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The Discriminator

Let a = {an}n≥1 be a sequence of distinct integers. The
Discriminator is defined as

Da(n) = min{m : a0, . . . , an−1 are pairwise distinct modulo m}.



The Discriminator

Example

I For a = {1, 2, 8, 14}, Da = 5.

I For a = {12, 22, 32, 42, 52}, Da = 10.
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Motivation: A problem in computer simulation

I Let S = {12, 22, ..., n2} be a set of integers. Compute the
square roots of its elements.

I Solution: Take A be a 1× n2 array with A(x) = x1/2. For any
value s ∈ S ,A(s) is the square root of s.

I modulo function: if 12, 22, ..., n2 are distinct modulo k , then
letting A(r) = x1/2 with r ≡ x mod k and 1 ≤ r ≤ k
allow the same look up procedure to be performed.
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History

Theorem (Arnold, Benkoski, McCabe (1985))

If n > 4, and a = {12, 22, . . . , n2}

Da(n) = min{m ≥ 2n : m = p or m = 2p with p an odd prime}.



History

I Bremser, Schumer and Washington (1990): for a cycle
polynomial f = xd and d is odd,

Df (n) = min{k ≥ n : f : Z/kZ 7→ Z/kZ is a permutation}

I Moree and Mullen (1996): when f is a Dickson polynomial of
degree coprime to 6.
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On function taking only prime values

Theorem (Zhi-Wei Sun, 2013)

For n ∈ Z+ let S(n) denote the smallest integer m > 1 such that
those 2k(k − 1) modulo m for k = 1, . . . , n are pairwise distinct.
Then S(n) is the least prime greater than 2n − 2.

Fact
S(n) is exactly the set of all prime numbers!

Remark
The way to generate all primes via this theorem is simple in
concept, but it has no advantage in algorithm. Nevertheless, it is
of certain theoretical interest since it provides a surprising new
characterization of primes.
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Discriminator for non polynomial sequences

I Moree and Zumalacárregui(2016) :

u(j) = 3j−5(−1)j

4 , j = 1, 2, 3, . . .

Du(n) := min{2e , 5f },

where e = dlog2(n)e and f = dlog5(5n/4)e.

I Ciolan and Moree(Preprint arxiv 2017): For every prime
q ≥ 7, the discriminator of the family

uq(j) =
3j − q(−1)j+(q−1)/2

4
, j = 1, 2, 3, . . .
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Shallit’s Conjecture

In May 2016, Jeffrey Shallit posed the following conjecture.

Conjecture: Given k ≥ 1, consider the recurrence with numbers

determined by

uk(n + 2) = (4k + 2)uk(n + 1)− uk(n), uk(0) = 0, uk(1) = 1.

Then, for k ≤ 6, the discriminator Dk(n) of the sequence uk(n) is
the smallest number m ≥ n taken from the sets Dk defined as.

D1 = {2i , 250 · 2i}.
D2 = {2i , 3 · 2i}.
D3 = {2i · 3j}.
D4 = {2i · 5j+1}.
D5 = {2i+1 · 3j · 5l}.
D6 = {2i+1 · 3j · 7l}.
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Case k = 1

Theorem (Moree, Luca, F. (2017))

Let vn be the smallest power of two such that vn ≥ n. Let wn be
the smallest integer of the form 2a5b satisfying 2a5b ≥ 5n/3 with
a, b ≥ 1. Then

D1(n) = min{vn,wn}.

Let

M =

{
m ≥ 1 :

{
m

log 5

log 2

}
≥ 1− log(6/5)

log 2

}
= {3, 6, 9, 12, 15, . . .}.

We have

{D1(2),D1(3),D1(4), . . .} = {2a5b : a ≥ 1, b ∈M∪ {0}}.
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Case k = 2

Theorem (Moree, Luca, F. (2017))

Let e ≥ 0 be the smallest integer such that 2e ≥ n and f ≥ 1 the
smallest integer such that 3 ·2f ≥ n. Then D2(n) = min{2e , 3 ·2f }.



Case k > 2

Theorem (Moree, Luca, F. (2017))

Put

Ak =

{
{m odd : if p | m, then p | k} if k 6≡ 6 (mod 9);

{m odd, 9 - m : if p | m, then p | k} if k ≡ 6 (mod 9),

and

Bk =

{
{m even : if p | m, then p | k(k + 1)} if k 6≡ 2 (mod 9);

{m even, 9 - m : if p | m, then p | k(k + 1)} if k ≡ 2 (mod 9).

