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1. Introduction

Let X be a smooth projective algebraic variety over R. For 0 ≤ n ≤ 2 dim(X),
there is a period pairing

Hn
dR(X(C)/R)×Hn(X(C),Z)→ C

(ω, γ) 7→
∫
γ

ω

relating de Rham cohomology and singular homology. It induces a comparison
isomorphism:

Hn
B(X(C),Q)⊗Q C ∼−→ Hn

dR(X(C)/R)⊗R C
(where Hn

B(X(C),Q) = Homgr(Hn(X(C),Z)),Q) is the Betti cohomology). This
isomorphism is compatible with the Gal(C/R) actions (trivial on the de Rham
cohomology and induced by the complex conjugation on the singular cycles on the
Betti cohomology) and filtrations (Hodge filtration on the de Rham cohomology).
This provides a link between different cohomologies.

The simplest non trivial example is that of elliptic curves (or more generaly
abelian varieties): in that case X(C) = Lie(X(C))/H1(X(C),Z) ' C /Λ is a com-
plex torus (cf [1, Chapter I], [2, Chapter IV]).

Let p be a prime integer. The aim of this report is to explain a p-adic analogue of
this simple case. More generally, we will consider the case of Barsotti-Tate groups.
Indeed, given an abelian variety A, the collection of groups of pn torsion A[pn] gives
rise to a Barsotti-Tate group lim−→n

A[pn], to which we can associate its Tate module
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TpA. As we will see, the latter is the p-adic analogue of singular homology in the
analytic case.

Barsotti-Tate groups are central objects in Arithmetic Geometry: they are use-
ful to study finite group schemes (which are important in ramification theory for
example), rational points in Diophantine Geometry, moduli spaces (eg Shimura
varieties), etc.

This report is organized as follows. In section 2 we recall basic facts on group
schemes, then we introduce Barsotti-Tate groups and their first properties. In sec-
tion 3 we introduce divided powers. This allows us to define the crystalline site of
a scheme of characteristic p and crystals, that are the natural context to develop
Dieudonné theory. The latter aims at classifying Barsotti-Tate groups in terms
of (semi-)linear algebra: we present its construction and main properties (follow-
ing Messing, cf [3]) in section 4. A key result (Grothendieck-Messing theorem)
describes deformation theory of Barsotti-Tate groups in terms of their Dieudonné
crystal and filtrations: this will provide a complete classification (due to Breuil
and Kisin) of Barsotti-Tate groups over the ring of integers of a complete discrete
valuation field of characteristic 0 with perfect residue field of characteristic p (cf
section 5). The Dieudonné module is an avatar of de Rham cohomology: in section
6 we use Breuil-Kisin funtor and arguments of Faltings to construct a crystalline
comparison isomorphism for Barsotti-Tate groups, from which we derive the Hodge-
Tate comparison theorem (which is due to Tate). Unlike the analytic setting, these
comparison isomorphisms require to extend the scalars to sophisticated period rings
(that were constucted by Fontaine), that we present as well.

Convention.
1. ”p” is a fixed prime number.
2. Hopf algebras to appear are over a ring R that is noetherian and has a unity.
3. In our case, we can take as base scheme S = SpecR and focus on the category
(Sch/S) in most cases.
4. ”group over S, S-group, · · · ” will always mean a fppf sheaf of commutative
groups on the site (Sch/S)fppf .
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2. Barsotti-Tate groups and formal Lie groups

2.1. Group schemes.

Let C be a category with finite products and hence in particular a terminal object
(the empty product), denoted by ∗. If G,T ∈ C, put G(T ) := h◦G(T ) = HomC(T,G).

Definition 2.2. A group object in C, or a C-group, is an object G in C such that
h◦G : C → Set factors through the forgetful functor Gr→ Set.

A C-group G is commutative if the group G(T ) is commutative for every T ∈ C.
A morphism of C-groups G → G′ is a morphism ϕ : G → G′ in the category C

such that, for every object T in C, the induced map

G(T )→ G′(T )

g 7→ ϕ ◦ g

is a group homomorphism.

Remark 2.3.
(1) The group structure on G is given by arrows

m : G×G→ G

ε : ∗ → G

inv : G→ G

inducing the group law, the unit and the inverse on the groups G(T ) for T ∈ G.
The group law G(T )×G(T )→ G(T ) is got in an obvious way, noticing by definition
of G × G we have (G × G)(T ) = G(T ) × G(T ). More explicitly, the induced law
on G(T ) is just (g1, g2) 7→ m ◦ (g1, g2) where (g1, g2) : T → G × G represents
the unique arrow given by the universal property of product, i.e. (g1, g2) satisfies
pri ◦(g1, g2) = gi, for i ∈ {1, 2}.
(2) One checks that the group axioms are equivalent to the commutativity of the
following diagrams:
(associativity)

G×G×G Id×m //

m×Id

��

G×G

m

��
G×G m // G

(neutral element)

G = ∗ ×G = G× ∗ Id×ε //

ε×Id

��

G×G

m

��
G×G m // G

(inverse)

G×G inv× Id // G×G

m

��
G

M

OO

εG:=ε◦πG // G
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where πG is the unique morphism of G to ∗,
(commutativity)

G×G
τ=(pr2,pr1) //

m
##

G×G

m
{{

G

where τ is the automorphism interchanging the factors on the products.

Let S be a scheme, we now specialize to the category (Sch/S) of S-schemes.

Definition 2.4. A S-group scheme, or simply S-group, is a group object in (Sch/S).

In the cases to consider, we will only deal with affine group schemes.

Definition 2.5. An affine group scheme G over a noetherian ring R is a group
scheme represented by an R-algebra A. Hence it is a representable group functor
G : AlgR → Gr from the category of R-algebras to the category of groups.
A finite flat group scheme G over R is an affine group scheme, represented by a
finite flat R-algebra A. The order of G is the locally constant function with respect
to the Zariski topology on Spec(R) = prime ideals of R given at p by the rank of
the free Rp-module Ap.

Let G = h◦A be a group functor on R-algebras. Note that

h◦A × h◦B : T → Hom(A, T )×Hom(B, T )

is represented by h◦A⊗RB . By this observation and the Yoneda Lemma we deduce
that:
(1) the multiplication G×G→ G yields a comultiplication M: A→ A⊗R A;
(2) the unit map ε yields a counit map ε : A→ R, necessarily surjective;
(3) the inverse inv : G→ G, g 7→ g−1 yields the antipode S : A→ A.
All these maps are R-algebra maps. Similarily as when we define group scheme,
the group axioms translates into certain commutative diagrams.

Definition 2.6. A commutative Hopf algebra over R is by definition an R-algebra
A with comultiplication M, augmentation ε and antipode S that make the diagrams
mentioned above commutative.

Proposition 2.7. The category of affine group schemes over R is contravariant
equivalent to the category of commutative Hopf algebras, with a Hopf algebra A
corresponding to the affine group scheme G = HomR(A, •) that it represents.

Proof. The proof is obvious from our definition of Hopf algebra above. �

Definition 2.8. LetH andG be two group schemes corresponding to Hopf algebras
A and B respectively. Then a morphism H → G corresponds to a map B → A
compatible with Hopf algebra structures. If B → A is surjective, we say that H is
a closed subgroup of G.

Hence the study of affine group scheme is just the study of Hopf algebras. First
examples are as follows.

Example 2.9. Let R be a noetherian ring.
(1) The additive group is the group scheme Ga given by Ga(A) = (A,+) for all
R-algebra A. Its Hopf algebra is R[X] with

M (X) = 1⊗X +X ⊗ 1, ε(X) = 0, S(X) = −X.

(2) The multiplicative group is the group scheme Gm given by Gm(A) = (A×, ·) for
all R-algebra A. Its Hopf algera is R[X,X−1] with
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M (X) = X ⊗X, ε(X) = 1, S(X) = X−1.

(3) The group of n-th roots of unity. µn = Spec(R[X]/(Xn − 1)) is the kernel of
raising to the n-th power of Gm, since

HomR−alg(R[X]/(Xn − 1), B) = {b ∈ B, bn = 1}.
The Hopf algebra of µn is R[X]/(Xn − 1) with

M (X) = X ⊗X, ε(X) = 1, S(X) = X−1.

Thus µn is finite flat of order n. In fact, the representing algebra is even a free
R-module of rank n. Notice this is a closed subgroup of Gm.
(4) Let Γ be an abstract commutative finite group. The group algebra R[Γ] =
⊕γ∈ΓR[γ] is a Hopf algera with

M ([γ]) = [γ]⊗ [γ]; ε([γ]) = 1, S([γ]) = [γ−1]

Write Γ = ⊕ri=1Z/niZ, then R[Γ] ' ⊗ri=1R[X]/(Xni − 1) and hence SpecR[Γ] '
µn1 × · · · × µnr . Hence the associated group scheme is a finite product of copies
of µn. Such a group scheme is called diagonalizable. The R-dual of R[Γ] is RΓ =
Maps(Γ, R), which is a Hopf algebra with details described below in (5).
(5) If Γ is a finite abstract group, the constant group scheme Γ is represented by
Maps(Γ, R) =

∏
t∈ΓR, which is the R-dual of R[Γ]. Let (fγ)γ∈Γ be the dual basis

of ([γ])γ∈Γ and so we have f2
γ = fγ ; fγfτ = 0;

∑
fγ = 1. Hence it is a canonical

basis of
∏
γ∈ΓR and we define the structure on

∏
γ∈ΓR by:

M (fγ) =
∑
τ ·σ=γ fτ ⊗ fγ , ε(fγ) = δγ,1, S(fγ) = fγ−1

An important example of constant group scheme is Z/nZ, whose Hopf algerba

is
∏
t∈Z/nZR with structure as described above.

(6) If R has characteristic p > 0, then the affine group scheme αp is defined by
αp(A) = {a ∈ A|ap = 0} for all R-algebra A. Its Hopf algebra is R[X]/(Xp) with

M (X) = X ⊗ 1 + 1⊗X, ε(X) = 0, S(X) = −X
Hence αp is finite flat of order p and this is a closed subgroup of Ga.

For later use we give the following definition that generalizes the notion of Hopf
algebra.

Definition 2.10. A co-commutative OS co-algebra A is the dual structure of a com-
mutative OS-algebra. Precisely, we have two OS-linear maps M: A → A⊗OS A and
η : A → OS satisfying identities which are obtained by dualizing the arrows in the
diagrams which define a commutative algebra, i.e. (idA⊗ M)◦ M= (M ⊗ idA)◦ M
and (idA⊗η)◦ M= (η ⊗ idA)◦ M= idA.
And A is called augmented if there is an OS-linear map σ : OS → A.

Proposition 2.11. [4, Theorem 6.3] Let A be a finite k-algebra over the field k.
Then the following are equivalent.
(a) A⊗k ksep ' ksep × · · · × ksep;
(b) A⊗k k ' k × · · · × k;
(c) A⊗k k is reduced (i.e. has no nilpotents);
(d) Ω1

A/k = 0;

(e) Ω1
A⊗k/k = 0;

Definition 2.12. A k-algebra A satisfying the equivalence conditions above is
called an étale algebra.

Definition 2.13. A finite étale group scheme over R is a finite flat group scheme
G over R which is represented by an étale R-algebra. The multiplication map
µ : G × G → G, the inverse inv : G → G and the unit Spec(R) → G are maps
between finite étale R-schemes.
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Proposition 2.14. [5, Section 3.7] Let R be a henselian local ring, e.g. mR-adically
complete, and let G be a finite flat group scheme over R.
(1) Then there is an exact sequence of finite flat group schemes over R

1→ G0 → G→ Gét → 1

with G0 the connected component of the zero section of G and Gét finite étale over
R;
(2) Any group homomorphism ϕ : G → H to a finite étale R-group scheme H
factors uniquely through G→ Gét;
(3) Any group homomorphism ϕ : H → G from a connected R-group H factors
uniquely through G0 → G.

Corollary 2.15. A flat affine algebraic group scheme G over R is finite étale
(resp. connected) if and only if the connected component G0 (resp. the maximal
étale quotient Gét) is trivial.

Remark 2.16. It is often easier to describe the functor represented by the group
scheme than to describe a group scheme itself. In the following, we will often see
S-group schemes as group functors, more precisely as fppf-sheaves. cf [6, Chapter
2]

Definition 2.17. If M is a quasi coherent OS-module, we denote by M the fppf
sheaf given by M(S

′
) = Γ(S

′
,M⊗OS O

′

S) for any S
′ ∈ (Sch/S)fppf .

Definition 2.18. The Cartier dual of a group scheme G is defined by GD :=
HomS−gr(G,Gm), where the ”sheaf hom” Hom is defined by HomS(A,B)(T ) =
HomT (A×S T,B×S T ), and the subscript S-gr denotes the subsheaf morphisms of
group schemes.

Proposition 2.19. [4, Theorem 2.4]
(1) If G and H are group schemes over S, then Homs−gr(G

D, HD) ' Homs−gr(H,G)
(2) Cartier duality is an involution, i.e. G ' (GD)D.
(3) Cartier duality commutes with base change.
(4) If the Hopf algebra of G is A, then that of GD is A∨ = HomR(A,R).

