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1 Introduction

The study of differential forms sparked by the study of integrals of different kinds dates
back to at least the times of Euler and was a motivator for generations of mathematicians
afterwards. However it was until the work of de Rham who showed there is an isomor-
phism between the singular cohomology groups of a smooth manifold and, what we now
call, its de Rham cohomology groups, that the relationship between these objects and
the intrinsic topological properties of the manifold was firmly established and a modern
and more algebraic treatment was allowed.
Later on a completely algebraic analog was developed so it was possible to apply this
theory to the theory of schemes. It was Grothendieck who then showed that this alge-
braic de Rham theory was compatible with what was already known by proving that for
an affine nonsingular scheme X over C, the de Rham cohomology of this space is the
same as the singular cohomology of its associated analytic space Xan. [Gro66]
Now turning towards a theory that would work for schemes over fields of positive char-
acteristic, Grothendieck and Berthelot began working on crystalline cohomology and
its characteristic zero version, infinitesimal cohomology through the general theory of a
topoi over a site.
The concept of (Koszul) connections over a scheme was extended to the concept of strat-
ifications and an equivalence between these and certain sheaves over the infinitesimal site
called crystals is stated. This is a fundamental fact that helped Grothendieck to prove
in [GGK68] the following theorem:

Theorem 1.1. Let K be of characteristic 0 and let X be a smooth scheme over K, then
there is a canonical isomorphism H•(X/Kinf ,OinfX/K) ∼= H•dR(X/S)

The idea is that it is possible to replace the use of differential forms with the differen-
tial behaviour reflected on the stratifications of the space. As Grothendieck concludes
after stating this result, here lies the importance of this theorem, it allows us to study
de Rham cohomology in more general context where it is known to be problematic, for
example non smoothness and positive characteristic
The present work intends to present a general introduction to the theory of algebraic
de Rham cohomology. The goal of this project is to display the classical comparison
theorem between algebraic de Rham cohomology with the infinitesimal cohomology.
Through this memoire we will only assume a basic knowledge of scheme theory and of
category theory. The appendices at the end will try to recall all the necessary definitions
and results from homological algebra and the general theory of topos.
To do so we will present a brief introduction to the theory of algebraic differential forms
on a scheme and we will compute the cohomology of some classical and illustrative ex-
amples.
Afterwards we will introduce the concept of connections on an OX -module over a scheme
X, which similarly to differential forms, is an algebraic analog of a classical theory in
differential varieties.
The next section will introduce the infintesimal site using the general language of topos
and sites. We will establish some important properties of this site and its relationship
with connections. For the main theorem we will follow a recent paper by [BdJ11] that
will tie up all the previous concepts to prove the comparison theorem for infinitesimal
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cohomology and algebraic de Rham cohomology.

2 Algebraic DeRham cohomology

Through this section we will follow [Liu02], [Har77] and [Ked] Let A→ B be a morphism
of rings so that B is an A-algebra. We can define an analog for differential forms in an
algebraic setting by defining formally Ω1

B/A as the B-module generated by elements db
where b ∈ B with the following relations:

1. da = 0 for a ∈ A

2. d(bb′) = bdb′ + b′db (Leibniz’ rule)

3. d(b+ b′) = db+ db′

This module Ω1
A/B comes equipped with a morphism d : B → Ω1

B/A and the correspond-
ing universal property: If f : B →M is a morphism of A-algebras satisfying the Leibniz’
rule, then there exists a map f̂ : M → Ω1

B/A such that the following diagram commutes:

B
d //

f

��

Ω1
B/A

f̂}}
M

Definition 2.1. Let M be a B-module, the set of all morphisms B →M satisfying the
Leibniz rule are called the A-derivations of B into M and we denote by Der(B,M) the
set of all of them.

Classical and useful examples are the following

Example. Let f be the identity Id : A→ A, then Ω1
A/A = 0

Example. If S−1 ⊆ A is a multiplicative then the canonical morphism A → S−1A
induces Ω1

S−1A/A = 0

Proof. If a ∈ S−1A then there is a′ ∈ A such that a′a ∈ A, so a′d(a) = d(a′a) = 0 and
since a′ is invertible, we have d(a) = 0

Example. Let A, B = A[x1, . . . , xn], and φ : A → B the inclusion, then Ω1
B/A is the

free B-module generated by the dxi’s

The following results are helpful for computing the modules ΩB/A

Proposition 2.1. A morphism of A-algebras f : B → C induces morphisms α : Ω1
B/A⊗B

C → Ω1
C/A and β : Ω1

C/A → Ω1
B/A

Proof. The morphism α is given by the rule α(db⊗ c) := cdf(b) and the morphism β is
given by the rule β(dc) := dc ∈ Ω1

C/B
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Proposition 2.2. Let A′ be an A-algebra and let B′ := B ⊗A A′, then ΩB′/A′ ∼= B′ ⊗B
Ω1
B/A as B′-modules

Proof. The morphism d ⊗ IdA′ : B′ → Ω1
B/A ⊗ B′ satisfies the universal property of

Ω1
B′/A′ since for every A′-module M and every derivation f : B′ → M we have a

derivation B →M given by b→ f(b)⊗ 1) ∈M , and by the universal property of Ω1
B/A

there is a morphism f̂ : Ω1
B/A →M which induces a morphism Ω1

B/A ⊗B
′ →M by the

rule db⊗ b⊗ a′ → a′f̂(db)

Proposition 2.3. Let A → B be a morphism of A-algebras then there is an exact
sequence:

Ω1
B/C ⊗B C

α→ Ω1
C/A

β→ Ω1
C/B → 0

Proof. Applying the functor HomC( ,M) for some C-module M , we would only have to
check the exactness of the sequence

0→ HomC(Ω1
C/B ,M)→ HomC(Ω1

C/A,M)→ HomC(Ω1
B/A ⊗B C,M)

but this follows from the identity HomC(Ω1
B/A ⊗B C,M) = HomB(Ω1

B/A,M) since the
sequence

0→ DerB(C,M)→ DerA(C,M)→ DerA(B,M)

Proposition 2.4. Let S−1 ⊆ B be a multiplicative subset, then Ω1
S−1B/A

∼= S−1Ω1
B/A

Proof. If we take C = S−1(B) then the previous proposition gives us the sequence

Ω1
B/A ⊗ S

−1B → Ω1
S−1B/A → Ω1

S−1B/B = 0

More generally we can define the sheaf of differentials over a scheme X relative to Y
given a morphism X → Y in the following way:

Definition 2.2. Let ∆ : X → X ×Y X be the diagonal morphism, which defines a
closed subscheme isomorphic to X in an open subset of X ×Y X. To this subscheme
∆(X) corresponds a sheaf of ideals I. We define the sheaf of differentials as Ω1

X/Y :=

∆∗(I/I2).

Remark. These two definitions are compatible in the case where X and Y are affine
schemes

Definition 2.3. Let us denote OX by Ω0
X/Y and ΩiX/Y by

∧i
ΩiX/Y .

Remark. If OX is generated by {xi}i∈I then the ΩnX/Y are generated as OX-modules

by the elements dxi0 ∧ · · · ∧ dxin for ij ∈ {1, . . . , n}
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To ease notation we write dxi0...in instead of dxi0 ∧ · · · ∧ dxin for ij ∈ {1, . . . , n}.In this
way, every element of ΩnX/Y can be written as a finite sum of the form Σ

i0,...,in
fdxi0...in

for some section f of OX

Definition 2.4. Let X → Y be a morphism of schemes, if we denote OX by Ω0
X/Y and

Ωi =
∧i

Ω1
X/Y for all i ≥ 2, then the algebraic de Rham complex Ω•X/Y is the sequence

defined as

Ω0
X/Y

d0

→ Ω1
X/Y

d1

→ Ω2
X/Y → · · · → ΩiX/Y → . . .

Where the differentials di : ΩiX/Y → Ωi+1
X/Y are calculated by di(Σfdxi0...in) := Σdf ∧

dxi0...in

We now can define the algebraic deRham cohomology H•dR(X/Y ) as the hypercohomol-
ogy associated to the algebraic deRham complex, that is H•(X,Ω•X/Y )

Proposition 2.5. (Algebraic Poincare Lemma) Let K be a field of characteristic 0 and
B = K[x1 . . . xn] ( SpecB = AnK) as in the previous example, then the de Rham complex
B → Ω1

B/K → · · · → ΩnB/K → . . . is exact.

