Title: Randomness and non-randomness in Piatetski-Shapiro sequences

Abstract: The sequences $\mathcal{N}^{(c)} = (\lfloor n^c \rfloor)_{n \in \mathbb{N}}$, where c > 1 is a real number which is not an integer, have been introduced in 1933 by B. I. Segal who studied their additive properties: there exists an integer g(c) such that every integer is a sum of at most g(c) elements from $\mathcal{N}^{(c)}$. On that respect they behave as regular polynomial sequences. Since at first glance they have no special arithmetic structure, one may expect that the sequence $\mathcal{N}^{(c)}$ contains infinitely many primes and even that the number of n up to x for which $\lfloor n^c \rfloor$ is prime is equivalent to $x/c \log x$: this was proved in 1953 for c < 12/11 by I. I. Piatetski-Shapiro.

A way to measure the complexity of a sequence \mathcal{A} is to consider a map \mathbf{u} from \mathbb{N} to a finite set (without loss of generality, we may assume that \mathbf{u} takes its values in $S_m = \{0, 1, \ldots, m-1\}$) and to consider the distribution of the k-blocks $(\mathbf{u}(a_{n+1}), \mathbf{u}(a_{n+2}), \ldots, \mathbf{u}(a_{n+k}))$ when n varies. In the talk, I'll report on recent results (involving also \mathbb{M} . Drmota, \mathbb{C} . Müllner, \mathbb{J} . F. Morgenbesser and \mathbb{L} . Spiegelhoffer) when \mathcal{A} is a sequence $\mathcal{N}^{(c)}$ and when \mathbf{u} is either the Thue-Morse sequence $(\mathbf{u}(n)$ is then the parity of the numbers of ones in the dyadic representation of n and m = 2) or when $\mathbf{u}(n)$ is the residue of n modulo m. I'll also discuss in this context the Sarnak's conjecture which asserts than when the sequence $\mathbf{u}(\mathcal{A})$ is deterministic, i.e. when the number of blocks of length k is $\exp(o(k))$, the sequence $\mathbf{u}(\mathcal{A})$ is orthogonal to the Moebius function, this roughly meaning that $\sum_{n < x} \mathbf{u}(a(n))\mu(n) = o(x)$ as x tends to infinity.

Jean-Marc Deshouillers

Bordeaux INP, Institut de mathématiques de Bordeaux

jean-marc.deshouillers@math.u-bordeaux.fr