Example 2.20. We compute the Cartier dual for the three typical examples of
order p.
(1) The Cartier dual of the constant group scheme G = Z/nZ is µn because in

GD = Hom(Z/nZ,Gm) the image of 1 ∈ Z/nZ is mapped to an n-th root of

unity. In terms of Hopf algebras, we have that GD is given by the group algebra
R[Z/nZ] = R[X]/(Xn − 1) as in Example 2.9 and comultiplication, counit and
antipode are as follows:

M (X) = X ⊗X, ε(X) = 1, S(X) = Xn − 1.

This Hopf algebra represents µn.
(2) It follows that the Cartier dual of µn is Z/nZ.

(3) The Cartier dual of αp is αp.

2.21. The Frobenius and Verschiebung maps.

Fix S a scheme of characteristic p > 0. The Frobenius FS : S → S is the
morphism of schemes which is the identity topologically and sends a section s to
sp. Consider now an S-scheme X; clearly we have also a Frobenius FX : X → X.
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We define a scheme X(p) through the cartisian diagram:

X(p)

�

//

��

X

��
S

FS // S

Note moreover that the absolute Frobenius morphism FS : S → S and FX : X →
X commutes through the structure map X → S. Therefore we deduce a map
FX/S : X → X(p), called the relative Frobenius, making the following diagram
commutative.

X

��

FX

$$

FX/S

!!
X(p) //

��

X

��
S

FS // S

If X is a group scheme, then FX/S : X → X(p) is a morphism of group schemes.

There exists a map VX/S : X(p) → X called the Verschiebung, which is also a
morphism of group schemes when X is and makes the following diagrams commute:

X
•p

!!
VX/S

��
X(p)

FX/S

// X

X(p)

•p

{{
VX/S

��
X(p) X

FX/S

oo

Remark 2.22. VG/S : G(p) → G is dual to FGD/S : GD → (GD)(p) ' (G(p))D when
G is a finite commutative group scheme over S.

Example 2.23. We compute the Frobenius and Verschiebung for the three typical
examples of groups of order p.
(1) The group αp is connected and thus of finite Frobenius height. Hence the
Frobenius F : αp → αp is the homomorphism 0, and by Cartier duality also the
Verschiebung V : αp → αp vanishes.
(2) By the same argument the Frobenius F : µp → µp vanishes, and thus by Cartier
duality also the Verschiebung V : Z/pZ→ Z/pZ is the homomorphism 0.

(3) The Frobenius F : Z/pZ → Z/pZ is the identity map. Because on the Hopf

algebra RZ/pZ = ⊕γ∈Z/pZR[fγ ] we have F (fγ) = fγ for all γ ∈ Z/pZ, as given by
below where the 1 in the tuple are both in the position of g.∏

g∈Z/pZ

R = (
∏

g∈Z/pZ

R)⊗R,ϕ R→
∏

g∈Z/pZ

R

(ag)g∈G 7→
∑
g

(0, . . . , 1, . . . , 0)⊗ ag 7→
∑
g

ag · (0, . . . , 1, . . . , 0)p = (ag)g∈G

Consequently, the Verschiebung V : µp → µp is the identity map by Cartier
duality.
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Proposition 2.24. [7, Section 6 ] Let R = k be a field and let G/k be a finite flat
group.
(1) G is étale if and only if its Frobenius F : G→ G(p) is an isomorphism.
(2) G is connected if and only if the Frobenius F : G→ G(p) is nilpotent.

Remark 2.25. We see Z/pZ is étale and µp is connected by example 2.23 and the
proposition 2.24.

2.26. Barsotti-Tate groups.

Let p be a prime integer, S be a scheme and G be a commutative fppf sheaf of
groups on S.

Lemma 2.27. [3, Chapter I, Lemma 1.1] Assume pnG = 0, then the following
conditions are equivalent:
(1) G is a flat Z/pnZ-module;
(2) Ker(pn−i) = Im(pi) for i ∈ {1, 2, . . . , n}

Definition 2.28.
If n ≥ 2, a truncted Barsotti-Tate group of level n is an S-group G such that:
(1) G is a finite locally-free group scheme;
(2) G is killed by pn and satisfies the equivalent conditions of the lemma above.

Denote by G(n) the kernel of multiplication by pn on G.

Lemma 2.29. [3, Chapter I, Lemma 1.5]
(a) If G(n) is a flat Z/pnZ-module then G(n) is a finite locally free group scheme
if and only if G(1) is (and then all the G(i) are)
(b) If G(n) is finite and locally free then pi : G(n) → G(n − i) is an epimorphism
if and only if it is faithfully flat.

Definition 2.30. (Grothendieck) G is a Barsotti-Tate group if it satisfies the fol-
lowing three conditions:
(1) G is of p-torsion; i.e. lim−→G(n) = G;

(2) G is p-divisible; i.e. p : G→ G is an epimorphism;
(3) G(1) is a finite, locally-free group scheme.

Remark 2.31. Let G be a Barsotti-Tate group.
(1) G(n) = G(n+ 1)(n)
(2) for any i such that 0 ≤ i ≤ n, the multiplication by pn−i induces an epimorphism
G(n)→ G(i) (because multiplication by pn−i is an epimorphism of G)
(3) from (1) and (2) and the fact that G(1) is finite locally-free it follows from the
lemma above that the G(n) for n ≥ 2 are truncated Barsotti-Tate groups and that
we have exact sequences:

0 // G(n− i) // G(n)
pn−i // G(i) // 0

(4) it follows from theory of finite group schemes over a field that the rank of the
fibre of G(1) at a point s ∈ S is of the form ph(s) where h is a locally constant
function on S. It also follows from (3) that the rank of the fibre of G(n) at s is
pnh(s).

Definition 2.32. (Tate)[8, Section 2, (2.1)] A p-divisible group of height h over a
commutative ring R is an inductive system (Gn, in)i≥1 in which:
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(1) Gn is a finite, commutative group scheme over R of order pnh;
(2) for each n, we have an exact sequence

0 // Gn
in // Gn+1

pn // Gn+1

(that is, in is a closed immersion and identifies Gn with the kernel of multiplication
by pn on Gn+1).

Starting from a Barsotti-Tate group G over SpecR, we get a p-divisible group
(G(n), in)n≥1 over R as defined by Tate above.
Conversely, given a p-divisible group (Gn, in)i≥1, we construct G := lim−→n

Gn, the

following commutative diagram shows that Gn is the kernel of multiplication by pn

on Gn+2 via the iterated injection in+1 ◦ in:

Gn+2
pn // Gn+2

p // Gn+2

0 // Gn
in // Gn+1

pn //

in+1

OO

Gn+1

in+1

OO

More generally, Gn is the kernel of multiplication by pn in Gm for all m ≥ n,
hence the kernel of multiplication by pn in G. This implies that G = lim−→n

Gn is

p-torsion. The fact G is p-divisible and G1 is finite and locally free can also be
easily checked, cf [3, Chapter I, Remark 2.3 ].

Definition 2.33. Let G = (G(n), in)n≥1 be a p-divisible group on S. Since
G(n) are finite locally free S-group schemes, the dual group schemes G(n)D =
HomS−gr(G(n),Gm) are also finite and locally free. The epimorphism p : G(n +
1) → G(n) gives a monomorphism pD : G(n)D → G(n + 1)D. Then the inductive
system (G(n)D) with respect to pD gives p-divisible group GD over S (in the Tate
sense). We call GD the Cartier dual of G.

Example 2.34.
(1) µp∞ = lim−→n

µpn , where µpn denotes the group of pn-th roots of unity as in

example 2.9. µp∞ has height 1.
(2) Qp/Zp = lim−→n

Z/pnZ, and this is obviously the Cartier dual of µp∞ by the

definition above and example 2.20. Z/pnZ is the constant group scheme as in

example 2.9 and hence Qp/Zp also has height 1.
(3) Let A/S be an abelian scheme of dimension g. Then multiplication by pn is an
isogeny of A/S of degree p2gn, hence the kernels Gn = A[pn] lead to a p-divisible
group G = A[p∞] of height h = 2g.

Let K be a field of characteristic 0, let K be an algebraic closure and denote
GK = Gal(K/K) the absolute Galois group.

Definition 2.35.
(1) Let X be a commutative group scheme, the Tate module of X, denoted Tp(X)
is

Tp(X) = lim←−
n

(Ker(X(K)
pn−→ X(K)))

(2) If G = lim−→n
Gn is a p-divisible group, then the Tate module of G, denoted Tp(G)

is Tp(G) = lim←−nGn(K).

Remark 2.36.
(1) The inverse limit is taken over positive integers n with transitive morphisms
given by multiplication by p: X(K)[pn+1] → X(K)[pn], where X(K)[pn] denotes
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Ker(X(K)
pn−→ X(K)).

(2) There is another way to see Tate module

Tp(G) = lim←−
n

Gn(K)

= lim←−
n

Homgr(Z/pnZ, Gn(K))

= lim←−
n

Homgr(Z/pnZ, G(K))

= Homgr(Qp/Zp, G(K))

(3)Assume K is a discrete valuation field with ring of integer OK and G ∈ BT(OK).
If n ∈ N>0, and L/K is finite, then Gn(L) = Gn(OL) by the valuative criterion of
properness (recall that Gn is finite over OK). Taking inductive limit we get

Gn(K) = Gn(OK) = HomOK−gr(Z/pnZ, Gn ⊗OK)

Taking inverse limit, we deduce

Tp(G) = lim←−Gn(K)

= lim←−HomOK−gr(Z/pnZ, Gn ⊗OK)

= lim←−HomOK−gr(Z/pnZ, G⊗OK)

' HomBT(OK)(Qp/Zp, G⊗OK)

2.37. Formal Lie groups.

We establish some relations between Barsotti-Tate groups and formal Lie group.
Let X, Y be sheaves of groups over S such that Y is a subsheaf of X. We define
for every k ≥ 0 a subsheaf InfkY (X) of X.

Definition 2.38. For each integer k > 0, the kst infinitesimal neighborhood of Y
in X, denoted InfkY (X), is the subsheaf of X whose sections over an S-scheme T

are given as follows: Γ(T, InfkY (X)) = {t ∈ Γ(T,X)| there is a covering Ti → T and

for each Ti a closed subscheme T
′

i defined by an ideal whose k + 1st power is (0)

with the property that tT ′i
∈ Γ(T

′

i , X) is actually an element of Γ(T
′

i , Y )}

Definition 2.39. A pointed sheaf (X, eX) over S is said to be a formal Lie variety
if :
(1) X =lim−→k

InfkS(X) and the InfkS(X) are representable for every k ≥ 0;

(2) e∗xΩ
1
X/S = e∗xΩ

1
InfkS(X)/S

is locally free of finite type;

(3) denoting by grinf(X) the unique graded OS-algebra such that grinf
i (X) = gri(InfiS(X))

holds for all i ≥ 0, we have an isomorphism Sym(ωX) → grinf(X) induced by the
canonical mapping ωX → grinf

1 (X).

Definition 2.40. A formal Lie group (G, eG) over S is a group in the category of
formal Lie varieties.

Now we give a characterization of formal Lie group in the case the base scheme
S is of characteristic p > 0. Let G be a sheaf of groups over S. We have Frobenius
and Verschiebung morphisms:

FG/S : G→ G(p)



11

and
VG/S : G(p) → G

We denote by G[n] the kernel of the n-th iterate (FG/S)n.

Definition 2.41. We say that G is of FG/S-torsion if G = lim−→n
G[n]. We say that

G is FG/S-divisible if FG/S is surjective.

Theorem 2.42. [3, chapter II, Theorem 2.1.7 ] Notations as above, G is a formal
Lie group if and only if:
(1) G is of FG/S-torsion;
(2) G is FG/S-divisible;
(3) the G[n] are finite and locally free S-group schemes.

Notation 2.43. Ḡ = lim−→k
InfkS(G)

Theorem 2.44. [3, Chapter II, Theorem 3.3.18] Suppose p is locally nilpotent on
S and G is a Barsotti-Tate group, then Ḡ is a formal Lie group.

There is another way to define a formal Lie group and one can check these two
definitions are compatible.

Definition 2.45. Let R be a complete, noetherian, local ring with residue field
k of characteristic p > 0. An n-dimensional commutative formal Lie group over
R, denoted Γ = Spf(R[[x1, . . . , xn]]), is F = (Fi ∈ R[[z1, . . . , zn, y1, . . . , yn]])ni=1

satisfying:
(1) X = F (X, 0) = F (0, X);
(2) F (X,F (Y,Z)) = F (F (X,Y ), Z);
(3) F (X,Y ) = F (Y,X).

We write X ∗ Y = F (X,Y ). It follows from the axiom that X ∗ Y = X + Y+
trems in higher powers of the variables. Put ψ(X) = X ∗ · · · ∗ X (p times) and
denote [p] the corresponding map on Γ. We say Γ is p-divisible if [p] : Γ→ Γ is an
isogeny, i.e. R[[x1, ..., xn]] is free of finite rank over itself with respect to ψ. If Γ is
p-divisible, then for v ∈ N, the scheme

Gv = Spec(R[[x1, ..., xn]]/ψv(< x1, . . . , xn >))

is a connected group scheme over R. We get a p-divisible group Γ(p) = (Gv, iv)v≥1.

