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Abstract

In this mémoire, We study the local theta correspondence for spherical rep-
resentations.

First we introduce the Weil representation: Let I be a local field and (W, (,))
be a symplectic space over F. Take Vi, V5 to be two transversal lagrangians of
W, such that W = Vi @ V. The Weil representation is a representation of the
metaplectic group Sp(W), which is a double cover of Sp(W), on S(V7)(the space
of Schwartz functions on V7).

One can restrict the Weil representation to a dual reductive pair inside @)(W)
and study this new representation. The local theta correspondence predicts a
bijection between irreducible representations of these two groups for which the
tensor product appears as a sub-quotient of this representation. We will focus on
one case of the local theta correspondence in this mémoire: the dual reductive
pair O(Wy, ®1) x Sp(Wa, ®,) inside Sp(W1 @ W), where (W7, ®1) is a symmetric
bilinear space of dimension divisible by 8, and (Wa, ®2) is a symplectic space.
Moreover, We only consider the local theta correspondence for the spherical
representations of these two groups. For this case, Rallis gives an explicit map
in terms of the ’Langlands principle of functoriality’. The main goal of this
mémoire is to understand Rallis’s result.
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1 Notation

Let F' be a non-Archimedian local field.

Let A be the ring of integers of F’

Let m be a fixed uniformizer of A.

Let ¢ be the number of elements in the residue field A/7A.
Let 9 be a addictive character of F'.

2 Welil representation

2.1 The Heisenberg group
2.1.1 Basic definitions

Let (W, (,)) be a symplectic space over F.

Definition 2.1. The Heisenberg group associated to W is H(W') := W x F with
the group structure

(w1, t1).(wa, t2) = (w1 + wa, t1 + ta + (w1, w2)/2)

Remark 2.1.1. (i) The center Z of H(W) is simply {0} x F, and HW)/Z =W,
so H(W) is a two-step nilpotent group.
(ii) A Haar measure of H(W) can be given by the product measure of W and
F, and this measure is both left and right invariant, hence H(W) is unimodular.
(iii) If W = W1 @ Wy, where Wi, Wa are symplectic spaces, then there is a
natural homomorphism

)t H(W) x H(Wy) — H(W)
((whtl)? (w27t2)) — (wl + wo, 11 + t2)

and ker(x) = {((0,t), (0, —t))|t € F'}

2.1.2 Stone-von Neumann theorem

Given any irreducible admissible representation p of H(W), restriction of p to
the center Z = F gives a character of Z. We call this character of Z the
central character of p. The Stone-von Neumann theorem says that the irreducible
admissible representations of H (W) are classified by their central characters.

Theorem 2.2 (Stone-von Neumann theorem). Let ¢ be a character of F', then
up to isomorphism, there exists a unique admissible irreducible representation

(p,S) of H(W) with central character 1.



We will prove this theorem step by step.
For any subgroup A C W, put

At ={weW :Vaec A p((w,a)) =1}

it is a closed subgroup of W, and if A is closed, we have A+t = A.

Fix a subgroup A C W such that A = A+. For example, we can take A to
be a lagrangian of W. Let Ay := A x F and ¥4 : Ay — S! be the character
extended to Ay by being trivial on A. Consider the representation (pa,S4) to
be the induced representation from 4, which means

Sa={f:HW) = C:Va € Ap, f(ah) = a(a)f(h)
and f is fixed by some open L. C W'}
pa acts by the right translation.

We also consider the compact induction, and in our case they are equal:

Lemma 2.3. (p, Sa) coincides with the compact induction ¢ — Indgf(lw) 4.

Proof. Let f € S4 be right invariant under a compact open subgroup L C W.
It suffices to show the compactness of Suppf in Ag\H (W) = A\W.
Suppose that w € W and f((w,0)) # 0, for any [ € L N A, we have

f((w,0)) = f((w,0)(1,0)) = f((; (w, 1)) (w, 0)) = ¥((w, )P a((l,0)) f((w,0))

Thus ¥ ((w, 1)) = ¥a((—1,0)). This pinned down the image of w modulo (LNA)*.
However (LNA)t = LY+ At = LY+ A and L is compact since W/ L is discrete,
hence f is supported on the compact subset A\(L+ + A). O

Lemma 2.4. Let w € W, L a compact open subgroup of W. Suppose that
Ya =1 on H(A) N ((w,0)(L x {0})(w,0)~1) (this is always possible by taking L
small enough). We can define a function

For () :{ wAO(a) if h = a(w,0)(1,0),h € Ag(w,0)(L x {0})

otherwise

As w runs over W and L runs over small enough compact open subgroups, these
functions generate S4. In particular, Sa # 0.

Proof. The hypothesis that ¥4 = 1 on H(A) N ((w,0)(L x {0})(w,0)™") guar-
antees that f, 1 is well defined and lies in S4. Note that S4 = |, Sf‘, the
functions in Sﬁ are dertermined by their values on representatives of the double
coset Ag\H/(L x {0}), which are zero for all but finitely many representatives
by the preceding lemma. Our assertion follows at once. O

Lemma 2.5. The representation (pa,Sa) is irreducible



Proof. Fix f € Sa, f # 0, we want to show that f generates all f,, ;, under the
action of p. Fix w € W. By translating f on the right, we may assume that
f((w,0)) # 0. Let L be a compact open subgroup fix f. Fix a Haar measure on
A and consider the action of S(A). For any ¢ € S(A),w’ € W, we have

(Pla(@) () (u,0) = / F((w',0))(a,0)6(a) da
A
- /A B, a))pa(a,0)6(a) da - f((w',0))

This resembles a Fourier transform; write ¢(a) = ¥ 4(—a,0)¢'(a), the last term
becomes

/A (!, a))! (a) da - F((w',0)) = (&) (W + A) - £((w/,0))

where v is some Haar measure on A. Choose ¢’ so that (¢'v)” is the characteristic
function of w + L+ A € W/A = A, then pa|g(¢)f is f multiplied by the
characteristic function of (A +w + L) x F. By taking L small enough, it will be
a multiple of f,, 1.

O

This establishes the existence part of Theorem 2.2.

Let’s consider some choices of A which will be used later. Let Vi, V5 be two
transversal lagrangians of W, such that there is a splitting map W = V; @ V5.
Consider the representation (py,, Sy, ), by Lemma 2.3, the restriction of function
on W to V5 gives an isomorphism

Svl — S(Vg)
[ f‘V2

Here §(V2) means the Schwartz functions on V5. Under this isomorphism, we
can get a representation of H(W) on the Schwartz space S(V2), which can be
defined as follows.

(pvl((w + yi))s@) () = ¢(<y’,x> + %@,m) + t)so(y’ +y), Vo e Vi,y € Vs

This is called the the Schrodinger models of H(W). Moreover, the representation
on §(V1) and S(V2) are intertwined by the Fourier transform

S(V1) —>8(V2)
frrfh ) =

\%1

F@)yv({y, x))dy

Next we prove the uniqueness. Let Sy(H(W)) be the space consisting of
smooth functions f on H (W) such that f(zh) = ¢(z)f(h) forall z € Z = {0} x F
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and h € H, and |f| is compactly supported module Z. Restriction of f to W
gives rise to an isomorphism.

Su(H(W)) = S(OW)
f = flwx{oy
Sy(H(W))[resp.S(W)] admits two representations:

pr = right translation : p,(g)f(h) = f(hg)
pr = left translation : p;(g)f(h) = f(gh)

so that the H(W') x H(W) representation p, ® p; on Sy (H (W))[resp.S(W)] can
be defined.

Lemma 2.6. Let (p,S) be a representation of H(W') with central character 1),
let SV denote the smooth dual of S. Then taking coefficients

SV ®8 = Sy(H(W))
s ® s fov s(h) = (s, p(h)s)

gives rise to an intertwining operator ¢ : p¥ @ p — p, @ p; as representation of

Proof. The crux is to show that for all sV, s, the matrix coefficient fsv 5 is com-
pactly supported modulo Z, Take a compact open subgroup L C W, fixing sV, s,
then for all [ € L we have

hence fsv ((w,0)) # 0 implies that w € L, which is compact. O
Lemma 2.7. p, is isotypic

Proof. Take two transversal lagrangians V7, Vo of W. We have two representa-
tions (p, S(V1)), (p, S(V2)) with central character . Apply the same construction
to get (p,S(V1)), (7, S(V3)), but this time with central character .

