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Introduction

Let E be a finite extension of Q,. Let Go be G(R ®qg F') for a connected
semisimple linear algebraic group G over a number field F'. Let 3 be an ideal
of Op lying over p. Let K, be the maximal compact subgroup of Go,. Let I'
be an arithmetic lattice in Go. We define T'(P) := I'NG(*P) where G(P) is the
intersection of G, with the congruence subgroup of GLy(OF) at level 3. We
define T'("B*) similarly. Let Y3 be I'(P*)\Goo /Koo, Where e is the ramification
index of P in F. Let m(m,I'(P)) be the multiplicity with which 7 occurs in the
decomposition of the regular representation of G, on L?(T'(B)\Gw ). Let V()
be the volume of I'(P)\G . For nontempered representation 7, P. Sarnak and
X. X. Xue proved that

m(m,T(P)) < V(P)!# for some p > 0.

In this article we will follow [10] and we are going to find out this value of u
for the cohomological type representations 7 assuming that G, does not admit
a discrete series or if it does then 7 contributes to the cohomology in degrees
other than % dim(Gs /K ). We will see that

m(m, T(PF)) <« V(PF)1-1/dm(Go) a5 | — 0.

Now let H™(Yy, Vi )E be EQo, H™ (Y, Vi) for the local systems V. Let d be the
dimension of G := lim ['/T(P*). We will also prove a theorem concerning the
growth of the cohomology spaces of arithmetic quotients of symmetric spaces.
We will show that

dimg H"(Y,C)g =1 - ¢ - p™ + O(pl4=DF) as k — oo

for constants r,, and ¢. The above two theorems are theorem 1.1 and theorem
3.1 of [10]. We will prove the theorem on dimension of the cohomology of
locally symmetric spaces using spectral sequences of Matthew Emerton and
noncommutative Iwasawa theory.



Chapter 1

Nonarchimedean Functional
Analysis

Let K be a nonarchimedean field (equipped with a nonarchimedean absolute
value such that K is complete). The ring of integers of K is denoted by O.

Definition 1.1 The field K is called spherically complete if for any decreas-
ing sequence of balls By O By D --- in K the intersection N,enB,, is nonempty.

Examples of spherically complete fields are finite extensions of Q,, (since any
finite extension of Q, is locally compact), or any discretely valued field [|K*| is
a discrete subset of RY] (cf. Lemma 1.6 [22]).

Seminorms

Let V be a K-vector space. A (nonarchimedean) seminorm ¢ on V is a
function ¢ : V' — R such that

1. g(av) = |alq(v) for any a € K,v € V,
2. q(v+w) < max{q(v), q(w)}.

Definition 1.2 : A lattice L in V is a O-submodule which satisfies the
condition that for any vector v € V, there exists 0 # a € K* such that av € L.

For any lattice L C V we define its gauge p;, by

PL V=R

v inf |al.
vealL

One can easily show that p; defines a seminorm on V. Now let ¢ be any given
seminorm on V. Then



L(g):={veV:qw)<1l}and L~ (q) :=={v eV :q(v) < 1}.

Then L~ (q) € L(q), and L(q) and L~ (q) are lattices in V (cf. the discussion
before lemma 2.2 of [22]).

In this way, from a lattice we get a seminorm on V and viceversa.

If a seminorm ¢ also satisfies the property that ¢(v) = 0 = v = 0, then it
is called a norm.

Locally convex vector spaces

Let (L;);es be a nonempty family of lattices in a K-vector space V' such that
we have

1. -+ (lel) --- For any j € J and any a € K* there exists a k € J such that
Lk Q CLLj.
2. -+ (Ie2) --- For any two 4, j € J there exists a k € J with L, C L; N L;.

These two conditions ensure that the sets v + L; for v € V,j € J form a basis
of a topology on V' which is called the locally convex topology on V defined by
the family (L;). For v € V the sets v+ L;,j € J form a fundamental system of
neighbourhoods of v.

A subset B is called bounded if for any open lattice L C V', thereisan a € K
such that B C aL. Here we note from [22] lemma 4.5 that a lattice L is open
iff pr (its gauge) is a continuous map.

Now let V' and W be two locally convex K-vector spaces (i.e. equipped with
a locally convex topology). We denote by £(V, W), continuous linear maps from
V to W. When W = K, £(V, K) is denoted by V. We describe a general way to
construct locally convex topologies on £(V,W). We choose a nonempty family
B of bounded subsets of V' which is closed under finite union. For any B € B
and any open lattice M C W the subset

L(B,M) :={f € LIV,W): f(B) € M}

is a lattice in L(V,W): Tt is clear that £(B, M) is a O-submodule. If f €
L(V,W) is any continuous linear map then, since B is bounded there exists
a € K* such that B C af~1(M). This is because f being continuous f~*(M)
is a lattice. This gives f(B) C aM or a™'f € L(B, M). Now one can show that
L(B, M) satisfies Ic1 and 1c2 (cf. Section 3 of [15]).

The corresponding locally convex topology is called the B-topology and we
write Lp(V, W).



When B is the family of all finite subsets of V' then the B-topology is called
the weak topology and is denoted by L4(V, W).

On the other hand, when B is the family of all bounded subsets of V' then the
corresponding topology on L(V, W) is called the strong topology and is denoted
by Ly(V,W).

Now we give a series of definitions from [22].

1. A locally convex vector space V is called bornological if every lattice L
in V' which satisfies the following property P is open. Property P is: For
any bounded subset B C V, there is an a € K such that B C aL.

2. A locally convex vector space V is called baralled if every closed lattice in
V' is open.

3. A net (v;);er is a family of vectors v; in V' where the index set T is directed
(ie. fori,j € I,k € I with ¢ < k and j < k).

4. A net (v;);er in V is said to converge to a vector v € V if for any open
lattice L C V there is an index ¢ € I such that v; —v € L for any j > i;
we say that the net is convergent.

5. A net (v;);er is called a Cauchy net if for any open lattice L C V there is
an index 7 € I such that v; — vy € L for any 5,k > 1.

