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1 Introduction

Let G be a finite group. Let H ⊂ G be a symmetric set of generators of G. By definition, every x ∈ G can
be expressed as a product of elements of H. We would like to know the length of the longest product that
might be needed; in other words, we wish to bound from above the diameter diam(Γ(G,H)) of the Cayley
graph of G with respect to H. (The Cayley graph Γ(G,H) is the graph (V,E) with the vertex set V = G
and the edge set E = {(hg, g) : g ∈ G, h ∈ H}. The diameter of a graph X = (V,E) is maxv1,v2∈V d(v1, v2),
where d(v1, v2) is the length of the shortest path between v1 and v2 in X).

If G is abelian, the diameter can be very large: if G is cyclic of order 2n + 1, and g is any generator of
G, then gn can not be expressed as a product of length less than n of the elements of {g, g−1}. However, if
G is non-abelian and simple, the diameter is believed to be quite small:

Conjecture 1.1 (Babai, [7] ) For every non-abelian finite simple group G and for any generating set H
of G we have

diam(Γ(G,H)) ≪ (log|G|)C ,

where C is some absolute constant and |G| is the number of elements of G.

This conjecture is far from being proved in general. In this paper we will see the proof of this conjecture
for G = SL2(Fp) (though it’s not a simple group, we remark that proving the statement for G = SL2(Fp) is
equivalent to proving it for G = PSL2(Fp) and treating the former group is both slightly more conventional
and notationally simpler). The main result of this paper is the following:

Theorem 1.2 (Helfgott) Let p be a prime number, H ⊂ SL2(Fp) a symmetric generating subset of
SL2(Fp) containing 1. Then the triple product set H(3) = H ·H ·H satisfies either H(3) = SL2(Fp) or

|H(3)| ≥ |H|1+δ,

where δ = 1/3024.

The interpretation of this theorem is usually that a subset H ⊂ SL2(Fp) “grows” significantly under product,
in the sense that

|H(3)|

|H|
≥ |H|δ,

unless it can not grow for relatively obvious reasons: either H is contained in a proper subgroup, or it is
already so large that the triple product is all of SL2(Fp). Here is a corollary which proves Babai’s conjecture
for SL2(Fp):

Corollary 1.3 (Explicit solution to Babai’s conjecture for SL2(Fp)) . For any prime number p and
any symmetric generating set H of SL2(Fp), we have

diamΓ(SL2(Fp), H) ≤ 3(log |SL2(Fp)|)
C

with C = 3323.
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2 Preliminary information

2.1 Notation

1. |X| denotes the cardinality of X.

2. IfX and Y are 2 subsets of a group, thenX ·Y denotes the product set, i.e.,X ·Y = {x·y | x ∈ X, y ∈ Y }.

3. For a subset H ⊂ G of a group G, we write H(n) for the n-fold product set

H(n) = {x ∈ G | x = h1 · · ·hn, hi ∈ H}.

Note the immediate relations

(H(n))(m) = H(nm), H(n+m) = H(n) ·H(m)

for n,m ≥ 0 and (H(n))−1 = H(n) is H is symmetric. In addition, if 1 ∈ H, we have H(n) ⊂ H(m) for
all m ≥ n

4. We denote by trp(H) the ”tripling constant” of a subset H ⊂ G, defined by

trp(H) =
|H(3)|

|H|
.

2.2 Elementary estimates in groups

Lemma 2.1 (Ruzsa) Let G be a finite group and let H ⊂ G be a symmetric non-empty subset.

1. Denoting

αn =
|H(n)|

|H|
,

for all n≥3 we have
αn ≤ αn−2

3 = trp(H)n−2.

2. We have trp(H(2)) ≤ trp(H)4 and for all k ≥ 3 we have

trp(H(k)) ≤ trp(H)3k−3.

Proof:

1. We want to prove this inequality by induction. For n = 3 it obviously holds. We assume that it holds
for some n and prove it for n+ 1.

We define the Ruzsa distance between sets:

d(A,B) = log
|A ·B−1|
√

|A||B|
.

The Ruzsa distance, while not truly a distance function (d(A,A) 6= 0 in general), does satisfy the
triangle inequality (it can be checked). We use this inequality in the following form:

exp(d(H(n−1), H(2))) ≤ exp(d(H(n−1), H(1))) · exp(d(H(1), H(2))),

which is equivalent to
|H(n+1)|

√

|H(n−1)||H(2)|
≤

|H(3)|
√

|H||H(2)|

|H(n)|
√

|H(n−1)||H|
,

3



and so

|H(n+1)| ≥
|H(3)||H(n)|

|H|

(recall that all our sets are symmetric and so we can write B instead of B−1). From this inequality we
get

αn+1 =
|Hn+1|

|H|
≤

|H(3)||H(n)|

|H|2
= α3αn ≤ α3α

n−2
3 = αn−1

3 .

2. We have
trp(H(k)) =

α3k

αk
.

Since αk ≥ α3 for k ≥ 3, we obtain

trp(H(k)) =
α3k

αk
≤
α3k

α3
≤
α3k−2
3

α3
= α3k−3

3 = trp(H)3k−3

(here we used part 1, putting n = 3k).

For k ≥ 2 we have α2 ≥ 1 and so we get

trp(H(2)) =
α6

α2
≤ α6 ≤ α4

3 = trp(H)4

(here we used part 1, putting n = 6).

�

We first use Ruzsa’s lemma to show that Helfgott’s theorem holds when |H| is small, in the following
sense:

Proposition 2.2 Let G be a finite group and let H be a symmetric generating set of G containing 1. If
H(3) 6= G, then we have |H(3)| ≥ 21/2|H|.

Proof: H(3) 6= G ⇒ H(3) 6= H(2) (otherwise, if H(3) = H(2) then we have G 6= H(3) = H(4) = H(5) = . . .
which is a contradiction since H is a generating set of G). We fix some x ∈ H(3) −H(2) and consider the
injective map

i :

{

H → G
h 7→ hx

.

The image of this map is contained in H(4) and it’s disjoint with H (otherwise, if they intersect, h1x = h2,
h1, h2 ∈ H ⇒ x = h−1

1 h2 ∈ H(2). Hence H(4), which contains both H and the image of i, satisfies
|H(4)| ≥ 2|H| Hence, by Ruzsa’s Theorem (n = 4) we obtain

(trp(H))
4−2 ≥ α4 =

|H(4)|

|H|
⇒ trp(H) ≥

(

|H(4)|

|H|

)1/2

≥ 21/2.

�

Theorem 2.3 (the orbit-stabilizer theorem) Let G be a finite group acting on a non-empty finite set
X. Fix some x ∈ X and let K ⊂ G be the stabilizer of x in G. For any non-empty symmetric subset H ⊂ G
we have

|K ∩H(2)| ≥
|H|

|H · x|
,

where H · x = {h · x | h ∈ H}.

Note that since H is symmetric, 1 ∈ K ∩H(2).
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Proof: Consider the orbit map, but restricted to H :

φ :

{

H → X
h 7→ h · x

.

Using the fibers of this map to count the number of elements in H, we get

|H| =
∑

y∈φ(H)

|φ−1(y)|.

