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Abstract. We prove a conjecture of Griffiths on the quasi-projectivity of images of
period maps using algebraization results arising from o-minimal geometry. Specif-
ically, we first develop a theory of analytic spaces and coherent sheaves that are
definable with respect to a given o-minimal structure, and prove a GAGA-type the-
orem algebraizing definable coherent sheaves on complex algebraic spaces. We then
combine this with algebraization theorems of Artin to show that proper definable
images of complex algebraic spaces are algebraic. Applying this to period maps, we
conclude that the images of period maps are quasi-projective and that the restriction
of the Griffiths bundle is ample.

1. Introduction

Let X be a smooth algebraic variety of finite type over C supporting a pure po-
larized integral variation of Hodge structures (VZ, F

•, Q). Let Ω be the associated
pure polarized period domain with generic Mumford–Tate group G, and Γ ⊂ G(Q) an
arithmetic lattice containing the image of the monodromy representation of VZ. There
is an associated period map ϕ : Xan → Γ\Ω, where Xan is the analytification of X,
that is, X(C) endowed with its natural structure as a complex analytic manifold. In
general, for X a reduced separated algebraic space of finite type over C, we refer to
any holomorphic locally liftable map ϕ : Xan → Γ\Ω satisfying Griffiths transversality
as a period map.

Despite their transcendental nature, period maps are expected to be algebraic in
the following sense. The Griffiths bundle L :=

⊗i detF i exists universally on Γ\Ω as
a Q-bundle and has natural positivity properties in Griffiths transverse directions. In
[19, pg.259], Griffiths conjectured when ϕ is proper that the restriction of L to ϕ(Xan)
is in fact ample, realizing ϕ(Xan) as the analytification of a quasi-projective variety.
Note that Γ\Ω itself rarely has an algebraic structure [10, 21].

Our main result is the following theorem, providing a solution to the conjecture:

Theorem 1.1. Let X be a reduced separated algebraic space of finite type over C and
ϕ : Xan → Γ\Ω a period map as above. Then

(1) ϕ factors (uniquely) as ϕ = ι ◦ fan where f : X → Y is a dominant map of
(reduced) finite-type algebraic spaces and ι : Y an → Γ\Ω is a closed immersion
of analytic spaces;

(2) the Griffiths Q-bundle L restricted to Y is the analytification of an ample al-
gebraic Q-bundle, and in particular Y is a quasi-projective variety.

Note that if the period map ϕ is proper and if X and the Griffiths bundle on X are
both defined over a subfield k of C (for example, if the variation comes from a smooth
projective family defined over k), then it easily follows that the first map g : X → Y ′

in the Stein factorization X
g−→ Y ′

h−→ Y of f will also be defined over k.
As a sample application, we have the following immediate corollary1:

1We prove Theorem 1.1 and Corollary 1.2 also for the non-reduced case, subject to a natural
admissibility condition arising from the o-minimal structure, which is satisfied for all variations coming
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Corollary 1.2. Let M be a reduced separated Deligne–Mumford stack of finite type
over C admitting a quasi-finite period map. Then the coarse moduli space of M is
quasi-projective.

Corollary 1.2 for instance will apply to a reduced separated Deligne–Mumford mod-
uli stack of smooth polarized varieties with an infinitesimal Torelli theorem. This
provides an alternate approach to results of Viehweg [38] on the quasi-projectivity of
(normalizations of) coarse moduli spaces of smooth polarized varieties X without as-
suming any positivity of KX . In particular, Corollary 1.2 also applies to uniruled X
provided deformations can be detected by Hodge theory.

The strategy of the proof of Theorem 1.1 hinges on algebraization results in o-
minimal geometry. Briefly, an o-minimal structure specifies a class of “tame” subsets of
Rn with strong finiteness properties. Such subsets are said to be definable with respect
to the structure. The resulting geometric category of complex analytic varieties that
are pieced together by definable charts (which we call definable analytic varieties, see
section 2) on the one hand allows some of the local flexibility of the analytic category
but on the other hand behaves globally like the algebraic category. An excellent
example of this is the celebrated “definable Chow theorem” of Peterzil–Starchenko [34,
Corollary 4.5], asserting that a closed complex analytic subvariety of a (not necessarily
proper) complex algebraic variety which is definable in an o-minimal structure is in
fact algebraic.

In [3], it is shown that Γ\Ω is in this sense a definable analytic variety, and that
period maps are definable with respect to this structure. To prove Theorem 1.1, we use
Artin’s theorems on the algebraization of formal modifications to inductively algebraize
ϕ on strata. This requires one to look at nilpotent thickenings and thus deal with non-
reduced spaces, even if one is only interested primarily in varieties. In fact, the naive
generalization of Theorem 1.1 to non-reduced spaces is false, as we show in Example
5.3. One of the benefits of working in the definable analytic category is that it provides
a natural admissibility condition to extend Theorem 1.1 to this setting, and we prove
the more general statement in section 5.

To algebraize the nilpotent thickenings that arise when trying to apply Artin’s the-
orem, we develop a theory of coherent sheaves in the definable analytic category, and
a GAGA-type theorem for definable coherent sheaves:

Theorem 1.3. Let X be a separated algebraic space of finite type over C and Xdef

the associated definable analytic space. The “definabilization” functor Coh(X) →
Coh(Xdef) is fully faithful, exact, and its essential image is closed under subobjects
and quotients.

It follows for example that definable coherent subsheaves of algebraic sheaves are
algebraic. Note that X is not required to be proper over C, but in contrast to Serre’s
classical GAGA theorem [35] (as well as most other GAGA-type theorems for proper
algebraic spaces), it is not true that every definable coherent sheaf is algebraic (see
Example 3.2).

The first part of Theorem 1.1 is then deduced from Theorem 1.3 and a more general
theorem on the algebraicity of definable images of algebraic varieties:

Theorem 1.4. Let X be a separated algebraic space of finite type over C, S a definable
analytic space, and ϕ : Xdef → S a proper definable analytic map. Then ϕ : Xdef →
ϕ(Xdef) is (uniquely) the definabilization of a map of algebraic spaces.

from geometry. Moreover, a version of Theorem 1.1 for the image in the stack [Γ\Ω] may be obtained
by first passing to a level cover.
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It is in general difficult to relate the metric positivity of the Hodge bundle to its
ampleness on Y an as the latter might be quite singular. One can, however, use it to
show L is big and nef on a log resolution, and we finally show how to deduce the second
statement in Theorem 1.1 from this and the algebraicity of Y .

Theorem 1.1 combined with the o-minimal algebraization results have a number of
applications, and we describe a few in the final section including:

(1) A version of the Borel algebraicity theorem for period images (section 7.1).
(2) As a concrete example of Corollary 1.2, we deduce a general result about the

quasi-projectivity of moduli spaces of complete intersections (section 7.2).
(3) A theorem showing that pure polarized integral variations of Hodge structures

over dense Zariski open subsets of compact Kähler manifolds are pulled back
from algebraic varieties (section 7.3).

(4) A version of the ampleness result in Theorem 1.1 for the Hodge bundle (section
7.4).

1.1. Previous results. Griffiths proved his conjecture in the case that the image
ϕan(Xan) is compact [20, III.9.7]. Sommese [36] proved the conjecture in the case
that the image has only isolated singularities, and later [37] proved a function field
variant. In particular, he proved that the image of a period map admits a proper
desingularization which is quasi-projective and such that the induced meromorphic
map is rational. However, for example it does not follow from their works that period
images admit a compactification by a compact analytic space.

There is ongoing work by Green–Griffiths–Laza–Robles [18] which attempts to pro-
duce a functorial compactification of period images, and goes on to deduce the quasi-
projectivity from that. However, there is a gap in Proposition 3.4.7: essentially, the
difficulty in this type of argument is to “glue” the period images from the associated
graded variation of the mixed Hodge structures on the boundary to the period image
inside. They are currently working to resolve the issue.

The subject of o-minimal sheaves and the development of a cohomology theory were
treated in [14], and this was further developed in subsequent papers. Variants of the o-
minimal Nullstellensatz and Weierstrass Preparation theorems were proven by Kaiser
[24].

Kashiwara–Schapira [25] have constructed a subanalytic site as well as a theory
of subanalytic sheaves which is in general different from our construction in section
2 for the subanalytic o-minimal structure Ran—see the beginning of section 2 for a
more precise discussion. Petit [32] has defined a “tempered analytification” functor
on smooth algebraic varieties and proven a conditional GAGA theorem reminiscent
of Theorem 1.3 on the subanalytic sites of smooth algebraic varieties in the sense of
Kashiwara–Schapira.

1.2. Outline. In section 2 we develop the theory of definable coherent sheaves and
definable analytic spaces. We also define and prove some basic properties of the de-
finabilization functor on algebraic spaces and the analytification functor on definable
analytic spaces. In section 3 we prove Theorem 1.3 (see Theorem 3.1), and in section
4 we prove Theorem 1.4 (see Theorem 4.2). In sections 5 and 6 we prove stronger
versions of the two parts of Theorem 1.1 allowing for non-reduced bases (see Theorem
5.4 and Theorem 6.2). In section 7 we deduce some applications, including Corollary
1.2 (see Corollary 7.3).

1.3. Acknowledgements. J.T. would like to thank Vivek Shende, Jonathan Pila,
and Ryan Keast for useful conversations. B.B. would like to thank Valery Alexeev
and Johan de Jong for useful conversations. Y.B. would like to thank Olivier Benoist,
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Patrick Brosnan, and Wushi Goldring for useful conversations. The authors would
also like to thank Ariyan Javanpeykar for useful remarks, specifically regarding section
7.1. This paper, and in particular section 2 owes a lot to the works of Peterzil and
Starchenko, who initiated the study of o-minimal complex geometry. B.B. was partially
supported by NSF grant DMS-1702149.

1.4. Notation. All schemes and algebraic spaces are assumed to be separated and
of finite type over C, and all definable spaces, definable analytic spaces, and analytic
spaces are assumed to be separable. When helpful (mostly in sections 3, 4, and 5), we
will loosely adopt the convention that algebraic objects are denoted by roman letters,
and (definable) analytic objects by script letters.

Throughout, we fix an o-minimal structure with respect to which we will use the
word “definable”. The reader unfamiliar with these notions may assume for concrete-
ness the structure Ralg for which the definable subsets of Rn are the real semi-algebraic
subsets. For the applications to Hodge theory in sections 5 we restrict to the o-minimal
structure Ran,exp. For a general introduction to o-minimality, see [12], and [13] for a
discussion of o-minimality in a similar language to this paper.

2. Definable analytic spaces

2.1. Definitions. We start by briefly recalling the notion of a definable space. A
definable space is a topological space X with a finite atlas by definable charts with
definable transition functions. A morphism of definable spaces is a continuous map
which is definable on every chart. For any definable space X there is a natural definable
site whose objects are the definable open subsets, and the admissible coverings are
simply the finite coverings.2 When necessary, we’ll denote the definable site by X.
We sometimes abusively refer to sheaves on the definable site as sheaves on X. Given
a continuous definable map f : X → Y , there are in the usual way adjoint functors
f∗ : Sh(X)→ Sh(Y ) and f−1 : Sh(Y )→ Sh(X) on the categories of sheaves.

For a definable open set U ⊂ Cn we let O(U) be the definable holomorphic functions
on U , that is the maps U → C that are both definable and holomorphic.

Lemma 2.1. The functor U ′ → O(U ′) is a sheaf on the definable site of U .

Proof. Let Ui be a finite covering of U . If a function f ∈ O(U) vanishes on each Ui,
it must be identically 0. Conversely, if fi are definable holomorphic functions on Ui
which agree on overlaps, they clearly glue to a single holomorphic function f on U .
Since the Ui are a finite covering of U and each fi is definable, it follows that f is also
definable and hence f ∈ O(U) as required. �

Note that the stalks Op := limp∈V O(V ) are local rings.

2 For a real analytic manifold M , Kashiwara–Schapira [25, §7] have introduced the subanalytic site
Msa of M whose objects consist of subanalytic open subsets of M and whose coverings satisfy a local
finiteness condition: for any U ∈ Msa, any covering Ui of U , and any compact K ⊂ M , they require
that the cover K ∩ Ui of K ∩ U has a finite refinement.