Proof. Following [Har75, Section 7.2], one can proceed by induction on n.
If n=0 the result is clear, so now let ω ∈ ΩpB , to get a form ρ ∈ Ωp−1

B such that dρ = ω,
we write ω = ω1dx1 + ω2, where ω1 and ω2 are forms not involving dx1. So now if we
put ρ1 =

∫
ω1dx1 we see that dρ1 = ω1dx1 + ω3 where dx1 doesn’t appear in ω3. So

putting ω− dρ1 in the place of ω we see that it is possible to reduce to the case where ω
is of the form Σfσdxi ∧ · · · ∧ dxp where i > 1 and so the problem is reduced to the case
K[x2 . . . xn] which is true by induction.

Remark. If K had positive characteristic p, then this no longer holds as d(xp) =
pxp−1d(x) = 0 and so the sequence can no longer be exact

There is an important result due to Grothendieck that compares the algebraic de Rham
cohomology of an affine nonsingular scheme to the usual de Rham cohomology of the
associated analytic space. We have the following:

Proposition 2.6. Let X be a scheme of finite type over C, then the analytification of
the scheme X, denoted by (Xan,OanX ) is a complex variety with a morphism of ringed
spaces φ : Xan → X such that the map on the underlying space is the inclusion of closed
points.

Proof. We following [Har75, Section 1.6].
Let Ui be an affine cover of X and let let fi : Ui → Ani be a closed embedding. Then the
polynomials that generate the ideal that determines the embeddings fi define a complex
variety Uani . The variety resulting of the glueing of the Uani ( compatible with the gluing
of the Ui in X ) is the space Xan.
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Theorem 2.1. Let X be an affine nonsingular scheme over C, then H(Xan,C) ∼=
HdR(X/C), where H(Xan,C) denotes the Betti cohomology of Xan

Proof. [Gro66]

Another useful result due to Faltings for calculating algebraic de Rham cohomology is
the degeneration of the Hodge to de Rham complex:

Theorem 2.2. Let X be a smooth proper scheme over a field k of chacateristic 0, then
there is a spectral sequence Ep,q1 = Hp(X,Ωq) ⇒ Hp+q

dR (X) that degenerates at the E1

page, giving an isomorphism
⊕

p+q=n
Hp(X,ΩqX/K) ∼= Hn(X,K)

We present the following classical examples and a detailed computation of their coho-
mology groups. Through the rest of this section we suppose K is a field of characteristic
0.

Example. Let A = K[x, y]/(y2 − x3) and X = Spec(A) be a K-scheme where K is of
characteristic 0. Then its de Rham cohomology groups are H0(X) = K, H1(X) = K
and H2(X) = 0.

Proof. First we notice that by the relation y2 − x3 gives us that

K[x, y]/(y2 − x3) = {f(x) + yg(x) | f(x), g(x) ∈ K[x]}

The relation y2 − x3 above gives us a relation 2ydy − 3x2dx in Ω1
X/K , that is

Ω1
X/K = (Ady ⊕Adx)/(2ydy − 3x2dx)

and so we can write the elements of Ω1
X/K as the elements of the form (f(x)+yg(x))dx+

h(x)dy where f, g, h ∈ K[x]
We calculate Imd0 directly, that is

Imd0 = {d(f(x) + yg(x)) | f, g ∈ K[x]} = {f ′(x)dx+ yg′(x)dx+ g(x)dy}

By the form of the elements of Imd0 we get that

Kerd0 = {f(x) + yg(x) | f ′(x) = 0, g(x) = 0} = {c | c ∈ K}

This means that H0(X) = Kerd0 = K
We have that Ω2

X/K = Ω1
X/K ∧ Ω1

X/K and so the elements are

((f1(x) + yg1(x))dx+ h1(x)dy) ∧ (f2(x) + yg2(x))dx+ h2(x)dy

= (f1h2(x) + yg1h2(x))dx ∧ dy + (f2h1(x) + yg2h1(x))dy ∧ dx

And so we can write all elements of Ω2
X/K just as f(x)dx ∧ dy for some f(x) ∈ K[x]

Continuing we have

Imd1 = {d((f(x) + yg(x))dx+ h(x)dy)} = {g(x)dy ∧ dx+ h′(x)dx ∧ dy}
= {(g(x)− h′(x))dx ∧ dy}
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This means that

Kerd1 = {(f(x) + yg(x))dx+ h(x) | (g(x)− h′(x))dx ∧ dy = 0}

and so we must have g(x)− h′(x) = x2p(x) for some p(x) ∈ K[x]
So

Kerd1 = {(f(x) + y(x2p(x) + h′(x)))dx+ h(x)dy}

but after some inspection we can realize that the elements yxndx are integrable for n ≥ 3,
more precisely we have that

d(y3xn−2) = (n− 2)y3xn−3dx+ 3xn−2y2dy = 3yxndx+ (n− 2)yxndx = (n+ 1)yxndx

Then

H1(X) = Kerd1/Imd0

= {(f(x) + y(x2p(x) + h′(x)))dx+ h(x)dy}/{(f ′(x) + yh′(x))dx+ h(x)dy}

and by the discussion above we get that H1(X) is generated by Kx2ydx
Finally

H2(X) = Ω2
X/K/Imd

1 = {h(x)dx ∧ dy | h(x) ∈ K[x]}/{(g(x)− f ′(x))dx ∧ dy | f, g ∈ K[x]}

which clearly must be 0 as every polynomial h(x) is of the form g(x) − f ′(x) for some
h, g, f ∈ K[x].

Remark. The previous example displays the misbehaviours of the algebraic de Rham
cohomology in the case of nonsmooth schemes, as the first Betti cohomology group of the
complex curve y2 − x3 = 0 is 0.

Example. Let X = Spec(K[x, x−1]) over Spec(K). Then its cohomology groups are
H0
dR(X) ∼= K, H1

dR(X) ∼= K, Hi
dR(X) = 0 ∀i ≥ 2

Proof. If we let S = {xk | k ∈ N} then we have the isomorphism S−1K[x] ∼= K[x, x−1].
This means we can describe K[x, x−1] as

K[x, x−1] = {f(x)

xk
}

Again by this isomorphism and by proposition 2.4 we have

Ω1
S−1K[x]/K = {f(x)dx

xk
| fi ∈ K[x], k ∈ N}

Since we have d(f(x)) = f ′(x)dx and d((xk)−1) = −kdx(xk+1)−1 then we have the
following description for the submodule Imd0

Imd0 = {f
′(x)dx

xk
+
−kdx
xk+1

| k ∈ N, f(x) ∈ K[x]}

7



And so for Kerd0 we have :

Kerd0 = {f(x)

xk
| f ′(x) = 0, k = 0} = {k | k ∈ K} ∼= K

Since S−1
∧i

Ω1
K[x]/K

∼=
∧i

S−1Ω1
K[x]/K then

i∧
S−1Ω1

K[x]/K = 0,∀i ≥ 2

So the first de Rham cohomology group is the quotient

H1
dR(X) = Ω1

S−1K[x]/K/Imd
0 = {f(x)

xk
}/{f

′(x)dx

xk
+
−kdx
xk+1

}

From this we can see that dx
x is a generator of this group, that is

H1
dR(X) ∼= K

dx

x

Through the following example we will use the following characterization of PnA

Proposition 2.7. Let A be a ring and consider the A-schemes Ui = Spec(A[x−1
i xj ])

for 0 ≤ i, j ≤ n then the A-schemes Ui can be glued along the principal open sets
Uij = D(x−1

i xj) ⊆ Ui since Uij ∼= Uji for i, j ∈ {1, . . . , n}. The resulting scheme is
isomorphic to ProjA[x1, . . . , xn] = PnA

Proof. ([Liu02, Example 3.34])

Example. Let X = P1
K over K, then its de Rham cohomology groups are H0

dR
∼= K,

Hi
dR = 0 for i ≥ 0.

Proof. Let U0 = Spec(K[x]), U1 = Spec(K[x−1]) be an affine cover of X, then the
cohomology groups of U0, U1 and U0 ∩U1 = Spec(K[x, x−1]) will be enough to compute
the cohomology of the whole space by Ĉech cohomology (see A.18 ).
The only thing we’re missing is the first cohomology group of H1(U1).
We can see that

Ω1(U1) = {f(x−1)d(x−1) | f(x−1) ∈ K[x−1]}

and that

Imd0 = {f ′(x)d(x−1) | f(x−1) ∈ K[x−1]}

So the first de Rham cohomology group is generated by d(x−1)/x, that is:

H1
dR(U1) := Ω1(U1)/Imd0 ∼= Kd(x−1)/x
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So we have the following data:

H0
dR(U0) ∼= H0

dR(U1) ∼= K

H1
dR(U0) = 0, H1

dR(U1) ∼= K

H0
dR(U0 ∩ U1) ∼= K

H1
dR(U0 ∩ U1) ∼= K

Now, the sequence becomes :

0→ H0
dR(X)→ H0

dR(U0)⊕H0
dR(U1)→ H0

dR(U0 ∩ U1)→ H1
dR(X)→

H1
DR(U0)⊕H1

dR(U1)→ H1
dR(U0 ∩ U1)→ 0→ . . .

