollary 5.3.1. Let X be a smooth, proper and geometrically integral variety over Q with a
surjective morphism π : X → P1 such that the generic �bre of π is birationally equivalent to the
a�ne variety

NKi|Q(xi) = Pi(t)

over Q(P1) = Q(t). Then X(Q) is dense in X(AQ)Brvert .

Proof. We want to show the assumptions (1) and (2) of (5.2.10) hold for π and all but �nitely
many Q-�bres of π satisfy the Hasse principle and weak approximation.

Each �bre of π outside in�nity and the zero set of P1(t) . . . Pr(t) = 0 contains a geometrically
integral irreducible component of multiplicity one. Hence (1) holds. Since π has a section over
the composite K1 . . .Kr which is abelian extension of Q, (2) holds. By Hasse's norm theorem,
the varieties NK|Q(z) = c satis�es the Hasse principle where K|Q is a cyclic extension and
c ∈ Q×. Moreover, smooth and proper models of principal homogeneous spaces of cyclic norm
tori satisfy the Hasse principle and weak approximation, by chapter 8 in [41]. It follows that all
but �nitely many �bres of π veri�es the Hasse principle. We conclude by (5.2.10).
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Remark 5.3.2. For any cyclic extension of �elds K|k the a�ne variety NK|k(x) = c ∈ k× is
birationally equivalent to the Severi-Brauer variety de�ned by the cyclic algebra (K|k, c). Thus
corollary (5.3.1) can be seen as a particular case of corollary (5.2.11).

When each Pi(t) is linear, we have the following consequence of (5.3.1).

Corollary 5.3.3. Let Ki be a cyclic extension of Q of degree di for i = 1, . . . , r. Let bi ∈ Q×
and ei ∈ Q, i = 1, . . . , r. Then the variety X over Q de�ned by

bi(t− ei) = NKi|Q(x) 6= 0

for i = 1, . . . , r, satis�es the Hasse principle and weak approximation.

Proof. By calculation the rank of the Jacobian matrix, it follows that the variety X is smooth.
By (5.3.1), it will be su�cient to show Brvert(X) = Br0(X). In step 1 of the proof of (5.2.3),
we saw that for any A ∈ Br(Q(t)) such that π∗A ∈ Br(X) ⊂ Br(Q(X)) there exists A0 ∈ Br(Q)
for which we can write

A =

r∑
i=1

ni(Ki|Q, t− ei) +A0.

Since (Ki|Q, NKi|Q(xi)) = 0 in Br(Q(X)) (NKi|Q(xi) is a norm form), the element π∗A ∈ Br(X)
can be written as

π∗A = −
r∑
i=1

ni(Ki|Q, bi) +A0 ∈ Br0(X).

It follows X(Q) is dense in X(AQ)Br0(X) = X(AQ), i.e. X satis�es the weak approximation.

We can use (5.3.1) and the �bration method in the form of Theorem 3.2.1 in [25] to deduce
the following:

Corollary 5.3.4. Let X be a smooth and proper model of the variety over Q de�ned by the
system of equations

NKi|Q(xi) = Pi(t1, . . . , tn)

for i = 1, . . . , r, where each Ki is a cyclic extension of Q and each Pi(t1, . . . , tn) is a product of
polynomials of degree 1 over Q. Then X(Q) is dense in X(AQ)Br.

5.3.2 Products of norms

We can consider a product of norm forms associated to �eld extensions of Q satisfying certain
conditions. We can apply (5.2.10) to deduce:

Corollary 5.3.5. Let P (t) be a product of (possibly repeated) linear factors over Q. Let
L1, . . . , Ln be n ≥ 2 �nite �led extensions of Q such that L1|Q is abelian and linearly dis-
joint from the composite L2 . . . Ln. Let X be a smooth, proper and geometrically integral variety
over Q with a morphism π : X → P1 such that the generic �bre of π is birationally equivalent
to the a�ne variety

NL1|Q(x1) . . . NLn|Q(xn) = P (t)

over Q(P1) = Q(t). Then X satis�es the Hasse principle and weak approximation.