Our construction with respect to the subanalytic o-minimal structure Ran (see e.g. [13]) in general
yields a different category of sheaves than that of Kashiwara–Schapira since a noncompact real analytic
manifold M does not have a canonical structure as a Ran-definable space. Indeed, the classical notion
of subanalyticity of a subset Z ⊂ Rn (see e.g. [6]) is a local condition. Ran-definability of a subset
Z ⊂ Rn is a stronger condition, which roughly says that Z is globally subanalytic up to a finite cover.
The Kashiwara–Schapira site therefore contains all Ran-definable coverings of M for each Ran-definable
space structure on M , and is consequently a much finer topology in general. A compact real analytic
manifold M is uniquely a Ran-definable space, and in this case the Kashiwara–Schapira site and the
Ran-definable site give equivalent categories of sheaves.
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Definition 2.2. Given an open definable subset U ⊂ Cn and a finitely generated ideal
I of O(U), X = V (I) is naturally a definable space. There is a sheaf O/IO on U
which is supported on X. We set OX be the restriction of O/IO to X. We call the
data (X,OX) a basic definable analytic space.

Definition 2.3. If X is a definable space andOX is a sheaf of rings on the definable site
of X, then we call (X,OX) a definable analytic space if it has a finite covering by basic
definable analytic spaces. A morphism ϕ : (X,OX)→ (Y,OY ) consists of a morphism
ϕ : X → Y of definable spaces and a homomorphism ϕ] : OY → ϕ∗OX of sheaves of

rings such that if ϕ(x) = y, then the induced map of local rings ϕ]x,y : OY,y → OX,x is
a local homomorphism.

If no confusion arises, we will abusively just refer toX as the definable analytic space.
For X a definable analytic space, denote by Mod(OX) the category of OX -modules.
Given a morphism ϕ : X → Y of definable analytic spaces, we naturally have a functor
ϕ∗ : Mod(OX)→ Mod(OY ), and we define a functor ϕ∗ : Mod(OY )→ Mod(OX) via

ϕ∗ : F 7→ OX ⊗ϕ−1OY
ϕ−1F

where as usual we have used the adjoint map ϕ] : ϕ−1OY → OX to make OX a
ϕ−1OY -algebra.

Lemma 2.4. Let X be a definable analytic space. Then elements of Γ(X,OX) are in
a natural bijection with maps of definable analytic spaces X → C.

Proof. It is enough to consider X a basic definable analytic space V (I) where I is a
finitely generated ideal sheaf in a definable open set U ⊂ Cn. Given f ∈ Γ(X,OX),
after passing to a definable cover f extends to a section f0 ∈ Γ(U,OU ), and thus a map
ϕ(f0) : U → C which restricts to a map ϕ(f) : X → C. Note that if we pick a different
section f0 + i, where i ∈ Γ(U, I) then we get the same map. To see this, note that it
is obvious that ϕ(f0), ϕ(f0 + i) give the same map on points X → C. To check that
the map on the sheaf of rings is the same, note that if g is a definable function on C,

then g(f0+i)−g(f0)
i is a definable holomorphic function, and thus g(f0 + i)− g(f0) ∈ I.

For the other direction, given a map f : X → C we get a map f# : Γ(C,OC) →
f∗(C, f∗OX) and we take the section ψ(f) := f#(z). It is easy to check that ψ,ϕ are
inverse to each other. �

For some of the proofs in the following subsections, we will need a notion of definable
cell decomposition for definable spaces that is slightly different than the usual one for
Rn (see for example [12, §3.2]).

Definition 2.5. Let X be a definable space.

(1) By a definable cell in X we mean a definable subspace D ⊂ X which is definably
homeomorphic to Rk for some k.

(2) A definable cell predecomposition of X is a pairwise disjoint finite set {Di} of
definable cells of X such that X =

⊔
iDi.

(3) A definable cell predecomposition {Di} of X is a definable cell decomposition
if in addition the closure of any cell is a union of cells.

Proposition 2.6. Let X be a definable space. A definable cell decomposition of X
exists.

Proof. The proof is obtained by combining the following two lemmas.

Lemma 2.7. Let X be a definable space and {Yj} a finite set of definable subspaces.
Then there is a definable cell predecomposition of X for which each Yj is a union of
cells.
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Proof. Let Ui be a definable atlas of X, with definable homeomorphisms ϕi : Ui → Vi
onto definable Vi ⊂ Rn. We first claim that X is a disjoint union of definable subspaces
U ′i such that U ′i ⊂ Ui for each i. Indeed, taking U ′1 = U1\

⋃
i>1 Ui, we reduce to proving

the claim for X\U ′1, and then we are done by induction. Now the lemma reduces to
the case that X = U ′i is definably homeomorphic to a subspace of Rn (with subspaces
{Yj ∩ U ′i}), which follows from the usual definable cell decomposition. �

Lemma 2.8. Let X be a definable space. Then any definable cell predecomposition
can be refined to a definable cell decomposition.

Proof. Let {Di} be a definable cell predecomposition. We proceed by induction on the
maximal dimension n of the Di. Divide the Di into n-dimensional cells Ei and cells
D′i of dimension < n. Note that any closure Ei cannot intersect any other Ej (since
X is separable), so ∂Ei is in the union of the D′i. Applying the previous lemma to

X ′ :=
⋃
D′i

taking as subspaces all D′i and all ∂Ei, we obtain a predecomposition of X ′ that refines
{D′i} and for which each ∂Ei is a union of cells. Now applying the induction hypothesis,
the claim follows. �

�

2.2. Coherent sheaves.

Definition 2.9. Given an OX -module M , we say that M is locally finitely generated
if there exist a finite cover of X by definable open sets Xi, and surjections OnXi

�MXi

for some positive integer n on each of those open sets. We say that M is coherent if it
is locally finitely generated, and given any definable open V ⊂ X and any OV -module
homomorphism ϕ : OnV →MV , the kernel of ϕ is locally finitely generated.

Note that it easily follows that if M is a coherent OX -module and N is a locally
finitely generated OX -submodule, then N is coherent. Moreover, the kernel of any
homomorphism M → M ′ of coherent OX -modules is locally finitely generated and
therefore coherent. The following is standard but we include the proof for completeness.

Lemma 2.10. Let 0 → M1 → M → M2 → 0 be an exact sequence of sheaves. If two
of {M,M1,M2} are coherent then so is the third.

Proof. (1) Assume M,M1 are coherent. Since M is locally finitely generated, so is
M2. Let us now show that M2 is coherent. Suppose V ⊂ X is a definable open
and ϕ : OnV → M2|V is any map. The map ϕ is determined by the image of a
basis. Since M surjects onto M2, by further restricting to a finite open cover
we can assume that ϕ lifts to a map ϕ′ : OnV →M|V .

Now since M1 is coherent we may choose a surjection ψ : OmV → M1|V by
further restricting to a finite open cover. Consider ψ ⊕ ϕ′ : OmV ⊕OnV → M|V .
Then the kernel of ψ⊕ϕ′ is finitely generated since M is coherent, and surjects
onto the kernel of ϕ. Thus the kernel of ϕ is finitely generated, and so M2 is
coherent.

(2) Assume M,M2 are coherent. Then any map to M1 is also a map to M , and
thus has finitely generated kernel. Moreover, if ϕ : OnX �M , then the kernel of
the induced map to M2 is finitely generated since M2 is coherent, and surjects
to M1.

(3) Assume M1,M2 are coherent. To see that M is locally finitely generated, we
first restrict to a finite open covering so that one can choose surjections ϕi :
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OnI
X →Mi. Now by further restricting, we may lift ϕ2 to a map ϕ′2 : On2

X →M .

Now the map ϕ1 ⊕ ϕ′2 : On1+n2
X →M is a surjection.

Finally, let ϕ : OmX → M be any map. When continued to M2, the kernel
K of ϕ0 : OmX �M2 is locally finitely generated. The induced map from K to
M1 has locally finitely generated kernel, and this kernel is in fact kerϕ. This
completes the proof.

�

2.3. Definable Oka coherence.

Lemma 2.11. Let U ⊂ Cn be a definable open set, P ∈ O(U)[w] a monic polynomial
in w with coefficients that are definable holomorphic functions on U . Let X ⊂ U×C be
a definable open set containing V (P ). Then given any definable holomorphic function
f on X, one can uniquely write f = QP + R for definable functions Q,R with Q,R
holomorphic and R ∈ O(U)[w] of degree less than the degree of P .

Proof. Note that the uniqueness is true even in the analytic category, so it suffices to
show existence (i.e. that the unique holomorphic Q,R are definable). Let V ⊂ U × C
be the zero-locus of P . Let Vi be the irreducible analytic components of V and Pi be
the minimal polynomial of w over Vi. Note that the Vi are definable sets and so each
Pi is definable. Also, P must be a product of the Pi, and so by induction on degPi it
suffices to prove the theorem for each Pi one at a time. We may thus assume that P is
irreducible. Now let U1 ⊂ U be the dense open set where P (w) has distinct roots. On

U1 the coefficients of R are the tuples a0, . . . , an−1 such that wn +
∑n−1

i=0 aiw
i agrees

with f on V . Thus, it follows that R|U1 is definable. Since U1 is dense in U it follows
that R is definable as well, since the graph of R is the closure of the graph of R1.
Hence Q is definable since Q = f−R

P , and the proof is complete. �

For the proof of the following theorem, we need the following definition:

Definition 2.12. Let f : X → Y be a map of definable spaces. We say that f is
quasi-finite if it has finite fibers, and f is finite if it is quasi-finite and proper.

Theorem 2.13. Given a definable open set X ⊂ Cn, the definable structure sheaf OX
is a coherent sheaf.

Proof. Let (f1, . . . , fm) be definable holomorphic functions on X. This corresponds to

a map ϕ : OmX → OX , and we need to show that the relation sheaf I(~f) := kerϕ is
locally finitely generated. Let Y be the zero set of f1. On the complement of Y , a

basis for I(~f) is given by

e1 −
(
fj
f1

)
ej

where the ei are the standard basis of OmX . It remains to show that I(~f) is locally
finitely generated on (a neighborhood containing) Y . Using [33, Theorem 2.14], there
is a covering of X by finitely many definable open sets Xi such that for each Xi, there is
a linear set of coordinates for which Y ∩Xi is proper over its projection down to Cn−1.
Note that the only compact, definable analytic subsets of C are finite, so replacing Y
with Y ∩Xi we may assume without loss of generality that there is a linear projection
π : Y → Cn−1 which is definably proper and finite over its image U := π(Y ) ⊂ Cn−1.
It follows that U is a definable open set.

Now, let Yi be the irreducible components of Y , and let Pi(w) ∈ O(U)[w] be the
unique irreducible polynomials whose zero-locus is Yi. Note that Pi(w) is definable
since it can be defined as Pi(w, u) =

∏
t∈Yi∩π−1(u)(w − t). By the analytic Weierstrass

preparation theorem, there are positive integers ki such that f1∏
i Pi(w)ki

is nowhere
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vanishing, and thus must be a definable unit. Hence we may assume f1 = P (w) =∏
i Pi(w)ki .
Let k = degP . By Lemma 2.11, we can replace the fj by elements of O(U)[w] of

degree less than k and so we do this. Now, I(~f)(X) contains the relations −fje1 +f1ej
for all j. It follows again by Lemma 2.11 that the remaining relations are generated
by relations of the form

∑
gjej for gj ∈ O(U)[w] of degree less than k. We will show

that such relations are locally finitely generated over O(U). In fact, separating out
the coefficients of all polynomials in w in the map (r1, . . . , rm)→

∑
firi we get a map

ψ : OmkU → OkU . By induction, OU is coherent and so by Lemma 2.10 the kernel of ψ is
locally finitely generated over OU . Thus (by possibly further restricting to a subcover)

we obtain finitely many relations ~Ri ∈ O(U)[w]m which together with the relations

e1−
(
fj
f1

)
ej generate kerϕ on any definable open subset of Y of the form Y ∩π−1(U1)

for a definable open U1 ⊂ U . We claim that in fact these relations generate everywhere.

Lemma 2.14. Let f : X → Y be a continuous, finite map of separated definable
spaces, and let Xi be a definable open cover over of X. Then there is a refinement Wi

of Xi and a definable open cover Yi of Y such that each f−1(Yi) is a disjoint union of
the Wi.

