logo IMB
Retour

Séminaire d'Analyse

Approximation in the Zygmund Class

Odí Soler

( Autonoma Barcelone )

Salle de Conférences

le 17 janvier 2019 à 14:00

A continuous real valued function on R\mathbb{R} with compact support is said to belong to the Zygmund class, fΛ,f \in \Lambda_\ast, if \begin{equation} \sup_{x,h\in\mathbb{R}} \frac{|f(x+h)+f(x-h)-2f(x)|}{|h|} < \infty. \end{equation} It is known that the space I(BMO)\mathrm{I}(\mathrm{BMO}) of functions with BMO\mathrm{BMO} derivative in the distributional sense is a subspace of Λ.\Lambda_\ast. In this talk, based on a joint work with A. Nicolau, we give an estimate for the distance of a given function fΛf \in \Lambda_\ast to the subspace I(BMO).\mathrm{I}(\mathrm{BMO}). We will do so by means of a discretisation similar to another used previously by J. Garnett and P. Jones to study the space BMO.\mathrm{BMO}.