Fix a Haar measures on V; and V5. Recall the general fact that

p IndH(?fH)(l ® ) and p = md? ")

(1 (Vi) (1® 1)) are in duality via the pairing

(s',s) = | s'(y)s(y) dy’
Va
Now, use Fourier transform to identify p and p’, the above duality pairing be-
comes

(s,8") — s'(@")s(y ) ((y', 7)) da’ dyf
Vix Vs



the matrix coefficient now takes the following form: let x € Vi, y € Vb,

fs/,s((ery),O)) :/ s'(x')zﬁ((y',x) + <y’x>)s(y—l—y')w((y',x'))dx'dy'

Vix Ve 2

= [ st - v+ e e astay
VixVa

_ () [ s n) — ety ' ay
2 VixVa

This is the tensor product of two Fourier transforms multiplied by a bicharacter.
Hence p' ® p = p, ® p;. Since p is irreducible, restriction to 1 x H shows that p,
is a direct sum of copies of p. O

Now we can complete the proof of the uniqueness. Let (0,.S) be any smooth
and irreducible representation of H with central character . Using the inter-
twining operator ¢ : 0V ® ¢ — p, ® p;, we can fix s¥ € SV, 5" # 0 to embed o
into pr ® p;. The above lemma implies that o = p.

2.2 Weil representation
Observe that the symplectic group Sp(W) acts on H(W) by
Sp(W) x H(W) — H(W)
(9, (w, £)) = (9(w), t)

The calculation

(9, (w1, t1).(w2,t2)) = (g, (w1 + wa, t1 + ta + 1/2(wy, w2)))
(g(w1 + wa), t1 + ta + 1/2(wn, w2>)

(g, (w1,1))- (g, (w2, t2)) = (g(w1), t1)-(g(w2), t2)
= (g(w1) + g(ws), 1 +ta + 1/2(g(w1), g(w2)))
= (g(wr + w2), t1 + ta + 1/2(wy, w))

shows that g is really a group homomorphism from H (W) to H(W). Note that
this action is trivial on Z.

Definition 2.8. Fiz a model (p,S) of H(W), for g € Sp(W), we can define a

new representation p? on the same space S by

p?(h) = p(g(h)) for all h € H

As the acting of g is trivial on Z, this is a representation of H(W') with the same
central character. So by Stone-von Neumann theorem, there exists a linear map
Mgy : S — S such that

Mgop=p?ol,
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By Schur’s lemma , Mg is uniquely determined by g up to a scalar in C*. This
gives a projective representation w of Sp(W)

w: Sp(W) — GL(S)/C* = PGL(S)
We call this projective Weil representation of Sp(W).

Remark 2.8.1. We point out some inductive nature of the Projective Weil
representation:

Note that if W = Wy @ Wy is a sum of two symplectic space, let (p1,S1)
and (p2, S2) be the representation of H(W1) and H(W3), we get a representation
(p1 ® p2, 51 ®S2) of HWy) x H(W3). For A € ker(k) = ((0,t), (0, —t)):

(1 ® p2)(N)(v1 ® v2) = Y(t)v1 ®@ Y(—t)v2 = v1 @ V2.

So p1 ® pa is trivial on ker(k), hence the representation factor through H(W).
Denote this representation as H(W) by p1&pa. The restrict of p1®@ps to the cen-
ter of H(W) is also 1, so by Definition 2.8 we can get a projective representation
Woreps Of SP(W) on S1 ® Sa. Composed with the natural injection map

L Sp(Wy) x Sp(Ws) — Sp(W)

We get a representation of Sp(W1) @ Sp(Wa) on S1 ® Sa, denote by (wp,@p, ©
1,51 ® 52).
Also, under the natural map
PGL(S)) x PGL(Ss) — PGL(S; © S»)
[A] x [B] — [A® B
we can define a projective representation (w,, @Wp,, S1®S2) of Sp(W1) x Sp(Wa)

on S1®S2. These two representations: (wp,gp, 0L, S1052) and (W, @wp,, S1®52)
are isomorphic.

For such a representation, consider the fiber product

Sp(W) —L— Sp(W)

GL(S) —— PGL(S)
where .
Sp(W) :={(g,My) € Sp(W) x GL(S) : Mgop=p?o My}

Then the projective representation can be lift as a ordinary representation of the
group Sp(W)



Theorem 2.9 (Weil). There exist a unique subgroup @(W) of Sp(W) such that
p = ﬁ’é};(W) : Sp(W) — Sp(W) is a two fold covering of Sp(W). Let € € ker(p)
be the non-trivial elements, there is a short exact sequence

1 — {1,e} —— Sp(W) —2— Sp(W) —— 1

Therefore, the restriction of W to @(W) lifts the projective representation w of

—

Sp(W) to an ordinary representation of Sp(W). We denote the group S/’;)(W) as
the metaplectic group

Remark 2.9.1. (i) The proof can be found in [3]
(i1) Although our construction of Sp(W') and Sp(W') depends on the character

Y we fized, it can be shown that this does not depend on the character. And the
lifting to Sp(W) is unique. See [4] for detail of this lifting

We will use the Schrédinger models of H (W) and write explicitly the projec-
tive representation of Sp(W).

Let W = Vi @ Va be as before, and consider (py,,Sy;). Recall that the
restriction of function on W to Va gives a isomorphism

SV1 — S(Vg)
f = f‘Vz

Under this isomorphism, We get a representation of H (W) on the Schwartz space
S(V3), which can be defines as follow.

(p((w + y,t))so) () = ¢(<y’,x> + %<y7$> + t)sO(y’ +y),Vz e Vi,y € Vs

By calculate the intertwining operator for g € Sp(W), we get a projective
representation of Sp(WW) on the Schwartz space S(V2) defined as follow.

o((5 ) o) = detaP 2o ax)
o((5 7))ot == E 500

o((2 5) et = o0

Here we pick a representative elements in each class [g] € PGL(Sy;). As these
three kind of elements generate the whole group, this defines a action of Sp(W).
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2.3 Dual reductive pairs
2.3.1 The general case

We define the reductive dual pairs of Sp(1W') and consider the Weil representation
restrict to this reductive pairs.

Definition 2.10. A reductive dual pair (G1,G2) of Sp(W) is a pair of subgroups
G1 and Gy of Sp(W) such that both of them are reductive groups and

Ce’ntgp(w) (Gl) =Gy CentSp(W) (GQ) =Gy

If W = W; @ W is an orthogonal decomposition of symplectic space, and
(G1,GY) and (G?,G3) be dual reductive pairs of Sp(W7) and Sp(W3), then
(G1,Gs) = (G} x G2,G3 x G3) is a reductive dual pair in Sp(W). Such pair is
said to be reducible. A reductive dual pair (G1,G2) arises in this way is said
to be irreducible. The irreducible reductive dual pair of Sp(W) is classified by
Howe, see [6] for a list. We will construct one kind of reductive dual pair in next
section and study it.

We begin with some preliminary about representation of product of two
groups.

Lemma 2.11. Let Gy, G2 be locally compact totally disconnected groups and let
G=G1 xGs

(1) If m; is an admissible irreducible representation of G;,i = 1,2, then m ®ms
is an admissible irreducible representation of G

(2) If w is an admissible representation of G, then there exists admissible
irreducible representation w; of G; such that m = m ® o, the isomorphism class
of m; is determined by w

We first proof another lemma that will be used to proof the theorem above.

Lemma 2.12. A smooth G module W is irreducible if and only if WX irre-
ducible as H(G, K) module for all compact open subgroups K of G.

Proof. This follows from the fact that if U is an (G, K) submodule of W,
then (H(G)- U)K =U. O

Remark 2.12.1. The definition of H(G, K) can be found in Section 3.1.
We begin to proof the theorem

Proof. 1t is straightforward that

(i) H(Gl x Gg, K1 X KQ) = H(Gl,Kl) & H(GQ,KQ) and

(i) (W1 @ Wa)FrxFe = (W) 51 @ (Wy) 2

For every pair of compact open subgroup K; of G; and every pair of smooth
G; module W;. Assertion (1) follows from (ii) and the irreducible criterion.

11



Conversely, let W be an admissible irreducible G module. Let K = K X Ko,
where K; is a compact open subgroup of G;,i = 1,2, be such that WX £ 0. The
space WX is finite dimensional, so there exist a irreducible H (G, K;) module
WiKi and an H (G, K) isomorphism ag from W5 to W' @ W2, Similar result
applies to every open subgroup K’ = K| x K} of K. There exists H(G;, K;) maps

b = bi(K,K') : WZ.KZ' — WiK’{ such that the following diagram is commutative.

Wk K W1K1 ® W2K2

lincl. lb1 ®b2

!/
K %k K K3
wE 2k, whhew)

Moreover, the map b;(K, K') can be chosen for every pair of compact open
subgroups K, K’ of this type in such a way as to form an inductive system. Then
W = W; @ Wa where W; = indlimg;, WiKi, and W; is an admissible irreducible
representation of G;,7 =1, 2.

The class of W; is determined by that of W, for the restrictions of W to G;
is W; isotypic. [

Remark 2.12.2. The reductive groups over non-Archimedean field satisfies the
condition in this lemma.

Definition 2.13. Let H C :S%(W) be a closed subgroup. Define R(H) ={o: 0o
to be an irreducible representation of H such that there existing a H-nontrivial
intertwine map o : S(V1) — o}.