Proof. Consider the boolean algebra generated by the f(Xi), and by Proposition 2.6
refine that to a decomposition of Y as a union of cells Ci. Refining further, we may
assume that f−1(Ci) is a disjoint union of copies of Ci mapping down bijectively. Now
let the Di be the components of the f−1(Ci). Note that the Di refine the Xi.

Now choose a cell D of X and let X(D) be the union of cells of X whose closure
contains D; likewise for a cell C of Y define Y (C). It is clear that each X(D) is
definable and open in X. Moreover, if D ⊂ Xi then it is clear that X(D) ⊂ Xi.
Likewise for Y (C).

Now suppose C is cell in Y , and D,D′ are distinct cells in X mapping to C. Since
X is separated, it follows that X(D) and X(D′) are disjoint.

We claim now that f−1(Y (C)) is the disjoint union of X(D) for cells D of X mapping
to C. To see this, if is sufficient to know that if C ′ is a cell containing C in its closure,
then every lift D′ of C ′ contains in its closure some lift of C. This is immediate since
the map f is proper.

Finally, for any cell D of X, each cell of Y (f(D)) lifts to a cell of X(D) by construc-
tion, so X(D) is proper over its image Y (f(D)). The claim is now proven taking the
Wi to be the Y (Ci). �

Now, to see that our set of relations generates everywhere, it is sufficient by Lemma
2.14 to restrict to definable open sets W such that W ∩ Y is proper over its image
U ′ ⊂ U . But then W ∩ Y is an open component of Y ∩ π−1(U ′) and any relation on
W ∩Y can be extended by 0 to a relation on Y ∩π−1(U ′). Since our relations generate
on Y ∩ π−1(U ′), the proof is complete. �

We deduce for later use the following corollary of Lemma 2.14

Corollary 2.15. Let f : X → Y be a continuous finite map of definable spaces. Then
f∗ is exact on the categories of abelian sheaves.

Proof. Let A → B → C be an exact sequence of sheaves on X; we want to prove
the exactness of f∗A → f∗B → f∗C. For a definable open U of Y , if a section s in
f∗B(U) = B(f−1(U)) is zero in f∗C(U), then taking after taking an open definable
cover of f−1(U), s is in the image of A. By Lemma 2.14 we refine our open definable
cover by components of f−1(Wi), where Wi are an open cover of Y . It follows that for
each i, s(Wi) is in the image of f∗A(Wi), completing the proof. �
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Theorem 2.13 implies the same coherence statement in general:

Theorem 2.16 (Oka coherence). Given a definable analytic space X, the structure
sheaf OX is a coherent sheaf.

Proof. It is sufficient to assume that X is a basic definable analytic space. So let
X = V (I) where U ⊂ Cn is definable open and I ⊂ OU is a finitely generated
subsheaf. Let i : X → U be the natural injection. Note that F → i∗F gives an
equivalence of categories between OX -modules on X and OU -modules on U killed by
I, with inverse F → i−1F . Now if ϕ : OnX → OX is a map, we may consider the map
i∗ϕ : i∗O

n
X → i∗OX which is a map of coherent OU -modules. Since OU is coherent,

we may form an exact sequence OtU → i∗O
n
X → i∗OX . The first map is killed by

I, so we get an exact sequence i∗OtX → i∗O
n
X → i∗OX , and thus an exact sequence

OtX → OnX → OX as desired.
�

We have implicitly used in the previous theorem (for X ⊂ Cn open) the following
immediate corollaries, which are true from generalities about coherent sheaves:

Corollary 2.17.

(1) OnX is coherent for any n.
(2) Any locally finitely generated submodule of a coherent sheaf is coherent.
(3) Any locally finitely presented OX module is coherent.

2.4. Étale descent. In order to definabilize algebraic spaces3 in the next section, we
need to take quotients by (not necessarily proper) étale equivalence relations. For U
a definable analytic space, we say a definable analytic subspace R ⊂ U × U is an
equivalence relation if for any definable analytic space S, Hom(S,R) ⊂ Hom(S,U) ×
Hom(S,U) is an equivalence relation. We say that a map is étale if it is open and locally
an isomorphism onto its image, and an equivalence relation is étale if the projection
maps are étale.

Proposition 2.18. Let U be a definable analytic space. Given a closed étale definable
equivalence relation R ⊂ U × U , there exist finitely many definable open sets Ui of U
such that R∩ (Ui×Ui) = ∆Ui, and the Ui collectively contain each R-equivalence class
at least once.

Proof.

Step 1. By definable choice, we can find a definable subset T of U which has exactly
one point for each R-representative class. Let us stratify T by submanifolds Ti. Now
for each i let Si be the set of all points equivalent to Ti but not actually in Ti. It is easy
to see that Si is also a submanifold. Now we will show how to further stratify such
that Ti is disjoint from Si. To do this, note that Ti ∩ Si is of smaller dimension than
Ti. Thus by successively iterating in this way we can obtain our desired stratification.
By further stratifying, we can assume that the number of R-pre-images along Ti is
constant, and that each Ti is a cell and is therefore simply connected.

Step 2. By the argument in Lemma 2.14 we may take Vi to be a definable open
neighbourhood of Ti such that R∩ (Vi×U) consists of k étale sections over Vi - which
we denote by R0 - and another piece R′ which does not intersect Ti × U .

3Recall that we need to work with algebraic spaces, since Artin’s algebraization theorem does not
hold true for schemes.
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Step 3. Pick a definable distance function d(x, y) on U × U , and pick a definable
exhaustion function E : U → R≥0. In other words, E−1([0, c]) is compact for all c ∈ R.
For a set S ⊂ U we write Sc to mean S ∩ E−1([0, c]).

Step 4. By definable choice we may let h : R2
≥0 → (0, 1) be a definable, positive ε such

that R′ ∩Bd,ε(T ci )×Bd,ε(T c
′
i ) = ∅. Consider the function

g(c) := min
c1,c2<c

h(c1, c2)

2
.

We let f(c) be a definable positive, continuous, decreasing function strictly smaller
than g(c). Note that h(c, c′) > min(f(c), f(c′)).

Step 5. Define d′(u, Ti) := minc,t∈T c
i
d(u, t)f(c)−1. Define Wi to consist of all points

u ∈ Vi such that d′(u, Ti) < minu′∈R(u)\u d
′(u′, Ti). We claim that Wi contains an open

neighbourhood around Ti. Let t ∈ Ti. For ε > 0, consider the ball Bd′,ε(t). It is clear
that for sufficiently small ε, d′ is smaller on this ball then on R0, and d′ is smaller then
1/2. Suppose that u ∈ Bd′,ε(t), u′ ∈ R′ and d(u′, t′) ≤ f(c) for t′ ∈ T ci . It follows that

the point (u, u′) ∈ R′ ∩Bd,ε(T ci )×Bd,ε(T c
′
i ) for ε = min(f(c), f(c′)) < h(c, c′). This is

a contradiction. Now set Ui ⊂Wi to be the maximal open subset (which is a definable
condition). This completes the proof.

�

For a definable equivalence relation R ⊂ U × U , we say U → X is a quotient if
it represents the sheaf U/R with respect to the definable topology. Concretely, this
means that a map S → X is given by taking a definable cover Si of S and giving maps
Si → U that agree on overlaps up to the equivalence relation. A quotient is unique up
to unique isomorphism provided it exists.

Corollary 2.19. Quotients by closed étale equivalence relations exist in the category
of definable analytic spaces.

Proof. The quotient can be glued together from the cover provided from Proposition
2.18. �

Corollary 2.20. Let X,Y be definable analytic spaces and f : X → Y an étale
morphism. Then there is a definable open cover Xi of X such that the restrictions
fj : Xj → Y are open immersions.

Proof. Apply the proposition to the equivalence relation X ×Y X ⊂ X ×X. �

For X a definable analytic space, let X be its definable site. Let X ét be the site
whose objects are definable analytic spaces with an étale morphism to X and whose
covers are surjective such maps. The obvious inclusion i : X → X ét yields a morphism
of sites

f : X ét → X.

Recall this means i is continuous (sends covers to covers and respects fiber products
with covers) and that the pullback on sheaves f−1 (which is just sheafification in the
definable étale topology) is exact, both of which are immediate. The corollary implies
the natural presheaf OX ét : U → OU (U) on X ét is a sheaf.

Corollary 2.21. Let X be a definable analytic space. Then f−1 : Sh(X) → Sh(X ét)
is an equivalence of the categories of sheaves. Moreover, f−1OX → OX ét is an iso-
morphism.

Proof. By the above corollary, every definable étale cover is refined by a definable open
cover. �
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2.5. Definabilization. If X is an affine scheme presented as SpecC[x1, . . . , xn]/I we
define the definabilization Xdef to be the definable analytic subspace of Cn given by
the coherent ideal sheaf IOdef

Cn . It is easy to see this yields a functor from affine schemes
to definable analytic spaces which is functorial and maps open covers to open covers,
and thereby extends uniquely to a functor from schemes to definable analytic spaces.

For X a scheme, the definabilization functor yields a morphism of ringed sites

g : ((Xdef),OXdef )→ (X,OX)

as there is a natural map g−1OX → OXdef . Let Coh(X) be the category of coherent
sheaves on X, and Coh(Xdef) the category of definable coherent sheaves on Xdef . We
then define a definabilization functor

Def : Coh(X)→ Coh(Xdef) : F 7→ F def := OXdef ⊗g−1OX
g−1F.

Evidently there is a natural isomorphism Odef
X
∼= OXdef .

Suppose now that X is an algebraic space, presented as the quotient of U by a
closed equivalence relation R ⊂ U × U where R,U are schemes and the projection
maps are étale. We obtain a definable étale equivalence relation Rdef ⊂ Udef × Udef ,
and by Corollary 2.19 we can define the definabilization Xdef of X to be the categorical
quotient. As morphisms of algebraic spaces are étale locally morphisms of schemes, this
provides us with a definabilization functor from algebraic spaces to definable analytic
spaces.

To extend the functor Def to X, there are two ways to proceed. There is a definabi-
lization functor from the étale site of X to the étale site of Xdef , and Corollary 2.21
allows us to define a functor Def : Coh(X) → Coh(Xdef). Alternatively, given the
above presentation, let πi and πij be the obvious projections R → U , R ×U R → R,
respectively. Coh(X) is then equivalent to the category of descent data: pairs (F,ϕ)
where F ∈ Coh(U) and ϕ : π∗1F → π∗2F is an isomorphism such that on R ×U R we
have π∗13ϕ = π∗23ϕ ◦ π∗12ϕ. Coh(Xdef) has the analogous description, and the definabi-
lization functor is simply Def : (F,ϕ) 7→ (F def , ϕdef), which can be easily seen to be
independent of the choice of presentation.

2.6. Analytification. Likewise, there is a natural analytification functor from defin-
able analytic spaces to analytic spaces which we denote by X 7→ Xan, as well as an
analytification functor An : Coh(X)→ Coh(Xan) on the corresponding categories of
coherent sheaves, with a natural identification Oan

X
∼= OXan .

Theorem 2.22. Let X be a definable analytic space and An : Coh(X)→ Coh(Xan)
the analytification functor. Then

(1) An is faithful;
(2) An is exact.

Proof of Theorem 2.22(1). We need to show that if we have E
f−→ F in Coh(X) such

that fan = 0, then f = 0. By considering the image, it is enough to show that if for
F ∈ Coh(X) we have F an = 0, then F = 0. The statement is local, so we may assume
F has a presentation

OmX
g−→ OnX → F → 0

and we reduce to the following lemma.

Lemma 2.23. If gan is surjective then g is.

Proof. We can express g as an m×n matrix M consisting of elements of OX(X). Since
gan is surjective at every point of X some n × n minor of M is invertible, and so its
inverse is definable as it is a rational function of the entries of g. It follows that g is
surjective. �
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�

For the second part of Theorem 2.22, we first need some preliminary observations.

Lemma 2.24. For X a definable analytic space, and p ∈ X, the stalk OX,p is a
Noetherian ring.

Proof. Without loss of generality X ⊂ U ⊂ Ck is a basic definable analytic space V (I)
for I a finitely generated ideal. Then OX,p is a quotient of OCk,p. Thus it is sufficient
to prove OCk,p is Noetherian.