But the image of φ is φ(H) = H · x and we have

|φ−1(y)| ≤ |K ∩H(2)|

for all y (indeed, if y = φ(h0), h0 ∈ H, then all elements h ∈ H with φ(h) = y satisfy h−1
0 h ∈ K ∩ H(2)).

Therefore we get
|H| ≤ |H · x||K ∩H(2)|,

as claimed �

Theorem 2.4 Let G be a finite group, K ⊂ G its subgroup, H ⊂ G an arbitrary symmetric subset. For
any n ≥ 1 we have:

|H(n+1)|

|H|
≥

|H(n) ∩K|

|H(2) ∩K|
.

Proof: Let X ⊂ G/K be the set of cosets of K intersecting H:

X = {xK ∈ G/K | xK ∩H 6= ∅} .

We can estimate the size of this set from below by splitting H into its intersections with cosets of K: we
have

|H| =
∑

xK∈X

|H ∩ xK|.

But for any xK ∈ X fixing some g0 ∈ xK ∩H we have g−1g0 ∈ K ∩H(2) if g ∈ xK ∩H, hence

|xK ∩H| ≤ |K ∩H(2)|,

so that from the above splitting we will get:

|H| =
∑

xK∈X

|H ∩ xK| ≤
∑

xK∈X

|K ∩H(2)| = |K ∩H(2)||X|,

and so we have the lower bound

|X| ≥
|H|

|K ∩H(2)|
.

Now take once more some xK ∈ X and fix an element xk = h ∈ xK ∩ H. Then all the elements xkg are
distinct for g ∈ G and they are in xK ∩H(n+1) if g ∈ K ∩H(n), so that

|xK ∩H(n+1)| ≥ |K ∩H(n)|

for any xK ∈ X and (cosets being disjoint)

|H(n+1)| ≥ |X||K ∩H(n)| ≥
|H|

|K ∩H(2)|
|K ∩H(n)|,

which is the result we need. �
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Theorem 2.5 For a prime p ≥ 3, if a subset H ⊂ SL2(Fp) satisfies

|H| ≥ 2|SL2(Fp)|
8/9
,

we have H(3) = SL2(Fp).

The proof of this theorem can be found in [2, §4.5].

2.3 Tori, semisimple elements, involved sets

Definition: Fix a prime number p and let G = SL2(Fp),G = SL2(F̄p)

1. A semisimple element g ∈ G is an element which is diagonalizable (in some basis). A regular semisimple
element is a semisimple element with distinct eigenvalues. For any subset H ⊂ G, we write Hreg for
the set of the regular semisimple elements in H.

2. A maximal torus in G is a subgroup of G which is a conjugate of the subgroup

D =

{(

d 0
0 d−1

)

| d ∈ F̄×
p

}

.

of diagonal matrices. Equivalently, a maximal torus in G is the centralizer of a regular semisimple
element.

3. Let p > 3. A maximal torus T in G is a subgroup of the form T = T ∩ G, where T is a maximal
torus in G such that T ∩ G 6= {±1} Equivalently, a maximal torus in G is a maximal commutative
subgroup in G which becomes diagonalizable over some field extension (actually, it’s equivalent to
require diagonalizability over a quadratic extension).

There are 2 conjugacy classes of maximal tori in G = SL2(Fp). The first class consists of those tori which
are already diagonalizable over Fp or equivalently, those are the tori that are conjugated to the standard
diagonal torus

A =

{(

a 0
0 a−1

)

| a ∈ F×
p

}

.

A maximal torus in this class is called a split torus. The second class consists of those maximal tori
which are not diagonalizable over Fp. These tori are not conjugated to A. A maximal torus in this class is
called a non-split torus.

Properties:

1. A split maximal torus in G is a cyclic group with p− 1 elements, while a non-split maximal torus is a
cyclic group with p+ 1 elements.

2. A regular semisimple element x ∈ G is contained in a unigue maximal torus T, namely its centralizer
T = CG(x). In particular, if T 6= S are 2 maximal tori, we have

Treg ∩ Sreg = ∅

3. If T ⊂ G is a maximal torus, we have
|T−Treg| = 2

4. For any maximal torus T, its normalizer NG(T) contains T as a subgroup of index 2. Similarly, for
any maximal torus T ∈ G, its normalizer NG(T ) contains T as a subgroup of index 2 and in particular

2(p− 1) ≤ |NG(T )| ≤ 2(p+ 1)

5. The conjugacy class Cl(g) of a regular semisimple element g ∈ G is the set of all x ∈ G such that
tr(x) = tr(g). The set of elements in G which are not regular semisimple is the set of all x ∈ G such
that tr(x)2 = 4
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Remark: For general facts about finite groups of Lie type, one may look at [4] or [6] and for conjugacy
classes of SL2(Fp) one may look at [5].

Definition: Let p be a prime number, H ⊂ SL2(Fp), and T ⊂ SL2(F̄p) a maximal torus. Then T is
involved with H (or H is involved with T) if and only if H contains a regular semisimple element of T
with non-zero trace, i.e., H ∩Tsreg 6= ∅, where the subscript ”sreg” means regular semisimple elements with
non-zero trace.

Two important tools in the proof of our growth theorem are estimates for escape from subvarieties and
estimates for non-concentration in subvarieties. In the next section we state and prove the special cases that
we need for our main result.
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3 The first main tool: Escape theorem

Theorem 3.1 (Escape) Let p ≥ 7 be a prime number and let H ⊂ SL2(Fp) be a symmetric generating
set with 1 ∈ H. Then (H(3))sreg 6= ∅, i.e., the three-fold product set H(3) contains a regular semisimple
element x with non-zero trace. In particular, there exists a torus T = CG(x) involved with H(3).

Proof: Let N be the set of elements in SL2(Fp) that are not regular semisimple. This is the union of the
2 central elements ±1 and 4 conjugacy classes of

u =

(

1 1
0 1

)

, v =

(

−1 1
0 −1

)

, u′ =

(

1 ǫ
0 1

)

, v′ =

(

−1 ǫ
0 −1

)

,

where ǫ ∈ F×
p is a fixed non-square. This set is invariant under SL2(Fp) - conjugation and is the set of all

matrices with trace equal to ±2. Elements with trace 0 are conjugates of

g0 =

(

0 1
−1 0

)

.

Next we note that if this theorem holds/fails for H, then it also holds/fails for all conjugates of H, so we
can ”normalize” at least 1 element to a specific representative of its conjugacy class. Now we assume that
(H(3))sreg is empty and p ≥ 7 and derive a contradiction. We distinguish 2 cases:

Case 1: Assume that H contains at least 1 element with trace ±2 which is not ±1. The observation
above shows that we can assume that one of u, v, u′, v′ is in H. Suppose u ∈ H. Since H is a symmetric
generating set, it must contain some element

g =

(

a b
c d

)

,

with c 6= 0, since otherwise all elements of H would be upper-triangular and H will not be a generating set.
Then H(3) contains

ug, u2g, u−1g, u−2g,

which have traces, respectively, equal to

tr(g) + c, tr(g) + 2c, tr(g)− c, tr(g)− 2c.

Since c 6= 0 and p is not 2 or 3, these traces are distinct and since there are 4 of them, at least one is not in
{-2, 0, 2}. A similar argument holds if v ∈ H or u′ ∈ H or v′ ∈ H.