Theorem 2.46. [8, Proposition 1] (Tate) Given R as above, the map Γ → Γ(p)
is an equivalence of categories between p-divisible commutative formal Lie groups
over R and connected p-divisible groups over R.

Definition 2.47. Given a p-divisible group G, the dimension of G is defined to be
the dimension of the formal Lie group corresponding to the connected component
G0.

Remark 2.48. We can define the dimension in a more simple way in the next
subsection, refering to Remark 2.66.

2.49. The relation between Lie algebra and the sheaf of invariant differ-
entials of a Barsotti-Tate group.

Let X be an affine group over a complete noetherian local ring R, and let R[ε]
be the ring of dual numbers:

R[ε] := R[T ]/(T 2)
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Thus R[ε] = R⊕Rε and ε2 = 0. There is a homomorphism

π : R[ε]→ R, π(a+ εb) = a.

Definition 2.50. For any affine group scheme X over R,

LieX := Ker(X(R[ε])
π−→ X(R))

Remark 2.51. Same notation as above, since we have exact sequence

1→ X0 → X → X ét → 1

by Proposition 2.14. Taking Lie is like taking the derivative, hence kills X ét by
Proposition 2.11. We concludes that Lie(X0) ' LieX.
In particular, when R is a field we have the following computation: If a 6= 0, then
a+ bε = a(1 + b

aε) has inverse a−1(1− b
aε) in R[ε], and so

R[ε]× = {a+ bε|a 6= 0}
An element of Lie(X) is a R-algebra homomorphism u : O(X) → R[ε] whose
composite with ε → 0 is ε. Therefore, elements of O(X) not in the kernel m of ε
map to units in R[ε], and so u factors uniquely through the local ring O(X)m. This
shows that LieX depends only on O(X)m. In particular, Lie(X0) ' LieX.

Recall that O(X) has a co-algebra structure (M, ε). By definition, the elements
of Lie(X) are the R-algebra homomorphisms O(X)→ R[ε] such that the composite

O(X)
u−→ R[ε]

ε 7→0−−−→ R

is ε.

Proposition 2.52. There is a natural one-to-one correspondence between the ele-
ments of Lie(X) and the R-derivations O(X)→ R (where O(X) acts on R through
ε), i.e.

Lie(X) ' DerR,ε(O(X), R)

The correspondence is ε+ εD ↔ D, and the Leibniz condition is

D(fg) = ε(f) ·D(g) + ε(g) ·D(f)

Example 2.53. Suppose R is a field of characteristic p > 0, and let X = αp, so
that αp(B) = {b ∈ B|bp = 0}. Then αp(R) = {0} and αp(R[ε]) = {aε|a ∈ R}.
Therefore,

Lie(αp) = {aε|a ∈ R} ' R;

Similarly,
Lie(µp) = {1 + aε|a ∈ R} ' R.

Let A be an augmented quasi-coherent co-algebra in (Sch/S)fppf .

Definition 2.54. [3, Chapter III, (2.0)] Cospec(A) is the functor (Sch/S)◦ → Set

given by S
′ 7→ {y ∈ Γ(S

′
,AS′ )|η(y) = 1,M (y) = y ⊗ y}.

Definition 2.55. A section x of A is primitive if M (x) = 1⊗ x+ x⊗ 1

Definition 2.56. We denote by Lie(A) the fppf sheaf of OS-module whose sections

over S
′

are the primitive elements in Γ(S
′
,AS′ ) and where the operations are

induced by those on A. By abuse of notation, if G = Cospec(A), then Lie(A) is
also denoted Lie(G).

Remark 2.57. Assume A is finite and locally-free, then Cospec(A) = Spec(A∨),
where A∨ = HomOS-mod(A,OS)
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The OS-algebra structure on A∨ = HomOS-mod(A,OS) is given as follows. The

unit is OS
η∨−−→ A∨ and the multiplication is given by (A ⊗OS A)∨ ' A∨ ⊗OS

A∨ m=M∨−−−−→ A∨, where the first isomorphism comes from the fact that A is finite
and locally free.
By [3, chapter3 2.1.3], any Barsotti-Tate group can be written as Cospec(A) =
Spec(A∨) for an appropriate co-algebra A. Now given a Barsotti-Tate group, say
G = Cospec(A) = Spec(A∨) over S, then the unit section S → G is deduced from
the augmentation map.

Definition 2.58. If (X, e) is a pointed S-scheme (i.e. e : S → X is a section of the
structure map), then we define the sheaf of invariant differentials, denoted ωX/S ,
to be the fppf sheaf associated to the Zariski sheaf below:

ωX/S = e∗(Ω1
X/S)

When X is a group scheme, e is just the unit section S ↪→ X.

Remark 2.59. We see that LieX = ω∨X/S . Since Proposition 2.52 tells us LieX

corresponds to the invariant derivation, i.e. the tanget space of the origin.

Proposition 2.60. [3, Chapter II, Remark 3.3.20] Let G be a Barsotti-Tate group
over S, then the sheaves ωG(m)/S are locally free of finite rank. If pN · 1S = 0, then
ωG(m)/S = ωG(N)/S for all m ≥ N .

Definition 2.61. Let G be a Barsotti-Tate group on the base scheme S, then we
define the sheaf of invariant differentials by

ωG/S = ωG(m)/S

for m� 0.

Remark 2.62.
(1) Under the same assumption as Proposition 2.59 above, Proposition 2.58 implies
that we can define LieG similarly. LieG := LieG(m) for m� 0.
(2) Suppose that G ∈ BT(S), then one can check (LieG)(S) = LieG. In fact, one
can take this as the definition of LieG at the beginning.

Remark 2.63. ωG = ωG

Lemma 2.64. Let A be a finite locally free co-algebra over S, X = CospecA =
Spec(A∨). Then Lie(X) = ω∨X/S

Proof. Given any S-scheme S
′
, we have ω∨X/S(S

′
) = Γ(S

′
, ω∨X/S ⊗OS OS′ ). Now we

focus on the sheaf, which is easier to study since we can study it locally.
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ω∨X/S ⊗OS OS′

= HomOS (ωX/S ,OS′ )

= HomO
S
′ (OS′ ⊗OS ωX/S ,OS′ )

= HomO
S
′ (ωX′/S′ ,OS′ )

= HomO
S
′ (OS′ ⊗OXS

ΩXS/S ,OS′ )

= HomO
S
′ (ΩX

S
′ /S
′ ,OS′ )

= DerO
S
′ (OX

S
′ ,OS′ )

= DerO
S
′ (A∨S′ ,OS′ )

= {d ∈ HomO
S
′ (A∨S′ ,OS′ )(= AS′ )|(∀x, y ∈ A

∨
S′

)d(xy) = xd(y) + yd(x)}
= {a ∈ AS′ |(∀x, y ∈ A

∨
S′

)(x⊗ y)(M (a)) = (x⊗ y)(1⊗ a) + (x⊗ y)(a⊗ 1)}
= {a ∈ AS′ | M (a) = 1⊗ a+ a⊗ 1.}

So
ω∨X/S(S

′
) = Lie(A)(S

′
) = Lie(X)(S

′
)

�

Proposition 2.65. If G = Cospec(A) is a Barsotti-Tate group over S, then
Lie(G) = ω∨G/S.

Proof. By the lemma above, we know that Lie(G(m)) = ωG(m)/S . By proposi-
tion 2.60 ωG(m)/S stablizes, hence we see lim−→ωG(m)/S = ωG/S . So together with

Lie(G) = Lie(lim−→G(m)), we see it suffices to show lim−→Lie(G(m)) = Lie(lim−→G(m)),

which follows directly by the definition of Lie(A) above described by sections. �

Remark 2.66.
(1) By definition, Lie(G) coincides with the fppf sheaf corresponds to the usual
Lie algebra of a Lie group when G is a Lie group. Indeed, given a Lie group G,
its Lie algebra is the tangent space at the origin, denoted teG. It consists of the
derivations Der, hence corresponds to ω∨G. By the lemma above, Lie(G) = ω∨G.
(2) By Proposition 2.11 and discussion above, we see that Lie(G) = 0 if G is an
étale group scheme.
(3) We can replace Definition 2.47 by defining the dimension of a p-divisible group
G ∈ BT(OK) as the rank of the free module ωG. Moreover by the fully-faithfulness
of the generic fiber, cf Theorem 6.48 to be proved later, the rank is the same as
the rank of the vector space G⊗OK K, where K = Frac(OK).

3. Divided powers, exponentials and crystals

3.1. Divided powers.

The notion of divided power on a commutative ring A is defined to ”make sense”

of
xn

n!
for some element x ∈ A, even when n! is not invertible in A. This will enable

us to define exponential maps. The exponential will involve sheaves of Lie algebra
and play an important role in the classification of Barsotti-Tate groups over some
fixed base scheme.
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Definition 3.2. Let A be a ring and I an ideal of A. A divided power structure
on I is a family of mappings {γn : I → I, n ≥ 1} which satisfies the following
conditions for any λ ∈ A and x, y ∈ I :
(1)γn(λx) = λnγn(x);

(2) γn(x) · γm(x) =
(m+ n)!

m!n!
γm+n(x);

(3) γn(x+ y) = γn(x) +
∑
i=1,n−1 γn−i(x)γi(y) + γn(y);

(4) γm(γn(x)) =
(mn!)

(n!)mm!
γmn(x).

Given such a system we define γ0 by γ0(x) = 1 for all x ∈ I and refer to (I, γ)
as an ideal with divided powers. If x ∈ I, the element γn(x) is sometimes denoted
x[n]. The structure (A, I, γ) as above is called a P.D. ring.

Remark 3.3.
(1) If A is a Q-algebra, then any ideal has a unique P.D. structure, namely γn(x) =
xn

n!
, for all x ∈ A.

(2) When A has characteristic 0, if the P.D. structure exists then it is unique.
Besides the above example, consider a DVR (A, π, k) of mixed characteristic (0, p),
p = πeu, where u ∈ A×. Then (π) admits a P.D. structure if and only if e ≤ p− 1.
Hence the ring of Witt vectors of a perfect field of characteristic p admits a P.D.
structure, since it is an unramified DVR of characteristic (0, p).
(3) In the positive characteristic case P.D. structures may not be unique when it
exists.

Definition 3.4. Let (A, I, γ) and (B, J, δ) be triples with P.D. structures. A mor-
phism of P.D. rings or P.D. morphism u : (A, I, γ)→ (B, J, δ) is a ring homomor-
phism u : A → B such that u(I) ⊆ J and u(γn(x)) = δn(u(x)) holds for all x ∈ I
and n ∈ N.

We globalize considerations above by defining P.D. schemes as follows. We
replace A by a scheme S, I by a quasi-coherent ideal I. Divided powers on I are
given by assigning to each open set U a system of divided powers on Γ(U, I) such
that the restriction maps commute with the divided powers.
Given P.D. schemes (S, I, γ) and (S

′
, I ′ , γ′), a divided power morphism f between

them is a morphism of schemes f : S → S
′

such that f−1(I ′) maps into I under
the map f−1(OS′ ) → OS and such that the divided powers induced on the image

of f−1(I ′) coincide with those defined on γ
′
.

Definition 3.5. Let (A, I, γ) be a P.D. ring and f : A → B be an A-algebra. We
say that γ extends to B if there is a P.D. structure (B, IB, γ) such that (A, I, γ)→
(B, IB, γ) is a P.D. morphism, that is f(γn(x)) = γn(f(x)) for every x ∈ I, n ∈ N

Remark 3.6. In fact the definition is equivalent to the following statement: there
is a P.D. structure (J, δ) on B with a P.D. morphism (A, I, γ) → (B, J, δ), indeed
IB is a sub-P.D. ideal of J .

Definition 3.7. Let (A, I, γ) be a P.D. ring and B an A-algebra with a P.D.
structure (J, δ). We say that γ and δ are compatible if the following equivalent
conditions hold:
(1) γ extends to δ and γ = δ on IB ∩ J ;
(2) the ideal K = IB + J has a P.D. structure δ such that (A, I, γ) → (B,K, δ)
and (B, J, δ)→ (B,K, δ) are P.D. morphisms.
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3.8. P.D. envelopes.

Theorem 3.9. [9, Theorem 3.19]
Let (A, I, γ) be a P.D. algebra, B is an A-algebra and J is an ideal of B. There
exists a B-algebra DB,γ(J) with a P.D. ideal (J, θ) such that JDB,γ(J) ⊆ J and
satisfies the following universal property: for any B-algebra C with a P.D. ideal
(K, δ) such that K contains the image of J and δ is compatible with the γ there
exists a unique P.D. morphism (DB,γ(J), J, θ) → (C,K, δ) such that the following
diagram commutes:

(DB,γ(J), J, θ)

''
(B, J) //

ψ
88

(C,K, δ)

g

(A, I, γ)

f

gg

g

77

Definition 3.10. The B-algebra DB,γ(J) in the above theorem is called the P.D.
envelope of B relative to the ideal J .

3.11. Exponentials.

Definition 3.12.
Let (A, I, γ) be a P.D. ring. We say that the divided powers are nilpotent if there is
an integerN such that the ideal generated by elements of the form γi1(x1) · · · γik(xk)
with i1 + · · ·+ ik ≥ N is zero.

Remark 3.13. The definition implies, by taking k = N and i1 = · · · = ik = 1,
that IN = (0). This enables us to define exponential.