6. A subset A C V is called complete if every Cauchy net in A converges to
a vector in A.

7. A locally convex vector space V is called quasi-complete if every bounded
closed subset of V' is complete.

8. A locally convex K-vector space is called a K-Fréchet space if it is metriz-
able and complete.

9. A subset H C L(V,W) is called equicontinuous if for any open lattice
M C W there is an open lattice L C V such that f(L) C M for every
feH.

Now we give the main examples of each spaces defined above. We omit the
proofs. One can see chapter 1 of [22] for proofs.

Any metrizable vector space V is bornological. Any Banach space is baralled
and complete. Any complete space V' is quasi-complete. Any Banach space is
a Fréchet space. Any Fréchet space is both bornological and baralled.

Now we state analoges in Nonarchimedean Functional Analysis of some im-
portant theorems in Archimedean Functional Analysis like the Closed graph



theorem, Open mapping theorem e.t.c.
Closed graph Theorem (cf. prop 8.5 of [22])

Let f: V — W be a linear map from a baralled locally convex K-vector
space V into a K-Fréchet space W if the graph I'(f) := {(v, f(v)) : v € V'} is
closed in V' x W then f is continuous.

Open mapping Theorem (prop 8.6 of [22])

Let V be a Fréchet space and W be a Hausdorff and baralled space; then
every surjective continuous linear map f : V' — W is open.

Hahn-Banach Theorem (prop 9.2 of [22])

Let K be a field which is spherically complete and let U be a K-vector
space, ¢ a seminorm on U, and Uy C U a vector subspace; for any linear form
lo : Uy = K such that |lp(v)| < ¢(v) for any v € Uy there is a linear form
1:U — K such that l|y, = lp and |I(v)] < q(v) for any v € U.

Banach-Steinhaus Theorem (prop 6.15 of [22])
If V is baralled then any bounded subset H C L4(V, W) is equicontinuous.
A theorem on dual vector space (prop 9.7 of [22])

Let K be spherically complete and V' be a locally convex Hausdorff space
then the map

Ny

0:V = (V)
v = 0, (1) :=1(v)

is a continous bijection. We note that this is not a topological isomorphism in
general. Here V, = L (V, K).

Now for any topological space M and any locally convex K-vector space W
we let C'(M,W) denote the space of W-valued continuous functions. If (V||
[|lv) is a K-Banach space and if M is compact then C(M, V) with the sup morm
[|f]] = maxgzenr ||f(z)]|» is a Banach space. We denote the dual of C'(M, K) by
D(M, K). (cf. Section 5 of [15]).

Now we introduce the concept of G-equivariant maps between two vector
spaces.

Let V' be a topological K-vector space and G be a topological group, then
we say that a G-action on V is continuous if the action map G x V. — V is



continuous.

If V and W are two K-vector spaces each with a G-action, then the K vec-
tor space Homg (V, W) of K-linear maps from V to W is also equipped with
a G-action, defined by the condition g(¢(v)) = (g¢)(g tv), for g € G, ¢ €
Homg(V,W),v € V. An element ¢ € Homg (V,W) is called G-equivariant if
it is fixed under this action by G. The space of G-equivariant K-linear maps
from V to W is denoted by Homg(V,W).

Now if V and W are two locally convex K-vector spaces (it will be later
abbreviated as convex K-space) equipped with a topological G-action, then
we denote the space of continuous G-equivariant K-linear maps from V to
W by Lo(V,W), where L(V,W) is the space of continuous K-linear maps
from V' to W, which is obviously a subspace of Hom(V,W) := Homg (V,W).
L s(V,W), Lap(V,W) denote respectively the weak and strong topology.

We end this section by stating a useful lemma which will be used later on.

Let A be any O-submodule in a locally convex K-vector space V. Let V4
be the vector subspace of V' generated by A. Now we take any v € V4, then
v = kia1 + ... + kpa, where a; € A and k; € K. Let k; = 7;:—, mg,n; € O.
Then [[n;v € A. This shows that A is a lattice in V4. Hence the gauge pa is
a seminorm on V. We view Vy as equipped with the locally convex topology
defined by pa4 which is by definition the coarsest topology such that the map
pa: V — R is continuous and all translation map v+ : V. — V are continuous.
Now we quote lemma 7.17 of [22].

Lemma 1.1: If B is a bounded O-submodule of V' then we have
1. Vg C V is continuous.
2. If V is Hausdorff then (Vp,pp) is a normed vector space.

3. If V is Hausdorff and B is complete then (Vp,pp) is a Banach space.



Chapter 2

Admissible Continuous
Representations

2.1 Admissible Banach Space Representations

Throughout this chapter K will be a finite extension of Q,. We note that K
is spherically complete and hence the Hahn-Banach Theorem is true. Now let
G be a compact topological group, and W be any Hausdorff locally convex K-
vector space then C(G, W) is the set of continuous functions from G to W. We
can endow C(G,W) with the locally convex topology. We can construct it in
the following way.

Let q1, ---,q, be the seminorms which define the topology on W. Then for
each ¢; we can define a seminorm p; on C(G,W) as follows. Let p;(f) =
mazzecqi(f(z)) where f € C(G,W). Then we endow C(G,W) with the lo-
cally convex topology defined by the seminorms p;’s.

Proposition 2.1.1. Let G be a compact topological group and let V be
a Hausdorff locally convex K-vector space equipped with a continuous action
of G. If W is any Hausdorff locally convex K-vector space then the map ev, :
C(G,W) — W induces a G - equivariant topological isomorphism of convex
spaces

Lap(V,C(G,W)) = Lo(V,W).
Proof: Prop.5.1.1 of [1], page 86. O
From now on, we assume that G is compact and V' is a K- Banach space. So

C(G, K) is a Banach space. Now we quote another fact from nonarchimedean
functional analysis.



Fact: (cf. Prop 1.1.36 of [1]). Let V and W be Hausdorff locally convex
K-vector spaces, and let W is baralled or bornological. Then passing to the
transpose induces a topological embedding of locally convex spaces

Ly(V,W) = Ly(W,, V).

By the term ‘topological embedding’ we mean a homeomorphism onto its
image. Now we go back to our case where V is a K-Banach space. Then as
C(G, K) is a Banach space, it must be baralled. So we get ¢ : an embedding

¢ Lo(V,C(G, K)) = Lo(D(G, K)p, Vy).

