logo IMB
Retour

Séminaire de Théorie des Nombres

La conjecture principale de la théorie d'Iwasawa pour les formes modulaires..

Olivier Fouquet

( Université Paris-Sud )

Salle 2

28 septembre 2018 à 14:00

Depuis la formule des classes de Dirichlet et les conjectures de Birch-Swinnerton-Dyer et Tate, on sait (ou l'on conjecture) que les valeurs aux entiers des fonctions L des objets géométriques s'expriment en termes d'invariants arithmétiques et cohomologiques. La conjecture principale de la théorie d'Iwasawa est une généralisation de cette philosophie qui entend non seulement prédire les valeurs des fonctions L mais aussi leur variation p-adique lorsque les objets géométriques sous-jacents varient dans une famille p-adique (par exemple la famille des tordus par des caractères de Dirichlet, une famille p-adique de formes modulaires?). Après avoir expliqué l'énoncé et la signification de ces conjectures, je présenterai un travail en commun avec Xin Wan dans lequel nous les montrons pour les formes modulaires dont la représentation galoisienne résiduelle est irréductible.