For G € Sp(W), denote G the inverse image of G in S/%(W) Let (G1,G2) be
a reductive dual pair in Sp(W), then G; and G2 commute in Sp(W), We have
a natural map

G1 x Gy — G - Gs
(91392)H91'g2

where product in the right is given in Sp(W). Under this map, an irreducible
admissible representation of é\lé\g can be pulled back to an irreducible admis-
sible representation of é\l X C/T‘\g By lemma 2.2, such a representation has the
form o ® o’ where o and o’ are irreducible representation of G7 and G5. Thus
R((/}\lé\g) defines a correspondence between irreducible admissible representa-
tions of é\l and Cfv‘vg

Conjecture 2.13.1 (Howe duality conjecture). If (G1,G2) ia a reductive dual
pair in Sp(W), then R(G1.G2) is the graph of a bijection between R(G1) and
R(G2)

12



Remark 2.13.1. (i) This conjecture has been proofed by Wee Teck Gan and
Shuichiro Takeda in 2014

(1i) We will study one case of reductive dual pair and only consider the spher-
ical representation of these groups.

2.3.2 O(WI,(bl) X Sp(WQ,(D2>

We will describe one case of reductive pair: (O(W7y, ®1) x Sp(Wa, ®2)) of Sp(W).
Let W1 = U @ U* be a symmetric bilinear vector space of dimension m, with
the symmetric bilinear form ®; given by

* * 1 * * * * *
(w1 +ut, 22+ )e, = S (y2(21) +yi(22))Ver, 22 € Uyt €U
We always assume dim(7¥7) is divisible by 8 in this mémoire.
Wy = Vo @ V5 be symplectic space of dim Wy = 2n with symplectic form @,
given by

* * 1 * * * * *
(1 4+ Y1, w2+ y5) 0, = 5(1/2(1‘1) —yi(x2)) Yo, 22 € Va,yl,y5 € Vs

Let W 2 W1 ® Wa, we get a symplectic form on W = W; ® Wy as
(w1 ® wa,v1 @ v2) = (Wi, V1)d, - (W2, V2) d,

Lemma 2.14. (O(W1,®1), Sp(Wa, ®2)) is an irreducible reductive dual pair of
Sp(W).

Proof. We first proof Centgy,y)(O(W1, ®1)) = Sp(Wa, @2): let g € Sp(W) such
that gh = hg for every h € O(W7, ®1).

Observe that W is irreducible as representation of O(Wy, ®1), so Wi ® Wa
is isotropic as a representation of O(Wj,®1), and every sub-representation of
W1 ® Wy is of the form W7 x V For some V C W,

Pick an element we € Ws, denote the line generated by ws as V5. Consider
the space g(W7 ® V3), as g commute with O(W7, ®1), the space g(W7 ® V3) is
stabled under the action of O(W7y, ®1), so it is a sub-representation of W; @ Wj.
We then have g(W7 @ Vo) = Wy ® V4 for some line Vo € Wa. We can pick a
wh € Vo and write g(w; ® wy) = g(wy) ® wh for all wy € Wy, then the map

ﬂg : W1 — W1
wy — g(w)
intertwines the action of O(W1, ®;) as g commutes with O(Wy, ®1). By Shur’s
lemma, there exists A € C such that g(wi) = Awy for every wy € Wi. That

means g(w; ® wg) = Aw; ® wh = wi ® A\w). So we know that for every wy € W,
there exists a g(wz) € Wa such that g(w; ® wa) = w1 ® g(ws) for every wy € Wi.

13



It is easy to check that the map ws — g(w2) is an action of g on Wy. We then
prove g € Sp(Wa): pick a wy € Wi such that ®;(wq,w;) = 1, and consider the
action of g on wy; ® Ws. The symplectic norm on Wy ® Wa restrict to wy ® Wa
is non-degenerated, as (w1, w1)s, = 1. 7?7 So g € Sp(W) implies g € Sp(W3).
The proof of Centgp(w)(Sp(Wg, ®y)) = O(Wh, @) is similar. As Wy @ Wy is
irreducible as a representation of O(Wj, ®1) x Sp(Wa, ®2), this reductive pair is
irreducible. O

Moreover, the map .
v Sp(W) = Sp(W)
splits on O(W7, @) x Sp(Wa, ®2). The splitting map is given as follows
(a) the map g1 — (g1, 81(g1)) for g1 € O(W1,P1) where

! if det(g1) =1
s1(g1) = { (-1 - 1)p, if det(i) =-1

(b) the map gz — (g2,1) for g2 € Sp(Wa, ®2)

Remark 2.14.1. The splitting map is more complicated if we do not assume
8/ dim(W7y).

Under this splitting map, we have an action of O(W7y, ®1) x Sp(Ws, ®2) on
S(W1 ® V). We will write this action explicitly by using a matrix model.

Fix a basis of W1 to be {e1, -+, ep 9, €], ,e;fn/z}, where {e1, -+, €y,/2} is
a basis of U. Under this basis, we can write elements in O(W7, ®1) as explicit
matrixes.

Also fix a basis of Wy to be {f1, -+, fu, fi -+, i}, where {f1,---, fn} is
a basis of V5. Under this basis we can write elements in Sp(Wa, ®2) as explicit
matrixes.

Observe that the map

p: W) — Wl*
wy = p(wy) t v = (v, w1)e,

is an isomorphism that identified Wy with its dual W7
Under the basis {e1, -, €y,/2,€]," ,e;‘n/Q}, the dual basis of W} = Wj can be
given by {ej,--- ,e;/g, €1, - ,em/g}. Under these basis, ¢ can be represented

by the matrix [ 0 Iy

, we denote it as Ag,. Under the identification
L2 0

[ W1 @ Wy =2 Homp (W], Wa),
we can identify W ® V, with Homp (W75, Va). We have

W1 @ Vo = Homp(W{, Vo) = My, (F)

14



The last isomorphism is given by writing g € Homp(W7, V) as a matrix under
the basis {e7,--- ,e:n/Q,el, o+, ey} of Wi and the basis {f1,---, fn} of Va.
Using this, we can transfer the action of O(W7y, ®1) x Sp(Wa, ®2) on S(W1 ®
Va2) to S(Mn(F')). This new action is defined as follows:
For ¢, € O(Wl, q)l)
m(g1)f(X) = fl97'X)

For g2 € Sp(WQ, (1)2)
7 (5 ) IO = ey
7o §) 0 = em(EX e X)) ()
0 I B vt
(O o) [ ST A X0y

By Iwasawa decomposition, these three kind of elements generate Sp(Wa, ®2). So
these define an action of O(Wy, @) x Sp(Wa, ®2). We denote this representation
as Pmn

Remark 2.14.2. By Remark 2.8.1, for n = ny + na, we have the restriction of
(Pmns S(Myn (F))) to (O(W1, ®1) X Sp,,, (F) x O(W1, ®1) X Spp, (F)) is isomor-
phic to (pmny ® Pmny, S(Mmn, (F)) @ S(Mpn, (F)).
Fiz [Yo] € My, (F') and G € Sp,,,(F') C Sp,,(F) the map
Y 1 S(Mpmn(F)) = S(Myp, (F))
f — ’Y(f) X = pmn(G)f[X’YO]

intertwines the action of Spy,(F) on both side. This inductive nature of pmmn
will be used later.

We will study this representation in this mémoire. For simplicity, we assume
that m > 2n. We sometimes write p,,, as p for brevity if this will not cause
ambiguity.

3 local theta correspondence

We will study the spherical quotient of the representation p in this Section. We
give some preliminaries at first.

3.1 Hecke algebra and Satake isomorphism

Let G be a connected, reductive, algebraic group scheme over F. Assume that
G is split over F', then G is the general fibre of a group scheme (also denote G)
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over A with reductive special fibre. Fix a torus T' and a Borel subgroup B of G
such that T C B C G, and define the Weyl group of T as W = Ng(T')/T. We
know that G(A) is a maximal compact subgroup of G. Denote G(A) by K and
let N be the unipotent radical of B, then B =T x N.

3.1.1 Root datum of reductive group
We introduce some fact on root and coroot of G.

Definition 3.1. The character and co-character of T are defined by

X*(T) = Hom(T, G,,)
Xeo(T) = Hom(G,,, T)

These are free abelian groups of rank [ = dim(7"), which are paired into
Hom(Gy,, Gy,) =2

Consider the adjoint action of T" on Lie(G): the lie algebra of G. As T is split,
this action can be diagonalized. The character of T' appearing in this action is
called the root of G, denote as ®. We also have the coroot ® of G lying inside
Xo(T).

The positive root ®T is defined to be the characters appearing in the ad-
joint action of T on Lie(B). We have the decomposition ® = & U (—d*). It
determines a root basis A C T consisting of positive indecomposable roots.

The root basis determines a Weyl chamber PT in X(T)

Pt ={\ € X, (T)|{\,a) > 0,Ya € &7}
={)\ € Xo(T)|{)\, @) > 0,Va € A}

Let 2p = > 4+ o in Xo(T), then for A € P, the half integer (), p) is non-
negative.

