Salle de Conférences
le 26 septembre 2016 à 14:00
Il est connu et facile à voir par la formule du double alternant que les matrices de Cauchy sont complètement positives. On étudie le cas où le noyau de Cauchy sous-jacent est remplacé par un noyau de Cauchy avec dérive, dans le cadre de diverses questions de statistique visuelle pour les lois et processus stables. On met en évidence un certain ensemble dont la partie discrète fait intervenir les plus grandes racines des polynômes de Tchebyshev de seconde espèce, et qui caractérise la positivité complète des matrices de Cauchy avec dérive. Si le temps le permet, on évoquera le cas des puissances du noyau de Cauchy, dont on suppose que la positivité complète se caractérise par la plus grande racine des polynômes de Gegenbauer correspondant.