Let k > 2. We have

Dk(n) ≤ min{m ≥ n : m ∈ Ak ∪ Bk},

with equality if the interval [n, 3n/2) contains an integer
m ∈ Ak ∪ Bk and with at most finitely many n for which strict
inequality holds.
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Main Tools

The main tools used for the proof of Shallit’s conjecture are:

I properties of a binary recurrent sequence {un}n≥0,

I order of appearance z(m) of an integer m is the sequence un,

U0,U1, . . . ,Uz(m), . . . ,

Ui 6≡ 0 (mod m), i ∈ [0, z(m)−1] but Uz(m) ≡ 0 (mod m).
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Method of the Proof

I Find an interval for the Du(n) : for example if 2e is a
discriminator, then

2e ≥ n, and, Du(n) ∈ [n, 2n].

I Find a form for an eligible or ineligible value of the
discriminator: For example, we consider

a0, a1, . . . , an−1,

with a0 = 0. For an integer k to be a discriminant, z(k) ≥ n.
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Sketch of the Proofs
The congruence Ui ≡ Uj (mod k)

Consider the sequence

U0,U1, . . . ,Un−1.

If k is a discriminator, then

Ui 6≡ Uj (mod k) for 0 ≤ i , j ≤ n − 1

Otherwise, ∃(i , j) ∈ [0, n − 1] such that

Ui ≡ Uj (mod k).

=⇒ k | Ui − Uj .
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Some properties of Lucas recurrent sequences

We consider the Lucas sequence {un}n≥0, with u0 = 0, u1 = 1 and

un+2 = run+1 + sun for all n ≥ 0, (1)

where s = −1 and r := 4k + 2 are integers. Put ∆ = r 2 − 4 and
assume that ∆ 6= 0.

Let (α, β) be the roots of the characteristic equation
x2 − rx + 1 = 0 of the binary sequence {un}n≥0, then the so-called
Binet formula

un =
αn − βn

α− β
holds for all n ≥ 0. (2)
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We let {vn}n≥0 for the companion Lucas sequence of {un}n≥0

given by v0 = 2, v1 = r and vn+2 = rvn+1− vn. Its Binet formula is

vn = αn + βn for all n ≥ 0. (3)

Lemma
Let i and j be two integers with the same parity i.e i ≡ j (mod 2).
Then

ui − uj = u(i−j)/2v(i+j)/2.

Lemma (Bertrand’s Postulate(1845))

For every natural number n > 3, there is a prime p satisfying
n < p < 2n.
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Index of appearance z(m)

Lemma (Bilu, Hanrot, Voutier (2001).)

The index of appearance z of the sequence U(k) has the following
properties.

i) If p | ∆(k), then z(p) = p.

ii) If p - ∆(k), then z(p) | p − e, where e = ( ∆(k)
p ).

iii) Let c = νp(Uz(p)(k)). Then z(pb) = pmax{b−c,0}z(p).

iv) If p|Um(k), then z(p)|m.

v) If n = m1 · · ·ms with m1, . . . ,ms pairwise coprime, then

z(m1 · · ·ms) = lcm[z(m1), . . . , z(ms)].



Steps of the Proof for k = 1

In this case, we consider the binary recurrent sequence {un}n≥0

given by u0 = 0, u1 = 1 and un+1 = 6un − un−1 for all n ≥ 0. Its
first terms are

0, 1, 6, 35, 204, 1189, 6930, 40391, 235416, 1372105, 7997214, . . . .

Result: Du(n) = min{2e , 2a · 5b}, with 2a5b ≥ 5n/3.
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Step 1: Structure of D1(n)

Lemma
Let m = D1(n) for some n > 1. Then

i) m has at most one odd prime divisor.

ii) If m is divisible by exactly one odd prime p, then
e = ( 2

p ) = −1 and z(p) = (p + 1)/2.

iii) If m is not a power of 2, then m can be written as 2apb with
a, b ≥ 1 and p ≡ 5 (mod 8).