Case 2: In this case all elements of H except ±1 have trace 0. We split our proof into 2 subcases
depending on properties of Fp.

Subcase 2.1: −1 is not a square in Fp. Conjugating again, we can assume that g0 ∈ H. Since H
generates SL2(Fp), there exists g ∈ H such that g 6= ±1,±g0. If

g =

(

a b
c −a

)

∈ H

is such an element, then we have a 6= 0, since otherwise b = −c−1 and the trace of

g0g =

(

0 1
−1 0

)(

0 −c−1

c 0

)

=

(

c 0
0 c−1

)

is c + c−1 which is not in {-2, 0, 2} (c + c−1 = 2 ⇔ c = 1, c + c−1 = −2 ⇔ c = −1, in these 2 cases

g = ±g0; c + c−1 = 0 ⇔ c2 + 1 = 0 - no solutions since −1 is not a square), so H
(2)
sreg 6= ∅, contrary to the
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assumption. Moreover, we can find g as above with b 6= c, otherwise all matrices in H (except g0) would
have the form

(

a b
b −a

)

,

and all matrices of this type belong to the normalizer of a non-split maximal torus. Indeed, if we take a
torus T which contains g0 and conjugate it by the matrix

(

a b
b −a

)

(all matrices have determinant 1, of course), we’ll get

(

a b
b −a

)(

0 1
−1 0

)(

−a −b
−b a

)

=

(

ba− ab a2 + b2

−(b2 + a2) ba− ab

)

=

(

0 −1
1 0

)

and the resulting matrix is just the inverse of the initial one (in particular, it also belongs to T ). Obviously,
g0 also belongs to the normalizer of this torus. Therefore, H will belong to this subgroup and so it will not
be a generating set. It means, we can find g as above (with a 6= 0, b 6= c). We have

g0g =

(

0 1
−1 0

)(

a b
c −a

)(

c −a
−a −b

)

∈ H(2)

with nonzero trace t = c− b. If t = 2, i.e., c = b+ 2, the condition det(g0g) = 1 implies

−2b− b2 − a2 = 1,

or (b+ 1)2 = −a2. Similarly, if t = −2, we get (b− 1)2 = −a2. Since a 6= 0, it follows in both cases that −1
is a square in Fp, which is a contradiction

Subcase 2.2: −1 = z2 is a square in Fp. Then we can diagonalize g0 over Fp and conjugating again,
assume that H contains

g′0 =

(

z 0
0 −z

)

Also H contains other matrices of type
(

a b
c −a

)

We distinguish 2 different types of matrices: if a = 0, then we have matrices of type

(

0 b
−b−1 0

)

(let’s call them ”quasi-diagonal”); if we have a matrix

g′ =

(

a b
c −a

)

with a 6= 0, we will have that the trace of

g′0g
′ =

(

z 0
0 −z

)(

a b
c −a

)

=

(

za zb
−zc za

)

∈ H(2)

is 2za which should be ±2 (otherwise we are done), therefore za = ±1 which implies −a2 = 1, (so a = ±z)
and since 1 =det(g′) = −a2− bc = 1− bc, we get that bc = 0 for all matrices of this type (and g′0 also belongs
to this type). Clearly, H contains matrices of type 2 except ±g′0 , otherwise H would contain only diagonal
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(and, perhaps, quasi-diagonal) matrices and thus will not be a generating set. Now we distinguish 2 cases.
First case is if H contains a quasi-diagonal matrix

h =

(

0 −d−1

d 0

)

and, as we have just figured out,H must contain a matrix of type 2 which is not±g′0 (let it be h
′ =

(

±z b
0 ∓z

)

with b 6= 0, for a lower triangular matrix the proof is similar). Then we will have:

h′h =

(

±z b
0 ∓z

)(

0 −d−1

d 0

)

=

(

bd ∓zd−1

∓zd 0

)

,

g′0h
′h =

(

z 0
0 −z

)(

bd ∓zd−1

∓zd 0

)

=

(

zbd ±d−1

∓d 0

)

,

tr(h′h) = bd, tr(g′0h
′h) = zbd. The traces of these matrices are both non-zero; if tr(h′h)2=tr(g′0h

′h)2 = 4
it means that z = ±1 which is a contradiction since z is a square root of −1 and p 6= 2. Now assume that
H doesn’t contain quasi-diagonal matrices. So all matrices in H are of type 2. Then for all matrices in H
we have bc = 0. If all matrices in H satisfy b = 0, then H would be contained in the subgroup of upper
triangular matrices. So there exists a matrix in x ∈ H with b 6= 0, hence c = 0

x =

(

a b
0 −a

)

(Note that a = z or a = −z, but we can always choose a matrix with a = z (otherwise, if a = −z we just
replace x with x−1 which is also in H since H is symmetric). So, in H we have a matrix

x =

(

z b
0 −z

)

with b 6= 0. Similarly, H contains a matrix

y =

(

z 0
c −z

)

with c 6= 0. Then we have:

xy =

(

z b
0 −z

)(

z 0
c −z

)

=

(

−1 + bc −bz
−cz −1

)

,

g′0xy =

(

z 0
0 −z

)(

−1 + bc −bz
−cz −1

)

=

(

−z + bcz b
−c z

)

The traces of these matrices are bc−2 and bcz, respectively. The interesting cases are when bc−2 ∈ {0, 2,−2},
i.e, when bc ∈ {0, 2, 4}. Obviously, bc = 0 is impossible. If bc = 2, then bcz = 2z 6∈ {0, 2,−2} (again, since
p 6= 2), if bc = 4, then bcz = 4z 6∈ {0, 2,−2} (this is possible only if 2z ∈ {0, 1,−1}, so, 4z2 = −4 ∈ {0, 1},
i.e., either −4 = 0 (p = 2) or −4 = 1 (p = 5)). Again we have obtained a contradiction which completes the
proof of the theorem. �
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4 The second main tool: Non-concentration inequality

4.1 Preparation lemmas

The main idea that we will use here is the following: we would like to estimate from above the cardinality of
Cl(g)∩H. We will use the following technique: we will define a map from (Cl(g))3 to G2 and then restrict
it to (Cl(g) ∩ H)3. Then the cardinality of (Cl(g) ∩ H)3 (and thus, of Cl(g) ∩ H) can be estimated from
above using the fibers of this map. We will start with the following lemma:

Lemma 4.1 Let k be any field, G = SL2(k). Let C ⊂ G be a conjugacy class, and define

φ :

{

C3 → G2

(x1, x2, x3) 7→ (x1x2, x1x3)
.

Then for any (y1, y2) ∈ G×G, we have a bijection

{

C ∩ y1C
−1 ∩ y2C

−1 → φ−1(y1, y2)
x1 7→ (x1, x

−1
1 y1, x

−1
1 y2)

.

In particular, if k = F̄p and C is a regular semisimple conjugacy class, we have a bijection

φ−1(y1, y2) → C ∩ y1C ∩ y2C.

Proof: Take an element in φ−1(y1, y2). It’s a triple in C3. From this triple we can uniquely determine x1
and vice versa, given x1 we can uniquely determine the whole triple in the fiber (x2 = x−1

1 y1, x3 = x−1
1 y2).