Definition 3.14. If the divided powers (A, I, γ) are nilpotent we define two maps:

exp : I → (1 + I)×

log : (1 + I)× → I

by the formula exp(x) =
∑
n≥0 γn(x) and log(1 + x) =

∑
n≥1(−1)n−1(n− 1)!γn(x)

Remark 3.15. The two maps are well defined and inverse to each other.

Let S = Spec(A) be an affine scheme where p is nilpotent, I an ideal of A with
nilpotent divided powers and S0 = Spec(A/I). For any Barsotti-Tate group G over
S and V a locally-free A-module of finite rank, there is a well-defined exponential
map:

exp : Hom(V, I · Lie(G)) ↪→ Ker[HomS−gr(V,G)→ HomS0−gr(V0, G0)]

defined by exp(θ)(x) = exp(θ(x)).
We study extensions of homomorphisms and the relations between these and the

exponential.
Assume u0 : V0 → G0 is a S0-monomorphism with image H0 ⊆ G0, we want to
examine the set of S-flat liftings of H0 to subgroups H of G, together with structure
of locally-free module on H, lifting that of H0. Let H be a solution of this problem.
Then H is given by V where V is a finite locally-free OS-module and any such V
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is determined up to isomorphism by [S.G.A 1 III.7.1]. Let us fix once and for all a
V lifting V0. Then to give an H as above is equivalent to giving a monomorphism
V → G lifting u0, and two such u and u

′
are being identified if they differ by an

OS-automorphism of V which restricts to the identity on S0

Definition 3.16. Notations as above, the subtitle ”0” of a group scheme over S
denotes its base change over S0. Two liftings u

′
, u
′′

of u0 : V0 → G0 are said linearly
compatible if their difference is in the image of

exp : Hom(V, I · Lie(G)) ↪→ Ker[Hom(V,G)→ Hom(V0, G0)]

Remark 3.17. This is obviously an equivalence relation on the set of liftings of
u0.

Definition 3.18. Two liftings u
′
, u
′′

of u0 : V0 → G0 are said to be congruent if
they differ by an OS-linear automorphism of V reducing to the identity on V0

Remark 3.19. u and u
′

are thus congruent if and only if they define the same
solution of our lifting problem.

Lemma 3.20. [3, Chapter III, 2.7.6] If u and u
′

are congruent then they are linearly
compatible.

Remark 3.21. Hence we see u and u
′

are congruent if and only if they are linearly
compatible, since obviously linearly equivalence implies congruence. Hence the
exponential map allows us to define an equivalence relation on the set of solutions
of our problem.

Let h ⊆ Lie(G) be a locally free sub-module lifting h0 = Lie(H0), then we have
the following result which is important for the Grothendieck-Messing theorem later.

Proposition 3.22. [3, Chapter III, 2.7.7] In each linear equivalence class of solu-
tions of our problem, there is exactly one H with Lie(H) = h

3.23. Crystalline site and crystals.

Let S = (S, I, δ) be a P.D. scheme, X is a S-scheme to which δ extends. Recall
this means that the OS-algebra OX has a P.D. structure δ such that

(OS , I, δ)→ (OX , IOX , δ)

is a P.D. morphism.

Definition 3.24. The crystalline site of X relative to S, denoted Crys(X/S),
consists of the category whose objects are triples (U ↪→ T, γ) where:
(1) U is an open sub-scheme of X;
(2) U ↪→ T is a locally nilpotent closed immersion;
(3) γ = (γn)n∈N is a (locally nilpotent) divided powers structure on the ideal I of
U in T compatible with δ.
U ↪→ T as above is called a P.D. thickening.
Morphisms from (U ↪→ T ) to (U ′ ↪→ T ′) are commutative diagrams:

U //

f

��

T

f
��

U ′ // T ′
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such that U → U ′ is an inclusion and T
f−→ T ′ is a divided power morphism (i.e.

the morphism of sheaf of rings f
−1

(OT ′)→ OT is a divided power morphism).
A covering family of an object (U ↪→ T, γ) of the crystalline site is a collection of
morphisms {Ti → T}i such that for all i ∈ I, Ti → T is an open immersion and
∪Ti = T . One may instead require ∪Ui = U , actually the working assumption
implies that the ideal I is nilpotent and therefore U ↪→ T is a homeomorphism.

A sheaf of sets F on the crystalline site is equivalent to the following data: for every
element (U, T, γ) ∈ Crys(X/S), a sheaf F(U,T,γ) on T and for every morphism in
the crystalline site

U //

f

��

T

f
��

U ′ // T ′

a morphism of sheaves f
−1F(U,T,γ) → F(U ′ ,T ′ ,γ′ ), where f

−1
is the pull-back of a

sheaf of sets on TZar, together with the natural cocycle condition.

Example 3.25. The structural sheaf OX/S on Crys(X/S) is defined by

(OX/S)(U,T,γ) = OT

for every (U, T, γ).

Definition 3.26. A crystal of OX/S-modules is a sheaf F of OX/S-modules such

that for any morphism u: (U ↪→ T ) → (U
′
↪→ T

′
) in Crys(X/S), the map

u∗F(U ′ ,T ′ ,δ′ ) → F(U,T,δ) is an isomorphism.

Example 3.27. The structural sheaf OX/S on Crys(X/S) is a crystal.

Crystal is a sheaf that is ”rigid” and ”grows”. The growing is true for any sheaf
F on a crystalline site Crys(X/S), allowing us to associate a crystal to any lifting of
a Barsotti-Tate group in our case. While the rigidity, precised by the isomorphism
in the definition above, is not true for arbitrary sheaf.

4. Deformation theory

4.1. The crystals associated to Barsotti-Tate groups.

In this section we shall associate certain crystals to Barsotti-Tate groups on a
scheme (on which p is locally nilpotent).

Let S be a scheme on which pN is zero and G a Barsotti-Tate group on S.
Recall that we have defined in the first section the sheaf of invariant differentials
ωG, namely the fppf sheaf associated to ωG = e∗(Ω1

G(m)/S) where m � 0 and e is

the unit section S → G(m).

Definition 4.2. An extension of G by a vector group V (G) (i.e. an fppf sheaf
associated to a quasi-coherent module)

(E) 0→ V (G)→ E(G)→ G→ 0

is said to be universal if given any extension of G by another vector group

0→M → • → G→ 0



19

there is a unique linear map V (G)
f−→M such that f∗((E)) is the given extension.

Proposition 4.3. [3, Chapter IV, Proposition 1.10 ] Notations as above, there
is an universal extension of G by a vector group. In fact V (G) = ω(G(n)D) for n
sufficiently large and the universal extension is

0→ ω(G(N)D) → ω(G(N)D)

∐
G(N)

G→ G→ 0

up to isomorphism.

Proof. Consider the exact sequence

0→ G(N)→ G
pN−−→ G→ 0

Take M a quasi-coherent module and apply the left exact functor Hom(•,M). We
get the long exact sequence:

0→ Hom(G,M)→ Hom(G,M)→ Hom(G(N),M)
δ−→ Ext1(G,M)→ Ext1(G,M)

Since pN = 0 on M , we get an isomorphism Hom(G(N),M)
δ−→ Ext1(G,M), which

is functorial in M . cf [3, Chapter IV, Proposition 1.3], the left hand side functor
is represented by ω(G(N)D). Then again cf [3, Chapter IV, proposition 1.3] we have
a homomorphism α inducing the universal extension.

0 // G(N) //

α

��

G
pN //

��

G //

��

0

0 // ω(G(N)D)
// ω(G(N)D)

∐
G(N)G

// G // 0

�

Corollary 4.4. [3, Chapter IV, Corollary 1.14 ] Assume p is locally nilpotent on
S and let G be a Barsotti-Tate group on S. Then there is an universal extension
0→ V (G)→ E(G)→ G→ 0 of G by the vector group V (G) = ωGD .

From now on E(G) will always represent the universal extension in the corollary
above, which we know is a fppf sheaf of group.

Proposition 4.5. [3, Chapter IV, Proposition 1.19] E(G) is a formal Lie group.

Definition 4.6. Lie(E(G)) := Lie(E(G))

If S0 is a scheme on which p is locally nilpotent. Then BT(S0) denotes the cat-

egory of B.T groups over S0 and BT
′
(S0) denotes the full sub-category of BT(S0),

consisting of those G0 with the following property: There is an open cover of S0

(depending on G0) formed of affine open sets U0 ⊆ S0 such that for any nilpotent
immersion U0 ↪→ U there is a B.T group G on U with G|U0 = G0|U0 .

Theorem 4.7. [3, Chapter III, Theorem 2.2] Let S = Spec(A) such that pN ·1S = 0,
S0 = Var(I) where I is an ideal of A with nilpotent divided powers. Let G and H be
two Barsotti-Tate groups on S and assume u0 : G0 → H0 is a homomorphism be-
tween their restrictions to S0. u0 defines a morphism v0 = E(u0) : E(G0)→ E(H0)
of extensions:

0 // V (G0) //

V (u0)

��

E(G0) //

v0

��

G0

u0

��

// 0

0 // V (H0) // E(H0) // H0
// 0
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Then there is a unique morphism of groups v = ES(u0): E(G) → E(H) (not
necessarily respecting the structure of extensions) with the following properties:
1) v is a lifting of v0;
2) given w: V (G) → V (H) a lifting of V (u0), denote by i the inclusion V (H) →
E(H), so that d = i ◦ w − v|V (G) : V (G) → E(H) induces zero on S0. Then, d is
an exponential (this makes sense by [3, Chapter III.2.4]).

Corollary 4.8. [3, Chapter IV, Corollary 2.4.1 ] Let K be a third Barsotti-Tate
group on S, and u′0 : H0 → K0 a homomorphism. Then ES(u′0 ◦ u0) = ES(u′0) ◦
ES(u0).

Corollary 4.9. [3, Chapter IV, Corollary 2.4.3] Let G, H, u0 be as above and
assume u0 is an isomorphism, then ES(u0) is an isomorphism.

4.10. Crystals associated to Barsotti-Tate group.

The corollaries of above theorems permit the construction of crystals. Let S0

be an arbitrary scheme (with p locally nilpotent on it) and let G0 be in BT
′
(S0).

By the reasoning recalled in [6], namely that fppf groups form a stack with respect
to the Zariski topology, it suffices to give the value crystals to be constructed on
objects U0 ↪→ U of the crystalline site of S0 with the property that G0|U0

can be
lifted to U , and U0 is affine.
By corollaries above, the group E(G) is independent up to canonical isomorphism
of the lifting of G0|U0

which has been chosen.
Let V0 ↪→ V be a second object in the crystalline site and

U0
� � // U

V0

f

OO

� � // V

f

OO

a morphism in Crys(X/S). Then for a lifting GU of G0|U0
to U and a lifting GV

of G0|V0 to V the same corollaries give a canonical isomorphism f
∗
(E(GU ))

∼−→
E(GV ), since both of them give an universial extension of a Barsotti-Tate group
over V which lifts G0|V0

. This isomorphism is functorial in the sense of [3, Chapter
III, Definition 3.6]

Now we know the following definition gives a well-defined crystal.

Definition 4.11. The rule that to any object U0 ↪→ U in Crys(X/S) associates
E(G) where G is any lift of G0|U0

to U gives a crystal that we denote E(G0).

It is clear that for u0 : G0 → H0 a homomorphism between two liftable Barsotti-
Tate groups, there is a morphism E(u0) between the associated crystals which is
defined on a ”sufficiently small” open set U0 ↪→ U via EU (u0) in the notations
introduced above.
Let f : T0 → S0 be an arbitry morphism. The crystal f∗(E(G0)) is determined
by its values on ”sufficiently small” open sets in the crystalline site of T0. Choose
sufficiently small to mean that the object V0 ↪→ V has to properties:
(1) f(V0) ⊂ U0 and G0|U0 can be lifted to infinitesimal neighborhoods;
(2) V0 is affine.
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Then we build the diagram

U0
� � // U = U0

∐
V0
V

V0

f

OO

� � // V

f

OO

It is immediate that, as we did above, for a lifting GU of G0|U0 to U and a lifting
GV of G0|V0 to V

f
∗
(E(GU ))

∼−→ E(GV ) = E(f∗(G0))V0↪→V

Thus

E(f∗(G0)) = E(f∗(G0))

and we showed that taking crystal is stable under base change.
A more precise statement of the last equality would be that the following diagram
is commutative up to a unique natural equivalence:

BT
′
(S0)

E //

f∗

��

{Crystals in fppf groups on S0}

f∗

��
BT

′
(T0)

E // {Crystals in fppf groups on T0}

From the construction of E(G0) we can construct two other crystals as follows.

Definition 4.12. cf [3, Chapter IV, 2.5.4]. If U0 ↪→ U is a nilpotent divided power
immersion and G0 can be lifted to a Barsotti-Tate group G on U , then we define
crystals E(G0), D(G0) and D∗(G0) as follows:

E(G0)U0↪→U = E(G)

D(G0)U0↪→U = Lie(E(G))

D∗(G0)U0↪→U = Lie(E(GD))

Remark 4.13. By definition 4.12, we see that E(G0) is a crystal in fppf groups on
S0 when G0 ∈ BT(S0). Hence E(G0)U0↪→U is a sheaf of fppf groups on S0, refering
to our convention at the very beginning.