There is a partial ordering in PT. We say A > pu if the difference A —
can be written as a sum of positive roots with coefficients in N. If @ € A then
(&,p) =1, s0 A > p implies (A — u, p) is non-negative half integers. Index the
root basis A to be {a1, ag,...a,}, and define the fundamental co-characters as
€i € Xo(T),i=1,--- ,nsuch that (g;,\;) =d;;,j =1,--- ,n.

Let G be the complex dual group of G. This is a connected, reductive group
over C whose root datum is the dual of G. If we fixed a maximum torus 7" and
a Borel subgroup B of G such that T'C B  G. Then we have an isomorphism

~

Xo(T) = X*(T) (1)

which sends the positive coroots corresponding to B to positive roots corre-
sponding to B. We know that the element A € PT C X*(7T') indexes the finite
dimensional irreducible representation of G: A is the highest weight for B acting

16



on V. Let x» = Trace(Vy) in Z[X*(T)], then y, is fixed by the Weyl group, so
it lies in the subgroup Z[X*(7)]"'. We have an isomorphism

R(G) = Z[X*(T)]" (2)
Combine Equation 1, we have
R(G) = Z[X(T)]" (3)

Example 3.1.1. For GL,(F), fized T to be the set of diagonal matrix and B to
be the set of upper triangular matrizes. Let

ty
e; € Xo(T) : ¢ ' =t;

é; € X*(T):¢(t) = ’ the i x i position is t

then we have (e;, éj) = ;5 and

Xeo(T) = (e1,€9,...,ep)
X*(T) = (é1,é2,...,én)

the roots and coroots are given by

O ={ej—e;,0<i,j<n}
T ={e; —e;,0<i<j<n}
= {ei—¢;,0<i,j<n}
t={&—¢;,0<i<j<n}

= {61 — €2,62 —€3,...,6p-1 — en}

LT S

>« >

— {él - é2, é2 - é37 ceey én,1 - én}
and the map v between ® and ® is given by t(e;) = é;. The Weyl chamber is
given by

Pt = {m1é1 + Mmoo + ... + mnén]ml >mo > ... > mn}

and the partial order on it is defined by

T1€1 4+ X269 + ... + Tply = Y161 + Y262 + ... + Ynén
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T12Y,21+22 2 Y1 +Y2,.., X1+ T2+ o Tp—1 = Y1+ Y2+ oo+ Yn—1

and
1+ T2+ . Ty =yY1 +Y2+ ...+ Yn

The basis of PT is {e1,€2,...,en} where
€1 =€61,60=€1+€9,...,6p,=€E1 + 62+ ...6,

g; correspondent to V;, = /\l C™ under the isomorphism given by Equation 3.

3.1.2 Hecke algebra

Definition 3.2. Let G be a connected reductive group over F', the Hecke algebra
H(G) of G is defined to be the space of all compactly supported functions ¢ :
G — C. The product is defined by convolution:

@=0)(a) = [ omw0g)in
Also, we can define the Hecke algebra of G with respect to a open compact
subgroup K:

Definition 3.3. Let G be a connected reductive group over F' and K be a open
compact subgroup of G. The Hecke algebra H(G, K) is defined to be the space
of all compactly supported functions ¢ : G — C such that ¢(kgk') = ¢(g) for all
k,k' € K. The product is defined by

@=0)(o) = [ om0 g)in
Remark 3.3.1. Let ex be the characteristic function of K, then we have
H(G,K) = EK *H(G) *EK.
We will study the Hecke algebra of G and K defined in Section 3.1. In this
case, K is a maximal compact subgroup of G, and H(G, K) is called the spherical
Hecke algebra of G.

3.1.3 Satake isomorphism

The construction we are going to expound is due to Satake, it is the p-adic
counterpart of a well-known construction of Harish-Chandra in the set-up of real
reductive Lie groups.

Definition 3.4. For any f € H(G, K), define the Satake transform to be

Sf(t) = 6Y2(t) /N fltn)dn. = 6 Y2(t) /N f(nt)dn.
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for t € T, here § is the modular character of B defined by
() = det(ad(t)|Lie(N)) = p(t)?
Remark 3.4.1. The support of the function

6: N —C
n — f(tn)

is {ttsupp(f) " N}. As N is closed in G, {t tsupp(f) N N} is compact in N.
This shows S f is well defined.

It is easy to check that § is trivial on 7" = T'N K: the maximum compact
subgroup of T. Moreover, since f € H(G,K), f(nt) = f(tn) = f(n) for all
t € T', we see that Sf is a function on T which is left and right invariant by the
action of T".

Theorem 3.5. The Satake transform gives a ring isomorphism
S:H(G,K)=H(T,THW
The proof can be found in [1, Theorem 4.1]

Remark 3.5.1. (i) The theorem implies the commutativity of the Hecke algebra
H(G,K), as H(T,T") is obviously commutative.

(ii) We explain idea of proving the theorem: For 7 € X¢(T) and c; be the
characteristic function of K7(m)K. By calculation, One get S(c;) = ¢™P)x, +
ZM<T ar ()X, and the number of ;1 € PT such that p < 7 is finite. As G =
Urex, K7(m)K is a open cover of G, there exist a finite set A C Xo(T') such that
support of f is inside KTK for 7 € A. So S(f) is a finite sum of the function
Xu for i € Xo(T), hence compact support on T'. The isomorphism of these two
ring also come from these calculation.

We give a further description of H(T,T")W:
0T =T — XoT) =0

is an exact sequence of locally compact groups, where the last arrow 7 is given
by v(t), and ~(t) is the unique co-character of T" satisfies

(v(t), x) = ord(x(t))

for all x € X*(T) and ¢t € T. The choice of a uniformizer 7 of F' gives the split
of this sequence, which maps A € Xo(T) to the elements A(7) in T.

Lemma 3.6. We have
B:H(T, T') = C[Xo(T))
vy — [)\]

Here vy denotes the characteristic function of \(m)T' = T'\(r)
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Proof. The bijection is given by the exact sequence above, and as vy *v, = Vx4,
this is a ring isomorphism. O

Combine Equation 3, Lemma 3.5 and Lemma 3.6, we have
H(G, K) 2 H(T, T = C[X ()" 2R(G) @ C
Let {e1,€2,...,e,} be a basis of X¢(T), we have
CIXo(TW = Cler, .oy emrerty -+ en 1Y
. So we get the the structure of H(G, K) as a polynomial algebra.

Example 3.6.1. We give an example for the case G = GL,(F) and K =
GL,(A). From Example 3.1.1 we have:
H(G,K) 2 C[Xo(T))W 2Clér,,én, 67" 6,11 2 Cley, - ,en, '],

n

and g; corresponds to /\Z C" , &, corresponds to det and e,;' corresponds to det™?

A~

in R(G) ® C.

3.2 Spherical representation

We will define the spherical representation of G and classify these in terms of
the character of Its spherical Hecke algebra.

Definition 3.7. Let G and K be in Section 3.1, for an admissible representation
(m, V) of G, we call it spherical if it contains a K fized vector

Theorem 3.8. (i) If (7, V) is an irreducible admissible representation and VE
is nonzero , then VE is an irreducible H(G, K) module.

(ii) If (m,V) and (o, W) are irreducible admissible representations, and if
VE 2 WK a5 H(G, K)modules, then ™ and o are isomorphic representations.

Proof. We prove (i) first. If V is irreducible, it is sufficient to show that
H(G, K)u = VE for a given nonzero u € VK. Let v € VX since V is irreducible,
we may find ¢ € H(G) such that 7(¢)u = v. Consider ¢ = eg*pxecx € H(G, K).
We have 7(ex)u = u and 7(ex)v = v since u,v € VE. Now

m(@)u = m(ex)m(P)m(ex)u = m(ek)m(P)u =m(ex)v =v

proves that v € H(G, K)u.

We then prove (ii). Suppose V and W are irreducible G modules such that
VE and WX are isomorphic as H(G, K) modules.

Let A : VE — WX denote an isomorphism. Let [ : WX — C be a nonzero
linear functional and let w € WX be a vector such that I(w) # 0. We claim that
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there exists @ € WX such that I(z) = (x, %) for 2 € WX. Indeed, we can extend
the functional [ to an arbitrary functional w, then take W = 6(ex)(wy).

) = ! x,0(k)w = 1 olk)x,w =(x
(@) = i [ o) dk = s [ (o) dk = i(a).

Similarly we may find o € VX such that [(\z) = (x,0) for z € VE let v € VE
be the unique vector such that A(v) = w. We will show that if ¢ € H, then

The general case follows from the following consideration. Let ¢ € G, and let
¢ =eK * ¢ xeg, then

(m(¢")v,0) = (m(ex)m($)m(ex)v, D) = (w(P)7(ek)v, 7 (ek)D) = (7(D)v, D).

and similarity (o(¢")w,w) = (o0(¢)w,w). Thus the general case follows from the
special case we have proved.