Here we recall that D(G, K); is the dual of C(G, K) equipped with the strong
topology.

Now from proposition 2.1.1 we get a topological embedding (here we take
W =K),
V, ~ Lap(V,C(G,K)) = Lap(D(G, K)p, V)
and hence a map D(G, K); ¥ Vl; — V)’ which is G-equivariant in the first variable

and separately continuous. This makes Vj into a left D(G, K);-module. Now
we have an isomorphism of K- vector spaces

Hompc k) (D(G,K),V') 2 La(V,C(G, K)).

This is because tautologically

/

Homp x)(D(G,K), V)=V
and proposition 2.1.1 gives a K-linear isomorphism
V' =L(V,K) = Lo(V,C(G, K)).
Now I state theorem 5.1.15 of [1].
Theorem 2.1.1 : Let G be a compact topological group and let V be
a K-Banach space with a continuous G-action. If we equip V' with the ac-
tion of D(G, K) described above, then any surjection of left D(G, K)-modules
D(G,K)™ — V is obtained by dualizing a closed G - equivariant embedding
V — C(G, K)™. In particular, V' is finitely generated as a left D(G, K)-module

iff V admits a closed G-equivariant embedding into C(G, K)™ for some natural
number n.

Proof : Let us suppose that we have a surjection of left D(G, K)-modules
¢: DG, K} —V,.



Since the map ) )
D(G,K)y xV, =V, (2.1.1)
describing V, as a left D(G, K)}-module is continuous in its first variable, the

surjection ¢ is necessarily continuous.

Now, V}; is a Banach space. So it is a Fréchet space. Also D(G,K)} is a
Fréchet space. So by the open mapping theorem ¢ is open.

Dualizing the map ¢ we get a closed G-equivariant embedding

’rn

(V;) = (D(G,K)}) = ((C(G, K),),) - (2.1.2)

The above map is closed because since ¢ is open we have a topological isomor-
phism D(G, K)}' /I =V, , where I = ker ¢. So

1%

/

(V) 2 (D(G, K)p/T) 2% (D(G, K)y)

The map in equation 2.1.2 is an embedding because ¢ is surjective.

Let j; : D(G,K), — V, denote the 7" component of o, where 1 < i < n.
By the discussion before the theorem we get that j; is obtained by dualzing a
continuous G-equivariant map V — C(G, K). Taking the direct sum of these
we obtain a continuous G-equivariant map V' — C(G, K)™. We obtain the fol-
lowing diagram.

v —Y % G, K"

l L

(V3)y — ((C(G, K),),)

The bottom arrow is a topological embedding and since V' and C(G, K) are
both Banach spaces, so the vertical arrows are also injective and induces a topo-
logical isomorphism onto its image. So % is an embedding. It remains to prove
that the image of 1 is closed. But V' is a Banach space, and hence the image of
1 is complete and hence closed.

Now we note that our field K is a finite extension of Q, and hence spher-
ically complete and hence all the nice theorems stated in Chapter 1 including

the Hahn-Banach Theorem hold.

Conversely, if we dualize a closed G-equivariant embedding V' — C(G, K)",
then we certainly obtain a surjection of left D(G, K)-modules.

10



/

DG, K)" -V

This proves the theorem. O

Definition 2.1.1: A continuous G-action on a K-Banach space V is said
to be admissible continuous representation of G (or an admissible Banach space
representation of G) if V' is finitely generated as a left D(G, K)-module.

Remark 2.1.1: If V is a K-Banach space equipped with an admissible con-
tinuous representation of G, and W is a closed G-invariant K-subspace of V,
then the continuous G-representation on W is also admissible. This is because
W'isa quotient of V'. Here we note that K is spherically complete.

Proposition 2.1.2: If 0 - U —- V — W — 0 is a G-equivariant exact
sequence of K-Banach spaces equipped with continuous G-action, and if each
of U and W is an admissible continuous G-representation, then V is also an
admissible continuous G-representation.

Proof : Since
0—-U—->V->W=0

is exact, we have the following exact sequence of D(G, K)-modules.
0= W, =V, = U/ —0.

If each of the end terms is finitely generated over D(G, K), then V;/ is also
finitely generated D(G, K)-module. O

Proposition 2.1.3 : Let K be discrete valued. (So it is spherically com-
plete and the Hahn-Banach Theorem holds). The association of V' to V in-
duces an anti-equivalence between the category of admissible continuous G-
representation, (with morphisms being continuous G-equivariant maps) and the
category of finitely generated D(G, K)-modules.

Proof Sketch: We know that the functor sending V to V' is faithful. This
is from the fact that we discussed after Proposition 2.1.1. So the transpose
of a continuous linear map between Hausdorff locally convex spaces vanishes
iff the map vanishes. We now prove that the functor is full. Let us suppose

that V and W are admissible continuous G-representations, and we are given a
D(G, K)-linear map

w v, (2.1.3)

We show that this map arises as the transpose of a continuous G-equivariant
map V — W. We choose surjective maps D(G,K)™ — V and D(G,K)" —
W . Now we have a commutative diagram of D(G, K)-linear maps.

11



Diagram 1

Now the discussion at the beginning of this section shows that if we remove
the lower horizontal arrow from diagram 1 then it arises by dualizing a diagram
of continuous G-equivariant maps of the form

v

w
| aso

C(G,K)™ —— C(G,K)™
Diagram 2

Now the vertical arrows are closed embeddings. Now the lower horizontal
arrow of diagram 1 can be filled in implies that the lower horizontal arrow of di-
agram 2 restricts to a G-equivariant map ¢ : V' — W. This is because dualizing
the map W, — V, gives us a map (V) — (W,). Now since K is spherically
complete and V is a Banach space we have that the natural map V — (V; )’
is a topological isomorphism onto its image and the same is true for W. By
construction the transpose of ¢ is equal to the desired morphism W' = V' in
equation 2.1.3. So the functor is full and we proved our claim. Now with some
more effort one can prove that this functor turns out to be essentially surjective
[cf,[1] Proposition 6.2.10]. Hence we deduce the required anti-equivalence of
categories. O

Remark 2.1.2 Let G be a compact p-adic Lie group, and let K be a finite
extension of @, and so spherically complete. Let us denote the ring of integers of
K by o. Sending an element g € G to Dirac distribution ¢, € D(G, K) extends
to an embedding of o- algebras

o[[G]] — D(G, K)

whose image can be proved to a lattice. So we have K ®, o[[G]] = D(G, K).
(cf. [17]).