Proof. By the same argument as in (5.3.1), assumptions (1) and (2) of Theorem (5.2.10) are
satis�ed since L1|Q is abelian. By chapter 8 in [41], X2

ω(Q, T̂ ) = 0 will imply almost all Q-
�bres satisfy the Hasse principle and weak approximation. Here T is the multinorm torus over
Q attached to the �elds L1, . . . , Ln. This is theorem 1 in [16] which is proved by Demarche and
Wei. It follows that X(Q) is dense in X(AQ)Brvert by (5.2.10).

We claim Brvert(X) = Br0(X). Take A ∈ Br(Q(t)) such that π∗A ∈ Br(X), hence π∗A ∈
Br(X)∩π∗ Br(Q(t)) = Brvert(X). We want to show that π∗A comes from Br(Q). The morphism
π has a section si : P1

Li
→ X ×Q Li de�ned over Li for each i = 1, . . . , n. By considering the
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image of π∗A under Br(X)→ Br(X×QLi)→ Br(P1
Li

), we see the restriction of π∗A to Br(Li(t))
comes from Br(P1

Li
) = Br(Li). In particular, the residues of A at the roots of P (t) are in the

kernel of the map H1(Q,Q/Z)→ H1(Li,Q/Z). Since L1 ∩ L2 . . . Ln = Q by assumption, there
is no non-trivial cyclic extension of Q contained in all of the Li. This implies that A is not
rami�ed at the zero set of P (t). (2.2.20) shows that A is unrami�ed away from the zero set of
P (t). Hence A ∈ Br(A1) = Br(Q). It follows that X(Q) is dense in X(AQ)Br0(X) = X(AQ) and
we are done.

Proposition 5.3.6. Let P (t) be a product of (possibly repeated) linear factors over Q, and let
a, b ∈ Q×. Let X be a smooth, proper and geometrically integral variety over Q with a morphism
π : X → P1 such that the generic �bre of π is binationally equivalent to the a�ne variety

NQ(
√
a)|Q(x)NQ(

√
b)|Q(y)NQ(

√
ab)|Q(z) = P (t)

over Q(P1) = Q(t). Then X(Q) is dense in X(AQ)Br.

Proof. We can assume Q(
√
a),Q(

√
b) and Q(

√
ab) are quadratic �elds, otherwise the variety

X is rational and the statement is clear. Let V be the smooth locus of the a�ne variety
NQ(

√
a)|Q(x)NQ(

√
b)|Q(y)NQ(

√
ab)|Q(z) = P (t) and let U be the image of V by the projection to

the coordinate t. Then P1 − U is a �nite union of Q-points. The �bres of V → U are principal
homogeneous spaces of the torus T that is given by

NQ(
√
a)|Q(x)NQ(

√
b)|Q(y)NQ(

√
ab)|Q(z) = 1.

Let E be a smooth equivariant compacti�cation of T (which exists by [7]), and let V c = V ×T E
be the contracted product. Then V c → U is a �brewise smooth compacti�cation of V → U . We
take π : X → P1 such that X×P1 U = V c. We compose π with an automorphism of P1 to ensure
that the �bre at in�nity is smooth and is close to the real point that we need to approximate.
In particular, the �bre at in�nity contains a real point. A change of variables shows that X
contains an open set which is the smooth locus of the a�ne variety given by

NQ(
√
a)|Q(x)NQ(

√
b)|Q(y)NQ(

√
ab)|Q(z) = Q(t),

where Q(t) is a polynomial with rational roots e1, . . . , er such that U is the complement to
{e1, . . . , er} in P1. Note that for any τ ∈ U(Q), we have Xτ (AQ) 6= ∅ by Proposition 5.1 in [5].

The quaternion algebra A = (NQ(
√
a)|Q(x), b) de�nes an element of Br(π−1(U)).