Now let L C K be a smaller compact open subgroup. Since V' and W!
are finite dimensional simple H(G, L) modules we conclude that V* = W as
H(G, L) modules. The isomorphism are uniquely determined up to scalar by
Schur’s lemma and the scalar is determined if we require that the isomorphism
agree with A on VX c VI, Now if L' is another compact open subgroup of K,
then the isomorphism Az and A} must agree on VEN VLY because they agree
with Apnzs on VEINL' 5 yL VL Therefore these isomorphism may be patched
together to get a H(G) isomorphism V' — W. It is a G module isomorphism since
w(g)v = 7(@)v if ¢ is any function supported on a sufficiently small neighborhood
of g such that fG ¢ = 1, so the action of H(G) determines the action of G on
any admissible module. O

Recall that H(G, K) is a finite dimensional commutative algebra, so the ir-
reducible module of it is one dimensional. It gives a character of H(G, K).

Proposition 3.9. Let V be an irreducible spherical representation of G, then
VK is one dimensional.

Let f € Hg, we know that f maps V to V| so f is finite operator, hence it
is in the trace class. Moreover we have

Proposition 3.10. Let x be the character of H(G, K) induced by the action on
VK, for f € H(G, K), x(f) = Trace fiy
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Proof. Recall a statement from linear algebra: suppose that W C V is a finite
dimensional vector space over C. If X is a linear operator on V' and the image
of X lies in W, then X is of a finite operator and is in the trace class. We
have Trace Xy, = Trace X|y. Applying this for the action of f on V, we get
Trace fyy = Trace flyx = x. O

As we have the Satake isomorphism
S:H(G,K) 2 R(G)® C (4)

the complex characters of H(G, K) give the complex characters of R(G)®C. On
the other hand, we know that the complex characters

w:R(G)®C—=C

are indexed by the semi-simple conjugacy class s in the dual group G. The value
of the character wg on x) is given by

ws(xa) = xa(s) = Trace(s|Vy)

We call s the Satake parameter of the character of #(G, K) and have the fol-
lowing lemma:;:

Lemma 3.11. For any irreducible spherical representation w of G, the map
m — s(m) gives a bijection between the set of isomorphic classes of spherical
representations of G and the set of semi-simple conjugacy classes s(m)in G

We will construct the spherical representation by the principle series:

Let x be a complex unramified character of T, we extend it to B by letting
it be trivial on N and still denote it as x. Define the induced representation
from x to be (Indg(él/Qx), I(x)) ie. I(x) is the space consisted of the locally
constant functions f : G — C such that

f(tng) = 6"2(t)x(D)f(9) for t e T;n € N,g € G

and the group G acts by right translation:

p(9)f(g) = f(dg) for g, € G

here § is the modular character of B.

Lemma 3.12. If x is a unramified character of T, then I(x) is spherical, and
dim(I(x)%) = 1.

Proof. Recall the Cartan decomposition of G: G = TNK, then f € I(x)¥
implies that f(tnk) = f(tn) = 6Y/2(t)x(t)f(1) . So f is determined by its value
f(1), hence I(x)¥ is one dimensional. O
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Denote 1, to be the character of (G, K) obtained by its action on I(x)

Definition 3.13. For Vx unramified character of T', The Satake Fourier trans-
form of f is defined as:

FS(F)(x) = /T S(F)(x(t)dt

Lemma 3.14. FS(f)(x) = Yy (f).

Proof. Pick a spherical vector f’ such that f/(1) = 1, then f’(tnk) = 6*/2(t)x(t).
For f € H(G,K)

()= fx (1) = /G F(9)'(9)dg

Choose a the left (also right) Haar measure on G related to the Iwasawa decom-

position as follows:
/Gf(g)dg:/K/T/Nf(tnk)dkdtdn (5)

/Gf(g)dg:/K/T/Nf(knt)dkdtdn (6)

Here we choose a Haar measure on K, N,T such that fK dk = 1,meK dn =
L, [ dt = 1. We have

/G 1(9)F(9)dg = /K /T /N F(tnk) f'(tnk) b dt dn =

/ / / F(En)SY2(0)x(8) dk dt dn = / V(D52 (1) / F(tn) dt dn =
KJT JN T N
| xss = 7S

O

Denote the set of all the complex unramified character of 7" as A(T"). For x €
X*(T) and s € C, we can define a complex character xs of T by xs(t) = |x(¢)]°.
This defines a map:

U:X*(T)®C— A(T)

Let M = {m € X*(T) @ C[{m,a) € Z,Va € X4(T)}, then the kernel of ¥ is

given by ligiqM . We have the following lemma.

Lemma 3.15. The above map defines an isomorphism :

271
log q

U XN(T)®C/(——M) — A(T)
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If we choose a basis of X*(T') to be {x1, X2, ---; Xn}, then the map ¥ is defined
as follows: if s =), s;x; € X*(T)®C, for s; € C,i =1,2,..,n, then U(s) € A(T)
is the character: W(s)(t) = [, [xi(t)]*.
Next we will calculate 9, (f) for x € A(T) and f € H(G, K). Let
sEXN(T)RC --» x =¥(s) € A(T)
w e CIX (T))W --» f =S 'w € H(G, K)
then by calculation, we have
Oy (f) = g~ (=P g~ (=)

Let W(l%:;f]M) = W be the group of affine transformation of X*(T) ® C

generated by the group W and the group of translations defined by ZQOZZM , this

is a semi-product of these two groups, then the above argument shows that
Spec(H(G, K)) = (X*(T) ® C) /W, under the pairing:

H(G, K) x {(X*(T)© C)/W} = C
(f:x) = Ox(f)

3.3 Satake isomorphism for O(W;, ®;) and Sp(Ws, 5)

In this section, we will calculate explicitly the Satake isomorphism for O(W7, ®1)
and Sp(WQ, @2)
Fix a maximum torus 77, a Borel subgroup B; of G = O(Wy, ®;) as follows:

ty

tm2

tie F*i=1,--- ,m/2}

-1
tm/2

A 0 I B : . .
B, = {< 0 (At)-1 ) . ( 0 I ) | A upper triangular and B antisymmetric}

The unipotent radical Ny of Bj is

Ny = {< A 0 ) . < [ B > |A unipotent upper triangular and B antisymmetric}

0 (AH~! 0 I

Choose {¢; € X*(T1)|i = 1,2,--- ,m/2} such that

t1
0
t
€ = = =t

0

&1
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and {& € X¢(T1)|i = 1,2,--- ,m/2} such that

1

t_l

where ¢ is in the ¢ x ¢ position. This gives the basis of X*(71) and Xe(77), with
the pairing (e;, €;) = d;5. The root and coroot are given by

(I)(Gl) = {:EGZ' + Gj,o S i,j S m/2,}

(I)+(G1) = {Gi :Eej,o <i<g< m/2}
TGy ={&+¢,0<i<j<m/2}

<

KA«

(G1) = {e1 — €2, €2 — €3, -~ » €21 — €m/2) Em/2—-1 + 6m/2}
(Gy

The map between ® and ® is given by t(de; + ¢;) = +¢ + ;.

2p = (m —2)er + (m —4)ea + - + 26,91

The fundamental co-character is

A
A(Gy) = {é1 —é2,60 — €3, -, €ja—1 — €my2, €ma—1 + €myat

{61 = €17€2 = é1 +627"' 7€(m/2—2) = é1 +€2 +é3 + - 'g(m/Q_Q),

E(m/2—1) = 1/2(&1 + o+ €mja—1) — €my2)sem/2 = 1/2(é1 + €2+ E(mya—1) + €my2)}
The Wely group W(G1) is generated by

Wij : € > €j

w; i€ <> —€;
and it is isomorphic to S, /5 (Z.)27)™/?

Remark 3.15.1. The Weyl group of SO(W1, ®1) contains w;; and the even sign
changes, it is isomorphic to S, j % (Z./22)"/%=1, but O(W1, @) is not connected,
its Weyl group is twice the Weyl group of SO(W7, ®1).

Taking €; as variable X;, we have

H(G1, K1) ~ C[X1,..., KXo, X1, ,X;}Q]le) (7)
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Fix a maximum torus 7%, a Borel subgroup C Bj of Go = Sp(Wa, ®2) as follows:

ty

A 0 I B . .
By = {< 0 (At)-1 > . < 0 I > |A upper triangular and B symmetric}

The unipotent radical Ny of By is
Ny = {[ 1(4)1 (Ato)—l ] . ( é ? ) |A unipotent upper triangular and B symmetric}

Choose {¢; € X*(Ty)|i = 1,2,..,n} such that

1
0
t
0
!
and {& € X¢(T2)|i = 1,2,..,n} such that
1
0
t
éi(t) = T
0
1

where ¢ is in the 7 x ¢ position. This gives a basis of X*(T2) and Xe(T2) with
the pairing (e;, €;) = 0;;. The roots and coroots are given by

O(Gy) = {£ei tej,£2¢,0<1,5<n,}

DT (Ge) = {€; £ €;,2¢;,0<i < j<n}

O(Gy) = {£& £ ¢&;,46,0<4,j <n}

OT(Gy) = {&+¢,6,0<i<j<n}

A(Gy) = {e1 —€e2,e2 — €3, -+ ,€n—1 — €n, 26}

A(G2) - {él - €27é2 - é37 T aénfl - énaén}
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The map ¢ between ® and & is given by t(+¢; +¢;) = (£& £ ¢;) and 1(+2¢;) =
+é,.
2p = 2ne; + 2(n — 1)€2+, e 7+4€(n—1) + 2¢€p.
The fundamental co-character is
{e1 =é1,e0 =¢€14+€, - ep1 = E1+éa+E3+ - +ép_1,6n = 1/2(61+é2+- - -+6,)}
The Wely group W(G2) is generated by

Wij @ € <7 €

W; € <> —€;

and it is isomorphic to S, x (Z/2Z)".
Taking €, as variable X/, we have

H(G2, K2) ~ C[X], ..., X}, (X)) 7., (X)W ®)

3.4 Statement of the local theta correspondence

We will study the Howe duality conjecture for the spherical representations in
this subsection.

