Les assistants de preuves sont des logiciels permettant de rédiger des énoncés mathématiques et leur démonstration, la compilation du tout garantissant (modulo d'infimes détails) la correction de l'ensemble. Après avoir été surtout promu par la communauté informatique, ils font l'objet d'un engouement croissant chez les mathématicien·nes.
Il y a quelques mois, j'ai formalisé au sein du logiciel Lean/mathlib une démonstration d'un théorème classique, élémentaire, de théorie des groupes : la simplicité du groupe alterné sur au moins 5 lettres, via un critère d'Iwasawa généralement utilisé pour démontrer la simplicité des groupes géométriques.
Je présenterai ce travail, son contexte, et quelques perspectives. (Aucune familiarité avec les assistants de preuve n'est requise.)
Many phenomena in the life sciences, ranging from the microscopic to macroscopic level, exhibit surprisingly similar structures. Behaviour at the microscopic level, including ion channel transport, chemotaxis, and angiogenesis, and behaviour at the macroscopic level, including herding of animal populations, motion of human crowds, and bacteria orientation, are both largely driven by long-range attractive forces, due to electrical, chemical or social interactions, and short-range repulsion, due to dissipation or finite size effects. Various modelling approaches at the agent-based level, from cellular automata to Brownian particles, have been used to describe these phenomena. An alternative way to pass from microscopic models to continuum descriptions requires the analysis of the mean-field limit, as the number of agents becomes large. All these approaches lead to a continuum kinematic equation for the evolution of the density of individuals known as the aggregation-diffusion equation. This equation models the evolution of the density of individuals of a population, that move driven by the balances of forces: on one hand, the diffusive term models diffusion of the population, where individuals escape high concentration of individuals, and on the other hand, the aggregation forces due to the drifts modelling attraction/repulsion at a distance. The aggregation-diffusion equation can also be understood as the steepest-descent curve (gradient flow) of free energies coming from statistical physics. Significant effort has been devoted to the subtle mechanism of balance between aggregation and diffusion. In some extreme cases, the minimisation of the free energy leads to partial concentration of the mass. Aggregation-diffusion equations are present in a wealth of applications across science and engineering. Of particular relevance is mathematical biology, with an emphasis on cell population models. The aggregation terms, either in scalar or in system form, is often used to model the motion of cells as they concentrate or separate from a target or interact through chemical cues. The diffusion effects described above are consistent with population pressure effects, whereby groups of cells naturally spread away from areas of high concentration. This talk will give an overview of the state of the art in the understanding of aggregation-diffusion equations, and their applications in mathematical biology.
On présente brièvement la connexion entre la fonction zêta de Riemann $\zeta(s)$, la fonction zêta de Ruelle $\zeta_{Ruelle}(s)$ et les fonctions zêta dynamiques $\eta_D(s), \eta_N(s).$ Les dernières sont associées au flot de billiard pour l'union $D \subset {\mathbb R}^d$ d'un nombre fini des obstacles compacts disjoints. En particulier, $\eta_D(s) = \sum_{n=1}^{\infty} a_n e^{-\lambda_n s}$, où $a_n \in {\mathbb R}$ changent des signes aléatoirement, tandis que $\eta_N(s)$ est une série de Dirichlet avec des coefficients $a_n > 0.$ Pour cela il y a des similitudes entre le comportement de $\eta_D(s)$ et $\frac{1}{\zeta(s)}.$ Les singularités de $\eta_D$ et $\eta_N$ sont importantes pour la distribution des résonances de l'opérateur de Laplace dans l'extérieur de $D$ avec conditions de Dirichlet ou Neumann sur $\partial D$. Dans cette direction, Ikawa a introduit en 1990 la conjecture modifiée de Lax-Phillips (MLPC) affirmant qu'il existe une bande $\{z \in \mathbb{C}: \: 0 < \mathop{\rm Im} z \leq \alpha\}$ contenant un nombre infini des résonances. Dans l'exposé on présente les résultats suivants: (a) Sous une condition de non eclipse, on prouve que $\eta_D$ et $\eta_N$ admettent un prolongement méromorphe sur le plan complexe avec des pôles simples et résidus entiers. (b) Si la frontière $\partial D$ est réelle analytique, la fonction $\eta_D$ n'est pas entière et (MLPC) est satisfaite. (c) Pour $\eta_N$ il existe une bande $\{z \in \mathbb{C}: \beta < \mathop{\rm Re} z < \sigma_a\}$ contenant un nombre infini des pôles et on caractérise les constantes $\beta$ et $\sigma_a$. On présentera une idée de la preuve de (b) et on discutera l'idée de la preuve du prolongement méromorphe de $\zeta_{Ruelle}$ suivant l'article seminal de S. Dyatlov et M. Zworski. Les résultats (a) et (b) sont obtenu en collaboration avec Yann Chaubet.
Les classes de Chern sont des invariants topologiques classiquement associés à des fibrés vectoriels complexes, qui ont de nombreuses descriptions et caractérisations. Le cas des classes de Chern du fibré tangent (pour une variété complexe ou presque complexe) donne lieu à la théorie du cobordisme complexe développée par Thom et Milnor. Les théories analogues dans le cadre de la géométrie algébrique donnent lieu à des invariants plus fins qui font intervenir les groupes de Chow. Après avoir introduit ces différents objets et contextes, je donnerai une caractérisation des classes de Chern d'une variété algébrique par une propriété universelle de type Franchetta.
The aim of this work is to present new approaches to define Wasserstein-like barycenters for Gaussian distributions and Gaussian mixtures, while imposing the marginals of the barycenter. For instance, Wasserstein barycenters do not preserve marginals in general. In this work, we first characterize sufficient and necessary conditions for the Wasserstein barycenter between two Gaussian distributions to preserve marginals, and provide necessary conditions in the case of more than two Gaussians. This preliminary analysis enable us to propose modified Wasserstein barycenters that have prescribed marginals of the distributions, both for Gaussian distributions and for mixtures of Gaussian distributions. In the case of Gaussian distributions, the marginal-constrained modified Wasserstein barycenters can be analytically computed, while for Gaussian mixtures, computing the marginal-preserving barycenter consists in a postprocessing of the Gaussian mixture Wasserstein barycenter. In both cases, we provide numerical simulations illustrating the difference between Wasserstein barycenters and modified marginal-constrained Wasserstein barycenters. We illustrate the interest of the latter for interpolation tasks between probability measures. In particular, we motivate this work by applications in quantum chemistry, for electronic structure calculations in molecules.