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The Ramanujan 7-function
Let 7(n) be the Ramanujan function given by
dormg"=qJ(1-9)*  (lal < ).
n>1 i>1

Ramanujan observed but could not prove the following three
properties of 7(n):

(i) 7(mn) = 7(m)r(n) whenever gcd(m, n) = 1.
(iy 7(p*") = 7(p)r(p") — p''r(p"") for p prime and r > 1.
(i) |7(p)| < 2p'"/2 for all primes p.

These conjectures were proved by Mordell and Deligne.
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Zero values of 7(n)

Lehmer conjectured that 7(n) # 0 for all n. This is still
unknown. It is known that

T(n) #0 for n < 22798241520242687999.

Serre proved that

#p<x: 1(p) =0} = O (o )

log x)3/2
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Today’s problem

The Dedekind eta function is a modular form:
. L - n A 2miT
)=gs [[(1-q), (q._e , |m(T)>o).
n=1
Euler and Jacobi studied () and proved that

[M(1-9m = 2(1 (1)

m=1 m=—oo
[[(-am° = SED"e@em+1) g™ @
m=1 m=0

More powers of  were studied by Serre.
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A family of interesting polynomials

We look at the Fourier coefficients simultaneous for all powers
of the Dedekind eta function. We define a family of polynomials
Pm(X) for m > 0 with interesting properties. Consider the
identity

[[-9gM2= Zsz)q (zeC). (3)

The roots of Py(z) dictate the vanishing properties of the
Fourier coefficients. These polynomials have degree m and
Am(X) := m! Pp(X) € Z[X]

is normalized. It follows also from the definition that P, (X) are
integer-valued polynomials.
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The polynomials can be defined also recursively. We put
Po(X) := 1 and define
X m
Pm(X) =T (Z a(k)Pm_k(X)> Loomz1 @)

k=1

Here, as before, o(k) denotes the sum of the divisors of k.
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To illustrate the complexity of these polynomials here are the

first ten:

Py (X)= X;

21P (X) = X2+3X=X(X+3);

3IP3(X) = X(X2+9X+38)
= X(X+8)(X+1);

41P4(X) = X (X3 +18X2+59X +42)
= XX+14)(B+X)(X+1);

51P5 (X) = X (X*+30X3+215X2 +450 X + 144)
= XB+X)(X+6)(X2+21X+8);
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6!Ps (X) = X (X°+45X*+565X>+ 2475 X2 + 3394 X + 1440
X(X+10) (X +1) (X3 +34X2+181 X + 144) ;
7'P; (X) = X(X® 463 X° 4 1225 X4 49345 X3
128294 X? + 30912 X + 5760)
= X(X+8)(3+X)(X+2)(X3+50X2+529X + 12
81Pg(X) = X(X’+84X®42338X°+27720 X* 4147889 X3
1340116 X2 + 293292 X + 75600)
= X(X+6)B3+X)(X+1)
(X* + 74 X3+ 1571 X2 + 9994 X + 4200) ;
91Py (X) = X°®+ 108 X8 + 4074 X7 + 69552 X8 + 579369 X°
12341332 X* + 4335596 X° + 3032208 X? 4 52416(
= (X+14)(X+26)(X+4)3+X)(X+1)
(X3 +60 X2 +491 X +120) ;
10!Py (X) = X0 +135X° + 6630 X8 + 154350 X7 + 1857513 X®
+11744775 X° + 38049920 X* + 57773700 X*3
+36290736 X2 + 6531840X
= X(X+1) R(X).
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In the last example, R(X) is an irreducible polynomial given by

R(x) = X® + 134 X" + 6496 X® + 147854 X° + 1709659 X*
+10035116 X°® + 28014804 X? + 29758896 X + 6531840.

The initial motivation for this work was the following question:

Does there exist m > 0, such that Pp(i) =07

Considering i as a root of unity, what about the values Pp,(¢) for
root of unities ¢ of general order N? Note that in the case
N = 2 due to Euler we already have that

(X + 1) | Pm(X) for infinitely many m.
Note also that the Lehmer’s conjecture is equivalent to

Pn(—24) #0 for all m> 0.
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Let N be a natural number. Let & (X) be the N-th cyclotomic
polynomial:
on(X) = ] (x-e& M)
1<k<N
(k,N)=1
The polynomial ®(X) is irreducible of degree ¢(N).

The following result was obtained jointly with Heim and
Neuhauser:

There is no pair of positive integers (N, m) with N > 3 such that
SN (X) | Pm(X).

