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Sums of k numbers which are s-th powers of integers (2 ≤ s ≤ k)

We are interested in representing a non-negative integer n as the sum of
k numbers which are s-th powers of non-negative integers xi ,

n = x s
1 + x s

2 + · · ·+ x s
k ; (1)

we let
Rs,k (n) be the total number of those representations,

rs,k (n) be the number of representations with x s
1 ≤ x s

2 ≤ · · · ≤ x s
k and

r ′s,k (n) the number of representations with x s
1 < x s

2 < · · · < x s
k .

As,k = {n : rs,k (n) > 0} = {n : Rs,k (n) > 0}
We further count the number of integers n up to the real number x

which are sums of k s-th powers by the counting functions

As,k (x) = CardAs,k ∩ [1, x ] = Card {n ≤ x : rs,k (n) > 0}
and their densities
lim infx→∞ As,k (x)/x and lim supx→∞ As,k (x)/x .
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What we can prove

For k ≥ s

As,s(x) ≤ (1 + o(1))x/s!.

Rs,k (n) has order n(k−s)/s on average, i.e.
∑

n≤x Rs,k (n) ∼ Cs,k xk/s .

For k large with respect to s

As,k (x) = x + O(1) (Hilbert, answering Waring).

Rs,k (n) ∼ Ss,k (n)n(k−s)/s (Hardy-Littlewood).

What would we like to know

Is lim inf As,s(x)/x > 0? or even ¿does lim As,s(x)/x exist and is
positive?

Is Rs,s+1(n) > 0 as soon as Ss,s+1(n) > 0 and n large enough?
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Squares

What we know

4 squares. Every integer is a sum of 4 squares, i.e. A2,4(x) = bxc.
Lagrange (1770).

3 squares. Every integer which is not of the shape 4a(8b + 7) is a sum
of 3 squares. Gauß, Legendre (ca 1800).

2 squares. A2,2(x) ∼ Cx/
√

log x , as x →∞. Landau (1909).
The representation function of an integer as a sum of two squares (R2,2) is
multiplicative and thus rather erratic, taking very large values.

Let us write A2,2 = {b1 < b2 < · · · < bn < · · · }. We have

bn+1 − bn < b
1/4
n . Folklore (¡greedy algorithm!).

What we expect

For the consecutive sums of two squares, we expect
∀ε > 0: bn+1 − bn < bεn.
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Cubes

What we know.

7 cubes. Every large integer is a sum of 7 cubes, i.e. A3,7 = x + O(1).
Linnik (1942).

R3,7(n)� n4/3. Vaughan (1989).

Every integer larger than 454 is a sum of 7 cubes. Siksek (2016).

What we expect.

4 cubes. Is every large integer a sum of 4 cubes?

Is 7, 373, 170, 279, 850 the largest integer n for which R3,4(n) = 0?
D.-Hennecart-Landreau (2000).

3 cubes. Is lim inf A3,3(x)/x > 0 ?
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The indicator (or characteristic) function of a subsequence of N0

Let A be a sequence of N0, say A = {a0 < a1 < · · · < an < · · · }.
We can also represent it by a function χA from N0 to {0, 1} which
associates to each integer n the value 1 if and only if n ∈ A. This gives a
bijection between the subsequences of the integers and the sequences with
values in {0, 1}.

Random sequences

Let Ω be a probability space and (ξn)n≥0 be a sequence of independent
random variables with values in {0, 1}. To each ω ∈ Ω, we can associate
the sequence (ξn(ω))n≥0. It is a sequence of 0 and 1 and we can associate
to it a sequence of integers Aω such that n ∈ Aω if and only if ξn(ω) = 1,
or in other words

χAω
(n) = ξn(ω).

We say that A is the random sequence associated to the sequence (ξn)n≥0.
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Pseudo s-th powers
If one considers two consecutive s-th powers around x , their difference
(thanks to Taylor) is something like
(x1/s + 1)s − (x1/s)s ∼ sx1−1/s .
We can thus say that, among sx1−1/s consecutive integers around x there
is generally one s-th power, or in other words, the heuristic probability that
an integer n is an s-th power is
n/(sn1−1/s) which is equal to 1/sn1/s .