We are given points (Mp) ∈ X(Qp) for all primes p and M0 ∈ X(R) such that (Mp) ∈
X(AQ)Brvert . Since Br(X)/Br0(X) is �nite, we can replace (Mp) by a point arbitrarily close to
it such that π(Mp) is a point in U ∩ A1 where t equals τp ∈ Qp.

Let S0 be the �nite set of places of Q where we need to approximate. We can �nd a �nite
set S of places of Q containing S0 and the real place such that π : X → P1 extends to a proper
morphism π : X → P1

ZS with X regular. By doing so we can ensure that Q(
√
a), Q(

√
b) and

Q(
√
ab) are unrami�ed outside S, and that we have a, b ∈ ZS , Q(t) ∈ ZS [t], and ei ∈ ZS for

i = 1, . . . , r. By (2.4.12), we can further enlarge S such that∑
p∈S

invp(A(Mp)) = 0,
∑
p∈S

invp(b, τp − ei) = 0, i = 1, . . . , r.

(For this we need to modify the points Mp for p ∈ S − S0.) Let U be the complement to the
Zariski closure of e1 ∪ · · · ∪ er in P1

ZS . The same algebra A de�nes a class in Br(π(U)). An
application of (5.1.4) gives a Q-point τ in U ∩ A1 that is arbitrarily large in the real topology
and is close to τp in the p-adic topology for the primes p ∈ S. For p /∈ S ∪ {p1, . . . , pr} we see
from property (3) of (5.1.4) that the Zariski closure of τ in P1

ZS is contained in U ×ZS Zp. This
implies that for any Np ∈ Xτ (Qp) the value A(Np) ∈ Br(Qp) comes from Br(Zp). From property
(5) we see that for each i = 1, . . . , r, the primes pi splits in Q(

√
b) and hence A(Npi) = 0 for

any Npi ∈ Xτ (Qpi). By continuity and the inverse function theorem we can �nd Np ∈ Xτ (Qp)
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arbitrarily close to Mp for p ∈ S, so that
∑
p∈S invp(A(Np)) = 0. Summing over all places of

Q we now have
∑
p invp(A(Np)) = 0 for any choice of Np, p /∈ S. By Theorem 4.1 in [5], the

algebra A generated Br(Xτ ) modulo the image of Br(Q). By Chapter 8 in [41], the set Xτ (Q)
is dense in Xτ (AQ)Br, so we can �nd a Q-point in Xτ arbitrarily close to Mp for p ∈ S.

5.3.3 Non-cyclic extensions of prime degree

Theorem 5.3.7. Let P (t) be a product of (possibly repeated) linear forms over Q. Let K be a
non-cyclic extension of Q of prime degree such that the Galois group of the normal closure of K
over Q has a non-trivial abelian quotient. Let X be a smooth, proper and geometrically integral
variety over Q with a morphism π : X → P1 such that the generic �bre of π is birationally
equivalent to the a�ne variety NK|Q(x) = P (t) over Q(t). Then X satis�es the Hasse principle
and weak approximation.

Proof. We can assume that X contains an open set which is the smooth locus of the a�ne
variety NK|Q(x) = Q(t), where Q(t) is a product of powers of t − ei for i = 1, . . . , r with the
additional assumption that the �bre at in�nity is smooth and contains a real point close to the
real point that we want to approximate.

Step 1. We claim Br(X) = Br0(X).
Let T be the norm torus NK|Q(x) = 1. Since ` = [K : Q] is a prime number, it follows by

[10] (Prop. 9.1 and Prop. 9.5) that

H1(F,Pic(Z ×F F ) = X2
ω(F, T̂ ) = 0

for any smooth and proper variety Z over a �eld F such that a dense open subset of Z is a
principal homogeneous space of T . Applying this to the generic �bre of π : X → P1, we see that
Br(X) = Brvert(X).