Lemma
Assume that m = 2apb1

1 is such that a ≥ 1, p1 ≡ 5 (mod 8) and
z(p1) = (p1 + 1)/2. Then Ui ≡ Uj (mod m) holds if and only if
i ≡ j (mod z(m)).
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Proof

I Assume that D1(n) = m and write it as

m = 2apb1
1 · · · p

br
r ,

where the pi are distinct odd primes.

I If r ≥ 2, we obtain the inequality

z(m) ≤ 2apb1−1
1 · · · pbk−1

r

(
p1 + 1

2

)
· · ·
(

pr + 1

2

)
<

m

2
, (4)

I it follows that the interval [z(m), 2z(m)) contains a power of
2, say 2b < 2z(m) < m. But then since 2b ≥ z(m) ≥ n, we
get a contradiction.

I If r = 1 and e1 = ( 2
p1

) = 1, then

z(m) = z(2apb1
1 ) ≤ 2apb1−1

1 (p1 − 1)/2 < m/2,

a contradiction
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I Assume now that e1 = −1 and that z(p1) is a proper divisor
of (p + 1)/2. Then

z(m) ≤ 2apb1−1
1 z(p1) ≤ 2apb1−1

1 (p1 + 1)/4 < m/2,

again the same contradiction.

I We write m = 2apb1
1 . We know that a ≥ 1 and e = −1. Thus,

p ≡ ±3 (mod 8). If p ≡ 3 (mod 8), then

z(m) = lcm[z(2a), z(pb)] | 2apb−1(p + 1)/4.

In particular, z(m) < m/2, and we get again a contradiction.
Thus, p ≡ 5 (mod 8).
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Step 2

Lemma
For n ≥ 224 · 53 the interval [5n/3, 37n/19) contains a number of
the form 2a · 5b with a ≥ 1 and b ≥ 0.

Corollary

Suppose that m = 2a · pb, p > 5, a, b ≥ 1. If m ≥ 37
19 · 2

24 · 53,
then m is not a discriminator value.

I Suppose that D1(n) = m, then we must have

z(m) = 2a · pb−1(p + 1)/(2) ≥ 19m/37 ≥ n,

that is m ≥ 37n/19; a contradiction
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Step 3

Lemma
We say that m discriminates U0, . . . ,Un−1 if these integers are
pairwise distinct modulo m.

i) The integer m = 2a discriminates U0, . . . ,Un−1 if and only if
m ≥ n.

ii) The integer m = 2a · 5b with a, b ≥ 1 discriminates
U0, . . . ,Un−1 if and only if m ≥ 5n/3.

Proof.

I m discriminates U0, . . . ,Uz(m)−1, but not U0, . . . ,Uz(m).

I then m discriminates U0, . . . ,Un−1 iff n ≤ z(m).

I As it is easily seen that z(m) = 3m/5, the result follows.
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Case k = 2, D2(n) = min{2e , 3 · 2f }

.

I if z(m) = m, then m|3 · 2a for some a ≥ 0.

I or z(m) ≤ 3m/5 .

I if m is a discriminator then m ≥ 5n/3.

I for n ≥ 2, there is a power of two or a number of the form
3 · 2a in the interval [n, 5n/3).
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Case k = 2

Theorem (Moree, Luca, F. (2017))

Let e ≥ 0 be the smallest integer such that 2e ≥ n and f ≥ 1 the
smallest integer such that 3 ·2f ≥ n. Then D2(n) = min{2e , 3 ·2f }.



Case k > 2

Theorem (Moree, Luca, F. (2017))

Put

Ak =

{
{m odd : if p | m, then p | k} if k 6≡ 6 (mod 9);

{m odd, 9 - m : if p | m, then p | k} if k ≡ 6 (mod 9),

and

Bk =

{
{m even : if p | m, then p | k(k + 1)} if k 6≡ 2 (mod 9);

{m even, 9 - m : if p | m, then p | k(k + 1)} if k ≡ 2 (mod 9).

Let k > 2. We have

Dk(n) ≤ min{m ≥ n : m ∈ Ak ∪ Bk},

with equality if the interval [n, 3n/2) contains an integer
m ∈ Ak ∪ Bk and with at most finitely many n for which strict
inequality holds.
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I p | k(k + 1)

I p - k(k + 1)
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The congruence Ui(k) ≡ Uj(k) (mod m)

uk(n + 2) = (4k + 2)uk(n + 1)− uk(n).