Proposition 4.14. The sequence

0→ ωGD → Lie(E(G))→ Lie(G)→ 0

is exact.

Proof. Recall we have

(∗) : 0→ ωGD → E(G)→ G→ 0

The sections of ωGD over S
′

are primitive elements, since it is a vector group and
the commutativity gives the result. So (∗) tells us that ωGD ⊂ Lie(E(G)) since

Lie(E(G)) corresponds to the subsheaf of E(G) whose sections over S
′

are primitive
elements. ωGD is in the kernel of Lie(E(G))→ Lie(G), and conversely the kernel is
obviously in the kernel of Lie(E(G))→ Lie(G), which is ωGD by (∗). Hence

ωGD = Ker(Lie(E(G))→ Lie(G))

So it is left to prove Lie(E(G)) → Lie(G) is an epimorphism, which is proved by
[3, Chapter IV, Proposition 1.22]. �
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Suppose now T0 is a S-scheme with p = 0 on it, and G0 is a p-divisible group
over T0. Let T0 ↪→ T be an object of Crys(T0/S) on which p is locally nilpo-
tent, and G a lifting of G0 to T . By construction of D, we have an isomorphism
D(G0)(T )

∼−→ D(G)(T ).

Remark 4.15.
(1) Actually in the above isomorphism, D(G0)(T )

∼−→ D(G)(T ), D(G0)(T ) is short
for D(G0)T0↪→T (T ) and D(G)(T ) is short for D(G)T ↪→T (T ). It suffices to show
D(G0)T0↪→T = D(G)T ↪→T . In a more general case, suppose U0 ↪→ U is a nilpotent
closed immersion as usual, we have a morphism Crys(U/S) → Crys(U0/S) by re-
stricting an open scheme of U on U0, hence we get an open scheme of U0. Hence
given (W ↪→ T ) ∈ Crys(U/S), it makes sense to envalute D(G0) onW |U0

↪→ T . And
we have D(G0)W |U0

↪→T = D(G)W↪→T since our construction of D(G) is compatible

with arbitrary base change. We sometimes simply denote D(G0)(T ) = D(G)(T ).
(2) If T = SpecA is affine we will write D(G)(A) instead of D(G)(SpecA).

Corollary 4.16. The locally free sheaf on crystalline site Crys(T0/S), D∗(G)T0↪→T ,
sits in an exact sequence

0→ (Lie(G))∨ → D∗(G)T0↪→T → Lie(GD)→ 0

Proof. Let A be finite and locally-free and G = Cospec(A) = Spec(A∨), where
A∨ = Hom(A,OS).

Then by Proposition 4.14 applied to GD and by Proposition 2.65, ω∨G = Lie(G),
we get the exact sequence:

0→ (Lie(G))∨ → D∗(G)T0↪→T → Lie(GD)→ 0

�

Corollary 4.17. If T is affine and G ∈ BT(T ), then

0→ (Lie(G))∨ → D∗(G)(T )→ Lie(GD)→ 0

is an exact sequence of Γ (T,OT )-modules.

Proof. Remark 2.62 indicates that one may envaluate the exact sequence in Corol-
lary 4.16 on an affine scheme T = SpecA. To do this, we define the fppf cohomology
functor Hi

fppf(T, •) to be the right derived functors of Γ (T, •). Hence to get the

exact sequence we want, it suffices to show that H1
fppf(T, (Lie(G))∨) = 0. But we

have
H1

fppf(T, (Lie(G))∨) = H1
Zar(T, (Lie(G))∨) = 0

Where the first equality is by [10, Tag 03OJ] and [10, Tag 03P2] and the second
equality is by [EGA III, 1.3.1] since (Lie(G))∨ is locally free and hence quasi-
coherent. One can also check [11, Theorem 3.7] for a reference. �

4.18. Grothendieck-Messing theory.

Notation 4.19.
(1)Let S be a scheme on which p is locally nilpotent, I a quasi-coherent ideal of OS
endowed with locally nilpotent divided powers. Let S0 = Var(I) so that S0 ↪→ S

is an object of the crystalline site of S0. Denote by BT
′
(S0) the full sub-category

of BT(S0) consisting of those G0 which can locally (for the Zariski topology) be

http://stacks.math.columbia.edu/tag/0123
http://stacks.math.columbia.edu/tag/0123
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lifted to a G ∈ BT(S).

(2) Notice the definition of BT
′
(S0) here is different from above, because in this

part we will only consider crystals with their values on particular object of the
crystalline site, namely the object S0 ↪→ S.
(3) E(G0)S and D(G0)S will refer to the values of the corresponding crystals on the
object S0 ↪→ S.

Definition 4.20. A filtration Fil1 ⊂ D(G0)S is said to be admissible if Fil1 is a
locally-free vector sub-group with locally free quotient, which reduces to V (G0) ↪→
Lie(E(G0)) on S0.

We define an obvious category, denoted by CS0↪→S , whose objects are pairs
(G0,Fil1) with G0 in BT′(S0) and Fil1 an admissible filtration on D(G0)S . Mor-
phisms are defined as pairs (u0, ξ) where u0 : H0 → G0 is a morphism in BT(S0)
and ξ is a morphism of filtered objects, i.e. , a commutative diagram

Fil1 �
� //

ξ
��

D(G0)S

D(u0)S

��
Fil1

′ � � // D(H0)S

which reduces on S0 to

V (G0) �
� //

V (u0)

��

Lie(E(G0))

Lie(E(u0))

��
V (H0)

� � // Lie(E(H0))

Theorem 4.21. [3, Chapter V, Theorem 1.6] The functor G → (G0, V (G) ↪→
D(G0)S) establishes an equivalence of categories:

BT(S)→ CS0↪→S

Remark 4.22. (1) Let G0 be in BT
′
(S0). We have a sheaf L on S defined by

Γ(U,L) = set of linear equivalence classes of lifts of V (G0) ↪→ E(G0)|U0
to a vector

subgroup V ↪→ E(G0)S |U0
, for any affine open U ⊂ S. By our construction of

E(G0)S , L has a canonical section Θ ∈ Γ(S,L) which is determined on any suffi-
ciently small affine open U by the equivalence class of V (G) where G is any lifting of
G0|U0 to U . Choose two different liftings of G0, say G1 and G2, and hence different
liftings of V |U0

↪→ E(G0)|U0
, say V (G1) ↪→ E(G1) and V (G2) ↪→ E(G2). Then by

[3, Chapter IV, Theorem 2.2] we have a diagram

V (G1)
� � //

ω

��

E(G1)

v∼
��

V (G2)
i // E(G2)

with i ◦w− v|V (G1) an exponential. Hence the two liftings are equivalent and thus
by [3, Chapter III, Proposition 2.7.7] they corresponds to a same section in Γ(S,L).
(2) Hence we see that giving a V ⊂ E(G0)S which belongs to Θ is equivalent to giv-
ing an admissssible filtration Fil1 ↪→ D(G0)S cf [3, Chapter III, Proposition 2.7.7].
In particular to know V (G) ⊂ E(G0)S is the same as knowing V (G) ⊂ D(G0)S .
Knowing V (G) ⊂ E(G0)S gives G ' E(G0)S/V (G).
(3) By the observations in (1) and (2), we can construct another category that
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is equivalent with BT(S), with objects simply (G0, V ⊂ E(G0)S) but more com-
plicated morphisms relating liftings. CS0↪→S is better since it is just described by
algera structure, avoiding the mess with liftings.

5. A classification of p-divisible groups over OK

Let k be a perfect field of characteristic p > 0 and let W := W (k) be its ring of
Witt vectors. We consider a totally ramied extension K of degree e of the field
of fractions W [1/p]. Fix a uniformizer π ∈ K and denote by E(u) its minimal
polynomial.

Lemma 5.1. [12, Lemma A.2]
Let A → A0 be a surjection of p-adically complete and separated local Zp-algebras

with residue field k, whose kernel Fil1A is equipped with divided powers. Suppose
that
(1) A is p-torsion-free, and equipped with an endomorphism ϕ : A → A lifting the
Frobenius on A/pA.

(2) The induced map ϕ∗(Fil1A)
1⊗ϕ/p−−−−→ A is surjective.

If G0 is a p-divisible group over A0, write Fil1 D∗(G0)(A) ⊆ D∗(G0)(A) for the
preimage of (LieG0)∨ ⊂ D∗(G0)(A0). Then the restriction of ϕ : D∗(G0)(A) →
D∗(G0)(A) to Fil1 D∗(G0)(A) is divisible by p and the induced map

ϕ∗ Fil1 D∗(G0)(A)
1⊗ϕ/p−−−−→ D∗(G0)(A)

is surjective.

Remark 5.2. The Fil1 D∗(G0)(A) ⊆ D∗(G)(A) is got by the following way:

Fil1 D∗(G0)(A) �
� //

��

D∗(G0)(A)

��
(LieG0)∨

� � // D∗(G0)(A0)

Moreover, we have D∗(G0)(A)/Fil1 D∗(G0)(A) ' Lie(GD
0 ). Indeed choose G, a lift

of G0, consider the following morphism of extensions:

0 // (LieG)∨ //

α

��

D∗(G0)(A) //

β

��

Lie(GD) //

γ

��

0

0 // (LieG0)∨ // D∗(G0)(A0) // Lie(GD
0 ) // 0

A maps surjectively onto A0 so β and hence γ is surjective. Moreover, the first
column corresponds to nothing but M → M ⊗A A0 where M is an A-module
(LieG)∨ associates to. Hence we see the first column is also a surjective map.
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Applying Snake Lemma we get the following diagram:

0 // Kerα //

��

Kerβ //

��

Ker γ //

��

0

0 // (LieG)∨ //

α

��

D∗(G0)(A) //

β

��

h

&&

Lie(GD) //

γ

��

0

0 // (LieG0)∨

��

// D∗(G0)(A0)

��

// Lie(GD
0 )

��

// 0

0 0 0

and hence one has Kerh = Kerβ + (LieG)∨ = Fil1A · D∗(G0)(A) + (LieG)∨.
This is exactly the preimage of (LieG0)∨ under map β, i.e. Fil1 D∗(G0)(A). Hence
Kerh = Fil1 D∗(G0)(A) and we get the desired isomorphism.

Definition 5.3. A special ring is a p-adically complete, separated, p-torsion free,
local Zp-algebra A with residue field k, equipped with an endormorphism ϕ lifting
the Frobenius on A/pA.

For a special ring A, we denote by CA the category of finite free A-modules
M, equipped with a Frobenius semilinear map ϕ :M→M and an A-submodule
M1 ⊆M such that ϕ(M1) ⊆ pM and the map 1⊗ ϕ/p : ϕ∗(M1)→M is surjec-
tive.

Given a map of special rings A → B, (that is a map of Zp-algebra compatible
with ϕ ) andM in CA, we giveM⊗AB the structure of an object in CB , by giving
it the induced Frobenius, and setting (M⊗A B)1 equal to the image of M⊗A B
in M1 ⊗A B.

Lemma 5.4. [12, Lemma A.4]
Let h : A→ B be a surjection of special rings with kernel J . Suppose that for i ≥ 1,
ϕi(J) ⊆ pi+jiJ , where {ji}i≥1 is a sequence of integers such that lim−→i→∞ ji =∞
Let M and M′

be in CA, and θB :M⊗A B
∼−→M′ ⊗A B an isomorphism in CB.

Then there exists an unique isomorphism of A-modules θA : M →M′
lifting θB,

and compatible with ϕ.

We will apply lemma above in the following situation: J is equipped with di-
vided powers, and there exist a finite set of elements x1, . . . xn ∈ J such that J is
topologically (for the p-adic topology) generated by the xi and their divided pow-
ers, and ϕ(xi) = xpi . The integers ji may then be taken to be vp((p

i − 1)!)− i.

Remark 5.5.
(1) Since J is equipped with divided powers, so γpi−1(xk) ∈ J for k ∈ {1, . . . , n}.
Notice ϕi(xk) = xp

i

k = (pi − 1)!γpi−1(xk)xk, so take ji to be vp((p
i − 1)!) − i

guarantees ϕi(J) ⊆ pi+jiJ .
(2) Suppose A is a special ring with a P.D. ring (J, γ). For any a ∈ A, ϕ(a) ≡ ap ≡
γp(a)p! (mod pA), hence ϕ(J) ⊂ pJ and we can put ϕ1 = ϕ/p on J as A has no
p-torsion.
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Denote by W [u][E(u)[i]]i≥1 the divided power envelope of W [u] generated by the
ideal E(u). There is a surjective map

W [u][E(u)[i]]i≥1 � OK
u 7→ π

Denote by S the p-adic completion of the divided power envelope of W [u] with
respect to the ideal E(u), i.e.

S := ̂W [u][E(u)[i]]

The ring S is equipped with an endomorphism ϕ, by extending the Frobenius on
W to S : ϕ(u) = up. We denote by Fil1 S ⊆ S the closure of the ideal generated by
E(u) and its divided powers. Then we have an isomorphism:

S/Fil1 S
'−→ OK

By Remark 5.5 (2), ϕ(Fil1 S) ⊆ pS and we set ϕ1 = ϕ/p : Fil1 S→ S.