Where the first nonzero map is given by f 7→ (resU0
(f), resU1

(f)), the second map by
(f, g) 7→ resU0∩U1

(f)−resU0∩U1
(g), the map H0

dR(U0∩U1)→ H1
dR(X) is the connection

map given by the snake lemma and the following morphisms are the induced by the
cohomology functors.
Replacing what we know about the cohomology:

0→ H0
dR(X)→ K ⊕K → K → H1

dR(X)→ K → K → 0→ . . .

From this we get that H0
dR(X) ∼= K, that H1

dR(X) = 0 and that Hi
dR(X) = 0 for all

i ≥ 0.

Example. Let X = Spec(K[x, y]/(y2− x3− ax− b) be an elliptic curve ( with ∆ 6= 0 ),
then its de Rham cohomology is H0

dR(X) = K, H1
dR(X) ∼= K ⊕K , H2

dR(X) = K and
Hi
dR(X) = 0 for all i ≥ 2

Proof. Let A = K[x, y]/(y2 − P (x)) where P (x) = x3 + ax + b, so every element of A
can be written as follows:

A = {f(x) + yg(x) | f(x), g(x) ∈ K[x]}

Since X is an elliptic curve, we know that P (x) has no repeated roots and so there are
polynomials R,S such that RP + SP ′ = 1. With this relation we get that

dx = (1)dx = (RP + SP ′)dx = (RPdx+ SP ′dx)

if we use the relation ydy = 1/2P ′(x)dx we get RPdx+ 2Sydy = Ry2dx+ 2Sydy so

y(Rydx+ 2Sdy) = dx

Let us call α = Rydx+ 2Sdy.
Then we get then:

yα = dx,
1

2
αP ′(x) = dy

Using this, we write the image Imd0 as follows:

Imd0 = {d(f(x) + yg(x))} = {f ′(x)dx+ g′(x)ydx+ g(x)dy}
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From here we see that

Kerd0 = H0
dR = {f(x) + yg(x) | g(x) = 0 = f ′(x)} ∼= K

We can also write the submodule Imd0 , using the identities above and the relation
y2 = P (x), as

Imd0 = {(1

2
P ′g(x) + g′(x)P )α+ f ′(x)yα}

By this and by the observation that we can write

Ω1
A/K = {(f(x) + yg(x))α | f(x), g(x) ∈ K[x]}

We can now calculate H1
dR(X) by noticing that the degree of α term must be at least 2

and that we can write any term of degree ≥ 2 as a linear combination of (1
2P
′(x)g(x) +

g′(x)P ), in particular the leading term kxn of a polynomial f(x) of degree at least 2 can
be written as

kxn = (
3

2
+ (n− 2))

k

(3/2 + (n− 2))
xn, n ≥ 2

This shows that the first de Rham cohomology group is

H1
dR(X) ∼= Kα⊕Kxα

3 Connections

Through this section we will follow [Del70], [DM] and [Lee06, Chapter 5]
The next step towards a comparison theorem is the study of the concept of a connection
for a morphism of schemes f : X → S and its relationship with modules over crystals of
OX/S-modules.
To begin with this let us give a brief reminder of connections and parallel transport in
smooth manifolds.

Remark. Given a smooth manifold M , π : E →M a vector bundle over M, a connection
is a map ∇ : T (M) × E(M) → E(M), where T (M) are the smooth sections of the
tangent bundle and E(M) are the smooth sections over the vector bundle E, that satisfy
the following:

1. ∇ is C∞(M)-linear on the first entry

2. ∇ is R-linear on the second entry

3. ∇ satisfies ∇(X, fY ) = f∇(X,Y ) +X(f)Y for all f ∈ C∞(M)

If we wanted to measure the change of a vector field along a curve γ : I → M with
respect to a connection ∇ over the tangent bundle, we can define the covariant derivative
Dt(V ) : T (γ)→ T (γ) which satisfies:

1. It is R-linear
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2. Satisfies the product rule Dt(fV ) = ḟV + fDt(V )

3. For any extension V̂ of V , we have Dt(V ) = ∇γ̇d(V̂ )

So if we put t0 ∈ M , v0 ∈ Tγ(t0), then there exists a parallel vector field V along γ
such that V (t0) = V0 which induces a map Pt0,t1 : Tγ(t0)(M) → Tγ(t1)(M) by setting
Pt0,t1(V0) = V (t1)
It is possible see ([Lee06, Exercise 4.12]) that one can recover the covariant differential
along γ by the operators Pt0,t1 by setting Dt(V )(t0) := d

dtP
−1
t0,t1(V (t0)) |t= t0

With this motivation in mind, we can see what it means to have a connection on a
smooth variety.
The main obstacle in the construction is, again, to come up with the correct notion
of ’infinitely close’, this time for two points. So, if X is a complex variety over S let
∆X = X×X denote the diagonal with associated sheaf of ideals I and ∆1

X the infinites-
imal neighborhood of first order, i.e. O(X)⊗O(X)/I2.
For two points x, y ∈ X it would be good to consider them ’infinitely’ close to each other
if they have the same linear order.
To be more precise, we say that x, y ∈ X(S) are infinitely close of first order if the mor-
phism (x, y) ∈ (X×X)(S) can be factorized through ∆1

X . If V is a locally freeOX -module
of finite rank then a connection γ over V is given by isomorphisms γx,y : x∗V → y∗V of
OS-modules, indexed by pairs of points x, y infinitely close of first order, such that:

1. If f : S′ → S is a morphism then f∗(γx,y) = γxf,yf

2. γx,x = Id

This definition is completely analogous to the morphisms Pt0t1 given before and thus it
shouldn’t be a surprise that we can recover an operator that behaves like a connection
on a smooth manifold.
First, notice that p1, p2 : ∆1

X → X are, by definition, two points infinitely close of first
order. So a connection gives an isomorphism γp1,p2

∈ HomO
∆1

X

(p∗1V, p
∗
2V ), which by

adjunction corresponds to a morphism Dγ : V → p1∗p
∗
2V .

Remark. The sheaf p1∗p
∗
2V is canonically isomorphic to O∆1

X
⊗OX

V where the action

on ∆1
X is on the right. This isomorphism is given by considering the following diagram:

0 //

��

0 //

��

Ker(α)

��

}}

0 // I2

��

// OX ⊗OX

Id

��

// O∆1
X

//

α

��

0

0 // I

��

// OX ⊗OX

��

// OX

��

// 0

(I/I2) // 0 // Coker(α)
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Where the diagonal morphism is given by the snake’s lemma

If we denote pV : O∆1
X
⊗OX

V → V the morphism defined by pV (f ⊗ v) = v then

pV (D(v)) = v, so, if we put j1 : V → O∆1
X
⊗OX

V defined, on sections s of V and f of

OX , by j1(fv) = 1⊗ f ⊗ v, we can define an operator determined by the following rule
on sections ∇(v) = j1(v)−D(v).
This construction will model the notion of connection we will use:

Definition 3.1. Let g : X → S a morphism of schemes, a (Koszul) connection over
E ∈ OX-mod, relative to S, is a g−1OS-linar morphism :

∇ : E → Ω1
(X/S) ⊗OX

E

Such that ∇(fv) = df⊗v+f∇(v), where f and v are sections of O(X) and E respectively.

Remark. Given two connections (E1,∇1) and (E2,∇2) it is possible to build new con-
nections, namely:

1. The direct product connection ∇ : E1 ⊕ E2 :→ Ω1
(X/S) ⊗OX

(E1 ⊕ E2) given by the
formula on sections :

∇(v1 + v2) := ∇1(v1) +∇2(v2)

2. The tensor product connection ∇ : E1 ⊗ E2 → Ω1
(X/S) ⊗OX

(E1 ⊗ E2), given by the
formula on sections:

∇(v1 ⊗ v2) = ∇1(v1)⊗ v2 +∇2(v2)⊗ v1

3. The Hom connection ∇ : Hom(E1, E2) → Ω1
(X/S) ⊗OX

Hom(E1, E2) given by the
formula on sections:

∇(f)(v1) = ∇2(f(v1))− f(∇1(v1))

Before going further, the following examples mean to illustrate the idea behind the
connections

Example. Let X = Spec(C[X]), S = Spec(C) and E = C̃[x] = OX .
Then the map ∇ : E → Ω1

(X/S) ⊗OX
E, defined on sections by ∇(fv) = df ⊗ v, is a

connection.
It is immediate to check that ∇ satisfies the connection condition.
We think about this connection as way to associate to a section f of OX and a section v
of a vector field, the derivative of f in the direction of v.
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Example. Let X = P1
K and let g(x)dx be a 1-differential form, then we define the

connection ∇(f(x)) := df + f(x)g(x)dx

Definition 3.2. A connection is integrable or flat if ∇2 = 0

Remark. A connection is equivalent to a P1-linear isomorphism ε : P1 ⊗OX
E →

E ⊗OX
P1 which is the identity modulo Ω1

(X/S).