2.2 Admissible Topological Modules

Let G be a compact locally @, analytic group. Let E be an finite extension
of Qp. Let M be a p-adically separated and complete torsion free Og-module,
then F ®p, M is an E-Banach space. This is because, M being torsion free,

12



the embedding M — F ® M identifies M with an Og-lattice of F ® M and
the gauge of M is the complete norm on £ ® M. This fact becomes clear from
lemma 1.1 that we discussed in Chapter 1.

If M is any Og-submodule, then we denote the torsion subgroup of M by
Miors, and My is defined as M/Miors. Here ‘tf’ is the short form of ‘torsion
free’.

Definition 2.2.1

If M is an O[G]-module, then we say that M is admissible if it satisfies the
following two conditions:

1. M, has bounded exponent i.e there exists a positive integer s such that
pthors =0.

2. The G-action on E ®p, M makes it an admissible continuous representa-
tion of G.

Remark 2.2.1: When we write £® M in this article we mean E®p, M. If
¢: M — N is an Og-linear and G-equivariant morphism of admissible Og[G]-
modules, then ker ¢, cokerg, imeg are all admissible Og[G]-modules. These facts
can be proved easily. Moreover, from proposition 1.2.4 of [14] ker¢p — M is a
closed embedding, when both have p-adic topologies.

Lemma 2.2.1 Let
0O-M—->N—=>P—=0 (2.2.1)

be a short exact sequence of Og[G]-modules. If M and P are admissible then
N is also admissible.

Proof : From the exact sequence below

0— Mtors — Ntors — Ptors

we see that if M;,.s and Pi,.s have bounded exponent then Ny,.s has also
bounded exponent. Now we consider the exact sequence of projective systems

(P} oy T {M/p* Yot 2 (N/p*}sz1 = {P/p"}ss1 — 0.

Here P[p®] is the p*-torsion elements of P. We note that we get the above exact
sequence by snake lemma.

Now since Pj,.s has bounded exponent we see that the transition maps
of the projective system {P[ps}}s21 eventually vanish. Hence, R! @P[ps] =
Jim P [p*] = 0, where R! is the first right derived functor. We note that here we
have used the following Mittag-Leffler condition (cf. proposition 3.5.7 of [28]):

If the range of morphisms of an inverse system of abelian groups (A;;, fi;)
are stationary, that is for every k there exists j > k such that for all ¢ > 5 :

13



frj(Aj) = fri(As)
then R! @Ai =0.

Because of surjectivity of the transition maps of { M /p®}s>1 we have R 1£1 M/p® =
0 (again by the Mittag Leffler condition). So we have the exact sequence

0 — lim M/p* — lim N/p* — lim P/p* — 0

because the inverse limit functor is left exact. Now since M and P are p-adically
separated and complete we have lim M /p® = M and lim P/p® = P. So using the
five lemma of homological algebra we see that N = @N /p®. So N is p-adically
separated and complete. Now tensoring the short exact sequence 2.2.1 with
over Op, since F is flat over O, we see that N is an admissible Og[G]]-module
because an extension of an admissible continuous representation of G is again
an admissible continuous representation and we proved this fact in proposition
2.1.2. O

Lemma 2.2.2 : Let M be a torsion free admissible O[G]-module, then
there exists 6 : M — C(G,Og)", for some natural number n. Moreover, if
N = Cokerd. Then there exists a Op-linear map ¢ : N — C(G,Og)" with the
property that the composite of ¢ with the projection map C(G,Og) — N is
equal to multiplication by p°® on V.

Proof: We have i : M — E ® M. This map is an embeddding since M is
torsion free. Now since M is an admissible module then by definition £ ® M
is an admissible representation of G. Hence we have a closed embedding 6 :
E® M — C(G,E)". This gives us the map by rescaling scalars

M — C(G,0p)".

We describe the process of rescaling. Let m' € M Let i(m') = m,m €
E ®p,, M. Let us denote §(m) by f € C(G,E)™. Let f = (f1,..., fn). Now we
work with f;. Consider any open set a + p"Op around a where a € E. Since f;
is continuous there exists a neighbourhood V' of G such that f1(V) C a+p"Opg.
Now let @ = by /cy where by,cy € Og. Then cy f1(v) € O for allv € V
Now we vary a and thus we vary V and cover G with open neighbourhoods.
Now we use that G is compact. So there exist finitely many neighbourhoods
Vi, ..., V; which cover G. Now we see that []_] cv, f1 takes values in Op. Hence
obviously there exists a ¢ € O such that cf takes values in Op.

Now we have the following exact sequence

05 EaM 2 c(G,E)" S E®@N —0
where N is the cokernel of the map M — C(G,Og)".

14



Now we quote another fact from nonarchimedean functional analysis (cf.
Proposition 10.5 of [22]).

Fact: If V is an E-Banach space, E is a finite extension of Q,, then for every
closed vector subspace U C V there exists another closed vector space Uy C V
such that the linear map

UplU, =V
(v+uv)—v+uv

is a topological isomorphism. When this holds we say that any closed subspace
in V' is complemented.

By the above fact we have a splitting of the above exact sequence o : EQN —
C(G,E)". Now in the beginning of the proof we showed the process of rescal-
ing scalars for the map 6. We do the same for 0. So for some y, pYo takes
the image of N in F ® N which is N/Nyys, into C(G,Og)". Now because
Niors has bounded exponent we have a natural projection p*(-) : N — Nig.
Let s = k + y, and we define ¢ := p°c o p¥(-). This ¢ satisfies the required
conditions of the theorem because we have constructed o as the splitting of the
map C(G,E)" - E®o, N. O

Remark 2.2.2 : Let Ay, be the category of Op[[G]]-modules, and among
them we denote the subcategory of the admissible ones by Ag. Let B/(; denote
the category of projective systems {M;}s>1 of Og[G]-modules such that M;
is killed by p®. We call an object of Bé essentially null if the transition maps
M — M vanish if s is large. This is a Serre subcategory. We denote by B/G
the Serre quotient category. The concept of Serre category and Serre quotient is

discussed in brief in the following paragraph. For reference one can see exercise
10.3.2 of [28].