Using this remark, Erdős and Rényi, defined random sequence of pseudo
s-th powers by asking the randon variables ξn to satisfy the condition

Prob(ξn) =
1

sn1/s
for n ≥ 1. (2)

We shall denote with a tilda the quantities related to pseudo s-th powers,
for example r̃s,k (n), Ãs,k , Ãs,k (x), . . . and remember that those expressions

are random variables. As such, everything is possible, e.g. Ãs,1ω = ∅ for

some ω ∈ Ω or Ãs,1ω = N for some (other) ω, but we have

Almost surely : Ãs,1(x) ∼ x1/s , as x →∞. (3)
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Poisson model for sums of s pseudo s-th powers
As in the real case, the number of representations can be easily handled
on average:

a.s.
∑
n≤x

r̃s,s(n) ∼ λsx where λs = Γ(1/s)/ (sss!) . (4)

Since r̃s,s(n) is constant on average, it is natural to expect a Poisson
distribution for its values. It is the aim of Erdős and Rényi to show

a.s. ∀d ≥ 0 :
1

x
Card{n ≤ x : r̃s,s(n) = d} → e−λs

λd
s

d!
. (5)

The proof has been completed by Goguel (1975), using the method of
moments.
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The model versus the reality
From the previous relation (5), we get

a.s.
1

x
Card{n ≤ x : r̃s,s(n) 6= 0} → 1− e−λs (6)

or
a.s. Ãs,s(x) ∼ (1− e−λs )x , as x →∞,

which tells us that the sums of s pseudo s-th powers have a density.
In the real life, the only case we know is that of squares, where we know
that sums of two squares have a zero density...
However, we shall see in the last part that some arithmetic may be
plugged into the Erdős-Rényi model, leading to a probabilistic model
• with zero density for sums of two pseudo-squares,
• with positive density for s ≥ 3,
• that density being consistant with numerical evidence for s = 3 and

s = 4.
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Sums of (s + 1) pseudo s-powers

Iosifescu and D. proved in 2000 that the pseudo s-th powers are a.s.. The
main result is that there exist two positive constants u = u(s) and
v = v(s) such that

a.s. exp(−vn1/s) ≤ Prob(R̃s,s+1(n) = 0) ≤ exp(−un1/s).

Question 1. Do we have Prob(R̃s,s+1(n) = 0) ≤ exp(−wn1/s)?

The fact that the pseudo s-th powers are a basis of order s + 1 simply
follows by Borel-Cantelli.

The largest integer which is not a sum of at most s + 1 pseudo-s powers is
thus a random variable which is a.s. finite.
Question 2 What is the law of the largest integer which is not a sum of
at most s + 1 pseudo-s powers?

Answer to this question would confirm our belief that 7,373,170,279,850 is
the largest integer which is not a sum of 4 cubes (already mentioned).
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Gaps between consecutive sums of s pseudo s-powers
Let us write

Ãs,s = {b1 < b2 < · · · < bn < · · · }

Theorem (Cilleruelo and D., 2016)

We have almost surely

lim sup
n→∞

bn+1 − bn

log bn
=

1

λs
=

sss!

Γs(1/s)
.

This is consistant with the fact that the density of Ãs,s is 1− e−λs .
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Additive complements to sums of s pseudo s-powers

Theorem (Cilleruelo, Lambert, Plagne and D., 2016)

Let C be a fixed sequence of integers satisfying

lim inf
x→∞

C (x)

log x
> λ−1

s .

Then, a.s. every sufficiently large integer is a sum of s pseudo s-th powers
and an element of C.

Let D be a fixed sequence of integers satisfying

lim inf
x→∞

D(x)

log x
< λ−1

s .

Then, a.s., there exist infinitely integers which cannot be represented as
the sum of s pseudo s-th powers and an element of D.

Jean-Marc Deshouillers (IMB) French-South African GANDA meeting
Journée arithmétique FraZa 2017 IMB, Bordeaux, November 8th, 2017 13

/ 22



Sums of (s + ε) pseudo s-powers

Theorem (Cilleruelo, Lambert, Plagne and D.)