Proof. The equivalence can be seen by setting

∇ 7→ Id+∇

and
ε 7→ ∇(s) := ε((1⊗ 1)⊗ v)− v ⊗ (1⊗ 1)

where v is a section of E . Indeed, let ∇ be a connection, then we write

ε((a⊗ b)⊗ v) = (v ⊗ (a⊗ b)) +∇(v)⊗ (1⊗ 1)

and the associated connection

∇′(v)⊗(1⊗1) = ε(v⊗(1⊗1))−v⊗(1⊗1) = v⊗(1⊗1)+∇(v)⊗(1⊗1)−v⊗(1⊗1) = ∇(v)⊗(1⊗1)

for all sections v of F

An immediate generalization of a connection is that of an n-connection or stratification
structure, if a connection encoded the data of parallel transport up to first order closeness,
then a stratification should encode the same information but for higher order closeness.

Definition 3.3. Let Pn = (OX ⊗OS
OX)/In be the structure sheaf of the nth neigh-

borhood of the diagonal, a stratification is a family of isomorphisms of Pn-modules
{εn : Pn ⊗OX

E → E ⊗OX
Pn}n∈N such that :

1. ε0 = id

2. εn is compatible with restrictions Pn+1 → Pn.

3. p∗12εn ◦ p∗23εn = p∗13 for all n ∈ N where pij are the projections of the n-th neighbor-
hood of the scheme X ×S X ×S X

4 The infinitesimal site

Through this section we follow [BO78] and [BdJ11]
Through this section we introduce the general ideas behind the infinitesimal site, which
will be the setting in which we will be able to proof our main theorem.
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Definition 4.1. Let X → S be an S-scheme, the category Inf(X/S) consists as objects,
morphisms f : U → T where U ⊂ X is a Zariski open subset and f is a closed S-
immersion such that its associated ideal is nilpotent.
The morphisms between U → T and U ′ → T ′ are S-morphisms where u : U → U ′ is an
open immersion and t : T → T ′ makes the following diagram commute.

U

��

u // U ′

��
T

t // T ′

On this category it is possible to define the following site:

Definition 4.2. A set of morphisms {(Ui → Ti)→ (U → T )} of Inf(X/S) is a covering
family of (U → T ) ⇐⇒ T =

⋃
Ti and Ui = U ×T Ti

In the affine case this simply means that covers of the object (U → T ) ∈ Inf(X/S)
consists of morphisms of the form (Ui → Ti) where Ui = Spec(R/I) ×Spec(R) Spec(Ri)
where Spec(Ri) = Ti, that is Ui = Spec((R/I)⊗R Ri) and T =

⋃
Ti.

Before going further, let us prove that these sets of morphisms form a site:

Proposition 4.1. The set of morphisms of the form {(Ui → Ti) → (U → T )} induce
the structure of a site on the category Inf(X/S)

Proof.

a) Let (Ui → Ti) be any element of a covering family of (U → T ) and let (U ′ → T ′)→
(U → T ) be any morphism. Then the object ((U ×T Ti) ×U U ′ → Ti ×T T ′) is the
corresponding pullback.
The only interesting detail to check is that the morphisms (U ×T Ti)×U U ′ → Ti and
(U ×T Ti) ×T U ′ → T ′ are open immersions, but this is given by the change of base
of the open immersions Ui → U and U ′ → U .

b) Let (Ui → Ti) → (U → T ) ← (U ′ → T ′) where {(Ui → Ti)}i ∈ Cov(Inf(X/S)).
To see that Ui ×U U ′ = U ′ ×T ′ (Ti ×T T ′) it only remains to check that the object
in the left hand side satisfies the universal property of the right hand side using the
commutativity of the diagrams and the fact that Ui = U ×T Ti. The calculations are
immediate.

c) If {Ui → Ti}i is a covering family of (U → T ) and {Uij → Ttj}j is a covering for
(Ui → Ti), then a general categorical argument shows that if Ui = U ×T Ti and
Uij = Ui ×Ti

Tij then Uij = U ×T Tij ∀i, j

d) The morphism (U → T )
Id−→ (U → T ) forms a cover, as the identity on U is open

and U = U ×T T

The next natural step is to consider the topos associated to this site.
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Definition 4.3. Let (X/S)inf := Sh(Inf(X/S)), the associated topos of abelian groups.

In fact it is possible to give a more explicit description of these sheaves as follows:

Proposition 4.2. An object F ∈ (X/S)inf is determined by a family of abelian sheaves
F(U→T ) on T, indexed over all (U → T ) ∈ Inf(X/S) and a family of transitive mor-
phisms γT,T ′ : t−1FU→T → FU ′→T ′ for every morphism (u, t) : (U → T ) → (U ′ → T ′),
such that γT,T ′ is an iso when T → T ′ is an open immersion.

Proof. Given a sheaf F ∈ (X/S)inf , an object (U → T ) ∈ Inf(X/S) and an open
T ′ ⊂ T one can associate to this sheaf, a sheaf F(U→T ) on T, calculated on T ′ as
F(U→T )(T

′) = F ((U ∩ T ′) → T ′). It is immediate to see that this sheaf F(U→T ) is a
sheaf on T for every object on Inf(X/S) as all the required properties are inherited by
F ∈ (X/S)inf .
Let (u, t) : (U → T ) → (U ′ → T ′) a morphism and V ′ ⊆ T ′, then if we put V =
t−1(V ′) ⊆ T , we get morphisms ((U ∩ V ) → V ) → (U → T ) → (U ′ → T ′) which
induce a map of sets F (U, T ) → F (U ∩ V, V ) that corresponds by the argument in the
previous paragraph, to a morphism FU→T (T ) → FU→T (V ) = t∗FU ′→T ′(V

′). Using the
adjunction between ( )∗ and ( )−1 we get a morphism γT,T : t−1FU→T → FU ′,T ′ . It
should be clear that, if T → T ′ is open, then the above map must be an isomorphism,
as t−1(V ′) = V ′ ∩ T for every V ′ ⊆ T ′.
Thus, from a family of sheaves FU→T for every U → T it is possible to recover a sheaf
F ∈ (X/S)inf by setting F (U → T ) = FU→T (T ).

By this characterization, sheaves on the site Inf(X/S) can be thought as sheaves on T
’relative to U’ in the sense that they reflect behaviour around the closed U in T in a
compatible way.

Example. Let F(U→T )(T
′) = OT (T ′). For a morphism t : T → T ′ we write γT,T ′ as

morphism associated to t] : OT ′ → OT by the general adjunction ( )∗ a ( )−1.
We will call O(X/S) ∈ (X/S)inf , the structure sheaf on Inf(X/S) to the sheaf obtained
from the shaves OT
Analogous to this sheaf, we can obtain sheaves OX ∈ (X/S)inf and J(X/S) associated to
the sheaves GU→T = OU and HU→T = Ker(OU → OT ), respectively.
These sheaves are compatible in the sense that there is a short exact sequence:

0→ J(X/S) → O(X/S) → OX → 0

Definition 4.4. A crystal of (O(X/S))-modules is a sheaf of abelian groups over Inf(X/S)
such that FU→T are all OT -modules and the morphisms t∗F′U→T ′ → FU→T are linear
isomorphisms over OT

The following result will give us a relationship between stratifications and crystals

Proposition 4.3. Let X → S be a smooth S-scheme and E ∈ OX-mod. Then the
following is equivalent:

1. A stratification structure (εn)n∈N over E.
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2. A family of OX-morphisms θn : E → E ⊗OX
Pn satisfying :

E ⊗ Pm+n // E ⊗ Pm ⊗ Pn

E

θn+m

OO

θn // E ⊗ Pn
θm⊗idPn

OO

3. A morphism Θ : colimnHomOX
(Pn,OX)→ EndOX

(E)

4. A crystal on (X/S)inf

Proof. [BO78, Prop. 2.11]

