Salle de Conférences
le 02 février 2023 à 14:00
"On considère le système : z'=Az+Bv avec la mesure y=Cz, on suppose dans un premier temps que A est le générateur d'un semigroupe analytique de résolvante compacte, B est l'opérateur de contrôle et C est l'opérateur d'observation qui peuvent être non bornés. On montre que si (A,B) et (A,C) vérifient une propriété de continuation unique, alors on montre quil existe un contrôle de dimension supérieure ou égale au maximum des multiplicités géométriques des modes instables de A, basé sur un observateur de dimension infinie qui stabilise le système. Par ailleurs, si A est auto-adjoint de résolvante compacte, B non borné, C une observation bornée, et si (A,B) et (A,C) vérifient une propriété de continuation unique ou le critère d'Hautus-Fattorini, alors on démontre l'existence d'un contrôle de dimension finie (de dimension supérieure ou égale au maximum des multiplicités géométriques des modes instables de A) basé sur un observateur de dimension ""finie"" et ""assez grande"" qui stabilise exponentiellement l'état du système z . Ce travail rentre dans le cadre de mon postdoc et est actuellement en cours."