The theorem is equivalent to P, (¢) # 0 for any root of unity ¢ of
order N > 3.
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It maybe worth to mention, that although the proof does not
reveal much about the distribution of the roots of Ppy(X) in the
complex plane, it reveals a very interesting property of these
roots modulo p for every prime number p. Namely, it shows that
if m=pl—+r,where ¢{=|m/p| and

r=m-—p|lm/p| € {0,1,...,p— 1}, then

Am(X) = Qrp(X)(X(XPT =1))*  (mod p),

where Qr p(X) is a polynomial of degree r. In particular, the
roots of An(X) modulo p are always among the roots of

X(xPt—1) ] ax

1<r<p—1

a polynomial of bounded degree p(p + 1)/2. Furthermore, the
splitting field of Ap(X) over the finite field I, with p elements is
of degree at most p — 1 no matter how large mis. This is
certainly a very surprising phenomenon and we do not have an
explanation for such regularity.
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The polynomials Qy p(X) play an important role in our proof.
Our proof proceeds to show that if there is N > 3 such that
Pm(¢) = 0 for some root of unity ¢ of order N, then N must be
even. Then a multiple of 3. Then of 5. And so on, which of
course is impossible. The proof proceeds by induction. For the
induction step, we need to show that if pis a prime and g | N
for all primes p < g, then also p | N. For this, we show that
none of the polynomials Qp(X) (mod p) has an irreducible
factor of degree d such that p? — 1 is a multiple of N. When p is
small (p < 11), we show this by computing all polynomials

Qr p(X) and their irreducible factors modulo p. For p > 13, we
appeal to general methods of analytic number theory (for

p > 5 x 10°). Finally a computation for p in the intermediary
range [13,5 - 10%] proves our theorem.
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The work-horse lemma

From now on, N > 3 is an integer and ( is a root of unity of
order N. Throughout the paper p and g are prime numbers.

Lemma

Let Q(X) € Z[X]. Let p be a prime and { be a root of unity of
order N > 3. Assume that k,a, My, . .., My are positive integers,
such that:

(i) ptN;

(i) NtMfori=1,... k;

(iiiy Modulo p we have Q(X) | (X(XM —1)--- (XM« —1))“.
Then, Q(¢) # 0.
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Condition (iii) tells us that

a

(XXM = 1) (XM~ 1)) = QUOR(X) +pS(X)  (5)

for some polynomials R(X), S(X) € Z[X]. Assuming that
Q(¢) = 0, we evaluate equation (5) in X = ¢ getting

(C(¢™ = 1) (M = 1)) = pS(Q). (6)
The algebraic integer ¢; :== ¢(Mi is a root of unity of order
N; = N/gcd(N, M;) > 1

fori=1,..., k by condition (ii). Taking norms over K = Q(¢),
we get

K
(Nk/o(¢) aH Ni /o (Ci = Ni/o(PS(¢))- (7)
i=1
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In the left—hand side of (7), we have Nk o(¢) = +1, and
Ni (G — 1) = £(Pp(1 ))W(N)/‘p(N"), for i=1,... k.
Hence, we get

iHCDN )@ = prN) g, (8)

where a; = ap(N)/¢(N, ) fori=1,...,kand S = Ng,(S(()) is
an integer. The above relation is |mpossible since the left-hand
side is divisible only by primes dividing N, for i =1,... k;
hence, N, whereas by (i), p is not a factor of N. Here, we used
the well-known fact that for every integer m > 1, ®,(1) is an
integer whose prime factors divide m.
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Further we need the following fact.

Lemma

If p > 2 is prime, then

p!Pp(X) = X(XP~1 —1) (mod p).

Proof.
Note that Pp(x) is an integer valued polynomial. Hence,

p!'Po(k) =0 (mod p)

for all k € Z. It follows that the polynomial p! Py(X) has roots
modulo p at all positive integers k. Hence, all residue classes
modulo p are roots of p! Py(X). Since p!Py(X) is monic of
degree p, it follows that

—1
p!Py(X) = pH(x —k)=X(XP~"—1) (mod p).
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The strategy of the proof
Let An(X) = mPp(X), then Ag(X) =1, A1(X) = X, and

Am(X) = X (i o(K)(m—1)---(m—k+ 1)Am_k(X)> . m>2.
k=1

In particular, An(X) € Z[X].