Remark. The OX-module colimnHomOX
(Pn,OX) is called the ring of differential op-

erators of finite order of X/S. It can also be described as the set of f−1OS-linear maps

h : OX → OX such that the induced morphism ĥ : OX ⊗f−1OS
OX → OX annihilates

In+1⊗OX , where I is the ideal of the diagonal PX/S generated as an OX-module by the
elements of the form 1⊗ b, where b ∈ OX .
A more detailed treatment of these modules can be found in [BO78, Chapter 2]

Lemma 1. Let (U → T ) ∈ Inf(X/S) and g : U → U ′ be an open immersion such that
g(U) is contained in an affine subset of U’. Then there is a T ′ and a morphism T → T ′

making the following diagram commute:

U
g //

π

��

U ′

π′

��
T // T ′

Proof. It’s possible to suppose U = Spec(A), T = Spec(R) and U ′ = Spec(A′), so if we
write R′ = R ×A A′, T ′ = Spec(R ×A A′) and J be the ideal associated to the closed
immersion U → T then the ideal J ′ := {(r, 0) | r ∈ J} is also a nilpotent ideal of R′

which corresponds to the kernel of π′]

Remark. The infinitesimal site doesn’t have, in general, a final object.
This can be seen using the previous lemma, since it is possible to enlarge T and get a
non isomorphic object U ′ → T ′ and a morphism (U → T )→ (U ′ → T ′)

The advantage of working with the topos (X/S)inf instead of with the site Inf(X/S) is,
as is common in general category theory, categories of functors inherit some properties
of the target category.
For example, despite the last remark it is possible to define global sections of a sheaf
F ∈ (X/S)inf by defining Γ(X,F ) := hom(X/S)inf

(∗X , F ) where ∗X is the final object
in (X/S)inf .
Let f : X → Y be a morphism and S → S′ a morphism making the following diagram
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commute:

X
f //

��

Y

��
S // S′

One would like to get a morphism of topoi f∗ : (X/S)inf → (Y/S′)inf . This is possible
to do in the following way:
First one start by defining a functor f∗ on the representable objects (V → T ′) ∈
Inf(Y/S′) we write, if f(U) ⊆ V , (f∗(V → T ′))(U → T ) := {g : T → T ′} which
make the following diagram commutes:

U
f //

��

��

V

��

  
T

g //

��

T ′

~~
S // S′

In the case that f(U) 6⊆ V then (f∗(V → T ′))(U → S) := ∅. This determines a sheaf
over Inf(Y/S′)
Now we can make use of the lemma 4 in the following way: Writting φ := f∗, we get
presheaves φ∗ and φ∗.

Proposition 4.4. The sheaf φ∗(G) is a sheaf for every G ∈ (Y/S′)inf

Proof. Let {Ui → Ti} be a covering of U → T and si ∈ f∗(G)(Ui → Ti) a compatible
family of sections, a section s ∈ f∗(G)(T ) compatible with the si is then a family of
morphisms sT ′ : f∗(T )(T ′) → G, so if h ∈ f∗(T )(T ′), we get morphisms hi : h−1(Ti) →
Ti, and the family si(hi) defines elements in G(h−1(Ti)), but since G is a sheaf, there is a
global section compatible with these morphisms. This section defines then a morphism
sT ′ : f∗(T )(T ′)→ G which is compatible with the family si.

The sheafification φ−1 associated to the presheaves defined by φ∗ is a left adjoint to the
functor φ∗ since the functors φ∗ and φ∗ are adjoints.
In order to define then a morphism of topoi (f−1, f∗) it only remains to see that the
functor f−1 preserves inverse limits, the proof for this can be found in [BO78] Proposition
5.9

5 The main theorem

Through this section we follow [BdJ11]
Through this section F will denote a quasi-coherent crystal with associated connection
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(M,∇). X will be an affine S-scheme Spec(A) and D will be the completion by J of P
of any sequence of the form

J → P � A

F(n) := F(X × · · · ×X) where the product is taken n-times, and D(n) the completion
by J ⊗ · · · ⊗ J of P ⊗ · · · ⊗ P with the tensor product taken (n+1)-times.

Proposition 5.1. There is a correspondence between quasicoherent crystals F and a
OS-module M with an integral connection ∇

Proof. To a quasicoherent crystal F we associate the module M := F(X) and the
connection given by the morphism ∇ : F → F ⊗X/S Ω1

X/S induced by the projection

morphisms αi : pr∗iFT → FT×T indexed on objects (U, T ). More specifically we can
calculate this on any section s ∈ FT (T ) as ∇(s) = α1(s⊗ 1)− α2(1⊗ s).
Conversely for a module M we assign the sheaf F calculated on affine objects as F(U =
Spec(A), T = Spec(B)) = B ⊗D M where the map D → B is any map such that the
diagram commutes

D //

��

A

IdA
��

B // A

It can be checked the definition of F is independent of the choice of lift D → B, and
this in fact forms sheaf.

Definition 5.1. The kernel pair of a morphism f : X → Y in a category C is the fiber
product X ×Y X //// X of f : X → Y with itself

Definition 5.2. An effective epimorphism in a category C is a morphism f : X → Y
such that it is a coequalizer of its kernel pair X ×Y X //// X

Lemma. If C is a topos and if X → ∗ is an effective epimorphism, then for any abelian
sheaf F , RΓ(∗,F) is computed by a bicomplex of the form RΓ(X,F)→ RΓ(X×X,F)→
RΓ(X ×X ×X,F)→ . . .

Proof. [BdJ11, Remark 2.5]

Lemma. Let F be a quasicoherent OX/S-module such that R1F(X × · · ·×X) = 0, then
F(•) computes ΓR(X/S,F)

Proof. [BdJ11, Lemma 2.4]

Lemma. There is a quasi-isomorphism between M ⊗∧D Ω∗D and M(n)⊗∧D(n) Ω∗D(n)/D

Proof. The morphisms D → D(n) induce isomorphisms M(n) ∼= M ⊗∧D D(n) which in
turn induce a filtration M(n)⊗∧DΩ(X/S)∗ of M(n) and a filtration M⊗∧DΩiD⊗∧DΩ∗D(n)/D.

So the result is reduced to see that the map D → (D(n) → Ω1
D(n)/D → Ω2

D(n)/D → . . .

is a quasi-isomorphism, but this is true since D(n) is a formal power series ring over D
and its de Rham cohomology is D at 0 and 0 everywhere else by the Poincare lemma of
algebraic de Rham cohomology.
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Given this correspondence we denote M(n) := F(n) := F(X×· · ·×X) where the product
is taken n+1 times.
We can see now that a module M with an integrable connection ∇ induces a sequence
of the form M(n)→M(n)⊗∧D(n) Ω•D(n) for every n ≥ 0 and so we get a double complex
of the form

M //

��

M ⊗∧D Ω1
D

//

��

M ⊗∧D Ω2
D

//

��

. . .

��M(1) //

��

M(1)⊗∧D(1) Ω1
D(1)

//

��

M(1)⊗∧D(1) Ω2
D

//

��

. . .

��... // . . . // . . . // . . .

Lemma. The complex M ⊗∧D ΩiD → M(1) ⊗∧D(1) ΩiD(1) → M(2) ⊗∧D(2) ΩiD(2) → . . .

computes RΓ(X/S,F ⊗∧X/S ΩiX/S)

Proof. This is clear since M(n)⊗∧D ΩiD = F(X × · · · ×X)⊗∧D ΩiD and since the ΩiD are
quasicoherent we can use the lemma 5 and this shows what we wanted.

Lemma. The complex Ω1
D → Ω1

D(1) → Ω1
D(2) is homotopic to zero as a D(•)-cosimplicial

module.

Proof. [BdJ11, Lemma 2.5]

Lemma. For all i > 0, the cosimplicial module M ⊗D ΩiD → M(1) ⊗D(1) ΩiD(1) →
M(2)⊗D(2) ΩiD(3) → . . . is homotopy equivalent to 0.

Proof. This follows from the previous lemma noticing that taking completions and tensor
and wedge products preserves being homotopical to zero

Theorem 5.1. Let M be a crystal and ∇ its corresponding connection, then there is a
natural quasi-isomorphism RΓ(X/S,M) ∼= (M →M ⊗D Ω1

D →M ⊗D Ω2
D → . . . )

Proof. If we take the double complex with terms Mn,m := M(n)⊗∧D(n) ΩmD(n) where the

horizontal morphisms are the ones given by the sequence M → M(1) → M(2) . . . and
the vertical ones the induced by the deRham complex.
By a previous lemma we have that M•,m is quasi-isomorphic to M⊗∧DΩ•D independently
from the first term and so we see that Tot(M•,•) computes the cohomology of M⊗∧DΩ∗D.
By 5 we have that the top row of the double complex computes the cohomology of F
and by the previous lemma we have that the next rows are all homotopical to zero.
We conclude now that the top row and the first column are quasi-isomorphic

Corollary 1. Let X be a smooth K-scheme, then there is a canonical isomorphism
Hn((X/K)inf ,OinfX/K) ∼= Hn

dR(X/K)

Proof. [BdJ11]
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A Homological algebra

Through this section we will follow [Wei95]
In this section we will give a brief introduction to the basic theory of homological algebra.