A (nonempty) full subcategory T' of an abelian category A is a Serre sub-
category if for any exact sequence

0—-M—M =M =0

M isin T iff M and M are in T. Now we discuss the process of obtaining
Serre quotient. Let A be an abelian category. Let C be a Serre subcategory of
A. There exists an abelian category A/C (called the Serre quotient category)
and an exact functor F' : A — A/C which is essentially surjective and whose
kernel is C. Moreover for any exact functor G : A — B such that C' C ker(G)
there exists an exact functor H : A/C' — B such that G = Ho F.

Now it is clear that the essentially null objects of Bé form a Serre subcate-
gory.
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We list here some facts about categories and functors and we shall not give
any proofs. The reader can consult [14] (lemma 1.2.9, page 16) for proofs.

e Themap S : Ay, — By, sending M — {M/p*}4>1 — P where P the image
of {M/p®}s>1 under the Serre quotient, is a functor. We denote the image
of S restricted to Ag by Bg.

e The projective limit induces a functor Bg — .A/G which gives us a functor
T: B/G — Alg.

e S restricted to Ag is exact with the quasi-inverse T restricted to Bg. The
category Ag is equivalent to the category Bg by the morphisms S and 7T'.

e The subcategory B¢ of B/G is closed under kernels and cokernels. This
comes from the fact that S restricted to Ag is exact.

Proposition 2.2.1 : Let M*® be a cochain complex in Ag. Then for n € Z,
the natural map {H"(M*®)/p*}s>1 — {H™(M®/p*)}s>1 is an isomorphism of
objects in the category Bg. Here we get the above natural map in the following
way. For fixed s we have a natural projection map from M*® — M*®/p®. This
induces the map ¢ : H"(M®) — H"(M®/p*) which is also induced from the
projection map and hence all elements of the form p®a for a € H™(M*) belongs
to the kernel of ¢. Hence we get a map

{H"(M?®)/p*}sz1 — {H"(M*/p*)}s>1

Proof : The cohomology H"(M*®) € Ag. This is because Ag is closed
under taking kernels and cokernels. Also from the facts just jotted down Bg is
closed under taking kernels and cokernels. We also note that S| 4., is exact, so it
commutes with cohomology and S and T are quasi-inverses between categories
Ag and Bg. These facts give us H"(S(M?®)) € Bg, S(H™(M*®)) = H*(S(M?*)).
Thus we get our required isomorphism. Also H™"(M*®) = TS(H"(M?*)) =
T(H™(S(M?*))). Hence we also get that H"(M*®) — l'ng"(M'/ps) is an iso-
morphism in the category of admissible Og[G]-modules. O

Now if G is trivial we omit G from our previous notations and denote by
A, A ,B,B the above categories. We call the objects of A by admissible Og-
modules.

Lemma 2.2.3 : Let us assume that we are given Og-modules M and N,
and Opg-linear maps M — N and N — M such that the composition equals
multiplication by p°. Then M is admissible provided NV is given to be admissible.

Proof: Let us note that A consists of M for which M, has bounded
exponent, and M,y is finitely generated. Now let X be the kernel of the map
M — N. Then by hypothesis X C M[p®]. That is X is contained in the torsion
submodule of M. This gives us the exact sequence 0 — X — Miors — Niors,
we see that if Ny,.s has bounded exponent then M, has also bounded expo-
nent. Now using the natural embedding M;s — N we see that M;; is finitely
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generated over O (which is a PID) since Ny is finitely generated over Op.

If M is any topological Og-module with a continuous G-action, then we
denote by C2,.(G, M), the complex of continuous cochains on G with values in
M, and we denote by H?,,, (G, M), the cohomology of the complex C2,, (G, M).
If M is an admissible Og[G]-module then we regard M with its p-adic topology.
Now we admit the following fact without proof (cf. [14] Lemma 1.2.17). O

Fact 2.2.1: H®

con

(G,C(G,0p)) = 0, Hi, (G,C(G,0F)) =0 for i >0

Proposition 2.2.2 : If M is an admissible Og[G]-module, then for i € N,
H: (G, M) is an admissible Og-module.

Proof: We have the natural map M — M,y — M. The first map is
multiplication by p°® where p® is the exponent of M;,.;. So we have maps

Hé(m(Ga M) — H} (Ga Mtf) - Héon(GvM)'

con

By lemma 2.2.3, it suffices to show that H!,, (G, M;s) is an admissible Op-

module. So we prove our proposition when M is torsion free.

We will use induction on 7. As M is torsion free there exists an embedding
M — C(G,Og)". This follows from lemma 2.2.2. This gives us

H,, (G, M) — O

as HY (G,C(G,0F)) & O, from fact 2.2.1. So H, (G, M) is an admissible

Og-module. This is because, since O is a PID we can see that (H2,, (G, M))iors
has bounded exponent (as (O%)iors is finitely generated Op -module) and
(H?,,(G,M));y is also finitely generated.

We now assume that the case ¢ — 1 is know to us. Let us denote by N the
module M/C(G,Og)". Now by lemma 2.2.2 we get a map ¢ : N — C(G,Op)"
and proj : C(G,0g)" — N such that proj o ¢ = p°(:) for s € N. Now C*
denotes the cokernel of the natural map C2,, (G, M) — C* (G,C(G,Og)"),

then we get that C* — C?2,, (G, N). This embedding is because we have

0—-M~—C(G,0g) N —=0

an exact sequence which implies

0—C?

o (G, M) = C2, (G, C(G,08)) & €2, (G, N)

con

is exact.