We proceed by induction on k. Suppose 0 6= f ∈ OCk,p. By [33, Theorem 2.14]
we can change coordinates such that f is a unit times a Weierstrass polynomial
P (w) ∈ OCk−1,p[w]. Thus OCk,p/(f) is finite over OCk−1,p. The theorem thus follows
by induction, since a finite extension of a noetherian ring is noetherian. �

Lemma 2.25. For X a definable analytic space, p ∈ X, the completions of OX,p and
Oan
X,p are canonically isomorphic.

Proof. For X an open set in Cn the claim is clear since both completions are canonically
the formal power series ring Rn in n variables. By the Artin-Rees lemma, it follows
that tensoring with Oan

Cn,p over OCn,p is exact for finitely generated modules.
Now suppose X ⊂ U is a basic definable analytic space cut out by an ideal sheaf I.

By the above Ian
p := Ip⊗OU,p

Oan
U,p is a subsheaf of Oan

U,p, and we have the isomorphisms

OX,p ∼= OU,p/Ip, and Oan
X,p
∼= Oan

U,p/I
an
p

It follows that the completions of OX,p and Oan
X,p are both isomorphic to Rn/(Ip⊗OU,p

Rn). �

Proof of Theorem 2.22(2). Sheafification in the analytic topology is exact and tensor
products are always right exact, so it is sufficient to prove left-exactness of the tensor
product. Suppose that 0→ E → F is an exact sequence of definable coherent sheaves.
Then we get an injection of stalks 0 → Ep → Fp for p ∈ X. Now to show that Ean

injects into F an it is sufficient to prove that Ean
p injects into F an

p . Note that Ean
p
∼=

Ep⊗OX,p
Oan
X,p. Since the completions of OX,p and Oan

X,p are canonically isomorphic by
Lemma 2.25, and the rings are both Noetherian by Lemma 2.24, it follows that tensor
product is exact on finitely generated modules. The claim therefore follows. �

Corollary 2.26. Let X be a definable analytic space and E ∈ Coh(X). For any
section s ∈ E(X), s = 0 if and only if (san)x = 0 in (Ean)x for all x ∈ X.

Proof. Consider the map ϕ : OX → E with ϕ(1) = s. Now s = 0 if and only if ϕ
defines the 0 map, and by Theorem 2.22 this happens iff ϕan is the 0 map, which can
be checked on stalks. �

Corollary 2.27. Given a subsheaf E ⊂ F and a section s ∈ F (X), then s ∈ E(X) iff
(san)x ∈ (Ean)x for all x ∈ X.

2.7. Reduced spaces.

Lemma 2.28. Let U ⊂ Cn be an open definable subset, and Y ⊂ Uan a closed definable
analytic set. Then the ideal sheaf I ⊂ OU of functions vanishing on Y is coherent.

Proof. By [33, Theorem 11.1], there is a finitely generated ideal sheaf J ⊂ I ⊂ OU
which agrees with I on stalks. We claim that I = J . Suppose t ∈ I(U). Consider the
finitely generated sheaf J ′ generated by J and t. Then J and J ′ have the same stalks,
and are both coherent, and therefore J = J ′ be Theorem 2.22. Thus, t ∈ J(U) and so
it follows that I = J . �
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For X a definable analytic space and Y ⊂ Xan a closed definable analytic set,
we may locally endow Y with the reduced induced structure given by the ideal in the
lemma, and thereby obtain a closed definable analytic subspace Y ⊂ X. Moreover, this
structure is functorial in the sense that if X ⊂ X ′ is a closed immersion of definable
analytic spaces, and Y ⊂ X is a definable analytic set, then the reduced induced
structures inherited from X and from X ′ are the same.

For X a definable analytic space, taking the underlying definable space we have
its reduced space Xred ⊂ X. We say that X is reduced if this embedding is an
isomorphism. Note that it is clear that being reduced is equivalent to all the stalks
OX,p being reduced local rings.

2.8. Noetherian induction and the Nullstellensatz.

Proposition 2.29 (Definable Noetherian induction). Let X be a definable analytic
space and F a coherent sheaf on X. Any increasing chain of coherent subsheaves of F
must stabilize.

Proof. It is enough to prove the statement on a definable cover. As F is locally a
quotient of OnX , and by pulling back our chain we may assume F = OnX . The statement
for OnX clearly follows from the statement for OX so we may assume F = OX . We
may take X to be a basic definable analytic space, and then as OX is a quotient of
OCn we assume X ⊂ Cn is an open definable set.

We now induct on n to show the claim for OX for X ⊂ Cn open. Our chain
of definable coherent subsheaves corresponds to a chain of ideal sheaves Ij . We may
assume after passing to a further cover that all of the Ij contain a function f ∈ OX(X).
As in the proof of Theoren 2.13, we may assume we have Y ⊂ X ⊂ U × C where Y
is the zero-locus of f , P ∈ O(U)[w] is a Weierstrass polynomial vanishing on Y , Y is
definably proper over U , and the Ij contain P . Let Qj = Ij/POX and π : X → U the
projection. Note that the Qj are coherent sheaves on Y and it is sufficient to show
that that the Qj stabilize.

Lemma 2.30. With the above notation, let π : Y → U be the projection map. Then
the pushforward map π∗ takes coherent sheaves to coherent sheaves.

Proof. By Lemma 2.11 we know that π∗OY ∼= OdegP
U . Now let Q be a coherent sheaf.

This means that Q has a presentation on a definable open cover, and by Corollary 2.15
this yields a presentation of π∗Q. �

By induction, the sequence π∗Qj stabilizes. The theorem will thus follow if we show
that π∗Qj = π∗Qj+1 implies that Qj = Qj+1. By Corollary 2.15 the pushforward π∗
is exact, and thus it suffices to show that for a coherent sheaf Q, π∗Q = 0 implies that
Q = 0. It is easy to see that (π∗Q)u = ⊕π(y)=uQy and thus if π∗Q = 0 it follows that
all stalks of Q are 0. The claim now follows from Theorem 2.22. �

Let X be a definable analytic space. For any definable coherent sheaf F , we define

the the support Supp(F ) as a definable analytic subspace as follows: if OnX
g−→ OmX → F

is a local presentation, we take Supp(F ) to be the subspace cut out by the minors of
g.

Lemma 2.31.

(1) The underlying definable analytic set of Supp(F ) is the set of p ∈ X for which
Fp 6= 0.

(2) Supp(F )an = Supp(F an).
(3) The ideal of Supp(F ) in X is the ideal of functions f ∈ OX such that fF = 0.
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Proof. For the first claim, Fp 6= 0 if and only if g(p) is not surjective if and only if all
minors of g(p) are zero. For the second, a presentation analytifies to a presentation,
by Theorem 2.22. For the third, let I be the ideal sheaf of Supp(F ) in X. It follows
that Ian is the ideal of the analytification of Supp(F ) by Theorem 2.22. Now apply
Corollary 2.27. �

Corollary 2.32. Let X be a definable analytic space.

(1) Any decreasing chain of closed definable analytic subspaces stabilizes.
(2) Any decreasing chain of closed definable analytic sets stabilizes.

Proof. For (1), consider the corresponding chain of ideals. This also handles (2), by
endowing the subsets with the reduced induced structure. Note that by the lemma a
definable analytic set Y may be recovered by the ideal sheaf IY defining the subspace
Y with the reduced induced structure as the underlying set of Supp(OX/IY ). �

Corollary 2.33 (Nullstellensatz). Let X be a definable analytic space. For some n,
we have In

Xred = 0.

Proof. Let Xk be the definable analytic subspace given by the ideal Ik
Xred . By the

previous lemma, for any inclusion of definable coherent sheaves E ⊂ E′ we have
Supp(E) ⊂ Supp(E′). Thus, Supp(Ik

Xred) gives a decreasing chain of definable an-
alytic subspaces, which must eventually not contain any given point. Therefore, by
Corollary 2.32 Supp(IXred) is eventually empty, and by the lemma Ik

Xred = 0. �

Corollary 2.34. Let X be a definable analytic space and Z ⊂ X a definable analytic
subspace. Then for some n, In

Zred ⊂ IZ .

2.9. Descending analytic maps. The purpose of this section is to prove a descent
statement. In preparation, we need the following 2 lemmas:

Lemma 2.35. Let Y be a definable analytic space and Z → Y ×C be a closed definable
analytic subspace, finite over Y . The projection map π : Z → Y is such that π∗ maps
coherent sheaves to coherent sheaves, and commutes with analytification.

Proof. Let w be the last coordinate in Y × C. We claim that, after passing to a
definable cover w satisfies a monic polynomial equation over OY (Y ). By Corollary
2.33 we may assume that Z is irreducible and reduced, and thus also that Y is reduced.
Replacing Y be the image of Z in Y , we may assume that Z maps surjectively onto
Y , and thus that the number of pre-images is constant. Then satisfies the polynomial
P (x) :=

∏
(y,z)∈Z(x− z) ∈ OY [x].

Now let W be the analytic subspace cut out by P . We claim that ψ∗OW is free over
OY . When Y is a domain in Cn, this follows from Lemma 2.11 and Lemma 2.14. In
the general case, we have to prove that every function g on W can uniquely be written
as a polynomial in w of degree d− 1 over OX .

To show existence, note that we can find a neighborhood V of Y which is open in
Cn such that P extends to V , and cuts out a definable analytic space WV . Shrinking
further and using Lemma 2.14 we may assume that g extends to WV , and so it can
be written as a polynomial in w of degree d − 1 over OV . Restricting to Y proves
existence. Uniqueness is true in the analytic category (see e.g. [17, pg.56]) so follows
from Theorem 2.22.

Now, by Corollary 2.15 it follows that pushforwards under finite maps are exact,
and thus pushforwards of coherent sheaves from W to Y are coherent, and commute
with analytification. Let i : Z → W be the natural inclusion map. It is clear that
i∗OZ is cut out by the ideal sheaf of Z restricted to W , and is therefore coherent, and
analytifies to ian

∗ OZ . Thus we see that π∗OZ is a coherent sheaf on Y , and analytifies
to πan

∗ OZan and so the claim follows as above by Corollary 2.15. �
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Lemma 2.36. Let π : X → Y be a proper map of definable analytic spaces that is
surjective on points and such that OY → π∗OX is injective. Let f ∈ Γ(Y an,Oan

Y ) be
such that π∗f ∈ Γ(X,OX). Then f ∈ Γ(Y,OY ).

Proof. By Lemma 2.4 we get a map X × C corresponding to the section π∗f . Thus
we get a map ϕ : X → Y × C whose projection to Y is the map π, such that the
pullback of the C-coordinate w is π∗f on X. Let Z be the set theoretic image of ϕ.
It is clear that Z → Y × C is finite, and that Z is a definable holomorphic subset of
Y × C, so we may give it its reduced induced structure by Lemma 2.28. Now let IZ
be the coherent ideal sheaf of Z in Y × C. The pullback π∗IZ is a nilpotent coherent
sheaf on X and thus some power of it is 0 by Theorem 2.33. Say π∗IkZ = 0. Set

Zk ⊂ Y ×C to be the definable analytic space cut out by IkZ . Then the map π factors
through Zk, and thus the map ψ : Zk → Y is surjective on points, with the natural
map OY → ψ∗OZk

being injective. By Lemma 2.35 we see that ψ∗OZ,k is a coherent
sheaf. Now w ∈ Γ(Y, ψ∗OZk

) is in the image of f ∈ Γ(Oan
Y ), and so the claim follows

by Lemma 2.22. �

Corollary 2.37. Let X,Y, Z be definable analytic spaces and suppose we have (solid)
diagrams

X

g

��

h // Y

i
~~

Xan

gan

��

han
// Y an

ι
{{

Z Zan

such that h is surjective on points and OY → h∗OX is injective. Then i exists such
that ian = ι.