Definition A.1. A category C is abelian if it satisfy the following conditions:

1. For every A,B ∈ C, HomC(A,B) ∈ Z−mod

2. It has all finite direct sums ( equivalently all direct products )

3. Every morphism has a kernel and a cokernel

4. Every monomorphism is a kernel and every epimorphism is a cokernel

Example. Let R be a ring, not necesessarely commutative, then the category R−Mod
of R-modules is an abelian category

Example. Let (X,OX) be a scheme, then the category of OX-modules is an abelian
category

Definition A.2. A sequence · · · → Ai
fi→ Ai+1

fi+1→ Ai+2 → . . . in an abelian category
C is called exact if for every i we have Kerfi+1 = Imfi.
An exact sequence of the form 0→ A→ B → C → 0 is called a short exact sequence.

Definition A.3. We say that a complex A• is bounded below if there is a nZ such that
Ai = 0 ∀i ≤ n

Definition A.4. A functor F : A → B with A and B abelian categories is called additive
if it commutes with products, that is F(AΠAA

′) = F(A)ΠBF(A′)

Remark. All through this section all functors F between abelian categories are assumed
to be additive

Definition A.5. Let F : C → D be a functor between abelian categories, then F is
called exact if for every exact sequence · · · → Ai → Ai+1 → . . . in C the sequence
· · · → F(Ai)→ F(Ai+1)→ . . . in D is exact.
Similarly we say that F is left (resp. right) exact if for every short exact sequence
0→ A→ B → C → 0 in C we get an exact sequence 0→ F(A)→ F(B)→ F(C) ( resp
F(A)→ F(B)→ F(C)→ 0).

Example. Let C = D = Z−mod and let F(A) = Hom(M, ) for a fixed object M ∈ C,
then F is a left exact functor and it is right exact when A is a projective object.

Proof. Let 0→ A
f→ B

g→ C → 0 an exact sequence in C, and the associated short exact
sequence in D

0→ Hom(M,A)
f∗→ Hom(M,B)

g∗→ Hom(M,C)

Since f is a monomorphism we have that for any two h, h′ ∈ Hom(M,A) such that
f ◦ h = f ◦ h′ we have that h = h′.
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If h ∈ Hom(M,B) is such that g∗(h) = 0 then Imh ⊆ Kerg = Imf and so the associated

ĥ : M → A satisfies f∗(ĥ) = h so Imf∗ = Kerg∗

If we let M be a projective object then any morphism h : M → C can be lifted to a
morphism ĥ : M → B and so Img∗ = Hom(M,C)

Remark. Similarly for C and D as before, the functor F = Hom( ,M) is left exact and
exact whenever M is an injective object.

Our motivation is that for a left (right) exact functor F to be able to continue the image
of short exact sequences on the right ( left ) and obtain a measure of the exactness of
the sequence under the functor. In other words, we would like to have family of objects
Di ∈ D and a family of morphism → F(C)→ D0 → D1 → . . . such that this continued
sequence is now exact.

Definition A.6. An abelian category C has enough injectives (resp. projectives) if for
every object A ∈ C there is a monomorphism (resp. epimorphism ) A→ I (resp. P → A
) where I is an injective object (resp. P is a projective object).

Example. The category C = Z−mod of abelian groups has enough injectives. For exam-
ple, if M ∼= Z(I)/K for some set I and subgroup K of Z(I), then we have a monomorphism
M → Q(I)/K

Example. The category OX −Mod of OX-modules over a scheme X has enough injec-
tives

Definition A.7. A sequence A0 d0

→ A1 d1

→ A2 → . . . in an abelian category C is called a
complex if di+1 ◦ di = 0, for every index i. We denote such a complex as A•.

Definition A.8. Let A•,B• be two complexes on C, then a morphism of complexes
f• : A• → B• is a collection of morphisms f i : Ai → Bi such that they commute with
the di’s, that is f i+1 ◦ diA = diB ◦ f i

Remark. If C is an abelian category, then the complexes on C together with morphisms
of complexes form an abelian category C•(C)

Definition A.9. Let A• be a complex, then for every i ≥ 0, the i-th cohomology group
of A• is the group Hi(A•) := Kerdi/Imdi−1

Remark. If C is an abelian category and A• = A0 → A1 → · · · ∈ C is an exact sequence,
then H0(A•) = A0 and Hi(A•) = 0 for all i ≥ 1.

Definition A.10. Let C be an abelian category and A ∈ C, then an injective ( resp.
projective ) resolution of A is an exact sequence of the form 0 → A → I0 → I1 → . . .
(· · · → P 1 → P 0 → A → 0) for Ii injective objects ( resp P i projective objects ) for all
i ∈ N.

Remark. If an abelian category C has enough injectives (resp. projectives) then every
object A ∈ C has an injective( resp. projective ) resolution

Proof. By induction: for n = 0, then by hypothesis there is a monomorphism A → I0

where I0 is an injective. Now suppose this is true for n. Again by hypothesis there is a
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monomorphism coker(In−1 → In) → In+1 where In+1 is an injective object, then the
induced morphism In → In+1 is a monomorphism and the sequence In−1 → In → In+1

is exact by hypothesis.
The proof for projective resolutions is analogous

Example. Let (X,OX) be a scheme and let F ∈ OX −mod, then the i-th sheaf coho-
mology group of X with coefficients in F is the group Hi(X,F)

Definition A.11. Let F : C → D be a left exact functor between abelian categories where
C has enough injectives. Then the right derived functors Ri(F) : C → D are the functors
defined on objects by Ri(F)(A) := Hi(F (I•)) where I• is an injective resolution of A.

Remark. The definition of right derived functor for an object A does not depend on the
choice of the injective resolution A→ I•.

Lemma 2. Let C be an abelian category with enough injectives and F : C → D. If
A → I• and B → J • are two injective resolutions for objects A and f : A → B a
morphism, then there is a morphism Ri(F)(A)→ Ri(F)(B) for every i ∈ N.

Proof. By induction on n: If n=0 then we have a morphism A
f→ B → J0 and a

monomorphism A → I0, so by the injectivity of J0 there is a morphism I0 → J0

extending A
f→ B → J0. We can now suppose there are morphisms f i for all i ≤ n,

Since dnB ◦fn ◦d
n−1
A = dnB ◦d

n−1
B ◦fn−1 = 0, then dnB ◦fn factorizes through Cokerdn−1,

meaning that there is a morphism Cokerdn → Jn+1 and so by the injectivity of Jn+1

we can extend this map to a map fn+1 : In+1 → Jn+1

0 // A //

f

��

I0

f0

��

d0
A // . . . // In

fn

��

dnA // . . . //

0 // B // J0 dB // . . . // Jn
dnB // . . . //

This morphism of complexes induce a morphism on the cohomology groups

Lemma 3. Let I be an injective object in C an abelian category with enough injectives.
Then Ri(F)(I) = 0 for all i ≥ 1

Proof. Let I be an injective object in C, then we consider the injective resolution 0 →
I
Id→ I → 0→ . . . and so if i ≥ 1, Ri(F)(I) = 0/0 = 0 and R0(F)(I) = F(I).

Proposition A.1. Let 0 → A → B → C → 0 be a short exact sequence in C an
abelian category with enough injectives and let F : C → D, then there is a morphism
δi : Ri(F)(C)→ Ri+1(F)(A) for every i ≥ 0 such that the sequence

0→ F(A)→ F(B)→ F(C)→ R1(F)(A)→ · · · → Ri(F)(C)→ Ri+1(F)(A)→ . . .

is an exact sequence
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A.1 Spectral Sequences

Spectral sequences are a useful tool for computing cohomology groups, through this
section we define them and outile their usefulness.

Definition A.12. A differential bigraded complex is a collection of objects {Cp,q} and
maps dp,qh : Cp,q → Cp+1,q and dp,qv : Cp,q → Cp,q+1 such that dh ◦ dh = 0 = dv ◦ dv and

dp,q+qh ◦ dp,qv + dp+1,q
v ◦ dp,q = 0 as in the following diagram

. . . . . . . . .