I ∆(k) = 16k(k + 1).

I k(k + 1) = du2, and let K = Q[
√

d ].

I Let pa||k and π be any prime ideal diving p and let e be such
that πe‖p.

I We assume Ui ≡ λ (mod pb) then

αi − α−i − 4
√

k(k + 1)λ ≡ 0 (mod πeb+ae/2).

I then it satisfied the quadratic congruence

x2 − 4
√

k(k + 1)λx − 1 = 0 (mod πeb+ae/2).
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I Taking their difference we get

(αi − αj)(αi + αj − 4
√

k(k + 1))λ ≡ 0 (mod πbe+ae/2).

I If p | k , we have that

α = 2k + 1 + 2
√

k(k + 1) ≡ 1 (mod π).

Then

(αi + αj − 4
√

k(k + 1)) ≡ 2 (mod πae/2)

I Thus,
αi ≡ αj (mod πbe+ae/2)

I This give πeb | Ui−j and

i − j ≡ 0 (mod z(pb))

.
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Lemma
Assume p | k is odd. Then Ui ≡ Uj (mod pb) if and only if i ≡ j
(mod z(pb)).



I If p | (k + 1), we have that the factors

(αi − αj) and (αi + αj − 4
√

k(k + 1))

≡ (−1)i + (−1)j (mod πae/2).

I Thus, π never divides both factors, and πae/2 divides αi − αj

in case i ≡ j (mod 2), and it divides αi + αj − 4
√

k(k + 1)λ
in case i 6≡ j (mod 2).
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Lemma
Assume that p is odd and p | (k + 1). Then Ui ≡ Uj (mod pb) is
equivalent to one of the following:

i) If i ≡ j (mod 2), then i ≡ j (mod z(pb)).

ii) If i 6≡ j (mod 2), then i + j ≡ 0 (mod z(pb)).
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Lemma
We have

i ≡ j (mod m) ⇐⇒ Ui ≡ Uj (mod m), (5)

precisely when
m ∈ Ak ∪ Bk .

I {m odd : z(m) = m and m ∈ P(k)}.
I {m even : z(m) = m}.
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The set Fk

For k > 1 there is a finite set Fk such that

Dk = Ak ∪ Bk ∪ Fk .

Lemma
There are infinitely many k for the finite set Fk is non-empty. It
can have a cardinality larger than any given bound.
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I A1 = {1}, B1 = {2e : e ≥ 1}

F1 = {2a · 5m : a ≥ 1 and m ∈M}.

I F2 is empty.

I Fk is finite for k > 1.
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Example
For k = 3, we have the following sequence un+1 = 14un − un−1 for
all n ≥ 0. Its first terms are

0, 1, 14, 195, 2716, 37829, 526890, 7338631 . . . .

The discrimator for n = 1 . . . , 20.

D(1) = 1

D(2) = 2

D(3) = 3

D(4) = 22

D(5) = 2 · 3
D(6) = 2 · 3
D(7) = 23

D(8) = 23

D(9) = 32

D(10) = 22 · 3

D(11) = 22 · 3
D(12) = 22 · 3
D(13) = 24

D(14) = 24

D(15) = 24

D(16) = 24

D(17) = 2 · 32

D(18) = 2 · 32

D(19) = 23 · 3
D(20) = 23 · 3



Open Problems

I Give a characterization of Du(n)
for a given Lucas sequence un:
Fibonacci sequence, Prime
numbers sequence, etc.

DP(n) ≤ Pn + 1

2
.

I Give a classification of all recurrent
sequence with D|u|(2e) = 2e

D|u|(2e) = 2e =⇒ D|u| ∈ [n, 2n]



Open Problems

Conjecture:

Let {un}n≥0 be a binary sequence given
by the recurrence


u0 = a
u1 = b
un+2 = run+1 + sun for n ≥ 0

where r , s are two integers such that
r > 0 and (r , s) 6= (2,−1), (1,−1). For
all e ≥ 1,

Du(2e) = 2e ⇐⇒ ν2(r) = 1, s ≡ 3 (mod 4)

and a, b have different parity.



”I love mathematics for its own sake, because it allows for no
hypocrisy and no vagueness.” Stendhal

THANKS FOR YOUR ATTENTION !
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