Cyclotomic factors of Serre polynomials



Let us look at Ap(X) modulo 2. Since 0(2) =3 =1 (mod 2)
and 2 | m(m— 1) for all m > 1, we only have the recurrence

An(X) = X (An—1(X) + (m—1)Apn_2(X)) for all m>1.
In particular, if mis odd then 2 | m—1 and
An(X) = XAn_1(X) (mod 2),

while if m is even then
An(X) = X(An_1(X)+Am_2(X)) = X(X—=1)Apn_2(X) (mod 2).
In particular, writngm=2¢+r, ¢{ = |m/2|, r = m—2|m/2],
and putting Qu(X) :=1, Q;(X) := X, we get that
An(X) = Agir(X) = Qr(X)Ax(X)

= Q(X)(X(X = 1))Az—1)(X) =

= Q(X)(X(X —1)) Au(X) = Xfﬂm/zJ(x— 1)lm/2] (mod 2
Assume now that P, (¢) = 0 for some root of unity ¢ of order

N > 1. Then An(¢) = 0. Assuming that N is odd, we have that
N > 3. Lemma 3 gives a contradiction. Hence, 2 N.
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Let us record this.

If Pm(¢) = 0 for some m > 1 and root of unity ¢ of order N > 3,
then N is even.
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There is nothing mysterious about the prime p = 2 in the above
argument.

Let’s try the prime p = 3. That is, we reduce the recurrence for
the sequence of general term Ap,(X) modulo 3. Since 3 = ¢(2),
and 3 | (m—1)(m—2)(m— 3) for all m > 3, we get that

Am(X) = X(Am_1(X)+4(m—1)(m—-2)An_3(X)) (mod 3), m> 2.

In particular,

Am(X) = XAm-1(X) (mod3) m#0 (mod 3),
M) ZAX(An—1(X) + 2Am_3(X))  (mod3) m=0 (mod 3).

We then get

Azei1(X) = XAg(X) (mod 3),
Agria(X) = XAgii1(X) = XPAg(X) (mod 3),
Age+3(X) = X(Aser2(X) + 2A3,(X)) (mod 3)

= X(X2 — 1)A3£(X) (mod 3)



Recursively, we get that if we put
Q(X) =1, (X) =X, Q(X) :=X2, m=3(+r,
¢=|m/3], r=m—-3m/3] € {0,1,2}, then

An(X) = Q(X)Az(X) = Q(X)(X(X? —1))2As_3(X) = ---
Q(X)(X(X? = 1)) (mod 3).

An(X) = XMl (x2 _1)lm/3] (mod 3). (9)

Assume now that Py, (¢) = 0 for some root of unity ¢ of order N.
Then An(¢) = 0. Assume 3 1 N. Lemma 3 with Q(X) = An(X),
p=3, a=r+|m/3], k=1, My = 2 gives a contradiction.
Note that N t+ M; because N > 4 (since N > 3 is even). This
contradiction shows that 3 | N.
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Let us record what we proved.

If Pm(¢) = 0 for some m > 1 and root of unity ¢ of order N > 3,
then3 | N.
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Let us continue for a few more steps. We now take p = 5 and
consider the recurrence for A, (X) modulo 5. As before, we
obtain the recursion formula:

An(X) = X(An—1(X)+3(m—1)An_2(X)
+4(m—1)(m—2)An_3(X)
+7(m—1)(m—2)(m—3) An_4a (X)
+6(m—-1)(m—-2)(m—-3)(m—4)An_s5(X)) (mod 5).
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Treating the cases m=5¢+r, r € {1,2,3,4,5}, we get

A5£+1 (X) = XA5g(X) (mod 5),
A5g+2 (X) = (X2 + 3X) A5g(X) = X(X + 3) A5g(X) (mod 5),
A5g+3 (X)E X(X3—|—4X2+3X) A5g(X)

— X(X+1)(X+3)As(X) (mod 5);
A5g+4(X)E X(X3+3X2+4X+2) A5g(X)

= X(X+1)(X+3)(X +4)Asi(X) (mod 5);
A5g+5 (X) = (X (X4 — 1)) A5g(X) (mod 5)
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Thus, putting

Qo(X) = 1, Q1(X):X, QQ(X):X(X+3),
Q3(X) = XX+1)(X+3), QuX)=XX+1)(X+3)(X+4),

we have that if we write
r=m-5\m/5] €{0,1,2,3,4},
then
An(X) = Q(X)(X(X* — 1)L/ (mod 5).

Note that Q,(X) | X(X* — 1). Assume now that 5 N. We then
apply Lemma 1 with Q(X) = An(X),

p=5 a=|m/5]+1, k=1, My = 4 and note that N { M,
since N > 6 (because N is a multiple of 6), and we obtain a
contradiction.
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Let us record what we proved.