. . . // C0,2
d0,2
h //

d0,2
v

OO

C1,2 //

OO

C2,2

OO

// . . .

. . . // C0,1

OO

// C1,1
d1,1
v //

d1,1
h

OO

C2,1

OO

// . . .

. . . // C0,0

OO

// C1,0 //

OO

C2,0
d2,0
h //

d2,0
v

OO

. . .

. . . . . . . . .

Definition A.13. Let {C•,•, dh, dv} be a double complex, when it exists, we can asso-
ciate it the the chain complex given by Tot(C•,•) :=

⊕
p+q=n C

p,q
n with maps dh + dv :

Tot(C•,•)n → Tot(C•,•)n−1

Definition A.14. A cohomological spectral sequence is a family of objects Ep,qr which
we will call the pages and maps dp,qr : Ep,qr → Ep+r,q−r+1

r such that dr ◦ dr = 0 and
such that the cohomology Hp,q(E•,•r ) := Ker(dp,q : Ep,qr → Ep+s,q+1−s

r )/Im(dp−s,q+s−1 :
Ep−s,q+s−1
r → Ep,qr ) is isomorphic to Ep,qr+1

Definition A.15. We say a spectral sequence {Ep,qr , dr} is bounded if for every n, there
are only finitely many zero terms Ep,qr such that p+ q = n. This implies that there exists
a page Ep,qr such that Ep,qr = Ep,qr+1, we will denote this page by Ep,q∞

Definition A.16. We say that a spectral sequence {Ep,qr , dr} converges to Hp,q if there
exists a finite of Hn

0 = F 1Hn ⊆ . . . F pHn ⊆ F p+1Hn ⊆ . . . F kHn = Hn

Such that Ep,q∞
∼= F pHp+q/F p+1Hp+q.

When the spectral sequence coverges to Hn we denote it by Ep,qr ⇒ Hn

Definition A.17. We say that a spectral sequence {Ep,qr , dr} collapses if there is a page
Ep,qr such that Ep,qr = 0 iff p 6= k or q 6= k for some fixed integer k.
If a collapsing spectral sequence converges to H• then Ep,qr = Hp+q

Example. Let F : C → D and G : D → E be two functors between abelian categories
such that D has enough injectives and F(I) is injective for all injectives I ∈ C. Then
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for every object A ∈ C there is a spectral sequence given by Ep,q2 := (Rp(G)(Rq(F(A))))
such that it converges to Rp+q(G(F))(A).

...
...

...
...

2 R2G(F(A))

--

R2G(R1F(A))

,,

R2G(R2F(A)) . . .

1 R1G(F(A)

--

R1G(R1F(A))

,,

R1G(R2F(A)) . . .

0 F(A) R1F(A) R2F(A) . . .

0 1 2 . . .

This is called the Grothendieck spectral sequence [Wei95]

As an application of Grothendieck spectral sequences we have the following spectral
sequence, called the Ĉech-to derived exact sequence

Definition A.18. Let Ui be an open covering of X and F an abelian sheaf on X, then
we define the following

1. Ui0...in = Ui0 ∩ · · · ∩ Uin

2. Čn(Ui,F) := ΠF(Ui0→in)

3. dn : Čn(Ui,F)→ Čn+1(Ui,F) is the map given by (si0...in) 7→ ΣjF(pj)(si0...îj ...in)

where pj are the projections pj : Ui0...in → Ui0 . . .
ˆUij . . . in

4. The complex Č• := Č0 d0

→ Č1 → . . . is called the Ĉech complex ( of Ui and F )

5. Ȟ0(Ui,F) := Ker(ΠF(Ui))

6. Ȟn(Ui,F) := Hn(Č•)

Example. Let Ui be an open cover of X. The Ĉech-to derived spectral sequence is the
Grothendieck spectral sequence given by the functors

Rp(Ȟ0(Ui, ) ◦Rq(i) : Sh(X)→ Ab

Where Sh(X)is the category of abelian sheaves on X and i : Ab(X) → Psh(X) is the
inclusion functor. Then this sequence converges

Ep,q2 := Ȟp(Ui, R
q(i))⇒ Hp+q(X,F)

Where Hi(X,F) are the sheaf cohomology groups.

When the cover consists only of two open subsets the corresponding sequence degenerates
and it is called the Mayer-Vietoris exact sequence. The following is an alternative proof
of the existence of this sequence in the case of sheaves of OX -modules.
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Example 1. Let (X,OX) be a scheme and let F ∈ OX − mod, if X = U1 ∪ U2 then
there is an exact sequence

0→ F(X)→ F(U)⊕F(V )→ F(U ∩ V )→ H1(X,F)→
H1(U,F)⊕H1(V,F)→ H1(U ∩ V,F)→ . . .

Proof. If F → I• is an injective resolution, this follows from the fact that F is a sheaf
and injective OX -modules are flasque sheaves.

A.2 Hypercohomology

We can generalize the definition of derived functors to complexes of sheaves; these are
called hyper-derived functors. Hypercohomology then corresponds to the right hyper-
derived functors of the global sections functor.

As in the classical case, the right hyper-derived functors can always be defined for
bounded below complexes when the functor considered is left exact and its domain is an
abelian category with enough injectives.

In what follows, let C and D be abelian categories, such that C has enough injectives,
and F : C → D a left exact functor. Denote Ch +(C) the category of bounded below
complexes and consider (A•, d•) ∈ Ch +(C).

Proposition A.2. There exists a double complex (I•,•, dh, dv) consisting of injective
objects and a morphism of complexes ε• : A• → I•,0 with the following properties:

• Ip,q = 0 for q < 0.

• If Ap = 0 then the complex Ip,• is zero.

• The complex Ip,• is an injective resolution of Ap.

...
...

...

· · · // I−1,1
d−1,1
h //

OO

I0,1
d0,1
h //

OO

I1,1 //

OO

· · ·

· · · // I−1,0
d−1,0
h //

d−1,0
v

OO

I0,0
d0,0
h //

D0,0
v

OO

I1,0 //

d1,0
v

OO

· · ·

· · · // A−1

d−1

//

ε−1

OO

A0

d0
//

ε0

OO

A1 //

ε1

OO

· · · .

From this double complex I•,• we can obtain the associated total complex

In = ⊕p+q=nIp,q , d = ⊕p+q=ndp,qh + (−1)pdp,qv .
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Note that this is a bounded below complex formed of injective objects. We have an

induced morphism of complexes in : An
εn−→ In,0 → In, since by definition Dn,0

h ◦ εn =
εn+1 ◦ dn and Dn,0

v ◦ εn = 0. This morphism i• : A• → I• induces an isomorphism
Hn(A•) ∼= Hn(I•) on cohomology groups for every n; such a morphism is called a quasi-
isomorphism.

Definition A.19. Let i• : A• → I• be a quasi-isomorphism, where I• is a bounded below
injective complex. We set

RnF (A•) := Hn(F (I•)).

Moreover, this construction is functorial: if j• : B• → J• is a quasi-isomorphism with
J• a bounded below injective complex and f• : A• → B• is a morphism of complexes,
then there exists a canonical morphism RnF (f•) : RnF (A•) → RnF (B•), where the
derived functors are computed respectively using the quasi-isomorphisms i• and j•. We
call

RnF : Ch +(C)→ D

the (right) hyper-derived functors of F .

We have discussed the existence of a complex I• satisfying the conditions of the previous
definition, so indeed RnF is defined for every bounded below complex. As expected, the
definition is independent of the choice of this complex, and thus the groups RnF (A•)
are well defined (up to canonical isomorphism).

Remark. We can also define the right hyper-derived functors using complexes of acyclic
objects relative to the functor considered.

If A• is a complex such that An = 0 for every n 6= 0 and A0 = A then RnF (A•) =
RnF (A) is the right derived functor of F evaluated at the object A. In this sense, hyper-
derived functors are a generalization of derived functors.
When C is the category of sheaves of abelian groups over a topological space X and
F = Γ(X, ) is the functor of global sections, the groups Rn(F•) are called the hyperco-
homology groups of the complex of sheaves F•, and we denote them

Hn(X,F•) = RnΓ(F•).