Proof. It follows from definable choice that ι is a map of definable spaces. Let U ⊂
Z be definable open and f ∈ OZ(U). Then by Lemma 2.36 the section ι∗f ∈
Γ(ι−1(U),OY an) is actually in Γ(ι−1(U),OY ). We thus get a map i : Y → Z and
it is follows from Theorem 2.22 that g = i ◦ f . �

2.10. Quotients by finite groups. To definabilize Γ\Ω when Γ is not torsion-free,
we shall need to be able to talk quotients of definable analytic spaces by finite groups.
To that end, we have the following proposition:

Proposition 2.38. Let X be a definable analytic space, and G a finite group acting
on X. Then there exists a definable analytic space Y and a map Q : X → Y such that
any map of definable analytic spaces X → Z which is G-invariant factors uniquely
through Q. Moreover, Q analytifies to the analytic quotient, so that OY,Q(x) = OIxX,x
where Ix is the stabilizer of x.

Proof. It is well known that definable spaces admit quotients by proper equivalence
relations, so let Y be the definable space which is the quotient of X by the proper
equivalence relation given by G-equivalence. We need to equip Y with a structure
sheaf giving it the structure of a definable analytic space. For each subgroup H < G,
let XH be the subset of X with stabilizer H, and let YH be the image of XH in Y .
Note that YH is determined by H up to conjugacy, and that G/H defines an étale
equivalence relation on XH . By Lemma 2.18 we may find a cover Ui of XH in X
by basic definable analytic varieties, such that the equivalence relation on Ui ∩XH is
trivial. Replacing each Ui by its intersection with its H-translates we can assume that
Ui is H-invariant. By picking a definable distance function, we further replace Ui by
the set of points that are closer to Ui ∩ XH then any of its translates.We may thus
assume that if z, gz ∈ Ui then g ∈ H.
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Let Vi be the image of Ui in Y . Let s1, . . . , sm be coordinates for Ui. Consider the
free polynomial ring C[h(si)] for h ∈ H and let Pj be polynomials in the (h(si)) which
generate the H-invariant subring. Then the Pj descend to analytic functions on Vi
which embed it as a locally closed subset of Cn, and thus give Vi the structure of a
definable analytic space. We claim that π : Ui → Vi is the categorical quotient of Ui
by H, and thus that Vi is the categorical quotient of π−1(Ui) by G.

To see this, suppose f : Ui → Z is a map of definable analytic spaces which is H
invariant. Then fan factors through πan, so the statement follows from Corollary 2.37.
It follows that the Ui glue to give a definable analytic space structure on Y , and that
Y is the categorical quotient of X in the category of definable analytic spaces. �

3. Definable GAGA

In this section we prove an algebraization theorem for definable coherent sheaves on
algebraic spaces. Precisely, we show:

Theorem 3.1. Let X be an algebraic space and Def : Coh(X) → Coh(Xdef) the
definibilization functor. Then

(1) Def is fully faithful and exact.
(2) The essential image of Def is closed under subobjects and quotients.

Example 3.2. Def is not essentially surjective. Let q be the standard coordinate
on Gm. Note that the C-local system V on Gan

m with mondromy λ = e2πiα can be
trivialized on a definable open cover—take for instance a finite union of overlapping
sectors. It follows that F = V ⊗C OGdef

m
is a definable coherent sheaf. On the one

hand, the only algebraic line bundle on Gm is the trivial bundle OGm .
On the other hand, we claim that F can be nontrivial as a definable coherent sheaf.

In the structure Ralg this is obvious, as sections of F have at most finite monodromy,
so if α is irrational F cannot be trivialized. Even in the structure Ran, however, F
will be nontrivial if α is not real. A trivializing section is of the form v ⊗ e−α log q+g(q)

for holomorphic g, but as definable functions in Ran grow sub-exponentially g must be
constant. But e−α log q is clearly not definable on any sector if α is not real.

Before the proof we make some preliminary observations. First, we have the analog
of Theorem 2.22.

Lemma 3.3. Def is faithful and exact.

Proof. By Lemma 2.22 the map An : Coh(Xdef) → Coh(Xan) is faithful and exact.
By classical considerations, the usual analytification functor An ◦ Def is faithful and
exact. It follows that Def is also faithful and exact. �

Now, observe that given Lemma 3.3, part (2) of Theorem 3.1 implies (1) since we
just need to verify fullness, and a homomorphism F1 → F2 can be recovered from its
graph as a subsheaf of F1 ⊕ F2. Moreover, the first part of (2) clearly implies the
second part by considering the kernel and using the exactness part of Lemma 3.3.

3.1. Vector bundles. We first show a special case of Theorem 3.1. Suppose X is a
reduced algebraic space, and let F be a coherent locally free sheaf on X.

Lemma 3.4. If 0 → E → F def → G → 0 is an exact sequence in Coh(Xdef) and E
and G are locally free, then it is the image by Def of an exact sequence 0→ E → F →
G→ 0 in Coh(X) where E and G are locally free.

Proof. It is sufficient to construct the quotient G and then define E as the kernel of
F → G → 0. By working separatly on every connected component of X, one can
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assume that G have constant rank r. Let Gr(r, F ) be the Grassmannian of quotient
modules of F that are locally free of rank r. Then G corresponds to a definable section
of Gr(r, F )def , which is necessarily algebraic by4 [34, Corollary 4.5].

�

3.2. Proof of Theorem 3.1. As above, it is enough to prove the first part of (2).

Lemma 3.5. Assume Theorem 3.1 for reduced algebraic spaces. Then it is true for
nonreduced spaces.

Proof. Let X be a scheme with a nilpotent ideal I cutting out a subscheme X0. We
can assume I2 = 0 and inductively that Theorem 3.1 holds for X0.

Let F be a coherent sheaf on X and E ⊂ F def a definable coherent subsheaf. We
have the diagram

0 // (IF )def // F def // (F/IF )def // 0

0 // IdefE //

OO

E //

OO

E/IdefE //

OO

0

Since Theorem 3.1 holds for X0, the left vertical arrow is algebraic. Thus IdefE =
Mdef for a coherent M ⊂ F . We may thus replace F by F/M , and reduce to the
case IdefE = 0. Likewise, E maps to (F/IF )def and must have algebraic image Ndef

for a coherent N ⊂ F/IF . Replacing F by the inverse image of N , we may assume
that E maps isomorphically to (F/IF )def . Thus we are reduced to showing that if
F → (F/IF ) has a definable section then it is algebraic. Note that this section would
have to land in P def , where P ⊂ F is the subsheaf annihilated by I. Since both F/IF
and P are both coherent sheaves on X0, this follows from Theorem 3.1 for X0. �

We now assume X is reduced. Let F be a coherent sheaf on X and E ⊂ F def a
definable coherent subsheaf.

Lemma 3.6. For some dense open U ⊂ X, E|U is algebraic.

Proof. On some dense open set U , F is locally free. The (reduced) locus where E and
F def/E have non-maximal rank is definable, analytic, and closed, hence algebraic by
[34, Corollary 4.5]. After possibly shrinking U to a smaller dense open set, the claim
then follows from Lemma 3.4.

�

Let EU be the algebraic sheaf on U for which (EU )def ∼= E|U . Let Ẽ be the “closure”
of EU in F , i.e. the pullback

F // j∗j
∗F

Ẽ

OO

// j∗EU

OO

where j : U ↪→ X denotes the inclusion. The sheaf Ẽ is evidently quasi-coherent and so

it is coherent since it is a subsheaf of F . Thus, Ẽdef and E are both definable coherent
subsheaves of F def , and therefore so is their intersection G.

Let IZ be the ideal sheaf of Z = X r U with the reduced scheme structure, and
I = Idef

Z .

4See also the version in [30, Theorem 2.2]. Note that the statement can easily be generalized to
reduced algebraic spaces.
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Lemma 3.7. Suppose we have definable coherent sheaves G ⊂ G′ for which G|U = G′|U .

Then for some n, InG′ ⊂ G.

Proof. Take the quotient
0→ G′ → G → Q→ 0.

By Lemma 2.33, In kills Q for some n, and thus InG ⊂ G′. �

Applying the lemma to G ⊂ Ẽdef , we have (InZẼ)def ⊂ E . The quotient E ′ is then a

subsheaf of (F ′)def , where F ′ = F/InZẼ is supported on a subspace whose reduction is
Z. By induction, E ′ is algebraic, and E is the preimage in F , hence algebraic, so the
proof is complete.

3.3. Definable Chow. We therefore obtain a version of the definable Chow theorem
of Peterzil–Starchenko [34, Corollary 4.5] for arbitrary algebraic spaces.

Corollary 3.8. Let Y be an algebraic space and X ⊂ Y def a closed definable analytic
subspace. Then X is (uniquely) the definabilization of an algebraic subspace.

Proof. We need only algebraize the quotient Odef
Y → OX , which follows from Theorem

3.1. �

Corollary 3.9. Let X,Y be algebraic spaces. Then any map Xdef → Y def of definable
analytic spaces is (uniquely) the definabilization of an algebraic map.

Proof. Apply the previous corollary to the graph. �

4. Definable images

The purpose of this section is to prove an algebraization theorem for definable images
of algebraic spaces. For convenience we make the following definition.

Definition 4.1. A map f : X → Y of algebraic spaces is dominant if OY → f∗OX is
injective.

Note that a proper dominant map is surjective on complex points. Our goal is to
prove the following result.

Theorem 4.2. Let X be an algebraic space, S a definable analytic space, and ϕ :
Xdef → S a proper definable analytic map. Then ϕ (uniquely) factors as ϕ = i ◦ fdef

for a proper dominant map f : X → Y of algebraic spaces and a closed immersion
i : Y def → S. Moreover, ian(Y an) coincides with the image ϕan(Xan).

Remark 4.3. We expect a constructible analogue of this theorem to hold even if the
map is not proper.

The proof of Theorem 4.2 will crucially use the following proposition:

Proposition 4.4. Let f : W → Z be a proper dominant map of algebraic spaces.
Suppose we have an algebraic square-zero thickening W →W ′, a definable square-zero
thickening Zdef → Z ′, and a map ϕ′ : W ′def → Z ′ which fits into a commutative
diagram

W def

fdef

��

// W ′def

ϕ′

��

Zdef // Z ′

Then there are uniquely the following: a (proper) dominant map f ′ : W ′ → Z ′′

of algebraic spaces, Z → Z ′′ an algebraic square-zero thickening, and Z ′′def → Z ′ a
definable square-zero thickening such that we have commutative diagrams
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W

f

��

// W ′

f ′

��

W ′def

ϕ′

""

f ′def

��

Z ′

Z // Z ′′ Z ′′def

<<

.

Proof that Proposition 4.4 implies Theorem 4.2. We proceed by induction on the di-
mension. Assume first that X is reduced. It is enough to prove the theorem for each
irreducible component Xi of X, as X → Y is obtained as the pushout of the Xi → Yi
guaranteed by the theorem. We therefore assume X irreducible in addition. Since ϕ is
proper, ϕ(X) is definable and analytic, so we may replace S by the reduced definable
analytic space ϕ(X) and thus assume that ϕ : Xdef → S is surjective on points.

We will first explain how to reduce to the case where ϕ is a proper modification.
Let Hilb(X) be the Hilbert space5 of proper algebraic subspaces of X. Let H be the
union of the components which contain the general fibers of the map Xdef → S, and
ZH ⊂ X ×H the universal subscheme. Since ϕ is flat6 over a definable Zariski open
subset of S, the fibers over this subset form a subset U ⊂ H which is constructible
in the definable analytic category, and therefore also in the algebraic category [30,
Corollary 2.3]. Let H ′ be the closure of U in H, which is a closed reduced algebraic
subspace of H. We claim that the fibers of ZH′ over H ′ map (set-theoretically) to
points in S. Indeed, if ξi ∈ U is a sequence converging to ξ ∈ H, for any z ∈ Zξ
we can choose zi ∈ Zξi converging to z, but the sequence ϕ(Zξi) has a unique limit.

Thus, after taking normalizations Z̃H′ and H̃ ′ of ZH′ and H ′, respectively, we obtain
a factorization

Z̃H′

  ��

(Z̃H′)
def

zz %%

X H̃ ′ Xdef

$$

(H̃ ′)def

yyS

Note that we have used Corollary 2.37 to ensure (H̃ ′)an → San is definable. By

construction (H̃ ′)def → S is a proper modification (indeed, it is one-to-one on Ũ ′),

and it will be enough to algebraize (H̃ ′)def → S, as the algebraicity of Xdef → S then
follows from [34, Corollary 4.5].

