My research area is functional analysis, my background is operator space theory; it constitutes a good framework for non-commutative analysis. I mainly work on two domains using operator space theory: (non-selfadjoint) operator algebras and non-commutative Lp spaces.
  • Almost contractive maps between C*-algebras with applications to Fourier algebras, (with E. Ricard), to be published in Journal of Functional Analysis.
  • A note on uniformly bounded cocycles into finite von Neumann algebras, (with R. Boutonnet), to be published in Canadian Math. Bulletin.  
  • Dual operator algebras close to injective von Neumann algebras, to be published in Pacific Journal of Math.
  • On isomorphisms and gap theorems for Figa-Talamanca--Herz algebras, Journal of Operator Theory (2017) vol. 78, no 1, 227-243.
  • Homomorphisms with small bound between Fourier algebras, (with Y. Kuznetsova), Israel Journal of Math 217 (2017), no. 1, 283-301.
  • A noncommutative Amir-Cambern theorem for von Neumann algebras, (with E. Ricard), Journal of Functional Analysis 267 (2014), no. 4, 1121-1136.
  • On dual operator algebras with normal virtual h-diagonal, Integral Equations and Operator Theory 73 (2012), no. 3, 365-382.
  • Near inclusions of amenable operator algebras, Bulletin London Math. Society 43 (2011), no. 5, 965-971.
  • Isomorphisms of tensor algebras of topological graphs, (with K. R. Davidson), Indiana University Mathematics Journal 60 (2011), no. 4, 1249-1266.
  • C*-envelopes of tensor algebras for multivariable dynamics, (with K. R. Davidson), Proc. of the Edinburgh Mathematical Society 53 (2010), 1-19.
  • Completely 1-complemented subspaces of the Schatten space Sp, (with C. Le Merdy and E. Ricard), Trans. Amer. Math. Soc. 361 (2009), 849-887.
  • Completely 1-complemented subspaces of the Schatten space Sp, Banach Center Publications, Vol. 78 (2007), 275-278.
  • Subalgebras of $C(\Omega,M_n)$ and their modules, Illinois Journal of Mathematics, 49 (2005), no. 4, 1019-1038.