logo IMB
Retour

Séminaire d'Analyse

Carleson measures for the Bloch space in the ball

Evgueni DOUBTSOV

Salle de Conférences

le 20 octobre 2008 à 14:00

Let Hol(Bn){\mathcal H}ol(B_n) denote the space of holomorphic functions in the unit ball BnB_n of Cn{\mathbb C}^n, n1n\ge 1. Given XHol(Bn)X\subset {\mathcal H}ol(B_n) and 0<q<0<q<\infty, a well-known problem is to characterize the positive measures μ\mu on BnB_n such that XLq(Bn,μ)X\subset L^q (B_n, \mu). We obtain such a characterization when XX is the Bloch space B(Bn)={fHol(Bn): supzBnf(z)(1z)<} {\mathcal B}(B_n)= \left\{ f\in{\mathcal H}ol(B_n):\ \sup_{z\in B_n} |\nabla f(z)|(1- |z|) < \infty \right\} and μ\mu is a radial measure. For n=1n=1, this solution was recently obtained by D.~Girela, J.~{'A}.~Pel{'a}ez, F.~Pérez-Gonz'alez and J.~R"atty"a. Also, we solve the problem when XX is the growth space Alog(Bn){\mathcal A}^{-\log}(B_n) or XX is the growth space Aβ(Bn)={fHol(Bn): supzBnf(z)(1z)β<},β>0. {\mathcal A}^{-\beta}(B_n)= \left\{ f\in{\mathcal H}ol(B_n):\ \sup_{z\in B_n} |f(z)|(1- |z|)^\beta < \infty \right\} ,\quad \beta>0.