Nivat's conjecture claims that only periodic configurations on a two-dimensional integer lattice may satisfy a low complexity assumption. Since techniques used to address the Nivat's conjecture usually relies on Morse-Hedlund Theorem, an improved version of this classical result may mean a new step towards a proof for the conjecture. In this talk, we discuss how, following methods highlighted by Cyr and Kra, an extension of the so far best known result to the Nivat's conjecture may be derived from an alphabetical version of Morse-Hedlund Theorem.