Definition 3.16. Let H C be a closed subgroup of ,,S'\z/o(W) Define R*(H) to be
the set of o such that o is an irreducible spherical representation of H, and there
exists a H-nontrivial intertwining map: « : S(V1) — o.

Recall that the spherical representation of G; and G is parameterized by
the spectrum of H(G1, K1) and H(G2, K2). We can identify R*(G1) as a sub-
set inside Spec(H(G1,K1)) and R*(G2) as a subset inside Spec(H (G, K1)).
As the spherical representation of G; x G5 is the tensor product of spherical
representation of Gp and G2, we can identify R*(G1 x G2) as a subset inside
Spec(H(G1, K1)) x Spec(H (G2, K2)).

We will prove the following theorem

Theorem 3.17 (The Main Theorem). R*(O(W1,®1) x Sp(Wa, ®9)) defines a
graph of bijection between R*(O(W1,®1)) and R*(Sp(Wa, ®2)). Under the iso-
morphism given by Equation 7 and 8, the bijection is given by a closed immersion
B from Spec(H (G2, K2)) to Spec(H(G1, K1)) as follows:

( X4 — X{
X2 — Xé

X5

%
Xpi1 — pm/Q—n—l
N pm/2—n—2
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So, if x € Spec(H(G1,K1)) and p € Spec(H(Ga, K2)) such that I (x) @ Ia(u) is
a sub-quotient of S(Mup,xn(F)), then x = o ¢.

Remark 3.17.1. Rigorously saying, B defines a surjective map
- - -1 -1
(C[Xla"' ’Xm/2vX1 1"" va}Q] - C[Xi’ vX;u (Xi) LA 7(X;L) ]
and restricting it to C[X1,- -+, Xp, /2, Xfl, e ,X;I}Q]Wl gives the surjection map

(C[Xb e 7Xm/2aX;17 T aX;L}Q]Wl — (C[Xi7 T ,X,:l, (Xi)_lﬂ T >(X7,L)_1]W2

3.5 Proof of the local theta correspondence
3.5.1 Construct the intertwining operator

We begin to prove the main theorem in this section.

We firstly construct the intertwining operator from S(M,,,(F')) to the un-
ramified principle series of G1 x G5.

Fix the basis of X*(T}) introduced in section 3.3, we have an isomorphism:

(Cm/Z ~ X.(Tl) ® C
m/2
p = (51,52, ----S(m/2)) = Zsm
=1

where Zﬁ/f s;€; 1s the character of T defined as follows

ty

t |
T = = i1 — H LA

-1
tm/2

Then we can define (Indgfwl’q)l)(éi/ %11), I;(p)) as the induced representation

from 51/2/@ where 61 (t1) = [t1|™2[ta|™ ... |t,,/2|° is the modular character with
respect to Bj
Fix the basis of X*(7T») introduced in section 3.3, we have an isomorphism:

C" > X*(Ty) ®C

n

/ / / !/

X = (81,52, 8,) = E Si€;
i=1
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where )" | sie. is the character of T defined as follows:

t1

t /
r2 = T — T
1

tfl

L n -

We also can define (IndSp(W2 %)((55/2)(), I5(x)) to be the induced representation

from 55/2x, here 8a(ta) = [t1|>"|ta|*"2....|tn|? is the modular character with
respect to Bs.

Let p and x be two unramified characters of 17 and 7> given above, and
Ii(x) and Iz(p) be the corresponding induced representations. By Frobenius
reciprocity.

Homo (1w, @) x sp(Wa,@2) (S (Mmn (F)), I1 (1) @ I2X)
~ Homp, x 5, (S(Mun(F)), 61210 @ 63/%x)

To construct the intertwining operator from p to the principle series, we just
need to construct some densities on M,,,,,(F') lying in the space:

Homp, x 8, (S (M (F)), 61/ 1 @ 63/°X)
Let Y, be the set of n X n upper triangular matrixes,
Y, ={D(a11, ..., ann)U(zij)|aii € F*,zj; € F* i < j}
where
all 0 1 24
D(aii, ..., ann) = . ' and Ul(z;j) = ' . (n X n matrix)
0 Gnn, 0 1

A right Haar measure of Y,, can be defined by

/Yn f(Yn)dTYn:/D/Uf(U(z,-j)D(an,...,am))deaiinzij

For o = {(01,09,...,04)|0; € C } we can define a map Z,

) e
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Theorem 3.18. For o such that Re(o;) > 0,Vi, the map Z, converges for all
f and defines a map in

Homp, x 5, (S( My (F)), 611 ® 63/%y)

where

pw=(o1—m/24+n,00—m/2+n—1,03—m/2+n—2,...,0p —m/2+1,
n+1l-—m/2,n+2—-m/2, .,1,0)
X =(—o1+m/2—n,—o2+m/2—n+1,—034+m/2—n+2,....,—0p+m/2—1)

hence by Frobenious reciprocity, the map

[ —{(91,92) = Zs(p(91,92)(f))}

defines a O(Wy, ®1) x Sp(Wa, ®2) intertwining map from S(Mop,xn(F)) to I (1) ®
I (x)

Proof. We first check that N7 x No acts trivially on Z,. As N7 is given by

Ny = {< g ( Ato)_l > . ( é ? > |A unipotent upper triangular and B antisymmetric}

For

we have
A A
-1 _ 1 A2
(m)™" = < 0 A >
where A; is a n x n unipotent upper triangular matrix, and As is a (m —n) x
(m — n) matrix.

ztotm = [ ([ 2 )

H |aii|aidrYn = /Y f< |: Aloyn :| > H |aii|aidrYn = Zo(f)

the last equality comes from the fact that A; € U(z;;). For

mw=(07)
= (5 )
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where By is n x (m — n) matrix and By is (m —n) x (m — n) matrix, then

zom = [ ([ 0] [Fa])
[Tlaulav, = | f( [ i ] ) T lesild, ¥, = Z,(5)

For Ny the proof is the same.
We then calculate the action of 71 x Ty on Z,(f): for

t1
0
t
b = m/2 tl—l
0
—1
tm/2
o )
0
! Y.
Zg(p(tbl)(f)):/ f( m/2 ; [ 0"
Yy, 1
0
L tmy2 ]
t
ty? v,

) L
H |aii| 7 d Yy, = /Y f( 0 . ) H |laii| 7 d, Yy, =

i=n i=n i=n
H ‘ti’n+1—2z H t:| Zo (f) = H |ti|n+1—21+aiZ0(f)
=1 i=1

i=1

and for
3]

to c T2
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Zo(p(1,t2)(f) = /Y ﬁ\ti\m/zf([ﬂ " ; )

=1
H \ai;| 7 d, Y, = ﬁ ’ti’m/Qﬁ |ti|o-if< { Yy } > H lai;|7'd, Yy, =
Yn =1 i=1 0
H ‘ti‘m/QioiZJ(f)
i=1
We get
1/2 = n+1—2i+o.
p@a*(t) = T jfrri-2ieed
i=1
X ® 5%/2@/) _ H |ti|(m/2—0i)
i=1

this implies

m/2

p(t) = [Ttz T jegprs
1=1

j=(n+1)

x(t) = H ‘ti,(wﬁmm/ﬂi)
i=1

As p and —p lies in the same orbit upon the action of Wi on X *(Th)®C. Replace
by —u, we get the following commutative diagram:

X)) eC —2 4 xq(m)ecC

I \

X'(Tz) ®(C/W2 L X'(Tl) ®C/W1

where ' is defined by f'(s1,- - ,8,) = (81, ,8p,m/2 —n —1,m/2 — n —
2,---,1,0). The corresponding map from H(G1, K1) to H(G1, K1) is then given
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by 5:

X

- n
X1 — pm/2—n— 1
Xnpo — pm/2 2
0

Xm/2 — p
O

Next we show that this map gives all the intertwining operators from
S(Mn(F)) to the spherical representations I (1) @ I?(1b).