So
Cc.on (G7 C(G7 OE))/Cc.on(Gv M) = Cc.on(Gv C(G7 OE))/ ker 6 — Cz:on(Gv N)
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Hence we get that the composite map C* — C?,

con
the second map is induced by ¢. This gives us

(G,N) — C* is p°(-), where

Hi=YC*) — HIZHG,N) — H7L(C*)

con

such that the composite equals p*(-). Now by the induction hypothesis H:,,! (G, N)
is an admissible module which implies that H*=!(C*®) is admissible by lemma
2.2.3. Now we know that a short exact sequence of complexes gives us a long
exact cohomology sequence with a connecting § map between i'" and (i + 1)

cohomology. Hence we get an exact sequence

Hiil(c.) - Héon(Gv M) - Hzon(Gv C(G7 OE)n)
which is an extract of the long exact sequence obtained by considering the exact

sequence (exactness is obvious by definition of C*) of complex:

0—C?®

con

(G,M) = C?

con

(G,C(G,0p)") = C* = 0.

Now we use the fact that H!, (G,C(G,0g)) = 0 for i > 0 and so we get
that H

i (G, M) is admissible because H! , (G, M) is then the quotient of the
admissible module H*~1(C*®) and we know that the category of admissible Op-
modules is a Serre subcategory of the category of all Og-modules (cf. [14]

Lemma 1.2.13). This completes our proof. O

Proposition 2.2.3 : Let M be an admissible Og[G] modue, then the kernel
and cokernel of the natural map of the projective systems

{Héon(G7 M)/ps}«SZl - {Héon(G’ M/p‘g)}a??l

are essentially null projective systems.

Proof: Let M;,,s has exponent p*°. Then naturally we have a map ¢ :
My — M which is ¢(a + Miors) = p*°a + Myors such that the composite
M — My — M is p*(-). Now for s > s9, we write ¢5 = p*~*0¢. Now we can

easily see that the sequence 0 — M;; LM M /p® — 0 is exact, where the
second map j is the map by ¢s. Now the topology on M /p® is discrete. So the
maps in C2, (G, M/p®) are locally constant and hence they can be lifted to the
locally constant elements of C® (G, M). Hence we obtain an exact sequence
0 — C*(G,Mys) — C*(G,M) = C*(G,M/p*) — 0. Let H} 1(G, Myys)[¢s] be

con
con

all elements x € H'}1 (G, M, ) such that ¢5(z) = 0. Now a short exact sequence

con
gives us a long exact cohomology sequence. Hence we get that the sequence

con con con

0— H,, (G, M)/¢s(HL,, (G, Myg)) = Hi,, (G, M/p*) — HILH(G, Myg)[¢s]
is exact. This is because we have

0— C*(G, M) = C*(G,M) — C*(G,M/p*) = 0

18



an exact sequence.
So we have the following exact sequence
HYG, M) 25 HY(G, M) 2 HY(G, M/p*) & HY(G, Myy) 25 HHY(G, M).
This implies that
HY (G, M)/ps(H ™ (G, Mys)) =2 H(G, M)/ kerm — H'(G, M/p®).

So z is injective. Also the image of g is the kernel of ¢ which is H'3 (G, Myy)[¢s].

con

Now H} (G, M;s)[¢s] is contained in H:}I (G, M;y)[p®], because the com-

con
posite M, ¢ Do M My is p°(-) and ¢s = p*~*°¢. Now we use our proposition
2.2.2 for the fact that H'},! (G, M;y) is an admissible module. Here we note that

M is an admissible Og[G]-module implies that M, is also admissible (cf. [14]
Lemma 1.2.2).

This gives us that the projective system {H!T1(G, Mf)[p®]}sss, is essen-

con

tially null because (Hi"‘l(G,Mtf))tors has bounded exponent and hence the

con

projective system {H:T1(G, Mif)[¢s]}s>s, is essentially null. We denote this

con
fact by 8 for providing future reference.

This gives us that
Héon(Gv M)/¢S(HZ (G’ Mtf)) — Héon(GV M/ps)

con

has essentially null cokernel for s > sq.

For s > sg we have p*H!,, (G, M) C ¢5(H¢,, (G, M) Cp**°H! (G, M).

con con

The second containment is because ¢5 = p*~*°0¢ and ¢(H.,,, (G, My¢)) C H: (G, M).
So by the same type of arguments as we have done in 8 the natural map of the
projective systems

q : {Héon(G7 M)/pS}SZSO - Héon(Ga M)/¢S(Héon(G7 Mtf))sgso
has essentially null kernel. In total we get that
{H(l;on(Gv M)/ps}s>1 - {Hgon(Ga M/ps)}s>1

has essentially null kernel and cokernel. We recall that we get the above map
by z o g. This concludes the proof of our theorem. O
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Chapter 3

Iwasawa Algebra

3.1 Results from Lazard

Let G be any abstract group. A p-valuation w on G is a real valued function
w:G\{1} — (0,00)

satisfying
1. w(1) = oo (convention)
2. w(g) > 33
3. w(g™th
4. w(lg, h]) = w(g) +w(h)
5. w(gP) =w(g) +1

for any g,h € G. Here [g,h] = ghg=*h~!. When we put h = 1 in (3) we get
that w(g™!) > w(g) for any g € G and by symmetry w(g~!) = w(g). One can
also prove using the five properties stated above that w(ghg™!) = w(h) for all

g.h and w(gh) — min(w(g),w(h)) if w(g) # w(h).
Now for any real number v > 0, we put,
G, ={9€G:w(g) =2v}and G,1 :={g € G,w(G) > v}.

Now G,’s form a decreasing filtration of G and hence there exists a unique
topology on G (the topology defined by the filtration) such that G, form a
fundamental system of open neighbourhoods of identity. It is called the topology
defined by w.

Let us define for each v > 0,

gr,G := G, /Gyt and grG := Byso gr,G.
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An element £ € grG is called homogeneous of degree v if £ € gr,G.
Now, if § =g Gu, then & =gPGoy, w(g) 2 v, = w(g?) =w(g)+1Z2v+1>v
s0 &P =0 (@)

Now we make gr,G into an Fj,-vector space by defining a§=¢* for £ € G, /G-
Because of («) this is a well defined definition, and so gr,G, hence grG is an
[F,,-vector space.