If Pm(¢) = 0 for some m > 1 and root of unity ¢ of order N, then
5| N.
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We apply the same program for p = 7. We skip the details and

only show the results. For r € {0,1,2,3,4,5,6}, we get

Qo(X) =1,

Qi(X) = X, QX)=X(X+3), Qs(X)=X(X+1),

Qu(X) = X3(X+1)(X+3), Qs(X)=X(X+3)(X+6)(X?+1),
Qs(X) = X(X+1)(X+3)(X°+6X2+6X+4),

where the factors shown above are irreducible modulo 7. Since

X241 X*—1and X3 +6X2+6X+4| X"~ -1, and every
root of Q,(X) is of multiplicity at most 2, it follows that

QU(X) | (XX~ 1)(X* — )X 1)),

Further, writihng m = 7¢ + r, where { = |m/7| and
r=m-—7|m/7], we get that
Lm/7]
Am(X) = Q/(X) (X(x6 - 1)) (mod 7).
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Thus, modulo 7,
An(X) | (XX = DOXE = 1) - 1)),

where a= |m/7] + 2. Assume now that 7 { N. We apply
Lemma 1 with Q(X) = An(X),

p=7, a= Lm/7j+2, k=3, Mi =4, M, =6, M3 = 342.
Since 30 | N, it follows that N 1 M; for i = 1,2,3. Lemma 1 gives
a contradiction.
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Thus, we proved the following.

If Pm(¢) = 0 for some m > 1 and root of unity ¢ of order N > 3,
then7 | N.
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For p =11, we have

>
|

= 1, Qi(X)=X, QX)=X(X+3),
= X(X+1)(X+8),

= X(X+1)(X+3)?,

= X(X +3)(X +6)(X?+10X +8),

X X X

(
( (
( (
XX+ 1D)(X+10)(X3+ X% +5X +1),
= X(X+2)(X+3)(X+8)(X+9)(X?+8X+86),
( (
( (
( (

x X

= XX+ 1)(X+3)(X+6)(X+10)(X3+9X2+7X +2),
= X(X+1)(X +3)3(X +4)%(X +10)(X? +6X + 1),
= X(X+1)(X+8)(X"+5X®+10X° +6X3 +10X% + X -

(9]
Pppoppoep
I

>

All factors shown are irreducible modulo 11. We note that the
multiplicity of any root of Q,(X) is at most 2. Further, the
irreducible factors of the above polynomials which are not linear
are of of degrees 2,3, or 7 over Fy4.
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Hence,
QH(X) | (XX - X - x xT)

Writing m = 114+ r with r € {0,1,...,10}, where ¢ = |m/11],
we get that

)Lm/”J

Am(X) = Q:(X) (X(X™ = 1) (mod 11),

so modulo 11, An(X) divides
(X(Xm )Xy x P —qy(x T 1))37

where a = |m/11] + 2. Assume now that 11 t N. Then we
apply Lemma 3 with Q(X) = An(X), p=11, a=|m/11] + 2,
k=4, M =11 -1=10, Mo =112 -1 =120, M3 =

113 -1 =1330, M, = 117 — 1 = 19487170. Since
2-3-5-7| N,wegetthat Nt M; fori =1,2,3,4. Now Lemma
1 yields to a contradiction.
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Thus, we record what we proved.

If Pm(¢) = 0 for some m > 1 and root of unity ¢ of order N > 3,
then11 | N.
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The case of the general prime p

Assume now that p > 13 and that we proved that g | N holds
for all primes g < p. We would like to prove that p | N. For this,
we compute for r € {0,...,p— 1},

Sr
Qr(X) =[] @(X)™  (mod p),
i=1

where Q; ;(X) are distinct irreducible factors of Q,(X) modulo
p. Assume Q; ;(X) is of degree d| ;. Let
Dp={d;j:1<i<s,1<r<p-1}.

Letao=max{a,;:1<i<s,1<r<p—-1}.
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Then, writing m = p¢ + r with r € {0,1,...,p— 1}, we have
Am(X) = Qr(X) (A (X))"  (mod p).

This follows by induction from the recursion formula

Apesr(X) = X(Za(k)(pur—1)~-(p€+r—k+1)Apz+,k(J
k=1

X <Za(k)(f1)---(fk+1)Ar_k(X)> (Ap (X))

k=1
Ar (X) (Ap (X)) (mod p).
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By using Lemma 2 we thus get that

Am(X) = Q/(X) (X(Xp—1 B 1)) Lm/p)

(mod p).