We may therefore assume Xdef → S is a modification. Now, by induction, the
exceptional locus of Xdef → S can be algebraized, so let Zdef ⊂ S be the reduced
exceptional locus, and W = ϕ−1(Z) equipped with its reduced induced structure. Let
Wk be the k’th order thickening of W , and Zk the k’th order thickening of Zdef in S.

We claim that W def
k → ϕ(W def

k ) can be algebraized. Indeed, by induction W def
k−1 →

ϕ(W def
k−1) can be algebraized, and so we get a commutative diagram

5Alternatively, one can first pass via a proper modification X ′ → X to a scheme X ′ and then deal
with the usual Hilbert scheme.

6More directly, after replacing X with a resolution, ϕ is smooth over a definable Zariski open.
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W def
k−1

��

// W def
k

��

ϕ(Wk−1)def // Zk
and applying Proposition 4.4 algebraizes W def

k → ϕ(W def
k ).

We thus form a formal algebraic space Z to which the completion W of W inside X
maps. Since Xdef → S is a proper modification, it follows exactly as in the proof [2,
Lemma 7.7] that the map W → Z is a formal modification, and thus Xan → San can
be algebraized as X → S by [2, Theorem 3.1]. Now it remains to show that Sdef = S,
or said differently that the algebraic functions on S are definable with respect to the
definable structure on S. This follows immediately from Corollary 2.36.

Now if X is non-reduced, Xan → ϕan(Xan) can be algebraized by X → Y exactly
as above by repeatedly applying Proposition 4.4. It remains to show that the map
Y an → San is the analytification of a map Y def → S. To see this, first note that the
map on spaces is definable, since it is the unique map through which Xdef → S factors.
The claim now follows from Lemma 2.37. �

We now prove Proposition 4.4. We have an exact sequence of OW ′-coherent sheaves
on W ′:

(1) 0→ I → OW ′ → OW → 0

where both I and OW are coherent OW -sheaves. We can analytify on W ′ and get a
sequence of sheaves of OW ′an-coherent sheaves7 :

(2) 0→ Ian → OW ′an → OW an → 0.

Viewing (1) in the category of sheaves of abelian groups we have a natural cobound-
ary map f∗OW → R1f∗I, while viewing (2) in the category of OW ′an-modules we have
a coboundary map fan

∗ OW an → R1fan
∗ I

an.

Lemma 4.5. The coboundary map f∗OW → R1f∗I analytifies to the coboundary map
fan
∗ OW an → R1fan

∗ I
an.

Proof. The boundary map factors through Cech cohomology, and the statement fol-
lows. �

Let F be the kernel of f∗OW → R1f∗I, so that by the preceding lemma F is an
OZ-module. Note that analytically, it is clear that OZ′an surjects onto OZan , and thus
the image of ϕ′an

∗ OW ′an in fan
∗ Oan

W contains the image of OZan . It follows that F an

contains the image of OZan in f∗Oan
W , and since these are coherent sheaves it follows

by Theorem 2.22 that F contains the image of OZ in f∗OW . We define the sheaf of
rings R on Z as the pushout R = OZ ⊕f∗OW

f∗OW ′ . It follows that R surjects onto
OZ , with nilpotent kernel J = f∗I.

Lemma 4.6. Suppose Z is an algebraic space, and J is a quasi-coherent sheaf on Z.
Let R be a sheaf of rings on the étale site Z of Z such that

0→ J → R→ OZ → 0

is a first order thickening8. Then (Z,R) is an algebraic space.

7Note that OW ′an , when viewed on W , is not the analytification of OW ′ since that is not defined
(it’s not even an OW -module).

8Recall this means that R → OZ preserves the rings structure and that J with its induced ideal
structure is of square zero.
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Proof. The statement is étale local, so we may assume Z is a scheme. Let ψ : R→ OZ
be the natural map. Since R is a nilpotent thickening of OZ it follows that it has the
same spectrum. Thus it suffices to show that if U ⊂ Z is affine, and f ∈ R(U), that
Γ(U,R)f maps isomorphically to Γ(Uf , R).

We first check injectivity. Suppose s ∈ Γ(U,R), and restricts to 0 in Uf . Then
replacing s by fms for some positive integer m we may assume ψ(s) = 0. Thus
s ∈ Γ(U, J). But J is a quasi-coherent sheaf, thus f rs = 0 for some positive integer r,
as desired.

Conversely, suppose s ∈ Γ(Uf , R). Replacing s by fms we may assume ψ(s) extends,
and thus subtracting off that s ∈ Γ(Uf , J), and again the statement follows by quasi-
coherence of J . �

We thus have an algebraic thickening Z0 = (Z,R) and a diagram

W

��

// W ′

��

Z // Z0

where W ′ → Z0 is dominant, since f is dominant. Consider the diagram

W def

��

// W ′def

��

""

Z ′

Zdef // Zdef
0

<<

Note that Zdef
0 → Z ′ may well not be immersive. We claim that the image is

algebraic. The definable analytic space structure on the image is defined by the image
T of the map OZ′ → Rdef , and we have a diagram

0 // Jdef // Rdef // OZdef
// 0

0 // K

OO

// T

OO

// OZdef
// 0

Now K is a coherent OZdef -submodule of Jdef and therefore the definabilization of
an algebraic K ⊂ J by Theorem 3.1. Letting R′ = R/K, we have another algebraic
space (Z,R′) by Lemma 4.6. Note that T /Kdef ∼= OZdef is a coherent R′def -submodule
of R′def and therefore gives a copy of OZ inside R′, by Theorem 3.1. It is easy to check
that the pushout T = R⊕R′ OZ definabilizes to T , and by Lemma 4.6, Z ′′ = (Z, T ) is
algebraic.

Since (Zdef , T ) is the image of ϕ′ by construction, this concludes the proof.

5. Algebraicity of period maps

In this section we prove the first part Theorem 1.1. For this section we work
only over the o-minimal structure Ran,exp.
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5.1. Period images. Let Ω be a pure polarized period domain with generic Mumford–
Tate group G and Γ ⊂ G(Q) an arithmetic lattice. By [3, Theorem 1.1], if Γ is neat
then Γ\Ω has a canonical structure of a definable analytic variety (in fact, even over
Ralg). Since every arithmetic lattice has a normal neat subgroup Γ′, using Proposition
2.38 we can equip Γ\Ω with a definable analytic space structure as the categorial
quotient of Γ′\Ω by G = Γ/Γ′.

Corollary 5.1. Let X be a reduced algebraic space, and ϕ : Xan → (Γ\Ω)an a locally
liftable map satisfying Griffiths transversality. Then ϕ (uniquely) factors as ϕ = ιan ◦
fan for a dominant map f : X → Y of algebraic spaces and a closed immersion
ι : Y def → Γ\Ω of definable analytic varieties.

Proof. Taking a resolution, its enough to assume X is smooth, and by a theorem of
Griffiths [20, Theorem 9.5] we may then assume that ϕ is proper. By [3, Theorem 1.3],
ϕ : Xan → (Γ\Ω)an is the analytification of a map Xdef → Γ\Ω of definable analytic
varieties. Now apply Theorem 4.2. �

In fact, we obtain a version of 5.1 over non-reduced bases, but we must first make
the following definition.

Definition 5.2. Let X be an algebraic space (possibly non-reduced). A definable
period map of X is a locally liftable map ϕ : Xdef → Γ\Ω of definable analytic spaces
such that for any reduced irreducible component X0 of X, the associated (locally
liftable definable) map ϕ0 : Xdef

0 → Γ\Ω satisfies Griffiths transversality—that is,
the (locally defined) map TXdef

0
→ ϕ∗0TΩ on the tangent sheaf TX0 = (Ω1

X0
)∨ factors

through the Griffiths transverse subbundle.

Note that we do not require ϕ to be Griffiths transverse in the nilpotent tangent
directions. Moreover, note that the definition is functorial in the sense that for any
definable period map ϕ : Xdef → Γ\Ω and any map f : Y → X, we have that f ◦ϕ is a
period map. Finally, for X integral, the Griffiths transversality condition is equivalent
to the usual condition on the regular locus Xreg ⊂ X.

The local liftability condition is equivalent to ϕ factoring through the stack quotient
[Γ\Ω] which is naturally a definable analytic Deligne–Mumford stack using the proof of
Proposition 2.38. There are no new subtleties in the definition of a definable analytic
Deligne–Mumford stack, but we do not pursue these ideas here. Note that by definable
cell decomposition (as in Lemma 2.14), ϕ is definably locally liftable if and only if it
is analytically locally liftable.

The definability requirement should be viewed as an admissibility condition. The
following example shows Corollary 5.1 is in general false without assuming definability,
while Proposition 5.9 below shows that period maps associated to variations coming
from algebraic families are definable.

Example 5.3. Let San = Γ\Ω be a modular curve with level structure so that it is
a smooth scheme, and let Y = S ×SpecC SpecC[ε]/(ε2) be the trivial thickening of it.
Given a global holomorphic function f on San and a global derivation D on S we can
define a map ϕ : Y an → San extending the identity map via ϕ](s) = s+εfDs. Since S is
affine we can pick f to be non-algebraic, and then the map ϕ will be non-algebraizable.

With these preliminaries, we now state a more general version of Corollary 5.1, to
be proven in the next subsection.

Theorem 5.4. Let X be an algebraic space and ϕ : Xdef → Γ\Ω a definable period
map. Then ϕ (uniquely) factors as ϕ = ι ◦ fdef for a dominant map f : X → Y of
algebraic spaces and a closed immersion ι : Y def → Γ\Ω of definable analytic spaces.
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Definition 5.5. We refer to an algebraic space Y with a closed immersion ι : Y def →
Γ\Ω of definable analytic spaces arising from the theorem as a definable period image.

Note that for a proper definable period map Xdef → Γ\Ω Theorem 5.4 holds over
an arbitrary o-minimal structure.

5.2. Algebraicity of the Hodge filtration. We make the following definition along
the same lines as in the previous subsection:

Definition 5.6. Let Y be an algebraic space (possibly non-reduced). A definable
variation on Y is a triple (VZ,F•, Q) where VZ is a local system VZ on Y def , F• is a
definable coherent locally split filtration of VZ ⊗Z OY def satisfying Griffiths transver-
sality (in the same sense as Definition 5.2), and Q is a quadratic form on VZ, such that
(VZ,F•, Q) is a pure polarized integral Hodge structure fiberwise.

As above, every local system on Y an is definable by o-minimal cell decomposition.
If Γ is torsion-free the triple (VZ,F•, Q) exists universally on Γ\Ω (although of course
it is not in general a variation as it does not satisfy Griffiths transversality).

When Y carries a definable variation that’s clear from context, we denote by F •
Y def

the filtered Hodge bundle. If Y is smooth (in particular reduced) with a log smooth
compactification Y and the variation has unipotent monodromy at infinity, we know
that F •

Y def is in fact the definabilization of an algebraic filtered bundle F •Y . In fact,
it has a canonical extension (the Deligne canonical extension) as an algebraic filtered
bundle F •

Y
, uniquely determined by condition that the connection have log poles with

nilpotent residues.
We now show the following generalization of the second part of Theorem 1.1:

Theorem 5.7. For Y an algebraic space with a definable variation, F •
Y def is the de-

finabilization of a (unique) algebraic filtered bundle F •Y .

Proof. First, observe that taking a suitable level cover, we get an étale cover f : Y ′ →
Y such that the variation on Y ′def has unipotent monodromy at infinity. As F •

Y def

embeds in fdef
∗ F •

Y ′def , by Theorem 3.1 we may assume that the monodromy at infinity
is unipotent.

Let Y0 be the reduced space of Y . Y0 can be resolved by successive blow-ups, and
performing the same blow-ups on Y we obtain X → Y whose reduced space X0 is
smooth. By taking some compactification and again blowing up to resolve the reduced
boundary, we obtain a compactification X of X whose reduced space is log smooth.
The following lemma then implies F •

Xdef is the definabilization of an algebraic filtered
bundle F •X by ordinary GAGA.

Lemma 5.8. Let X be a proper algebraic space, and D a closed subspace such that
the reduced spaces (X0, D0) are a log smooth pair, and such that X = X r D has
a definable variation with unipotent monodromy at infinity. There is a unique map

f : X̃ → X which is an isomorphism on reductions and over X, and minimal with

respect to the following property: F •
Xdef extends as a filtered vector bundle to X̃def and

restricts to the Deligne canonical extension on the reduced space (X0)def .