Definition 5.6. We will denote by BTϕ
/S the category of finite free S-modules M

equipped with an S-submodule Fil1M and a ϕ-semilinear map ϕ1 : Fil1M→M
such that
(1) Fil1 S · M ⊆ Fil1M, and the quotient M/Fil1M is a free OK-module.

(2) The map ϕ∗(Fil1M)
1⊗ϕ1−−−→M is surjective.

Any M in BTϕ
/S is equipped with a Frobenius semilinear map ϕ : M → M

defined by ϕ(x) := ϕ1(E(u))−1ϕ1(E(u)x).

Remark 5.7. By [13], we know that the data of a p-divisible group over OK is
equivalent to the data of a compatible collection of p-divisible groups over OK/(pi)
for i ∈ {1, 2, . . . }. One direction is simply by base changing the original p-divisible
group G to group Gi over OK/(pi).

Given a p-divisible groupG overOK . Write S = lim←−n S/(p
n). Hence D∗(Gi)(S/pm)

makes sense for m ≥ i. Since S� OK � OK/(pi), we have S/(pi)� OK/(pi). By
Remark 4.15 (1), we have D∗(Gi)(S/(pi+1)) = D∗(Gi+1)(S/(pi+1)). Hence we can
define

D∗(G)(S) := lim←−
m≥i

D∗(Gi)(S/(pm))

which is independent of the i. Using Remark 5.2, D∗(G)(S) is endowed with a sub
S-module Fil1 D∗(G)(S) that contains Fil1 S · D∗(G)(S).

Remark 5.8. We know how to evaluate a crystal on a P.D. thickening, whose
kernel I is nilpotent with divided power structure. However, in the proof of the
proposition below we will face the case when the ideal I = (p) ⊂ W has divided
power but is not nilpotent. In this case, we can use similar method as in (1) above,
to deal with W/piW, i ≥ 1 and then take limit to get the desired evalution.

Proposition 5.9. There is an exact contravariant functor G 7→ D∗(G)(S) from
the category of p-divisible groups over OK to BTϕ

/S. If p > 2 this functor is an

antiequivalence.
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Proof. Given a p-dividible group G over OK , the S-module M(G) := D∗(G)(S) is
well defined by Remark 5.7. One checks that it has a natural structure of an object
of BTϕ

/S, hence this gives a functor from the category of p-divisible groups over OK
to BTϕ

/S.

Indeed, by Remark 5.2 applying to the case S� OK we have an isomorphism:

D∗(G)(S)/Fil1 D∗(G)(S)
∼−→ Lie(GD)

So D∗(G)(S)/Fil1 D∗(G)(S) is a free OK-module.
Recall that ϕ∗ Fil1 S is the tensor product of two S-modules S and Fil1 S, and

the map is given by

ϕ∗ Fil1 S
1⊗ϕ/p−−−−→ S

s⊗ a 7→ s
ϕ

p
(a)

To shows ϕ∗ Fil1 S
1⊗ϕ/p−−−−→ S is surjective, it is equivalent to prove ϕ1(Fil1 S) gen-

erates S. Recall that E(u) = ue + pae−1u
e−1 + · · · + pa0 ∈ Fil1 S and by the

definition of ϕ1 we have ϕ1(E(u)) = 1
p (uep + pϕ(ae−1)u(e−1)p + · · · + pϕ(a0)) =

ϕ(a0) + ϕ(a1)up + · · · + uep

p . ϕ1(E(u)) is mapped to ϕ(a0) + ϕ(a1)πp + · · · + πep

p

under the map S → OK and we have vp(
uep

p ) = p − 1 > 0. One checks that

this element is not in the maximal ideal of OK , hence in O×K . So ϕ1(E(u)) is

invertible in S and hence ϕ1(Fil1 S) generates S. Now by applying Lemma 5.1,

ϕ∗ Fil1 D∗(G)(S)
1⊗ϕ/p−−−−→ D∗(G)(S) is surjective. These results together show that

M(G) := D∗(G)(S) is indeed an object of the category BTϕ
/S.

Now we construct a quasi-inverse. Let M be in BTϕ
/S and for any such i

Ri := W [u]/(ui)

It is equipped with a Frobenius endomorphism ϕ given by the Frobenius on W and
u 7→ up. We regard OK/(πi) as an Ri-algebra via

W [u]/(ui)→ OK/(πi)

u 7→ π

This is a surjection with kernel pRi (since ue is killed, E(u) become pt, where t is
an unit), so Ri is a divided power thickening of OK/(πi), i.e. we have

Spec(OK/(πi)) ↪→ Spec(W [u]/(ui)) ∈ Crys(Spec(OK/(πi))/W )

and given any p-divisible group Gi over OK/(πi) we may form D∗(Gi)(Ri) (as
explained below Remark 5.7 ). As in Lemma 5.2 we denote by Fil1 D∗(Gi)(Ri) the
preimage of (LieGi)

∨ ⊂ D∗(Gi)(OK/(πi)) in D∗(Gi)(Ri).

Fil1 D∗(Gi)(Ri) �
� //

��

D∗(Gi)(Ri)

��
(LieGi)

∨ � � // D∗(Gi)(OK/(πi))

On the other hand, by the universal property of P.D. envelope we have a ϕ-
compatible (by unicity) map fi : S→ Ri,

S
fi

&&
W [u]

==

// W [u]/(ui) = Ri
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sending u to u, and uej/j! to 0 for j ≥ 1. Write Ii for the kernel of this map. We
equip Mi = Ri ⊗SM with the induced Frobenius ϕ, and we let Fil1Mi ⊂Mi be
equal to the image of Fil1M in Mi

Fil1Mi
� � //Mi

Fil1M �
� //

OO

M

OO

Note that 1⊗ ϕ1 : ϕ∗(Fil1M)→M induces a surjective map ϕ∗(Fil1Mi)→Mi.

We proceed by steps. In step 1 and step 2 we will construct a p-divisible group
Gi together with a canonical isomorphism D∗(Gi)(Ri)

∼−→ Mi, (i ∈ 1, 2, . . . , e)
compatible with ϕ and filtrations. In step 3, we get the p-divisible group Ge over
OK/(p) such that M ∼−→ D∗(Ge)(S). In step 4, we then get p-divisible groups over
OK/(pi) for i ∈ {1, 2, . . . }, which corresponds to a unique p-divisible group G over
OK .

Step 1:
Denote by F : Mi → Mi the map induced by ϕ : M → M. A simple compu-
tation shows that both sides of the surjective map ϕ∗(Fil1M1) → M1, are free
W -modules of the same rank, hence the map

1⊗ ϕ1 : ϕ∗(Fil1M1)
∼−→M1

is an isomorphism. Composing the inverse of this isomorphism with the composite,

ϕ∗(Fil1M1)→ ϕ∗(M1)
∼−→M1

where the first map is induced by the inclusion Fil1M ⊂ M, while the sec-
ond is given by a ⊗ m 7→ ϕ−1(a)m, gives a ϕ−1 semilinear Vershiebung map
V : M1 → M1, such that ϕV = V ϕ = p. Denote by G1 to be the p-divisible
group associated to this Dieudonné module by classical contravariant Dieudonné
theory.
The tautological isomorphism D∗(G1)(W )

∼−→ M1 is compatible with Frobenius,
and it is compatible with filtrations because Fil1 D∗(G1) may be identified with
V D∗(G1), as explained [12, A.2]

Step 2:
Now we suppose that i ∈ [2, e] is an integer and that we have constructed Gi−1

such that D∗(Gi−1)(Ri−1)
∼−→ Mi−1 is compatible with Frobenius and filtrations.

Note that the kernel of Ri → OK/(πi−1) is equal to (ui−1, p) which admits divided
powers.
Indeed, we know (p) admits divided powers by Remark 3.3(2); and if the divide
power structure exists, then we have n!γn(ui−1) = un(i−1). Hence γn(ui−1) is ui−1

when n = 1, and is 0 when i ≥ 2. So we are left to prove the existence of this divided
power structure, but this follows from W [u]/(ui) ⊂ K0[u]/(ui), where K0 = W [1/p]
is a Q-algebra hence has divided power structure.

So we may evaluate D∗(Gi−1) on Ri as explained below Remark 5.7. By Lemma
5.2 and what we have already seen, D∗(Gi−1)(Ri) andMi both have the structure

of objects of CRi and the above isomorphism D∗(Gi−1)(Ri−1)
∼−→ Mi−1 is an iso-

morphism in CRi−1
. Hence by Lemma 5.5 applied to the surjection Ri � Ri−1, it

lifts to a unique ϕ-compatible isomorphism

D∗(Gi−1)(Ri)
∼−→Mi
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By the deformation theory we presented in Section 4, there is a unique p-divisible
groupGi overOK/(πi) which liftsGi−1, and such that (LieGi)

∨ ⊂ D∗(Gi−1)(OK/(πi))
is equal to the image of Fil1Mi under the composition:

Fil1Mi ⊂Mi
∼−→ D∗(Gi−1)(Ri)→ D∗(OK/(πi))

By construction we have D∗(Gi)(Ri)
∼−→ Mi compatible with ϕ and filtrations,

which completes the induction.

Step 3:
We now apply Lemma 5.5 to the surjection S → Re, and the module M and
D∗(Ge)(S) in CS. Note that the kernel of S → OK/(πe) = OK/(p) admits divided
powers, so we may evaluate D∗(Ge) on S as explained below Remark 5.7, and the

result is in CS by Lemma 5.2. SinceMe
∼−→ D∗(Ge)(Re) in CRe , we have a canonical

ϕ-compatible isomorphism by Lemma A.4:

M ∼−→ D∗(Ge)(S)

Step 4:
Suppose that p > 2, then the divided powers on the kernel of OK → OK/(p) are
nilpotent, and we can take G = G(M) to be the unique lift of Ge to OK such
that (LieG)∨ ⊆ D∗(Ge)(OK) is equal to the image of Fil1M under the compo-
sition of the above isomorphism and the projection D∗(Ge)(S) → D∗(Ge)(OK).
Strictly speaking what Grothendieck-Messing theory produces is a sequence of p-
divisible groups over OK/(pi) for i = 1, 2, . . . which are compatible under the maps
OK/(pi) → OK/(pi−1) . However, this data corresponds to a unique p-divisible
group over OK as expalined in Remark 5.7.
From the construction we haveM ∼−→M(G(M)). And on the other hand using the
uniquness at every stage of the construction, one sees by induction on i that that
for i = 1, 2, . . . , e and any p-divisible group G over OK , Gi(M(G)) is isomorphic

to G ⊗OK OK/(πi), (hence we have G
∼−→ Gi(M(G)) modulo πi) and then that

G
∼−→ G(M(G)). �

Example 5.10. Let’s see some basic examples of the functor constructed in this
section

BT(OK)
M−−→ BTϕ

/S

G 7→ D∗(G)(S)

Let G
′

be a lifting of G over S, the universal extension of G gives us a sequence

0→ (Lie(G
′
))∨ → D∗(G)(S)→ Lie(G

′D)→ 0

Recall in Lemma 2.21 we proved that ω∨G = Lie(G). Hence

0→ ωG′ → D∗(G)(S)→ ω∨
G′D
→ 0

(1) Consider G = µp∞/OK = lim−→µpn/OK . We have results:

M(µp∞/OK ) = S ; Fil1M(µp∞/OK ) = S
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Choose G
′

= µp∞/S as a special lift of µp∞/OK over S. We do precise computations
to prove above results:

Ω1
µpn/S

=
S[T ]

(T pn − 1)
dT/(pnT p

n−1dT )

=
S[T ]

(T pn − 1)
dT/(pn)

dT

T

= S[T ]/(pn, T p
n−1)

dT

T

Hence

ωµpn/S = e∗(Ω1
µpn/S

) ' S/(pn)
dT

T

ωG′ = ωµp∞/S ' S
dT

T
' S

G
′D = Qp/Zp/S is étale implies ωG′D = 0, hence D∗(G)(S) equals ωG′ by the be-

ginning exact sequence. Apply the above computation we have D∗(G)(S) = S.
By Remark 5.2 we have D∗(G)(S)/Fil1 D∗(G)(S) ' Lie(GD), the right hand is
Lie(Qp/Zp) hence equals 0. So Fil1M(G) 'M(G) = S.

(2) For the dual Qp/Zp, similarly we haveM(Qp/Zp) = S, Fil1M(Qp/Zp) = Fil1 S.

Indeed, in this case D∗(G)(S)/Fil1 D∗(G)(S) ' OK dT
T and hence Fil1M(G) '

Fil1 S, since OK ' S/Fil1 S.

6. Comparison theorems

6.1. Period rings.

Notation 6.2. From now on, K will always denote a complete discrete valuation
field of characteristic 0, whose residue field k is perfect of characteristic p. For
example when k is finite, K is a finite extension of Qp.
Let v : K → Q∪{+∞} be the valuation normalized by v(p) = 1. Fix K an
algebraic closure of K and let GK = Gal(K/K) be the absolute Galois group. The
valuation extends uniquely to a (non-discrete) valuation v : K → Q∪{+∞}, which
is GK-equivariant, i.e. (∀x ∈ K)(∀g ∈ GK) v(g(x)) = v(x).
Let C be the completion of K for the valuation. The action of GK extends to C
by continuity. For any subfield L ⊂ C, we will write OL (resp. mL) for the ring of
integers (resp. the maximal ideal) of L.
Finally, we put W = W (k) and denote σ the Witt vectors Frobenius. It extends
to F := Frac(W ). One has F ↪→ K, and the extension K/F is totally ramified of

degree eK(we have v(K) =
1

eK
Z∪{∞}). We denote by | · | the absolute value on

C defined by |x| = p−v(x) for x ∈ C.