Let c > (λs(1− 2λs))−1. Almost surely, a sequence of pseudo s-th powers
Ã has the following property: any large enough integer n can be written in
the form

n = a1 + · · ·+ as+1, with ai ∈ Ã and an+1 < (c log n)s .

Question 3. Can one replace c > (λs(1− 2λs))−1 by c > (λs)−1?

Question 4. Show that the statement of the theorem does not hold any
longer if c < λ−1

s .

Jean-Marc Deshouillers (IMB) French-South African GANDA meeting
Journée arithmétique FraZa 2017 IMB, Bordeaux, November 8th, 2017 14

/ 22



A word about the proofs
If r ≥ t + 1 and r ′ ≥ t + 1, we have

∗∑
ω∼ω′

P(Eω ∩ Eω′ ) ≤
∑

1≤x1,...,xt
a1x1+···+at xt<z

b1x1+···+bt xt<z′

(x1 · · · xt )−1+1/s ×


∑

1≤ut+1,...,ur ,
at+1ut+1+···+ar ur

=z−(a1x1+···+at xt )

(ut+1 · · · ur )−1+1/s

×


∑
1≤vt+1,...,vr′ ,

bt+1vt+1+···+br′ vr′
=z′−(b1x1+···+bt xt )

(vt+1 · · · vr′ )
−1+1/s

 .

By Lemma 2.1 i) we have

∗∑
ω∼ω′

P(Eω ∩ Eω′ ) �
∑

x1,...,xt
a1x1+···+at xt<z

b1x1+···+bt xt<z′

(x1 · · · xt )−1+1/s ×

×
(

z − (a1x1 + · · ·+ at xt )
) r−t

s
−1(

z ′ − (b1x1 + · · ·+ bt xt )
) r′−t

s
−1
.

�
∑

x1,...,xt
a1x1+···+at xt<z

b1x1+···+bt xt<z′

(x1 · · · xt )−1+1/s (z − (a1x1 + · · ·+ at xt ))−t/s (z ′ − (b1x1 + · · ·+ bt xt )
)−t/s
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Another word about the proof of “Gaps”
Let µ > 0 be given. We define the events

F
(µ)
i = {sA ∩ [i , i + µ log i ] = ∅}, and wish to prove

(*) Prob
(

F
(µ)
i

)
= i−µλs +o(1).

We think of Borel-Cantelli and understand why 1/λs is a threshold.

The expression F
(µ)
i itself is the intersection of all the events stating that

a1 + · · ·+ as is not in the interval [i , i + µ log i ]. If those events were
independent, some combinatorics would be enough to establish (*).

Fortunately, F
(µ)
i is the intersection of complementary events which are

natural in our model, and a magic inequality due to Jansson permits us to
consider them as almost independent... at the cost of some acrobatic
manipulations. Again, this quasi-independence permits us to apply a
modified version of Borel-Cantelli.

By the way, this correlation inequality can be used at no cost in different
questions (gaps, complementary sequences...,) where we have a clear
threshold, but is responsible for some approximations in other questions
(sums of s + 1 or s + ε pseudo s-th powers).

Jean-Marc Deshouillers (IMB) French-South African GANDA meeting
Journée arithmétique FraZa 2017 IMB, Bordeaux, November 8th, 2017 16

/ 22



Arithmetical model and numerical tests

The model for the pseudo s-th powers only takes care of the “infinite
valuation”. Around 2000, Hennecart, Landreau and D. have developed
probabilistic models which also take care of the distribution of the pseudo
s-th powers in arithmetic progressions. For fixed K , we forced the pseudo
s-th powers to be distributed as the real s-th powers in all the arithmetic
progressions modulo any integer less than K. For example, this leads a.s. to
a density δs(K ) for the sums of s pseudo s-th powers. Moreover, when K
tends to infinity, δs(K ) tends to 0 when s = 2 and to a positive limit when
s ≥ 3. We also made some numerical experiments for s = 3 and s = 4.

Question 5. Find a probabilistic model for squares in which Landau
asymptotics for sums of two squares is a.s. valid for sums of 2
pseudo-squares.
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