IMB > Informations générales > Agendas

La semaine de l’IMB

La semaine de l’IMB recense l’ensemble des événements de la semaine en cours

  • Le 17 février 2020 à 14:00
  • Groupe de Travail Analyse
    Salle 2
    Sebastian Tapia IMB
    compact operators and differentiability

  • Le 17 février 2020 à 16:00
  • Groupe de Travail de Théorie Algorithmique des Nombres
    Salle 2
    Razvan Barbulescu (IMB)
    Equivalence entre le cryptosystem d'Alekhnovich et son problème sousjacent

  • Le 18 février 2020 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 385
    Alex Bartel (University of Glasgow)
    The ray class group of a 'random' number field

    The Cohen–Lenstra–Martinet heuristics are a probabilistic model for the behaviour of class groups of number fields in natural families. In this talk, I will discuss a generalisation to ray class groups. About 5 years ago, Varma determined the average number of 3-torsion elements in the ray class group of K with respect to m, when m is a fixed rational modulus, and K runs through the family of imaginary quadratic or of real quadratic fields. Since then, Bhargava has been challenging the community to come up with a natural probabilistic model that would explain the numbers obtained by Varma, and to predict more general averages in more general families of number fields. As I will explain in my talk, there turns out to be a very simple-minded way of doing so, and also a much more conceptual one, and they both turn out to be equivalent. The more conceptual one involves an object that does not appear to have been treated in the literature before, but that is very natural: the Aralelov ray class group of a number field. This is joint work with Carlo Pagano.


  • Le 18 février 2020 à 11:30
  • Séminaire de Physique Mathématique - EDP
    Salle de Conférences
    G. Fourdonavlos
    Stabilité linéarisée des 'étoiles dures' en relativité générale
    On va introduire et étudier une famille de solutions statiques des équations d'Einstein-Euler à symétrie sphérique.Celles-ci sont décrites par un fluide parfait avec une équation d'état linéaire, modélisant le noyau dur d'une étoile qui a subi une supernova,mais ne s'est pas effondré dans un trou noir. La première étude variationnelle de ces étoiles, en relativité générale, a été réalisée par Harrison-Thorne-Wakano-Wheeler (1965). Je présenterai un travail récent, en collaboration avec Volker Schlue, traitant les équations d'Einstein-Euler linéarisées, sur ces solutions statiques, en symétrie sphérique. Nous aborderons notamment deux caractéristiques principales des étoiles dures de petite masse, l'énergie bornée et la présence de solutions périodiques au système d'équations linéarisé. Nous relierons ensuite ces propriétés au problème de stabilité orbitale.
  • Le 20 février 2020 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle 2
    Christèle Etchegaray (Inria, IMB)
    Stochastic modeling of single-cell migration
    Cell migration is commonly involved in physiological and pathological phenomena. It is also a very complex process, since cell trajectories result from an intracellular self-organized activity spanning different space and time scales.In this talk, I will introduce a stochastic model for single cell trajectories based on a nonlinear measure-valued Markovian jump process for the membrane’s deformation dynamics. Performing some scaling limit allows to obtain a nonlinear Stochastic Differential Equation for the cell velocity. Further analysis puts to light the ability of the model to capture several migratory behaviors and to derive key quantities of the dynamics. Finally, I will explain how this model can be enriched to take into account the cell’s interaction with its environment.
  • Le 20 février 2020 à 14:00
  • Séminaire Calcul Scientifique et Modélisation
    Salle 2
    Paul Vigneaux (ENS Lyon)
    [Séminaire CSM] Variations autour des fluides de Bingham : équations naturelles ou intégrées
    Dans cet exposé, nous ferons un panorama de méthodes et simulations numériques pour les fluides à seuil, basées sur des méthodes de dualité.Dans un premier temps, nous présenterons le problème des équations de type Bingham dans un canal en expansion-contraction qui permet d'obtenir des couches limites viscoplastiques. Nous revisiterons la théorie asymptotique d'Oldroyd (1947) dans le cas où les nombres caractéristiques sont modérés. Cette étude mélange simulations HPC et allers-retours avec des expériences physiques d'IRSTEA.Une seconde partie traitera ensuite d'un modèle original de Saint-Venant-Bingham pour ces fluides viscoplastiques, en lien avec des applications géophysiques. Nous proposons un nouveau schéma volumes-finis qui couple dualité et techniques équilibrées. Ses propriétés sont illustrées sur un prototype d'avalanche de neige dense dans le couloir de Taconnaz (massif du Mont-Blanc).
  • Le 20 février 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Nikolaos Chalmoukis - University of Bologna
    Simple Interpolating Sequences for the Dirichlet Space

  • Le 21 février 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Jasmin Raissy (Toulouse)
    Un plongement holomorphe dynamique Runge de $\mathbb{C}\times\mathbb{C}^*$ dans $\mathbb{C}^2$.
    Je vais présenter la construction d'une famille d'automorphismes de $\mathbb{C}^2$ ayants une composante de Fatou invariante, attractive non-récurrente, c'est-à-dire où toute orbite converge vers un point fixe au bord de la composante, qui est biholomorphe à $\mathbb{C}\times\mathbb{C}^*$. Comme corollaire, nous obtenons une copie Runge de $\mathbb{C}\times\mathbb{C}^*$ plongée holomorphiquement dans $\mathbb{C}^2$. (Il s'agit d'un travail en collaboration avec Filippo Bracci et Berit Stensønes).
  • Le 21 février 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Matthias Flach (California Institute of Technology)
    Zeta functions of arithmetic surfaces and the conjecture of Birch and Swinnerton-Dyer
    We discuss a special value conjecture for the Zeta function of an arithmetic surface at $s=1$, and how it is equivalent to the conjecture of Birch and Swinnerton-Dyer for the Jacobian of the generic fibre. Along the way we slightly generalize a formula due to Geisser relating the Brauer group and the Tate-Shafarevich group, and we develop some results on the eh-topology for varieties over finite fields.

    Afficher tous les événements à venir