Hence modulo p, An(X) divides

(X [T - 1)) ,

deDp

where we can take a := |m/p| + «a.
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Assume that pt N. We can then apply Lemma 1 with

Q(X) = Am(X), the prime p, the number a, k = #D, and

M; = p% —1forj=1,... .k, where D, = {d,...,d}. We need
to ensure that Nt M; for all j = 1,..., k. We know that

[Ig<p @ | N. Thus, it suffices to show that [[,_, g is not a divisor
of M; forany j = 1,..., k. Until now, namely for the primes

p € {2,3,5,7,11}, we checked that this was case by case. To
complete the induction, it suffices to show the following lemma.

If p > 13, there does not exist a positive integer1 < d < p — 1
such that

p?-1=0 (mod []a).
q<p

For p = 11, this is not true since
11 -1=0 (mod2-3-5.7).
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Assume that we proved the lemma. The above argument
shows thatif g | Nforallg < pand p > 13,thenp | N.
Replacing p by the next prime, we get, by induction, that N is
divisible by all possible primes, which is a contradiction.

So, it suffices to prove Lemma 10. This will be proven by
analytic methods.
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The case of the large prime p

Assume p > 13 and for some d < p — 1, we have q | p? — 1 for
all primes q < p. Then d is divisible by the o4(p), which is the
order of p modulo q. We split g < p into two subsets:

Qi ={g<p:oglp) <p"?}, Q={g<p:ogp)>p"?}.

For Qq, we have

[Ta| IT &o°-1.

gey eld
egp‘l /2

The above leads to

D logg< > log(p®—1) <logp > e<p'/?ri(d)logp.
qey eld eld
e<p!/? e<p!/?
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Here and in what follows we use 74(d) for the number of
divisors of d which are < p'/2. For Q,, let e | d with e > p'/?
and assume that g < p — 1 is such that op(q) = e. Then
e|q—1.Thus,g=1 (mod e). Since g < p— 1, it then
follows, by counting the number of positive integers less than or
equal to p — 1 which are larger than 1 in the arithmetic
progression 1 (mod e) and even ignoring the information that
they should also be prime, it follows that the number of choices
for such q is at most (p — 1)/e < p'/2. This was for a fixed
divisor e of d which exceeds p'/2. Thus,

> logg<p?| Y 1]|logp < p'/2ra(d)logp,

qge Qs eld
e>p!/2

where 7(d) is the number of divisors of d which are > p'/2.
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Thus letting 6 be the Chebyshev function, we get
0(p) = > logp < p'/?r(d)logp,
q<p

where 7(d) = 71(d) + m2(d) is the total number of divisors of d.
Assume now that p > 10°. A theorem of Rosser, Schoenfeld

shows that
> logq >0.99 p.
q<p
Further,
7(d) (aq +1 >
13 — H aq/3 |-
dE - paja \ T

The factors on the right above are all < 1 if g > 11, just
because in that case g* > 11¢ > (a4 1)2 for all o > 1.
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For g € {2,3,5,7} and positive integers «, we have that

a+1< a-+1 a-+1 a-+1

W_ 5 W<1.45, W<1177 W<105
This analysis and the factthat 2 x 1.45 x 1.17 x 1.05 < 1.79
shows that

7(d) < 1.79d"% < 1.79p'/3.
We thus get that

0.99p < logq < (p"2r(d) +1)logp < (1.79p%® + 1) log p,
a<p

and inequality which implies that p < 5 - 10°. So, we have
obtained the following result.

Lemma 10 holds forp > 5 - 10°.
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It remains to cover the range [13,5 - 10°] for p. In a few minutes
with Mathematica we compute for all p € [13,30000], that

lem[op(q) : g < p| > p,

so we may assume that p > 30000. In the interval [100, 1000]
there are 27 primes numbers g such that 2q + 1 is also prime.
They are the following:

113,131,173,179,191,233,239, 251,281,293, 359,419, 431,

443,491,509,593, 641,653,659,683,719,743,761,809,911, 95
Let p > 30000 and consider one of the primes 2q + 1 with g in
the above set. The order of p modulo 2q + 1 is a divisor of 2q,
soitis 1, 2 or a multiple of q. If itis 1 or 2, then g divides p — 1
or p+ 1. Since g > 100 and p < 10'°, there are at most four
values of g for which it can be a divisor of p — 1 and at most
four values of g for which it can be a divisor of p + 1. Thus,

lem[op(q) : g < p] > 100"° = 10%® > 10" > p,

which finishes the proof.
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THANK YOU!
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