Definition 6.3. Let G be a profinite group. Let B be a topological ring with
unity endowed with a continuous action of G, preserving the unity. Then a B-
representation of G is a free B-module M of finite rank endowed with a continuous
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and semi-linear action of G, i.e.

(∀g ∈ G)(∀b ∈ B)(∀m1,m2 ∈M) g(bm1 +m2) = g(b)g(m1) + g(m2)

With B-linear G-equivalent maps, they form a category denoted by RepB(G).

We say that a B-representation M is trivial if M
∼−→ Bd for some d, with the

natural action of G.

Definition 6.4. Let ` be a prime number. A `-adic representation of G is a
Q`-representation (where the action of G on Q` is trivial). An integral `-adic
representation of G is a Z`-representation of G.

In particular, RepQ`(GK) is the category of `-adic representation of GK , and

RepZ`(GK) is the category of Z`-representations of GK .

Definition 6.5. We say that V isB-admissible ifB⊗FV is a trivialB-representation
of GK . The category of B-admissible representations is denoted by RepB(GK)

Given the BGK -vector space

DB(V ) := (B ⊗F V )GK

we have a linear map

αV : B ⊗BGK DB(V )→ B ⊗F V
λ⊗ x 7→ λx

Notice that GK acts on B⊗BGK DB(V ) through g(λ⊗ x) = g(λ)⊗ x, for λ ∈ B,
x ∈ DB(V ), g ∈ G.

Definition 6.6. We say that B is (F,G)-regular if the following conditions holds:
(1) B is a domain;
(2) BGK = (FracB)GK ;
(3) If a non-zero b ∈ B satisfies that ∀g ∈ GK there exists λ ∈ F such that g(b) = λb,
then b is invertible.

For example, a field always satisfies the above conditions.

Proposition 6.7. [14, Theorem 2.13] Suppose B is (F,G)-regular. Then for any
F -representation V the map αV is injective, and it is an isomorphism if and only
if V is B-admissible.

Put

R = lim←−
x 7→xp

OK/pOK = {(xn)n∈N ∈ (OK/pOK)N|(∀n ∈ N) xpn+1 = xn}

It is a perfect ring of characteristic p with an action of GK (componentwise). It is
a k-algerba via the map

k → R
x 7→ (x, x1/p, x1/p2 , . . .)

For n ∈ N, we will denote by prn : R → OK/pOK the projection on the n-th factor.
This is a ring homomorphism. If n ≤ m, and x ∈ R, one has prm(x)m−n = prn(x).
As K is algebraically closed, pn-th roots always exists in OK , so the maps prn are
surjective.
The componentwise reduction modulo p provides a (multiplicative and GK-equivariant)
map

lim←−
x 7→xp

OC = {(x(n))n∈N ∈ ON
C |(∀n ∈ N) (x(n+1))p = x(n)} → R
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Proposition 6.8. [15, Proposition 4.3.] The map above is a bijection.

Thanks to the proposition, we will identify R with lim←−x 7→xp OC . As C is alge-

braically closed, the maps
R → OC
x 7→ x(n)

are surjective for all n ∈ N.

Example 6.9. We will consider elements ε := (ζpn)n≥0 (resp. p̃ := (p(n))n≥0 and

π̃ := (π(n))n≥0) in R (such that p(0) = p and π(0) = π). Note that these elements
are not canonical, since extration of pn-th roots requires choices.

Notation 6.10. Fix a π̃ := (π(n))n≥0 ∈ M, π(0) = π. We define K∞ :=

K(π(n))n∈N. Notice our definition of K∞ depends on the π̃ we fix.

Remark 6.11.
(1) Let x = (xn)n∈N and y = (yn)n∈N be elements in R corresponding to (x(n))n∈N
and (y(n))n∈N in lim←−x7→xp OC . As x(n)y(n) lifts xnyn and (x(n+1)y(n+1))p = x(n)y(n)

for all n ∈ N, one has (xy)(n) = x(n)y(n) for all n ∈ N, i.e. x 7→ x(n) is a
multiplicative map. It is not additive, one has the formula

(x+ y)(n) = lim
m→∞

(x(n+m) + y(n+m))p
m

(2) If g ∈ GK , one has g(ζpn) = ζ
χ(g)
pn whence g(ε) = εχ(g).

If x = (x(n))n∈N ∈ R, we put

vR(x) := v(x(0)) ∈ R≥0 ∪{∞}

For example, vR(p̃) = 1, vR(π̃) = v(π). and vR(ε − 1) = limm→∞ v(ζpm − 1)p
m

=
p
p−1 , where vR(ε − 1) = limm→∞ v(ζpm − 1)p

m

is by the concrete construction of

the bijection between R and lim←−x 7→xp OC .

Proposition 6.12. The map vR is a valuation, for which R is complete. Moreover,
the action of GK on R is continuous for vR.

Remark 6.13. Define a map as following

θ : W (R)→ OC

(x0, x1, . . .) 7→
∞∑
i=0

pix
(i)
i

This is a GK-equivariant map.

Proposition 6.14. [15, Lemma 4.4.1] θ is a surjective ring homomorphism.

Proposition 6.15. [15, proposition 4.4.3] The ideal Ker(θ) is principal, generated
by any element x ∈W(R) whose reduction x ∈ R satisfies vR(x) = 1. For instance,
ξ := [p̃]− p is such an element.

Example 6.16. Let $ = [ε]−1
[ε1/p]−1

= 1+[ε1/p]+[ε1/p]2+· · ·+[ε1/p]p−1 ∈W(R) . One

has $ = ε−1
ε1/p−1

= (ε1/p−1)p−1, so vR($) = (p−1)vR(ε1/p−1) = p−1
p vR(ε−1) = 1,

so Ker(θ) = $W(R) .

Remark 6.17. By proposition and example above we see $ is a generator of
Ker(θ).

Definition 6.18. Let Acris be the p-adic completion of the P.D. envelope of W(R)
with respect to the ideal Ker(θ)



33

Hence we see that

Acris = ̂DW(R)(Ker(θ)) = ̂W(R)[ξ[i]]

Proposition 6.19. The action of GK and of the Witt vectors Frobenius on W(R)
extends to an action of GK and a Frobenius operator ϕ on Acris.

Recall that

S = ̂W [u][E(u)[i]]

Then we have the following map

W [u]→ Acris

u 7→ [π̃]

Since

E(u) 7→ E([π̃])
θ−→ E(π) = 0

so the image of the P.D. ideal (E(u)) is inside Ker(θ), a P.D. ideal of Acris. Hence
the previous map extends into

W [u][E(u)[i]]→ Acris

cf Theorem 3.9.
As Acris is p-adically separated and complete, it extends into a map S → Acris.

This endows Acris with a S-algebra structure.

Remark 6.20. S ⊂ A
GK∞
cris but S is not stable under the action of GK in Acris.

Put

t = log([ε]) :=

∞∑
n=1

(−1)n−1 ([ε]− 1)n

n

notice

t =

∞∑
n=1

(−1)n−1 ([ε]− 1)n

n
=

∞∑
n=1

(−1)n−1(n− 1)!([ε]− 1)[n]

Hence Zp t ⊂ Acris .

Proposition 6.21. g(t) = χ(g)t and ϕ(t) = pt.

Theorem 6.22.
(1) (Universal property of Acris). The map θ : Acris → OC is a universal p-adically
complete divided powers thickening of OC , i.e. for any p-adically separated and
complete ring A, and any continuous and surjective ring homomorphism λ : A →
OC whose kernel has divided powers (compatible with the canonical divided powers
on pA), there exists a unique homomorphism α : Acris → A such that the diagram

Acris

θ "" ""