Now for any v,v’ > 0 the map
gr,Gxgr, G —gr, /G

sending (¢,n) — [(,n] := [9,h]G 1,/ 4 where ( = gGyy and n = hGyy is well
defined, biadditive map. The above fact gives us a graded IF)-bilinear map

[,] :erGxgrG —grG

For more details one can look at (cf. Lemma 23.4 of [17]). Now as w is a

p-valuation, w(gP) = w(g) + 1 and with some more effort one can show that
Vg, h e G

L w(h™Pg7P(gh)?) > max(w(g),w(h)) + 1,
2. w(g P"hP") = w(g~'h) + n for any integer n > 1.

Now let v > 0 and g, h € G such that w(h) > v = w(g). Then w(h~Pg~P(gh)?) >
w(h) +1 > v + 1. This implies h™?g7P(gh)? € G(yq1)+. This gives us
(gh)PGot1)+ = PP Glut1)+

If w(h) > v then w(h?) = w(h) +1 > v+ 1. So (gh)’Gyr1)+ = §PG(vg1)+-
Hence the map
gryG —gry11G
gGv+ - ng(v+1)+

is well defined and F,-linear. This gives us a F,-linear map of degree one
P:grG — grG.

Therefore we can view grG as a graded module over F[P].

Now we let G to be a profinite group and w be a p-valuation on G which
we assume to define the topology of G. So G, is open and G/G, is finite,
G = @U G/G,. Axiom 5 of the valuation w gives us that G/G, is a p-group.
So G is a pro-p group. We also recall that in a pro-p group we can take Z,
power of an element of the group that is if ¢ € G and a € Z, then g* is well
defined. (cf. Lemma 1.24 page 29 of [2]).
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Definition 3.1.1: The pair (G,w) is called of finite rank if grG is finitely
generated over F,[P].

Now one can show that gr(G) is torsion free module over F,[P] (cf. Remark
25.2 of [17]). But a finitely generated torsion free module over a PID F,[P] is
free. So we can define

rank(G,w) :=rankp p)grG.
Let us fix g1, ..., g € G. Now we consider the continuous map
Zy, — G
(xl’ .. .xr) > gfl e g:'

We note that this map depends on the order of g1, ..., g and hence it is not a
group homomorphism.

Definition 3.1.2: The sequence of elements (g1, ...,g,) in G is called an
ordered basis of (G,w) if the above map is a homeomorphism and

w(grt, - gF) = miniicr (w(gi) + v(z;)) for x; € Zy,.

Here v is the valuation map of Z,. Now we proved previously that if (G,w) is
of finite rank then the rank of grG over F,[P] is finite. Following [17] (propo-
sition 26.5) we can relate the basis of G to the basis of gr(G) over Fy[P]. In
fact, (g1,...,gr) is an ordered basis of (G,w) iff o(g1),...,0(g) is a basis of the
[Fp,[P]-module gr(G). Here for g # 1, 0(g) := gGug)+ € gr(G). In analogy with
the theory of vector spaces one can also show that any (G, w) of finite rank has
an ordered basis (of length equal to rank of grG over F,[P]).

Now we fix a p-valuable group G with a p-valuation w on it. We fix a com-
plete discrete valuation ring O O Z,, and denote the valuation by v.

Now we pick an ordered basis (¢1,...,9,) of (G,w). By definition we have
c:Zy,—G
(x17"' ,{L'r) = gfla"' 7gfr

where the map c is a homeomorphism. Now let C(G) be the continuous functions
from G to O. The map c induces an isomorphism of O-modules

¢ O(G) = O(Zn).

Now let A(G) be the Iwasawa algebra of G over O that is A(G) := O[[G]]. Now
lemma 22.1 of [17] shows that

A(G) = Homo(C(G), O).

So dualizing the map ¢* we get an isomorphism of O-modules
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c. = A(Z3) = A(G).

This gives us A(G) = O[[X1,...X,]] as topological O-modules because A(Zj) =
O[[X1, ..., X;]] (cf. prop 20.1 of [17]).

Now let G be any pro-p analytic group that is G is pro-p which is also
provided with a p-adic analytic group structure i.e. it is a p-adic manifold with
morphisms

GxG—CG

(z,y) =y
and the inverse map x — z~! being analytic maps. In [16] (chapter 5, section
2.2.4, it is proved that if G is a pro-p analytic group, then it admits an open sub-
group U which admits a p-valuation such that with respect to the p-valuation, U
is complete and its graduation is of finite rank over F,[P] and then the Iwasawa

algebra of G is both left and right Noetherian. This is a result that we will need
later in Chapter 5.

3.2 Construction of the Skew Field of the Iwa-
sawa Algebra

Let R be a non commutive ring. An element z € R is called right regular if

xr = 0 implies » = 0 for » € R. Similarly left regular elements are defined,

and regular means both right and left regular. We denote the set of all regular
elements of R by Cr(0) which is a multiplicative closed set.

Let S be a (nonempty) multiplicative closed set of a ring R, and let assS =
{r € R|rs =0 for some s € S}.

Then a right quotient ring of R with respect to S is a ring @ (denoted by
Rg) together with a homomorphism 6 : R — @ such that

1. for all s € S,6(s) is a unit in @Q,

2. for all ¢ € Q,q = 0(r)0(s)~! for some r € R, s € S; and

3. kerf = assS.

A multiplicative subset S of R is said to satisfy the right Ore condition if for
eachr € Rand s € S, Ir' € R,s’ € S; such that rs’ = sr’. Now since S
satisfies the right Ore condition then assS is a two-sided ideal of R. (cf. [24]
Section 2.1.9, Chapter 2) Now we denote by S the projection of S in the ring
R = R/assS.

Theorem 3.2.1 : Let S be a multiplicative closed subset of a ring R. Then
Rg exists iff S satisfies the right Ore condition and S consists of regular elements.
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Proof: These conditions are necessary (from [24] Section 2.1.6 and Section
2.1.11). We now describe how to construct the ring of fractions.

Construction: First we consider the set & of those right ideals A of R such
that AN S # (. It can be easily verified (using the right Ore condition) that for
A1, A5 €S, and o € Hompg(A1, R) that

1. AlﬁAQE%,

2. a tAy = {a € A, |afa) € A3}E Q.

Here Hompg(A1, R) denotes R-module homomorphism. A; is a right ideal
so it is obviously a right R-module.