Therefore, elements of the fiber (triples) are in 1 to 1 correspondence with all the proper x1’s. What are the
proper x1’s? The triple should belong to C3 which is equivalent to this condition:

x1 ∈ C, x−1
1 y1 ∈ C, x−1

1 y2 ∈ C ⇔ x1 ∈ C ∩ y1C
−1 ∩ y2C

−1,

which proves the first part. For the second part, simply notice that if C is a regular semisimple conjugacy
class, say, that of g, then C = C−1 because g−1 has the same characteristic polynomial as g, hence is
conjugate to g. �

Now we have seen that for k = F̄p the fibers of this map are in bijection with sets of type C ∩ y1C ∩ y2C.
Therefore, we would like to know something about them. The main question is: how big are they? The next
theorem gives us the answer to this question.

Theorem 4.2 (Pink) Let K be an algebraically closed field with char(K) 6= 2, g ∈ SL2(K) a regular
semisimple element with nonzero trace and C is the conjugacy class of g. For y1, y2 ∈ SL2(K) the intersection
X = C ∩ y1C ∩ y2C is finite and contains at most 2 elements unless one of the following holds:

1. We have y1 = 1 or y2 = 1 or y1 = y2;

2. There exists x ∈ SL2(K) such that

y1 = x

(

1 1
0 1

)

x−1

and we have several (classes of) possibilities for y2:

y2 = x

(

1 ∗
0 1

)

x−1,

y2 = x

(

α2 ∗
0 α−2

)

x−1,
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y2 = x

(

α−2 ∗
0 α2

)

x−1,

where α+ α−1 = tr(g).

3. There exists x ∈ SL2(K) such that

y1 = x

(

α2 0
0 α−2

)

x−1

and we have several possibilities for y2:

y2 = x

(

1 ∗
0 1

)

x−1,

y2 = x

(

α2 ∗
0 α−2

)

x−1,

y2 = x

(

1 0
∗ 1

)

x−1,

y2 = x

(

α2 0
∗ α−2

)

x−1,

where α+ α−1 = tr(g).

For each pair (y1, y2) described in cases 2 and 3 we have that X ⊂ C ∩B, where B is a conjugate of B0 (the
subgroup of upper triangular matrices) and B is uniquely determined by (y1, y2).

Proof: It will be convenient to compute the intersection C∩y−1
1 C∩y−1

2 C (just a change of notation). The
results we will find will concern y1 and y2 (and now we need them for y−1

1 and y−1
2 ), but it’s not a problem:

proving that y1 = 1 or y2 = 1 or y1 = y2 is equivalent to proving that y−1
1 = 1 or y−1

2 = 1 or y−1
1 = y−1

2 . If
we come to the second or third case, again, it’s not hard to see that it’s equivalent for the pair (y−1

1 , y−1
2 ) to

be in the same case, and so we can prove the results for (y1, y2) instead of (y−1
1 , y−1

2 ).
The conjugacy class of a regular semisimple element is completely determined by its trace (which is, the

conjugacy class of this element is exactly the set of matrices with the same trace). If such an element has
trace t = α+ α−1, then we have α4 6= 1 (if α = ±1, then the element is not regular semisimple, if α2 = −1,
then the trace is 0 which contradicts our assumptions). So, from now on we work with C which is the set of
matrices of trace t = α+ α−1 where α is as above.

Next observation is that for any x, y1 ∈ SL2(K) we have

C ∩ (xy1x
−1)−1C = xCx−1 ∩ xy−1

1 x−1C = xCx−1 ∩ xy−1
1 Cx−1 = x(C ∩ y−1C)x−1.

This means that we can compute C ∩y−1C up to conjugation (taking a more convenient representative from
our conjugacy class).

The conjugacy classes of SL2(K) are known. We will first run through representatives of these classes
and determine the corresponding intersection C ∩ y−1

1 C. We will not deal with the case y1 ± 1. Indeed, if
y1 = 1 we have the first case of our theorem and if y1 = −1, we will get

y−1
1 C = −C

The matrices in C all have trace t while all the matrices in −C have trace −t, which means there can’t be
any intersection (remember that t 6= 0), so the theorem obviously holds for y1 = −1 and for any y2. So, if
y1 6= ±1, then it’s conjugated to one of the following 4 (types of) elements:

y
(1)
0 =

(

1 1
0 1

)

, y
(2)
0 =

(

−1 1
0 −1

)

,
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y
(3)
0 =

(

β 0
0 β−1

)

, β 6= ±1, β 6= α±2

y
(4)
0 =

(

α2 0
0 α−2

)

(here the superscript indicates the number of the case and the subscript 0 means that this is the ”canonical”
representative). Clearly, we could unite the last 2 cases into 1, but later it will become clear how calculations
can be simplified if we distinguish them.

Now we want to find out something about C ∩ (y
(i)
0 )−1C. For each i we’ll do the following: take a matrix

h ∈ C; the condition that it also belongs to (y
(i)
0 )−1C is equivalent to imposing also the condition y

(i)
0 h ∈ C.

From this we can say something about h and therefore about the whole intersection. Let h =

(

a b
c d

)

with

a+ d = t = α+ α−1.
Case i = 1:

y
(1)
0 h =

(

1 1
0 1

)(

a b
c d

)

=

(

a+ c b+ d
c d

)

,

tr(y
(1)
0 h) = a+ c+ d = t = a+ c = tr(h), which implies c = 0. Then (since the determinant should be 1) we

have ad = 1 and a+ d = α+α−1 which means a = α, d = α−1 or d = α, a = α−1. So C ∩ (y
(1)
0 )−1C is given

by the set containing all matrices of the following forms:

(

α k
0 α−1

)

,

(

α−1 k
0 α

)

,

where k ∈ K is parameter.
Case i = 2:

y
(2)
0 h =

(

−1 1
0 −1

)(

a b
c d

)

=

(

−a+ c −b+ d
−c −d

)

,

tr(y
(2)
0 h) = −a + c − d = t = a + d = tr(h), which implies (−a + c − d) + (a + d) = t + t, which implies

c = 2t. Since also a+ d = t, we parameterize them like this: a = k, d = t− k. For the moment h looks like
(

k b
2t t− k

)

. Also we impose the condition det(h) = 1:

ad− bc = 1 ⇔ k(t− k)− 2tb = 1 ⇔ −k2 + kt− 1 = 2tb⇔ b = (−k2 + kt− 1)/2t

(recall that t 6= 0 and char(K) 6= 2). So C ∩ (y
(2)
0 )−1C is given by the set containing all matrices of the

following form:
(

k (−k2 + kt− 1)/2t
2t t− k

)

,

where k ∈ K is parameter.
Case i = 3:

y
(3)
0 h =

(

β 0
0 β−1

)(

a b
c d

)

=

(

βa βb
β−1c β−1d

)

,

tr(y
(3)
0 h) = βa+ β−1d = t = a+ d = tr(h), which implies that (a,d) is a solution of the linear system

{

a+ d = t,
βa+ β−1d = t.

with determinant β−1 − β 6= 0. Solving this system we have

a =
t

β + 1
, d =

βt

β + 1
.
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Write b = b′/(β + 1), c = c′/(β + 1). Now we impose the condition det(h) = 1:

βt2−b′c′ = (β+1)2 ⇔ −b′c′ = β2+2β+1−β(α+α−1)2 = β2+2β+1−βα2−2β−βα−2 = (β−α2)(β−α−2).