Now let A ∈ Br(Q(t)) be such that π∗A ∈ Br(X). The morphism π has a section de�ned
over K. By restricting to it we see that the image of A in Br(K(t)) belongs to the injective
image of Br(P1

K) = Br(K). In particular, the residue of A at ei lies in the kernel of the map

H1(Q,Q/Z)→ H1(K,Q/Z).

Since [K : Q] = ` is a prime number, K contains no cyclic extension of Q and hence the above
kernel is zero. Thus A is not rami�ed at the zero set of Q(t). Since A is also unrami�ed outside
the zero set of Q(t), we conclude A ∈ Br(Q).

Let L be the normal closure of K|Q. By assumption there exists a cyclic extension k|Q of
prime degree such that k ⊂ L. Let q = [k : Q]. Since Gal(L|Q) ⊂ S` and k 6= K, it follows
q < l.

Step 2. Let a ∈ Q×. If p is a prime unrami�ed in L and inert in k, then the equation
NK|Q(x) = a is solvable in Qp.

Write K ⊗Q Qp = Kv1 ⊕ · · · ⊕Kvs and let di = [Kvi : Qp].
If s > 1, then ` = d1 + · · ·+ ds is a prime number implies there exist integers n1, . . . , ns such

that 1 = n1d1 + · · ·+ nsds. If follows that

a =

s∏
i=1

NKvi |Qp(ani) ∈ NK|Q(K ⊗Q Qp),

so we are done.
If s = 1, then K ⊗Q Qp = Kv is a �eld extension of Qp of degree `. By assumption p is inert

in k, so that k ⊗Q Qp = kw is a �eld. Since [kw : Qp] = q is a prime less than `, the �elds kw
and Kv are linearly disjoint over Qp, so that kwKv is a �eld. Thus p is inert in kK ⊂ L, which
implies that the Frobenius at p in Gal(L|Q) is an element of order divisible by `q. However, S`
contains no such elements, so the case s = 1 is impossible.

Step 3. Now we conclude the assertion. Let the point M given by Mp ∈ X(Qp) for all
primes p and M0 ∈ X(R) be the point we need to approximate. By replacing M with a point
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arbitrarily close to M , we may assume π(Mp) ∈ U ∩ A1 where t equals τp ∈ Qp. Let S be the
�nite set of places of Q where we need to approximate, containing the real place and the primes
of bad reduction for X. We also assume that L is unrami�ed over any p /∈ S. Consider the
cyclic algebras

Ai = (k|Q, t− ei) ∈ Br(Q(X))

for i = 1, . . . , r. By Harari's formal lemma and Step 1, we can enlarge S to S′ and choose
Mp ∈ X(Qp) for p ∈ S′ − S such that∑

p∈S
invp(Ai(τp)) 6= 0

for i = 1, . . . , r. Now we apply (5.1.4) and we obtain a Q-point τ in U ∩ A1 that is arbitrarily
large in the real topology and is arbitrarily close to τp in the p-adic topology for the primes p ∈ S.
This ensures that Xτ (R) 6= ∅ and Xτ (Qp) 6= ∅ for all p ∈ S. For p /∈ S∪{p1, . . . , pr}, we see from
property (3) of (5.1.4) that τ reduces modulo p to a point of P1(Fp) other that the reduction
of any of e1, . . . , er. The corresponding �bre over Fp contains a principal homogeneous space
of a torus over a �nite �eld, and hence an Fp-point by Lang's theorem. By Hensel's lemma it
gives rise to a Qp-point in Xτ . Finally, property (5) of (5.1.4) implies that invpi(Ai(τ)) 6= 0. By
property (4), this implies that pi is inert in k. Now Step 2 applies and we conclude Xτ (Qpi) 6= ∅.
This holds for all i = 1, . . . , r and hence Xτ (AQ) 6= ∅. X2

ω(Q, T̂ ) = 0 implies that the principal
homogeneous space of T over Q satisfy the Hasse principle and weak approximation by Chapter
8 in [41].
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group cohomology, 14
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