Lemma 3.19. If Z,(f) is injective on the K1 x Ky invariants on S(M,,(F)),i.e
if f € S(Mpn(F))S1%EK2 7 (f) =0 for every o such that Re(o;) > 0,Vi implies
f = 0. Then Z, gives all the intertwining operator from S(My,(F)) to the
spherical representation I' (1) @ I%(1)9). i.e. if there is an intertwining operator
from S(Myn(F)) to the spherical reprsentation I' (1) @I (12), then by = (1)
or P =1yof

Proof. Define the idea I in H(G1, K1) ® H(G2, K2) which is generated by g ®
1 —1® B(g) for every g € H(G1, K1), then Spec(]) is the graph of the map
3. Observe that for f € S(Mpn(F))51*K2 ~ € I and o € C" such that Z,(f)
converges, Zs(p(7)(f)) = p(7)(Z5(f)) = 0. The last equality comes from the
fact that Z,(f) is a spherical vector in I,(u) ® I,(x) and it is killed by I. By
the assumption that Z, is injective, we get v(f) = 0. Let

8+ S (M (F)) = I'(11) @ I*(12)
As taking the Ky x K> invariants is an exact functor, we have
8 S(Mypn (F))FR2 — (1)1 @ 1 () 2

is a surjective H(G1, K1) ® H(Ga, K2) module morphism. So ~(I1(vy)5!
{2(1/12)1(2) = 0 for every v € I. This implies (¢2,%1) € Spec(l), so ¥
B(ib2).

Ol ®

3.5.2 Jacquet module

For a reductive group G and a parabolic subgroup P = M N, we can form a
representation of G by parabolic induction from P, i.e. for an admissible rep-
resentation (p, W) of M, we can extend it to P by letting N act trivially on
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W, denote this new representation by (p/,WW). We then construct an induced
representation (IndgVV, I(p)) from p', where

I(s)) = {f : G = V smooth|f(pg) = p'(p)f(9). ¥h € P}

and G acts on I(p') by the right translation. By Frobenious reciprocity, we have
Homg (V/, Ind%V) = Homp(V'|p, V)

for V’ an admissible representation of G' and V' a representation extended from
M to P. As we know that N acts trivially on V,

Homp(V,|p, V) = HOHIM(V]Q, V)

where V) is the coinvariant of N. More explicitly, let V'[N] be the subspace
generated by p(n)v — v for all n € N, then Vi, = V//V'[N]. Hence the struc-
ture of V; as a M module determines the embedding of V' into the induced
representation IndgV.

Definition 3.20. For a representation (p,V') of G, and P, M, N be in above,
the space Viy = V/V[N] is a M = P/N module. Denote the representation of

M on Vi as pn, then (pn, VN) is called the Jacquet module of (p,V') associated
to P

Remark 3.20.1. the map V — Vi defines a functor from the representation of
G to the representation of M.

Lemma 3.21. The Jacquet functor is exact, i.e. if
0=-U—=V—=>W-=0
is exact as G modules, then
0—>Uny—>VN—>Wny—0
s exact as M modules.
Proof. 1t is standard fact that
Uy >V —>Wxn—0

is exact. We will proof Uy — Vj is injective, this comes from the following
lemma about another criterion for V[N], which implies U[N] =U NVI[N]. O

Remark 3.21.1. In cohomology language, the lemma says that Hy(N,V) = 0.

Assume for the moment N to be any locally compact group such that the
compact open subgroup of N forms a basis of the neighbourhood of identity |,
and possessing arbitrarily large compact subgroups as well. This means that if
X is any compact subset of IV, then there exists a compact open subgroup Ny
containing X. This condition is satisfied in our case where NN is the unipotent
radical of P.
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Lemma 3.22. Suppose N satisfies the condition above. For a compact open
subgroup Ng C N, let V'(Ny) to be the subspace containing the element {v €
V| [y, p(n)vdn}. Define V(N) to be |JV (No), the union over all compact open
groups of N. Then V'(N) = V[N].

Proof. We first prove v € V[N] implies v € V/(N),. As v is a finite combination
of element of the form p((ng)v’) — v'. We just need to prove that element of
the form (p(ng)v’ —v’) is in V/(N). Take a compact open subgroup Ny contain
no (this is guaranteed by the assumption). Then [ N P(1)(p(no)v" —v')dn =
S, PV = [y, p(n)o" = 0.

For the opposite direction, suppose v € V/(N), which means | No p(n)vdn =0
for a Ny which is open compact in V. As V is smooth, there exist a compact
open subgroup Ny C N such that v € VN1, Assume N; C Ny (We can always
choose such Ni), then

/Nop(n)vdn:c* Z p(n)v =0

No/N1

SO

v=d x* Z (p(n)v —v)

No/N1

here ¢ equals the measure of N; and d equals to —1/d’ where d’ is the number
of element in Ny/Nj. O
3.5.3 Some invariant theory

We present some results coming form classical invariant theory, and this result
will be used later.

We first give a list of maximum parabolic groups inside Sp(W3). Recall that
we have Wy = Vo @ V5 for Vi, V5 be two traversal lagrangians of W, let V5 =
VA 2 (VH 2 (V)2 2 (V)™ D (V)™ = (0) be a flag of codimension
one subspaces. Denote

(P2)i = {g € Sp(W2)|g stable (V3)"}

Up to conjugacy, {(P2)i,k = 0,1---n — 1} gives all the maximum parabolic
subgroups of Sp(W3). The nilpotent radical of (Py)y is given by

(N2), = {g € Sp(Wh)|g fix pointwise (V3 )¥, (Vi)¥ /(V5)F and Wa/(V3)F}

and the Levi factor of (P) is isomorphic to

GL((V3)") x Sp((V3) /(V3)F, @)
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Here | means the perpendicular complement with respect to ®2, the symplectic

1
form on W naturally gives a symplectic form on (V5)*™ /(Vy)*, which we also
denote as ®5 in above.
Under the basis { f1, f2, ., fn, f15 fa+ -, f } of W3 given in the subsection 2.3.2,

taking (V)" = Uit figos -+ 5 fa ), we can write elements in (Nz), as
I Al 0 0
0O I| 0 0
Bt C|-A" T

where A is a k x (n — k) matrix. Also the Levi factor of (Ps) is given by

B C
where A € GLi(F') and [ D B ] € Sp,,_i(F)

A

olo o
0 B|C 0
o D[E 0 | €l
0 0|0 (4a)™!

Consider the following map

U My (F) — Sym,,,(F)
X = XTAp, X

where Sym,,,, (F') is the set of n x n symmetric matrix over F. It is easy to check
that this map is invariant by the action of O(W7, ®;), so this defines a map

U™ 1 5(Sym,,, (F)) — S(Mypn (F))
f— 6 (f): X = f(XTAp, X)

Remark 3.22.1. (i) The geometry meaning of the map ¥ is given as follows:
recall that after taking a basis, we have the isomorphism My, (F) = W1 ® Vo =
(W1)™. Under this isomorphism, X € Mpyn(F') can be represent by [£1, &2, ...&nl,
where & € Wi. Then XTAq>1X is the Gram matrixz of these n vectors, i.e. let
Y = XTAg, X, then Yii =< &,& >a,. In the following context, we sometimes
refer X € My (F) as [£1,&2,...80],& € W1 without mention the isomorphic
above, if this will not cause ambiguity.

(ii) The map U* intertwines the action of GL,(F) on both sides, where the
actions of GL,(F) are given by the post multiplication.

Definition 3.23. Fort=1,2,--- ,n, define the characteristic variety A; of the
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parabolic (Py); to be the set:

X
gl { <T‘%> | X an arbitrary t X t symmetric matrim}

~{lel el e, =0 por{ 717D S

1<i<n—t-1
and (&, &j)e, =0 for { 1<j<n—t-1 }

Lemma 3.24. The space {f € S(Mun(F))|f vanish on Ay } coincides with
the Jacquet space S(Mpyn(F))[(N2): N (Ng) |, i.e. the vector space spanned by
p(n2)f — f for allng € (Nz)t N (N2)o and f € S(Mpn(F))

Proof. We prove this by two steps.
In step 1 we prove a lemma about the property of the Jacquet space
S(Myn (F))[(N2)e O (N2)o]-

Lemma 3.25. For f € S(Myn(F)), f € S(Myn(F))[(N2): N (N2)o] if and only
if there exist a compact open subgroup K C (Na): N (N2)o such that

[ storrde=o
K

Proof. The ”only if” part deduced from direct calculation. We prove the ”if”
part: if there exist a open compact group K C (N2): N (N2)o such that

| torfar=o
K

then f is span of the function p(k)g — g for k € K and g € S(Myn(F')). This
comes from the property that K is compact: Consider V' = S(M,,(F)) as a
representation space of K. As K is compact, the invariant and coinvariant of
K coincide, i.e. V = VE @ Vi where VX is the K invariant of V, and Vi is
spanned by p(k)(f) — f for k € K and f € S(Mpn(F). And

6= /dk:fH/ k)fd k

is an project operator from V to V| so f € ker(¢) implies f € Vi O

Step 2: With the above lemma, we just need to prove that for f € S(My,(F))
such that f vanishing on Ay, there exists a compact open subgroup K C (Na)i N
(N2)o such that [, p(k)fdk =0. For X € My, (F),