In this case β 6= α±2, so both b′ and c′ are nonzero and can be parameterized in this way:

b′ = (β − α2)k, c′ = −(β − α−2)k−1.

So C ∩ (y
(3)
0 )−1C is given by the set containing all matrices of the following form:

1

β + 1

(

t (β − α2)k
−(β − α−2)k−1 tβ

)

,

where k ∈ K× is a parameter.
Case i = 4: in this case we do all the same computations as in the previous one, and we come to the

same conditions
−c′b′ = (β − α2)(β − α−2),

a =
t

β + 1
, d =

βt

β + 1
.

But here β = α2 and this implies
a = α−1, d = α, b′c′ = 0.

So, either c′ = 0 (and hence c = 0 and we get upper triangular matrices) or b′ = 0 (and hence b = 0 and we

get lower triangular matrices). So C ∩ (y
(4)
0 )−1C is given by the set containing all matrices of the following

forms:
(

α−1 k
0 α

)

,

(

α−1 0
k α

)

,

where k ∈ K is parameter.
Now we know how C ∩ y−1

1 C might look like (up to conjugation). Now we need to find intersections with

all possibilities of y−1
2 C. We proceed exactly as before. y1 was the conjugate of y

(i)
0 (say, y1 = xy

(i)
0 x−1)

for some x, and so C ∩ y−1
1 C = x(C ∩ (y

(i)
0 )−1C)x−1. A matrix in this set has the form xhx−1 where h

is as parameterized above (in each case). The condition that it belongs to y−1
2 C =(write y2 = xy′x−1 for

the same x as before and for some y′)= (x(y′)−1x−1)C is equivalent to the condition y2xhx
−1 ∈ C which is

xy′x−1xhx−1 = xy′hx−1 ∈ C which is equivalent to the condition y′h ∈ C.
Let

y′ =

(

x1 x2
x3 x4

)

Case i = 1: For this case, h =

(

α k
0 α−1

)

or

(

α−1 k
0 α

)

,

y′h =

(

x1 x2
x3 x4

)(

α k
0 α−1

)

=

(

x1α x1k + x2α
−1

x3α x3k + x4α
−1

)

,

or

y′h =

(

x1 x2
x3 x4

)(

α−1 k
0 α

)

=

(

x1α
−1 x1k + x2α

x3α
−1 x3k + x4α

)

,

and so the trace of y′h is x3k+x1α+x4α
−1, or x3k+x1α

−1 +x4α. If x3 6= 0, in both cases there is at most
1 value for k for which the trace is equal to t, and so C ∩ y1C ∩ y2C will contain at most 2 elements (1 for
each form of the diagonal). If x3 = 0 (and so, x4 = x−1

1 ), then x1 is a solution of the following system:

αx1 + α−1x−1
1 = t,
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or
αx−1

1 + α−1x1 = t.

The first equation gives x1 = 1 and x1 = α−2, so that y′ is an upper triangular matrix with diagonal
coefficients (1, 1) or (α−2, α2)

The second equation gives x1 = 1 and x1 = α2, so that y′ is an upper triangular matrix with diagonal
coefficients (1, 1) or (α2, α−2) (this type of matrices will also appear in case i = 4).

We summarize the results of this case:

y1 = x

(

1 1
0 1

)

x−1

and we have several possibilities for y2:

y2 = x

(

1 b
0 1

)

x−1,

y2 = x

(

α2 b
0 α−2

)

x−1,

y2 = x

(

α−2 b
0 α2

)

x−1,

where b is arbitrary, b ∈ K.

Case i = 2: For this case, h =

(

k (−k2 + kt− 1)/2t
2t t− k

)

,

y′h =

(

x1 x2
x3 x4

)(

k (−k2 + kt− 1)/2t
2t t− k

)

=

(

x1k + 2x2t x1(−k
2 + kt− 1)/2t+ x2(t− k)

x3k + 2x4t x3(−k
2 + kt− 1)/2t+ x4(t− k),

)

tr(y′h)− t = x1k+2x2t+
x3(−k

2 + kt− 1)

2t
+x4(t−k)− t = −

x3
2t
k2+(x1−x4+

x3
2
)k+(x4+2x2−1)t = 0.

This equation has at most 2 solutions unless both x3 = 0 and x4 = x1, but then x1 = x4 = ±1. If x4 = 1 the

constant term is 0 if and only if x2 = 0 (and so, y′ = 1), if x4 = −1, then x2 = 1 and y′ =

(

−1 1
0 −1

)

= y
(2)
0

and since y1 = xy
(2)
0 x−1 and y2 = xy′x−1, we have y1 = y2.

Case i = 3: For this case,

h =
1

β + 1

(

t (β − α2)k
−(β − α−2)k−1 tβ

)

,

y′h =
1

β + 1

(

x1 x2
x3 x4

)(

t (β − α2)k
−(β − α−2)k−1 tβ

)

=
1

β + 1

(

x1t− x2k
−1(β − α−2) x1k(β − α2) + x2tβ

x3t− x4k
−1(β − α−2) x3k(β − α2) + x4tβ

)

,

k(tr(y′h)− t) =
1

β + 1

(

ktx1 − x2(β − α−2) + k2x3(β − α2) + kx4tβ
)

− kt =

=
x3(β − α2)

β + 1
k2 +

(

x1
β + 1

+
x4β

β + 1
− 1

)

kt−
x2(β − α−2)

β + 1
= 0.

This equation has more than 2 solutions if and only if all 3 coefficients are 0, which implies x2 = x3 = 0
(and so x4 = x−1

1 ), and

x1 + x4β − (β + 1) = 0 ⇔ x1 + x−1
1 β − (β + 1) = 0 ⇔ x21 − (β + 1)x1 + β = 0.

Then either x1 = 1 (and so, y′ = 1) or x1 = β, x4 = β−1, y′ =

(

β 0
0 β−1

)

= y
(3)
0 and since y1 = xy

(3)
0 x−1

and y2 = xy′x−1, we have y1 = y2.
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Case i = 4: For this case, h =

(

α−1 0
k α

)

or

(

α−1 k
0 α

)

. The second subtype has been seen in case 1.

The first subtype leads us to

y′h =

(

x1 x2
x3 x4

)(

α−1 0
k α

)

=

(

x1α
−1 + x2k x2α

x3α
−1 + x4k x4α

)

,

tr(y′h) = x1α
−1 + x2k + x4α. There is at most 1 value for k when this trace is t, unless x2 = 0. If x2 = 0

(and so, x4 = x−1
1 ), we will have that x1 is the solution of

α−1x1 + αx−1
1 = 0,

which gives x1 = 1 and x1 = α2, so that y′ is a lower triangular matrix with diagonal coefficients (1, 1) or
(α2, α−2). Also y′ can be an upper triangular matrix with diagonal coefficients (1, 1) or (α2, α−2) (this type
of matrices has already appeared in case i = 1). We summarize the results of this case:

y1 = x

(

α2 0
0 α−2

)

x−1

and we have several possibilities for y2:

y2 = x

(

1 b
0 1

)

x−1,

y2 = x

(

α2 b
0 α−2

)

x−1,

y2 = x

(

1 0
b 1

)

x−1,

y2 = x

(

α2 0
b α−2

)

x−1,

where b is arbitrary, b ∈ K.
�

For a prime p and γ ∈ F̄×
p , define

Cγ =

{(

γ t
0 γ−1

)

| t ∈ F̄p

}

.