B Sites and Topoi

Through this section we’ll follow the results found in [Mil80],[BO78],[Sta16]
It is convenient to introduce general results on the theory of sites and topoi.
A site will be a a category along with some data that will model the behaviour of open
coverings of topological spaces in a more abstract context. While topoi have arised
in different branches of mathematics in different presentations, we will only focus on
Grothendieck topoi, that is, categories of sheaves over some site.
Through this section one can suppose all categories C,D have all finite limits.
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To understand sheaves in this more general context, let us begin by recalling the defini-
tion of a sheaf on a topological space:

Definition B.1. Let X be a topological space and O(X) its category of open subsets
with morphisms Mor(U, V ) = ∗ iff U ⊆ V and empty otherwise . A sheaf of sets F on
X is a contravariant functor F : O(X) → Sets such that it satisfies the following two
conditions:
To ease notation one can denote the morphisms F(U → V ) as resV,U

a) If {Ui} is a covering family of an open subset U ⊆ X and s, t ∈ F(U) are such that
∀ Ui resU,Ui

(s) = resU,Ui
(t) then s = t.

b) If si ∈ F(Ui) is such that resUi,Ui∩Uj
(si) = resUj ,Ui∩Uj

(sj) ∀ i, j then there exists
s ∈ F(U) such that resU,Ui(s) = si

Remark. Let us notice that these two conditions can be encoded into the condition that
the first arrow must be an equalizer in the following diagram:

F(U)→ ΠiF(Ui) ⇒ Πi,jF(Ui ∩ Uj)

If one were to study these phenomena in a broarder setting, it would be necessary to
have a substitute of X . To be able to state the conditions a) and b) it is then necessary
for such a category to have a notion of covering for every object.
Even more, this category must at least admit certain fibered products by condition b).
It is then reasonable to ask that a covering family of an object U on a category C must
be a family of morphisms {Ui → U}i with the following conditions

1. IdU : U → U must be a covering family for every object U

2. The product Y ×UUi must exist for every arrow Y → U and the family {Y ×UUi →
Y } must be a covering family of Y.

3. If {Ui → U} is a covering of U and {Uij → Ui} is a covering of Ui for every i, then
{Uij → U} is also a covering family of U.

Definition B.2. A category C together with covering families {Ui → U}i for every object
U is called a site

The following examples are classical and illustrative of the essence of sites:

Example. Let C = O(X) be the category of open subsets of a topological space, if one
considers the families {Ui → U} as a covering in C when U =

⋃
Ui, then it is easy to

see that this is a site.

Example. Let C = AffSch, the category of affine schemes. the Zariski site is given by
coverings of the form {Spec(R[a−1

i ]) → Spec(R)}i∈{1,...,n} such that there are {bi ∈ R}
such that Σbiai = 1, the morphisms induced by the canonical ring morphisms {R →
R[a−1

i ]}. These coverings satisfy the conditions :
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1. Let a = 1, then R[a−1] = R so {Spec(R)→ Spec(R)} is a cover

2. Let φ : Spec(S) → Spec(R) and {Spec(R[a−1
i ]) → Spec(R)}i a covering, then

Spec(R[ai]⊗R S) = Spec(S[φ](a−1
i )]), and if 1 = Σbiai then 1 = Σφ](biai)

3. If {Spec(R[a−1
i ]→ Spec(R)}) is a covering family of R, and for every i, {Spec(R[a−1

i ][b−1
ij ])→

Spec(R[a−1
i ])}j is a covering family of R[a−1

i ], we can see that R[a−1
i ][b−1

ij ] ∼=
R[(aibij)

−1] and so there is a number ki with akii ∈ (aibij)j and so if 1 = Σciai
then 1 = (Σciai)

k for a large enough k.

Example. Another classical example is that of the big etale site. Let X be a noetherian
scheme and let C the category of X-schemes with morphisms given by etale morphisms.
Then a covering family is given by a family of etale morphisms {Φi : Ui → U}i such that⋃
Im(Φi) = U . These coverings form a site called the etale site of X. (See [Mil80])

Now that the structure of the space has been established, it is possible to talk about
sheaves on these spaces. The definition is straightforward:

Definition B.3. Let C be a site and F : C → Sets a contravariant functor. We say that
F is a sheaf if for every object U and every covering, {Ui → U}, the first arrow of the
following diagram is an equalizer:

F(U)→ ΠiF(Ui) ⇒ Πi,jF(Ui ×U Uj)

It is possible to distinguish certain sheaves over the sites of the two previous examples,
for example the structure sheaf OZar is simply the associated sheaf to the forgetful func-
tor F : Rng → Sets.
An important property of sheaves over topological spaces is that of functoriality in the
sense that it is possible to define a direct and inverse image functors once a morphism
of topological spaces X → Y . It is then important to establish a noteion of morphism
of sites.

Definition B.4. Let C,D be two sites, a functor u : C → D is continuous if, for every
covering family {Ui → U} of any object U of C, the family {u(Ui)→ u(U)} is a covering
family of u(U) and if V → U is any morphism, then u(V ×U UUi)→ u(V )×u(U) f(Ui)
is an isomorphism.

Given a morphism of sites u : C → D and a presheaf F over D, it is possible to define a
presheaf on C by setting u∗F(U) := F(u(U)). It turns out that if F is a sheaf then the
associated presheaf u∗F is also a sheaf.
Now it is necessary to define the dual concept of the u∗ construction:

Definition. Let V ∈ D, denote by IuV the category with objects {(U, φ) | φ : V → u(U)}
and obvious morphisms.
Given a sheaf F on C, for every object V ∈ D there are functors FV : IopV → Sets defined
by FV (U, φ) = F(U).
The sheaf associated to the presheaf over D, V 7→ colimIopV

FV is denoted by u−1
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The concept of a morphism between sites is the following

Definition B.5. A morphism of sites f : D → C is a continuous functor u : C → D
such that u−1 is an exact functor, that is, preserves arbitrary finite limits.

It is possible to see that in the site O(X) from an example above, a continuous map
f : X → Y defines a continuous functor u : O(Y ) → O(X) with u−1 an exact functor.
We can now define the concept of a topos:

Definition B.6. A category T is called a topos if it is equivalent to a category of the
form Sh(C) where C has a site structure.

Remark. It is possible for two topoi T ∼= Sh(C) and T ′ ∼= Sh(D) to be equivalent while
C different from D.

Example. Let C = {∗} be the category with one point and identity morphism. The
covering given by the only morphism forms a site. The topos associated to the category
C is equivalent to the category of sets. Every presheaf is a sheaf that corresponds to a
choice of a set and a sheaf morphism corresponds to a map of sets.

Example. The topos associated to the category C = O(X) is just the category of sheaves
over the space X.

Definition B.7. A morphism of topoi T → S is a pair of functors (f∗, f
−1) where

f∗ : T → S and f−1 : S → T , such that f−1 a f∗ and f−1 preserving finite inverse
limits.

It is clear that a morphism of sites immediately induces a morphism of topoi but not
every morphism of topoi is induced in such a way, in fact this will be the case for the
morphism of infinitesimal topoi induced by a scheme morphism.
The following lemmas are general results which will be useful in the future:

Lemma 4. Let C and D be categories and PSh(C) and Psh(D) their corresponding
categories of presheaves. For every functor φ : C → Psh(D), there exists an adjoint pair
φ∗ a φ∗ with φ∗ : Psh(D)→ Psh(C) and φ∗ : Psh(C)→ Psh(D) such that φ∗ |C= φ

Proof. Let φ∗(G)(T ) := HomPsh(D)(φ(T ),G) for every G ∈ Psh(D) and every T ∈ C.
For every T ′ ∈ D consider the category φ(T ′) := {T̃ → φ(T ) | T ∈ C}, we define
φ∗(G)(T ′) := lim−→

φ(T ′)

G(T ′) for G ∈ Psh(C).

The details on the adjunction and the property φ∗ |C= φ can be seen in [BO78]

Lemma 5. The final object of a topos T is the sheafification of the preseheaf U 7→ {∗}
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[Gro66] A. Grohendieck. On the derham cohomology of algebraic varieties. Publications
mathematiques de l’I.H.E.S, 29, 1966.

[Har75] R. Hartshorne. On the derham cohomology of algebraic varieties. Publications
mathematiques de l’I.H.E.S, 45, 1975.

[Har77] R. Hartshorne. Algebraic Geometry. Springer Verlag, 1977.

[Ked] Kiran S Kedlaya. p-adic cohomology: from theory to practice.

[Lee06] John M Lee. Riemannian manifolds: an introduction to curvature, volume 176.
Springer Science & Business Media, 2006.

[Liu02] Q. Liu. Algebraic geometry and arithmetic curves. Oxford science Publications,
2002.

[Mil80] J.S. Milne. Étale cohomology. Princeton University Press, 1980.

[Oss] Brian Osserman. Connections, curvature, and p-curvature. Lecture notes.

[Sta16] The Stacks Project Authors. stacks project. http: // stacks. math. columbia.
edu , 2016.

[Wei95] Charles A Weibel. An introduction to homological algebra. Number 38. Cam-
bridge university press, 1995.

30