Proof. X
def
0 admits a definable cover by polydisks P = ∆n such that Xdef

0 is locally

P ∗ = (∆∗)m×∆n−m. Let R be the restriction of the definable structure sheaf of X
def

to P . Since an analytic space is Stein iff its reduction is Stein, (P,R) is a Stein space,
and so we may and do choose lifts tk of the coordinate functions zk on the reduction
(by possibly shrinking further, these lifts are also definable). Note that a surjective
exponential map R → R× is still well defined with kernel Zn.
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Now let qk be a choice of logarithm of tk for each k, definable on vertical strips,
and N1, . . . , Nm the nilpotent monodromy logarithms. We have a definable map ϕ :
(∆∗)m×∆n−m → Γ\Ω, and so ψ = exp(−

∑
qkNk)ϕ lifts definably to Ω̌. By standard

theory, the map on the reduction extends to P .
Let i : X → X and j : P ∗ → P be the inclusions, and consider the sheaf j∗j

∗R
as a sheaf of rings on P . We have a pullback ψ∗OΩ̌ → j∗j

∗R, and we take T to
be the subsheaf of j∗j

∗R generated by this image and R. We first claim that T is
definable coherent. Indeed, while j∗j

∗R is not coherent, it is j∗(Odef
X |P ) and therefore

naturally filtered by the definable coherent sheaves Edef |P for E ⊂ i∗OX coherent.
Thus, there is some such E so that the image of ψ∗OΩ̌ and R are both contained

in Edef |P , and therefore T is definable coherent. T is uniquely determined as the
“minimal thickening” of X such that ψ extends, so we obtain a well-defined definable

analytic space X̃ = (X0, T ). By construction, OX ′ is a subsheaf of F def for some

coherent E ⊂ i∗OX , and is therefore algebraic by Theorem 3.1. Set X̃ = X̃def .
Now, we can pull back the Hodge filtration on Ω̌ to get a definable filtered vector

bundle F •
X̃

on X̃ extending F •X . The gluing follows because the filtration on Ω̌ is

invariant under G(C). �

Note that X → Y may not be dominant, but its image Y ′′ is isomorphic to Y
on a dense open set U . Let Z be a sufficiently thick nilpotent neighborhood of the
complement of U and A = Y ′′ ×Y Z. Then Y is naturally the pushout

A

��

// Y ′′

��

Z // Y

Now as f : X → Y ′′ is proper dominant, F •
Y ′′def embeds in f∗(F

•
X)def , so it is the

definabilization of some algebraic F •Y ′′ by Theorem 3.1. Z has smaller dimension then

Y , so by induction F •
Zdef = (F •Z)def is algebraic, and F •

Y def is the definabilization of the
pushout of F •Y ′′ and F •Z . �

Proof of Theorem 5.4. Let X be an algebraic space and ϕ : Xdef → Γ\Ω a definable
period map. The proof of the previous theorem implies we can produce a proper
X ′ → X such that the definable period map of X ′ has unipotent monodromy at infinity
and X ′ → X is dominant on some dense open set U of X. Moreover, we get a partial

compactification X
′

which admits a definable proper period map ϕ : X
′def → Γ\Ω

restricting to that of X ′. Applying Theorem 4.2 to X
′
, we obtain X

′ → Y ′ (proper)
dominant and Y ′def → Γ\Ω a closed immersion.

Let X ′′ be the image of X ′ in X, and let W be a sufficiently thick nilpotent neighbor-
hood of the complement of U such that X is the pushout of W and X ′′. By induction
we may apply Theorem 4.2 to W to obtain a dominant W → Z and a closed immersion
Zdef → Γ\Ω. The sought for Y is then the pushout of Z and Y ′. �

Every definable period map yields a definable variation by pulling back9, and we
conclude this subsection with a converse.

Proposition 5.9. Let Y be an algebraic space. An analytic period map ϕ : Y an →
(Γ\Ω)an associated to a definable variation is definable.

Proof. Again we may produce a proper X → Y such that the pull back of the variation
to X has unipotent monodromy at infinity, has smooth reduced space, and for which

9Pulling back from the stack that is.
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X → Y is dominant on a dense open set U of Y . Let Z be a sufficiently thick nilpotent
thickening of the complement of U , and let X ′ be the image of X in Y . By induction
we may assume the claim for Z. It will be enough to show the claim for X, for then
by Corollary 2.37 we have it for X ′, and then the period map of Y is the pushout of
those of X ′ and Z.

Therefore, replacing Y with X, we may assume Y has smooth reduced space Y red.
From [3], there is a definable fundamental set Ξ for Γ such that the quotient map
Ξ → Γ\Ω realizes Γ\Ω as a definable analytic space as the quotient of Ξ by a closed
definable equivalence relation. As above, the reduced period map ϕred : (Y red)an →
(Γ\Ω)an is definable, so there is a definable open cover Yi of Y def such that we can
choose lifts Yi → Ξ which are definable on reduced spaces. But Ω̌ is a flag variety and
maps Yi → Ω̌ are clearly definable if and only if F•|Yi is definable, and this implies
Yi → Ξ is definable. �

Thus a definable variation on Y is equivalent to a definable period map.

Corollary 5.10. Let Y be an algebraic space. A period map associated to an algebraic
subquotient of a variation Rkf∗Z for a smooth projective family f : X → Y is definable.

Proof. In this case the filtered Hodge bundle is algebraic. �

5.3. The Griffiths bundle. For any algebraic space Y with a definable map Y def →
Γ\Ω we denote by LY def the pullback of the Griffiths Q-bundle.

Lemma 5.11. Let Y be a definable period image. Then LY def is the definabilization
of a (unique) algebraic Q-bundle LY .

Proof. By definition there is an algebraic spaceX with a definable period map factoring
through Y def such that f : X → Y is dominant. By a similar argument as in the proof
of Theorem 5.7, by possibly thickening Y we may assume f is proper. By Theorem
5.7 the Griffiths bundle on X is the definabilization of an algebraic Q-bundle LX . As
LY def embeds in f∗(LX)def , we are done by Theorem 3.1. �

6. Quasi-projectivity of period images

Let Y be a definable period image in Γ\Ω. From the last subsection, we know that
the Griffiths Q-bundle LY is algebraic. Before proving the second part of Theorem
1.1, we will need the following notion.

Definition 6.1. Assume Y is a definable period image. For Y reduced, we say a section
s of LmY vanishes at the boundary if the following condition holds: for some (hence any)

period map Xdef → Γ\Ω factoring through Y such that X is smooth and the variation
on X unipotent monodromy at infinity, s pulls backs to a section of Lm

X
(−D). Note

that s vanishes at the boundary if and only if sred does. We let Γvan(Y,LmY ) ⊂ Γ(Y,LmY )
denote the linear subspace of sections vanishing at the boundary.

Note that Γvan(Y,LmY ) is finite-dimensional for each m. We are now in a position to
state the main result of this section:

Theorem 6.2. Let Y be a definable period image. Then LY is ample on Y . Moreover,
sections of some power LnY which vanish at the boundary realize Y as a quasi-projective
scheme.

For the proof we will need the following:
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Lemma 6.3. Let X,Y be algebraic spaces and f : X → Y a proper dominant map.
There is an algebraic subspace S ⊂ Y supported on the locus where f is not an iso-
morphism, such that for any line bundle L on Y , a section s ∈ Γ(X, f∗L) is in the
image of Γ(Y,L) iff its restriction s|T ∈ Γ(T, f∗L|T ) is in the image of Γ(S,L|S), where
T = f−1S.

Proof. Let Q be to cokernel of the map OY → f∗OX and S its scheme-theoretic
support. Then we have a diagram

0 // OY

��

// f∗OX

��

// Q // 0

OS // f∗OT // Q // 0

Tensoring by L and taking cohomology, the result follows. �

In the proof of the theorem, the positivity of the Griffiths bundle will be deduced
from the special case of variations over smooth bases, where we have the following:

Lemma 6.4. Let X be the complement of a normal crossing divisor D in a compact
Kähler manifold X. Consider a polarized real variation of Hodge structure over X
with unipotent monodromies around D and let LX be Deligne canonical extension of
the associated Griffiths line bundle. Then LX is a nef line bundle. Moreover, LX is
big if and only if the associated period map is generically immersive.

Proof. Since every piece of the Hodge filtration comes equipped with a metric, the
restriction to X of the Griffiths line bundle is naturally equipped with a metric h,
which by Schmid norm estimates extends as a singular metric on X with zero Lelong
numbers (see [9] for more details). It follows that LX is a nef line bundle. In particular,

LX is big if and only if c1(LX)dimX > 0, cf. [8, Theorem 1.2]. By [27, Theorem 5.1]
this number is computed by the Chern form of the hermitian line bundle (LX , h):

c1(LX)dimX =

∫
X

(C1(LX , h))dimX .

We conclude using that the real (1, 1)-form C1(LX , h) is strictly positive at a point
x ∈ X if and only if the period map is immersive at x, cf. [20, Proposition 7.15]. �

Proof of Theorem 6.2. We first show it suffices to assume Γ is neat. Recall that by
Zariski’s main theorem, to show a line bundle is ample it is sufficient to show that
it separates points. Take Γ′ ⊂ Γ be a normal, neat subgroup of finite index `, with
quotient G. Let Y be the period image of X, and Y ′ the period image of the level
cover of X ′ in Γ′\Ω. Then we have a surjective, dominant, finite map π : Y ′ → Y , and
a group action G on Y ′ such that π is G-invariant. Let s be a local section of Y ′, we
claim that Nm(s) :=

∏
g∈G g(s) descends to Y . It is enough to work on stalks. Let

y ∈ Y , R = Oan
Y,y and S = Oan

Y ′,π−1(y). Let s ∈ S, then s lifts to a section sU on some

(G-invariant) open neighborhood U of π−1(y). Now Nm(sU ) is in OG(Γ′\Ω)an = O(Γ\Ω)an

and thus has an image r ∈ R, whose image in S is therefore Nm(s). We therefore have
norm maps

Nm : Γ(Y ′, LkY ′)→ Γ(Y,Lk`Y )

for each k.
It follows from the assumption that LY ′ is ample on Y ′ that LY separates points on

Y . Thus, LY is ample.
Let P ⊂ Y be a closed, zero-dimensional subscheme. We will show:

Claim. The restriction Γvan(Y,LnY )→ Γ(P,LnP ) is surjective for some n.
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We now prove the claim by induction on d = dimY , the case of d = 0 being trivial.

Step 1. We first show we may assume Y is reduced. If Y is non-reduced, then we can
write Y as a thickening of a subspace Y0 by a square-zero sheaf of ideals I. Note that
I is an OY0-module. We have an exact sequence

(3) 0→ ILnY → LnY → LnY0
→ 0.

By the induction statement, on Y0 we can pick an embedding Y0 → Pm corre-
sponding only to sections that vanish at the boundary. Thus, we can find a section
g ∈ Γvan(Y0, L

n
Y0

) such that Y0g is affine and contains the base change P0 of P . Now
since Y0g is affine, we may pick vanishing sections s1, . . . , sk of LmY0

whose image spans
Γ(P0, L

n
P0

). By the Cech Cohomology argument in [22, II.4.5.14], it follows that for a

sufficiently large integer r we have that s1g
r, . . . , skg

r all lift to sections of Lnr+mY on Y .
Since g does not vanish on P , it follows that Γvan(Y, LnY ) surjects onto Γ(P0, L

n
P0

) for
n � 1. Now from (3) it is enough to show that Γ(Y0, IL

n
Y ) surjects onto Γ(P0, IL

n
P ),

which is an immediate consequence of LY0 being ample.

Step 2. By Step 1, we assume Y is reduced. Take a resolution f : X → Y which is an
isomorphism outside of a dimension d − 1 set and which has a log-smooth projective
compactification X. Let S ⊂ Y and T ⊂ X be the subspaces guaranteed by Lemma
6.3 for L = LX . Let Z be the pushout of T and f−1P .

Step 3.

Lemma 6.5. There is a (nonzero) effective divisor E in X containing Z such that
for m� 0, any section of Γ(E,Lm

X
(−D)|E) whose restriction to Z is a pullback, is the

restriction of the pullback of a vanishing section of LmY .