From the previous theorem we have seen that all y2’s for which case 2 or case 3 holds (but not case 1),
are precisely sets which are conjugated to some Cγ . Therefore, we would like to estimate from above the
cardinality of H ∩ xCγx

−1. The next lemma gives us some information about it.

Lemma 4.3 For any p ≥ 5, any γ ∈ F̄×
p , any x ∈ SL2(F̄p) and any symmetric generating set H of SL2(Fp)

containing 1, we have:

|H ∩ xCγx
−1| =

∣

∣

∣

∣

H ∩ x

{(

γ t
0 γ−1

)

| t ∈ F̄p

}

x−1

∣

∣

∣

∣

≤ 2α2|H|1/3

where α = trp(H).
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Proof: We first deal with the fact that x and γ are not necessarily in SL2(Fp). We have xCγx
−1 ∩

SL2(Fp) ⊂ xB0x
−1 ∩SL2(Fp), and there are 3 possibilities for the latter: either xB0x

−1 ∩SL2(Fp) = 1, or
xB0x

−1 ∩SL2(Fp) = T is a non-split maximal torus of SL2(Fp), or xB0x
−1 ∩SL2(Fp) = B is an SL2(Fp)-

conjugate of the group B0 = B0∩SL2(Fp) of upper-triangular matrices (this is a standard property of linear
algebraic groups over finite fields).

In the first case there is nothing to do.
In the second case we note that γ and γ−1 are the eigenvalues of any element in SL2(Fp) ∩ xCγx

−1

and there are at most 2 elements in a maximal torus with given eigenvalues. Then obviously we have
|H ∩ xCγx

−1| ≤ 2 ≤ 2α2|H|1/3.
In the last case we can assume that x ∈ SL2(Fp) and γ ∈ Fp. Using SL2(Fp)-conjugation, we can assume

that x = 1. Then either the intersection is empty (and the result is true) or we can fix

g0 =

(

γ t0
0 γ−1

)

∈ H ∩ Cγ

and observe that for any g ∈ H ∩ Cγ we have

g−1
0 g ∈ H(2) ∩ C1,

hence
|H ∩ Cγ | ≤ |H(2) ∩ C1| = |H(2) ∩U0|,

which reduces further to the case γ = 1. We fix an element h ∈ H −B0, i.e.,

h =

(

a b
c d

)

with c 6= 0. It exists, because otherwise H ⊂ B ∩ SL2(Fp) would not be a generating set of SL2(Fp). Now
we consider the following map:

ψ :

{

U∗ ×U∗ ×U∗ → G
(u1, u2, u3) 7→ u1hu2h

−1u3

where U∗ = U0 − 1 (later it will become clear why we can’t take U3
0 as a domain). Note that since h ∈ H,

we have ψ((U∗ ∩H(2))3) ⊂ H(8). Crucially, we claim that for any x ∈ G, the fiber ψ−1(x) contains at most
1 element. If this is true, we get

|U∗ ∩H(2)|3 ≤ |H(8)| ≤ α6|H|,

and therefore
|U0 ∩H

(2)| = |U∗ ∩H(2)|+ 1 = 2α2|H|1/3,

which is the result we need. Now we prove the claim via direct computation. Precisely, if

ui =

(

1 ti
0 1

)

∈ U∗,

then matrix multiplication leads to

ψ(u1, u2, u3) =

(

1− t1t2c
2 − t2ac ∗

−t2c
2 ∗

)

,

and since c 6= 0, t2 is uniquely determined (and thus also u2). Now, t1 (and so, u1) is also uniquely determined
(c 6= 0, t2 6= 0 and this is the reason why the domain of our map is not U3

0). Finally, u3 = (u1hu2h
−1)−1x is

also uniquely determined. �
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4.2 Non-concentration inequality

Now we have proved all the preparation lemmas and we can prove the desired non-concentration inequality:

Theorem 4.4 (Non-concentration inequality) Let p ≥ 3 be a prime number and let g ∈ SL2(Fp) = G
be a regular semisimple element with non-zero trace. Let CL(g) ⊂ SL2(F̄p) = G be the conjugacy class of
g. If H ⊂ G is a symmetric generating set containing 1, we have:

|CL(g) ∩H| ≤ 7α2/3|H|2/3,

where α = trp(H), unless α > |H|1/28.

Proof: g is a regular semisimple element with tr(g) 6= 0. We define the map φ that we have already seen
before:

φ :

{

Cl(g)×Cl(g)×Cl(g) → G×G
(x1, x2, x3) 7→ (x1x2, x1x3)

and denote
Z = (Cl(g) ∩H)3, W = φ(Z),

so that
|Cl(g) ∩H|3 =

∑

(y1,y2)∈W

|φ−1(y1, y2) ∩ Z| = S0 + S1 + S2,

where Si denotes the sum restricted to Wi ⊂ W , where W0 is the subset where the fiber has order at most
2, while W1 corresponds to those (y1, y2) where case (1) of Pink’s theorem holds and W2 corresponds to
those (y1, y2), where only cases (2) or (3) of Pink’s Theorem hold (which means, we don’t put into W2 pairs
(y1, y2) with y1 = 1 or y2 = 1 or y1 = y2). We will prove the following estimates:

S0 ≤ 2|H(2)|2 ≤ 2α2|H|2,

S1 ≤ 3|H(2)|2 ≤ 4|H(2)|2 ≤ 4α2|H|2,

S2 ≤ 32α34/3|H|5/3.

Assuming this, we will get immediately

|Cl(g) ∩H| ≤ 62/3α2/3|H|2/3 + 25/3α34/9|H|5/9.

Now either the second term is smaller or equal than the first and we get

|Cl(g) ∩H| ≤ 62/3α2/3|H|2/3 + 25/3α34/9|H|5/9 ≤ 2 · 62/3α2/3|H|2/3 ≤ 7α2/3|H|2/3

and this is the result we need, or the second term is bigger, which means

25/3α34/9|H|5/9 > 62/3α2/3|H|2/3 > 25/3α2/3|H|2/3,

which implies
α > |H|1/28,

which is the alternative. Now it remains to check the bounds on Si

1. S0 : fibers over W0 have at most 2 elements, hence also their intersection with Z, so S0 ≤ 2|W0| ≤
2|W | ≤ 2|H(2)|2
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2. S1 : this case splits into 3 almost identical subcases, corresponding to y1 = 1, y2 = 1, y1 = y2. We only
check the bound for one of them, say, for S1.1. We have:

S1.1 ≤
∑

y2∈H(2)

|φ−1(1, y2) ∩ Z|.

By Lemma 4.1, we have:

|φ−1(1, y2) ∩ Z| = |(x1, x
−1
1 , x−1

1 y2) ∈ (CL(g) ∩H)3| ≤ |H|

for any given y2 ∈ H(2), since x1 ∈ H determines the triple (x1, x
−1
1 , x−1

1 y2). So we get

S1.1 ≤ |H(2)||H| ≤ |H(2)|2,

and similarly for the other 2 cases.