Secondly, we consider the set U{Homg(A, R)|A € 3} together with the
equivalence relation, o; € Hompg(A;, R) . We say a; ~ as if a; and s coincide
on some A € §, A C A; N A;. We define the operations on equivalence classes
[a;] by [@1] 4 [ae] = [B], where § is the sum of the restrictions of a; and as to
AN 1;12; and by [a1][az] = [y] with 7 being their composition when restricted
to 02_ Al.

The following facts can be checked easily (cf. [24] Section 2.1.12).

1. These operations are well defined, under them, the equivalence classes
form a ring denoted by Rg.

2. That, if » € R is identified with the equivalence class of the homomorphism
A(r) : R — R given by  — rx, this embeds R in Rg.

3. Under this embedding, each s € S has an inverse s~ = [a], where « :

sR — R is given by sz — x, and

4. if « € Hompg(A, R) with A € 3, then [a] = as™! where s € AN S and
a = as).

Thus we have demonstrated the method of construction of the
ring of fractions. O

A multiplicative subset S of a ring R which satisfies the right Ore condition
will be called a right Ore set. A right Ore set such that the elements of S are
regular in R = R/assS (and so Rg exists) will be called a right denominator
set. If S is a right Ore set in a ring R and if the elements of S are regular in R,
then it can be proved that S is a right denominator set (cf. [24] Section 2.1.13).
The right quotient ring of a ring R with respect to Cr(0), the set of all regular
elements, is simply called the right quotient ring of R and is denoted by Q(R).
That is, when we say right quotient ring of R we mean that we are considering
the multiplicative set Cr(0) and taking the right quotient ring of R with respect
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to Cr(0). An integral domain (i.e. does not have zero divisors) R is called a
right Ore domain if Cr(0) is a right Ore set.

Corollary 3.2.1 : The previous theorem gives that :
An integral domain has a right quotient ring iff it is a right Ore domain.

If R is an integral domain then it is obvious that its right quotient ring will
be a division ring which is also called a skew field or a right quotient division
ring of R.

Let E be a finite extension of Q,. Let G be a pro-p analytic group. G can
also be a p-adic analytic group which is a torsion free pro-p group. Let Og
denote the ring of integers of E.

We recall that we are working with A = E ® Og|[[G]] which is by [16] or
by [2] (corallary 7.26 and the discussion after it) Noetherian noncommutative
integral domain. So if we prove that any right Noetherian integral domain R
is a right Ore domain then this will allow us to construct its skew field K and
then we can define rank of any Ag-module M as dimg (M @5 K).

Theorem 3.2.2 : Any right Noetherian integral domain R is a right Ore
domain.

Proof : We show that aR N bR = 0 = the elements {a’b|i € N} are R -
linearly independent on the right.
If X7 qa'br; = 0, then —brg = XI'_,a’br;, but a factors to the left side of this
last expression. So both sides are zero, so ro = 0 and 2?21 a*~tbr; = 0. We do
this repeatedly and thus all the r;’s are zero.

This gives us that @;ena’bR is a submodule of R. But this submodule
contains infinite ascending chain. Since R is right Noetherian, this is a contra-
diction. (]

Now we would like to point out that we can make similar construction for
constructing left quotient ring of R. However it is not true that the right quo-
tient ring and the left quotient ring of R are the same. They are same iff the
set of regular elements of R is both a left and a right Ore set. For proof one can
see proposition 6.5 of [3].

So we can now talk of the skew field K of Agp = E[[G]].
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Chapter 4

Completed Cohomology and
Spectral Sequence

4.1 Hochschild-Serre Spectral Sequence

We assume that the reader is familiar with basics of category theory and with
the definition of cohomology of complexes. We will not discuss them here.

Let G be a profinite group. We begin by defining the n-dimensional con-
tinuous cohomology group of G with coefficients in a G-module A. We assume
that A is discrete. Let X™ be the set of all continuous maps = : Gt — A. We
also write it as X™(G, A). Then X" is naturally a G-module by

(0x)(00, ..., 0n) = cx(0 100, ..., 0 " Loy,).
We also consider the maps
di : Gn+1 — G"
(00, -y 0n) ¥ (00, ey Tiyeeny On)

where J; denotes that o; is omitted.

Now we construct a map d} : X"~ 1 — X"
di o xm b X
g god,.
Now for each x € X"~ ! we define §"(z) as
(6"2)(00, oy o) = Do (=1)'x(00, ..., Gy ooy ).
That is

0 =0 o (—1)ids Xl X
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Following [23] proposition 1.2.1 one can show that
5° 5t
0+ A= X0 Xt ...

is exact, where 6 : A — X© associates to a € A the constant function z(og) =
a. The above exact sequence is also called the standard resolution. Now let
C"(G,A) = X™(G, A)¢ which is by definition all elements of X™ fixed by G.
Formally C™(G, A) consists of continuous functions x : G**! — A such that

xz(oog,...000) = ox(0g,...,0n) for all o € G.

Now from the standard resolution we obtain the complex

oG, A) 2 ova, A) o2 a, A) s -
Then the n-dimensional cohomology group of G with coefficients in A is denoted
by H"(G, A) and is defined as H"(G, A) := ker 6"+ /image(5™).
We note that H°(G, A) = A% =kerd' — C°(G, A).

Now we quote another equivalent definition of cohomology (cf [23] proposi-
tion 1.3.9).
Lemma 4.1.1 : If
04— X0 Xt —...

is the standard resolution then H"(G, A) = H"(H°(G, X*)), where X*® is the
complex

X0 xt ...
Let A be an abelian category. A (decreasing) filtration of an object A is a

family (FPA)pez of subobjects FP A of A such that FPA D FPT1A for all p. We
write

grpA=FPA/FPHLA

By convention we put F*°A =0 and F~>°A = A. We say that the filtration
is finite if there exists n,m € Z with F"*"A = 0 and F"A = A. A morphism
f: A — B is said to be compatible with the filtration if f(FPA) C FPB for all
p€E€Z. and A, B € A.

Let m belongs to the set of natural numbers. An F,,-spectral sequence in
A is a system E = (E??, E™) consisting of
1. objects EP? 