logo IMB
Retour

Séminaire d'Analyse

The Dirichlet problem without the maximum principle

Tom ter Elst (Oakland)

Salle de Conférences

le 16 mars 2023 à 14:00

"The maximum principle plays an important role for the solution of the Dirichlet problem. Now consider the Dirichlet problem with respect to an elliptic operator A=k,l=1dkakllk=1dkbk+k=1dckk+c0 A = - \sum_{k,l=1}^d \partial_k \, a_{kl} \, \partial_l - \sum_{k=1}^d \partial_k \, b_k + \sum_{k=1}^d c_k \, \partial_k + c_0 on a sufficiently regular open set ΩRd\Omega \subset \mathbb{R}^d, where akl,ckL(Ω,R)a_{kl}, c_k \in L_\infty(\Omega,\mathbb{R}) and bk,c0L(Ω,C)b_k,c_0 \in L_\infty(\Omega,\mathbb{C}). Suppose that the associated operator on L2(Ω)L_2(\Omega) with Dirichlet boundary conditions is invertible. Note that in general this operator does not satisfy the maximum principle. Nevertheless, we show that for all φC(Ω)\varphi \in C(\partial \Omega) there exists a unique uC(Ω)Hloc1(Ω)u \in C(\overline \Omega) \cap H^1_{\rm loc}(\Omega) such that uΩ=φu|_{\partial \Omega} = \varphi and Au=0A u = 0. In the case when Ω\Omega has a Lipschitz boundary and φC(Ω)H1/2(Ω)\varphi \in C(\overline \Omega) \cap H^{1/2}(\overline \Omega), then we show that uu coincides with the variational solution in H1(Ω)H^1(\Omega). This is joint work with Wolfgang Arendt."