3. S2 : Here we also sum over y1 first, which is 6= ±1 (y1 = 1 has been already considered in W1 and
y = −1, as it’s easy to see and has been mentioned in the proof of Pink’s theorem, will never appear in
any specific case of Pink’s theorem and therefore pairs of type (−1, y2) can only belong to W0). The
number of y1’s can be bounded with |H(2)|. Now we have fixed y1 and we want to count the number
of possible y2’s for this fixed y1. As before, we define

Cγ =

{(

γ t
0 γ−1

)

| t ∈ F̄p

}

.

As we have seen in the proof of Pink’s theorem, for each y1 there are at most 4 classes of matrices y2
for which the second or the third case of this theorem holds and each class is a conjugate of some Cγ

(remember that we are not considering y1 = 1, y2 = 1, y1 = y2). So, we need to estimate the size of
an intersection of the type H(2) ∩ xCγx

−1, but this is what we already can do thanks to lemma 4.3.
So, for a fixed y1 the number of possible y2’s is

|{y2 | (y1, y2) ∈W2}| ≤ 8trp(H(2))2|H(2)|1/3 ≤ 8α25/3|H|1/3

(the factor 8 accounts for 4, which is the number of classes of y2, and the factor 2 in the lemma).

Now y1 and y2 are fixed. Then the size of the fiber φ−1(y1, y2) ∩ Z is determined by the number of
possibilities for x1. As the latter satisfies

x1 ∈ Cl(g) ∩B ∩H,

and Cl(g) ∩B is a conjugate of a union of the type Cγ ∪ Cγ−1 we see that we must estimate the size
of an intersection of the type

H ∩ Cγ

for some fixed γ ∈ F×
p , since this will lead us to the estimate for the number of possibilities for x1.

Using lemma 4.3 again, we get
|φ−1(y1, y2) ∩ Z| ≤ 4α2|H|1/3.

This gives
S2 ≤ 32α31/3|H|2/3|H(2)| ≤ 32α34/3|H|5/3,

as desired.

�

Corollary 4.5 (Involving dichotomy) 1. For all prime numbers p, all subsets H ⊂ SL2(Fp) and all
maximal tori T ⊂ SL2(F̄p), if T and H are not involved, we have:

|H ∩T| ≤ 4.
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2. If p ≥ 5 and H ⊂ SL2(Fp) = G is a symmetric generating set containing 1 with H(3) 6= SL2(Fp), we
have:

|Treg ∩H
(2)| ≥ 14−1α−14/3|H|1/3

for any maximal torus T ⊂ SL2(F̄p) which is not involved with H, where α = trp(H), unless

α > |H|1/168.

Proof:

1. Since H and T are not involved, H ∩ T doesn’t contain regular semisimple elements with nonzero
trace. So H ∩ T can contain either regular semisimple elements with trace 0, and in T there are at
most 2 of them, or H ∩T can contain elements which are not regular semisimple, and in T there are
2 of them: ±1. Therefore, this intersection contains at most 4 elements.

2. We apply the orbit-stabilizer theorem 2.3. Let T = T ∩ G be a maximal torus in G. Fixing any
g ∈ Treg, we have T = CG(g), the stabilizer of g in G for its conjugacy action on itself. We find that

|T ∩H(2)| = |T ∩H(2)| ≥
|H|

|{hgh−1 | h ∈ H}|

for any symmetric subset H. Since H is involved with T, we can select g ∈ Tsreg ∩H = Tsreg ∩H and
the denominator on the right becomes

|{hgh−1 | h ∈ H}| ≤ |H(3) ∩ Cl(g)| ≤ |H(3) ∩Cl(g)|,

where Cl(g) (resp., Cl(g)) is the conjugacy class of g in G (resp., inG). Applying the non-concentration
inequality to H(3), we will further have

|H(3) ∩Cl(g)| ≤ 7trp(H(3))2/3|H(3)|2/3.

From Ruzsa’s theorem we have trp(H(3)) ≤ α6, so we will have

|H(3) ∩Cl(g)| ≤ 7(α6)2/3(|H|α)2/3 = 7|H|2/3α14/3,

unless trp(H(3)) > |H(3)|1/28, which implies

α6 ≥ trp(H(3)) > |H(3)|1/28 = (|H|α)1/28,

α168 > |H|α⇒ α > |H|1/167,

which is even better than we need.

Therefore,

|T ∩H(2)| ≥
|H|

|{hgh−1 | h ∈ H}|
≥

|H|

|H(3) ∩Cl(g)|
≥

|H|

7|H|2/3α14/3
= 7−1α−14/3|H|1/3.

Now we note that there are exactly 2 elements in T ∩H(2) that are not regular semisimple (they are
±1), therefore

|Treg ∩H
(2)| = |T ∩H(2)| − 2 ≥ 7−1α−14/3|H|1/3 − 2.

If the first term is ≥ 4 (denote it by A for the moment), then

A

2
≥ 2 ⇔ A−

A

2
≥ 2 ⇔ A− 2 ≥

A

2
.
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In this case the previous sum can be estimated as follows:

|Treg ∩H
(2)| ≥ 14−1α−14/3|H|1/3

and this is the result we need. If A < 4 we will get

7−1α−14/3|H1/3| < 4 ⇔ α14/3 >
|H|1/3

28
⇔ α >

|H|1/14

283/14
.

To get the desired alternative we need to have

|H|1/14

283/14
≥ |H|1/168 ⇔ |H|11/168 ≥ 283/14 ⇔ |H| ≥ 2836/11.

But what do we do if |H| < 2836/11? We use proposition 2.2. It says that if H(3) 6= G, then α ≥ 21/2.
To get the desired alternative, we need to have

α ≥ 21/2 ≥ |H|1/168 ⇔ |H| ≤ 284.

But in our case |H| < 2836/11 < 284 and so the desired alternative is achieved.

�
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5 Proof of the main theorem and bounding the diameter

Here we state theorem 1.2 in a slightly modified, but equivalent way:

Theorem 5.1 (Helfgott) Let p be a prime number, H ⊂ SL2(Fp) is a symmetric generating subset of
SL2(Fp) containing 1. Then if H(3) 6= SL2(Fp), we have

trp(H) ≥ |H|δ,

where δ = 1/3024.

Proof: If p ≤ 5 we can check the theorem numerically. So we assume p ≥ 7 to be able to apply theorem 3.1.
We will show that

α = trp(H) ≥ 2−1/2|H|1/1512

for p ≥ 7. Then using theorem 2.2, we derive

α = trp(H) ≥ max(21/2, 2−1/2|H|1/1512) ≥ |H|1/3024.

