Sylvain Golénia, IMB, Université de Bordeaux
Salle de Conférences
le 07 février 2019 à 14:00
Soient deux opérateurs H et A, tels qu'une estimation de Mourre soit satisfaite pour H par rapport à A au dessus d'un intervalle I. Si on suppose que [H,A] et [H,[H,A]] sont H-bornés, dans un certain sens, alors la théorie de Mourre permet d'établir un principe d'absorption limite pour H dans certains espaces à poids liés à A. Dans le cas où l'on suppose seulement que [H,A] est H-borné, la théorie permet simplement de conclure qu'il y a une absence de valeur propre pour H dans I. De plus on sait qu'en général il n'y a pas de principe d'absorption limite possible. Dans cet exposé nous établirons de nouvelles propriétés de la mesure spectrale dans le cas où [H,A] est H-borné. Les applications couvrent par exemple le cas d'opérateurs de Schrödinger avec décroissance faible du potentiel à l'infini.