(61 f)(X) = /K p(M) [(X) dk = /K ¥ (Trace(M'X" Ag, X)) f(X) dk
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. I 0 0 B
Here M € K C (N3): N (Na)o is of the form [M’ I] and M' = [Bt C’} by

Formula 9.
Note that for X € My, (F)
nx : (Ng)t M (N2)0 — C* (10)
M + (Trace(M'Xg X)) (11)

defines a character of (N2): N (N2)o as an addictive group.
IfX IS

JoA v O\B‘Y\O_O\O
MX%X[BW] [ooHoo]

nx is trivial on (N2)¢N(Na)o. If X ¢ Ay, then nx is a non-trivial on (N3)N(N2)o-
For X € Ay, f(X) =0, so ¢ f(X) = 0. For X ¢ As, choose a Kx C
(N2)¢ N (N2)o such that nx is not trivial on Kx. Then

P(Trace(M' X" Agp, X)) f(X)dk = f(X) Y(Trace(M' X" Agp, X))dk =0

Kx Kx
The last equality comes from the fact that the average of a nontrivial character
on a compact group is 0. Also, as the character is a continuous map, we can
find a neighbourhood Ux of X such that for X' € Ux, nx: defines a nontrivial
character of Kx. By the fact that the support of f is compact, we can find a K
such that for X € supp(f) and X ¢ Ay, nx is non-trivial on K, so (¢ f)(X) =0

O]

We then prove a property of the space S(M,,, (F))K1x5Kz2,
Lemma 3.26. let f € S(M,,(F))51*EK2 and suppose that for each
g2 € Sp(Wa, ®3), p(g2)f vanishes on Ayg. Then f =0

Proof. We prove this by induction on n: For n = 1, up to conjugacy, there is
only one maximum parabolic subgroup of Sp; (F') = SLa(F'): the Borel subgroup.
As p(g2)f vanishes on Ag, by Lemma 3.24, 7(G2)(f) € S(Myn(F'))[N2], so the
Jacquet module 7(G2)(f) is zero. Combine the fact that 7(G2)(f) is a cyclic
module generated by f, m(G2)(f) is cuspidal as a representation of Ga, but we
know that a cuspidal representation of GGo can not have a Ko fixed vector, while
fem(Ga)(f)is. So m(Ga)f is identically 0 on M, (F').

We assume that it has been proved for k <n—1. For X = [{1,--- , &, -+, &)
€ A, Freeze the component [&41,---,&,] and consider the Sp,(F') intertwining
map introduced in 2.14.2

S(Myn (F)) = S(Mpm(F))
f — ft : [X1>“' 7Xt] — f[X17X27"' 7Xt7£t+1>"' 7£n]
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here Xi,-- -, X; are arbitrary vectors, we see that f; is invariant by p,: (K} x K3),
and f vanishes on Ag of Sp,(F’). By induction hypothesis, f is zero for X, -, X
arbitrary vectors. Hence p(G2)f vanishes on A; for each ¢, By lemma 3.24,

p(G2)(f) € S(Mumn(F)) () € S(Mimn(F))(ny),» S0 p(G2)(f) is cuspidal as
a representation of Sp,,(F), so it can not have K fixed vectors. Thus p(G2)(f)
is identically zero. O

Remark 3.26.1. The lemma shows that the K1 x Ko invariants functions are
totally determined by its restriction to Ag.

Next we give a geometric description of the set Ag. Recall that the group
O(W1,®1) x GL,(F) acts on the set My, (F) by

X — g7 ' X.g2 for (g1,92) € O(W1,®1) x GLy(F)

This action preserve Ay, so it defines an action of O(W1,®1) x GL,,(F) on Ap.
The orbit structure is given as follows:

Lemma 3.27. Let A} = {X € Ag|rank(X) = i}, then A} (if nonempty) is an
orbit under O(W1,®1) x GL,(F), and Ag is a disjoint union of the form A%, for
i=0,1,-- ,n

Proof. X € My (F) = [&1,&,...&,] € A} if and only if < &,&; >¢,= 0 and the
rank of [£1,&2,...£,] is ¢. By right multiplication of a matrix ge in GL,(F), we
can make the first ¢ vectors be linear independent and the last be 0. Write as
1, &n)g2 =[&), -+ ,&,0,---,0]. As the subspace spanned by &/,i =1,--- ,t

!
(2

is totally isotropic, by Witt’s theorem, there exists a g1 € O(W7, ®1) such that
gl<£’;):ej7 2:1’7t
So we have

gl‘[glf" 7€n]92:gl[£ia 7§7€707"’ 70]:[617'” 7ei707"' 70]

;|0
91.-X.92 = <T‘T)
So we have proved that A} is an orbit of O(W1,®1) x GL,(F) on
I; | 0
010
And as n < m, the rank of an m X n matrix is less or equal to min(m,n) = n,

This means:

Remark 3.27.1. It is easy to check that Af is dense in Ao in Zariski topology.
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3.5.4 Injectivity on K; x K, invariants

To finish the proof of the main theorem, We prove the map Z, is injective on
S(Myn (F))E1%E2 6 if f € S(Mpy,(F))$1*K2 and Z,(f) = 0 for every o such
that Re(o;) > 0Vi, then f = 0. By Lemma 3.19, this implies that Z, gives
all the intertwining operators from S(M,,, (F')) to the spherical representations.
and by Lemma 3.26, it is sufficient to prove the following lemma:

Lemma 3.28. Let f € S(M,(F))51xK2 if

for all o such that Re(o;) > 0(i = 1,2...n). Then p(g2)f vanish on Ay for all
g2 € Spn(F)

Proof. As Af is dense in Ay, it suffices to prove p(gz)f vanishes on Af. Then

we asserts that from the hypothesis of this Lemma, all we need to prove is that

f i)() = 0 for X an arbitrary n xn matrix. Indeed if we let (g1, g2) € G1 x G2,

the we write gy = k1 - p1 with k1 € Ki,p1 € P; and ¢go = kg - t9 - no with
ko € Ko,to € Th,ny € No. Then we have

I, I,
plana) (1) (-5 = slon () ()
— m/2 X . .
= det(t2)™“ f 0 with X some n x n matrix.
We can further reduce this to the case of GL,(F') x GL,(F") duality: Define
/ X :
f[(X)=f <0> for X amn x nmatrix

and consider the embedding of GL,(F') to O(Wy,®;) by

n(X1) = ( ]‘04 (Mo)l )for X1 € GL.(F)

where M = (
by

), and the embedding of GL,(F) to Sp(Wa, ®2)

'(Xs) = < 282 <ng>—1 )for Xy € GLn(A)

Observe that these embedding send GL,(A) to K; and Kjy. Take ki, ko €
GL,(A), we have f(n(ki) - X" -n/(k2)) = f(X') for X’ € M,,,(F). For X' =
<X> where X a n x n matrix, it is the same as f'(k; - X - ko) = f'(X). So

0
the above lemma is equivalent as the following lemma:
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Lemma 3.29. Consider the action of GL,(F) x GL,(F) on S(Mp,)(F) by
Y(91,92)(0)(X) = ¢(g1 - X - g5 V). If f € S(Mpy)(F) such that

(k1 - X - k2) = ¢(X)

for all k1, ke € GL,(A) and all X € My, (F). Then suppose

/Y ¢(Yn) H |aii|aidrYn =0
n i=1

for all 0 € C" such that Res(o;) > 0(i =1,2,...n). Then f =0

Proof. The proof of this can be found in [11] Lemmab.2. We give a proof when the
support of f lies in GL,(F'). Suppose that, then f € H(G, K) when restricted
to GL,(F), here we denote G = GL,(F),K = GL,(A). Recalling Example
3.1.1, fix {é1, - ,é,} to be a basis of X*(T'), then 0 = (01, - ,0,) represents
Xo € (X*(T) ® C)/W where x, = B(3.", 0ié;), here B denote the natural
projection map

B:(X*(T)®C)— (X*(T)®C)/W

We have the following formula

/Y oY) [T lassl*“ds Yo = by, (F)
n =1

Identify (X*(T) ® C)/W as Spec(H(G, K)), and U = {o : Res(o;) > 0(i =
1,2,...n)} is open and dense in (X*(T)®C)/W. So f € H(G, K) and f vanishes
on U implies f = 0 on G. Combine the fact that G is dense in M,,,,(F) and f is
continuous, we get f = 0 in M, (F).

Remark 3.29.1. The map above gives an By x By intertwining map of

S(Mun)(F) to pe @ X, where By and By is the upper triangle matriz of GL, (F).
By Frobenious reciprocity, this defines a GLp(F) x GL,(F) intertwining map
from S(Myn(F)) to some spherical representation of GLy,(F') x GL,(F). The
lemma above shows that the G Ly, (A)x G Ly, (A) invariants of S(M,,(F)) is deter-
mined by this intertwines map. This gives the spherical local theta correspondence

for GL,(F) x GL,,(F) acting on S(My,(F)).
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