By theorem 3.1, there exists at least 1 maximal torus T involved with H(3) (hence also with L = H(4)). If,
among all tori involved with L, there is 1 for which the main bound in the corollary 4.5 (applied to L) fails,
we obtain the alternative from this theorem:

trp(L) ≥ |L|1/168 ≥ |H|1/168,

and since trp(L) ≤ α9 by Ruzsa’s theorem, we have

α ≥ |H|1/1512 ≥ 2−1/2|H|1/1512,

which is the result we need. Otherwise, we distinguish 2 cases.
Case 1: There exists a maximal torus T involved with L such that for any g ∈ G the torus gTg−1 is also

involved with L. Writing T = T ∩G, we note that the maximal tori

gTg−1 = (gTg−1) ∩G

are distinct for g taken among representatives of G/NG(T ). Indeed,

gTg−1 = hTh−1 ⇔ h−1gTg−1h = T ⇔ h−1g ∈ NG(T ) ⇔ g ∈ hNG(T ).

Then we have

|L(2)| ≥
∑

g∈G/NG(T )

|L(2) ∩ gTregg
−1| ≥ 14−1β−14/3|L|1/3

|G|

|NG(T )|
,

where β = trp(L), since each gTg−1 is involved with L and there can’t be any ”overlaps” since a regular
semisimple element can’t lie in more than 1 maximal torus and we are in the case where the upper bound
holds for all tori involved with L. Now from Ruzsa’s theorem we have

|L(2)|

|H|
=

|H(8)|

|H|
≤ α6,

|H| ≥ α−6|L(2)| ≥ 14−1α−6β−14/3|L|1/3
p3 − p

2(p+ 1)
= 28−1α−6β−14/3|L|1/3p(p−1) ≥ 28−1α−6β−14/3|L|1/3(p−1)2.

Also as before we have
β = tpr(L) = trp(H(4)) ≤ α9,
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hence the previous inequality becomes

|H| ≥ 28−1α−6α−42|L|1/3(p− 1)2 = 28−1α−48|L|1/3(p− 1)2 ≥ 28−1α−48|H|1/3(p− 1)2,

|H|2/3 ≥ 28−1α−48(p− 1)2 ⇔ |H| ≥ 28−3/2α−72(p− 1)3,

which for p ≥ 7 implies |H| ≥ 250−1α−72|G|. Indeed, we need to check that

28−3/2α−72(p− 1)3 ≥ 250−1α−72|G| ⇔
250

283/2
≥

p3 − p

(p− 1)3
=
p(p+ 1)

(p− 1)2
= f(p).

(1,∞) is the interval where the function on the right decreases. Since we are interested in p ≥ 7, we compute
f(7) (the value of this function in other primes will be smaller), multiply it by 283/2 and see that the result
is around 230 < 250 (that’s how the number 250 was chosen). So, we return back to what we got:

|H| ≥ 250−1α−72|G|.

Then we have 2 possibilities:
1) α ≤ 500−1/72|G|1/648

Then from the previous inequality we get

|H| ≥ 250−1α−72|G| ≥ 250−1(500−1/72|G|1/648)−72|G| = 2|G|−1/9|G| = 2|G|8/9,

and using theorem 2.5, we get H(3) = G which contradicts our assumptions.
2)α > 500−1/72|G|1/648, then since 500−1/72 > 2−1/2, we have

α > 2−1/2|G|1/648 > 2−1/2|G|1/1512 ≥ 2−1/2|H|1/1512

and this is the result we need.
Case 2: Since we know that some torus is involved with L, the complementary situation to case 1 is that

there is a maximal torus T involved with L = H(4) and an element g ∈ G such that gTg−1 = T1 is not
involved with L. The first remark is that we can assume, possibly after changing g and T, that g ∈ H.

Indeed, to check this claim, we start with g and T as above. Since H is a generating set, we can write

g = h1 · · ·hm

for some m ≥ 1 and some hi ∈ H. Then

T1 = h1 · · ·hmTh−1
m · · ·h−1

1 .

We know that T1 is not involved with L while T is. We do the following: erase the first and the last term
in this product; we will get the torus

T2 = h2 · · ·hmTh−1
m · · ·h−1

2 .

If this new torus is already involved with L, we take T2 and h1 instead of T and g. Otherwise, if T2 is not
yet involved with L, continue erasing. At a certain point we will get that the torus

Ti = hi · · ·hmTh−1
m · · ·h−1

i

is not yet involved with L, while the next one,

Ti+1 = hi+1 · · ·hmTh−1
m · · ·h−1

i+1

is involved with L. Then we take Ti+1 and hi instead of T and g.
We remark that this will surely happen. In the worst case, we will have to erase all hi’s and get that the

torus Tm = hmTh−1
m is not involved with L, while the torus T is. But then we can take T and hm. From
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now on we will write h instead of g, keep the notation T for the torus which is involved with L and we put
S = hTh−1. We apply theorem 2.4 with (H,K) = (H(2),S ∩G = S) and n = 5. This gives

|(H(2))(6)|

|H(2)|
≥

|(H(2))(5) ∩ S|

|(H(2))(2) ∩ S|
,

i.e.,
|H(12)|

|H(2)|
≥

|H(10) ∩ S|

|H(4) ∩ S|
.

But since L = H(4) and S are not involved, their intersection can contain at most 4 elements (by the easy
part of corollary 4.5), and therefore we get

|H(12)|

|H(2)|
≥

1

4
|H(10) ∩ S|.

Also we have
h(H8 ∩T)h−1 ⊂ H(10) ∩ S,

so that
|H(10) ∩ S| ≥ |H8 ∩T| = |L(2) ∩T| ≥ 28−1β−14/3|L|1/3,

where β = trp(L) (since L and T are involved and we are in the case where the bound from corollary 3.6
holds for all tori involved with L).

|H(12)|

|H(2)|
≥

1

4
28−1β−14/3|L|1/3 = 112−1β−14/3|L|1/3.

From Ruzsa’s theorem we have
β = trp(H(4)) ≤ α9

and
|H(12)|

|H(2)|
≤

|H(12)|

|H|
≤ α10,

and so finally we get
α10 ≥ 112−1β−14/3|L|1/3 ≥ 112−1α−42|H|1/3,

which implies
α ≥ 112−1/52|H|1/156.

Since 112−1/52 > 2−1/2, we finally get

α ≥ 2−1/2|H|1/156 ≥ 2−1/2|H|1/1512.

�

Proof of Babai’s conjecture for SL2(Fp): given a generating set H, we apply Helfgott’s theorem l times
(l will be chosen later):

|H(3l)| ≥ |H|(1+δ)l .

Now we will choose l such that
|H|(1+δ)l > |G|

and therefore we will get

|H3l | > |G|.
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Since this is absurd, we will get that H(3l) = G and the diameter of the Cayley graph is not bigger than 3l.
Now we choose l:

|H|(1+δ)l > |G| ⇔ (1 + δ)l log |H| > log |G| ⇔ (1 + δ)l >
log |G|

log |H|
,

which gives

l log(1 + δ) > log
log |G|

log |H|
⇔ l >

1

log(1 + δ)
log

log |G|

log |H|
.

Take

l =

⌈

log log |G|

log(1 + δ)

⌉

,

this will give us

log diam(Γ(G,H)) ≤ log 3l = l log 3 ≤ log 3

(

log log |G|

log(1 + δ)
+ 1

)

≤ 3323 log log |G|+ log 3 = log(3(log |G|)3323)

(here we computed log 3/log(1 + 1/3024) explicitly), which gives us

diam(Γ(G,H)) ≤ 3(log |G|)3323.

�
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