Proof. Let A be an ample divisor on X. LX is big on every component, so for some n

there is a section α of Ln
X

(−A) whose zero locus E0 contains Z. For any r > 0, setting

E = rE0 we thus have an exact sequence

H0(X,Lm
X

(−D))→ H0(E,Lm
X

(−D)|E)→ H1(X,Lm−nr
X

(−D + rA)).

LX is nef, so by Fujita vanishing the rightmost group is zero—and thus the first map
is surjective—for some r and any m ≥ nr. Now apply the previous step and Lemma
6.3. �

Step 4.

Lemma 6.6. There is a (nonzero) effective divisor E′ of X containing Z such that
for some integer k and all m � 0, every section of Lm

X
(−kD)|

E
′ whose restriction to

Z is a pullback, is the restriction of the pullback of a vanishing section of LmY , where

E
′

is the closure of E′ in X.

Proof. Write E = E
′
+D′ where D′ is supported on the boundary and every component

of E
′

meets X. Set E′ = E
′ ∩X. Note that we have a sequence

0→ O
E
′(−D′)→ OE → OD′ → 0

and so Γ(E
′
, Lm

X
(−kD)|

E
′) injects in Γ(E,Lm

X
(−D)|E) for some fixed k and all m ≥ 0.

Now apply the previous step. �

Step 5. Let F ⊂ Y be the period image of E′. Applying the induction step to F , it
follows that for some n that the map Γvan(F,LnF ) → Γ(P,LnP ) is surjective. Pulling
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an appropriate symmetric power of these sections back to E
′

and applying Step 4, we
see that these sections extend to vanishing sections of Y , as desired.

To finish the proof, the claim implies LY is ample, even for Y non-proper. Indeed,
the vanishing sections yield a quasi-finite map f : Y → Pn, and by Zariski’s main
theorem this factors as g ◦ i for g : Y ′ → Pn finite and i : Y → Y ′ an open immersion.
As g∗O(1) is ample, LY is too. Now the ring

⊕
n Γvan(Y,LnY ) is integrally closed in⊕

n Γ(Y, LnY ), since a meromorphic section s which satisfies a monic polynomial relation
with coefficients that vanish at the boundary must also vanish at the boundary. Thus,
Y ′ can be projectively embedded with sections vanishing at the boundary. �

7. Applications

We start by making some remarks related to the first two applications below. We
may more generally speak of pure polarized integral variations of Hodge structures
over a separated Deligne–Mumford stack M of finite type over C in the obvious way.
For example, for a smooth projective family π : X → M, the local system Rkπ∗Z
will underly such a variation. We say that the period map is either quasi-finite or
Ran,exp-definable if this is so for the variation pulled back to a finite-type étale atlas.

Recall that the definability condition is again automatic ifM is reduced [3, Theorem
1.3], and is satisfied for all period maps arising from geometry, by Corollary 5.10.

7.1. Borel algebraicity. The following is an analog of a theorem proven by Borel [7,
Theorem 3.1] (see also [11, Theorem 5.1]) for locally symmetric varieties:

Corollary 7.1. Let M be a separated Deligne–Mumford stack of finite type over C
admitting a quasi-finite Ran,exp-definable period map, and let Z be a reduced algebraic
space. Then any analytic map Zan →Man is algebraic.

Proof. Let U → M be a finite-type étale atlas. It is enough to algebraize the base-
change of the map Zan →Man to U along with the descent data, so we may assume
M = U . Let Y be the period image of the period map U → Γ\Ω. The composition
Zan → Uan → (Γ\Ω)an is a period map and thus by Corollary 5.1 it follows that
Zan → Y an is Ran,exp-definable. As U → Y is quasi-finite, Zan → Uan is also Ran,exp-
definable, and therefore by [34, Corollary 4.5] algebraic. �

Applied to a separated Deligne–Mumford moduli stack of smooth polarized varieties
with an infinitesimal Torelli theorem, for example, Corollary 7.1 implies that any
analytic family of such varieties over (the analytification) of a reduced algebraic base
Z is in fact algebraic.

Corollary 7.2. For M as above, if M is in addition reduced, then Man admits a
unique algebraic structure.

7.2. Quasi-projectivity of moduli spaces. Recall by a well-known result of Keel–
Mori [26] that a separated Deligne–Mumford stack M of finite type over C admits a
coarse moduli space M which is a separated algebraic space of finite type over C.

Corollary 7.3. Let M be a separated Deligne–Mumford stack of finite type over C
admitting a quasi-finite Ran,exp-definable period map. Then the coarse moduli space of
M is quasi-projective.

Proof. The Griffiths bundle exists on the coarse moduli space M as a Q-bundle by
general results [28, Lemma 2]. Let U →M be a finite-type étale atlas by an algebraic
space, so that we have a period map ϕ : U → Γ\Ω. Let Y be the period image. We
claim that the map U → Y factorizes through the coarse moduli space M of M. Let
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M′ → M and U ′ → U be the étale covers corresponding to a normal finite index
neat Γ′ ⊂ Γ with quotient G. Let Y ′ be the period image of U ′ in Γ′\Ω. Then as
the variation on U ′ is pulled back from Y ′, the map U ′ → Y ′ factorizes through M′.
As U = [G\U ′] and M = [G\M′], it follows that U → [G\Y ′] factorizes through M.
Therefore, the map U → [G\Y ′]→ Y factorizes through M .

Thus we get a quasi-finite map M → Y . By Theorem 6.2, LY is ample, so we have
an immersion Y → Pn. We then have a quasi-finite map M → Pn, which by Zariski’s
main theorem factors as an open immersion and a finite map. It follows that LM is
ample. �

Remark 7.4. [G\Y ′] as constructed in the proof deserves to be called the period image
of M in [Γ\Ω], although we have not formally defined these notions.

Corollary 7.3 applies to any (separated finite-type) smooth Deligne–Mumford stack
that is the moduli stack of smooth polarized varieties X with an infinitesimal Torelli
theorem, for example Calabi–Yau varieties. By work of Viehweg [38], such results are
known for varieties X with KX semi-ample, and so the case of Fano varieties is of
particular interest. For concreteness, we deduce some new results about moduli spaces
of complete intersections, on which previous work has been done for hypersurfaces by
Mumford [31] and more generally by Benoist [4, 5].

We fix a collection of integers T = (d1, · · · , dc;n) with n ≥ 1, c ≥ 1 and 2 ≤
d1 ≤ · · · ≤ dc. Recall that a complete intersection of type T is a closed subscheme of
codimension c in Pn+c

C which is the zero locus of c homogeneous polynomials of degrees
d1, · · · , dc respectively. Let H be the Zariski-open subset of the Hilbert scheme of
Pn+c
C that parametrizes the smooth complete intersections of type T . Let MT be the

moduli stack of smooth complete intersections polarized by O(1), i.e. the quotient
stack [PGLn+c+1(C)\H].

When T 6= (2;n) Benoist proved that MT is a separated smooth Deligne-Mumford
stack of finite type [4, Theorem 1.6 and 1.7], and therefore has a coarse moduli space
MT . If in addition d1 = · · · = dc then MT is an affine scheme, [5, Theorem 1.1.i)],
while if c > 1 and d2 = · · · = dc, MT is quasi-projective by [5, Corollary 1.2]. Finally,
for T = (3; 2), MT is quasi-projective by [1].

Corollary 7.5. For all T 6= (2;n), the coarse moduli space MT is quasi-projective.

Proof. This follows from Corollary 7.3 and Flenner’s infinitesimal Torelli theorem [16,
Theorem 3.1], which applies for T 6= (3; 2) and T 6= (2, 2;n) for n even—in particular,
to all remaining cases. �

7.3. A factorization result.

Theorem 7.6. Let X be a dense Zariski open subset of a compact Kähler manifold
X, and let (VZ,F•, Q) be a pure polarized integral variation of Hodge structure on X.
Assume that the monodromy of VZ is torsion-free (this is always achieved by going to
a finite étale cover of X) and that X is the biggest open subset of X on which VZ
extends.

Then there exist a proper surjective holomorphic map with connected fibres π : X →
Y for a normal quasi-projective variety Y such that (VZ,F•, Q) is the pull-back by π
of a polarized integral variation of Hodge structure on Y .

Proof. By hypothesis, the monodromy Γ of (VZ,F•, Q) is torsion-free and the associ-

ated period map ϕ : X → Γ\Ω is proper. We denote by X
π−→ Y → Γ\Ω its Stein

factorization, so that Y is a normal analytic space and π : X → Y is surjective with
connected fibres. Since Γ is torsion-free, (VZ,F•, Q) descends to Y . To finish the proof,
it remains to prove that Y , a priori only an analytic space, is in fact a quasi-projective
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variety. We cannot apply directly Theorem 1.1 since X is not assumed to be algebraic.
However one can proceed as follows. First observe that thanks to the following result
of Sommese Y admits a proper modification Y ′ → Y such that Y ′ is a dense Zariski
open subset of compact Kähler manifold Y ′.

Theorem 7.7 (Sommese [37, Proposition III and Remark III-C]). Let X be a dense
Zariski open subset in a compact Kähler manifold X, Y be a complex analytic space
and π : X → Y be a surjective proper holomorphic map with connected fibres. Then
there exists X ′ (resp. Y ′) a dense Zariski open subset in a compact Kähler manifold

X
′

(resp. Y
′
) and a commutative diagram

X X
′

X X ′

Y
′

Y Y ′

π′

α′

π

α

π′|X′

β

where α : X ′ → X (resp. β : Y ′ → Y ) are proper modifications and π′, π′|X′ are

surjective proper maps with connected fibres.

The composition Y ′ → Y → Γ\Ω endows Y ′ with a polarized integral variation of
Hodge structure. Take Γ′ ⊂ Γ neat of finite index and let Y ′′ → Y ′ be the base-change
along Γ′\Ω→ Γ\Ω. If Y ′′ denotes a compactification of Y ′′ whose boundary is a normal
crossing divisor, the polarized integral variation of Hodge structure induced on Y ′′ has
unipotent monodromy at infinity. Thanks to Lemma 6.4 the associated Griffiths line
bundle LY ′′ is big, hence Y ′′ is Moishezon. It follows that the compact Kähler manifold

Y ′ is Moishezon, hence it is in fact projective algebraic. Since Y ′ → Y is the Stein
factorization of the composition Y ′ → Y → Γ\Ω, it follows now from Theorem 1.1 and
Riemann existence theorem that Y is quasi-projective. �

7.4. An ampleness criterion for the Hodge bundle.

Theorem 7.8. Let (VZ, F
•, Q) be a pure polarized integral variation of Hodge structure

on a (reduced) separated algebraic space X. Assume that the lowest piece of the Hodge
filtration Fn is a line bundle. Assume moreover that for any germ of curve ϕ : ∆→ X,
the O∆-linear map of O∆-modules T∆ → Hom(ϕ∗(Fn), ϕ∗(Fn−1/Fn)) is injective.
Then the line bundle Fn is ample on X.

Observe that for X smooth the last condition is equivalent to asking that the OX -
linear map of OX -modules TX → Hom(Fn, Fn−1/Fn) is injective. Applying the same
argument as in section 7.2, we can for example recover a result of Viehweg [38] that
the Hodge bundle is ample on the coarse moduli space of a moduli stack of polarized
Calabi–Yau varieties.

The proof of Theorem 7.8 is parallel to the proof of Theorem 6.2 (replace Lemma 6.4
by the lemma below whose proof is similar). Note that in fact the latter is a particular
case of the former since one easily check that Griffiths line bundle is the lowest piece
of the Hodge filtration of the auxiliary variation ⊗p∈Z ∧rp V where rp = rkF p.

Lemma 7.9. Let X be a smooth algebraic variety, X ⊂ X a smooth compactification
such that X −X = D is a normal crossing divisor. Let (VR, F

•, Q) be a polarized real
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variation of Hodge structure over X with unipotent monodromies around D and let
Fn be Deligne canonical extension of the lowest piece of the Hodge filtration. Assume
that Fn is a line bundle. Then Fn is a nef, and moreover it is big if and only if the
OX-linear map of OX-modules TX → Hom(Fn, Fn−1/Fn) is injective.

Note that the last condition implies that the period map is generically immersive,
but the converse is not true.
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