α // A

~~~~
OC

commutes.
(2) Crystalline interpretation of Acris. We have:

Acris = lim←−
n

H0(Spec(OK/pOK)/Wn)cris,OSpec(OK/pOK)/Wn
)

Definition 6.23. Bcris := Acris[
1
t ].



34

Remark 6.24.
(1) p ∈ B×cris, hence Bcris is a K0-module, where K0 = W [ 1

p ].

(2) In fact, BGK
cris = K0.

Definition 6.25. We say that a p-adic representation V of GK is crystalline if it
is Bcris-admissible. We denote by Repcris

Qp (GK) the corresponding subcategory of

RepQp(GK).

In particular we have a functor

Dcris := DBcris
: Repcris

Qp (GK)→ModK0
(ϕ)

where ModK0(ϕ) is the category of finite dimensional K0-vector spaces D endowed
with a semi-linear Frobenius operator:

ϕ : D → D

(i.e. ϕ(σα) = ϕ(σ)ϕ(α) for all σ ∈ K0 and α ∈ D.)

Notation 6.26. Let Tp(Gm) = lim←−n µpn(K) = Zp(1) denote the Tate module of

the multiplicative group, which is isomorphic to Zp as a group but also possesses a

Galois action given by the p-adic cyclotomic character χ : GK → Z×p :

g · x = χ(g)x for all g ∈ GK .

More generally, if i ∈ Z and M is an Zp-module with an action by GK , denoted
(g,m) 7→ g(m), then we may form a GK-module M(i) which is M as a group, but
whose Galois action is twisted by the i-th power of the cyclotomic character:
for all m ∈M(i),

g ·m = χ(g)ig(m) for all g ∈ GK

Definition 6.27. The module M(i) is called the i-th Tate twist of M .

Consequently, M(i) may be realized as

M(i) = M ⊗Zp Tp(Gm)⊗i

Example 6.28. Given i ∈ Z, Dcris(Qp(i)) ' {b ∈ Bcris |(∀g ∈ GK) g(b)χi(g) = b}

g(b)χi(g) = b⇔ g(b)χi(g)ti = bti ⇔ g(bti) = bti

Dcris(V ) ∼= {b ∈ Bcris |bti ∈ BGK
cris} = {b ∈ Bcris |bti ∈ K0} = t−iK0

Recall that

Tp(G) = HomBT(OK)(Qp/Zp, GOK )

Given

f : Qp/Zp → GOK
a map in BT(OK) and we still denote by f its base change to OC . Since D∗ is a
contravariant functor, we induce a map

D∗(f) : D∗(GOC )→ D∗(Qp/Zp)

Its envaluation at the P.D. thickening SpecOC → Spec Acris provides a map

D∗(f)Acris : D∗(GOC )Acris → D∗(Qp/Zp)Acris ' Acris

We already saw that Acris is an S-module before Remark 6.16, hence given any
element a ∈ D∗(G)(S) we map it to an element aAcris

∈ D∗(G)Acris
. Hence the

following pairing is well-defined.
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Tp(G)× D∗(G)(S)→ Acris

(f, a) 7→ (D∗(f)Acris)(aAcris)

It induces an S-linear map

D∗(G)(S)→ Acris⊗Zp(TpG)∨

By Acris-linearity we have

ρG : Acris⊗SD∗(G)(S)→ Acris⊗Zp(TpG)∨

Lemma 6.29.

Tp(G
D) ' (TpG)∨(1)

Proof. By definition we have

GD
n(K) = Homgr(Gn(K),K

×
) = Homgr(Gn(K), µp∞(K))

For any n ∈ N, the map jn : GD
n+1 → GD

n is iDn where in : Gn → Gn+1 is the closed
immersion that identifies Gn with the pn-torsion of Gn+1. Then

Tp(G
D) = lim←−

jn

GD
n(K)

= lim←−
jn

Homgr(Gn(K), µp∞(K))

= Homgr(lim−→
in

Gn(K), µp∞(K))

= Homgr(G(K), (Qp/Zp)(1))

Since Tp(G) = Homgr(Qp/Zp, G(K)) implies G(K) ' TpG⊗Zp (Qp/Zp) and so we
have

Tp(G
D) ' Homgr(Tp(G)⊗Zp (Qp/Zp), (Qp/Zp)(1))

' Homgr(Qp/Zp,Qp/Zp)⊗Zp (TpG)∨(1)

= Zp ⊗Zp (TpG)∨(1)

= (TpG)∨(1)

�

Remark 6.30. By Cartier duality there is a pairing

Gm(K)×GD
n(K)→ µpn(K)

for all m ≤ n. Taking projective limit on m we have

TpG×GD
n(K)→ µpn(K)

Taking projective limit on n we have

TpG× Tp(G
D)→ Tp(µp∞) = Zp(1)

hence the map

Tp(G
D)→ (TpG)∨(1)

of Lemma 6.29.

Theorem 6.31. [16, Section 6] ρG is a functorial injection, respecting Frobenius
and GK∞ action. Its cokernel is killed by t.
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Proof. We use same notation as in the above lemma. To study ρG, we first consider
the special case of G = µp∞ , where Tp(µp∞) = Zp(1).

Acris⊗SS
dT
T

ρµp∞ //

'
��

Acris⊗Zp Zp(−1)

'
��

Acris
� � // Acris(−1) = t−1 Acris

Then we reduce the general case to this one. Consider

ρG : Acris⊗SD∗(G)(S)→ Acris⊗Zp(TpG)∨

Let y ∈ (Tp(G))∨ ' (Tp(G
D))(−1), hence ty defines an element in

Tp(G
D) = HomBT(OK)(Qp/Zp, GD ⊗OK)

Hence (ty)D ∈ HomBT(OK)(G⊗OK , µp∞) and this induces a morphism:

D∗((ty)D)Acris
: Acris⊗SD∗(µp∞)(S)→ Acris⊗SD∗(G)(S)

Also

(Tp(ty)D)∨(1) ' Tp(ty) : Zp → Tp(G
D) = (TpG)∨(1)

1 7→ ty

gives a map

(Tp(ty)D)∨ : Zp(−1)→ (TpG)∨

t−1 7→ y

We have the following commutative diagram:

Acris⊗SD∗(G)(S)
ρG // Acris⊗Zp(TpG)∨

Acris⊗SD∗(µp∞)(S) �
� ρµp∞ //

D∗((ty)D)Acris

OO

Acris⊗ZpZp(−1)

1⊗(Tp(ty)D)∨

OO

where

Acris ' Acris⊗SD∗(µp∞)(S)
ρµp∞−−−−→ Acris⊗ZpZp(−1)

1⊗Tp((ty)D)∨−−−−−−−−−→ Acris⊗Zp(TpG)∨

1⊗ 1 7−→ −t⊗ t−1 7−→ −t⊗y

Hence −t ⊗ y = ρG((D∗((ty)D)Acris(1 ⊗ 1)) ∈ Im ρG and so we proved Coker ρG is
killed by t.
It is left to prove ρG is injective. Acris⊗SD∗(G)(S) and Acris ⊗Zp (TpG)∨ are two
free Acris-module of the same rank h, hence ρG is given by a matrix M ∈ Mh(Acris).
Coker ρG is killed by t implies det(M) ∈ (Acris[1/t])

× and hence det(M) is a nonzero
divisor (in fact Acris is integral). So we proved ρG is injective. �

Remark 6.32. We give a precise computation of the map ρµp∞ we used in the
proof above. t ∈ Tp(µp∞) = Z(1) corresponds to the map of BT(OK)

u0 : Qp/Zp → µp∞

1

pn
7→ ζpn

i.e. to the action of ε = (ζpn)n ∈ R. The universal extension of Qp/Zp is

0→ Ga →
Ga ⊕Qp

Zp
→ Qp/Zp → 0
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that of µp∞ is

0→ 0→ µp∞ → µp∞ → 0

On OC we have the morphism of extensions

0 // OC //

V (u0)=0

��

OC⊕Qp
Zp

//

v0

��

Qp/Zp

u0

��

// 0

0 // 0 // µp∞(OC) // µp∞(OC) // 0

where u0(λ, z) = (εz)(0) for λ ∈ OC and z ∈ Qp (for example, u0(0, 1
pn ) = ζpn and

u0(λ, 0) = 0 for λ ∈ OC). By Theorem 4.7, there exist an unique morphism

v :
Acris⊕Qp

Zp
→ A×cris

such that (1) v is a lifting of v0; (2) d = −v|V (Qp/Zp)Acris
is an exponential. Put

ṽ : Acris⊕Qp → Acris

(a, z) 7→ exp(−ta)[εz]

then θ(ṽ(a, z)) = θ([εz]) = (εz)(0) so (1) holds and ṽ(a, 0) = exp(−ta) so (2) holds
(note that (2) is in addition notation while ṽ is multiplicative). By unicity we must
have ṽ = v and hence we get:

D∗(t)Acris(a) = log((exp(−at)) = −at

Hence we have

Acris⊗SD∗(µp∞)(S)→ Acris⊗ZpZp(−1)

1⊗ 1 7→ −t⊗ t−1

and so ρµp∞ identifies with the inclusion Acris ⊂ 1
t Acris.

Corollary 6.33. ρG induces a GK∞-equivariant, Frobenius compatible isomorphism

ρ̃G : Bcris⊗WD(G0) = Bcris⊗SD∗(G)(S)
∼−→ Bcris⊗Zp(TpG)∨

Where G0 is the special fiber G ×SpecOK Spec k and D(G0) is the classical con-
travariant Dieudonné module of G0.

Proof. The first equality holds because the Dieudonné module is stable with base
change. �

Theorem 6.34. ρG is GK-equivariant.

Proof. Recall that

TpG→ HomBT(OC)(Qp/Zp, GOC )
D∗Acris−−−−→ HomAcris(D∗(GOC )Acris ,D∗(Qp/Zp)Acris)

Both maps are GK-equivariant (where the action of GK on D∗(GOC )Acris
is induced

by the natural action on Acris).
As D∗(Qp/Zp)Acris

' Acris, we get an Acris-linear, GK-equivariant and ϕ-compatible
map:

Acris⊗Zp TpG→ HomAcris
(D∗(GOC )Acris

,Acris)

hence a map

ρG : Acris⊗SD∗(G)(S) ' D∗(GOC )Acris → Acris⊗Zp(TpG)∨

�
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Remark 6.35. ρG is GK-equivariant, but the composition

D∗(G)(S)→ Acris⊗SD∗(G)(S)
ρG−−→ Acris⊗Zp(TpG)∨

is only GK∞-equivariant.

Corollary 6.36. The p-adic representation VpG := TpG⊗ZpQp is crystalline and

Dcris(VpG) ' (D(G0))∨ ⊗W W [
1

p
]

6.37. The de Rham and Hodge-Tate comparison isomorphisms.

Recall there is a surjective ring homomorphism W(R)→ OC , inverting p we get
a map θ : W(R)[1/p]→ C with kernel principal and generated by ξ.

Definition 6.38. B+
dR = lim←−n W(R)[1/p]/(ξn) is the Ker θ-adic completion of

W(R)[1/p].

Proposition 6.39.
(1) The map θ extends into a surjective ring homomorphism:

B+
dR → C

(2) B+
dR is a complete DVR with maximal ideal Ker θ and residue field C;

(3) B+
dR carries an action of GK for which θ is equivariant;

(4) t =
∑∞
n=1

(−1)n−1

n ([ε]− 1)n converges in B+
dR and is an uniformizer of B+

dR.

Definition 6.40. BdR := B+
dR[1/t] = Frac(B+

dR).

We endow BdR with the valuation filtration: Fili BdR := ti B+
dR for all i ∈ Z.

Remark 6.41. gr BdR = C[t, t−1]. Indeed, gri BdR = ti B+
dR /t

i+1 B+
dR = ti(B+

dR /(t)) =
Cti and so gr BdR = ⊕i∈Z gri BdR = ⊕i∈ZCti = C[t, t−1].

Theorem 6.42. (Tate) [8, Section 3, Proposition 8]

(1) H0(GK , C(i)) =

{
K if i=0

0 if i6=0

(2) H1(GK , C(i)) =

{
K logχ if i=0

0 if i6=0

Corollary 6.43. [14, 1.5.7] H0(GK ,BdR) = K.

Proposition 6.44. [14, 4.2.3] Bcris ⊂ K ⊗K0
Bcris ⊂ BdR.

We endow D(G0)K := D(G0)⊗K0
K with its Hodge filtration, given by

FiliD(G0)K = D(G0)K , if ≤ 0

Fil1D(G0)K = ωG ⊗OK K, if i = 1

FiliD(G0)K = 0, if i ≥ 2

Extending the scalars, ρ̃G induces an isomorphism, which is compatible with filtra-
tions:



39

Theorem 6.45. (de Rham comparison theorem)

ρ̃G : BdR⊗KD(G0)K
∼−→ BdR⊗Zp(TpG)∨

Proof. By what we discussed above. �

Theorem 6.46. (Hodge-Tate comparison theorem) [8, Section 4, Corollary 2]

C ⊗Zp (TpG)∨ ' C ⊗OK Lie(GD)⊕ C(−1)⊗OK (LieG)∨

Proof. This follows directly by taking the gr0 on both sides of the de Rham com-
parison theorem. �

Corollary 6.47. The height and dimension of G ∈ BT(OK) only depends on the
generic fiber GK = G⊗OK K ∈ BT(K).

Proof.

d = rank(LieG) = dimK(C(1)⊗Zp TpG)GK

h = rank(TpG)

By Remark 2.36, Tp(G) = HomBT(OK)(Qp/Zp, G⊗OK), and hence Tp(G) depends
only on the generic fibre. �

Proposition 6.48. [8, Proposition 2] Suppose (Gv, iv) is a p-divisible group with

Gv = SpecAv. Then the discriminant ideal of Av over R is generated by pnvp
hv

,
where h = ht(G) and n = dim(G).

Theorem 6.49. Let R be an integrally closed, noetherian, integral domain, whose
field of fractions K is of characteristic 0. Let G and H be p-divisible groups over
R. A homomorphism f : G⊗RK → H ⊗RK of the general fibers extends uniquely
to a homomorphism G→ H, i.e. the restriction functor

BT(SpecR)→ BT(SpecK)

is fully faithful.

Corollary 6.50. The map Hom(G,H)→ HomGK (Tp(G),Tp(H)) is bijective.

Corollary 6.51. If g : G → H is a homomorphism such that its restration G ⊗R
K → H ⊗R K is an isomorphism, then g is an isomorphism.

Since R = ∩pRp, where p runs over the minimal non-zero primes of R, and since
each Rp is a discrete valuation ring, we are immediately reduced to the case R

is a discrete valuation ring. There exists an extension R
′

of R which is a com-
plete discrete valuation ring with algebraically closed residue field and such that
R = R

′ ∩K; hence we may assume R is complete with algebraically closed residue
field. If chark 6= p, then G is étale and the theorem is obvious. Thus we are reduced
to the case of mixed characteristic, which we assume from now on.

Proof of Corollary 6.51. Let G = (Gv) and H = (Hv), and let Av (resp. Bv)
denote the affine algebra of Gv (resp. Hv), We are given a coherent system of
homomorphisms uv : Bv → Av, of which we know that their extensions uv ⊗ 1 :
Bv ⊗R K → Av ⊗R K are isomorphisms. Since Bv is free over R, it follows that
uv is injective for all v. To prove surjectivity, we look at the discriminants of the
R-algebras Av and Bv. By Proposition 6.48 these discriminants are non-zero, and
are determined by the heights of G and H and their dimensions. But the height
and dimension of a p-divisible group over R are determined by its general fiber by
Corollary 6.47. Hence the discriminants of Av and Bv are equal and non-zero, and
it follows that uv is bijective. This proves Corollary 6.51. �
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Proposition 6.52. [8, Proposition 12] Suppose F is a p-divisible group over R,
and M a GK-submodule of Tp(F ) such that M is a Zp-direct summand. Then there
exists a p-divisible group Γ over R and a homomorphism ϕ : Γ → F such that ϕ
induces an isomorphism Tp(Γ)

∼−→M .

Proof of Theorem 6.49. Granting this Proposition we prove the theorem, letting
F = G × H, and letting M be the graph of the homomorphism Tp(G) → Tp(H)
which corresponds to the given homomorphism f : G ⊗R K → H ⊗R K. By
Proposition 6.52 we get a p-divisible group Γ over R and a homomorphism ϕ :
Γ → G × H such that the composition pr1 ◦ϕ : Γ → G induces an isomorphism
Tp(Γ) → Tp(G), hence an isomorphism on the general fibers. By Corollary 6.51,
it follows that pr1 ◦ϕ is an isomorphism. Thus pr2 ◦ϕ ◦ (pr1 ◦ϕ)−1 : G → H is a
homomorphism extending f . The unicity of such an extension is obvious, and this
concludes the proof of Theorem 6.49.

�

References

[1] D. Mumford, Abelian varieties, vol. 5. Oxford University Press, USA, 1974.

[2] J. H. Silverman, The arithmetic of elliptic curves, vol. 106. Springer Science & Business
Media, 2009.

[3] W. Messing, “The crystals associated to barsotti-tate groups,” The Crystals Associated to

Barsotti-Tate Groups: with Applications to Abelian Schemes, pp. 112–149, 1972.
[4] W. C. Waterhouse, Introduction to affine group schemes, vol. 66. Springer Science & Business

Media, 2012.

[5] J. Tate, “Finite flat group schemes,” in Modular forms and Fermats last theorem, pp. 121–
154, Springer, 1997.

[6] A. Vistoli, “Notes on grothendieck topologies, fibered categories and descent theory,” arXiv

preprint math/0412512, 2004.
[7] S. S. Shatz, “Group schemes, formal groups, and p-divisible groups,” in Arithmetic geometry,

pp. 29–78, Springer, 1986.

[8] J. T. Tate, “p-divisible groups,” in Proceedings of a conference on local fields, pp. 158–183,
Springer, 1967.

[9] P. Berthelot and A. Ogus, Notes on Crystalline Cohomology.(MN-21). Princeton University
Press, 2015.

[10] T. Stacks Project Authors, “stacks project.” http: // stacks. math. columbia. edu , 2017.

[11] R. Hartshorne, Algebraic geometry, vol. 52. Springer Science & Business Media, 2013.
[12] M. Kisin, “Crystalline representations and f-crystals,” in Algebraic geometry and number

theory, pp. 459–496, Springer, 2006.
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